xref: /openbmc/linux/drivers/ata/libata-core.c (revision 8730046c)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
78 
79 #include "libata.h"
80 #include "libata-transport.h"
81 
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
84 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
85 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
86 
87 const struct ata_port_operations ata_base_port_ops = {
88 	.prereset		= ata_std_prereset,
89 	.postreset		= ata_std_postreset,
90 	.error_handler		= ata_std_error_handler,
91 	.sched_eh		= ata_std_sched_eh,
92 	.end_eh			= ata_std_end_eh,
93 };
94 
95 const struct ata_port_operations sata_port_ops = {
96 	.inherits		= &ata_base_port_ops,
97 
98 	.qc_defer		= ata_std_qc_defer,
99 	.hardreset		= sata_std_hardreset,
100 };
101 
102 static unsigned int ata_dev_init_params(struct ata_device *dev,
103 					u16 heads, u16 sectors);
104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105 static void ata_dev_xfermask(struct ata_device *dev);
106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107 
108 atomic_t ata_print_id = ATOMIC_INIT(0);
109 
110 struct ata_force_param {
111 	const char	*name;
112 	unsigned int	cbl;
113 	int		spd_limit;
114 	unsigned long	xfer_mask;
115 	unsigned int	horkage_on;
116 	unsigned int	horkage_off;
117 	unsigned int	lflags;
118 };
119 
120 struct ata_force_ent {
121 	int			port;
122 	int			device;
123 	struct ata_force_param	param;
124 };
125 
126 static struct ata_force_ent *ata_force_tbl;
127 static int ata_force_tbl_size;
128 
129 static char ata_force_param_buf[PAGE_SIZE] __initdata;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
133 
134 static int atapi_enabled = 1;
135 module_param(atapi_enabled, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137 
138 static int atapi_dmadir = 0;
139 module_param(atapi_dmadir, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141 
142 int atapi_passthru16 = 1;
143 module_param(atapi_passthru16, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145 
146 int libata_fua = 0;
147 module_param_named(fua, libata_fua, int, 0444);
148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149 
150 static int ata_ignore_hpa;
151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153 
154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155 module_param_named(dma, libata_dma_mask, int, 0444);
156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157 
158 static int ata_probe_timeout;
159 module_param(ata_probe_timeout, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161 
162 int libata_noacpi = 0;
163 module_param_named(noacpi, libata_noacpi, int, 0444);
164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165 
166 int libata_allow_tpm = 0;
167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169 
170 static int atapi_an;
171 module_param(atapi_an, int, 0444);
172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173 
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178 
179 
180 static bool ata_sstatus_online(u32 sstatus)
181 {
182 	return (sstatus & 0xf) == 0x3;
183 }
184 
185 /**
186  *	ata_link_next - link iteration helper
187  *	@link: the previous link, NULL to start
188  *	@ap: ATA port containing links to iterate
189  *	@mode: iteration mode, one of ATA_LITER_*
190  *
191  *	LOCKING:
192  *	Host lock or EH context.
193  *
194  *	RETURNS:
195  *	Pointer to the next link.
196  */
197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 			       enum ata_link_iter_mode mode)
199 {
200 	BUG_ON(mode != ATA_LITER_EDGE &&
201 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202 
203 	/* NULL link indicates start of iteration */
204 	if (!link)
205 		switch (mode) {
206 		case ATA_LITER_EDGE:
207 		case ATA_LITER_PMP_FIRST:
208 			if (sata_pmp_attached(ap))
209 				return ap->pmp_link;
210 			/* fall through */
211 		case ATA_LITER_HOST_FIRST:
212 			return &ap->link;
213 		}
214 
215 	/* we just iterated over the host link, what's next? */
216 	if (link == &ap->link)
217 		switch (mode) {
218 		case ATA_LITER_HOST_FIRST:
219 			if (sata_pmp_attached(ap))
220 				return ap->pmp_link;
221 			/* fall through */
222 		case ATA_LITER_PMP_FIRST:
223 			if (unlikely(ap->slave_link))
224 				return ap->slave_link;
225 			/* fall through */
226 		case ATA_LITER_EDGE:
227 			return NULL;
228 		}
229 
230 	/* slave_link excludes PMP */
231 	if (unlikely(link == ap->slave_link))
232 		return NULL;
233 
234 	/* we were over a PMP link */
235 	if (++link < ap->pmp_link + ap->nr_pmp_links)
236 		return link;
237 
238 	if (mode == ATA_LITER_PMP_FIRST)
239 		return &ap->link;
240 
241 	return NULL;
242 }
243 
244 /**
245  *	ata_dev_next - device iteration helper
246  *	@dev: the previous device, NULL to start
247  *	@link: ATA link containing devices to iterate
248  *	@mode: iteration mode, one of ATA_DITER_*
249  *
250  *	LOCKING:
251  *	Host lock or EH context.
252  *
253  *	RETURNS:
254  *	Pointer to the next device.
255  */
256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 				enum ata_dev_iter_mode mode)
258 {
259 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261 
262 	/* NULL dev indicates start of iteration */
263 	if (!dev)
264 		switch (mode) {
265 		case ATA_DITER_ENABLED:
266 		case ATA_DITER_ALL:
267 			dev = link->device;
268 			goto check;
269 		case ATA_DITER_ENABLED_REVERSE:
270 		case ATA_DITER_ALL_REVERSE:
271 			dev = link->device + ata_link_max_devices(link) - 1;
272 			goto check;
273 		}
274 
275  next:
276 	/* move to the next one */
277 	switch (mode) {
278 	case ATA_DITER_ENABLED:
279 	case ATA_DITER_ALL:
280 		if (++dev < link->device + ata_link_max_devices(link))
281 			goto check;
282 		return NULL;
283 	case ATA_DITER_ENABLED_REVERSE:
284 	case ATA_DITER_ALL_REVERSE:
285 		if (--dev >= link->device)
286 			goto check;
287 		return NULL;
288 	}
289 
290  check:
291 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 	    !ata_dev_enabled(dev))
293 		goto next;
294 	return dev;
295 }
296 
297 /**
298  *	ata_dev_phys_link - find physical link for a device
299  *	@dev: ATA device to look up physical link for
300  *
301  *	Look up physical link which @dev is attached to.  Note that
302  *	this is different from @dev->link only when @dev is on slave
303  *	link.  For all other cases, it's the same as @dev->link.
304  *
305  *	LOCKING:
306  *	Don't care.
307  *
308  *	RETURNS:
309  *	Pointer to the found physical link.
310  */
311 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312 {
313 	struct ata_port *ap = dev->link->ap;
314 
315 	if (!ap->slave_link)
316 		return dev->link;
317 	if (!dev->devno)
318 		return &ap->link;
319 	return ap->slave_link;
320 }
321 
322 /**
323  *	ata_force_cbl - force cable type according to libata.force
324  *	@ap: ATA port of interest
325  *
326  *	Force cable type according to libata.force and whine about it.
327  *	The last entry which has matching port number is used, so it
328  *	can be specified as part of device force parameters.  For
329  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330  *	same effect.
331  *
332  *	LOCKING:
333  *	EH context.
334  */
335 void ata_force_cbl(struct ata_port *ap)
336 {
337 	int i;
338 
339 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 		const struct ata_force_ent *fe = &ata_force_tbl[i];
341 
342 		if (fe->port != -1 && fe->port != ap->print_id)
343 			continue;
344 
345 		if (fe->param.cbl == ATA_CBL_NONE)
346 			continue;
347 
348 		ap->cbl = fe->param.cbl;
349 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 		return;
351 	}
352 }
353 
354 /**
355  *	ata_force_link_limits - force link limits according to libata.force
356  *	@link: ATA link of interest
357  *
358  *	Force link flags and SATA spd limit according to libata.force
359  *	and whine about it.  When only the port part is specified
360  *	(e.g. 1:), the limit applies to all links connected to both
361  *	the host link and all fan-out ports connected via PMP.  If the
362  *	device part is specified as 0 (e.g. 1.00:), it specifies the
363  *	first fan-out link not the host link.  Device number 15 always
364  *	points to the host link whether PMP is attached or not.  If the
365  *	controller has slave link, device number 16 points to it.
366  *
367  *	LOCKING:
368  *	EH context.
369  */
370 static void ata_force_link_limits(struct ata_link *link)
371 {
372 	bool did_spd = false;
373 	int linkno = link->pmp;
374 	int i;
375 
376 	if (ata_is_host_link(link))
377 		linkno += 15;
378 
379 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 		const struct ata_force_ent *fe = &ata_force_tbl[i];
381 
382 		if (fe->port != -1 && fe->port != link->ap->print_id)
383 			continue;
384 
385 		if (fe->device != -1 && fe->device != linkno)
386 			continue;
387 
388 		/* only honor the first spd limit */
389 		if (!did_spd && fe->param.spd_limit) {
390 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 					fe->param.name);
393 			did_spd = true;
394 		}
395 
396 		/* let lflags stack */
397 		if (fe->param.lflags) {
398 			link->flags |= fe->param.lflags;
399 			ata_link_notice(link,
400 					"FORCE: link flag 0x%x forced -> 0x%x\n",
401 					fe->param.lflags, link->flags);
402 		}
403 	}
404 }
405 
406 /**
407  *	ata_force_xfermask - force xfermask according to libata.force
408  *	@dev: ATA device of interest
409  *
410  *	Force xfer_mask according to libata.force and whine about it.
411  *	For consistency with link selection, device number 15 selects
412  *	the first device connected to the host link.
413  *
414  *	LOCKING:
415  *	EH context.
416  */
417 static void ata_force_xfermask(struct ata_device *dev)
418 {
419 	int devno = dev->link->pmp + dev->devno;
420 	int alt_devno = devno;
421 	int i;
422 
423 	/* allow n.15/16 for devices attached to host port */
424 	if (ata_is_host_link(dev->link))
425 		alt_devno += 15;
426 
427 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 		const struct ata_force_ent *fe = &ata_force_tbl[i];
429 		unsigned long pio_mask, mwdma_mask, udma_mask;
430 
431 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 			continue;
433 
434 		if (fe->device != -1 && fe->device != devno &&
435 		    fe->device != alt_devno)
436 			continue;
437 
438 		if (!fe->param.xfer_mask)
439 			continue;
440 
441 		ata_unpack_xfermask(fe->param.xfer_mask,
442 				    &pio_mask, &mwdma_mask, &udma_mask);
443 		if (udma_mask)
444 			dev->udma_mask = udma_mask;
445 		else if (mwdma_mask) {
446 			dev->udma_mask = 0;
447 			dev->mwdma_mask = mwdma_mask;
448 		} else {
449 			dev->udma_mask = 0;
450 			dev->mwdma_mask = 0;
451 			dev->pio_mask = pio_mask;
452 		}
453 
454 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 			       fe->param.name);
456 		return;
457 	}
458 }
459 
460 /**
461  *	ata_force_horkage - force horkage according to libata.force
462  *	@dev: ATA device of interest
463  *
464  *	Force horkage according to libata.force and whine about it.
465  *	For consistency with link selection, device number 15 selects
466  *	the first device connected to the host link.
467  *
468  *	LOCKING:
469  *	EH context.
470  */
471 static void ata_force_horkage(struct ata_device *dev)
472 {
473 	int devno = dev->link->pmp + dev->devno;
474 	int alt_devno = devno;
475 	int i;
476 
477 	/* allow n.15/16 for devices attached to host port */
478 	if (ata_is_host_link(dev->link))
479 		alt_devno += 15;
480 
481 	for (i = 0; i < ata_force_tbl_size; i++) {
482 		const struct ata_force_ent *fe = &ata_force_tbl[i];
483 
484 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 			continue;
486 
487 		if (fe->device != -1 && fe->device != devno &&
488 		    fe->device != alt_devno)
489 			continue;
490 
491 		if (!(~dev->horkage & fe->param.horkage_on) &&
492 		    !(dev->horkage & fe->param.horkage_off))
493 			continue;
494 
495 		dev->horkage |= fe->param.horkage_on;
496 		dev->horkage &= ~fe->param.horkage_off;
497 
498 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 			       fe->param.name);
500 	}
501 }
502 
503 /**
504  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505  *	@opcode: SCSI opcode
506  *
507  *	Determine ATAPI command type from @opcode.
508  *
509  *	LOCKING:
510  *	None.
511  *
512  *	RETURNS:
513  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514  */
515 int atapi_cmd_type(u8 opcode)
516 {
517 	switch (opcode) {
518 	case GPCMD_READ_10:
519 	case GPCMD_READ_12:
520 		return ATAPI_READ;
521 
522 	case GPCMD_WRITE_10:
523 	case GPCMD_WRITE_12:
524 	case GPCMD_WRITE_AND_VERIFY_10:
525 		return ATAPI_WRITE;
526 
527 	case GPCMD_READ_CD:
528 	case GPCMD_READ_CD_MSF:
529 		return ATAPI_READ_CD;
530 
531 	case ATA_16:
532 	case ATA_12:
533 		if (atapi_passthru16)
534 			return ATAPI_PASS_THRU;
535 		/* fall thru */
536 	default:
537 		return ATAPI_MISC;
538 	}
539 }
540 
541 /**
542  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543  *	@tf: Taskfile to convert
544  *	@pmp: Port multiplier port
545  *	@is_cmd: This FIS is for command
546  *	@fis: Buffer into which data will output
547  *
548  *	Converts a standard ATA taskfile to a Serial ATA
549  *	FIS structure (Register - Host to Device).
550  *
551  *	LOCKING:
552  *	Inherited from caller.
553  */
554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555 {
556 	fis[0] = 0x27;			/* Register - Host to Device FIS */
557 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
558 	if (is_cmd)
559 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
560 
561 	fis[2] = tf->command;
562 	fis[3] = tf->feature;
563 
564 	fis[4] = tf->lbal;
565 	fis[5] = tf->lbam;
566 	fis[6] = tf->lbah;
567 	fis[7] = tf->device;
568 
569 	fis[8] = tf->hob_lbal;
570 	fis[9] = tf->hob_lbam;
571 	fis[10] = tf->hob_lbah;
572 	fis[11] = tf->hob_feature;
573 
574 	fis[12] = tf->nsect;
575 	fis[13] = tf->hob_nsect;
576 	fis[14] = 0;
577 	fis[15] = tf->ctl;
578 
579 	fis[16] = tf->auxiliary & 0xff;
580 	fis[17] = (tf->auxiliary >> 8) & 0xff;
581 	fis[18] = (tf->auxiliary >> 16) & 0xff;
582 	fis[19] = (tf->auxiliary >> 24) & 0xff;
583 }
584 
585 /**
586  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587  *	@fis: Buffer from which data will be input
588  *	@tf: Taskfile to output
589  *
590  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
591  *
592  *	LOCKING:
593  *	Inherited from caller.
594  */
595 
596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597 {
598 	tf->command	= fis[2];	/* status */
599 	tf->feature	= fis[3];	/* error */
600 
601 	tf->lbal	= fis[4];
602 	tf->lbam	= fis[5];
603 	tf->lbah	= fis[6];
604 	tf->device	= fis[7];
605 
606 	tf->hob_lbal	= fis[8];
607 	tf->hob_lbam	= fis[9];
608 	tf->hob_lbah	= fis[10];
609 
610 	tf->nsect	= fis[12];
611 	tf->hob_nsect	= fis[13];
612 }
613 
614 static const u8 ata_rw_cmds[] = {
615 	/* pio multi */
616 	ATA_CMD_READ_MULTI,
617 	ATA_CMD_WRITE_MULTI,
618 	ATA_CMD_READ_MULTI_EXT,
619 	ATA_CMD_WRITE_MULTI_EXT,
620 	0,
621 	0,
622 	0,
623 	ATA_CMD_WRITE_MULTI_FUA_EXT,
624 	/* pio */
625 	ATA_CMD_PIO_READ,
626 	ATA_CMD_PIO_WRITE,
627 	ATA_CMD_PIO_READ_EXT,
628 	ATA_CMD_PIO_WRITE_EXT,
629 	0,
630 	0,
631 	0,
632 	0,
633 	/* dma */
634 	ATA_CMD_READ,
635 	ATA_CMD_WRITE,
636 	ATA_CMD_READ_EXT,
637 	ATA_CMD_WRITE_EXT,
638 	0,
639 	0,
640 	0,
641 	ATA_CMD_WRITE_FUA_EXT
642 };
643 
644 /**
645  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
646  *	@tf: command to examine and configure
647  *	@dev: device tf belongs to
648  *
649  *	Examine the device configuration and tf->flags to calculate
650  *	the proper read/write commands and protocol to use.
651  *
652  *	LOCKING:
653  *	caller.
654  */
655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656 {
657 	u8 cmd;
658 
659 	int index, fua, lba48, write;
660 
661 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664 
665 	if (dev->flags & ATA_DFLAG_PIO) {
666 		tf->protocol = ATA_PROT_PIO;
667 		index = dev->multi_count ? 0 : 8;
668 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 		/* Unable to use DMA due to host limitation */
670 		tf->protocol = ATA_PROT_PIO;
671 		index = dev->multi_count ? 0 : 8;
672 	} else {
673 		tf->protocol = ATA_PROT_DMA;
674 		index = 16;
675 	}
676 
677 	cmd = ata_rw_cmds[index + fua + lba48 + write];
678 	if (cmd) {
679 		tf->command = cmd;
680 		return 0;
681 	}
682 	return -1;
683 }
684 
685 /**
686  *	ata_tf_read_block - Read block address from ATA taskfile
687  *	@tf: ATA taskfile of interest
688  *	@dev: ATA device @tf belongs to
689  *
690  *	LOCKING:
691  *	None.
692  *
693  *	Read block address from @tf.  This function can handle all
694  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
695  *	flags select the address format to use.
696  *
697  *	RETURNS:
698  *	Block address read from @tf.
699  */
700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701 {
702 	u64 block = 0;
703 
704 	if (tf->flags & ATA_TFLAG_LBA) {
705 		if (tf->flags & ATA_TFLAG_LBA48) {
706 			block |= (u64)tf->hob_lbah << 40;
707 			block |= (u64)tf->hob_lbam << 32;
708 			block |= (u64)tf->hob_lbal << 24;
709 		} else
710 			block |= (tf->device & 0xf) << 24;
711 
712 		block |= tf->lbah << 16;
713 		block |= tf->lbam << 8;
714 		block |= tf->lbal;
715 	} else {
716 		u32 cyl, head, sect;
717 
718 		cyl = tf->lbam | (tf->lbah << 8);
719 		head = tf->device & 0xf;
720 		sect = tf->lbal;
721 
722 		if (!sect) {
723 			ata_dev_warn(dev,
724 				     "device reported invalid CHS sector 0\n");
725 			return U64_MAX;
726 		}
727 
728 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 	}
730 
731 	return block;
732 }
733 
734 /**
735  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
736  *	@tf: Target ATA taskfile
737  *	@dev: ATA device @tf belongs to
738  *	@block: Block address
739  *	@n_block: Number of blocks
740  *	@tf_flags: RW/FUA etc...
741  *	@tag: tag
742  *	@class: IO priority class
743  *
744  *	LOCKING:
745  *	None.
746  *
747  *	Build ATA taskfile @tf for read/write request described by
748  *	@block, @n_block, @tf_flags and @tag on @dev.
749  *
750  *	RETURNS:
751  *
752  *	0 on success, -ERANGE if the request is too large for @dev,
753  *	-EINVAL if the request is invalid.
754  */
755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 		    u64 block, u32 n_block, unsigned int tf_flags,
757 		    unsigned int tag, int class)
758 {
759 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 	tf->flags |= tf_flags;
761 
762 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
763 		/* yay, NCQ */
764 		if (!lba_48_ok(block, n_block))
765 			return -ERANGE;
766 
767 		tf->protocol = ATA_PROT_NCQ;
768 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769 
770 		if (tf->flags & ATA_TFLAG_WRITE)
771 			tf->command = ATA_CMD_FPDMA_WRITE;
772 		else
773 			tf->command = ATA_CMD_FPDMA_READ;
774 
775 		tf->nsect = tag << 3;
776 		tf->hob_feature = (n_block >> 8) & 0xff;
777 		tf->feature = n_block & 0xff;
778 
779 		tf->hob_lbah = (block >> 40) & 0xff;
780 		tf->hob_lbam = (block >> 32) & 0xff;
781 		tf->hob_lbal = (block >> 24) & 0xff;
782 		tf->lbah = (block >> 16) & 0xff;
783 		tf->lbam = (block >> 8) & 0xff;
784 		tf->lbal = block & 0xff;
785 
786 		tf->device = ATA_LBA;
787 		if (tf->flags & ATA_TFLAG_FUA)
788 			tf->device |= 1 << 7;
789 
790 		if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
791 			if (class == IOPRIO_CLASS_RT)
792 				tf->hob_nsect |= ATA_PRIO_HIGH <<
793 						 ATA_SHIFT_PRIO;
794 		}
795 	} else if (dev->flags & ATA_DFLAG_LBA) {
796 		tf->flags |= ATA_TFLAG_LBA;
797 
798 		if (lba_28_ok(block, n_block)) {
799 			/* use LBA28 */
800 			tf->device |= (block >> 24) & 0xf;
801 		} else if (lba_48_ok(block, n_block)) {
802 			if (!(dev->flags & ATA_DFLAG_LBA48))
803 				return -ERANGE;
804 
805 			/* use LBA48 */
806 			tf->flags |= ATA_TFLAG_LBA48;
807 
808 			tf->hob_nsect = (n_block >> 8) & 0xff;
809 
810 			tf->hob_lbah = (block >> 40) & 0xff;
811 			tf->hob_lbam = (block >> 32) & 0xff;
812 			tf->hob_lbal = (block >> 24) & 0xff;
813 		} else
814 			/* request too large even for LBA48 */
815 			return -ERANGE;
816 
817 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 			return -EINVAL;
819 
820 		tf->nsect = n_block & 0xff;
821 
822 		tf->lbah = (block >> 16) & 0xff;
823 		tf->lbam = (block >> 8) & 0xff;
824 		tf->lbal = block & 0xff;
825 
826 		tf->device |= ATA_LBA;
827 	} else {
828 		/* CHS */
829 		u32 sect, head, cyl, track;
830 
831 		/* The request -may- be too large for CHS addressing. */
832 		if (!lba_28_ok(block, n_block))
833 			return -ERANGE;
834 
835 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 			return -EINVAL;
837 
838 		/* Convert LBA to CHS */
839 		track = (u32)block / dev->sectors;
840 		cyl   = track / dev->heads;
841 		head  = track % dev->heads;
842 		sect  = (u32)block % dev->sectors + 1;
843 
844 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 			(u32)block, track, cyl, head, sect);
846 
847 		/* Check whether the converted CHS can fit.
848 		   Cylinder: 0-65535
849 		   Head: 0-15
850 		   Sector: 1-255*/
851 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 			return -ERANGE;
853 
854 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 		tf->lbal = sect;
856 		tf->lbam = cyl;
857 		tf->lbah = cyl >> 8;
858 		tf->device |= head;
859 	}
860 
861 	return 0;
862 }
863 
864 /**
865  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866  *	@pio_mask: pio_mask
867  *	@mwdma_mask: mwdma_mask
868  *	@udma_mask: udma_mask
869  *
870  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871  *	unsigned int xfer_mask.
872  *
873  *	LOCKING:
874  *	None.
875  *
876  *	RETURNS:
877  *	Packed xfer_mask.
878  */
879 unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 				unsigned long mwdma_mask,
881 				unsigned long udma_mask)
882 {
883 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886 }
887 
888 /**
889  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890  *	@xfer_mask: xfer_mask to unpack
891  *	@pio_mask: resulting pio_mask
892  *	@mwdma_mask: resulting mwdma_mask
893  *	@udma_mask: resulting udma_mask
894  *
895  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896  *	Any NULL destination masks will be ignored.
897  */
898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
900 {
901 	if (pio_mask)
902 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 	if (mwdma_mask)
904 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 	if (udma_mask)
906 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907 }
908 
909 static const struct ata_xfer_ent {
910 	int shift, bits;
911 	u8 base;
912 } ata_xfer_tbl[] = {
913 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
916 	{ -1, },
917 };
918 
919 /**
920  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921  *	@xfer_mask: xfer_mask of interest
922  *
923  *	Return matching XFER_* value for @xfer_mask.  Only the highest
924  *	bit of @xfer_mask is considered.
925  *
926  *	LOCKING:
927  *	None.
928  *
929  *	RETURNS:
930  *	Matching XFER_* value, 0xff if no match found.
931  */
932 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
933 {
934 	int highbit = fls(xfer_mask) - 1;
935 	const struct ata_xfer_ent *ent;
936 
937 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 			return ent->base + highbit - ent->shift;
940 	return 0xff;
941 }
942 
943 /**
944  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945  *	@xfer_mode: XFER_* of interest
946  *
947  *	Return matching xfer_mask for @xfer_mode.
948  *
949  *	LOCKING:
950  *	None.
951  *
952  *	RETURNS:
953  *	Matching xfer_mask, 0 if no match found.
954  */
955 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
956 {
957 	const struct ata_xfer_ent *ent;
958 
959 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 				& ~((1 << ent->shift) - 1);
963 	return 0;
964 }
965 
966 /**
967  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968  *	@xfer_mode: XFER_* of interest
969  *
970  *	Return matching xfer_shift for @xfer_mode.
971  *
972  *	LOCKING:
973  *	None.
974  *
975  *	RETURNS:
976  *	Matching xfer_shift, -1 if no match found.
977  */
978 int ata_xfer_mode2shift(unsigned long xfer_mode)
979 {
980 	const struct ata_xfer_ent *ent;
981 
982 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 			return ent->shift;
985 	return -1;
986 }
987 
988 /**
989  *	ata_mode_string - convert xfer_mask to string
990  *	@xfer_mask: mask of bits supported; only highest bit counts.
991  *
992  *	Determine string which represents the highest speed
993  *	(highest bit in @modemask).
994  *
995  *	LOCKING:
996  *	None.
997  *
998  *	RETURNS:
999  *	Constant C string representing highest speed listed in
1000  *	@mode_mask, or the constant C string "<n/a>".
1001  */
1002 const char *ata_mode_string(unsigned long xfer_mask)
1003 {
1004 	static const char * const xfer_mode_str[] = {
1005 		"PIO0",
1006 		"PIO1",
1007 		"PIO2",
1008 		"PIO3",
1009 		"PIO4",
1010 		"PIO5",
1011 		"PIO6",
1012 		"MWDMA0",
1013 		"MWDMA1",
1014 		"MWDMA2",
1015 		"MWDMA3",
1016 		"MWDMA4",
1017 		"UDMA/16",
1018 		"UDMA/25",
1019 		"UDMA/33",
1020 		"UDMA/44",
1021 		"UDMA/66",
1022 		"UDMA/100",
1023 		"UDMA/133",
1024 		"UDMA7",
1025 	};
1026 	int highbit;
1027 
1028 	highbit = fls(xfer_mask) - 1;
1029 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 		return xfer_mode_str[highbit];
1031 	return "<n/a>";
1032 }
1033 
1034 const char *sata_spd_string(unsigned int spd)
1035 {
1036 	static const char * const spd_str[] = {
1037 		"1.5 Gbps",
1038 		"3.0 Gbps",
1039 		"6.0 Gbps",
1040 	};
1041 
1042 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 		return "<unknown>";
1044 	return spd_str[spd - 1];
1045 }
1046 
1047 /**
1048  *	ata_dev_classify - determine device type based on ATA-spec signature
1049  *	@tf: ATA taskfile register set for device to be identified
1050  *
1051  *	Determine from taskfile register contents whether a device is
1052  *	ATA or ATAPI, as per "Signature and persistence" section
1053  *	of ATA/PI spec (volume 1, sect 5.14).
