1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/time.h> 54 #include <linux/interrupt.h> 55 #include <linux/completion.h> 56 #include <linux/suspend.h> 57 #include <linux/workqueue.h> 58 #include <linux/scatterlist.h> 59 #include <linux/io.h> 60 #include <linux/async.h> 61 #include <linux/log2.h> 62 #include <linux/slab.h> 63 #include <linux/glob.h> 64 #include <scsi/scsi.h> 65 #include <scsi/scsi_cmnd.h> 66 #include <scsi/scsi_host.h> 67 #include <linux/libata.h> 68 #include <asm/byteorder.h> 69 #include <asm/unaligned.h> 70 #include <linux/cdrom.h> 71 #include <linux/ratelimit.h> 72 #include <linux/leds.h> 73 #include <linux/pm_runtime.h> 74 #include <linux/platform_device.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/libata.h> 78 79 #include "libata.h" 80 #include "libata-transport.h" 81 82 /* debounce timing parameters in msecs { interval, duration, timeout } */ 83 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 84 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 85 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 86 87 const struct ata_port_operations ata_base_port_ops = { 88 .prereset = ata_std_prereset, 89 .postreset = ata_std_postreset, 90 .error_handler = ata_std_error_handler, 91 .sched_eh = ata_std_sched_eh, 92 .end_eh = ata_std_end_eh, 93 }; 94 95 const struct ata_port_operations sata_port_ops = { 96 .inherits = &ata_base_port_ops, 97 98 .qc_defer = ata_std_qc_defer, 99 .hardreset = sata_std_hardreset, 100 }; 101 102 static unsigned int ata_dev_init_params(struct ata_device *dev, 103 u16 heads, u16 sectors); 104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 105 static void ata_dev_xfermask(struct ata_device *dev); 106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 107 108 atomic_t ata_print_id = ATOMIC_INIT(0); 109 110 struct ata_force_param { 111 const char *name; 112 unsigned int cbl; 113 int spd_limit; 114 unsigned long xfer_mask; 115 unsigned int horkage_on; 116 unsigned int horkage_off; 117 unsigned int lflags; 118 }; 119 120 struct ata_force_ent { 121 int port; 122 int device; 123 struct ata_force_param param; 124 }; 125 126 static struct ata_force_ent *ata_force_tbl; 127 static int ata_force_tbl_size; 128 129 static char ata_force_param_buf[PAGE_SIZE] __initdata; 130 /* param_buf is thrown away after initialization, disallow read */ 131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 133 134 static int atapi_enabled = 1; 135 module_param(atapi_enabled, int, 0444); 136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 137 138 static int atapi_dmadir = 0; 139 module_param(atapi_dmadir, int, 0444); 140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 141 142 int atapi_passthru16 = 1; 143 module_param(atapi_passthru16, int, 0444); 144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 145 146 int libata_fua = 0; 147 module_param_named(fua, libata_fua, int, 0444); 148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 149 150 static int ata_ignore_hpa; 151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 153 154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 155 module_param_named(dma, libata_dma_mask, int, 0444); 156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 157 158 static int ata_probe_timeout; 159 module_param(ata_probe_timeout, int, 0444); 160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 161 162 int libata_noacpi = 0; 163 module_param_named(noacpi, libata_noacpi, int, 0444); 164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 165 166 int libata_allow_tpm = 0; 167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 169 170 static int atapi_an; 171 module_param(atapi_an, int, 0444); 172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 173 174 MODULE_AUTHOR("Jeff Garzik"); 175 MODULE_DESCRIPTION("Library module for ATA devices"); 176 MODULE_LICENSE("GPL"); 177 MODULE_VERSION(DRV_VERSION); 178 179 180 static bool ata_sstatus_online(u32 sstatus) 181 { 182 return (sstatus & 0xf) == 0x3; 183 } 184 185 /** 186 * ata_link_next - link iteration helper 187 * @link: the previous link, NULL to start 188 * @ap: ATA port containing links to iterate 189 * @mode: iteration mode, one of ATA_LITER_* 190 * 191 * LOCKING: 192 * Host lock or EH context. 193 * 194 * RETURNS: 195 * Pointer to the next link. 196 */ 197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 198 enum ata_link_iter_mode mode) 199 { 200 BUG_ON(mode != ATA_LITER_EDGE && 201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 202 203 /* NULL link indicates start of iteration */ 204 if (!link) 205 switch (mode) { 206 case ATA_LITER_EDGE: 207 case ATA_LITER_PMP_FIRST: 208 if (sata_pmp_attached(ap)) 209 return ap->pmp_link; 210 /* fall through */ 211 case ATA_LITER_HOST_FIRST: 212 return &ap->link; 213 } 214 215 /* we just iterated over the host link, what's next? */ 216 if (link == &ap->link) 217 switch (mode) { 218 case ATA_LITER_HOST_FIRST: 219 if (sata_pmp_attached(ap)) 220 return ap->pmp_link; 221 /* fall through */ 222 case ATA_LITER_PMP_FIRST: 223 if (unlikely(ap->slave_link)) 224 return ap->slave_link; 225 /* fall through */ 226 case ATA_LITER_EDGE: 227 return NULL; 228 } 229 230 /* slave_link excludes PMP */ 231 if (unlikely(link == ap->slave_link)) 232 return NULL; 233 234 /* we were over a PMP link */ 235 if (++link < ap->pmp_link + ap->nr_pmp_links) 236 return link; 237 238 if (mode == ATA_LITER_PMP_FIRST) 239 return &ap->link; 240 241 return NULL; 242 } 243 244 /** 245 * ata_dev_next - device iteration helper 246 * @dev: the previous device, NULL to start 247 * @link: ATA link containing devices to iterate 248 * @mode: iteration mode, one of ATA_DITER_* 249 * 250 * LOCKING: 251 * Host lock or EH context. 252 * 253 * RETURNS: 254 * Pointer to the next device. 255 */ 256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 257 enum ata_dev_iter_mode mode) 258 { 259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 261 262 /* NULL dev indicates start of iteration */ 263 if (!dev) 264 switch (mode) { 265 case ATA_DITER_ENABLED: 266 case ATA_DITER_ALL: 267 dev = link->device; 268 goto check; 269 case ATA_DITER_ENABLED_REVERSE: 270 case ATA_DITER_ALL_REVERSE: 271 dev = link->device + ata_link_max_devices(link) - 1; 272 goto check; 273 } 274 275 next: 276 /* move to the next one */ 277 switch (mode) { 278 case ATA_DITER_ENABLED: 279 case ATA_DITER_ALL: 280 if (++dev < link->device + ata_link_max_devices(link)) 281 goto check; 282 return NULL; 283 case ATA_DITER_ENABLED_REVERSE: 284 case ATA_DITER_ALL_REVERSE: 285 if (--dev >= link->device) 286 goto check; 287 return NULL; 288 } 289 290 check: 291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 292 !ata_dev_enabled(dev)) 293 goto next; 294 return dev; 295 } 296 297 /** 298 * ata_dev_phys_link - find physical link for a device 299 * @dev: ATA device to look up physical link for 300 * 301 * Look up physical link which @dev is attached to. Note that 302 * this is different from @dev->link only when @dev is on slave 303 * link. For all other cases, it's the same as @dev->link. 304 * 305 * LOCKING: 306 * Don't care. 307 * 308 * RETURNS: 309 * Pointer to the found physical link. 310 */ 311 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 312 { 313 struct ata_port *ap = dev->link->ap; 314 315 if (!ap->slave_link) 316 return dev->link; 317 if (!dev->devno) 318 return &ap->link; 319 return ap->slave_link; 320 } 321 322 /** 323 * ata_force_cbl - force cable type according to libata.force 324 * @ap: ATA port of interest 325 * 326 * Force cable type according to libata.force and whine about it. 327 * The last entry which has matching port number is used, so it 328 * can be specified as part of device force parameters. For 329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 330 * same effect. 331 * 332 * LOCKING: 333 * EH context. 334 */ 335 void ata_force_cbl(struct ata_port *ap) 336 { 337 int i; 338 339 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 340 const struct ata_force_ent *fe = &ata_force_tbl[i]; 341 342 if (fe->port != -1 && fe->port != ap->print_id) 343 continue; 344 345 if (fe->param.cbl == ATA_CBL_NONE) 346 continue; 347 348 ap->cbl = fe->param.cbl; 349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 350 return; 351 } 352 } 353 354 /** 355 * ata_force_link_limits - force link limits according to libata.force 356 * @link: ATA link of interest 357 * 358 * Force link flags and SATA spd limit according to libata.force 359 * and whine about it. When only the port part is specified 360 * (e.g. 1:), the limit applies to all links connected to both 361 * the host link and all fan-out ports connected via PMP. If the 362 * device part is specified as 0 (e.g. 1.00:), it specifies the 363 * first fan-out link not the host link. Device number 15 always 364 * points to the host link whether PMP is attached or not. If the 365 * controller has slave link, device number 16 points to it. 366 * 367 * LOCKING: 368 * EH context. 369 */ 370 static void ata_force_link_limits(struct ata_link *link) 371 { 372 bool did_spd = false; 373 int linkno = link->pmp; 374 int i; 375 376 if (ata_is_host_link(link)) 377 linkno += 15; 378 379 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 380 const struct ata_force_ent *fe = &ata_force_tbl[i]; 381 382 if (fe->port != -1 && fe->port != link->ap->print_id) 383 continue; 384 385 if (fe->device != -1 && fe->device != linkno) 386 continue; 387 388 /* only honor the first spd limit */ 389 if (!did_spd && fe->param.spd_limit) { 390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 392 fe->param.name); 393 did_spd = true; 394 } 395 396 /* let lflags stack */ 397 if (fe->param.lflags) { 398 link->flags |= fe->param.lflags; 399 ata_link_notice(link, 400 "FORCE: link flag 0x%x forced -> 0x%x\n", 401 fe->param.lflags, link->flags); 402 } 403 } 404 } 405 406 /** 407 * ata_force_xfermask - force xfermask according to libata.force 408 * @dev: ATA device of interest 409 * 410 * Force xfer_mask according to libata.force and whine about it. 411 * For consistency with link selection, device number 15 selects 412 * the first device connected to the host link. 413 * 414 * LOCKING: 415 * EH context. 416 */ 417 static void ata_force_xfermask(struct ata_device *dev) 418 { 419 int devno = dev->link->pmp + dev->devno; 420 int alt_devno = devno; 421 int i; 422 423 /* allow n.15/16 for devices attached to host port */ 424 if (ata_is_host_link(dev->link)) 425 alt_devno += 15; 426 427 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 428 const struct ata_force_ent *fe = &ata_force_tbl[i]; 429 unsigned long pio_mask, mwdma_mask, udma_mask; 430 431 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 432 continue; 433 434 if (fe->device != -1 && fe->device != devno && 435 fe->device != alt_devno) 436 continue; 437 438 if (!fe->param.xfer_mask) 439 continue; 440 441 ata_unpack_xfermask(fe->param.xfer_mask, 442 &pio_mask, &mwdma_mask, &udma_mask); 443 if (udma_mask) 444 dev->udma_mask = udma_mask; 445 else if (mwdma_mask) { 446 dev->udma_mask = 0; 447 dev->mwdma_mask = mwdma_mask; 448 } else { 449 dev->udma_mask = 0; 450 dev->mwdma_mask = 0; 451 dev->pio_mask = pio_mask; 452 } 453 454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 455 fe->param.name); 456 return; 457 } 458 } 459 460 /** 461 * ata_force_horkage - force horkage according to libata.force 462 * @dev: ATA device of interest 463 * 464 * Force horkage according to libata.force and whine about it. 465 * For consistency with link selection, device number 15 selects 466 * the first device connected to the host link. 467 * 468 * LOCKING: 469 * EH context. 470 */ 471 static void ata_force_horkage(struct ata_device *dev) 472 { 473 int devno = dev->link->pmp + dev->devno; 474 int alt_devno = devno; 475 int i; 476 477 /* allow n.15/16 for devices attached to host port */ 478 if (ata_is_host_link(dev->link)) 479 alt_devno += 15; 480 481 for (i = 0; i < ata_force_tbl_size; i++) { 482 const struct ata_force_ent *fe = &ata_force_tbl[i]; 483 484 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 485 continue; 486 487 if (fe->device != -1 && fe->device != devno && 488 fe->device != alt_devno) 489 continue; 490 491 if (!(~dev->horkage & fe->param.horkage_on) && 492 !(dev->horkage & fe->param.horkage_off)) 493 continue; 494 495 dev->horkage |= fe->param.horkage_on; 496 dev->horkage &= ~fe->param.horkage_off; 497 498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 499 fe->param.name); 500 } 501 } 502 503 /** 504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 505 * @opcode: SCSI opcode 506 * 507 * Determine ATAPI command type from @opcode. 508 * 509 * LOCKING: 510 * None. 511 * 512 * RETURNS: 513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 514 */ 515 int atapi_cmd_type(u8 opcode) 516 { 517 switch (opcode) { 518 case GPCMD_READ_10: 519 case GPCMD_READ_12: 520 return ATAPI_READ; 521 522 case GPCMD_WRITE_10: 523 case GPCMD_WRITE_12: 524 case GPCMD_WRITE_AND_VERIFY_10: 525 return ATAPI_WRITE; 526 527 case GPCMD_READ_CD: 528 case GPCMD_READ_CD_MSF: 529 return ATAPI_READ_CD; 530 531 case ATA_16: 532 case ATA_12: 533 if (atapi_passthru16) 534 return ATAPI_PASS_THRU; 535 /* fall thru */ 536 default: 537 return ATAPI_MISC; 538 } 539 } 540 541 /** 542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 543 * @tf: Taskfile to convert 544 * @pmp: Port multiplier port 545 * @is_cmd: This FIS is for command 546 * @fis: Buffer into which data will output 547 * 548 * Converts a standard ATA taskfile to a Serial ATA 549 * FIS structure (Register - Host to Device). 550 * 551 * LOCKING: 552 * Inherited from caller. 553 */ 554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 555 { 556 fis[0] = 0x27; /* Register - Host to Device FIS */ 557 fis[1] = pmp & 0xf; /* Port multiplier number*/ 558 if (is_cmd) 559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 560 561 fis[2] = tf->command; 562 fis[3] = tf->feature; 563 564 fis[4] = tf->lbal; 565 fis[5] = tf->lbam; 566 fis[6] = tf->lbah; 567 fis[7] = tf->device; 568 569 fis[8] = tf->hob_lbal; 570 fis[9] = tf->hob_lbam; 571 fis[10] = tf->hob_lbah; 572 fis[11] = tf->hob_feature; 573 574 fis[12] = tf->nsect; 575 fis[13] = tf->hob_nsect; 576 fis[14] = 0; 577 fis[15] = tf->ctl; 578 579 fis[16] = tf->auxiliary & 0xff; 580 fis[17] = (tf->auxiliary >> 8) & 0xff; 581 fis[18] = (tf->auxiliary >> 16) & 0xff; 582 fis[19] = (tf->auxiliary >> 24) & 0xff; 583 } 584 585 /** 586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 587 * @fis: Buffer from which data will be input 588 * @tf: Taskfile to output 589 * 590 * Converts a serial ATA FIS structure to a standard ATA taskfile. 591 * 592 * LOCKING: 593 * Inherited from caller. 594 */ 595 596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 597 { 598 tf->command = fis[2]; /* status */ 599 tf->feature = fis[3]; /* error */ 600 601 tf->lbal = fis[4]; 602 tf->lbam = fis[5]; 603 tf->lbah = fis[6]; 604 tf->device = fis[7]; 605 606 tf->hob_lbal = fis[8]; 607 tf->hob_lbam = fis[9]; 608 tf->hob_lbah = fis[10]; 609 610 tf->nsect = fis[12]; 611 tf->hob_nsect = fis[13]; 612 } 613 614 static const u8 ata_rw_cmds[] = { 615 /* pio multi */ 616 ATA_CMD_READ_MULTI, 617 ATA_CMD_WRITE_MULTI, 618 ATA_CMD_READ_MULTI_EXT, 619 ATA_CMD_WRITE_MULTI_EXT, 620 0, 621 0, 622 0, 623 ATA_CMD_WRITE_MULTI_FUA_EXT, 624 /* pio */ 625 ATA_CMD_PIO_READ, 626 ATA_CMD_PIO_WRITE, 627 ATA_CMD_PIO_READ_EXT, 628 ATA_CMD_PIO_WRITE_EXT, 629 0, 630 0, 631 0, 632 0, 633 /* dma */ 634 ATA_CMD_READ, 635 ATA_CMD_WRITE, 636 ATA_CMD_READ_EXT, 637 ATA_CMD_WRITE_EXT, 638 0, 639 0, 640 0, 641 ATA_CMD_WRITE_FUA_EXT 642 }; 643 644 /** 645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 646 * @tf: command to examine and configure 647 * @dev: device tf belongs to 648 * 649 * Examine the device configuration and tf->flags to calculate 650 * the proper read/write commands and protocol to use. 651 * 652 * LOCKING: 653 * caller. 654 */ 655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 656 { 657 u8 cmd; 658 659 int index, fua, lba48, write; 660 661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 664 665 if (dev->flags & ATA_DFLAG_PIO) { 666 tf->protocol = ATA_PROT_PIO; 667 index = dev->multi_count ? 0 : 8; 668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 669 /* Unable to use DMA due to host limitation */ 670 tf->protocol = ATA_PROT_PIO; 671 index = dev->multi_count ? 0 : 8; 672 } else { 673 tf->protocol = ATA_PROT_DMA; 674 index = 16; 675 } 676 677 cmd = ata_rw_cmds[index + fua + lba48 + write]; 678 if (cmd) { 679 tf->command = cmd; 680 return 0; 681 } 682 return -1; 683 } 684 685 /** 686 * ata_tf_read_block - Read block address from ATA taskfile 687 * @tf: ATA taskfile of interest 688 * @dev: ATA device @tf belongs to 689 * 690 * LOCKING: 691 * None. 692 * 693 * Read block address from @tf. This function can handle all 694 * three address formats - LBA, LBA48 and CHS. tf->protocol and 695 * flags select the address format to use. 696 * 697 * RETURNS: 698 * Block address read from @tf. 699 */ 700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 701 { 702 u64 block = 0; 703 704 if (tf->flags & ATA_TFLAG_LBA) { 705 if (tf->flags & ATA_TFLAG_LBA48) { 706 block |= (u64)tf->hob_lbah << 40; 707 block |= (u64)tf->hob_lbam << 32; 708 block |= (u64)tf->hob_lbal << 24; 709 } else 710 block |= (tf->device & 0xf) << 24; 711 712 block |= tf->lbah << 16; 713 block |= tf->lbam << 8; 714 block |= tf->lbal; 715 } else { 716 u32 cyl, head, sect; 717 718 cyl = tf->lbam | (tf->lbah << 8); 719 head = tf->device & 0xf; 720 sect = tf->lbal; 721 722 if (!sect) { 723 ata_dev_warn(dev, 724 "device reported invalid CHS sector 0\n"); 725 return U64_MAX; 726 } 727 728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 729 } 730 731 return block; 732 } 733 734 /** 735 * ata_build_rw_tf - Build ATA taskfile for given read/write request 736 * @tf: Target ATA taskfile 737 * @dev: ATA device @tf belongs to 738 * @block: Block address 739 * @n_block: Number of blocks 740 * @tf_flags: RW/FUA etc... 741 * @tag: tag 742 * @class: IO priority class 743 * 744 * LOCKING: 745 * None. 746 * 747 * Build ATA taskfile @tf for read/write request described by 748 * @block, @n_block, @tf_flags and @tag on @dev. 749 * 750 * RETURNS: 751 * 752 * 0 on success, -ERANGE if the request is too large for @dev, 753 * -EINVAL if the request is invalid. 