1054  *
1055  *	LOCKING:
1056  *	None.
1057  *
1058  *	RETURNS:
1059  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061  */
1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063 {
1064 	/* Apple's open source Darwin code hints that some devices only
1065 	 * put a proper signature into the LBA mid/high registers,
1066 	 * So, we only check those.  It's sufficient for uniqueness.
1067 	 *
1068 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1071 	 * spec has never mentioned about using different signatures
1072 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1073 	 * Multiplier specification began to use 0x69/0x96 to identify
1074 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 	 * 0x69/0x96 shortly and described them as reserved for
1077 	 * SerialATA.
1078 	 *
1079 	 * We follow the current spec and consider that 0x69/0x96
1080 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 	 * SEMB signature.  This is worked around in
1083 	 * ata_dev_read_id().
1084 	 */
1085 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086 		DPRINTK("found ATA device by sig\n");
1087 		return ATA_DEV_ATA;
1088 	}
1089 
1090 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091 		DPRINTK("found ATAPI device by sig\n");
1092 		return ATA_DEV_ATAPI;
1093 	}
1094 
1095 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 		DPRINTK("found PMP device by sig\n");
1097 		return ATA_DEV_PMP;
1098 	}
1099 
1100 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 		return ATA_DEV_SEMB;
1103 	}
1104 
1105 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 		DPRINTK("found ZAC device by sig\n");
1107 		return ATA_DEV_ZAC;
1108 	}
1109 
1110 	DPRINTK("unknown device\n");
1111 	return ATA_DEV_UNKNOWN;
1112 }
1113 
1114 /**
1115  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1116  *	@id: IDENTIFY DEVICE results we will examine
1117  *	@s: string into which data is output
1118  *	@ofs: offset into identify device page
1119  *	@len: length of string to return. must be an even number.
1120  *
1121  *	The strings in the IDENTIFY DEVICE page are broken up into
1122  *	16-bit chunks.  Run through the string, and output each
1123  *	8-bit chunk linearly, regardless of platform.
1124  *
1125  *	LOCKING:
1126  *	caller.
1127  */
1128 
1129 void ata_id_string(const u16 *id, unsigned char *s,
1130 		   unsigned int ofs, unsigned int len)
1131 {
1132 	unsigned int c;
1133 
1134 	BUG_ON(len & 1);
1135 
1136 	while (len > 0) {
1137 		c = id[ofs] >> 8;
1138 		*s = c;
1139 		s++;
1140 
1141 		c = id[ofs] & 0xff;
1142 		*s = c;
1143 		s++;
1144 
1145 		ofs++;
1146 		len -= 2;
1147 	}
1148 }
1149 
1150 /**
1151  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152  *	@id: IDENTIFY DEVICE results we will examine
1153  *	@s: string into which data is output
1154  *	@ofs: offset into identify device page
1155  *	@len: length of string to return. must be an odd number.
1156  *
1157  *	This function is identical to ata_id_string except that it
1158  *	trims trailing spaces and terminates the resulting string with
1159  *	null.  @len must be actual maximum length (even number) + 1.
1160  *
1161  *	LOCKING:
1162  *	caller.
1163  */
1164 void ata_id_c_string(const u16 *id, unsigned char *s,
1165 		     unsigned int ofs, unsigned int len)
1166 {
1167 	unsigned char *p;
1168 
1169 	ata_id_string(id, s, ofs, len - 1);
1170 
1171 	p = s + strnlen(s, len - 1);
1172 	while (p > s && p[-1] == ' ')
1173 		p--;
1174 	*p = '\0';
1175 }
1176 
1177 static u64 ata_id_n_sectors(const u16 *id)
1178 {
1179 	if (ata_id_has_lba(id)) {
1180 		if (ata_id_has_lba48(id))
1181 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182 		else
1183 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184 	} else {
1185 		if (ata_id_current_chs_valid(id))
1186 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 			       id[ATA_ID_CUR_SECTORS];
1188 		else
1189 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 			       id[ATA_ID_SECTORS];
1191 	}
1192 }
1193 
1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195 {
1196 	u64 sectors = 0;
1197 
1198 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201 	sectors |= (tf->lbah & 0xff) << 16;
1202 	sectors |= (tf->lbam & 0xff) << 8;
1203 	sectors |= (tf->lbal & 0xff);
1204 
1205 	return sectors;
1206 }
1207 
1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209 {
1210 	u64 sectors = 0;
1211 
1212 	sectors |= (tf->device & 0x0f) << 24;
1213 	sectors |= (tf->lbah & 0xff) << 16;
1214 	sectors |= (tf->lbam & 0xff) << 8;
1215 	sectors |= (tf->lbal & 0xff);
1216 
1217 	return sectors;
1218 }
1219 
1220 /**
1221  *	ata_read_native_max_address - Read native max address
1222  *	@dev: target device
1223  *	@max_sectors: out parameter for the result native max address
1224  *
1225  *	Perform an LBA48 or LBA28 native size query upon the device in
1226  *	question.
1227  *
1228  *	RETURNS:
1229  *	0 on success, -EACCES if command is aborted by the drive.
1230  *	-EIO on other errors.
1231  */
1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233 {
1234 	unsigned int err_mask;
1235 	struct ata_taskfile tf;
1236 	int lba48 = ata_id_has_lba48(dev->id);
1237 
1238 	ata_tf_init(dev, &tf);
1239 
1240 	/* always clear all address registers */
1241 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242 
1243 	if (lba48) {
1244 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 		tf.flags |= ATA_TFLAG_LBA48;
1246 	} else
1247 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1248 
1249 	tf.protocol = ATA_PROT_NODATA;
1250 	tf.device |= ATA_LBA;
1251 
1252 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 	if (err_mask) {
1254 		ata_dev_warn(dev,
1255 			     "failed to read native max address (err_mask=0x%x)\n",
1256 			     err_mask);
1257 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 			return -EACCES;
1259 		return -EIO;
1260 	}
1261 
1262 	if (lba48)
1263 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1264 	else
1265 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1266 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267 		(*max_sectors)--;
1268 	return 0;
1269 }
1270 
1271 /**
1272  *	ata_set_max_sectors - Set max sectors
1273  *	@dev: target device
1274  *	@new_sectors: new max sectors value to set for the device
1275  *
1276  *	Set max sectors of @dev to @new_sectors.
1277  *
1278  *	RETURNS:
1279  *	0 on success, -EACCES if command is aborted or denied (due to
1280  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1281  *	errors.
1282  */
1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284 {
1285 	unsigned int err_mask;
1286 	struct ata_taskfile tf;
1287 	int lba48 = ata_id_has_lba48(dev->id);
1288 
1289 	new_sectors--;
1290 
1291 	ata_tf_init(dev, &tf);
1292 
1293 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294 
1295 	if (lba48) {
1296 		tf.command = ATA_CMD_SET_MAX_EXT;
1297 		tf.flags |= ATA_TFLAG_LBA48;
1298 
1299 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302 	} else {
1303 		tf.command = ATA_CMD_SET_MAX;
1304 
1305 		tf.device |= (new_sectors >> 24) & 0xf;
1306 	}
1307 
1308 	tf.protocol = ATA_PROT_NODATA;
1309 	tf.device |= ATA_LBA;
1310 
1311 	tf.lbal = (new_sectors >> 0) & 0xff;
1312 	tf.lbam = (new_sectors >> 8) & 0xff;
1313 	tf.lbah = (new_sectors >> 16) & 0xff;
1314 
1315 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 	if (err_mask) {
1317 		ata_dev_warn(dev,
1318 			     "failed to set max address (err_mask=0x%x)\n",
1319 			     err_mask);
1320 		if (err_mask == AC_ERR_DEV &&
1321 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 			return -EACCES;
1323 		return -EIO;
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  *	ata_hpa_resize		-	Resize a device with an HPA set
1331  *	@dev: Device to resize
1332  *
1333  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334  *	it if required to the full size of the media. The caller must check
1335  *	the drive has the HPA feature set enabled.
1336  *
1337  *	RETURNS:
1338  *	0 on success, -errno on failure.
1339  */
1340 static int ata_hpa_resize(struct ata_device *dev)
1341 {
1342 	struct ata_eh_context *ehc = &dev->link->eh_context;
1343 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345 	u64 sectors = ata_id_n_sectors(dev->id);
1346 	u64 native_sectors;
1347 	int rc;
1348 
1349 	/* do we need to do it? */
1350 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353 		return 0;
1354 
1355 	/* read native max address */
1356 	rc = ata_read_native_max_address(dev, &native_sectors);
1357 	if (rc) {
1358 		/* If device aborted the command or HPA isn't going to
1359 		 * be unlocked, skip HPA resizing.
1360 		 */
1361 		if (rc == -EACCES || !unlock_hpa) {
1362 			ata_dev_warn(dev,
1363 				     "HPA support seems broken, skipping HPA handling\n");
1364 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365 
1366 			/* we can continue if device aborted the command */
1367 			if (rc == -EACCES)
1368 				rc = 0;
1369 		}
1370 
1371 		return rc;
1372 	}
1373 	dev->n_native_sectors = native_sectors;
1374 
1375 	/* nothing to do? */
1376 	if (native_sectors <= sectors || !unlock_hpa) {
1377 		if (!print_info || native_sectors == sectors)
1378 			return 0;
1379 
1380 		if (native_sectors > sectors)
1381 			ata_dev_info(dev,
1382 				"HPA detected: current %llu, native %llu\n",
1383 				(unsigned long long)sectors,
1384 				(unsigned long long)native_sectors);
1385 		else if (native_sectors < sectors)
1386 			ata_dev_warn(dev,
1387 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1388 				(unsigned long long)native_sectors,
1389 				(unsigned long long)sectors);
1390 		return 0;
1391 	}
1392 
1393 	/* let's unlock HPA */
1394 	rc = ata_set_max_sectors(dev, native_sectors);
1395 	if (rc == -EACCES) {
1396 		/* if device aborted the command, skip HPA resizing */
1397 		ata_dev_warn(dev,
1398 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 			     (unsigned long long)sectors,
1400 			     (unsigned long long)native_sectors);
1401 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 		return 0;
1403 	} else if (rc)
1404 		return rc;
1405 
1406 	/* re-read IDENTIFY data */
1407 	rc = ata_dev_reread_id(dev, 0);
1408 	if (rc) {
1409 		ata_dev_err(dev,
1410 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1411 		return rc;
1412 	}
1413 
1414 	if (print_info) {
1415 		u64 new_sectors = ata_id_n_sectors(dev->id);
1416 		ata_dev_info(dev,
1417 			"HPA unlocked: %llu -> %llu, native %llu\n",
1418 			(unsigned long long)sectors,
1419 			(unsigned long long)new_sectors,
1420 			(unsigned long long)native_sectors);
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 /**
1427  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1428  *	@id: IDENTIFY DEVICE page to dump
1429  *
1430  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1431  *	page.
1432  *
1433  *	LOCKING:
1434  *	caller.
1435  */
1436 
1437 static inline void ata_dump_id(const u16 *id)
1438 {
1439 	DPRINTK("49==0x%04x  "
1440 		"53==0x%04x  "
1441 		"63==0x%04x  "
1442 		"64==0x%04x  "
1443 		"75==0x%04x  \n",
1444 		id[49],
1445 		id[53],
1446 		id[63],
1447 		id[64],
1448 		id[75]);
1449 	DPRINTK("80==0x%04x  "
1450 		"81==0x%04x  "
1451 		"82==0x%04x  "
1452 		"83==0x%04x  "
1453 		"84==0x%04x  \n",
1454 		id[80],
1455 		id[81],
1456 		id[82],
1457 		id[83],
1458 		id[84]);
1459 	DPRINTK("88==0x%04x  "
1460 		"93==0x%04x\n",
1461 		id[88],
1462 		id[93]);
1463 }
1464 
1465 /**
1466  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467  *	@id: IDENTIFY data to compute xfer mask from
1468  *
1469  *	Compute the xfermask for this device. This is not as trivial
1470  *	as it seems if we must consider early devices correctly.
1471  *
1472  *	FIXME: pre IDE drive timing (do we care ?).
1473  *
1474  *	LOCKING:
1475  *	None.
1476  *
1477  *	RETURNS:
1478  *	Computed xfermask
1479  */
1480 unsigned long ata_id_xfermask(const u16 *id)
1481 {
1482 	unsigned long pio_mask, mwdma_mask, udma_mask;
1483 
1484 	/* Usual case. Word 53 indicates word 64 is valid */
1485 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 		pio_mask <<= 3;
1488 		pio_mask |= 0x7;
1489 	} else {
1490 		/* If word 64 isn't valid then Word 51 high byte holds
1491 		 * the PIO timing number for the maximum. Turn it into
1492 		 * a mask.
1493 		 */
1494 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495 		if (mode < 5)	/* Valid PIO range */
1496 			pio_mask = (2 << mode) - 1;
1497 		else
1498 			pio_mask = 1;
1499 
1500 		/* But wait.. there's more. Design your standards by
1501 		 * committee and you too can get a free iordy field to
1502 		 * process. However its the speeds not the modes that
1503 		 * are supported... Note drivers using the timing API
1504 		 * will get this right anyway
1505 		 */
1506 	}
1507 
1508 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509 
1510 	if (ata_id_is_cfa(id)) {
1511 		/*
1512 		 *	Process compact flash extended modes
1513 		 */
1514 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516 
1517 		if (pio)
1518 			pio_mask |= (1 << 5);
1519 		if (pio > 1)
1520 			pio_mask |= (1 << 6);
1521 		if (dma)
1522 			mwdma_mask |= (1 << 3);
1523 		if (dma > 1)
1524 			mwdma_mask |= (1 << 4);
1525 	}
1526 
1527 	udma_mask = 0;
1528 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530 
1531 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532 }
1533 
1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535 {
1536 	struct completion *waiting = qc->private_data;
1537 
1538 	complete(waiting);
1539 }
1540 
1541 /**
1542  *	ata_exec_internal_sg - execute libata internal command
1543  *	@dev: Device to which the command is sent
1544  *	@tf: Taskfile registers for the command and the result
1545  *	@cdb: CDB for packet command
1546  *	@dma_dir: Data transfer direction of the command
1547  *	@sgl: sg list for the data buffer of the command
1548  *	@n_elem: Number of sg entries
1549  *	@timeout: Timeout in msecs (0 for default)
1550  *
1551  *	Executes libata internal command with timeout.  @tf contains
1552  *	command on entry and result on return.  Timeout and error
1553  *	conditions are reported via return value.  No recovery action
1554  *	is taken after a command times out.  It's caller's duty to
1555  *	clean up after timeout.
1556  *
1557  *	LOCKING:
1558  *	None.  Should be called with kernel context, might sleep.
1559  *
1560  *	RETURNS:
1561  *	Zero on success, AC_ERR_* mask on failure
1562  */
1563 unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 			      struct ata_taskfile *tf, const u8 *cdb,
1565 			      int dma_dir, struct scatterlist *sgl,
1566 			      unsigned int n_elem, unsigned long timeout)
1567 {
1568 	struct ata_link *link = dev->link;
1569 	struct ata_port *ap = link->ap;
1570 	u8 command = tf->command;
1571 	int auto_timeout = 0;
1572 	struct ata_queued_cmd *qc;
1573 	unsigned int tag, preempted_tag;
1574 	u32 preempted_sactive, preempted_qc_active;
1575 	int preempted_nr_active_links;
1576 	DECLARE_COMPLETION_ONSTACK(wait);
1577 	unsigned long flags;
1578 	unsigned int err_mask;
1579 	int rc;
1580 
1581 	spin_lock_irqsave(ap->lock, flags);
1582 
1583 	/* no internal command while frozen */
1584 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1585 		spin_unlock_irqrestore(ap->lock, flags);
1586 		return AC_ERR_SYSTEM;
1587 	}
1588 
1589 	/* initialize internal qc */
1590 
1591 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1592 	 * drivers choke if any other tag is given.  This breaks
1593 	 * ata_tag_internal() test for those drivers.  Don't use new
1594 	 * EH stuff without converting to it.
1595 	 */
1596 	if (ap->ops->error_handler)
1597 		tag = ATA_TAG_INTERNAL;
1598 	else
1599 		tag = 0;
1600 
1601 	qc = __ata_qc_from_tag(ap, tag);
1602 
1603 	qc->tag = tag;
1604 	qc->scsicmd = NULL;
1605 	qc->ap = ap;
1606 	qc->dev = dev;
1607 	ata_qc_reinit(qc);
1608 
1609 	preempted_tag = link->active_tag;
1610 	preempted_sactive = link->sactive;
1611 	preempted_qc_active = ap->qc_active;
1612 	preempted_nr_active_links = ap->nr_active_links;
1613 	link->active_tag = ATA_TAG_POISON;
1614 	link->sactive = 0;
1615 	ap->qc_active = 0;
1616 	ap->nr_active_links = 0;
1617 
1618 	/* prepare & issue qc */
1619 	qc->tf = *tf;
1620 	if (cdb)
1621 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1622 
1623 	/* some SATA bridges need us to indicate data xfer direction */
1624 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 	    dma_dir == DMA_FROM_DEVICE)
1626 		qc->tf.feature |= ATAPI_DMADIR;
1627 
1628 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1629 	qc->dma_dir = dma_dir;
1630 	if (dma_dir != DMA_NONE) {
1631 		unsigned int i, buflen = 0;
1632 		struct scatterlist *sg;
1633 
1634 		for_each_sg(sgl, sg, n_elem, i)
1635 			buflen += sg->length;
1636 
1637 		ata_sg_init(qc, sgl, n_elem);
1638 		qc->nbytes = buflen;
1639 	}
1640 
1641 	qc->private_data = &wait;
1642 	qc->complete_fn = ata_qc_complete_internal;
1643 
1644 	ata_qc_issue(qc);
1645 
1646 	spin_unlock_irqrestore(ap->lock, flags);
1647 
1648 	if (!timeout) {
1649 		if (ata_probe_timeout)
1650 			timeout = ata_probe_timeout * 1000;
1651 		else {
1652 			timeout = ata_internal_cmd_timeout(dev, command);
1653 			auto_timeout = 1;
1654 		}
1655 	}
1656 
1657 	if (ap->ops->error_handler)
1658 		ata_eh_release(ap);
1659 
1660 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1661 
1662 	if (ap->ops->error_handler)
1663 		ata_eh_acquire(ap);
1664 
1665 	ata_sff_flush_pio_task(ap);
1666 
1667 	if (!rc) {
1668 		spin_lock_irqsave(ap->lock, flags);
1669 
1670 		/* We're racing with irq here.  If we lose, the
1671 		 * following test prevents us from completing the qc
1672 		 * twice.  If we win, the port is frozen and will be
1673 		 * cleaned up by ->post_internal_cmd().
1674 		 */
1675 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676 			qc->err_mask |= AC_ERR_TIMEOUT;
1677 
1678 			if (ap->ops->error_handler)
1679 				ata_port_freeze(ap);
1680 			else
1681 				ata_qc_complete(qc);
1682 
1683 			if (ata_msg_warn(ap))
1684 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 					     command);
1686 		}
1687 
1688 		spin_unlock_irqrestore(ap->lock, flags);
1689 	}
1690 
1691 	/* do post_internal_cmd */
1692 	if (ap->ops->post_internal_cmd)
1693 		ap->ops->post_internal_cmd(qc);
1694 
1695 	/* perform minimal error analysis */
1696 	if (qc->flags & ATA_QCFLAG_FAILED) {
1697 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 			qc->err_mask |= AC_ERR_DEV;
1699 
1700 		if (!qc->err_mask)
1701 			qc->err_mask |= AC_ERR_OTHER;
1702 
1703 		if (qc->err_mask & ~AC_ERR_OTHER)
1704 			qc->err_mask &= ~AC_ERR_OTHER;
1705 	}
1706 
1707 	/* finish up */
1708 	spin_lock_irqsave(ap->lock, flags);
1709 
1710 	*tf = qc->result_tf;
1711 	err_mask = qc->err_mask;
1712 
1713 	ata_qc_free(qc);
1714 	link->active_tag = preempted_tag;
1715 	link->sactive = preempted_sactive;
1716 	ap->qc_active = preempted_qc_active;
1717 	ap->nr_active_links = preempted_nr_active_links;
1718 
1719 	spin_unlock_irqrestore(ap->lock, flags);
1720 
1721 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1722 		ata_internal_cmd_timed_out(dev, command);
1723 
1724 	return err_mask;
1725 }
1726 
1727 /**
1728  *	ata_exec_internal - execute libata internal command
1729  *	@dev: Device to which the command is sent
1730  *	@tf: Taskfile registers for the command and the result
1731  *	@cdb: CDB for packet command
1732  *	@dma_dir: Data transfer direction of the command
1733  *	@buf: Data buffer of the command
1734  *	@buflen: Length of data buffer
1735  *	@timeout: Timeout in msecs (0 for default)
1736  *
1737  *	Wrapper around ata_exec_internal_sg() which takes simple
1738  *	buffer instead of sg list.
1739  *
1740  *	LOCKING:
1741  *	None.  Should be called with kernel context, might sleep.
1742  *
1743  *	RETURNS:
1744  *	Zero on success, AC_ERR_* mask on failure
1745  */
1746 unsigned ata_exec_internal(struct ata_device *dev,
1747 			   struct ata_taskfile *tf, const u8 *cdb,
1748 			   int dma_dir, void *buf, unsigned int buflen,
1749 			   unsigned long timeout)
1750 {
1751 	struct scatterlist *psg = NULL, sg;
1752 	unsigned int n_elem = 0;
1753 
1754 	if (dma_dir != DMA_NONE) {
1755 		WARN_ON(!buf);
1756 		sg_init_one(&sg, buf, buflen);
1757 		psg = &sg;
1758 		n_elem++;
1759 	}
1760 
1761 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1762 				    timeout);
1763 }
1764 
1765 /**
1766  *	ata_pio_need_iordy	-	check if iordy needed
1767  *	@adev: ATA device
1768  *
1769  *	Check if the current speed of the device requires IORDY. Used
1770  *	by various controllers for chip configuration.
1771  */
1772 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1773 {
1774 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1775 	 * lead to controller lock up on certain controllers if the
1776 	 * port is not occupied.  See bko#11703 for details.
1777 	 */
1778 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1779 		return 0;
1780 	/* Controller doesn't support IORDY.  Probably a pointless
1781 	 * check as the caller should know this.
1782 	 */
1783 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1784 		return 0;
1785 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1786 	if (ata_id_is_cfa(adev->id)
1787 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1788 		return 0;
1789 	/* PIO3 and higher it is mandatory */
1790 	if (adev->pio_mode > XFER_PIO_2)
1791 		return 1;
1792 	/* We turn it on when possible */
1793 	if (ata_id_has_iordy(adev->id))
1794 		return 1;
1795 	return 0;
1796 }
1797 
1798 /**
1799  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1800  *	@adev: ATA device
1801  *
1802  *	Compute the highest mode possible if we are not using iordy. Return
1803  *	-1 if no iordy mode is available.
1804  */
1805 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1806 {
1807 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1808 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1809 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1810 		/* Is the speed faster than the drive allows non IORDY ? */
1811 		if (pio) {
1812 			/* This is cycle times not frequency - watch the logic! */
1813 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1814 				return 3 << ATA_SHIFT_PIO;
1815 			return 7 << ATA_SHIFT_PIO;
1816 		}
1817 	}
1818 	return 3 << ATA_SHIFT_PIO;
1819 }
1820 
1821 /**
1822  *	ata_do_dev_read_id		-	default ID read method
1823  *	@dev: device
1824  *	@tf: proposed taskfile
1825  *	@id: data buffer
1826  *
1827  *	Issue the identify taskfile and hand back the buffer containing
1828  *	identify data. For some RAID controllers and for pre ATA devices
1829  *	this function is wrapped or replaced by the driver
1830  */
1831 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1832 					struct ata_taskfile *tf, u16 *id)
1833 {
1834 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1835 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1836 }
1837 
1838 /**
1839  *	ata_dev_read_id - Read ID data from the specified device
1840  *	@dev: target device
1841  *	@p_class: pointer to class of the target device (may be changed)
1842  *	@flags: ATA_READID_* flags
1843  *	@id: buffer to read IDENTIFY data into
1844  *
1845  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1846  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1847  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1848  *	for pre-ATA4 drives.
1849  *
1850  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1851  *	now we abort if we hit that case.
1852  *
1853  *	LOCKING:
1854  *	Kernel thread context (may sleep)
1855  *
1856  *	RETURNS:
1857  *	0 on success, -errno otherwise.
1858  */
1859 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1860 		    unsigned int flags, u16 *id)
1861 {
1862 	struct ata_port *ap = dev->link->ap;
1863 	unsigned int class = *p_class;
1864 	struct ata_taskfile tf;
1865 	unsigned int err_mask = 0;
1866 	const char *reason;
1867 	bool is_semb = class == ATA_DEV_SEMB;
1868 	int may_fallback = 1, tried_spinup = 0;
1869 	int rc;
1870 
1871 	if (ata_msg_ctl(ap))
1872 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1873 
1874 retry:
1875 	ata_tf_init(dev, &tf);
1876 
1877 	switch (class) {
1878 	case ATA_DEV_SEMB:
1879 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1880 	case ATA_DEV_ATA:
1881 	case ATA_DEV_ZAC:
1882 		tf.command = ATA_CMD_ID_ATA;
1883 		break;
1884 	case ATA_DEV_ATAPI:
1885 		tf.command = ATA_CMD_ID_ATAPI;
1886 		break;
1887 	default:
1888 		rc = -ENODEV;
1889 		reason = "unsupported class";
1890 		goto err_out;
1891 	}
1892 
1893 	tf.protocol = ATA_PROT_PIO;
1894 
1895 	/* Some devices choke if TF registers contain garbage.  Make
1896 	 * sure those are properly initialized.
1897 	 */
1898 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1899 
1900 	/* Device presence detection is unreliable on some
1901 	 * controllers.  Always poll IDENTIFY if available.
1902 	 */
1903 	tf.flags |= ATA_TFLAG_POLLING;
1904 
1905 	if (ap->ops->read_id)
1906 		err_mask = ap->ops->read_id(dev, &tf, id);
1907 	else
1908 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1909 
1910 	if (err_mask) {
1911 		if (err_mask & AC_ERR_NODEV_HINT) {
1912 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1913 			return -ENOENT;
1914 		}
1915 
1916 		if (is_semb) {
1917 			ata_dev_info(dev,
1918 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1919 			/* SEMB is not supported yet */
1920 			*p_class = ATA_DEV_SEMB_UNSUP;
1921 			return 0;
1922 		}
1923 
1924 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1925 			/* Device or controller might have reported
1926 			 * the wrong device class.  Give a shot at the
1927 			 * other IDENTIFY if the current one is
1928 			 * aborted by the device.
1929 			 */
1930 			if (may_fallback) {
1931 				may_fallback = 0;
1932 
1933 				if (class == ATA_DEV_ATA)
1934 					class = ATA_DEV_ATAPI;
1935 				else
1936 					class = ATA_DEV_ATA;
1937 				goto retry;
1938 			}
1939 
1940 			/* Control reaches here iff the device aborted
1941 			 * both flavors of IDENTIFYs which happens
1942 			 * sometimes with phantom devices.
1943 			 */
1944 			ata_dev_dbg(dev,
1945 				    "both IDENTIFYs aborted, assuming NODEV\n");
1946 			return -ENOENT;
1947 		}
1948 
1949 		rc = -EIO;
1950 		reason = "I/O error";
1951 		goto err_out;
1952 	}
1953 
1954 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1955 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1956 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1957 			    class, may_fallback, tried_spinup);
1958 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1959 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1960 	}
1961 
1962 	/* Falling back doesn't make sense if ID data was read
1963 	 * successfully at least once.
1964 	 */
1965 	may_fallback = 0;
1966 
1967 	swap_buf_le16(id, ATA_ID_WORDS);
1968 
1969 	/* sanity check */
1970 	rc = -EINVAL;
1971 	reason = "device reports invalid type";
1972 
1973 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1974 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1975 			goto err_out;
1976 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1977 							ata_id_is_ata(id)) {
1978 			ata_dev_dbg(dev,
1979 				"host indicates ignore ATA devices, ignored\n");
1980 			return -ENOENT;
1981 		}
1982 	} else {
1983 		if (ata_id_is_ata(id))
1984 			goto err_out;
1985 	}
1986 
1987 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1988 		tried_spinup = 1;
1989 		/*
1990 		 * Drive powered-up in standby mode, and requires a specific
1991 		 * SET_FEATURES spin-up subcommand before it will accept
1992 		 * anything other than the original IDENTIFY command.
1993 		 */
1994 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1995 		if (err_mask && id[2] != 0x738c) {
1996 			rc = -EIO;
1997 			reason = "SPINUP failed";
1998 			goto err_out;
1999 		}
2000 		/*
2001 		 * If the drive initially returned incomplete IDENTIFY info,
2002 		 * we now must reissue the IDENTIFY command.
2003 		 */
2004 		if (id[2] == 0x37c8)
2005 			goto retry;
2006 	}
2007 
2008 	if ((flags & ATA_READID_POSTRESET) &&
2009 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2010 		/*
2011 		 * The exact sequence expected by certain pre-ATA4 drives is:
2012 		 * SRST RESET
2013 		 * IDENTIFY (optional in early ATA)
2014 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2015 		 * anything else..
2016 		 * Some drives were very specific about that exact sequence.
2017 		 *
2018 		 * Note that ATA4 says lba is mandatory so the second check
2019 		 * should never trigger.
2020 		 */
2021 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2022 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2023 			if (err_mask) {
2024 				rc = -EIO;
2025 				reason = "INIT_DEV_PARAMS failed";
2026 				goto err_out;
2027 			}
2028 
2029 			/* current CHS translation info (id[53-58]) might be
2030 			 * changed. reread the identify device info.
2031 			 */
2032 			flags &= ~ATA_READID_POSTRESET;
2033 			goto retry;
2034 		}
2035 	}
2036 
2037 	*p_class = class;
2038 
2039 	return 0;
2040 
2041  err_out:
2042 	if (ata_msg_warn(ap))
2043 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2044 			     reason, err_mask);
2045 	return rc;
2046 }
2047 
2048 static int ata_do_link_spd_horkage(struct ata_device *dev)
2049 {
2050 	struct ata_link *plink = ata_dev_phys_link(dev);
2051 	u32 target, target_limit;
2052 
2053 	if (!sata_scr_valid(plink))
2054 		return 0;
2055 
2056 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2057 		target = 1;
2058 	else
2059 		return 0;
2060 
2061 	target_limit = (1 << target) - 1;
2062 
2063 	/* if already on stricter limit, no need to push further */
2064 	if (plink->sata_spd_limit <= target_limit)
2065 		return 0;
2066 
2067 	plink->sata_spd_limit = target_limit;
2068 
2069 	/* Request another EH round by returning -EAGAIN if link is
2070 	 * going faster than the target speed.  Forward progress is
2071 	 * guaranteed by setting sata_spd_limit to target_limit above.
2072 	 */
2073 	if (plink->sata_spd > target) {
2074 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2075 			     sata_spd_string(target));
2076 		return -EAGAIN;
2077 	}
2078 	return 0;
2079 }
2080 
2081 static inline u8 ata_dev_knobble(struct ata_device *dev)
2082 {
2083 	struct ata_port *ap = dev->link->ap;
2084 
2085 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2086 		return 0;
2087 
2088 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2089 }
2090 
2091 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2092 {
2093 	struct ata_port *ap = dev->link->ap;
2094 	unsigned int err_mask;
2095 	int log_index = ATA_LOG_NCQ_SEND_RECV * 2;
2096 	u16 log_pages;
2097 
2098 	err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2099 				     0, ap->sector_buf, 1);
2100 	if (err_mask) {
2101 		ata_dev_dbg(dev,
2102 			    "failed to get Log Directory Emask 0x%x\n",
2103 			    err_mask);
2104 		return;
2105 	}
2106 	log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2107 	if (!log_pages) {
2108 		ata_dev_warn(dev,
2109 			     "NCQ Send/Recv Log not supported\n");
2110 		return;
2111 	}
2112 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2113 				     0, ap->sector_buf, 1);
2114 	if (err_mask) {
2115 		ata_dev_dbg(dev,
2116 			    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2117 			    err_mask);
2118 	} else {
2119 		u8 *cmds = dev->ncq_send_recv_cmds;
2120 
2121 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2122 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2123 
2124 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2125 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2126 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2127 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2128 		}
2129 	}
2130 }
2131 
2132 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2133 {
2134 	struct ata_port *ap = dev->link->ap;
2135 	unsigned int err_mask;
2136 	int log_index = ATA_LOG_NCQ_NON_DATA * 2;
2137 	u16 log_pages;
2138 
2139 	err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2140 				     0, ap->sector_buf, 1);
2141 	if (err_mask) {
2142 		ata_dev_dbg(dev,
2143 			    "failed to get Log Directory Emask 0x%x\n",
2144 			    err_mask);
2145 		return;
2146 	}
2147 	log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2148 	if (!log_pages) {
2149 		ata_dev_warn(dev,
2150 			     "NCQ Send/Recv Log not supported\n");
2151 		return;
2152 	}
2153 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2154 				     0, ap->sector_buf, 1);
2155 	if (err_mask) {
2156 		ata_dev_dbg(dev,
2157 			    "failed to get NCQ Non-Data Log Emask 0x%x\n",
2158 			    err_mask);
2159 	} else {
2160 		u8 *cmds = dev->ncq_non_data_cmds;
2161 
2162 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2163 	}
2164 }
2165 
2166 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2167 {
2168 	struct ata_port *ap = dev->link->ap;
2169 	unsigned int err_mask;
2170 
2171 	if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2172 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2173 		return;
2174 	}
2175 
2176 	err_mask = ata_read_log_page(dev,
2177 				     ATA_LOG_SATA_ID_DEV_DATA,
2178 				     ATA_LOG_SATA_SETTINGS,
2179 				     ap->sector_buf,
2180 				     1);
2181 	if (err_mask) {
2182 		ata_dev_dbg(dev,
2183 			    "failed to get Identify Device data, Emask 0x%x\n",
2184 			    err_mask);
2185 		return;
2186 	}
2187 
2188 	if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2189 		dev->flags |= ATA_DFLAG_NCQ_PRIO;
2190 	} else {
2191 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2192 		ata_dev_dbg(dev, "SATA page does not support priority\n");
2193 	}
2194 
2195 }
2196 
2197 static int ata_dev_config_ncq(struct ata_device *dev,
2198 			       char *desc, size_t desc_sz)
2199 {
2200 	struct ata_port *ap = dev->link->ap;
2201 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2202 	unsigned int err_mask;
2203 	char *aa_desc = "";
2204 
2205 	if (!ata_id_has_ncq(dev->id)) {
2206 		desc[0] = '\0';
2207 		return 0;
2208 	}
2209 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2210 		snprintf(desc, desc_sz, "NCQ (not used)");
2211 		return 0;
2212 	}
2213 	if (ap->flags & ATA_FLAG_NCQ) {
2214 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2215 		dev->flags |= ATA_DFLAG_NCQ;
2216 	}
2217 
2218 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2219 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2220 		ata_id_has_fpdma_aa(dev->id)) {
2221 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2222 			SATA_FPDMA_AA);
2223 		if (err_mask) {
2224 			ata_dev_err(dev,
2225 				    "failed to enable AA (error_mask=0x%x)\n",
2226 				    err_mask);
2227 			if (err_mask != AC_ERR_DEV) {
2228 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2229 				return -EIO;
2230 			}
2231 		} else
2232 			aa_desc = ", AA";
2233 	}
2234 
2235 	if (hdepth >= ddepth)
2236 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2237 	else
2238 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2239 			ddepth, aa_desc);
2240 
2241 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2242 		if (ata_id_has_ncq_send_and_recv(dev->id))
2243 			ata_dev_config_ncq_send_recv(dev);
2244 		if (ata_id_has_ncq_non_data(dev->id))
2245 			ata_dev_config_ncq_non_data(dev);
2246 		if (ata_id_has_ncq_prio(dev->id))
2247 			ata_dev_config_ncq_prio(dev);
2248 	}
2249 
2250 	return 0;
2251 }
2252 
2253 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2254 {
2255 	unsigned int err_mask;
2256 
2257 	if (!ata_id_has_sense_reporting(dev->id))
2258 		return;
2259 
2260 	if (ata_id_sense_reporting_enabled(dev->id))
2261 		return;
2262 
2263 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2264 	if (err_mask) {
2265 		ata_dev_dbg(dev,
2266 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2267 			    err_mask);
2268 	}
2269 }
2270 
2271 static void ata_dev_config_zac(struct ata_device *dev)
2272 {
2273 	struct ata_port *ap = dev->link->ap;
2274 	unsigned int err_mask;
2275 	u8 *identify_buf = ap->sector_buf;
2276 	int log_index = ATA_LOG_SATA_ID_DEV_DATA * 2, i, found = 0;
2277 	u16 log_pages;
2278 
2279 	dev->zac_zones_optimal_open = U32_MAX;
2280 	dev->zac_zones_optimal_nonseq = U32_MAX;
2281 	dev->zac_zones_max_open = U32_MAX;
2282 
2283 	/*
2284 	 * Always set the 'ZAC' flag for Host-managed devices.
2285 	 */
2286 	if (dev->class == ATA_DEV_ZAC)
2287 		dev->flags |= ATA_DFLAG_ZAC;
2288 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2289 		/*
2290 		 * Check for host-aware devices.
2291 		 */
2292 		dev->flags |= ATA_DFLAG_ZAC;
2293 
2294 	if (!(dev->flags & ATA_DFLAG_ZAC))
2295 		return;
2296 
2297 	/*
2298 	 * Read Log Directory to figure out if IDENTIFY DEVICE log
2299 	 * is supported.
2300 	 */
2301 	err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2302 				     0, ap->sector_buf, 1);
2303 	if (err_mask) {
2304 		ata_dev_info(dev,
2305 			     "failed to get Log Directory Emask 0x%x\n",
2306 			     err_mask);
2307 		return;
2308 	}
2309 	log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2310 	if (log_pages == 0) {
2311 		ata_dev_warn(dev,
2312 			     "ATA Identify Device Log not supported\n");
2313 		return;
2314 	}
2315 	/*
2316 	 * Read IDENTIFY DEVICE data log, page 0, to figure out
2317 	 * if page 9 is supported.
2318 	 */
2319 	err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA, 0,
2320 				     identify_buf, 1);
2321 	if (err_mask) {
2322 		ata_dev_info(dev,
2323 			     "failed to get Device Identify Log Emask 0x%x\n",
2324 			     err_mask);
2325 		return;
2326 	}
2327 	log_pages = identify_buf[8];
2328 	for (i = 0; i < log_pages; i++) {
2329 		if (identify_buf[9 + i] == ATA_LOG_ZONED_INFORMATION) {
2330 			found++;
2331 			break;
2332 		}
2333 	}
2334 	if (!found) {
2335 		ata_dev_warn(dev,
2336 			     "ATA Zoned Information Log not supported\n");
2337 		return;
2338 	}
2339 
2340 	/*
2341 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2342 	 */
2343 	err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA,
2344 				     ATA_LOG_ZONED_INFORMATION,
2345 				     identify_buf, 1);
2346 	if (!err_mask) {
2347 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2348 
2349 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2350 		if ((zoned_cap >> 63))
2351 			dev->zac_zoned_cap = (zoned_cap & 1);
2352 		opt_open = get_unaligned_le64(&identify_buf[24]);
2353 		if ((opt_open >> 63))
2354 			dev->zac_zones_optimal_open = (u32)opt_open;
2355 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2356 		if ((opt_nonseq >> 63))
2357 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2358 		max_open = get_unaligned_le64(&identify_buf[40]);
2359 		if ((max_open >> 63))
2360 			dev->zac_zones_max_open = (u32)max_open;
2361 	}
2362 }
2363 
2364 /**
2365  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2366  *	@dev: Target device to configure
2367  *
2368  *	Configure @dev according to @dev->id.  Generic and low-level
2369  *	driver specific fixups are also applied.
2370  *
2371  *	LOCKING:
2372  *	Kernel thread context (may sleep)
2373  *
2374  *	RETURNS:
2375  *	0 on success, -errno otherwise
2376  */
2377 int ata_dev_configure(struct ata_device *dev)
2378 {
2379 	struct ata_port *ap = dev->link->ap;
2380 	struct ata_eh_context *ehc = &dev->link->eh_context;
2381 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2382 	const u16 *id = dev->id;
2383 	unsigned long xfer_mask;
2384 	unsigned int err_mask;
2385 	char revbuf[7];		/* XYZ-99\0 */
2386 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2387 	char modelbuf[ATA_ID_PROD_LEN+1];
2388 	int rc;
2389 
2390 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2391 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2392 		return 0;
2393 	}
2394 
2395 	if (ata_msg_probe(ap))
2396 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2397 
2398 	/* set horkage */
2399 	dev->horkage |= ata_dev_blacklisted(dev);
2400 	ata_force_horkage(dev);
2401 
2402 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2403 		ata_dev_info(dev, "unsupported device, disabling\n");
2404 		ata_dev_disable(dev);
2405 		return 0;
2406 	}
2407 
2408 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2409 	    dev->class == ATA_DEV_ATAPI) {
2410 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2411 			     atapi_enabled ? "not supported with this driver"
2412 			     : "disabled");
2413 		ata_dev_disable(dev);
2414 		return 0;
2415 	}
2416 
2417 	rc = ata_do_link_spd_horkage(dev);
2418 	if (rc)
2419 		return rc;
2420 
2421 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2422 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2423 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2424 		dev->horkage |= ATA_HORKAGE_NOLPM;
2425 
2426 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2427 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2428 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2429 	}
2430 
2431 	/* let ACPI work its magic */
2432 	rc = ata_acpi_on_devcfg(dev);
2433 	if (rc)
2434 		return rc;
2435 
2436 	/* massage HPA, do it early as it might change IDENTIFY data */
2437 	rc = ata_hpa_resize(dev);
2438 	if (rc)
2439 		return rc;
2440 
2441 	/* print device capabilities */
2442 	if (ata_msg_probe(ap))
2443 		ata_dev_dbg(dev,
2444 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2445 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2446 			    __func__,
2447 			    id[49], id[82], id[83], id[84],
2448 			    id[85], id[86], id[87], id[88]);
2449 
2450 	/* initialize to-be-configured parameters */
2451 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2452 	dev->max_sectors = 0;
2453 	dev->cdb_len = 0;
2454 	dev->n_sectors = 0;
2455 	dev->cylinders = 0;
2456 	dev->heads = 0;
2457 	dev->sectors = 0;
2458 	dev->multi_count = 0;
2459 
2460 	/*
2461 	 * common ATA, ATAPI feature tests
2462 	 */
2463 
2464 	/* find max transfer mode; for printk only */
2465 	xfer_mask = ata_id_xfermask(id);
2466 
2467 	if (ata_msg_probe(ap))
2468 		ata_dump_id(id);
2469 
2470 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2471 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2472 			sizeof(fwrevbuf));
2473 
2474 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2475 			sizeof(modelbuf));
2476 
2477 	/* ATA-specific feature tests */
2478 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2479 		if (ata_id_is_cfa(id)) {
2480 			/* CPRM may make this media unusable */
2481 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2482 				ata_dev_warn(dev,
2483 	"supports DRM functions and may not be fully accessible\n");
2484 			snprintf(revbuf, 7, "CFA");
2485 		} else {
2486 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2487 			/* Warn the user if the device has TPM extensions */
2488 			if (ata_id_has_tpm(id))
2489 				ata_dev_warn(dev,
2490 	"supports DRM functions and may not be fully accessible\n");
2491 		}
2492 
2493 		dev->n_sectors = ata_id_n_sectors(id);
2494 
2495 		/* get current R/W Multiple count setting */
2496 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2497 			unsigned int max = dev->id[47] & 0xff;
2498 			unsigned int cnt = dev->id[59] & 0xff;
2499 			/* only recognize/allow powers of two here */
2500 			if (is_power_of_2(max) && is_power_of_2(cnt))
2501 				if (cnt <= max)
2502 					dev->multi_count = cnt;
2503 		}
2504 
2505 		if (ata_id_has_lba(id)) {
2506 			const char *lba_desc;
2507 			char ncq_desc[24];
2508 
2509 			lba_desc = "LBA";
2510 			dev->flags |= ATA_DFLAG_LBA;
2511 			if (ata_id_has_lba48(id)) {
2512 				dev->flags |= ATA_DFLAG_LBA48;
2513 				lba_desc = "LBA48";
2514 
2515 				if (dev->n_sectors >= (1UL << 28) &&
2516 				    ata_id_has_flush_ext(id))
2517 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2518 			}
2519 
2520 			/* config NCQ */
2521 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2522 			if (rc)
2523 				return rc;
2524 
2525 			/* print device info to dmesg */
2526 			if (ata_msg_drv(ap) && print_info) {
2527 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2528 					     revbuf, modelbuf, fwrevbuf,
2529 					     ata_mode_string(xfer_mask));
2530 				ata_dev_info(dev,
2531 					     "%llu sectors, multi %u: %s %s\n",
2532 					(unsigned long long)dev->n_sectors,
2533 					dev->multi_count, lba_desc, ncq_desc);
2534 			}
2535 		} else {
2536 			/* CHS */
2537 
2538 			/* Default translation */
2539 			dev->cylinders	= id[1];
2540 			dev->heads	= id[3];
2541 			dev->sectors	= id[6];
2542 
2543 			if (ata_id_current_chs_valid(id)) {
2544 				/* Current CHS translation is valid. */
2545 				dev->cylinders = id[54];
2546 				dev->heads     = id[55];
2547 				dev->sectors   = id[56];
2548 			}
2549 
2550 			/* print device info to dmesg */
2551 			if (ata_msg_drv(ap) && print_info) {
2552 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2553 					     revbuf,	modelbuf, fwrevbuf,
2554 					     ata_mode_string(xfer_mask));
2555 				ata_dev_info(dev,
2556 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2557 					     (unsigned long long)dev->n_sectors,
2558 					     dev->multi_count, dev->cylinders,
2559 					     dev->heads, dev->sectors);
2560 			}
2561 		}
2562 
2563 		/* Check and mark DevSlp capability. Get DevSlp timing variables
2564 		 * from SATA Settings page of Identify Device Data Log.
2565 		 */
2566 		if (ata_id_has_devslp(dev->id)) {
2567 			u8 *sata_setting = ap->sector_buf;
2568 			int i, j;
2569 
2570 			dev->flags |= ATA_DFLAG_DEVSLP;
2571 			err_mask = ata_read_log_page(dev,
2572 						     ATA_LOG_SATA_ID_DEV_DATA,
2573 						     ATA_LOG_SATA_SETTINGS,
2574 						     sata_setting,
2575 						     1);
2576 			if (err_mask)
2577 				ata_dev_dbg(dev,
2578 					    "failed to get Identify Device Data, Emask 0x%x\n",
2579 					    err_mask);
2580 			else
2581 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2582 					j = ATA_LOG_DEVSLP_OFFSET + i;
2583 					dev->devslp_timing[i] = sata_setting[j];
2584 				}
2585 		}
2586 		ata_dev_config_sense_reporting(dev);
2587 		ata_dev_config_zac(dev);
2588 		dev->cdb_len = 16;
2589 	}
2590 
2591 	/* ATAPI-specific feature tests */
2592 	else if (dev->class == ATA_DEV_ATAPI) {
2593 		const char *cdb_intr_string = "";
2594 		const char *atapi_an_string = "";
2595 		const char *dma_dir_string = "";
2596 		u32 sntf;
2597 
2598 		rc = atapi_cdb_len(id);
2599 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2600 			if (ata_msg_warn(ap))
2601 				ata_dev_warn(dev, "unsupported CDB len\n");
2602 			rc = -EINVAL;
2603 			goto err_out_nosup;
2604 		}
2605 		dev->cdb_len = (unsigned int) rc;
2606 
2607 		/* Enable ATAPI AN if both the host and device have
2608 		 * the support.  If PMP is attached, SNTF is required
2609 		 * to enable ATAPI AN to discern between PHY status
2610 		 * changed notifications and ATAPI ANs.
2611 		 */
2612 		if (atapi_an &&
2613 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2614 		    (!sata_pmp_attached(ap) ||
2615 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2616 			/* issue SET feature command to turn this on */
2617 			err_mask = ata_dev_set_feature(dev,
2618 					SETFEATURES_SATA_ENABLE, SATA_AN);
2619 			if (err_mask)
2620 				ata_dev_err(dev,
2621 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2622 					    err_mask);
2623 			else {
2624 				dev->flags |= ATA_DFLAG_AN;
2625 				atapi_an_string = ", ATAPI AN";
2626 			}
2627 		}
2628 
2629 		if (ata_id_cdb_intr(dev->id)) {
2630 			dev->flags |= ATA_DFLAG_CDB_INTR;
2631 			cdb_intr_string = ", CDB intr";
2632 		}
2633 
2634 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2635 			dev->flags |= ATA_DFLAG_DMADIR;
2636 			dma_dir_string = ", DMADIR";
2637 		}
2638 
2639 		if (ata_id_has_da(dev->id)) {
2640 			dev->flags |= ATA_DFLAG_DA;
2641 			zpodd_init(dev);
2642 		}
2643 
2644 		/* print device info to dmesg */
2645 		if (ata_msg_drv(ap) && print_info)
2646 			ata_dev_info(dev,
2647 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2648 				     modelbuf, fwrevbuf,
2649 				     ata_mode_string(xfer_mask),
2650 				     cdb_intr_string, atapi_an_string,
2651 				     dma_dir_string);
2652 	}
2653 
2654 	/* determine max_sectors */
2655 	dev->max_sectors = ATA_MAX_SECTORS;
2656 	if (dev->flags & ATA_DFLAG_LBA48)
2657 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2658 
2659 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2660 	   200 sectors */
2661 	if (ata_dev_knobble(dev)) {
2662 		if (ata_msg_drv(ap) && print_info)
2663 			ata_dev_info(dev, "applying bridge limits\n");
2664 		dev->udma_mask &= ATA_UDMA5;
2665 		dev->max_sectors = ATA_MAX_SECTORS;
2666 	}
2667 
2668 	if ((dev->class == ATA_DEV_ATAPI) &&
2669 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2670 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2671 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2672 	}
2673 
2674 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2675 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2676 					 dev->max_sectors);
2677 
2678 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2679 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2680 					 dev->max_sectors);
2681 
2682 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2683 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2684 
2685 	if (ap->ops->dev_config)
2686 		ap->ops->dev_config(dev);
2687 
2688 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2689 		/* Let the user know. We don't want to disallow opens for
2690 		   rescue purposes, or in case the vendor is just a blithering
2691 		   idiot. Do this after the dev_config call as some controllers
2692 		   with buggy firmware may want to avoid reporting false device
2693 		   bugs */
2694 
2695 		if (print_info) {
2696 			ata_dev_warn(dev,
2697 "Drive reports diagnostics failure. This may indicate a drive\n");
2698 			ata_dev_warn(dev,
2699 "fault or invalid emulation. Contact drive vendor for information.\n");
2700 		}
2701 	}
2702 
2703 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2704 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2705 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2706 	}
2707 
2708 	return 0;
2709 
2710 err_out_nosup:
2711 	if (ata_msg_probe(ap))
2712 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2713 	return rc;
2714 }
2715 
2716 /**
2717  *	ata_cable_40wire	-	return 40 wire cable type
2718  *	@ap: port
2719  *
2720  *	Helper method for drivers which want to hardwire 40 wire cable
2721  *	detection.
2722  */
2723 
2724 int ata_cable_40wire(struct ata_port *ap)
2725 {
2726 	return ATA_CBL_PATA40;
2727 }
2728 
2729 /**
2730  *	ata_cable_80wire	-	return 80 wire cable type
2731  *	@ap: port
2732  *
2733  *	Helper method for drivers which want to hardwire 80 wire cable
2734  *	detection.
2735  */
2736 
2737 int ata_cable_80wire(struct ata_port *ap)
2738 {
2739 	return ATA_CBL_PATA80;
2740 }
2741 
2742 /**
2743  *	ata_cable_unknown	-	return unknown PATA cable.
2744  *	@ap: port
2745  *
2746  *	Helper method for drivers which have no PATA cable detection.
2747  */
2748 
2749 int ata_cable_unknown(struct ata_port *ap)
2750 {
2751 	return ATA_CBL_PATA_UNK;
2752 }
2753 
2754 /**
2755  *	ata_cable_ignore	-	return ignored PATA cable.
2756  *	@ap: port
2757  *
2758  *	Helper method for drivers which don't use cable type to limit
2759  *	transfer mode.
2760  */
2761 int ata_cable_ignore(struct ata_port *ap)
2762 {
2763 	return ATA_CBL_PATA_IGN;
2764 }
2765 
2766 /**
2767  *	ata_cable_sata	-	return SATA cable type
2768  *	@ap: port
2769  *
2770  *	Helper method for drivers which have SATA cables
2771  */
2772 
2773 int ata_cable_sata(struct ata_port *ap)
2774 {
2775 	return ATA_CBL_SATA;
2776 }
2777 
2778 /**
2779  *	ata_bus_probe - Reset and probe ATA bus
2780  *	@ap: Bus to probe
2781  *
2782  *	Master ATA bus probing function.  Initiates a hardware-dependent
2783  *	bus reset, then attempts to identify any devices found on
2784  *	the bus.