754 */ 755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 756 u64 block, u32 n_block, unsigned int tf_flags, 757 unsigned int tag, int class) 758 { 759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 760 tf->flags |= tf_flags; 761 762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 763 /* yay, NCQ */ 764 if (!lba_48_ok(block, n_block)) 765 return -ERANGE; 766 767 tf->protocol = ATA_PROT_NCQ; 768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 769 770 if (tf->flags & ATA_TFLAG_WRITE) 771 tf->command = ATA_CMD_FPDMA_WRITE; 772 else 773 tf->command = ATA_CMD_FPDMA_READ; 774 775 tf->nsect = tag << 3; 776 tf->hob_feature = (n_block >> 8) & 0xff; 777 tf->feature = n_block & 0xff; 778 779 tf->hob_lbah = (block >> 40) & 0xff; 780 tf->hob_lbam = (block >> 32) & 0xff; 781 tf->hob_lbal = (block >> 24) & 0xff; 782 tf->lbah = (block >> 16) & 0xff; 783 tf->lbam = (block >> 8) & 0xff; 784 tf->lbal = block & 0xff; 785 786 tf->device = ATA_LBA; 787 if (tf->flags & ATA_TFLAG_FUA) 788 tf->device |= 1 << 7; 789 790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) { 791 if (class == IOPRIO_CLASS_RT) 792 tf->hob_nsect |= ATA_PRIO_HIGH << 793 ATA_SHIFT_PRIO; 794 } 795 } else if (dev->flags & ATA_DFLAG_LBA) { 796 tf->flags |= ATA_TFLAG_LBA; 797 798 if (lba_28_ok(block, n_block)) { 799 /* use LBA28 */ 800 tf->device |= (block >> 24) & 0xf; 801 } else if (lba_48_ok(block, n_block)) { 802 if (!(dev->flags & ATA_DFLAG_LBA48)) 803 return -ERANGE; 804 805 /* use LBA48 */ 806 tf->flags |= ATA_TFLAG_LBA48; 807 808 tf->hob_nsect = (n_block >> 8) & 0xff; 809 810 tf->hob_lbah = (block >> 40) & 0xff; 811 tf->hob_lbam = (block >> 32) & 0xff; 812 tf->hob_lbal = (block >> 24) & 0xff; 813 } else 814 /* request too large even for LBA48 */ 815 return -ERANGE; 816 817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 818 return -EINVAL; 819 820 tf->nsect = n_block & 0xff; 821 822 tf->lbah = (block >> 16) & 0xff; 823 tf->lbam = (block >> 8) & 0xff; 824 tf->lbal = block & 0xff; 825 826 tf->device |= ATA_LBA; 827 } else { 828 /* CHS */ 829 u32 sect, head, cyl, track; 830 831 /* The request -may- be too large for CHS addressing. */ 832 if (!lba_28_ok(block, n_block)) 833 return -ERANGE; 834 835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 836 return -EINVAL; 837 838 /* Convert LBA to CHS */ 839 track = (u32)block / dev->sectors; 840 cyl = track / dev->heads; 841 head = track % dev->heads; 842 sect = (u32)block % dev->sectors + 1; 843 844 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 845 (u32)block, track, cyl, head, sect); 846 847 /* Check whether the converted CHS can fit. 848 Cylinder: 0-65535 849 Head: 0-15 850 Sector: 1-255*/ 851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 852 return -ERANGE; 853 854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 855 tf->lbal = sect; 856 tf->lbam = cyl; 857 tf->lbah = cyl >> 8; 858 tf->device |= head; 859 } 860 861 return 0; 862 } 863 864 /** 865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 866 * @pio_mask: pio_mask 867 * @mwdma_mask: mwdma_mask 868 * @udma_mask: udma_mask 869 * 870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 871 * unsigned int xfer_mask. 872 * 873 * LOCKING: 874 * None. 875 * 876 * RETURNS: 877 * Packed xfer_mask. 878 */ 879 unsigned long ata_pack_xfermask(unsigned long pio_mask, 880 unsigned long mwdma_mask, 881 unsigned long udma_mask) 882 { 883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 886 } 887 888 /** 889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 890 * @xfer_mask: xfer_mask to unpack 891 * @pio_mask: resulting pio_mask 892 * @mwdma_mask: resulting mwdma_mask 893 * @udma_mask: resulting udma_mask 894 * 895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 896 * Any NULL destination masks will be ignored. 897 */ 898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 899 unsigned long *mwdma_mask, unsigned long *udma_mask) 900 { 901 if (pio_mask) 902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 903 if (mwdma_mask) 904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 905 if (udma_mask) 906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 907 } 908 909 static const struct ata_xfer_ent { 910 int shift, bits; 911 u8 base; 912 } ata_xfer_tbl[] = { 913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 916 { -1, }, 917 }; 918 919 /** 920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 921 * @xfer_mask: xfer_mask of interest 922 * 923 * Return matching XFER_* value for @xfer_mask. Only the highest 924 * bit of @xfer_mask is considered. 925 * 926 * LOCKING: 927 * None. 928 * 929 * RETURNS: 930 * Matching XFER_* value, 0xff if no match found. 931 */ 932 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 933 { 934 int highbit = fls(xfer_mask) - 1; 935 const struct ata_xfer_ent *ent; 936 937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 939 return ent->base + highbit - ent->shift; 940 return 0xff; 941 } 942 943 /** 944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 945 * @xfer_mode: XFER_* of interest 946 * 947 * Return matching xfer_mask for @xfer_mode. 948 * 949 * LOCKING: 950 * None. 951 * 952 * RETURNS: 953 * Matching xfer_mask, 0 if no match found. 954 */ 955 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 956 { 957 const struct ata_xfer_ent *ent; 958 959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 962 & ~((1 << ent->shift) - 1); 963 return 0; 964 } 965 966 /** 967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 968 * @xfer_mode: XFER_* of interest 969 * 970 * Return matching xfer_shift for @xfer_mode. 971 * 972 * LOCKING: 973 * None. 974 * 975 * RETURNS: 976 * Matching xfer_shift, -1 if no match found. 977 */ 978 int ata_xfer_mode2shift(unsigned long xfer_mode) 979 { 980 const struct ata_xfer_ent *ent; 981 982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 984 return ent->shift; 985 return -1; 986 } 987 988 /** 989 * ata_mode_string - convert xfer_mask to string 990 * @xfer_mask: mask of bits supported; only highest bit counts. 991 * 992 * Determine string which represents the highest speed 993 * (highest bit in @modemask). 994 * 995 * LOCKING: 996 * None. 997 * 998 * RETURNS: 999 * Constant C string representing highest speed listed in 1000 * @mode_mask, or the constant C string "<n/a>". 1001 */ 1002 const char *ata_mode_string(unsigned long xfer_mask) 1003 { 1004 static const char * const xfer_mode_str[] = { 1005 "PIO0", 1006 "PIO1", 1007 "PIO2", 1008 "PIO3", 1009 "PIO4", 1010 "PIO5", 1011 "PIO6", 1012 "MWDMA0", 1013 "MWDMA1", 1014 "MWDMA2", 1015 "MWDMA3", 1016 "MWDMA4", 1017 "UDMA/16", 1018 "UDMA/25", 1019 "UDMA/33", 1020 "UDMA/44", 1021 "UDMA/66", 1022 "UDMA/100", 1023 "UDMA/133", 1024 "UDMA7", 1025 }; 1026 int highbit; 1027 1028 highbit = fls(xfer_mask) - 1; 1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1030 return xfer_mode_str[highbit]; 1031 return "<n/a>"; 1032 } 1033 1034 const char *sata_spd_string(unsigned int spd) 1035 { 1036 static const char * const spd_str[] = { 1037 "1.5 Gbps", 1038 "3.0 Gbps", 1039 "6.0 Gbps", 1040 }; 1041 1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1043 return "<unknown>"; 1044 return spd_str[spd - 1]; 1045 } 1046 1047 /** 1048 * ata_dev_classify - determine device type based on ATA-spec signature 1049 * @tf: ATA taskfile register set for device to be identified 1050 * 1051 * Determine from taskfile register contents whether a device is 1052 * ATA or ATAPI, as per "Signature and persistence" section 1053 * of ATA/PI spec (volume 1, sect 5.14). 1054 * 1055 * LOCKING: 1056 * None. 1057 * 1058 * RETURNS: 1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1061 */ 1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1063 { 1064 /* Apple's open source Darwin code hints that some devices only 1065 * put a proper signature into the LBA mid/high registers, 1066 * So, we only check those. It's sufficient for uniqueness. 