2785  *
2786  *	LOCKING:
2787  *	PCI/etc. bus probe sem.
2788  *
2789  *	RETURNS:
2790  *	Zero on success, negative errno otherwise.
2791  */
2792 
2793 int ata_bus_probe(struct ata_port *ap)
2794 {
2795 	unsigned int classes[ATA_MAX_DEVICES];
2796 	int tries[ATA_MAX_DEVICES];
2797 	int rc;
2798 	struct ata_device *dev;
2799 
2800 	ata_for_each_dev(dev, &ap->link, ALL)
2801 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2802 
2803  retry:
2804 	ata_for_each_dev(dev, &ap->link, ALL) {
2805 		/* If we issue an SRST then an ATA drive (not ATAPI)
2806 		 * may change configuration and be in PIO0 timing. If
2807 		 * we do a hard reset (or are coming from power on)
2808 		 * this is true for ATA or ATAPI. Until we've set a
2809 		 * suitable controller mode we should not touch the
2810 		 * bus as we may be talking too fast.
2811 		 */
2812 		dev->pio_mode = XFER_PIO_0;
2813 		dev->dma_mode = 0xff;
2814 
2815 		/* If the controller has a pio mode setup function
2816 		 * then use it to set the chipset to rights. Don't
2817 		 * touch the DMA setup as that will be dealt with when
2818 		 * configuring devices.
2819 		 */
2820 		if (ap->ops->set_piomode)
2821 			ap->ops->set_piomode(ap, dev);
2822 	}
2823 
2824 	/* reset and determine device classes */
2825 	ap->ops->phy_reset(ap);
2826 
2827 	ata_for_each_dev(dev, &ap->link, ALL) {
2828 		if (dev->class != ATA_DEV_UNKNOWN)
2829 			classes[dev->devno] = dev->class;
2830 		else
2831 			classes[dev->devno] = ATA_DEV_NONE;
2832 
2833 		dev->class = ATA_DEV_UNKNOWN;
2834 	}
2835 
2836 	/* read IDENTIFY page and configure devices. We have to do the identify
2837 	   specific sequence bass-ackwards so that PDIAG- is released by
2838 	   the slave device */
2839 
2840 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2841 		if (tries[dev->devno])
2842 			dev->class = classes[dev->devno];
2843 
2844 		if (!ata_dev_enabled(dev))
2845 			continue;
2846 
2847 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2848 				     dev->id);
2849 		if (rc)
2850 			goto fail;
2851 	}
2852 
2853 	/* Now ask for the cable type as PDIAG- should have been released */
2854 	if (ap->ops->cable_detect)
2855 		ap->cbl = ap->ops->cable_detect(ap);
2856 
2857 	/* We may have SATA bridge glue hiding here irrespective of
2858 	 * the reported cable types and sensed types.  When SATA
2859 	 * drives indicate we have a bridge, we don't know which end
2860 	 * of the link the bridge is which is a problem.
2861 	 */
2862 	ata_for_each_dev(dev, &ap->link, ENABLED)
2863 		if (ata_id_is_sata(dev->id))
2864 			ap->cbl = ATA_CBL_SATA;
2865 
2866 	/* After the identify sequence we can now set up the devices. We do
2867 	   this in the normal order so that the user doesn't get confused */
2868 
2869 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2870 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2871 		rc = ata_dev_configure(dev);
2872 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2873 		if (rc)
2874 			goto fail;
2875 	}
2876 
2877 	/* configure transfer mode */
2878 	rc = ata_set_mode(&ap->link, &dev);
2879 	if (rc)
2880 		goto fail;
2881 
2882 	ata_for_each_dev(dev, &ap->link, ENABLED)
2883 		return 0;
2884 
2885 	return -ENODEV;
2886 
2887  fail:
2888 	tries[dev->devno]--;
2889 
2890 	switch (rc) {
2891 	case -EINVAL:
2892 		/* eeek, something went very wrong, give up */
2893 		tries[dev->devno] = 0;
2894 		break;
2895 
2896 	case -ENODEV:
2897 		/* give it just one more chance */
2898 		tries[dev->devno] = min(tries[dev->devno], 1);
2899 	case -EIO:
2900 		if (tries[dev->devno] == 1) {
2901 			/* This is the last chance, better to slow
2902 			 * down than lose it.
2903 			 */
2904 			sata_down_spd_limit(&ap->link, 0);
2905 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2906 		}
2907 	}
2908 
2909 	if (!tries[dev->devno])
2910 		ata_dev_disable(dev);
2911 
2912 	goto retry;
2913 }
2914 
2915 /**
2916  *	sata_print_link_status - Print SATA link status
2917  *	@link: SATA link to printk link status about
2918  *
2919  *	This function prints link speed and status of a SATA link.
2920  *
2921  *	LOCKING:
2922  *	None.
2923  */
2924 static void sata_print_link_status(struct ata_link *link)
2925 {
2926 	u32 sstatus, scontrol, tmp;
2927 
2928 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2929 		return;
2930 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2931 
2932 	if (ata_phys_link_online(link)) {
2933 		tmp = (sstatus >> 4) & 0xf;
2934 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2935 			      sata_spd_string(tmp), sstatus, scontrol);
2936 	} else {
2937 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2938 			      sstatus, scontrol);
2939 	}
2940 }
2941 
2942 /**
2943  *	ata_dev_pair		-	return other device on cable
2944  *	@adev: device
2945  *
2946  *	Obtain the other device on the same cable, or if none is
2947  *	present NULL is returned
2948  */
2949 
2950 struct ata_device *ata_dev_pair(struct ata_device *adev)
2951 {
2952 	struct ata_link *link = adev->link;
2953 	struct ata_device *pair = &link->device[1 - adev->devno];
2954 	if (!ata_dev_enabled(pair))
2955 		return NULL;
2956 	return pair;
2957 }
2958 
2959 /**
2960  *	sata_down_spd_limit - adjust SATA spd limit downward
2961  *	@link: Link to adjust SATA spd limit for
2962  *	@spd_limit: Additional limit
2963  *
2964  *	Adjust SATA spd limit of @link downward.  Note that this
2965  *	function only adjusts the limit.  The change must be applied
2966  *	using sata_set_spd().
2967  *
2968  *	If @spd_limit is non-zero, the speed is limited to equal to or
2969  *	lower than @spd_limit if such speed is supported.  If
2970  *	@spd_limit is slower than any supported speed, only the lowest
2971  *	supported speed is allowed.
2972  *
2973  *	LOCKING:
2974  *	Inherited from caller.
2975  *
2976  *	RETURNS:
2977  *	0 on success, negative errno on failure
2978  */
2979 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2980 {
2981 	u32 sstatus, spd, mask;
2982 	int rc, bit;
2983 
2984 	if (!sata_scr_valid(link))
2985 		return -EOPNOTSUPP;
2986 
2987 	/* If SCR can be read, use it to determine the current SPD.
2988 	 * If not, use cached value in link->sata_spd.
2989 	 */
2990 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2991 	if (rc == 0 && ata_sstatus_online(sstatus))
2992 		spd = (sstatus >> 4) & 0xf;
2993 	else
2994 		spd = link->sata_spd;
2995 
2996 	mask = link->sata_spd_limit;
2997 	if (mask <= 1)
2998 		return -EINVAL;
2999 
3000 	/* unconditionally mask off the highest bit */
3001 	bit = fls(mask) - 1;
3002 	mask &= ~(1 << bit);
3003 
3004 	/* Mask off all speeds higher than or equal to the current
3005 	 * one.  Force 1.5Gbps if current SPD is not available.
3006 	 */
3007 	if (spd > 1)
3008 		mask &= (1 << (spd - 1)) - 1;
3009 	else
3010 		mask &= 1;
3011 
3012 	/* were we already at the bottom? */
3013 	if (!mask)
3014 		return -EINVAL;
3015 
3016 	if (spd_limit) {
3017 		if (mask & ((1 << spd_limit) - 1))
3018 			mask &= (1 << spd_limit) - 1;
3019 		else {
3020 			bit = ffs(mask) - 1;
3021 			mask = 1 << bit;
3022 		}
3023 	}
3024 
3025 	link->sata_spd_limit = mask;
3026 
3027 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3028 		      sata_spd_string(fls(mask)));
3029 
3030 	return 0;
3031 }
3032 
3033 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3034 {
3035 	struct ata_link *host_link = &link->ap->link;
3036 	u32 limit, target, spd;
3037 
3038 	limit = link->sata_spd_limit;
3039 
3040 	/* Don't configure downstream link faster than upstream link.
3041 	 * It doesn't speed up anything and some PMPs choke on such
3042 	 * configuration.
3043 	 */
3044 	if (!ata_is_host_link(link) && host_link->sata_spd)
3045 		limit &= (1 << host_link->sata_spd) - 1;
3046 
3047 	if (limit == UINT_MAX)
3048 		target = 0;
3049 	else
3050 		target = fls(limit);
3051 
3052 	spd = (*scontrol >> 4) & 0xf;
3053 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3054 
3055 	return spd != target;
3056 }
3057 
3058 /**
3059  *	sata_set_spd_needed - is SATA spd configuration needed
3060  *	@link: Link in question
3061  *
3062  *	Test whether the spd limit in SControl matches
3063  *	@link->sata_spd_limit.  This function is used to determine
3064  *	whether hardreset is necessary to apply SATA spd
3065  *	configuration.
3066  *
3067  *	LOCKING:
3068  *	Inherited from caller.
3069  *
3070  *	RETURNS:
3071  *	1 if SATA spd configuration is needed, 0 otherwise.
3072  */
3073 static int sata_set_spd_needed(struct ata_link *link)
3074 {
3075 	u32 scontrol;
3076 
3077 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3078 		return 1;
3079 
3080 	return __sata_set_spd_needed(link, &scontrol);
3081 }
3082 
3083 /**
3084  *	sata_set_spd - set SATA spd according to spd limit
3085  *	@link: Link to set SATA spd for
3086  *
3087  *	Set SATA spd of @link according to sata_spd_limit.
3088  *
3089  *	LOCKING:
3090  *	Inherited from caller.
3091  *
3092  *	RETURNS:
3093  *	0 if spd doesn't need to be changed, 1 if spd has been
3094  *	changed.  Negative errno if SCR registers are inaccessible.
3095  */
3096 int sata_set_spd(struct ata_link *link)
3097 {
3098 	u32 scontrol;
3099 	int rc;
3100 
3101 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3102 		return rc;
3103 
3104 	if (!__sata_set_spd_needed(link, &scontrol))
3105 		return 0;
3106 
3107 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3108 		return rc;
3109 
3110 	return 1;
3111 }
3112 
3113 /*
3114  * This mode timing computation functionality is ported over from
3115  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3116  */
3117 /*
3118  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3119  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3120  * for UDMA6, which is currently supported only by Maxtor drives.
3121  *
3122  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3123  */
3124 
3125 static const struct ata_timing ata_timing[] = {
3126 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3127 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3128 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3129 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3130 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3131 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3132 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3133 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3134 
3135 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3136 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3137 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3138 
3139 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3140 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3141 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3142 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3143 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3144 
3145 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3146 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3147 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3148 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3149 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3150 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3151 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3152 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3153 
3154 	{ 0xFF }
3155 };
3156 
3157 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3158 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
3159 
3160 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3161 {
3162 	q->setup	= EZ(t->setup      * 1000,  T);
3163 	q->act8b	= EZ(t->act8b      * 1000,  T);
3164 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
3165 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
3166 	q->active	= EZ(t->active     * 1000,  T);
3167 	q->recover	= EZ(t->recover    * 1000,  T);
3168 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
3169 	q->cycle	= EZ(t->cycle      * 1000,  T);
3170 	q->udma		= EZ(t->udma       * 1000, UT);
3171 }
3172 
3173 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3174 		      struct ata_timing *m, unsigned int what)
3175 {
3176 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3177 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3178 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3179 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3180 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3181 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3182 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3183 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3184 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3185 }
3186 
3187 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3188 {
3189 	const struct ata_timing *t = ata_timing;
3190 
3191 	while (xfer_mode > t->mode)
3192 		t++;
3193 
3194 	if (xfer_mode == t->mode)
3195 		return t;
3196 
3197 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3198 			__func__, xfer_mode);
3199 
3200 	return NULL;
3201 }
3202 
3203 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3204 		       struct ata_timing *t, int T, int UT)
3205 {
3206 	const u16 *id = adev->id;
3207 	const struct ata_timing *s;
3208 	struct ata_timing p;
3209 
3210 	/*
3211 	 * Find the mode.
3212 	 */
3213 
3214 	if (!(s = ata_timing_find_mode(speed)))
3215 		return -EINVAL;
3216 
3217 	memcpy(t, s, sizeof(*s));
3218 
3219 	/*
3220 	 * If the drive is an EIDE drive, it can tell us it needs extended
3221 	 * PIO/MW_DMA cycle timing.
3222 	 */
3223 
3224 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3225 		memset(&p, 0, sizeof(p));
3226 
3227 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3228 			if (speed <= XFER_PIO_2)
3229 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3230 			else if ((speed <= XFER_PIO_4) ||
3231 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3232 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3233 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3234 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3235 
3236 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3237 	}
3238 
3239 	/*
3240 	 * Convert the timing to bus clock counts.
3241 	 */
3242 
3243 	ata_timing_quantize(t, t, T, UT);
3244 
3245 	/*
3246 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3247 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3248 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3249 	 */
3250 
3251 	if (speed > XFER_PIO_6) {
3252 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3253 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3254 	}
3255 
3256 	/*
3257 	 * Lengthen active & recovery time so that cycle time is correct.
3258 	 */
3259 
3260 	if (t->act8b + t->rec8b < t->cyc8b) {
3261 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3262 		t->rec8b = t->cyc8b - t->act8b;
3263 	}
3264 
3265 	if (t->active + t->recover < t->cycle) {
3266 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3267 		t->recover = t->cycle - t->active;
3268 	}
3269 
3270 	/* In a few cases quantisation may produce enough errors to
3271 	   leave t->cycle too low for the sum of active and recovery
3272 	   if so we must correct this */
3273 	if (t->active + t->recover > t->cycle)
3274 		t->cycle = t->active + t->recover;
3275 
3276 	return 0;
3277 }
3278 
3279 /**
3280  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3281  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3282  *	@cycle: cycle duration in ns
3283  *
3284  *	Return matching xfer mode for @cycle.  The returned mode is of
3285  *	the transfer type specified by @xfer_shift.  If @cycle is too
3286  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3287  *	than the fastest known mode, the fasted mode is returned.
3288  *
3289  *	LOCKING:
3290  *	None.
3291  *
3292  *	RETURNS:
3293  *	Matching xfer_mode, 0xff if no match found.
3294  */
3295 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3296 {
3297 	u8 base_mode = 0xff, last_mode = 0xff;
3298 	const struct ata_xfer_ent *ent;
3299 	const struct ata_timing *t;
3300 
3301 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3302 		if (ent->shift == xfer_shift)
3303 			base_mode = ent->base;
3304 
3305 	for (t = ata_timing_find_mode(base_mode);
3306 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3307 		unsigned short this_cycle;
3308 
3309 		switch (xfer_shift) {
3310 		case ATA_SHIFT_PIO:
3311 		case ATA_SHIFT_MWDMA:
3312 			this_cycle = t->cycle;
3313 			break;
3314 		case ATA_SHIFT_UDMA:
3315 			this_cycle = t->udma;
3316 			break;
3317 		default:
3318 			return 0xff;
3319 		}
3320 
3321 		if (cycle > this_cycle)
3322 			break;
3323 
3324 		last_mode = t->mode;
3325 	}
3326 
3327 	return last_mode;
3328 }
3329 
3330 /**
3331  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3332  *	@dev: Device to adjust xfer masks
3333  *	@sel: ATA_DNXFER_* selector
3334  *
3335  *	Adjust xfer masks of @dev downward.  Note that this function
3336  *	does not apply the change.  Invoking ata_set_mode() afterwards
3337  *	will apply the limit.
3338  *
3339  *	LOCKING:
3340  *	Inherited from caller.
3341  *
3342  *	RETURNS:
3343  *	0 on success, negative errno on failure
3344  */
3345 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3346 {
3347 	char buf[32];
3348 	unsigned long orig_mask, xfer_mask;
3349 	unsigned long pio_mask, mwdma_mask, udma_mask;
3350 	int quiet, highbit;
3351 
3352 	quiet = !!(sel & ATA_DNXFER_QUIET);
3353 	sel &= ~ATA_DNXFER_QUIET;
3354 
3355 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3356 						  dev->mwdma_mask,
3357 						  dev->udma_mask);
3358 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3359 
3360 	switch (sel) {
3361 	case ATA_DNXFER_PIO:
3362 		highbit = fls(pio_mask) - 1;
3363 		pio_mask &= ~(1 << highbit);
3364 		break;
3365 
3366 	case ATA_DNXFER_DMA:
3367 		if (udma_mask) {
3368 			highbit = fls(udma_mask) - 1;
3369 			udma_mask &= ~(1 << highbit);
3370 			if (!udma_mask)
3371 				return -ENOENT;
3372 		} else if (mwdma_mask) {
3373 			highbit = fls(mwdma_mask) - 1;
3374 			mwdma_mask &= ~(1 << highbit);
3375 			if (!mwdma_mask)
3376 				return -ENOENT;
3377 		}
3378 		break;
3379 
3380 	case ATA_DNXFER_40C:
3381 		udma_mask &= ATA_UDMA_MASK_40C;
3382 		break;
3383 
3384 	case ATA_DNXFER_FORCE_PIO0:
3385 		pio_mask &= 1;
3386 	case ATA_DNXFER_FORCE_PIO:
3387 		mwdma_mask = 0;
3388 		udma_mask = 0;
3389 		break;
3390 
3391 	default:
3392 		BUG();
3393 	}
3394 
3395 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3396 
3397 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3398 		return -ENOENT;
3399 
3400 	if (!quiet) {
3401 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3402 			snprintf(buf, sizeof(buf), "%s:%s",
3403 				 ata_mode_string(xfer_mask),
3404 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3405 		else
3406 			snprintf(buf, sizeof(buf), "%s",
3407 				 ata_mode_string(xfer_mask));
3408 
3409 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3410 	}
3411 
3412 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3413 			    &dev->udma_mask);
3414 
3415 	return 0;
3416 }
3417 
3418 static int ata_dev_set_mode(struct ata_device *dev)
3419 {
3420 	struct ata_port *ap = dev->link->ap;
3421 	struct ata_eh_context *ehc = &dev->link->eh_context;
3422 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3423 	const char *dev_err_whine = "";
3424 	int ign_dev_err = 0;
3425 	unsigned int err_mask = 0;
3426 	int rc;
3427 
3428 	dev->flags &= ~ATA_DFLAG_PIO;
3429 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3430 		dev->flags |= ATA_DFLAG_PIO;
3431 
3432 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3433 		dev_err_whine = " (SET_XFERMODE skipped)";
3434 	else {
3435 		if (nosetxfer)
3436 			ata_dev_warn(dev,
3437 				     "NOSETXFER but PATA detected - can't "
3438 				     "skip SETXFER, might malfunction\n");
3439 		err_mask = ata_dev_set_xfermode(dev);
3440 	}
3441 
3442 	if (err_mask & ~AC_ERR_DEV)
3443 		goto fail;
3444 
3445 	/* revalidate */
3446 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3447 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3448 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3449 	if (rc)
3450 		return rc;
3451 
3452 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3453 		/* Old CFA may refuse this command, which is just fine */
3454 		if (ata_id_is_cfa(dev->id))
3455 			ign_dev_err = 1;
3456 		/* Catch several broken garbage emulations plus some pre
3457 		   ATA devices */
3458 		if (ata_id_major_version(dev->id) == 0 &&
3459 					dev->pio_mode <= XFER_PIO_2)
3460 			ign_dev_err = 1;
3461 		/* Some very old devices and some bad newer ones fail
3462 		   any kind of SET_XFERMODE request but support PIO0-2
3463 		   timings and no IORDY */
3464 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3465 			ign_dev_err = 1;
3466 	}
3467 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3468 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3469 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3470 	    dev->dma_mode == XFER_MW_DMA_0 &&
3471 	    (dev->id[63] >> 8) & 1)
3472 		ign_dev_err = 1;
3473 
3474 	/* if the device is actually configured correctly, ignore dev err */
3475 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3476 		ign_dev_err = 1;
3477 
3478 	if (err_mask & AC_ERR_DEV) {
3479 		if (!ign_dev_err)
3480 			goto fail;
3481 		else
3482 			dev_err_whine = " (device error ignored)";
3483 	}
3484 
3485 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3486 		dev->xfer_shift, (int)dev->xfer_mode);
3487 
3488 	ata_dev_info(dev, "configured for %s%s\n",
3489 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3490 		     dev_err_whine);
3491 
3492 	return 0;
3493 
3494  fail:
3495 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3496 	return -EIO;
3497 }
3498 
3499 /**
3500  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3501  *	@link: link on which timings will be programmed
3502  *	@r_failed_dev: out parameter for failed device
3503  *
3504  *	Standard implementation of the function used to tune and set
3505  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3506  *	ata_dev_set_mode() fails, pointer to the failing device is
3507  *	returned in @r_failed_dev.
3508  *
3509  *	LOCKING:
3510  *	PCI/etc. bus probe sem.
3511  *
3512  *	RETURNS:
3513  *	0 on success, negative errno otherwise
3514  */
3515 
3516 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3517 {
3518 	struct ata_port *ap = link->ap;
3519 	struct ata_device *dev;
3520 	int rc = 0, used_dma = 0, found = 0;
3521 
3522 	/* step 1: calculate xfer_mask */
3523 	ata_for_each_dev(dev, link, ENABLED) {
3524 		unsigned long pio_mask, dma_mask;
3525 		unsigned int mode_mask;
3526 
3527 		mode_mask = ATA_DMA_MASK_ATA;
3528 		if (dev->class == ATA_DEV_ATAPI)
3529 			mode_mask = ATA_DMA_MASK_ATAPI;
3530 		else if (ata_id_is_cfa(dev->id))
3531 			mode_mask = ATA_DMA_MASK_CFA;
3532 
3533 		ata_dev_xfermask(dev);
3534 		ata_force_xfermask(dev);
3535 
3536 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3537 
3538 		if (libata_dma_mask & mode_mask)
3539 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3540 						     dev->udma_mask);
3541 		else
3542 			dma_mask = 0;
3543 
3544 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3545 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3546 
3547 		found = 1;
3548 		if (ata_dma_enabled(dev))
3549 			used_dma = 1;
3550 	}
3551 	if (!found)
3552 		goto out;
3553 
3554 	/* step 2: always set host PIO timings */
3555 	ata_for_each_dev(dev, link, ENABLED) {
3556 		if (dev->pio_mode == 0xff) {
3557 			ata_dev_warn(dev, "no PIO support\n");
3558 			rc = -EINVAL;
3559 			goto out;
3560 		}
3561 
3562 		dev->xfer_mode = dev->pio_mode;
3563 		dev->xfer_shift = ATA_SHIFT_PIO;
3564 		if (ap->ops->set_piomode)
3565 			ap->ops->set_piomode(ap, dev);
3566 	}
3567 
3568 	/* step 3: set host DMA timings */
3569 	ata_for_each_dev(dev, link, ENABLED) {
3570 		if (!ata_dma_enabled(dev))
3571 			continue;
3572 
3573 		dev->xfer_mode = dev->dma_mode;
3574 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3575 		if (ap->ops->set_dmamode)
3576 			ap->ops->set_dmamode(ap, dev);
3577 	}
3578 
3579 	/* step 4: update devices' xfer mode */
3580 	ata_for_each_dev(dev, link, ENABLED) {
3581 		rc = ata_dev_set_mode(dev);
3582 		if (rc)
3583 			goto out;
3584 	}
3585 
3586 	/* Record simplex status. If we selected DMA then the other
3587 	 * host channels are not permitted to do so.
3588 	 */
3589 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3590 		ap->host->simplex_claimed = ap;
3591 
3592  out:
3593 	if (rc)
3594 		*r_failed_dev = dev;
3595 	return rc;
3596 }
3597 
3598 /**
3599  *	ata_wait_ready - wait for link to become ready
3600  *	@link: link to be waited on
3601  *	@deadline: deadline jiffies for the operation
3602  *	@check_ready: callback to check link readiness
3603  *
3604  *	Wait for @link to become ready.  @check_ready should return
3605  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3606  *	link doesn't seem to be occupied, other errno for other error
3607  *	conditions.
3608  *
3609  *	Transient -ENODEV conditions are allowed for
3610  *	ATA_TMOUT_FF_WAIT.
3611  *
3612  *	LOCKING:
3613  *	EH context.
3614  *
3615  *	RETURNS:
3616  *	0 if @link is ready before @deadline; otherwise, -errno.
3617  */
3618 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3619 		   int (*check_ready)(struct ata_link *link))
3620 {
3621 	unsigned long start = jiffies;
3622 	unsigned long nodev_deadline;
3623 	int warned = 0;
3624 
3625 	/* choose which 0xff timeout to use, read comment in libata.h */
3626 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3627 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3628 	else
3629 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3630 
3631 	/* Slave readiness can't be tested separately from master.  On
3632 	 * M/S emulation configuration, this function should be called
3633 	 * only on the master and it will handle both master and slave.
3634 	 */
3635 	WARN_ON(link == link->ap->slave_link);
3636 
3637 	if (time_after(nodev_deadline, deadline))
3638 		nodev_deadline = deadline;
3639 
3640 	while (1) {
3641 		unsigned long now = jiffies;
3642 		int ready, tmp;
3643 
3644 		ready = tmp = check_ready(link);
3645 		if (ready > 0)
3646 			return 0;
3647 
3648 		/*
3649 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3650 		 * is online.  Also, some SATA devices take a long
3651 		 * time to clear 0xff after reset.  Wait for
3652 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3653 		 * offline.
3654 		 *
3655 		 * Note that some PATA controllers (pata_ali) explode
3656 		 * if status register is read more than once when
3657 		 * there's no device attached.
3658 		 */
3659 		if (ready == -ENODEV) {
3660 			if (ata_link_online(link))
3661 				ready = 0;
3662 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3663 				 !ata_link_offline(link) &&
3664 				 time_before(now, nodev_deadline))
3665 				ready = 0;
3666 		}
3667 
3668 		if (ready)
3669 			return ready;
3670 		if (time_after(now, deadline))
3671 			return -EBUSY;
3672 
3673 		if (!warned && time_after(now, start + 5 * HZ) &&
3674 		    (deadline - now > 3 * HZ)) {
3675 			ata_link_warn(link,
3676 				"link is slow to respond, please be patient "
3677 				"(ready=%d)\n", tmp);
3678 			warned = 1;
3679 		}
3680 
3681 		ata_msleep(link->ap, 50);
3682 	}
3683 }
3684 
3685 /**
3686  *	ata_wait_after_reset - wait for link to become ready after reset
3687  *	@link: link to be waited on
3688  *	@deadline: deadline jiffies for the operation
3689  *	@check_ready: callback to check link readiness
3690  *
3691  *	Wait for @link to become ready after reset.