1067 * 1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1069 * signatures for ATA and ATAPI devices attached on SerialATA, 1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1071 * spec has never mentioned about using different signatures 1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1073 * Multiplier specification began to use 0x69/0x96 to identify 1074 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1076 * 0x69/0x96 shortly and described them as reserved for 1077 * SerialATA. 1078 * 1079 * We follow the current spec and consider that 0x69/0x96 1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1082 * SEMB signature. This is worked around in 1083 * ata_dev_read_id(). 1084 */ 1085 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1086 DPRINTK("found ATA device by sig\n"); 1087 return ATA_DEV_ATA; 1088 } 1089 1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1091 DPRINTK("found ATAPI device by sig\n"); 1092 return ATA_DEV_ATAPI; 1093 } 1094 1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1096 DPRINTK("found PMP device by sig\n"); 1097 return ATA_DEV_PMP; 1098 } 1099 1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1101 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1102 return ATA_DEV_SEMB; 1103 } 1104 1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { 1106 DPRINTK("found ZAC device by sig\n"); 1107 return ATA_DEV_ZAC; 1108 } 1109 1110 DPRINTK("unknown device\n"); 1111 return ATA_DEV_UNKNOWN; 1112 } 1113 1114 /** 1115 * ata_id_string - Convert IDENTIFY DEVICE page into string 1116 * @id: IDENTIFY DEVICE results we will examine 1117 * @s: string into which data is output 1118 * @ofs: offset into identify device page 1119 * @len: length of string to return. must be an even number. 1120 * 1121 * The strings in the IDENTIFY DEVICE page are broken up into 1122 * 16-bit chunks. Run through the string, and output each 1123 * 8-bit chunk linearly, regardless of platform. 1124 * 1125 * LOCKING: 1126 * caller. 1127 */ 1128 1129 void ata_id_string(const u16 *id, unsigned char *s, 1130 unsigned int ofs, unsigned int len) 1131 { 1132 unsigned int c; 1133 1134 BUG_ON(len & 1); 1135 1136 while (len > 0) { 1137 c = id[ofs] >> 8; 1138 *s = c; 1139 s++; 1140 1141 c = id[ofs] & 0xff; 1142 *s = c; 1143 s++; 1144 1145 ofs++; 1146 len -= 2; 1147 } 1148 } 1149 1150 /** 1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1152 * @id: IDENTIFY DEVICE results we will examine 1153 * @s: string into which data is output 1154 * @ofs: offset into identify device page 1155 * @len: length of string to return. must be an odd number. 1156 * 1157 * This function is identical to ata_id_string except that it 1158 * trims trailing spaces and terminates the resulting string with 1159 * null. @len must be actual maximum length (even number) + 1. 1160 * 1161 * LOCKING: 1162 * caller. 1163 */ 1164 void ata_id_c_string(const u16 *id, unsigned char *s, 1165 unsigned int ofs, unsigned int len) 1166 { 1167 unsigned char *p; 1168 1169 ata_id_string(id, s, ofs, len - 1); 1170 1171 p = s + strnlen(s, len - 1); 1172 while (p > s && p[-1] == ' ') 1173 p--; 1174 *p = '\0'; 1175 } 1176 1177 static u64 ata_id_n_sectors(const u16 *id) 1178 { 1179 if (ata_id_has_lba(id)) { 1180 if (ata_id_has_lba48(id)) 1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1182 else 1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1184 } else { 1185 if (ata_id_current_chs_valid(id)) 1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1187 id[ATA_ID_CUR_SECTORS]; 1188 else 1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1190 id[ATA_ID_SECTORS]; 1191 } 1192 } 1193 1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1195 { 1196 u64 sectors = 0; 1197 1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1201 sectors |= (tf->lbah & 0xff) << 16; 1202 sectors |= (tf->lbam & 0xff) << 8; 1203 sectors |= (tf->lbal & 0xff); 1204 1205 return sectors; 1206 } 1207 1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1209 { 1210 u64 sectors = 0; 1211 1212 sectors |= (tf->device & 0x0f) << 24; 1213 sectors |= (tf->lbah & 0xff) << 16; 1214 sectors |= (tf->lbam & 0xff) << 8; 1215 sectors |= (tf->lbal & 0xff); 1216 1217 return sectors; 1218 } 1219 1220 /** 1221 * ata_read_native_max_address - Read native max address 1222 * @dev: target device 1223 * @max_sectors: out parameter for the result native max address 1224 * 1225 * Perform an LBA48 or LBA28 native size query upon the device in 1226 * question. 1227 * 1228 * RETURNS: 1229 * 0 on success, -EACCES if command is aborted by the drive. 1230 * -EIO on other errors. 1231 */ 1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1233 { 1234 unsigned int err_mask; 1235 struct ata_taskfile tf; 1236 int lba48 = ata_id_has_lba48(dev->id); 1237 1238 ata_tf_init(dev, &tf); 1239 1240 /* always clear all address registers */ 1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1242 1243 if (lba48) { 1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1245 tf.flags |= ATA_TFLAG_LBA48; 1246 } else 1247 tf.command = ATA_CMD_READ_NATIVE_MAX; 1248 1249 tf.protocol = ATA_PROT_NODATA; 1250 tf.device |= ATA_LBA; 1251 1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1253 if (err_mask) { 1254 ata_dev_warn(dev, 1255 "failed to read native max address (err_mask=0x%x)\n", 1256 err_mask); 1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1258 return -EACCES; 1259 return -EIO; 1260 } 1261 1262 if (lba48) 1263 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1264 else 1265 *max_sectors = ata_tf_to_lba(&tf) + 1; 1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1267 (*max_sectors)--; 1268 return 0; 1269 } 1270 1271 /** 1272 * ata_set_max_sectors - Set max sectors 1273 * @dev: target device 1274 * @new_sectors: new max sectors value to set for the device 1275 * 1276 * Set max sectors of @dev to @new_sectors. 1277 * 1278 * RETURNS: 1279 * 0 on success, -EACCES if command is aborted or denied (due to 1280 * previous non-volatile SET_MAX) by the drive. -EIO on other 1281 * errors. 1282 */ 1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1284 { 1285 unsigned int err_mask; 1286 struct ata_taskfile tf; 1287 int lba48 = ata_id_has_lba48(dev->id); 1288 1289 new_sectors--; 1290 1291 ata_tf_init(dev, &tf); 1292 1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1294 1295 if (lba48) { 1296 tf.command = ATA_CMD_SET_MAX_EXT; 1297 tf.flags |= ATA_TFLAG_LBA48; 1298 1299 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1300 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1301 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1302 } else { 1303 tf.command = ATA_CMD_SET_MAX; 1304 1305 tf.device |= (new_sectors >> 24) & 0xf; 1306 } 1307 1308 tf.protocol = ATA_PROT_NODATA; 1309 tf.device |= ATA_LBA; 1310 1311 tf.lbal = (new_sectors >> 0) & 0xff; 1312 tf.lbam = (new_sectors >> 8) & 0xff; 1313 tf.lbah = (new_sectors >> 16) & 0xff; 1314 1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1316 if (err_mask) { 1317 ata_dev_warn(dev, 1318 "failed to set max address (err_mask=0x%x)\n", 1319 err_mask); 1320 if (err_mask == AC_ERR_DEV && 1321 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1322 return -EACCES; 1323 return -EIO; 1324 } 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * ata_hpa_resize - Resize a device with an HPA set 1331 * @dev: Device to resize 1332 * 1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1334 * it if required to the full size of the media. The caller must check 1335 * the drive has the HPA feature set enabled. 1336 * 1337 * RETURNS: 1338 * 0 on success, -errno on failure. 1339 */ 1340 static int ata_hpa_resize(struct ata_device *dev) 1341 { 1342 struct ata_eh_context *ehc = &dev->link->eh_context; 1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1345 u64 sectors = ata_id_n_sectors(dev->id); 1346 u64 native_sectors; 1347 int rc; 1348 1349 /* do we need to do it? */ 1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1353 return 0; 1354 1355 /* read native max address */ 1356 rc = ata_read_native_max_address(dev, &native_sectors); 1357 if (rc) { 1358 /* If device aborted the command or HPA isn't going to 1359 * be unlocked, skip HPA resizing. 1360 */ 1361 if (rc == -EACCES || !unlock_hpa) { 1362 ata_dev_warn(dev, 1363 "HPA support seems broken, skipping HPA handling\n"); 1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1365 1366 /* we can continue if device aborted the command */ 1367 if (rc == -EACCES) 1368 rc = 0; 1369 } 1370 1371 return rc; 1372 } 1373 dev->n_native_sectors = native_sectors; 1374 1375 /* nothing to do? */ 1376 if (native_sectors <= sectors || !unlock_hpa) { 1377 if (!print_info || native_sectors == sectors) 1378 return 0; 1379 1380 if (native_sectors > sectors) 1381 ata_dev_info(dev, 1382 "HPA detected: current %llu, native %llu\n", 1383 (unsigned long long)sectors, 1384 (unsigned long long)native_sectors); 1385 else if (native_sectors < sectors) 1386 ata_dev_warn(dev, 1387 "native sectors (%llu) is smaller than sectors (%llu)\n", 1388 (unsigned long long)native_sectors, 1389 (unsigned long long)sectors); 1390 return 0; 1391 } 1392 1393 /* let's unlock HPA */ 1394 rc = ata_set_max_sectors(dev, native_sectors); 1395 if (rc == -EACCES) { 1396 /* if device aborted the command, skip HPA resizing */ 1397 ata_dev_warn(dev, 1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1399 (unsigned long long)sectors, 1400 (unsigned long long)native_sectors); 1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1402 return 0; 1403 } else if (rc) 1404 return rc; 1405 1406 /* re-read IDENTIFY data */ 1407 rc = ata_dev_reread_id(dev, 0); 1408 if (rc) { 1409 ata_dev_err(dev, 1410 "failed to re-read IDENTIFY data after HPA resizing\n"); 1411 return rc; 1412 } 1413 1414 if (print_info) { 1415 u64 new_sectors = ata_id_n_sectors(dev->id); 1416 ata_dev_info(dev, 1417 "HPA unlocked: %llu -> %llu, native %llu\n", 1418 (unsigned long long)sectors, 1419 (unsigned long long)new_sectors, 1420 (unsigned long long)native_sectors); 1421 } 1422 1423 return 0; 1424 } 1425 1426 /** 1427 * ata_dump_id - IDENTIFY DEVICE info debugging output 1428 * @id: IDENTIFY DEVICE page to dump 1429 * 1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1431 * page. 1432 * 1433 * LOCKING: 1434 * caller. 1435 */ 1436 1437 static inline void ata_dump_id(const u16 *id) 1438 { 1439 DPRINTK("49==0x%04x " 1440 "53==0x%04x " 1441 "63==0x%04x " 1442 "64==0x%04x " 1443 "75==0x%04x \n", 1444 id[49], 1445 id[53], 1446 id[63], 1447 id[64], 1448 id[75]); 1449 DPRINTK("80==0x%04x " 1450 "81==0x%04x " 1451 "82==0x%04x " 1452 "83==0x%04x " 1453 "84==0x%04x \n", 1454 id[80], 1455 id[81], 1456 id[82], 1457 id[83], 1458 id[84]); 1459 DPRINTK("88==0x%04x " 1460 "93==0x%04x\n", 1461 id[88], 1462 id[93]); 1463 } 1464 1465 /** 1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1467 * @id: IDENTIFY data to compute xfer mask from 1468 * 1469 * Compute the xfermask for this device. This is not as trivial 1470 * as it seems if we must consider early devices correctly. 1471 * 1472 * FIXME: pre IDE drive timing (do we care ?). 1473 * 1474 * LOCKING: 1475 * None. 1476 * 1477 * RETURNS: 1478 * Computed xfermask 1479 */ 1480 unsigned long ata_id_xfermask(const u16 *id) 1481 { 1482 unsigned long pio_mask, mwdma_mask, udma_mask; 1483 1484 /* Usual case. Word 53 indicates word 64 is valid */ 1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1487 pio_mask <<= 3; 1488 pio_mask |= 0x7; 1489 } else { 1490 /* If word 64 isn't valid then Word 51 high byte holds 1491 * the PIO timing number for the maximum. Turn it into 1492 * a mask. 1493 */ 1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1495 if (mode < 5) /* Valid PIO range */ 1496 pio_mask = (2 << mode) - 1; 1497 else 1498 pio_mask = 1; 1499 1500 /* But wait.. there's more. Design your standards by 1501 * committee and you too can get a free iordy field to 1502 * process. However its the speeds not the modes that 1503 * are supported... Note drivers using the timing API 1504 * will get this right anyway 1505 */ 1506 } 1507 1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1509 1510 if (ata_id_is_cfa(id)) { 1511 /* 1512 * Process compact flash extended modes 1513 */ 1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1516 1517 if (pio) 1518 pio_mask |= (1 << 5); 1519 if (pio > 1) 1520 pio_mask |= (1 << 6); 1521 if (dma) 1522 mwdma_mask |= (1 << 3); 1523 if (dma > 1) 1524 mwdma_mask |= (1 << 4); 1525 } 1526 1527 udma_mask = 0; 1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1530 1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1532 } 1533 1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1535 { 1536 struct completion *waiting = qc->private_data; 1537 1538 complete(waiting); 1539 } 1540 1541 /** 1542 * ata_exec_internal_sg - execute libata internal command 1543 * @dev: Device to which the command is sent 1544 * @tf: Taskfile registers for the command and the result 1545 * @cdb: CDB for packet command 1546 * @dma_dir: Data transfer direction of the command 1547 * @sgl: sg list for the data buffer of the command 1548 * @n_elem: Number of sg entries 1549 * @timeout: Timeout in msecs (0 for default) 1550 * 1551 * Executes libata internal command with timeout. @tf contains 1552 * command on entry and result on return. Timeout and error 1553 * conditions are reported via return value. No recovery action 1554 * is taken after a command times out. It's caller's duty to 1555 * clean up after timeout. 1556 * 1557 * LOCKING: 1558 * None. Should be called with kernel context, might sleep. 1559 * 1560 * RETURNS: 1561 * Zero on success, AC_ERR_* mask on failure 1562 */ 1563 unsigned ata_exec_internal_sg(struct ata_device *dev, 1564 struct ata_taskfile *tf, const u8 *cdb, 1565 int dma_dir, struct scatterlist *sgl, 1566 unsigned int n_elem, unsigned long timeout) 1567 { 1568 struct ata_link *link = dev->link; 1569 struct ata_port *ap = link->ap; 1570 u8 command = tf->command; 1571 int auto_timeout = 0; 1572 struct ata_queued_cmd *qc; 1573 unsigned int tag, preempted_tag; 1574 u32 preempted_sactive, preempted_qc_active; 1575 int preempted_nr_active_links; 1576 DECLARE_COMPLETION_ONSTACK(wait); 1577 unsigned long flags; 1578 unsigned int err_mask; 1579 int rc; 1580 1581 spin_lock_irqsave(ap->lock, flags); 1582 1583 /* no internal command while frozen */ 1584 if (ap->pflags & ATA_PFLAG_FROZEN) { 1585 spin_unlock_irqrestore(ap->lock, flags); 1586 return AC_ERR_SYSTEM; 1587 } 1588 1589 /* initialize internal qc */ 1590 1591 /* XXX: Tag 0 is used for drivers with legacy EH as some 1592 * drivers choke if any other tag is given. This breaks 1593 * ata_tag_internal() test for those drivers. Don't use new 1594 * EH stuff without converting to it. 1595 */ 1596 if (ap->ops->error_handler) 1597 tag = ATA_TAG_INTERNAL; 1598 else 1599 tag = 0; 1600 1601 qc = __ata_qc_from_tag(ap, tag); 1602 1603 qc->tag = tag; 1604 qc->scsicmd = NULL; 1605 qc->ap = ap; 1606 qc->dev = dev; 1607 ata_qc_reinit(qc); 1608 1609 preempted_tag = link->active_tag; 1610 preempted_sactive = link->sactive; 1611 preempted_qc_active = ap->qc_active; 1612 preempted_nr_active_links = ap->nr_active_links; 1613 link->active_tag = ATA_TAG_POISON; 1614 link->sactive = 0; 1615 ap->qc_active = 0; 1616 ap->nr_active_links = 0; 1617 1618 /* prepare & issue qc */ 1619 qc->tf = *tf; 1620 if (cdb) 1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1622 1623 /* some SATA bridges need us to indicate data xfer direction */ 1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1625 dma_dir == DMA_FROM_DEVICE) 1626 qc->tf.feature |= ATAPI_DMADIR; 1627 1628 qc->flags |= ATA_QCFLAG_RESULT_TF; 1629 qc->dma_dir = dma_dir; 1630 if (dma_dir != DMA_NONE) { 1631 unsigned int i, buflen = 0; 1632 struct scatterlist *sg; 1633 1634 for_each_sg(sgl, sg, n_elem, i) 1635 buflen += sg->length; 1636 1637 ata_sg_init(qc, sgl, n_elem); 1638 qc->nbytes = buflen; 1639 } 1640 1641 qc->private_data = &wait; 1642 qc->complete_fn = ata_qc_complete_internal; 1643 1644 ata_qc_issue(qc); 1645 1646 spin_unlock_irqrestore(ap->lock, flags); 1647 1648 if (!timeout) { 1649 if (ata_probe_timeout) 1650 timeout = ata_probe_timeout * 1000; 1651 else { 1652 timeout = ata_internal_cmd_timeout(dev, command); 1653 auto_timeout = 1; 1654 } 1655 } 1656 1657 if (ap->ops->error_handler) 1658 ata_eh_release(ap); 1659 1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1661 1662 if (ap->ops->error_handler) 1663 ata_eh_acquire(ap); 1664 1665 ata_sff_flush_pio_task(ap); 1666 1667 if (!rc) { 1668 spin_lock_irqsave(ap->lock, flags); 1669 1670 /* We're racing with irq here. If we lose, the 1671 * following test prevents us from completing the qc 1672 * twice. If we win, the port is frozen and will be 1673 * cleaned up by ->post_internal_cmd(). 