3692  *
3693  *	LOCKING:
3694  *	EH context.
3695  *
3696  *	RETURNS:
3697  *	0 if @link is ready before @deadline; otherwise, -errno.
3698  */
3699 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3700 				int (*check_ready)(struct ata_link *link))
3701 {
3702 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3703 
3704 	return ata_wait_ready(link, deadline, check_ready);
3705 }
3706 
3707 /**
3708  *	sata_link_debounce - debounce SATA phy status
3709  *	@link: ATA link to debounce SATA phy status for
3710  *	@params: timing parameters { interval, duration, timeout } in msec
3711  *	@deadline: deadline jiffies for the operation
3712  *
3713  *	Make sure SStatus of @link reaches stable state, determined by
3714  *	holding the same value where DET is not 1 for @duration polled
3715  *	every @interval, before @timeout.  Timeout constraints the
3716  *	beginning of the stable state.  Because DET gets stuck at 1 on
3717  *	some controllers after hot unplugging, this functions waits
3718  *	until timeout then returns 0 if DET is stable at 1.
3719  *
3720  *	@timeout is further limited by @deadline.  The sooner of the
3721  *	two is used.
3722  *
3723  *	LOCKING:
3724  *	Kernel thread context (may sleep)
3725  *
3726  *	RETURNS:
3727  *	0 on success, -errno on failure.
3728  */
3729 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3730 		       unsigned long deadline)
3731 {
3732 	unsigned long interval = params[0];
3733 	unsigned long duration = params[1];
3734 	unsigned long last_jiffies, t;
3735 	u32 last, cur;
3736 	int rc;
3737 
3738 	t = ata_deadline(jiffies, params[2]);
3739 	if (time_before(t, deadline))
3740 		deadline = t;
3741 
3742 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3743 		return rc;
3744 	cur &= 0xf;
3745 
3746 	last = cur;
3747 	last_jiffies = jiffies;
3748 
3749 	while (1) {
3750 		ata_msleep(link->ap, interval);
3751 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3752 			return rc;
3753 		cur &= 0xf;
3754 
3755 		/* DET stable? */
3756 		if (cur == last) {
3757 			if (cur == 1 && time_before(jiffies, deadline))
3758 				continue;
3759 			if (time_after(jiffies,
3760 				       ata_deadline(last_jiffies, duration)))
3761 				return 0;
3762 			continue;
3763 		}
3764 
3765 		/* unstable, start over */
3766 		last = cur;
3767 		last_jiffies = jiffies;
3768 
3769 		/* Check deadline.  If debouncing failed, return
3770 		 * -EPIPE to tell upper layer to lower link speed.
3771 		 */
3772 		if (time_after(jiffies, deadline))
3773 			return -EPIPE;
3774 	}
3775 }
3776 
3777 /**
3778  *	sata_link_resume - resume SATA link
3779  *	@link: ATA link to resume SATA
3780  *	@params: timing parameters { interval, duration, timeout } in msec
3781  *	@deadline: deadline jiffies for the operation
3782  *
3783  *	Resume SATA phy @link and debounce it.
3784  *
3785  *	LOCKING:
3786  *	Kernel thread context (may sleep)
3787  *
3788  *	RETURNS:
3789  *	0 on success, -errno on failure.
3790  */
3791 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3792 		     unsigned long deadline)
3793 {
3794 	int tries = ATA_LINK_RESUME_TRIES;
3795 	u32 scontrol, serror;
3796 	int rc;
3797 
3798 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3799 		return rc;
3800 
3801 	/*
3802 	 * Writes to SControl sometimes get ignored under certain
3803 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3804 	 * cleared.
3805 	 */
3806 	do {
3807 		scontrol = (scontrol & 0x0f0) | 0x300;
3808 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3809 			return rc;
3810 		/*
3811 		 * Some PHYs react badly if SStatus is pounded
3812 		 * immediately after resuming.  Delay 200ms before
3813 		 * debouncing.
3814 		 */
3815 		if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3816 			ata_msleep(link->ap, 200);
3817 
3818 		/* is SControl restored correctly? */
3819 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3820 			return rc;
3821 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3822 
3823 	if ((scontrol & 0xf0f) != 0x300) {
3824 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3825 			     scontrol);
3826 		return 0;
3827 	}
3828 
3829 	if (tries < ATA_LINK_RESUME_TRIES)
3830 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3831 			      ATA_LINK_RESUME_TRIES - tries);
3832 
3833 	if ((rc = sata_link_debounce(link, params, deadline)))
3834 		return rc;
3835 
3836 	/* clear SError, some PHYs require this even for SRST to work */
3837 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3838 		rc = sata_scr_write(link, SCR_ERROR, serror);
3839 
3840 	return rc != -EINVAL ? rc : 0;
3841 }
3842 
3843 /**
3844  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3845  *	@link: ATA link to manipulate SControl for
3846  *	@policy: LPM policy to configure
3847  *	@spm_wakeup: initiate LPM transition to active state
3848  *
3849  *	Manipulate the IPM field of the SControl register of @link
3850  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3851  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3852  *	the link.  This function also clears PHYRDY_CHG before
3853  *	returning.
3854  *
3855  *	LOCKING:
3856  *	EH context.
3857  *
3858  *	RETURNS:
3859  *	0 on success, -errno otherwise.
3860  */
3861 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3862 		      bool spm_wakeup)
3863 {
3864 	struct ata_eh_context *ehc = &link->eh_context;
3865 	bool woken_up = false;
3866 	u32 scontrol;
3867 	int rc;
3868 
3869 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3870 	if (rc)
3871 		return rc;
3872 
3873 	switch (policy) {
3874 	case ATA_LPM_MAX_POWER:
3875 		/* disable all LPM transitions */
3876 		scontrol |= (0x7 << 8);
3877 		/* initiate transition to active state */
3878 		if (spm_wakeup) {
3879 			scontrol |= (0x4 << 12);
3880 			woken_up = true;
3881 		}
3882 		break;
3883 	case ATA_LPM_MED_POWER:
3884 		/* allow LPM to PARTIAL */
3885 		scontrol &= ~(0x1 << 8);
3886 		scontrol |= (0x6 << 8);
3887 		break;
3888 	case ATA_LPM_MIN_POWER:
3889 		if (ata_link_nr_enabled(link) > 0)
3890 			/* no restrictions on LPM transitions */
3891 			scontrol &= ~(0x7 << 8);
3892 		else {
3893 			/* empty port, power off */
3894 			scontrol &= ~0xf;
3895 			scontrol |= (0x1 << 2);
3896 		}
3897 		break;
3898 	default:
3899 		WARN_ON(1);
3900 	}
3901 
3902 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3903 	if (rc)
3904 		return rc;
3905 
3906 	/* give the link time to transit out of LPM state */
3907 	if (woken_up)
3908 		msleep(10);
3909 
3910 	/* clear PHYRDY_CHG from SError */
3911 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3912 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3913 }
3914 
3915 /**
3916  *	ata_std_prereset - prepare for reset
3917  *	@link: ATA link to be reset
3918  *	@deadline: deadline jiffies for the operation
3919  *
3920  *	@link is about to be reset.  Initialize it.  Failure from
3921  *	prereset makes libata abort whole reset sequence and give up
3922  *	that port, so prereset should be best-effort.  It does its
3923  *	best to prepare for reset sequence but if things go wrong, it
3924  *	should just whine, not fail.
3925  *
3926  *	LOCKING:
3927  *	Kernel thread context (may sleep)
3928  *
3929  *	RETURNS:
3930  *	0 on success, -errno otherwise.
3931  */
3932 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3933 {
3934 	struct ata_port *ap = link->ap;
3935 	struct ata_eh_context *ehc = &link->eh_context;
3936 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3937 	int rc;
3938 
3939 	/* if we're about to do hardreset, nothing more to do */
3940 	if (ehc->i.action & ATA_EH_HARDRESET)
3941 		return 0;
3942 
3943 	/* if SATA, resume link */
3944 	if (ap->flags & ATA_FLAG_SATA) {
3945 		rc = sata_link_resume(link, timing, deadline);
3946 		/* whine about phy resume failure but proceed */
3947 		if (rc && rc != -EOPNOTSUPP)
3948 			ata_link_warn(link,
3949 				      "failed to resume link for reset (errno=%d)\n",
3950 				      rc);
3951 	}
3952 
3953 	/* no point in trying softreset on offline link */
3954 	if (ata_phys_link_offline(link))
3955 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3956 
3957 	return 0;
3958 }
3959 
3960 /**
3961  *	sata_link_hardreset - reset link via SATA phy reset
3962  *	@link: link to reset
3963  *	@timing: timing parameters { interval, duration, timeout } in msec
3964  *	@deadline: deadline jiffies for the operation
3965  *	@online: optional out parameter indicating link onlineness
3966  *	@check_ready: optional callback to check link readiness
3967  *
3968  *	SATA phy-reset @link using DET bits of SControl register.
3969  *	After hardreset, link readiness is waited upon using
3970  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3971  *	allowed to not specify @check_ready and wait itself after this
3972  *	function returns.  Device classification is LLD's
3973  *	responsibility.
3974  *
3975  *	*@online is set to one iff reset succeeded and @link is online
3976  *	after reset.
3977  *
3978  *	LOCKING:
3979  *	Kernel thread context (may sleep)
3980  *
3981  *	RETURNS:
3982  *	0 on success, -errno otherwise.
3983  */
3984 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3985 			unsigned long deadline,
3986 			bool *online, int (*check_ready)(struct ata_link *))
3987 {
3988 	u32 scontrol;
3989 	int rc;
3990 
3991 	DPRINTK("ENTER\n");
3992 
3993 	if (online)
3994 		*online = false;
3995 
3996 	if (sata_set_spd_needed(link)) {
3997 		/* SATA spec says nothing about how to reconfigure
3998 		 * spd.  To be on the safe side, turn off phy during
3999 		 * reconfiguration.  This works for at least ICH7 AHCI
4000 		 * and Sil3124.
4001 		 */
4002 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4003 			goto out;
4004 
4005 		scontrol = (scontrol & 0x0f0) | 0x304;
4006 
4007 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4008 			goto out;
4009 
4010 		sata_set_spd(link);
4011 	}
4012 
4013 	/* issue phy wake/reset */
4014 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4015 		goto out;
4016 
4017 	scontrol = (scontrol & 0x0f0) | 0x301;
4018 
4019 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4020 		goto out;
4021 
4022 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4023 	 * 10.4.2 says at least 1 ms.
4024 	 */
4025 	ata_msleep(link->ap, 1);
4026 
4027 	/* bring link back */
4028 	rc = sata_link_resume(link, timing, deadline);
4029 	if (rc)
4030 		goto out;
4031 	/* if link is offline nothing more to do */
4032 	if (ata_phys_link_offline(link))
4033 		goto out;
4034 
4035 	/* Link is online.  From this point, -ENODEV too is an error. */
4036 	if (online)
4037 		*online = true;
4038 
4039 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4040 		/* If PMP is supported, we have to do follow-up SRST.
4041 		 * Some PMPs don't send D2H Reg FIS after hardreset if
4042 		 * the first port is empty.  Wait only for
4043 		 * ATA_TMOUT_PMP_SRST_WAIT.
4044 		 */
4045 		if (check_ready) {
4046 			unsigned long pmp_deadline;
4047 
4048 			pmp_deadline = ata_deadline(jiffies,
4049 						    ATA_TMOUT_PMP_SRST_WAIT);
4050 			if (time_after(pmp_deadline, deadline))
4051 				pmp_deadline = deadline;
4052 			ata_wait_ready(link, pmp_deadline, check_ready);
4053 		}
4054 		rc = -EAGAIN;
4055 		goto out;
4056 	}
4057 
4058 	rc = 0;
4059 	if (check_ready)
4060 		rc = ata_wait_ready(link, deadline, check_ready);
4061  out:
4062 	if (rc && rc != -EAGAIN) {
4063 		/* online is set iff link is online && reset succeeded */
4064 		if (online)
4065 			*online = false;
4066 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4067 	}
4068 	DPRINTK("EXIT, rc=%d\n", rc);
4069 	return rc;
4070 }
4071 
4072 /**
4073  *	sata_std_hardreset - COMRESET w/o waiting or classification
4074  *	@link: link to reset
4075  *	@class: resulting class of attached device
4076  *	@deadline: deadline jiffies for the operation
4077  *
4078  *	Standard SATA COMRESET w/o waiting or classification.
4079  *
4080  *	LOCKING:
4081  *	Kernel thread context (may sleep)
4082  *
4083  *	RETURNS:
4084  *	0 if link offline, -EAGAIN if link online, -errno on errors.
4085  */
4086 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4087 		       unsigned long deadline)
4088 {
4089 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4090 	bool online;
4091 	int rc;
4092 
4093 	/* do hardreset */
4094 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4095 	return online ? -EAGAIN : rc;
4096 }
4097 
4098 /**
4099  *	ata_std_postreset - standard postreset callback
4100  *	@link: the target ata_link
4101  *	@classes: classes of attached devices
4102  *
4103  *	This function is invoked after a successful reset.  Note that
4104  *	the device might have been reset more than once using
4105  *	different reset methods before postreset is invoked.
4106  *
4107  *	LOCKING:
4108  *	Kernel thread context (may sleep)
4109  */
4110 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4111 {
4112 	u32 serror;
4113 
4114 	DPRINTK("ENTER\n");
4115 
4116 	/* reset complete, clear SError */
4117 	if (!sata_scr_read(link, SCR_ERROR, &serror))
4118 		sata_scr_write(link, SCR_ERROR, serror);
4119 
4120 	/* print link status */
4121 	sata_print_link_status(link);
4122 
4123 	DPRINTK("EXIT\n");
4124 }
4125 
4126 /**
4127  *	ata_dev_same_device - Determine whether new ID matches configured device
4128  *	@dev: device to compare against
4129  *	@new_class: class of the new device
4130  *	@new_id: IDENTIFY page of the new device
4131  *
4132  *	Compare @new_class and @new_id against @dev and determine
4133  *	whether @dev is the device indicated by @new_class and
4134  *	@new_id.
4135  *
4136  *	LOCKING:
4137  *	None.
4138  *
4139  *	RETURNS:
4140  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
4141  */
4142 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4143 			       const u16 *new_id)
4144 {
4145 	const u16 *old_id = dev->id;
4146 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
4147 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4148 
4149 	if (dev->class != new_class) {
4150 		ata_dev_info(dev, "class mismatch %d != %d\n",
4151 			     dev->class, new_class);
4152 		return 0;
4153 	}
4154 
4155 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4156 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4157 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4158 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4159 
4160 	if (strcmp(model[0], model[1])) {
4161 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4162 			     model[0], model[1]);
4163 		return 0;
4164 	}
4165 
4166 	if (strcmp(serial[0], serial[1])) {
4167 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4168 			     serial[0], serial[1]);
4169 		return 0;
4170 	}
4171 
4172 	return 1;
4173 }
4174 
4175 /**
4176  *	ata_dev_reread_id - Re-read IDENTIFY data
4177  *	@dev: target ATA device
4178  *	@readid_flags: read ID flags
4179  *
4180  *	Re-read IDENTIFY page and make sure @dev is still attached to
4181  *	the port.
4182  *
4183  *	LOCKING:
4184  *	Kernel thread context (may sleep)
4185  *
4186  *	RETURNS:
4187  *	0 on success, negative errno otherwise
4188  */
4189 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4190 {
4191 	unsigned int class = dev->class;
4192 	u16 *id = (void *)dev->link->ap->sector_buf;
4193 	int rc;
4194 
4195 	/* read ID data */
4196 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4197 	if (rc)
4198 		return rc;
4199 
4200 	/* is the device still there? */
4201 	if (!ata_dev_same_device(dev, class, id))
4202 		return -ENODEV;
4203 
4204 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4205 	return 0;
4206 }
4207 
4208 /**
4209  *	ata_dev_revalidate - Revalidate ATA device
4210  *	@dev: device to revalidate
4211  *	@new_class: new class code
4212  *	@readid_flags: read ID flags
4213  *
4214  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4215  *	port and reconfigure it according to the new IDENTIFY page.
4216  *
4217  *	LOCKING:
4218  *	Kernel thread context (may sleep)
4219  *
4220  *	RETURNS:
4221  *	0 on success, negative errno otherwise
4222  */
4223 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4224 		       unsigned int readid_flags)
4225 {
4226 	u64 n_sectors = dev->n_sectors;
4227 	u64 n_native_sectors = dev->n_native_sectors;
4228 	int rc;
4229 
4230 	if (!ata_dev_enabled(dev))
4231 		return -ENODEV;
4232 
4233 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4234 	if (ata_class_enabled(new_class) &&
4235 	    new_class != ATA_DEV_ATA &&
4236 	    new_class != ATA_DEV_ATAPI &&
4237 	    new_class != ATA_DEV_ZAC &&
4238 	    new_class != ATA_DEV_SEMB) {
4239 		ata_dev_info(dev, "class mismatch %u != %u\n",
4240 			     dev->class, new_class);
4241 		rc = -ENODEV;
4242 		goto fail;
4243 	}
4244 
4245 	/* re-read ID */
4246 	rc = ata_dev_reread_id(dev, readid_flags);
4247 	if (rc)
4248 		goto fail;
4249 
4250 	/* configure device according to the new ID */
4251 	rc = ata_dev_configure(dev);
4252 	if (rc)
4253 		goto fail;
4254 
4255 	/* verify n_sectors hasn't changed */
4256 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4257 	    dev->n_sectors == n_sectors)
4258 		return 0;
4259 
4260 	/* n_sectors has changed */
4261 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4262 		     (unsigned long long)n_sectors,
4263 		     (unsigned long long)dev->n_sectors);
4264 
4265 	/*
4266 	 * Something could have caused HPA to be unlocked
4267 	 * involuntarily.  If n_native_sectors hasn't changed and the
4268 	 * new size matches it, keep the device.
4269 	 */
4270 	if (dev->n_native_sectors == n_native_sectors &&
4271 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4272 		ata_dev_warn(dev,
4273 			     "new n_sectors matches native, probably "
4274 			     "late HPA unlock, n_sectors updated\n");
4275 		/* use the larger n_sectors */
4276 		return 0;
4277 	}
4278 
4279 	/*
4280 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4281 	 * unlocking HPA in those cases.
4282 	 *
4283 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4284 	 */
4285 	if (dev->n_native_sectors == n_native_sectors &&
4286 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4287 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4288 		ata_dev_warn(dev,
4289 			     "old n_sectors matches native, probably "
4290 			     "late HPA lock, will try to unlock HPA\n");
4291 		/* try unlocking HPA */
4292 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4293 		rc = -EIO;
4294 	} else
4295 		rc = -ENODEV;
4296 
4297 	/* restore original n_[native_]sectors and fail */
4298 	dev->n_native_sectors = n_native_sectors;
4299 	dev->n_sectors = n_sectors;
4300  fail:
4301 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4302 	return rc;
4303 }
4304 
4305 struct ata_blacklist_entry {
4306 	const char *model_num;
4307 	const char *model_rev;
4308 	unsigned long horkage;
4309 };
4310 
4311 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4312 	/* Devices with DMA related problems under Linux */
4313 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4314 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4315 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4316 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4317 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4318 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4319 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4320 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4321 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4322 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4323 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4324 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4325 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4326 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4327 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4328 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4329 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4330 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4331 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4332 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4333 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4334 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4335 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4336 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4337 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4338 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4339 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4340 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4341 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4342 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4343 	/* Odd clown on sil3726/4726 PMPs */
4344 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4345 
4346 	/* Weird ATAPI devices */
4347 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4348 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4349 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4350 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4351 
4352 	/*
4353 	 * Causes silent data corruption with higher max sects.
4354 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4355 	 */
4356 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4357 
4358 	/*
4359 	 * Device times out with higher max sects.
4360 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4361 	 */
4362 	{ "LITEON CX1-JB256-HP", NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4363 
4364 	/* Devices we expect to fail diagnostics */
4365 
4366 	/* Devices where NCQ should be avoided */
4367 	/* NCQ is slow */
4368 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4369 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4370 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4371 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4372 	/* NCQ is broken */
4373 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4374 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4375 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4376 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4377 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4378 
4379 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4380 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4381 						ATA_HORKAGE_FIRMWARE_WARN },
4382 
4383 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4384 						ATA_HORKAGE_FIRMWARE_WARN },
4385 
4386 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4387 						ATA_HORKAGE_FIRMWARE_WARN },
4388 
4389 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4390 						ATA_HORKAGE_FIRMWARE_WARN },
4391 
4392 	/* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4393 	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4394 	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4395 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4396 
4397 	/* Blacklist entries taken from Silicon Image 3124/3132
4398 	   Windows driver .inf file - also several Linux problem reports */
4399 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4400 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4401 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4402 
4403 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4404 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4405 
4406 	/* devices which puke on READ_NATIVE_MAX */
4407 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4408 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4409 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4410 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4411 
4412 	/* this one allows HPA unlocking but fails IOs on the area */
4413 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4414 
4415 	/* Devices which report 1 sector over size HPA */
4416 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4417 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4418 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4419 
4420 	/* Devices which get the IVB wrong */
4421 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4422 	/* Maybe we should just blacklist TSSTcorp... */
4423 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4424 
4425 	/* Devices that do not need bridging limits applied */
4426 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4427 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4428 
4429 	/* Devices which aren't very happy with higher link speeds */
4430 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4431 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4432 
4433 	/*
4434 	 * Devices which choke on SETXFER.  Applies only if both the
4435 	 * device and controller are SATA.
4436 	 */
4437 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4438 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4439 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4440 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4441 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4442 
4443 	/* devices that don't properly handle queued TRIM commands */
4444 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4445 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4446 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4447 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4448 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4449 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4450 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4451 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4452 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4453 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4454 	{ "Samsung SSD 8*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4455 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4456 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4457 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4458 
4459 	/* devices that don't properly handle TRIM commands */
4460 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4461 
4462 	/*
4463 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4464 	 * (Return Zero After Trim) flags in the ATA Command Set are
4465 	 * unreliable in the sense that they only define what happens if
4466 	 * the device successfully executed the DSM TRIM command. TRIM
4467 	 * is only advisory, however, and the device is free to silently
4468 	 * ignore all or parts of the request.
4469 	 *
4470 	 * Whitelist drives that are known to reliably return zeroes
4471 	 * after TRIM.
4472 	 */
4473 
4474 	/*
4475 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4476 	 * that model before whitelisting all other intel SSDs.
4477 	 */
4478 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4479 
4480 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4481 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4482 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4483 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4484 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4485 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4486 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4487 
4488 	/*
4489 	 * Some WD SATA-I drives spin up and down erratically when the link
4490 	 * is put into the slumber mode.  We don't have full list of the
4491 	 * affected devices.  Disable LPM if the device matches one of the
4492 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4493 	 * lost too.
4494 	 *
4495 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4496 	 */
4497 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4498 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4499 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4500 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4501 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4502 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4503 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4504 
4505 	/* End Marker */
4506 	{ }
4507 };
4508 
4509 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4510 {
4511 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4512 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4513 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4514 
4515 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4516 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4517 
4518 	while (ad->model_num) {
4519 		if (glob_match(ad->model_num, model_num)) {
4520 			if (ad->model_rev == NULL)
4521 				return ad->horkage;
4522 			if (glob_match(ad->model_rev, model_rev))
4523 				return ad->horkage;
4524 		}
4525 		ad++;
4526 	}
4527 	return 0;
4528 }
4529 
4530 static int ata_dma_blacklisted(const struct ata_device *dev)
4531 {
4532 	/* We don't support polling DMA.
4533 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4534 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4535 	 */
4536 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4537 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4538 		return 1;
4539 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4540 }
4541 
4542 /**
4543  *	ata_is_40wire		-	check drive side detection
4544  *	@dev: device
4545  *
4546  *	Perform drive side detection decoding, allowing for device vendors
4547  *	who can't follow the documentation.
4548  */
4549 
4550 static int ata_is_40wire(struct ata_device *dev)
4551 {
4552 	if (dev->horkage & ATA_HORKAGE_IVB)
4553 		return ata_drive_40wire_relaxed(dev->id);
4554 	return ata_drive_40wire(dev->id);
4555 }
4556 
4557 /**
4558  *	cable_is_40wire		-	40/80/SATA decider
4559  *	@ap: port to consider
4560  *
4561  *	This function encapsulates the policy for speed management
4562  *	in one place. At the moment we don't cache the result but
4563  *	there is a good case for setting ap->cbl to the result when
4564  *	we are called with unknown cables (and figuring out if it
4565  *	impacts hotplug at all).
4566  *
4567  *	Return 1 if the cable appears to be 40 wire.
4568  */
4569 
4570 static int cable_is_40wire(struct ata_port *ap)
4571 {
4572 	struct ata_link *link;
4573 	struct ata_device *dev;
4574 
4575 	/* If the controller thinks we are 40 wire, we are. */
4576 	if (ap->cbl == ATA_CBL_PATA40)
4577 		return 1;
4578 
4579 	/* If the controller thinks we are 80 wire, we are. */
4580 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4581 		return 0;
4582 
4583 	/* If the system is known to be 40 wire short cable (eg
4584 	 * laptop), then we allow 80 wire modes even if the drive
4585 	 * isn't sure.
4586 	 */
4587 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4588 		return 0;
4589 
4590 	/* If the controller doesn't know, we scan.
4591 	 *
4592 	 * Note: We look for all 40 wire detects at this point.  Any
4593 	 *       80 wire detect is taken to be 80 wire cable because
4594 	 * - in many setups only the one drive (slave if present) will
4595 	 *   give a valid detect
4596 	 * - if you have a non detect capable drive you don't want it
4597 	 *   to colour the choice
4598 	 */
4599 	ata_for_each_link(link, ap, EDGE) {
4600 		ata_for_each_dev(dev, link, ENABLED) {
4601 			if (!ata_is_40wire(dev))
4602 				return 0;
4603 		}
4604 	}
4605 	return 1;
4606 }
4607 
4608 /**
4609  *	ata_dev_xfermask - Compute supported xfermask of the given device
4610  *	@dev: Device to compute xfermask for
4611  *
4612  *	Compute supported xfermask of @dev and store it in
4613  *	dev->*_mask.  This function is responsible for applying all
4614  *	known limits including host controller limits, device
4615  *	blacklist, etc...
4616  *
4617  *	LOCKING:
4618  *	None.