1674 */ 1675 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1676 qc->err_mask |= AC_ERR_TIMEOUT; 1677 1678 if (ap->ops->error_handler) 1679 ata_port_freeze(ap); 1680 else 1681 ata_qc_complete(qc); 1682 1683 if (ata_msg_warn(ap)) 1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1685 command); 1686 } 1687 1688 spin_unlock_irqrestore(ap->lock, flags); 1689 } 1690 1691 /* do post_internal_cmd */ 1692 if (ap->ops->post_internal_cmd) 1693 ap->ops->post_internal_cmd(qc); 1694 1695 /* perform minimal error analysis */ 1696 if (qc->flags & ATA_QCFLAG_FAILED) { 1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1698 qc->err_mask |= AC_ERR_DEV; 1699 1700 if (!qc->err_mask) 1701 qc->err_mask |= AC_ERR_OTHER; 1702 1703 if (qc->err_mask & ~AC_ERR_OTHER) 1704 qc->err_mask &= ~AC_ERR_OTHER; 1705 } 1706 1707 /* finish up */ 1708 spin_lock_irqsave(ap->lock, flags); 1709 1710 *tf = qc->result_tf; 1711 err_mask = qc->err_mask; 1712 1713 ata_qc_free(qc); 1714 link->active_tag = preempted_tag; 1715 link->sactive = preempted_sactive; 1716 ap->qc_active = preempted_qc_active; 1717 ap->nr_active_links = preempted_nr_active_links; 1718 1719 spin_unlock_irqrestore(ap->lock, flags); 1720 1721 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1722 ata_internal_cmd_timed_out(dev, command); 1723 1724 return err_mask; 1725 } 1726 1727 /** 1728 * ata_exec_internal - execute libata internal command 1729 * @dev: Device to which the command is sent 1730 * @tf: Taskfile registers for the command and the result 1731 * @cdb: CDB for packet command 1732 * @dma_dir: Data transfer direction of the command 1733 * @buf: Data buffer of the command 1734 * @buflen: Length of data buffer 1735 * @timeout: Timeout in msecs (0 for default) 1736 * 1737 * Wrapper around ata_exec_internal_sg() which takes simple 1738 * buffer instead of sg list. 1739 * 1740 * LOCKING: 1741 * None. Should be called with kernel context, might sleep. 1742 * 1743 * RETURNS: 1744 * Zero on success, AC_ERR_* mask on failure 1745 */ 1746 unsigned ata_exec_internal(struct ata_device *dev, 1747 struct ata_taskfile *tf, const u8 *cdb, 1748 int dma_dir, void *buf, unsigned int buflen, 1749 unsigned long timeout) 1750 { 1751 struct scatterlist *psg = NULL, sg; 1752 unsigned int n_elem = 0; 1753 1754 if (dma_dir != DMA_NONE) { 1755 WARN_ON(!buf); 1756 sg_init_one(&sg, buf, buflen); 1757 psg = &sg; 1758 n_elem++; 1759 } 1760 1761 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1762 timeout); 1763 } 1764 1765 /** 1766 * ata_pio_need_iordy - check if iordy needed 1767 * @adev: ATA device 1768 * 1769 * Check if the current speed of the device requires IORDY. Used 1770 * by various controllers for chip configuration. 1771 */ 1772 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1773 { 1774 /* Don't set IORDY if we're preparing for reset. IORDY may 1775 * lead to controller lock up on certain controllers if the 1776 * port is not occupied. See bko#11703 for details. 1777 */ 1778 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1779 return 0; 1780 /* Controller doesn't support IORDY. Probably a pointless 1781 * check as the caller should know this. 1782 */ 1783 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1784 return 0; 1785 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1786 if (ata_id_is_cfa(adev->id) 1787 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1788 return 0; 1789 /* PIO3 and higher it is mandatory */ 1790 if (adev->pio_mode > XFER_PIO_2) 1791 return 1; 1792 /* We turn it on when possible */ 1793 if (ata_id_has_iordy(adev->id)) 1794 return 1; 1795 return 0; 1796 } 1797 1798 /** 1799 * ata_pio_mask_no_iordy - Return the non IORDY mask 1800 * @adev: ATA device 1801 * 1802 * Compute the highest mode possible if we are not using iordy. Return 1803 * -1 if no iordy mode is available. 1804 */ 1805 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1806 { 1807 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1808 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1809 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1810 /* Is the speed faster than the drive allows non IORDY ? */ 1811 if (pio) { 1812 /* This is cycle times not frequency - watch the logic! */ 1813 if (pio > 240) /* PIO2 is 240nS per cycle */ 1814 return 3 << ATA_SHIFT_PIO; 1815 return 7 << ATA_SHIFT_PIO; 1816 } 1817 } 1818 return 3 << ATA_SHIFT_PIO; 1819 } 1820 1821 /** 1822 * ata_do_dev_read_id - default ID read method 1823 * @dev: device 1824 * @tf: proposed taskfile 1825 * @id: data buffer 1826 * 1827 * Issue the identify taskfile and hand back the buffer containing 1828 * identify data. For some RAID controllers and for pre ATA devices 1829 * this function is wrapped or replaced by the driver 1830 */ 1831 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1832 struct ata_taskfile *tf, u16 *id) 1833 { 1834 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1835 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1836 } 1837 1838 /** 1839 * ata_dev_read_id - Read ID data from the specified device 1840 * @dev: target device 1841 * @p_class: pointer to class of the target device (may be changed) 1842 * @flags: ATA_READID_* flags 1843 * @id: buffer to read IDENTIFY data into 1844 * 1845 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1846 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1847 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1848 * for pre-ATA4 drives. 1849 * 1850 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1851 * now we abort if we hit that case. 1852 * 1853 * LOCKING: 1854 * Kernel thread context (may sleep) 1855 * 1856 * RETURNS: 1857 * 0 on success, -errno otherwise. 1858 */ 1859 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1860 unsigned int flags, u16 *id) 1861 { 1862 struct ata_port *ap = dev->link->ap; 1863 unsigned int class = *p_class; 1864 struct ata_taskfile tf; 1865 unsigned int err_mask = 0; 1866 const char *reason; 1867 bool is_semb = class == ATA_DEV_SEMB; 1868 int may_fallback = 1, tried_spinup = 0; 1869 int rc; 1870 1871 if (ata_msg_ctl(ap)) 1872 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1873 1874 retry: 1875 ata_tf_init(dev, &tf); 1876 1877 switch (class) { 1878 case ATA_DEV_SEMB: 1879 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1880 case ATA_DEV_ATA: 1881 case ATA_DEV_ZAC: 1882 tf.command = ATA_CMD_ID_ATA; 1883 break; 1884 case ATA_DEV_ATAPI: 1885 tf.command = ATA_CMD_ID_ATAPI; 1886 break; 1887 default: 1888 rc = -ENODEV; 1889 reason = "unsupported class"; 1890 goto err_out; 1891 } 1892 1893 tf.protocol = ATA_PROT_PIO; 1894 1895 /* Some devices choke if TF registers contain garbage. Make 1896 * sure those are properly initialized. 1897 */ 1898 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1899 1900 /* Device presence detection is unreliable on some 1901 * controllers. Always poll IDENTIFY if available. 1902 */ 1903 tf.flags |= ATA_TFLAG_POLLING; 1904 1905 if (ap->ops->read_id) 1906 err_mask = ap->ops->read_id(dev, &tf, id); 1907 else 1908 err_mask = ata_do_dev_read_id(dev, &tf, id); 1909 1910 if (err_mask) { 1911 if (err_mask & AC_ERR_NODEV_HINT) { 1912 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1913 return -ENOENT; 1914 } 1915 1916 if (is_semb) { 1917 ata_dev_info(dev, 1918 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1919 /* SEMB is not supported yet */ 1920 *p_class = ATA_DEV_SEMB_UNSUP; 1921 return 0; 1922 } 1923 1924 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1925 /* Device or controller might have reported 1926 * the wrong device class. Give a shot at the 1927 * other IDENTIFY if the current one is 1928 * aborted by the device. 1929 */ 1930 if (may_fallback) { 1931 may_fallback = 0; 1932 1933 if (class == ATA_DEV_ATA) 1934 class = ATA_DEV_ATAPI; 1935 else 1936 class = ATA_DEV_ATA; 1937 goto retry; 1938 } 1939 1940 /* Control reaches here iff the device aborted 1941 * both flavors of IDENTIFYs which happens 1942 * sometimes with phantom devices. 1943 */ 1944 ata_dev_dbg(dev, 1945 "both IDENTIFYs aborted, assuming NODEV\n"); 1946 return -ENOENT; 1947 } 1948 1949 rc = -EIO; 1950 reason = "I/O error"; 1951 goto err_out; 1952 } 1953 1954 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1955 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1956 "class=%d may_fallback=%d tried_spinup=%d\n", 1957 class, may_fallback, tried_spinup); 1958 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1959 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1960 } 1961 1962 /* Falling back doesn't make sense if ID data was read 1963 * successfully at least once. 1964 */ 1965 may_fallback = 0; 1966 1967 swap_buf_le16(id, ATA_ID_WORDS); 1968 1969 /* sanity check */ 1970 rc = -EINVAL; 1971 reason = "device reports invalid type"; 1972 1973 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1974 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1975 goto err_out; 1976 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1977 ata_id_is_ata(id)) { 1978 ata_dev_dbg(dev, 1979 "host indicates ignore ATA devices, ignored\n"); 1980 return -ENOENT; 1981 } 1982 } else { 1983 if (ata_id_is_ata(id)) 1984 goto err_out; 1985 } 1986 1987 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1988 tried_spinup = 1; 1989 /* 1990 * Drive powered-up in standby mode, and requires a specific 1991 * SET_FEATURES spin-up subcommand before it will accept 1992 * anything other than the original IDENTIFY command. 1993 */ 1994 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1995 if (err_mask && id[2] != 0x738c) { 1996 rc = -EIO; 1997 reason = "SPINUP failed"; 1998 goto err_out; 1999 } 2000 /* 2001 * If the drive initially returned incomplete IDENTIFY info, 2002 * we now must reissue the IDENTIFY command. 2003 */ 2004 if (id[2] == 0x37c8) 2005 goto retry; 2006 } 2007 2008 if ((flags & ATA_READID_POSTRESET) && 2009 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 2010 /* 2011 * The exact sequence expected by certain pre-ATA4 drives is: 2012 * SRST RESET 2013 * IDENTIFY (optional in early ATA) 2014 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2015 * anything else.. 2016 * Some drives were very specific about that exact sequence. 2017 * 2018 * Note that ATA4 says lba is mandatory so the second check 2019 * should never trigger. 2020 */ 2021 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2022 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2023 if (err_mask) { 2024 rc = -EIO; 2025 reason = "INIT_DEV_PARAMS failed"; 2026 goto err_out; 2027 } 2028 2029 /* current CHS translation info (id[53-58]) might be 2030 * changed. reread the identify device info. 2031 */ 2032 flags &= ~ATA_READID_POSTRESET; 2033 goto retry; 2034 } 2035 } 2036 2037 *p_class = class; 2038 2039 return 0; 2040 2041 err_out: 2042 if (ata_msg_warn(ap)) 2043 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2044 reason, err_mask); 2045 return rc; 2046 } 2047 2048 static int ata_do_link_spd_horkage(struct ata_device *dev) 2049 { 2050 struct ata_link *plink = ata_dev_phys_link(dev); 2051 u32 target, target_limit; 2052 2053 if (!sata_scr_valid(plink)) 2054 return 0; 2055 2056 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2057 target = 1; 2058 else 2059 return 0; 2060 2061 target_limit = (1 << target) - 1; 2062 2063 /* if already on stricter limit, no need to push further */ 2064 if (plink->sata_spd_limit <= target_limit) 2065 return 0; 2066 2067 plink->sata_spd_limit = target_limit; 2068 2069 /* Request another EH round by returning -EAGAIN if link is 2070 * going faster than the target speed. Forward progress is 2071 * guaranteed by setting sata_spd_limit to target_limit above. 2072 */ 2073 if (plink->sata_spd > target) { 2074 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2075 sata_spd_string(target)); 2076 return -EAGAIN; 2077 } 2078 return 0; 2079 } 2080 2081 static inline u8 ata_dev_knobble(struct ata_device *dev) 2082 { 2083 struct ata_port *ap = dev->link->ap; 2084 2085 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2086 return 0; 2087 2088 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2089 } 2090 2091 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2092 { 2093 struct ata_port *ap = dev->link->ap; 2094 unsigned int err_mask; 2095 int log_index = ATA_LOG_NCQ_SEND_RECV * 2; 2096 u16 log_pages; 2097 2098 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY, 2099 0, ap->sector_buf, 1); 2100 if (err_mask) { 2101 ata_dev_dbg(dev, 2102 "failed to get Log Directory Emask 0x%x\n", 2103 err_mask); 2104 return; 2105 } 2106 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]); 2107 if (!log_pages) { 2108 ata_dev_warn(dev, 2109 "NCQ Send/Recv Log not supported\n"); 2110 return; 2111 } 2112 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2113 0, ap->sector_buf, 1); 2114 if (err_mask) { 2115 ata_dev_dbg(dev, 2116 "failed to get NCQ Send/Recv Log Emask 0x%x\n", 2117 err_mask); 2118 } else { 2119 u8 *cmds = dev->ncq_send_recv_cmds; 2120 2121 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2122 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2123 2124 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2125 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2126 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2127 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2128 } 2129 } 2130 } 2131 2132 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2133 { 2134 struct ata_port *ap = dev->link->ap; 2135 unsigned int err_mask; 2136 int log_index = ATA_LOG_NCQ_NON_DATA * 2; 2137 u16 log_pages; 2138 2139 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY, 2140 0, ap->sector_buf, 1); 2141 if (err_mask) { 2142 ata_dev_dbg(dev, 2143 "failed to get Log Directory Emask 0x%x\n", 2144 err_mask); 2145 return; 2146 } 2147 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]); 2148 if (!log_pages) { 2149 ata_dev_warn(dev, 2150 "NCQ Send/Recv Log not supported\n"); 2151 return; 2152 } 2153 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2154 0, ap->sector_buf, 1); 2155 if (err_mask) { 2156 ata_dev_dbg(dev, 2157 "failed to get NCQ Non-Data Log Emask 0x%x\n", 2158 err_mask); 2159 } else { 2160 u8 *cmds = dev->ncq_non_data_cmds; 2161 2162 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2163 } 2164 } 2165 2166 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2167 { 2168 struct ata_port *ap = dev->link->ap; 2169 unsigned int err_mask; 2170 2171 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) { 2172 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2173 return; 2174 } 2175 2176 err_mask = ata_read_log_page(dev, 2177 ATA_LOG_SATA_ID_DEV_DATA, 2178 ATA_LOG_SATA_SETTINGS, 2179 ap->sector_buf, 2180 1); 2181 if (err_mask) { 2182 ata_dev_dbg(dev, 2183 "failed to get Identify Device data, Emask 0x%x\n", 2184 err_mask); 2185 return; 2186 } 2187 2188 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) { 2189 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2190 } else { 2191 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2192 ata_dev_dbg(dev, "SATA page does not support priority\n"); 2193 } 2194 2195 } 2196 2197 static int ata_dev_config_ncq(struct ata_device *dev, 2198 char *desc, size_t desc_sz) 2199 { 2200 struct ata_port *ap = dev->link->ap; 2201 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2202 unsigned int err_mask; 2203 char *aa_desc = ""; 2204 2205 if (!ata_id_has_ncq(dev->id)) { 2206 desc[0] = '\0'; 2207 return 0; 2208 } 2209 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2210 snprintf(desc, desc_sz, "NCQ (not used)"); 2211 return 0; 2212 } 2213 if (ap->flags & ATA_FLAG_NCQ) { 2214 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2215 dev->flags |= ATA_DFLAG_NCQ; 2216 } 2217 2218 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2219 (ap->flags & ATA_FLAG_FPDMA_AA) && 2220 ata_id_has_fpdma_aa(dev->id)) { 2221 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2222 SATA_FPDMA_AA); 2223 if (err_mask) { 2224 ata_dev_err(dev, 2225 "failed to enable AA (error_mask=0x%x)\n", 2226 err_mask); 2227 if (err_mask != AC_ERR_DEV) { 2228 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2229 return -EIO; 2230 } 2231 } else 2232 aa_desc = ", AA"; 2233 } 2234 2235 if (hdepth >= ddepth) 2236 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2237 else 2238 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2239 ddepth, aa_desc); 2240 2241 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2242 if (ata_id_has_ncq_send_and_recv(dev->id)) 2243 ata_dev_config_ncq_send_recv(dev); 2244 if (ata_id_has_ncq_non_data(dev->id)) 2245 ata_dev_config_ncq_non_data(dev); 2246 if (ata_id_has_ncq_prio(dev->id)) 2247 ata_dev_config_ncq_prio(dev); 2248 } 2249 2250 return 0; 2251 } 2252 2253 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2254 { 2255 unsigned int err_mask; 2256 2257 if (!ata_id_has_sense_reporting(dev->id)) 2258 return; 2259 2260 if (ata_id_sense_reporting_enabled(dev->id)) 2261 return; 2262 2263 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2264 if (err_mask) { 2265 ata_dev_dbg(dev, 2266 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2267 err_mask); 2268 } 2269 } 2270 2271 static void ata_dev_config_zac(struct ata_device *dev) 2272 { 2273 struct ata_port *ap = dev->link->ap; 2274 unsigned int err_mask; 2275 u8 *identify_buf = ap->sector_buf; 2276 int log_index = ATA_LOG_SATA_ID_DEV_DATA * 2, i, found = 0; 2277 u16 log_pages; 2278 2279 dev->zac_zones_optimal_open = U32_MAX; 2280 dev->zac_zones_optimal_nonseq = U32_MAX; 2281 dev->zac_zones_max_open = U32_MAX; 2282 2283 /* 2284 * Always set the 'ZAC' flag for Host-managed devices. 2285 */ 2286 if (dev->class == ATA_DEV_ZAC) 2287 dev->flags |= ATA_DFLAG_ZAC; 2288 else if (ata_id_zoned_cap(dev->id) == 0x01) 2289 /* 2290 * Check for host-aware devices. 2291 */ 2292 dev->flags |= ATA_DFLAG_ZAC; 2293 2294 if (!(dev->flags & ATA_DFLAG_ZAC)) 2295 return; 2296 2297 /* 2298 * Read Log Directory to figure out if IDENTIFY DEVICE log 2299 * is supported. 