4619  */
4620 static void ata_dev_xfermask(struct ata_device *dev)
4621 {
4622 	struct ata_link *link = dev->link;
4623 	struct ata_port *ap = link->ap;
4624 	struct ata_host *host = ap->host;
4625 	unsigned long xfer_mask;
4626 
4627 	/* controller modes available */
4628 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4629 				      ap->mwdma_mask, ap->udma_mask);
4630 
4631 	/* drive modes available */
4632 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4633 				       dev->mwdma_mask, dev->udma_mask);
4634 	xfer_mask &= ata_id_xfermask(dev->id);
4635 
4636 	/*
4637 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4638 	 *	cable
4639 	 */
4640 	if (ata_dev_pair(dev)) {
4641 		/* No PIO5 or PIO6 */
4642 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4643 		/* No MWDMA3 or MWDMA 4 */
4644 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4645 	}
4646 
4647 	if (ata_dma_blacklisted(dev)) {
4648 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4649 		ata_dev_warn(dev,
4650 			     "device is on DMA blacklist, disabling DMA\n");
4651 	}
4652 
4653 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4654 	    host->simplex_claimed && host->simplex_claimed != ap) {
4655 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4656 		ata_dev_warn(dev,
4657 			     "simplex DMA is claimed by other device, disabling DMA\n");
4658 	}
4659 
4660 	if (ap->flags & ATA_FLAG_NO_IORDY)
4661 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4662 
4663 	if (ap->ops->mode_filter)
4664 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4665 
4666 	/* Apply cable rule here.  Don't apply it early because when
4667 	 * we handle hot plug the cable type can itself change.
4668 	 * Check this last so that we know if the transfer rate was
4669 	 * solely limited by the cable.
4670 	 * Unknown or 80 wire cables reported host side are checked
4671 	 * drive side as well. Cases where we know a 40wire cable
4672 	 * is used safely for 80 are not checked here.
4673 	 */
4674 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4675 		/* UDMA/44 or higher would be available */
4676 		if (cable_is_40wire(ap)) {
4677 			ata_dev_warn(dev,
4678 				     "limited to UDMA/33 due to 40-wire cable\n");
4679 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4680 		}
4681 
4682 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4683 			    &dev->mwdma_mask, &dev->udma_mask);
4684 }
4685 
4686 /**
4687  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4688  *	@dev: Device to which command will be sent
4689  *
4690  *	Issue SET FEATURES - XFER MODE command to device @dev
4691  *	on port @ap.
4692  *
4693  *	LOCKING:
4694  *	PCI/etc. bus probe sem.
4695  *
4696  *	RETURNS:
4697  *	0 on success, AC_ERR_* mask otherwise.
4698  */
4699 
4700 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4701 {
4702 	struct ata_taskfile tf;
4703 	unsigned int err_mask;
4704 
4705 	/* set up set-features taskfile */
4706 	DPRINTK("set features - xfer mode\n");
4707 
4708 	/* Some controllers and ATAPI devices show flaky interrupt
4709 	 * behavior after setting xfer mode.  Use polling instead.
4710 	 */
4711 	ata_tf_init(dev, &tf);
4712 	tf.command = ATA_CMD_SET_FEATURES;
4713 	tf.feature = SETFEATURES_XFER;
4714 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4715 	tf.protocol = ATA_PROT_NODATA;
4716 	/* If we are using IORDY we must send the mode setting command */
4717 	if (ata_pio_need_iordy(dev))
4718 		tf.nsect = dev->xfer_mode;
4719 	/* If the device has IORDY and the controller does not - turn it off */
4720  	else if (ata_id_has_iordy(dev->id))
4721 		tf.nsect = 0x01;
4722 	else /* In the ancient relic department - skip all of this */
4723 		return 0;
4724 
4725 	/* On some disks, this command causes spin-up, so we need longer timeout */
4726 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4727 
4728 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4729 	return err_mask;
4730 }
4731 
4732 /**
4733  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4734  *	@dev: Device to which command will be sent
4735  *	@enable: Whether to enable or disable the feature
4736  *	@feature: The sector count represents the feature to set
4737  *
4738  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4739  *	on port @ap with sector count
4740  *
4741  *	LOCKING:
4742  *	PCI/etc. bus probe sem.
4743  *
4744  *	RETURNS:
4745  *	0 on success, AC_ERR_* mask otherwise.
4746  */
4747 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4748 {
4749 	struct ata_taskfile tf;
4750 	unsigned int err_mask;
4751 	unsigned long timeout = 0;
4752 
4753 	/* set up set-features taskfile */
4754 	DPRINTK("set features - SATA features\n");
4755 
4756 	ata_tf_init(dev, &tf);
4757 	tf.command = ATA_CMD_SET_FEATURES;
4758 	tf.feature = enable;
4759 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4760 	tf.protocol = ATA_PROT_NODATA;
4761 	tf.nsect = feature;
4762 
4763 	if (enable == SETFEATURES_SPINUP)
4764 		timeout = ata_probe_timeout ?
4765 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4766 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4767 
4768 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4769 	return err_mask;
4770 }
4771 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4772 
4773 /**
4774  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4775  *	@dev: Device to which command will be sent
4776  *	@heads: Number of heads (taskfile parameter)
4777  *	@sectors: Number of sectors (taskfile parameter)
4778  *
4779  *	LOCKING:
4780  *	Kernel thread context (may sleep)
4781  *
4782  *	RETURNS:
4783  *	0 on success, AC_ERR_* mask otherwise.
4784  */
4785 static unsigned int ata_dev_init_params(struct ata_device *dev,
4786 					u16 heads, u16 sectors)
4787 {
4788 	struct ata_taskfile tf;
4789 	unsigned int err_mask;
4790 
4791 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4792 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4793 		return AC_ERR_INVALID;
4794 
4795 	/* set up init dev params taskfile */
4796 	DPRINTK("init dev params \n");
4797 
4798 	ata_tf_init(dev, &tf);
4799 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4800 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4801 	tf.protocol = ATA_PROT_NODATA;
4802 	tf.nsect = sectors;
4803 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4804 
4805 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4806 	/* A clean abort indicates an original or just out of spec drive
4807 	   and we should continue as we issue the setup based on the
4808 	   drive reported working geometry */
4809 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4810 		err_mask = 0;
4811 
4812 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4813 	return err_mask;
4814 }
4815 
4816 /**
4817  *	ata_sg_clean - Unmap DMA memory associated with command
4818  *	@qc: Command containing DMA memory to be released
4819  *
4820  *	Unmap all mapped DMA memory associated with this command.
4821  *
4822  *	LOCKING:
4823  *	spin_lock_irqsave(host lock)
4824  */
4825 void ata_sg_clean(struct ata_queued_cmd *qc)
4826 {
4827 	struct ata_port *ap = qc->ap;
4828 	struct scatterlist *sg = qc->sg;
4829 	int dir = qc->dma_dir;
4830 
4831 	WARN_ON_ONCE(sg == NULL);
4832 
4833 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4834 
4835 	if (qc->n_elem)
4836 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4837 
4838 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4839 	qc->sg = NULL;
4840 }
4841 
4842 /**
4843  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4844  *	@qc: Metadata associated with taskfile to check
4845  *
4846  *	Allow low-level driver to filter ATA PACKET commands, returning
4847  *	a status indicating whether or not it is OK to use DMA for the
4848  *	supplied PACKET command.
4849  *
4850  *	LOCKING:
4851  *	spin_lock_irqsave(host lock)
4852  *
4853  *	RETURNS: 0 when ATAPI DMA can be used
4854  *               nonzero otherwise
4855  */
4856 int atapi_check_dma(struct ata_queued_cmd *qc)
4857 {
4858 	struct ata_port *ap = qc->ap;
4859 
4860 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4861 	 * few ATAPI devices choke on such DMA requests.
4862 	 */
4863 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4864 	    unlikely(qc->nbytes & 15))
4865 		return 1;
4866 
4867 	if (ap->ops->check_atapi_dma)
4868 		return ap->ops->check_atapi_dma(qc);
4869 
4870 	return 0;
4871 }
4872 
4873 /**
4874  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4875  *	@qc: ATA command in question
4876  *
4877  *	Non-NCQ commands cannot run with any other command, NCQ or
4878  *	not.  As upper layer only knows the queue depth, we are
4879  *	responsible for maintaining exclusion.  This function checks
4880  *	whether a new command @qc can be issued.
4881  *
4882  *	LOCKING:
4883  *	spin_lock_irqsave(host lock)
4884  *
4885  *	RETURNS:
4886  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4887  */
4888 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4889 {
4890 	struct ata_link *link = qc->dev->link;
4891 
4892 	if (ata_is_ncq(qc->tf.protocol)) {
4893 		if (!ata_tag_valid(link->active_tag))
4894 			return 0;
4895 	} else {
4896 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4897 			return 0;
4898 	}
4899 
4900 	return ATA_DEFER_LINK;
4901 }
4902 
4903 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4904 
4905 /**
4906  *	ata_sg_init - Associate command with scatter-gather table.
4907  *	@qc: Command to be associated
4908  *	@sg: Scatter-gather table.
4909  *	@n_elem: Number of elements in s/g table.
4910  *
4911  *	Initialize the data-related elements of queued_cmd @qc
4912  *	to point to a scatter-gather table @sg, containing @n_elem
4913  *	elements.
4914  *
4915  *	LOCKING:
4916  *	spin_lock_irqsave(host lock)
4917  */
4918 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4919 		 unsigned int n_elem)
4920 {
4921 	qc->sg = sg;
4922 	qc->n_elem = n_elem;
4923 	qc->cursg = qc->sg;
4924 }
4925 
4926 /**
4927  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4928  *	@qc: Command with scatter-gather table to be mapped.
4929  *
4930  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4931  *
4932  *	LOCKING:
4933  *	spin_lock_irqsave(host lock)
4934  *
4935  *	RETURNS:
4936  *	Zero on success, negative on error.
4937  *
4938  */
4939 static int ata_sg_setup(struct ata_queued_cmd *qc)
4940 {
4941 	struct ata_port *ap = qc->ap;
4942 	unsigned int n_elem;
4943 
4944 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4945 
4946 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4947 	if (n_elem < 1)
4948 		return -1;
4949 
4950 	DPRINTK("%d sg elements mapped\n", n_elem);
4951 	qc->orig_n_elem = qc->n_elem;
4952 	qc->n_elem = n_elem;
4953 	qc->flags |= ATA_QCFLAG_DMAMAP;
4954 
4955 	return 0;
4956 }
4957 
4958 /**
4959  *	swap_buf_le16 - swap halves of 16-bit words in place
4960  *	@buf:  Buffer to swap
4961  *	@buf_words:  Number of 16-bit words in buffer.
4962  *
4963  *	Swap halves of 16-bit words if needed to convert from
4964  *	little-endian byte order to native cpu byte order, or
4965  *	vice-versa.
4966  *
4967  *	LOCKING:
4968  *	Inherited from caller.
4969  */
4970 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4971 {
4972 #ifdef __BIG_ENDIAN
4973 	unsigned int i;
4974 
4975 	for (i = 0; i < buf_words; i++)
4976 		buf[i] = le16_to_cpu(buf[i]);
4977 #endif /* __BIG_ENDIAN */
4978 }
4979 
4980 /**
4981  *	ata_qc_new_init - Request an available ATA command, and initialize it
4982  *	@dev: Device from whom we request an available command structure
4983  *	@tag: tag
4984  *
4985  *	LOCKING:
4986  *	None.
4987  */
4988 
4989 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4990 {
4991 	struct ata_port *ap = dev->link->ap;
4992 	struct ata_queued_cmd *qc;
4993 
4994 	/* no command while frozen */
4995 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4996 		return NULL;
4997 
4998 	/* libsas case */
4999 	if (ap->flags & ATA_FLAG_SAS_HOST) {
5000 		tag = ata_sas_allocate_tag(ap);
5001 		if (tag < 0)
5002 			return NULL;
5003 	}
5004 
5005 	qc = __ata_qc_from_tag(ap, tag);
5006 	qc->tag = tag;
5007 	qc->scsicmd = NULL;
5008 	qc->ap = ap;
5009 	qc->dev = dev;
5010 
5011 	ata_qc_reinit(qc);
5012 
5013 	return qc;
5014 }
5015 
5016 /**
5017  *	ata_qc_free - free unused ata_queued_cmd
5018  *	@qc: Command to complete
5019  *
5020  *	Designed to free unused ata_queued_cmd object
5021  *	in case something prevents using it.
5022  *
5023  *	LOCKING:
5024  *	spin_lock_irqsave(host lock)
5025  */
5026 void ata_qc_free(struct ata_queued_cmd *qc)
5027 {
5028 	struct ata_port *ap;
5029 	unsigned int tag;
5030 
5031 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5032 	ap = qc->ap;
5033 
5034 	qc->flags = 0;
5035 	tag = qc->tag;
5036 	if (likely(ata_tag_valid(tag))) {
5037 		qc->tag = ATA_TAG_POISON;
5038 		if (ap->flags & ATA_FLAG_SAS_HOST)
5039 			ata_sas_free_tag(tag, ap);
5040 	}
5041 }
5042 
5043 void __ata_qc_complete(struct ata_queued_cmd *qc)
5044 {
5045 	struct ata_port *ap;
5046 	struct ata_link *link;
5047 
5048 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5049 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5050 	ap = qc->ap;
5051 	link = qc->dev->link;
5052 
5053 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5054 		ata_sg_clean(qc);
5055 
5056 	/* command should be marked inactive atomically with qc completion */
5057 	if (ata_is_ncq(qc->tf.protocol)) {
5058 		link->sactive &= ~(1 << qc->tag);
5059 		if (!link->sactive)
5060 			ap->nr_active_links--;
5061 	} else {
5062 		link->active_tag = ATA_TAG_POISON;
5063 		ap->nr_active_links--;
5064 	}
5065 
5066 	/* clear exclusive status */
5067 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5068 		     ap->excl_link == link))
5069 		ap->excl_link = NULL;
5070 
5071 	/* atapi: mark qc as inactive to prevent the interrupt handler
5072 	 * from completing the command twice later, before the error handler
5073 	 * is called. (when rc != 0 and atapi request sense is needed)
5074 	 */
5075 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
5076 	ap->qc_active &= ~(1 << qc->tag);
5077 
5078 	/* call completion callback */
5079 	qc->complete_fn(qc);
5080 }
5081 
5082 static void fill_result_tf(struct ata_queued_cmd *qc)
5083 {
5084 	struct ata_port *ap = qc->ap;
5085 
5086 	qc->result_tf.flags = qc->tf.flags;
5087 	ap->ops->qc_fill_rtf(qc);
5088 }
5089 
5090 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5091 {
5092 	struct ata_device *dev = qc->dev;
5093 
5094 	if (!ata_is_data(qc->tf.protocol))
5095 		return;
5096 
5097 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5098 		return;
5099 
5100 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5101 }
5102 
5103 /**
5104  *	ata_qc_complete - Complete an active ATA command
5105  *	@qc: Command to complete
5106  *
5107  *	Indicate to the mid and upper layers that an ATA command has
5108  *	completed, with either an ok or not-ok status.
5109  *
5110  *	Refrain from calling this function multiple times when
5111  *	successfully completing multiple NCQ commands.
5112  *	ata_qc_complete_multiple() should be used instead, which will
5113  *	properly update IRQ expect state.
5114  *
5115  *	LOCKING:
5116  *	spin_lock_irqsave(host lock)
5117  */
5118 void ata_qc_complete(struct ata_queued_cmd *qc)
5119 {
5120 	struct ata_port *ap = qc->ap;
5121 
5122 	/* Trigger the LED (if available) */
5123 	ledtrig_disk_activity();
5124 
5125 	/* XXX: New EH and old EH use different mechanisms to
5126 	 * synchronize EH with regular execution path.
5127 	 *
5128 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5129 	 * Normal execution path is responsible for not accessing a
5130 	 * failed qc.  libata core enforces the rule by returning NULL
5131 	 * from ata_qc_from_tag() for failed qcs.
5132 	 *
5133 	 * Old EH depends on ata_qc_complete() nullifying completion
5134 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5135 	 * not synchronize with interrupt handler.  Only PIO task is
5136 	 * taken care of.
5137 	 */
5138 	if (ap->ops->error_handler) {
5139 		struct ata_device *dev = qc->dev;
5140 		struct ata_eh_info *ehi = &dev->link->eh_info;
5141 
5142 		if (unlikely(qc->err_mask))
5143 			qc->flags |= ATA_QCFLAG_FAILED;
5144 
5145 		/*
5146 		 * Finish internal commands without any further processing
5147 		 * and always with the result TF filled.
5148 		 */
5149 		if (unlikely(ata_tag_internal(qc->tag))) {
5150 			fill_result_tf(qc);
5151 			trace_ata_qc_complete_internal(qc);
5152 			__ata_qc_complete(qc);
5153 			return;
5154 		}
5155 
5156 		/*
5157 		 * Non-internal qc has failed.  Fill the result TF and
5158 		 * summon EH.
5159 		 */
5160 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5161 			fill_result_tf(qc);
5162 			trace_ata_qc_complete_failed(qc);
5163 			ata_qc_schedule_eh(qc);
5164 			return;
5165 		}
5166 
5167 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5168 
5169 		/* read result TF if requested */
5170 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5171 			fill_result_tf(qc);
5172 
5173 		trace_ata_qc_complete_done(qc);
5174 		/* Some commands need post-processing after successful
5175 		 * completion.
5176 		 */
5177 		switch (qc->tf.command) {
5178 		case ATA_CMD_SET_FEATURES:
5179 			if (qc->tf.feature != SETFEATURES_WC_ON &&
5180 			    qc->tf.feature != SETFEATURES_WC_OFF &&
5181 			    qc->tf.feature != SETFEATURES_RA_ON &&
5182 			    qc->tf.feature != SETFEATURES_RA_OFF)
5183 				break;
5184 			/* fall through */
5185 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5186 		case ATA_CMD_SET_MULTI: /* multi_count changed */
5187 			/* revalidate device */
5188 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5189 			ata_port_schedule_eh(ap);
5190 			break;
5191 
5192 		case ATA_CMD_SLEEP:
5193 			dev->flags |= ATA_DFLAG_SLEEPING;
5194 			break;
5195 		}
5196 
5197 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5198 			ata_verify_xfer(qc);
5199 
5200 		__ata_qc_complete(qc);
5201 	} else {
5202 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5203 			return;
5204 
5205 		/* read result TF if failed or requested */
5206 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5207 			fill_result_tf(qc);
5208 
5209 		__ata_qc_complete(qc);
5210 	}
5211 }
5212 
5213 /**
5214  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5215  *	@ap: port in question
5216  *	@qc_active: new qc_active mask
5217  *
5218  *	Complete in-flight commands.  This functions is meant to be
5219  *	called from low-level driver's interrupt routine to complete
5220  *	requests normally.  ap->qc_active and @qc_active is compared
5221  *	and commands are completed accordingly.
5222  *
5223  *	Always use this function when completing multiple NCQ commands
5224  *	from IRQ handlers instead of calling ata_qc_complete()
5225  *	multiple times to keep IRQ expect status properly in sync.
5226  *
5227  *	LOCKING:
5228  *	spin_lock_irqsave(host lock)
5229  *
5230  *	RETURNS:
5231  *	Number of completed commands on success, -errno otherwise.
5232  */
5233 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5234 {
5235 	int nr_done = 0;
5236 	u32 done_mask;
5237 
5238 	done_mask = ap->qc_active ^ qc_active;
5239 
5240 	if (unlikely(done_mask & qc_active)) {
5241 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5242 			     ap->qc_active, qc_active);
5243 		return -EINVAL;
5244 	}
5245 
5246 	while (done_mask) {
5247 		struct ata_queued_cmd *qc;
5248 		unsigned int tag = __ffs(done_mask);
5249 
5250 		qc = ata_qc_from_tag(ap, tag);
5251 		if (qc) {
5252 			ata_qc_complete(qc);
5253 			nr_done++;
5254 		}
5255 		done_mask &= ~(1 << tag);
5256 	}
5257 
5258 	return nr_done;
5259 }
5260 
5261 /**
5262  *	ata_qc_issue - issue taskfile to device
5263  *	@qc: command to issue to device
5264  *
5265  *	Prepare an ATA command to submission to device.
5266  *	This includes mapping the data into a DMA-able
5267  *	area, filling in the S/G table, and finally
5268  *	writing the taskfile to hardware, starting the command.
5269  *
5270  *	LOCKING:
5271  *	spin_lock_irqsave(host lock)
5272  */
5273 void ata_qc_issue(struct ata_queued_cmd *qc)
5274 {
5275 	struct ata_port *ap = qc->ap;
5276 	struct ata_link *link = qc->dev->link;
5277 	u8 prot = qc->tf.protocol;
5278 
5279 	/* Make sure only one non-NCQ command is outstanding.  The
5280 	 * check is skipped for old EH because it reuses active qc to
5281 	 * request ATAPI sense.
5282 	 */
5283 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5284 
5285 	if (ata_is_ncq(prot)) {
5286 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5287 
5288 		if (!link->sactive)
5289 			ap->nr_active_links++;
5290 		link->sactive |= 1 << qc->tag;
5291 	} else {
5292 		WARN_ON_ONCE(link->sactive);
5293 
5294 		ap->nr_active_links++;
5295 		link->active_tag = qc->tag;
5296 	}
5297 
5298 	qc->flags |= ATA_QCFLAG_ACTIVE;
5299 	ap->qc_active |= 1 << qc->tag;
5300 
5301 	/*
5302 	 * We guarantee to LLDs that they will have at least one
5303 	 * non-zero sg if the command is a data command.
5304 	 */
5305 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5306 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5307 		goto sys_err;
5308 
5309 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5310 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5311 		if (ata_sg_setup(qc))
5312 			goto sys_err;
5313 
5314 	/* if device is sleeping, schedule reset and abort the link */
5315 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5316 		link->eh_info.action |= ATA_EH_RESET;
5317 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5318 		ata_link_abort(link);
5319 		return;
5320 	}
5321 
5322 	ap->ops->qc_prep(qc);
5323 	trace_ata_qc_issue(qc);
5324 	qc->err_mask |= ap->ops->qc_issue(qc);
5325 	if (unlikely(qc->err_mask))
5326 		goto err;
5327 	return;
5328 
5329 sys_err:
5330 	qc->err_mask |= AC_ERR_SYSTEM;
5331 err:
5332 	ata_qc_complete(qc);
5333 }
5334 
5335 /**
5336  *	sata_scr_valid - test whether SCRs are accessible
5337  *	@link: ATA link to test SCR accessibility for
5338  *
5339  *	Test whether SCRs are accessible for @link.
5340  *
5341  *	LOCKING:
5342  *	None.
5343  *
5344  *	RETURNS:
5345  *	1 if SCRs are accessible, 0 otherwise.
5346  */
5347 int sata_scr_valid(struct ata_link *link)
5348 {
5349 	struct ata_port *ap = link->ap;
5350 
5351 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5352 }
5353 
5354 /**
5355  *	sata_scr_read - read SCR register of the specified port
5356  *	@link: ATA link to read SCR for
5357  *	@reg: SCR to read
5358  *	@val: Place to store read value
5359  *
5360  *	Read SCR register @reg of @link into *@val.  This function is
5361  *	guaranteed to succeed if @link is ap->link, the cable type of
5362  *	the port is SATA and the port implements ->scr_read.
5363  *
5364  *	LOCKING:
5365  *	None if @link is ap->link.  Kernel thread context otherwise.
5366  *
5367  *	RETURNS:
5368  *	0 on success, negative errno on failure.
5369  */
5370 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5371 {
5372 	if (ata_is_host_link(link)) {
5373 		if (sata_scr_valid(link))
5374 			return link->ap->ops->scr_read(link, reg, val);
5375 		return -EOPNOTSUPP;
5376 	}
5377 
5378 	return sata_pmp_scr_read(link, reg, val);
5379 }
5380 
5381 /**
5382  *	sata_scr_write - write SCR register of the specified port
5383  *	@link: ATA link to write SCR for
5384  *	@reg: SCR to write
5385  *	@val: value to write
5386  *
5387  *	Write @val to SCR register @reg of @link.  This function is
5388  *	guaranteed to succeed if @link is ap->link, the cable type of
5389  *	the port is SATA and the port implements ->scr_read.
5390  *
5391  *	LOCKING:
5392  *	None if @link is ap->link.  Kernel thread context otherwise.
5393  *
5394  *	RETURNS:
5395  *	0 on success, negative errno on failure.
5396  */
5397 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5398 {
5399 	if (ata_is_host_link(link)) {
5400 		if (sata_scr_valid(link))
5401 			return link->ap->ops->scr_write(link, reg, val);
5402 		return -EOPNOTSUPP;
5403 	}
5404 
5405 	return sata_pmp_scr_write(link, reg, val);
5406 }
5407 
5408 /**
5409  *	sata_scr_write_flush - write SCR register of the specified port and flush
5410  *	@link: ATA link to write SCR for
5411  *	@reg: SCR to write
5412  *	@val: value to write
5413  *
5414  *	This function is identical to sata_scr_write() except that this
5415  *	function performs flush after writing to the register.
5416  *
5417  *	LOCKING:
5418  *	None if @link is ap->link.  Kernel thread context otherwise.
5419  *
5420  *	RETURNS:
5421  *	0 on success, negative errno on failure.
5422  */
5423 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5424 {
5425 	if (ata_is_host_link(link)) {
5426 		int rc;
5427 
5428 		if (sata_scr_valid(link)) {
5429 			rc = link->ap->ops->scr_write(link, reg, val);
5430 			if (rc == 0)
5431 				rc = link->ap->ops->scr_read(link, reg, &val);
5432 			return rc;
5433 		}
5434 		return -EOPNOTSUPP;
5435 	}
5436 
5437 	return sata_pmp_scr_write(link, reg, val);
5438 }
5439 
5440 /**
5441  *	ata_phys_link_online - test whether the given link is online
5442  *	@link: ATA link to test
5443  *
5444  *	Test whether @link is online.  Note that this function returns
5445  *	0 if online status of @link cannot be obtained, so
5446  *	ata_link_online(link) != !ata_link_offline(link).
5447  *
5448  *	LOCKING:
5449  *	None.
5450  *
5451  *	RETURNS:
5452  *	True if the port online status is available and online.
5453  */
5454 bool ata_phys_link_online(struct ata_link *link)
5455 {
5456 	u32 sstatus;
5457 
5458 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5459 	    ata_sstatus_online(sstatus))
5460 		return true;
5461 	return false;
5462 }
5463 
5464 /**
5465  *	ata_phys_link_offline - test whether the given link is offline
5466  *	@link: ATA link to test
5467  *
5468  *	Test whether @link is offline.  Note that this function
5469  *	returns 0 if offline status of @link cannot be obtained, so
5470  *	ata_link_online(link) != !ata_link_offline(link).
5471  *
5472  *	LOCKING:
5473  *	None.
5474  *
5475  *	RETURNS:
5476  *	True if the port offline status is available and offline.
5477  */
5478 bool ata_phys_link_offline(struct ata_link *link)
5479 {
5480 	u32 sstatus;
5481 
5482 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5483 	    !ata_sstatus_online(sstatus))
5484 		return true;
5485 	return false;
5486 }
5487 
5488 /**
5489  *	ata_link_online - test whether the given link is online
5490  *	@link: ATA link to test
5491  *
5492  *	Test whether @link is online.  This is identical to
5493  *	ata_phys_link_online() when there's no slave link.  When
5494  *	there's a slave link, this function should only be called on
5495  *	the master link and will return true if any of M/S links is
5496  *	online.
5497  *
5498  *	LOCKING:
5499  *	None.
5500  *
5501  *	RETURNS:
5502  *	True if the port online status is available and online.
5503  */
5504 bool ata_link_online(struct ata_link *link)
5505 {
5506 	struct ata_link *slave = link->ap->slave_link;
5507 
5508 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5509 
5510 	return ata_phys_link_online(link) ||
5511 		(slave && ata_phys_link_online(slave));
5512 }
5513 
5514 /**
5515  *	ata_link_offline - test whether the given link is offline
5516  *	@link: ATA link to test
5517  *
5518  *	Test whether @link is offline.  This is identical to
5519  *	ata_phys_link_offline() when there's no slave link.  When
5520  *	there's a slave link, this function should only be called on
5521  *	the master link and will return true if both M/S links are
5522  *	offline.
5523  *
5524  *	LOCKING:
5525  *	None.
5526  *
5527  *	RETURNS:
5528  *	True if the port offline status is available and offline.
5529  */
5530 bool ata_link_offline(struct ata_link *link)
5531 {
5532 	struct ata_link *slave = link->ap->slave_link;
5533 
5534 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5535 
5536 	return ata_phys_link_offline(link) &&
5537 		(!slave || ata_phys_link_offline(slave));
5538 }
5539 
5540 #ifdef CONFIG_PM
5541 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5542 				unsigned int action, unsigned int ehi_flags,
5543 				bool async)
5544 {
5545 	struct ata_link *link;
5546 	unsigned long flags;
5547 
5548 	/* Previous resume operation might still be in
5549 	 * progress.  Wait for PM_PENDING to clear.
5550 	 */
5551 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5552 		ata_port_wait_eh(ap);
5553 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5554 	}
5555 
5556 	/* request PM ops to EH */
5557 	spin_lock_irqsave(ap->lock, flags);
5558 
5559 	ap->pm_mesg = mesg;
5560 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5561 	ata_for_each_link(link, ap, HOST_FIRST) {
5562 		link->eh_info.action |= action;
5563 		link->eh_info.flags |= ehi_flags;
5564 	}
5565 
5566 	ata_port_schedule_eh(ap);
5567 
5568 	spin_unlock_irqrestore(ap->lock, flags);
5569 
5570 	if (!async) {
5571 		ata_port_wait_eh(ap);
5572 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5573 	}
5574 }
5575 
5576 /*
5577  * On some hardware, device fails to respond after spun down for suspend.  As
5578  * the device won't be used before being resumed, we don't need to touch the
5579  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5580  *
5581  * http://thread.gmane.org/gmane.linux.ide/46764
5582  */
5583 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5584 						 | ATA_EHI_NO_AUTOPSY
5585 						 | ATA_EHI_NO_RECOVERY;
5586 
5587 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5588 {
5589 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5590 }
5591 
5592 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5593 {
5594 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5595 }
5596 
5597 static int ata_port_pm_suspend(struct device *dev)
5598 {
5599 	struct ata_port *ap = to_ata_port(dev);
5600 
5601 	if (pm_runtime_suspended(dev))
5602 		return 0;
5603 
5604 	ata_port_suspend(ap, PMSG_SUSPEND);
5605 	return 0;
5606 }
5607 
5608 static int ata_port_pm_freeze(struct device *dev)
5609 {
5610 	struct ata_port *ap = to_ata_port(dev);
5611 
5612 	if (pm_runtime_suspended(dev))
5613 		return 0;
5614 
5615 	ata_port_suspend(ap, PMSG_FREEZE);
5616 	return 0;
5617 }
5618 
5619 static int ata_port_pm_poweroff(struct device *dev)
5620 {
5621 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5622 	return 0;
5623 }
5624 
5625 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5626 						| ATA_EHI_QUIET;
5627 
5628 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5629 {
5630 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5631 }
5632 
5633 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5634 {
5635 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5636 }
5637 
5638 static int ata_port_pm_resume(struct device *dev)
5639 {
5640 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5641 	pm_runtime_disable(dev);
5642 	pm_runtime_set_active(dev);
5643 	pm_runtime_enable(dev);
5644 	return 0;
5645 }
5646 
5647 /*
5648  * For ODDs, the upper layer will poll for media change every few seconds,
5649  * which will make it enter and leave suspend state every few seconds. And
5650  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5651  * is very little and the ODD may malfunction after constantly being reset.
5652  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5653  * ODD is attached to the port.
5654  */
5655 static int ata_port_runtime_idle(struct device *dev)
5656 {
5657 	struct ata_port *ap = to_ata_port(dev);
5658 	struct ata_link *link;
5659 	struct ata_device *adev;
5660 
5661 	ata_for_each_link(link, ap, HOST_FIRST) {
5662 		ata_for_each_dev(adev, link, ENABLED)
5663 			if (adev->class == ATA_DEV_ATAPI &&
5664 			    !zpodd_dev_enabled(adev))
5665 				return -EBUSY;
5666 	}
5667 
5668 	return 0;
5669 }
5670 
5671 static int ata_port_runtime_suspend(struct device *dev)
5672 {
5673 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5674 	return 0;
5675 }
5676 
5677 static int ata_port_runtime_resume(struct device *dev)
5678 {
5679 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5680 	return 0;
5681 }
5682 
5683 static const struct dev_pm_ops ata_port_pm_ops = {
5684 	.suspend = ata_port_pm_suspend,
5685 	.resume = ata_port_pm_resume,
5686 	.freeze = ata_port_pm_freeze,
5687 	.thaw = ata_port_pm_resume,
5688 	.poweroff = ata_port_pm_poweroff,
5689 	.restore = ata_port_pm_resume,
5690 
5691 	.runtime_suspend = ata_port_runtime_suspend,
5692 	.runtime_resume = ata_port_runtime_resume,
5693 	.runtime_idle = ata_port_runtime_idle,
5694 };
5695 
5696 /* sas ports don't participate in pm runtime management of ata_ports,
5697  * and need to resume ata devices at the domain level, not the per-port
5698  * level. sas suspend/resume is async to allow parallel port recovery
5699  * since sas has multiple ata_port instances per Scsi_Host.
5700  */
5701 void ata_sas_port_suspend(struct ata_port *ap)
5702 {
5703 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5704 }
5705 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5706 
5707 void ata_sas_port_resume(struct ata_port *ap)
5708 {
5709 	ata_port_resume_async(ap, PMSG_RESUME);
5710 }
5711 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5712 
5713 /**
5714  *	ata_host_suspend - suspend host
5715  *	@host: host to suspend
5716  *	@mesg: PM message
5717  *
5718  *	Suspend @host.  Actual operation is performed by port suspend.
5719  */
5720 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5721 {
5722 	host->dev->power.power_state = mesg;
5723 	return 0;
5724 }
5725 
5726 /**
5727  *	ata_host_resume - resume host
5728  *	@host: host to resume
5729  *
5730  *	Resume @host.  Actual operation is performed by port resume.
5731  */
5732 void ata_host_resume(struct ata_host *host)
5733 {
5734 	host->dev->power.power_state = PMSG_ON;
5735 }
5736 #endif
5737 
5738 struct device_type ata_port_type = {
5739 	.name = "ata_port",
5740 #ifdef CONFIG_PM
5741 	.pm = &ata_port_pm_ops,
5742 #endif
5743 };
5744 
5745 /**
5746  *	ata_dev_init - Initialize an ata_device structure
5747  *	@dev: Device structure to initialize
5748  *
5749  *	Initialize @dev in preparation for probing.
5750  *
5751  *	LOCKING:
5752  *	Inherited from caller.
5753  */
5754 void ata_dev_init(struct ata_device *dev)
5755 {
5756 	struct ata_link *link = ata_dev_phys_link(dev);
5757 	struct ata_port *ap = link->ap;
5758 	unsigned long flags;
5759 
5760 	/* SATA spd limit is bound to the attached device, reset together */
5761 	link->sata_spd_limit = link->hw_sata_spd_limit;
5762 	link->sata_spd = 0;
5763 
5764 	/* High bits of dev->flags are used to record warm plug
5765 	 * requests which occur asynchronously.  Synchronize using
5766 	 * host lock.
5767 	 */
5768 	spin_lock_irqsave(ap->lock, flags);
5769 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5770 	dev->horkage = 0;
5771 	spin_unlock_irqrestore(ap->lock, flags);
5772 
5773 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5774 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5775 	dev->pio_mask = UINT_MAX;
5776 	dev->mwdma_mask = UINT_MAX;
5777 	dev->udma_mask = UINT_MAX;
5778 }
5779 
5780 /**
5781  *	ata_link_init - Initialize an ata_link structure
5782  *	@ap: ATA port link is attached to
5783  *	@link: Link structure to initialize
5784  *	@pmp: Port multiplier port number
5785  *
5786  *	Initialize @link.
5787  *
5788  *	LOCKING:
5789  *	Kernel thread context (may sleep)
5790  */
5791 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5792 {
5793 	int i;
5794 
5795 	/* clear everything except for devices */
5796 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5797 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5798 
5799 	link->ap = ap;
5800 	link->pmp = pmp;
5801 	link->active_tag = ATA_TAG_POISON;
5802 	link->hw_sata_spd_limit = UINT_MAX;
5803 
5804 	/* can't use iterator, ap isn't initialized yet */
5805 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5806 		struct ata_device *dev = &link->device[i];
5807 
5808 		dev->link = link;
5809 		dev->devno = dev - link->device;
5810 #ifdef CONFIG_ATA_ACPI
5811 		dev->gtf_filter = ata_acpi_gtf_filter;
5812 #endif
5813 		ata_dev_init(dev);
5814 	}
5815 }
5816 
5817 /**
5818  *	sata_link_init_spd - Initialize link->sata_spd_limit
5819  *	@link: Link to configure sata_spd_limit for
5820  *
5821  *	Initialize @link->[hw_]sata_spd_limit to the currently
5822  *	configured value.
5823  *
5824  *	LOCKING:
5825  *	Kernel thread context (may sleep).
5826  *
5827  *	RETURNS:
5828  *	0 on success, -errno on failure.
5829  */
5830 int sata_link_init_spd(struct ata_link *link)
5831 {
5832 	u8 spd;
5833 	int rc;
5834 
5835 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5836 	if (rc)
5837 		return rc;
5838 
5839 	spd = (link->saved_scontrol >> 4) & 0xf;
5840 	if (spd)
5841 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5842 
5843 	ata_force_link_limits(link);
5844 
5845 	link->sata_spd_limit = link->hw_sata_spd_limit;
5846 
5847 	return 0;
5848 }
5849 
5850 /**
5851  *	ata_port_alloc - allocate and initialize basic ATA port resources
5852  *	@host: ATA host this allocated port belongs to
5853  *
5854  *	Allocate and initialize basic ATA port resources.
5855  *
5856  *	RETURNS:
5857  *	Allocate ATA port on success, NULL on failure.
5858  *
5859  *	LOCKING:
5860  *	Inherited from calling layer (may sleep).
5861  */
5862 struct ata_port *ata_port_alloc(struct ata_host *host)
5863 {
5864 	struct ata_port *ap;
5865 
5866 	DPRINTK("ENTER\n");
5867 
5868 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5869 	if (!ap)
5870 		return NULL;
5871 
5872 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5873 	ap->lock = &host->lock;
5874 	ap->print_id = -1;
5875 	ap->local_port_no = -1;
5876 	ap->host = host;
5877 	ap->dev = host->dev;
5878 
5879 #if defined(ATA_VERBOSE_DEBUG)
5880 	/* turn on all debugging levels */
5881 	ap->msg_enable = 0x00FF;
5882 #elif defined(ATA_DEBUG)
5883 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5884 #else
5885 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5886 #endif
5887 
5888 	mutex_init(&ap->scsi_scan_mutex);
5889 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5890 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5891 	INIT_LIST_HEAD(&ap->eh_done_q);
5892 	init_waitqueue_head(&ap->eh_wait_q);
5893 	init_completion(&ap->park_req_pending);
5894 	init_timer_deferrable(&ap->fastdrain_timer);
5895 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5896 	ap->fastdrain_timer.data = (unsigned long)ap;
5897 
5898 	ap->cbl = ATA_CBL_NONE;
5899 
5900 	ata_link_init(ap, &ap->link, 0);
5901 
5902 #ifdef ATA_IRQ_TRAP
5903 	ap->stats.unhandled_irq = 1;
5904 	ap->stats.idle_irq = 1;
5905 #endif
5906 	ata_sff_port_init(ap);
5907 
5908 	return ap;
5909 }
5910 
5911 static void ata_host_release(struct device *gendev, void *res)
5912 {
5913 	struct ata_host *host = dev_get_drvdata(gendev);
5914 	int i;
5915 
5916 	for (i = 0; i < host->n_ports; i++) {
5917 		struct ata_port *ap = host->ports[i];
5918 
5919 		if (!ap)
5920 			continue;
5921 
5922 		if (ap->scsi_host)
5923 			scsi_host_put(ap->scsi_host);
5924 
5925 		kfree(ap->pmp_link);
5926 		kfree(ap->slave_link);
5927 		kfree(ap);
5928 		host->ports[i] = NULL;
5929 	}
5930 
5931 	dev_set_drvdata(gendev, NULL);
5932 }
5933 
5934 /**
5935  *	ata_host_alloc - allocate and init basic ATA host resources
5936  *	@dev: generic device this host is associated with
5937  *	@max_ports: maximum number of ATA ports associated with this host
5938  *
5939  *	Allocate and initialize basic ATA host resources.  LLD calls
5940  *	this function to allocate a host, initializes it fully and
5941  *	attaches it using ata_host_register().
5942  *
5943  *	@max_ports ports are allocated and host->n_ports is
5944  *	initialized to @max_ports.  The caller is allowed to decrease
5945  *	host->n_ports before calling ata_host_register().  The unused
5946  *	ports will be automatically freed on registration.
5947  *
5948  *	RETURNS:
5949  *	Allocate ATA host on success, NULL on failure.
5950  *
5951  *	LOCKING:
5952  *	Inherited from calling layer (may sleep).
5953  */
5954 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5955 {
5956 	struct ata_host *host;
5957 	size_t sz;
5958 	int i;
5959 
5960 	DPRINTK("ENTER\n");
5961 
5962 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5963 		return NULL;
5964 
5965 	/* alloc a container for our list of ATA ports (buses) */
5966 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5967 	/* alloc a container for our list of ATA ports (buses) */
5968 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5969 	if (!host)
5970 		goto err_out;
5971 
5972 	devres_add(dev, host);
5973 	dev_set_drvdata(dev, host);
5974 
5975 	spin_lock_init(&host->lock);
5976 	mutex_init(&host->eh_mutex);
5977 	host->dev = dev;
5978 	host->n_ports = max_ports;
5979 
5980 	/* allocate ports bound to this host */
5981 	for (i = 0; i < max_ports; i++) {
5982 		struct ata_port *ap;
5983 
5984 		ap = ata_port_alloc(host);
5985 		if (!ap)
5986 			goto err_out;
5987 
5988 		ap->port_no = i;
5989 		host->ports[i] = ap;
5990 	}
5991 
5992 	devres_remove_group(dev, NULL);
5993 	return host;
5994 
5995  err_out:
5996 	devres_release_group(dev, NULL);
5997 	return NULL;
5998 }
5999 
6000 /**
6001  *	ata_host_alloc_pinfo - alloc host and init with port_info array
6002  *	@dev: generic device this host is associated with
6003  *	@ppi: array of ATA port_info to initialize host with
6004  *	@n_ports: number of ATA ports attached to this host
6005  *
6006  *	Allocate ATA host and initialize with info from @ppi.  If NULL
6007  *	terminated, @ppi may contain fewer entries than @n_ports.  The
6008  *	last entry will be used for the remaining ports.
6009  *
6010  *	RETURNS:
6011  *	Allocate ATA host on success, NULL on failure.
6012  *
6013  *	LOCKING:
6014  *	Inherited from calling layer (may sleep).
6015  */
6016 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6017 				      const struct ata_port_info * const * ppi,
6018 				      int n_ports)
6019 {
6020 	const struct ata_port_info *pi;
6021 	struct ata_host *host;
6022 	int i, j;
6023 
6024 	host = ata_host_alloc(dev, n_ports);
6025 	if (!host)
6026 		return NULL;
6027 
6028 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6029 		struct ata_port *ap = host->ports[i];
6030 
6031 		if (ppi[j])
6032 			pi = ppi[j++];
6033 
6034 		ap->pio_mask = pi->pio_mask;
6035 		ap->mwdma_mask = pi->mwdma_mask;
6036 		ap->udma_mask = pi->udma_mask;
6037 		ap->flags |= pi->flags;
6038 		ap->link.flags |= pi->link_flags;
6039 		ap->ops = pi->port_ops;
6040 
6041 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6042 			host->ops = pi->port_ops;
6043 	}
6044 
6045 	return host;
6046 }
6047 
6048 /**
6049  *	ata_slave_link_init - initialize slave link
6050  *	@ap: port to initialize slave link for
6051  *
6052  *	Create and initialize slave link for @ap.  This enables slave
6053  *	link handling on the port.
6054  *
6055  *	In libata, a port contains links and a link contains devices.
6056  *	There is single host link but if a PMP is attached to it,
6057  *	there can be multiple fan-out links.  On SATA, there's usually
6058  *	a single device connected to a link but PATA and SATA
6059  *	controllers emulating TF based interface can have two - master
6060  *	and slave.
6061  *
6062  *	However, there are a few controllers which don't fit into this
6063  *	abstraction too well - SATA controllers which emulate TF
6064  *	interface with both master and slave devices but also have
6065  *	separate SCR register sets for each device.  These controllers
6066  *	need separate links for physical link handling
6067  *	(e.g. onlineness, link speed) but should be treated like a
6068  *	traditional M/S controller for everything else (e.g. command
6069  *	issue, softreset).
6070  *
6071  *	slave_link is libata's way of handling this class of
6072  *	controllers without impacting core layer too much.  For
6073  *	anything other than physical link handling, the default host
6074  *	link is used for both master and slave.  For physical link
6075  *	handling, separate @ap->slave_link is used.  All dirty details
6076  *	are implemented inside libata core layer.  From LLD's POV, the
6077  *	only difference is that prereset, hardreset and postreset are
6078  *	called once more for the slave link, so the reset sequence
6079  *	looks like the following.
6080  *
6081  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6082  *	softreset(M) -> postreset(M) -> postreset(S)
6083  *
6084  *	Note that softreset is called only for the master.  Softreset
6085  *	resets both M/S by definition, so SRST on master should handle
6086  *	both (the standard method will work just fine).
6087  *
6088  *	LOCKING:
6089  *	Should be called before host is registered.
6090  *
6091  *	RETURNS:
6092  *	0 on success, -errno on failure.
6093  */
6094 int ata_slave_link_init(struct ata_port *ap)
6095 {
6096 	struct ata_link *link;
6097 
6098 	WARN_ON(ap->slave_link);
6099 	WARN_ON(ap->flags & ATA_FLAG_PMP);
6100 
6101 	link = kzalloc(sizeof(*link), GFP_KERNEL);
6102 	if (!link)
6103 		return -ENOMEM;
6104 
6105 	ata_link_init(ap, link, 1);
6106 	ap->slave_link = link;
6107 	return 0;
6108 }
6109 
6110 static void ata_host_stop(struct device *gendev, void *res)
6111 {
6112 	struct ata_host *host = dev_get_drvdata(gendev);
6113 	int i;
6114 
6115 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
6116 
6117 	for (i = 0; i < host->n_ports; i++) {
6118 		struct ata_port *ap = host->ports[i];
6119 
6120 		if (ap->ops->port_stop)
6121 			ap->ops->port_stop(ap);
6122 	}
6123 
6124 	if (host->ops->host_stop)
6125 		host->ops->host_stop(host);
6126 }
6127 
6128 /**
6129  *	ata_finalize_port_ops - finalize ata_port_operations
6130  *	@ops: ata_port_operations to finalize
6131  *
6132  *	An ata_port_operations can inherit from another ops and that
6133  *	ops can again inherit from another.  This can go on as many
6134  *	times as necessary as long as there is no loop in the
6135  *	inheritance chain.
6136  *
6137  *	Ops tables are finalized when the host is started.  NULL or
6138  *	unspecified entries are inherited from the closet ancestor
6139  *	which has the method and the entry is populated with it.
6140  *	After finalization, the ops table directly points to all the
6141  *	methods and ->inherits is no longer necessary and cleared.
6142  *
6143  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6144  *
6145  *	LOCKING:
6146  *	None.
6147  */
6148 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6149 {
6150 	static DEFINE_SPINLOCK(lock);
6151 	const struct ata_port_operations *cur;
6152 	void **begin = (void **)ops;
6153 	void **end = (void **)&ops->inherits;
6154 	void **pp;
6155 
6156 	if (!ops || !ops->inherits)
6157 		return;
6158 
6159 	spin_lock(&lock);
6160 
6161 	for (cur = ops->inherits; cur; cur = cur->inherits) {
6162 		void **inherit = (void **)cur;
6163 
6164 		for (pp = begin; pp < end; pp++, inherit++)
6165 			if (!*pp)
6166 				*pp = *inherit;
6167 	}
6168 
6169 	for (pp = begin; pp < end; pp++)
6170 		if (IS_ERR(*pp))
6171 			*pp = NULL;
6172 
6173 	ops->inherits = NULL;
6174 
6175 	spin_unlock(&lock);
6176 }
6177 
6178 /**
6179  *	ata_host_start - start and freeze ports of an ATA host
6180  *	@host: ATA host to start ports for
6181  *
6182  *	Start and then freeze ports of @host.  Started status is
6183  *	recorded in host->flags, so this function can be called
6184  *	multiple times.  Ports are guaranteed to get started only
6185  *	once.  If host->ops isn't initialized yet, its set to the
6186  *	first non-dummy port ops.
6187  *
6188  *	LOCKING:
6189  *	Inherited from calling layer (may sleep).
6190  *
6191  *	RETURNS:
6192  *	0 if all ports are started successfully, -errno otherwise.
6193  */
6194 int ata_host_start(struct ata_host *host)
6195 {
6196 	int have_stop = 0;
6197 	void *start_dr = NULL;
6198 	int i, rc;
6199 
6200 	if (host->flags & ATA_HOST_STARTED)
6201 		return 0;
6202 
6203 	ata_finalize_port_ops(host->ops);
6204 
6205 	for (i = 0; i < host->n_ports; i++) {
6206 		struct ata_port *ap = host->ports[i];
6207 
6208 		ata_finalize_port_ops(ap->ops);
6209 
6210 		if (!host->ops && !ata_port_is_dummy(ap))
6211 			host->ops = ap->ops;
6212 
6213 		if (ap->ops->port_stop)
6214 			have_stop = 1;
6215 	}
6216 
6217 	if (host->ops->host_stop)
6218 		have_stop = 1;
6219 
6220 	if (have_stop) {
6221 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6222 		if (!start_dr)
6223 			return -ENOMEM;
6224 	}
6225 
6226 	for (i = 0; i < host->n_ports; i++) {
6227 		struct ata_port *ap = host->ports[i];
6228 
6229 		if (ap->ops->port_start) {
6230 			rc = ap->ops->port_start(ap);
6231 			if (rc) {
6232 				if (rc != -ENODEV)
6233 					dev_err(host->dev,
6234 						"failed to start port %d (errno=%d)\n",
6235 						i, rc);
6236 				goto err_out;
6237 			}
6238 		}
6239 		ata_eh_freeze_port(ap);
6240 	}
6241 
6242 	if (start_dr)
6243 		devres_add(host->dev, start_dr);
6244 	host->flags |= ATA_HOST_STARTED;
6245 	return 0;
6246 
6247  err_out:
6248 	while (--i >= 0) {
6249 		struct ata_port *ap = host->ports[i];
6250 
6251 		if (ap->ops->port_stop)
6252 			ap->ops->port_stop(ap);
6253 	}
6254 	devres_free(start_dr);
6255 	return rc;
6256 }
6257 
6258 /**
6259  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6260  *	@host:	host to initialize
6261  *	@dev:	device host is attached to
6262  *	@ops:	port_ops
6263  *
6264  */
6265 void ata_host_init(struct ata_host *host, struct device *dev,
6266 		   struct ata_port_operations *ops)
6267 {
6268 	spin_lock_init(&host->lock);
6269 	mutex_init(&host->eh_mutex);
6270 	host->n_tags = ATA_MAX_QUEUE - 1;
6271 	host->dev = dev;
6272 	host->ops = ops;
6273 }
6274 
6275 void __ata_port_probe(struct ata_port *ap)
6276 {
6277 	struct ata_eh_info *ehi = &ap->link.eh_info;
6278 	unsigned long flags;
6279 
6280 	/* kick EH for boot probing */
6281 	spin_lock_irqsave(ap->lock, flags);
6282 
6283 	ehi->probe_mask |= ATA_ALL_DEVICES;
6284 	ehi->action |= ATA_EH_RESET;
6285 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6286 
6287 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6288 	ap->pflags |= ATA_PFLAG_LOADING;
6289 	ata_port_schedule_eh(ap);
6290 
6291 	spin_unlock_irqrestore(ap->lock, flags);
6292 }
6293 
6294 int ata_port_probe(struct ata_port *ap)
6295 {
6296 	int rc = 0;
6297 
6298 	if (ap->ops->error_handler) {
6299 		__ata_port_probe(ap);
6300 		ata_port_wait_eh(ap);
6301 	} else {
6302 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6303 		rc = ata_bus_probe(ap);
6304 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6305 	}
6306 	return rc;
6307 }
6308 
6309 
6310 static void async_port_probe(void *data, async_cookie_t cookie)
6311 {
6312 	struct ata_port *ap = data;
6313 
6314 	/*
6315 	 * If we're not allowed to scan this host in parallel,
6316 	 * we need to wait until all previous scans have completed
6317 	 * before going further.
6318 	 * Jeff Garzik says this is only within a controller, so we
6319 	 * don't need to wait for port 0, only for later ports.
6320 	 */
6321 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6322 		async_synchronize_cookie(cookie);
6323 
6324 	(void)ata_port_probe(ap);
6325 
6326 	/* in order to keep device order, we need to synchronize at this point */
6327 	async_synchronize_cookie(cookie);
6328 
6329 	ata_scsi_scan_host(ap, 1);
6330 }
6331 
6332 /**
6333  *	ata_host_register - register initialized ATA host
6334  *	@host: ATA host to register
6335  *	@sht: template for SCSI host
6336  *
6337  *	Register initialized ATA host.  @host is allocated using
6338  *	ata_host_alloc() and fully initialized by LLD.  This function
6339  *	starts ports, registers @host with ATA and SCSI layers and
6340  *	probe registered devices.
6341  *
6342  *	LOCKING:
6343  *	Inherited from calling layer (may sleep).
6344  *
6345  *	RETURNS:
6346  *	0 on success, -errno otherwise.
6347  */
6348 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6349 {
6350 	int i, rc;
6351 
6352 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6353 
6354 	/* host must have been started */
6355 	if (!(host->flags & ATA_HOST_STARTED)) {
6356 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6357 		WARN_ON(1);
6358 		return -EINVAL;
6359 	}
6360 
6361 	/* Blow away unused ports.  This happens when LLD can't
6362 	 * determine the exact number of ports to allocate at
6363 	 * allocation time.
6364 	 */
6365 	for (i = host->n_ports; host->ports[i]; i++)
6366 		kfree(host->ports[i]);
6367 
6368 	/* give ports names and add SCSI hosts */
6369 	for (i = 0; i < host->n_ports; i++) {
6370 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6371 		host->ports[i]->local_port_no = i + 1;
6372 	}
6373 
6374 	/* Create associated sysfs transport objects  */
6375 	for (i = 0; i < host->n_ports; i++) {
6376 		rc = ata_tport_add(host->dev,host->ports[i]);
6377 		if (rc) {
6378 			goto err_tadd;
6379 		}
6380 	}
6381 
6382 	rc = ata_scsi_add_hosts(host, sht);
6383 	if (rc)
6384 		goto err_tadd;
6385 
6386 	/* set cable, sata_spd_limit and report */
6387 	for (i = 0; i < host->n_ports; i++) {
6388 		struct ata_port *ap = host->ports[i];
6389 		unsigned long xfer_mask;
6390 
6391 		/* set SATA cable type if still unset */
6392 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6393 			ap->cbl = ATA_CBL_SATA;
6394 
6395 		/* init sata_spd_limit to the current value */
6396 		sata_link_init_spd(&ap->link);
6397 		if (ap->slave_link)
6398 			sata_link_init_spd(ap->slave_link);
6399 
6400 		/* print per-port info to dmesg */
6401 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6402 					      ap->udma_mask);
6403 
6404 		if (!ata_port_is_dummy(ap)) {
6405 			ata_port_info(ap, "%cATA max %s %s\n",
6406 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6407 				      ata_mode_string(xfer_mask),
6408 				      ap->link.eh_info.desc);
6409 			ata_ehi_clear_desc(&ap->link.eh_info);
6410 		} else
6411 			ata_port_info(ap, "DUMMY\n");
6412 	}
6413 
6414 	/* perform each probe asynchronously */
6415 	for (i = 0; i < host->n_ports; i++) {
6416 		struct ata_port *ap = host->ports[i];
6417 		async_schedule(async_port_probe, ap);
6418 	}
6419 
6420 	return 0;
6421 
6422  err_tadd:
6423 	while (--i >= 0) {
6424 		ata_tport_delete(host->ports[i]);
6425 	}
6426 	return rc;
6427 
6428 }
6429 
6430 /**
6431  *	ata_host_activate - start host, request IRQ and register it
6432  *	@host: target ATA host
6433  *	@irq: IRQ to request
6434  *	@irq_handler: irq_handler used when requesting IRQ
6435  *	@irq_flags: irq_flags used when requesting IRQ
6436  *	@sht: scsi_host_template to use when registering the host
6437  *
6438  *	After allocating an ATA host and initializing it, most libata
6439  *	LLDs perform three steps to activate the host - start host,
6440  *	request IRQ and register it.  This helper takes necessary
6441  *	arguments and performs the three steps in one go.
6442  *
6443  *	An invalid IRQ skips the IRQ registration and expects the host to
6444  *	have set polling mode on the port. In this case, @irq_handler
6445  *	should be NULL.
6446  *
6447  *	LOCKING:
6448  *	Inherited from calling layer (may sleep).
6449  *
6450  *	RETURNS:
6451  *	0 on success, -errno otherwise.
6452  */
6453 int ata_host_activate(struct ata_host *host, int irq,
6454 		      irq_handler_t irq_handler, unsigned long irq_flags,
6455 		      struct scsi_host_template *sht)
6456 {
6457 	int i, rc;
6458 	char *irq_desc;
6459 
6460 	rc = ata_host_start(host);
6461 	if (rc)
6462 		return rc;
6463 
6464 	/* Special case for polling mode */
6465 	if (!irq) {
6466 		WARN_ON(irq_handler);
6467 		return ata_host_register(host, sht);
6468 	}
6469 
6470 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6471 				  dev_driver_string(host->dev),
6472 				  dev_name(host->dev));
6473 	if (!irq_desc)
6474 		return -ENOMEM;
6475 
6476 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6477 			      irq_desc, host);
6478 	if (rc)
6479 		return rc;
6480 
6481 	for (i = 0; i < host->n_ports; i++)
6482 		ata_port_desc(host->ports[i], "irq %d", irq);
6483 
6484 	rc = ata_host_register(host, sht);
6485 	/* if failed, just free the IRQ and leave ports alone */
6486 	if (rc)
6487 		devm_free_irq(host->dev, irq, host);
6488 
6489 	return rc;
6490 }
6491 
6492 /**
6493  *	ata_port_detach - Detach ATA port in preparation of device removal
6494  *	@ap: ATA port to be detached
6495  *
6496  *	Detach all ATA devices and the associated SCSI devices of @ap;
6497  *	then, remove the associated SCSI host.  @ap is guaranteed to
6498  *	be quiescent on return from this function.
6499  *
6500  *	LOCKING:
6501  *	Kernel thread context (may sleep).
6502  */
6503 static void ata_port_detach(struct ata_port *ap)
6504 {
6505 	unsigned long flags;
6506 	struct ata_link *link;
6507 	struct ata_device *dev;
6508 
6509 	if (!ap->ops->error_handler)
6510 		goto skip_eh;
6511 
6512 	/* tell EH we're leaving & flush EH */
6513 	spin_lock_irqsave(ap->lock, flags);
6514 	ap->pflags |= ATA_PFLAG_UNLOADING;
6515 	ata_port_schedule_eh(ap);
6516 	spin_unlock_irqrestore(ap->lock, flags);
6517 
6518 	/* wait till EH commits suicide */
6519 	ata_port_wait_eh(ap);
6520 
6521 	/* it better be dead now */
6522 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6523 
6524 	cancel_delayed_work_sync(&ap->hotplug_task);
6525 
6526  skip_eh:
6527 	/* clean up zpodd on port removal */
6528 	ata_for_each_link(link, ap, HOST_FIRST) {
6529 		ata_for_each_dev(dev, link, ALL) {
6530 			if (zpodd_dev_enabled(dev))
6531 				zpodd_exit(dev);
6532 		}
6533 	}
6534 	if (ap->pmp_link) {
6535 		int i;
6536 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6537 			ata_tlink_delete(&ap->pmp_link[i]);
6538 	}
6539 	/* remove the associated SCSI host */
6540 	scsi_remove_host(ap->scsi_host);
6541 	ata_tport_delete(ap);
6542 }
6543 
6544 /**
6545  *	ata_host_detach - Detach all ports of an ATA host
6546  *	@host: Host to detach
6547  *
6548  *	Detach all ports of @host.
6549  *
6550  *	LOCKING:
6551  *	Kernel thread context (may sleep).
6552  */
6553 void ata_host_detach(struct ata_host *host)
6554 {
6555 	int i;
6556 
6557 	for (i = 0; i < host->n_ports; i++)
6558 		ata_port_detach(host->ports[i]);
6559 
6560 	/* the host is dead now, dissociate ACPI */
6561 	ata_acpi_dissociate(host);
6562 }
6563 
6564 #ifdef CONFIG_PCI
6565 
6566 /**
6567  *	ata_pci_remove_one - PCI layer callback for device removal
6568  *	@pdev: PCI device that was removed
6569  *
6570  *	PCI layer indicates to libata via this hook that hot-unplug or
6571  *	module unload event has occurred.  Detach all ports.  Resource
6572  *	release is handled via devres.
6573  *
6574  *	LOCKING:
6575  *	Inherited from PCI layer (may sleep).
6576  */
6577 void ata_pci_remove_one(struct pci_dev *pdev)
6578 {
6579 	struct ata_host *host = pci_get_drvdata(pdev);
6580 
6581 	ata_host_detach(host);
6582 }
6583 
6584 /* move to PCI subsystem */
6585 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6586 {
6587 	unsigned long tmp = 0;
6588 
6589 	switch (bits->width) {
6590 	case 1: {
6591 		u8 tmp8 = 0;
6592 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6593 		tmp = tmp8;
6594 		break;
6595 	}
6596 	case 2: {
6597 		u16 tmp16 = 0;
6598 		pci_read_config_word(pdev, bits->reg, &tmp16);
6599 		tmp = tmp16;
6600 		break;
6601 	}
6602 	case 4: {
6603 		u32 tmp32 = 0;
6604 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6605 		tmp = tmp32;
6606 		break;
6607 	}
6608 
6609 	default:
6610 		return -EINVAL;
6611 	}
6612 
6613 	tmp &= bits->mask;
6614 
6615 	return (tmp == bits->val) ? 1 : 0;
6616 }
6617 
6618 #ifdef CONFIG_PM
6619 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6620 {
6621 	pci_save_state(pdev);
6622 	pci_disable_device(pdev);
6623 
6624 	if (mesg.event & PM_EVENT_SLEEP)
6625 		pci_set_power_state(pdev, PCI_D3hot);
6626 }
6627 
6628 int ata_pci_device_do_resume(struct pci_dev *pdev)
6629 {
6630 	int rc;
6631 
6632 	pci_set_power_state(pdev, PCI_D0);
6633 	pci_restore_state(pdev);
6634 
6635 	rc = pcim_enable_device(pdev);
6636 	if (rc) {
6637 		dev_err(&pdev->dev,
6638 			"failed to enable device after resume (%d)\n", rc);
6639 		return rc;
6640 	}
6641 
6642 	pci_set_master(pdev);
6643 	return 0;
6644 }
6645 
6646 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6647 {
6648 	struct ata_host *host = pci_get_drvdata(pdev);
6649 	int rc = 0;
6650 
6651 	rc = ata_host_suspend(host, mesg);
6652 	if (rc)
6653 		return rc;
6654 
6655 	ata_pci_device_do_suspend(pdev, mesg);
6656 
6657 	return 0;
6658 }
6659 
6660 int ata_pci_device_resume(struct pci_dev *pdev)
6661 {
6662 	struct ata_host *host = pci_get_drvdata(pdev);
6663 	int rc;
6664 
6665 	rc = ata_pci_device_do_resume(pdev);
6666 	if (rc == 0)
6667 		ata_host_resume(host);
6668 	return rc;
6669 }
6670 #endif /* CONFIG_PM */
6671 
6672 #endif /* CONFIG_PCI */
6673 
6674 /**
6675  *	ata_platform_remove_one - Platform layer callback for device removal
6676  *	@pdev: Platform device that was removed
6677  *
6678  *	Platform layer indicates to libata via this hook that hot-unplug or
6679  *	module unload event has occurred.  Detach all ports.  Resource
6680  *	release is handled via devres.
6681  *
6682  *	LOCKING:
6683  *	Inherited from platform layer (may sleep).
6684  */
6685 int ata_platform_remove_one(struct platform_device *pdev)
6686 {
6687 	struct ata_host *host = platform_get_drvdata(pdev);
6688 
6689 	ata_host_detach(host);
6690 
6691 	return 0;
6692 }
6693 
6694 static int __init ata_parse_force_one(char **cur,
6695 				      struct ata_force_ent *force_ent,
6696 				      const char **reason)
6697 {
6698 	static const struct ata_force_param force_tbl[] __initconst = {
6699 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6700 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6701 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6702 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6703 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6704 		{ "sata",	.cbl		= ATA_CBL_SATA },
6705 		{ "1.5Gbps",	.spd_limit	= 1 },
6706 		{ "3.0Gbps",	.spd_limit	= 2 },
6707 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6708 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6709 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6710 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6711 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6712 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6713 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6714 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6715 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6716 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6717 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6718 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6719 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6720 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6721 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6722 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6723 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6724 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6725 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6726 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6727 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6728 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6729 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6730 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6731 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6732 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6733 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6734 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6735 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6736 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6737 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6738 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6739 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6740 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6741 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6742 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6743 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6744 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6745 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6746 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6747 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6748 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6749 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6750 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6751 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6752 	};
6753 	char *start = *cur, *p = *cur;
6754 	char *id, *val, *endp;
6755 	const struct ata_force_param *match_fp = NULL;
6756 	int nr_matches = 0, i;
6757 
6758 	/* find where this param ends and update *cur */
6759 	while (*p != '\0' && *p != ',')
6760 		p++;
6761 
6762 	if (*p == '\0')
6763 		*cur = p;
6764 	else
6765 		*cur = p + 1;
6766 
6767 	*p = '\0';
6768 
6769 	/* parse */
6770 	p = strchr(start, ':');
6771 	if (!p) {
6772 		val = strstrip(start);
6773 		goto parse_val;
6774 	}
6775 	*p = '\0';
6776 
6777 	id = strstrip(start);
6778 	val = strstrip(p + 1);
6779 
6780 	/* parse id */
6781 	p = strchr(id, '.');
6782 	if (p) {
6783 		*p++ = '\0';
6784 		force_ent->device = simple_strtoul(p, &endp, 10);
6785 		if (p == endp || *endp != '\0') {
6786 			*reason = "invalid device";
6787 			return -EINVAL;
6788 		}
6789 	}
6790 
6791 	force_ent->port = simple_strtoul(id, &endp, 10);
6792 	if (p == endp || *endp != '\0') {
6793 		*reason = "invalid port/link";
6794 		return -EINVAL;
6795 	}
6796 
6797  parse_val:
6798 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6799 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6800 		const struct ata_force_param *fp = &force_tbl[i];
6801 
6802 		if (strncasecmp(val, fp->name, strlen(val)))
6803 			continue;
6804 
6805 		nr_matches++;
6806 		match_fp = fp;
6807 
6808 		if (strcasecmp(val, fp->name) == 0) {
6809 			nr_matches = 1;
6810 			break;
6811 		}
6812 	}
6813 
6814 	if (!nr_matches) {
6815 		*reason = "unknown value";
6816 		return -EINVAL;
6817 	}
6818 	if (nr_matches > 1) {
6819 		*reason = "ambigious value";
6820 		return -EINVAL;
6821 	}
6822 
6823 	force_ent->param = *match_fp;
6824 
6825 	return 0;
6826 }
6827 
6828 static void __init ata_parse_force_param(void)
6829 {
6830 	int idx = 0, size = 1;
6831 	int last_port = -1, last_device = -1;
6832 	char *p, *cur, *next;
6833 
6834 	/* calculate maximum number of params and allocate force_tbl */
6835 	for (p = ata_force_param_buf; *p; p++)
6836 		if (*p == ',')
6837 			size++;
6838 
6839 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6840 	if (!ata_force_tbl) {
6841 		printk(KERN_WARNING "ata: failed to extend force table, "
6842 		       "libata.force ignored\n");
6843 		return;
6844 	}
6845 
6846 	/* parse and populate the table */
6847 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6848 		const char *reason = "";
6849 		struct ata_force_ent te = { .port = -1, .device = -1 };
6850 
6851 		next = cur;
6852 		if (ata_parse_force_one(&next, &te, &reason)) {
6853 			printk(KERN_WARNING "ata: failed to parse force "
6854 			       "parameter \"%s\" (%s)\n",
6855 			       cur, reason);
6856 			continue;
6857 		}
6858 
6859 		if (te.port == -1) {
6860 			te.port = last_port;
6861 			te.device = last_device;
6862 		}
6863 
6864 		ata_force_tbl[idx++] = te;
6865 
6866 		last_port = te.port;
6867 		last_device = te.device;
6868 	}
6869 
6870 	ata_force_tbl_size = idx;
6871 }
6872 
6873 static int __init ata_init(void)
6874 {
6875 	int rc;
6876 
6877 	ata_parse_force_param();
6878 
6879 	rc = ata_sff_init();
6880 	if (rc) {
6881 		kfree(ata_force_tbl);
6882 		return rc;
6883 	}
6884 
6885 	libata_transport_init();
6886 	ata_scsi_transport_template = ata_attach_transport();
6887 	if (!ata_scsi_transport_template) {
6888 		ata_sff_exit();
6889 		rc = -ENOMEM;
6890 		goto err_out;
6891 	}
6892 
6893 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6894 	return 0;
6895 
6896 err_out:
6897 	return rc;
6898 }
6899 
6900 static void __exit ata_exit(void)
6901 {
6902 	ata_release_transport(ata_scsi_transport_template);
6903 	libata_transport_exit();
6904 	ata_sff_exit();
6905 	kfree(ata_force_tbl);
6906 }
6907 
6908 subsys_initcall(ata_init);
6909 module_exit(ata_exit);
6910 
6911 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6912 
6913 int ata_ratelimit(void)
6914 {
6915 	return __ratelimit(&ratelimit);
6916 }
6917 
6918 /**
6919  *	ata_msleep - ATA EH owner aware msleep
6920  *	@ap: ATA port to attribute the sleep to
6921  *	@msecs: duration to sleep in milliseconds
6922  *
6923  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6924  *	ownership is released before going to sleep and reacquired
6925  *	after the sleep is complete.  IOW, other ports sharing the
6926  *	@ap->host will be allowed to own the EH while this task is
6927  *	sleeping.
6928  *
6929  *	LOCKING:
6930  *	Might sleep.
6931  */
6932 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6933 {
6934 	bool owns_eh = ap && ap->host->eh_owner == current;
6935 
6936 	if (owns_eh)
6937 		ata_eh_release(ap);
6938 
6939 	if (msecs < 20) {
6940 		unsigned long usecs = msecs * USEC_PER_MSEC;
6941 		usleep_range(usecs, usecs + 50);
6942 	} else {
6943 		msleep(msecs);
6944 	}
6945 
6946 	if (owns_eh)
6947 		ata_eh_acquire(ap);
6948 }
6949 
6950 /**
6951  *	ata_wait_register - wait until register value changes
6952  *	@ap: ATA port to wait register for, can be NULL
6953  *	@reg: IO-mapped register
6954  *	@mask: Mask to apply to read register value
6955  *	@val: Wait condition
6956  *	@interval: polling interval in milliseconds
6957  *	@timeout: timeout in milliseconds
6958  *
6959  *	Waiting for some bits of register to change is a common
6960  *	operation for ATA controllers.  This function reads 32bit LE
6961  *	IO-mapped register @reg and tests for the following condition.
6962  *
6963  *	(*@reg & mask) != val
6964  *
6965  *	If the condition is met, it returns; otherwise, the process is
6966  *	repeated after @interval_msec until timeout.
6967  *
6968  *	LOCKING:
6969  *	Kernel thread context (may sleep)
6970  *
6971  *	RETURNS:
6972  *	The final register value.
6973  */
6974 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6975 		      unsigned long interval, unsigned long timeout)
6976 {
6977 	unsigned long deadline;
6978 	u32 tmp;
6979 
6980 	tmp = ioread32(reg);
6981 
6982 	/* Calculate timeout _after_ the first read to make sure
6983 	 * preceding writes reach the controller before starting to
6984 	 * eat away the timeout.
6985 	 */
6986 	deadline = ata_deadline(jiffies, timeout);
6987 
6988 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6989 		ata_msleep(ap, interval);
6990 		tmp = ioread32(reg);
6991 	}
6992 
6993 	return tmp;
6994 }
6995 
6996 /**
6997  *	sata_lpm_ignore_phy_events - test if PHY event should be ignored
6998  *	@link: Link receiving the event
6999  *
7000  *	Test whether the received PHY event has to be ignored or not.
7001  *
7002  *	LOCKING:
7003  *	None:
7004  *
7005  *	RETURNS:
7006  *	True if the event has to be ignored.
7007  */
7008 bool sata_lpm_ignore_phy_events(struct ata_link *link)
7009 {
7010 	unsigned long lpm_timeout = link->last_lpm_change +
7011 				    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7012 
7013 	/* if LPM is enabled, PHYRDY doesn't mean anything */
7014 	if (link->lpm_policy > ATA_LPM_MAX_POWER)
7015 		return true;
7016 
7017 	/* ignore the first PHY event after the LPM policy changed
7018 	 * as it is might be spurious
7019 	 */
7020 	if ((link->flags & ATA_LFLAG_CHANGED) &&
7021 	    time_before(jiffies, lpm_timeout))
7022 		return true;
7023 
7024 	return false;
7025 }
7026 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7027 
7028 /*
7029  * Dummy port_ops
7030  */
7031 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7032 {
7033 	return AC_ERR_SYSTEM;
7034 }
7035 
7036 static void ata_dummy_error_handler(struct ata_port *ap)
7037 {
7038 	/* truly dummy */
7039 }
7040 
7041 struct ata_port_operations ata_dummy_port_ops = {
7042 	.qc_prep		= ata_noop_qc_prep,
7043 	.qc_issue		= ata_dummy_qc_issue,
7044 	.error_handler		= ata_dummy_error_handler,
7045 	.sched_eh		= ata_std_sched_eh,
7046 	.end_eh			= ata_std_end_eh,
7047 };
7048 
7049 const struct ata_port_info ata_dummy_port_info = {
7050 	.port_ops		= &ata_dummy_port_ops,
7051 };
7052 
7053 /*
7054  * Utility print functions
7055  */
7056 void ata_port_printk(const struct ata_port *ap, const char *level,
7057 		     const char *fmt, ...)
7058 {
7059 	struct va_format vaf;
7060 	va_list args;
7061 
7062 	va_start(args, fmt);
7063 
7064 	vaf.fmt = fmt;
7065 	vaf.va = &args;
7066 
7067 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
7068 
7069 	va_end(args);
7070 }
7071 EXPORT_SYMBOL(ata_port_printk);
7072 
7073 void ata_link_printk(const struct ata_link *link, const char *level,
7074 		     const char *fmt, ...)
7075 {
7076 	struct va_format vaf;
7077 	va_list args;
7078 
7079 	va_start(args, fmt);
7080 
7081 	vaf.fmt = fmt;
7082 	vaf.va = &args;
7083 
7084 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7085 		printk("%sata%u.%02u: %pV",
7086 		       level, link->ap->print_id, link->pmp, &vaf);
7087 	else
7088 		printk("%sata%u: %pV",
7089 		       level, link->ap->print_id, &vaf);
7090 
7091 	va_end(args);
7092 }
7093 EXPORT_SYMBOL(ata_link_printk);
7094 
7095 void ata_dev_printk(const struct ata_device *dev, const char *level,
7096 		    const char *fmt, ...)
7097 {
7098 	struct va_format vaf;
7099 	va_list args;
7100 
7101 	va_start(args, fmt);
7102 
7103 	vaf.fmt = fmt;
7104 	vaf.va = &args;
7105 
7106 	printk("%sata%u.%02u: %pV",
7107 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7108 	       &vaf);
7109 
7110 	va_end(args);
7111 }
7112 EXPORT_SYMBOL(ata_dev_printk);
7113 
7114 void ata_print_version(const struct device *dev, const char *version)
7115 {
7116 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7117 }
7118 EXPORT_SYMBOL(ata_print_version);
7119 
7120 /*
7121  * libata is essentially a library of internal helper functions for
7122  * low-level ATA host controller drivers.  As such, the API/ABI is
7123  * likely to change as new drivers are added and updated.
7124  * Do not depend on ABI/API stability.
7125  */
7126 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7127 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7128 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7129 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7130 EXPORT_SYMBOL_GPL(sata_port_ops);
7131 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7132 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7133 EXPORT_SYMBOL_GPL(ata_link_next);
7134 EXPORT_SYMBOL_GPL(ata_dev_next);
7135 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7136 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7137 EXPORT_SYMBOL_GPL(ata_host_init);
7138 EXPORT_SYMBOL_GPL(ata_host_alloc);
7139 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7140 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7141 EXPORT_SYMBOL_GPL(ata_host_start);
7142 EXPORT_SYMBOL_GPL(ata_host_register);
7143 EXPORT_SYMBOL_GPL(ata_host_activate);
7144 EXPORT_SYMBOL_GPL(ata_host_detach);
7145 EXPORT_SYMBOL_GPL(ata_sg_init);
7146 EXPORT_SYMBOL_GPL(ata_qc_complete);
7147 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7148 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7149 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7150 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7151 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7152 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7153 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7154 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7155 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7156 EXPORT_SYMBOL_GPL(ata_mode_string);
7157 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7158 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7159 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7160 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7161 EXPORT_SYMBOL_GPL(ata_dev_disable);
7162 EXPORT_SYMBOL_GPL(sata_set_spd);
7163 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7164 EXPORT_SYMBOL_GPL(sata_link_debounce);
7165 EXPORT_SYMBOL_GPL(sata_link_resume);
7166 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7167 EXPORT_SYMBOL_GPL(ata_std_prereset);
7168 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7169 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7170 EXPORT_SYMBOL_GPL(ata_std_postreset);
7171 EXPORT_SYMBOL_GPL(ata_dev_classify);
7172 EXPORT_SYMBOL_GPL(ata_dev_pair);
7173 EXPORT_SYMBOL_GPL(ata_ratelimit);
7174 EXPORT_SYMBOL_GPL(ata_msleep);
7175 EXPORT_SYMBOL_GPL(ata_wait_register);
7176 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7177 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7178 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7179 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7180 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7181 EXPORT_SYMBOL_GPL(sata_scr_valid);
7182 EXPORT_SYMBOL_GPL(sata_scr_read);
7183 EXPORT_SYMBOL_GPL(sata_scr_write);
7184 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7185 EXPORT_SYMBOL_GPL(ata_link_online);
7186 EXPORT_SYMBOL_GPL(ata_link_offline);
7187 #ifdef CONFIG_PM
7188 EXPORT_SYMBOL_GPL(ata_host_suspend);
7189 EXPORT_SYMBOL_GPL(ata_host_resume);
7190 #endif /* CONFIG_PM */
7191 EXPORT_SYMBOL_GPL(ata_id_string);
7192 EXPORT_SYMBOL_GPL(ata_id_c_string);
7193 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7194 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7195 
7196 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7197 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7198 EXPORT_SYMBOL_GPL(ata_timing_compute);
7199 EXPORT_SYMBOL_GPL(ata_timing_merge);
7200 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7201 
7202 #ifdef CONFIG_PCI
7203 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7204 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7205 #ifdef CONFIG_PM
7206 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7207 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7208 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7209 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7210 #endif /* CONFIG_PM */
7211 #endif /* CONFIG_PCI */
7212 
7213 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7214 
7215 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7216 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7217 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7218 EXPORT_SYMBOL_GPL(ata_port_desc);
7219 #ifdef CONFIG_PCI
7220 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7221 #endif /* CONFIG_PCI */
7222 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7223 EXPORT_SYMBOL_GPL(ata_link_abort);
7224 EXPORT_SYMBOL_GPL(ata_port_abort);
7225 EXPORT_SYMBOL_GPL(ata_port_freeze);
7226 EXPORT_SYMBOL_GPL(sata_async_notification);
7227 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7228 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7229 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7230 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7231 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7232 EXPORT_SYMBOL_GPL(ata_do_eh);
7233 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7234 
7235 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7236 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7237 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7238 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7239 EXPORT_SYMBOL_GPL(ata_cable_sata);
7240