2300 */ 2301 err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY, 2302 0, ap->sector_buf, 1); 2303 if (err_mask) { 2304 ata_dev_info(dev, 2305 "failed to get Log Directory Emask 0x%x\n", 2306 err_mask); 2307 return; 2308 } 2309 log_pages = get_unaligned_le16(&ap->sector_buf[log_index]); 2310 if (log_pages == 0) { 2311 ata_dev_warn(dev, 2312 "ATA Identify Device Log not supported\n"); 2313 return; 2314 } 2315 /* 2316 * Read IDENTIFY DEVICE data log, page 0, to figure out 2317 * if page 9 is supported. 2318 */ 2319 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA, 0, 2320 identify_buf, 1); 2321 if (err_mask) { 2322 ata_dev_info(dev, 2323 "failed to get Device Identify Log Emask 0x%x\n", 2324 err_mask); 2325 return; 2326 } 2327 log_pages = identify_buf[8]; 2328 for (i = 0; i < log_pages; i++) { 2329 if (identify_buf[9 + i] == ATA_LOG_ZONED_INFORMATION) { 2330 found++; 2331 break; 2332 } 2333 } 2334 if (!found) { 2335 ata_dev_warn(dev, 2336 "ATA Zoned Information Log not supported\n"); 2337 return; 2338 } 2339 2340 /* 2341 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2342 */ 2343 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA, 2344 ATA_LOG_ZONED_INFORMATION, 2345 identify_buf, 1); 2346 if (!err_mask) { 2347 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2348 2349 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2350 if ((zoned_cap >> 63)) 2351 dev->zac_zoned_cap = (zoned_cap & 1); 2352 opt_open = get_unaligned_le64(&identify_buf[24]); 2353 if ((opt_open >> 63)) 2354 dev->zac_zones_optimal_open = (u32)opt_open; 2355 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2356 if ((opt_nonseq >> 63)) 2357 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2358 max_open = get_unaligned_le64(&identify_buf[40]); 2359 if ((max_open >> 63)) 2360 dev->zac_zones_max_open = (u32)max_open; 2361 } 2362 } 2363 2364 /** 2365 * ata_dev_configure - Configure the specified ATA/ATAPI device 2366 * @dev: Target device to configure 2367 * 2368 * Configure @dev according to @dev->id. Generic and low-level 2369 * driver specific fixups are also applied. 2370 * 2371 * LOCKING: 2372 * Kernel thread context (may sleep) 2373 * 2374 * RETURNS: 2375 * 0 on success, -errno otherwise 2376 */ 2377 int ata_dev_configure(struct ata_device *dev) 2378 { 2379 struct ata_port *ap = dev->link->ap; 2380 struct ata_eh_context *ehc = &dev->link->eh_context; 2381 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2382 const u16 *id = dev->id; 2383 unsigned long xfer_mask; 2384 unsigned int err_mask; 2385 char revbuf[7]; /* XYZ-99\0 */ 2386 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2387 char modelbuf[ATA_ID_PROD_LEN+1]; 2388 int rc; 2389 2390 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2391 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2392 return 0; 2393 } 2394 2395 if (ata_msg_probe(ap)) 2396 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2397 2398 /* set horkage */ 2399 dev->horkage |= ata_dev_blacklisted(dev); 2400 ata_force_horkage(dev); 2401 2402 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2403 ata_dev_info(dev, "unsupported device, disabling\n"); 2404 ata_dev_disable(dev); 2405 return 0; 2406 } 2407 2408 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2409 dev->class == ATA_DEV_ATAPI) { 2410 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2411 atapi_enabled ? "not supported with this driver" 2412 : "disabled"); 2413 ata_dev_disable(dev); 2414 return 0; 2415 } 2416 2417 rc = ata_do_link_spd_horkage(dev); 2418 if (rc) 2419 return rc; 2420 2421 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2422 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2423 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2424 dev->horkage |= ATA_HORKAGE_NOLPM; 2425 2426 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2427 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2428 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2429 } 2430 2431 /* let ACPI work its magic */ 2432 rc = ata_acpi_on_devcfg(dev); 2433 if (rc) 2434 return rc; 2435 2436 /* massage HPA, do it early as it might change IDENTIFY data */ 2437 rc = ata_hpa_resize(dev); 2438 if (rc) 2439 return rc; 2440 2441 /* print device capabilities */ 2442 if (ata_msg_probe(ap)) 2443 ata_dev_dbg(dev, 2444 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2445 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2446 __func__, 2447 id[49], id[82], id[83], id[84], 2448 id[85], id[86], id[87], id[88]); 2449 2450 /* initialize to-be-configured parameters */ 2451 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2452 dev->max_sectors = 0; 2453 dev->cdb_len = 0; 2454 dev->n_sectors = 0; 2455 dev->cylinders = 0; 2456 dev->heads = 0; 2457 dev->sectors = 0; 2458 dev->multi_count = 0; 2459 2460 /* 2461 * common ATA, ATAPI feature tests 2462 */ 2463 2464 /* find max transfer mode; for printk only */ 2465 xfer_mask = ata_id_xfermask(id); 2466 2467 if (ata_msg_probe(ap)) 2468 ata_dump_id(id); 2469 2470 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2471 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2472 sizeof(fwrevbuf)); 2473 2474 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2475 sizeof(modelbuf)); 2476 2477 /* ATA-specific feature tests */ 2478 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2479 if (ata_id_is_cfa(id)) { 2480 /* CPRM may make this media unusable */ 2481 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2482 ata_dev_warn(dev, 2483 "supports DRM functions and may not be fully accessible\n"); 2484 snprintf(revbuf, 7, "CFA"); 2485 } else { 2486 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2487 /* Warn the user if the device has TPM extensions */ 2488 if (ata_id_has_tpm(id)) 2489 ata_dev_warn(dev, 2490 "supports DRM functions and may not be fully accessible\n"); 2491 } 2492 2493 dev->n_sectors = ata_id_n_sectors(id); 2494 2495 /* get current R/W Multiple count setting */ 2496 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2497 unsigned int max = dev->id[47] & 0xff; 2498 unsigned int cnt = dev->id[59] & 0xff; 2499 /* only recognize/allow powers of two here */ 2500 if (is_power_of_2(max) && is_power_of_2(cnt)) 2501 if (cnt <= max) 2502 dev->multi_count = cnt; 2503 } 2504 2505 if (ata_id_has_lba(id)) { 2506 const char *lba_desc; 2507 char ncq_desc[24]; 2508 2509 lba_desc = "LBA"; 2510 dev->flags |= ATA_DFLAG_LBA; 2511 if (ata_id_has_lba48(id)) { 2512 dev->flags |= ATA_DFLAG_LBA48; 2513 lba_desc = "LBA48"; 2514 2515 if (dev->n_sectors >= (1UL << 28) && 2516 ata_id_has_flush_ext(id)) 2517 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2518 } 2519 2520 /* config NCQ */ 2521 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2522 if (rc) 2523 return rc; 2524 2525 /* print device info to dmesg */ 2526 if (ata_msg_drv(ap) && print_info) { 2527 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2528 revbuf, modelbuf, fwrevbuf, 2529 ata_mode_string(xfer_mask)); 2530 ata_dev_info(dev, 2531 "%llu sectors, multi %u: %s %s\n", 2532 (unsigned long long)dev->n_sectors, 2533 dev->multi_count, lba_desc, ncq_desc); 2534 } 2535 } else { 2536 /* CHS */ 2537 2538 /* Default translation */ 2539 dev->cylinders = id[1]; 2540 dev->heads = id[3]; 2541 dev->sectors = id[6]; 2542 2543 if (ata_id_current_chs_valid(id)) { 2544 /* Current CHS translation is valid. */ 2545 dev->cylinders = id[54]; 2546 dev->heads = id[55]; 2547 dev->sectors = id[56]; 2548 } 2549 2550 /* print device info to dmesg */ 2551 if (ata_msg_drv(ap) && print_info) { 2552 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2553 revbuf, modelbuf, fwrevbuf, 2554 ata_mode_string(xfer_mask)); 2555 ata_dev_info(dev, 2556 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2557 (unsigned long long)dev->n_sectors, 2558 dev->multi_count, dev->cylinders, 2559 dev->heads, dev->sectors); 2560 } 2561 } 2562 2563 /* Check and mark DevSlp capability. Get DevSlp timing variables 2564 * from SATA Settings page of Identify Device Data Log. 2565 */ 2566 if (ata_id_has_devslp(dev->id)) { 2567 u8 *sata_setting = ap->sector_buf; 2568 int i, j; 2569 2570 dev->flags |= ATA_DFLAG_DEVSLP; 2571 err_mask = ata_read_log_page(dev, 2572 ATA_LOG_SATA_ID_DEV_DATA, 2573 ATA_LOG_SATA_SETTINGS, 2574 sata_setting, 2575 1); 2576 if (err_mask) 2577 ata_dev_dbg(dev, 2578 "failed to get Identify Device Data, Emask 0x%x\n", 2579 err_mask); 2580 else 2581 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2582 j = ATA_LOG_DEVSLP_OFFSET + i; 2583 dev->devslp_timing[i] = sata_setting[j]; 2584 } 2585 } 2586 ata_dev_config_sense_reporting(dev); 2587 ata_dev_config_zac(dev); 2588 dev->cdb_len = 16; 2589 } 2590 2591 /* ATAPI-specific feature tests */ 2592 else if (dev->class == ATA_DEV_ATAPI) { 2593 const char *cdb_intr_string = ""; 2594 const char *atapi_an_string = ""; 2595 const char *dma_dir_string = ""; 2596 u32 sntf; 2597 2598 rc = atapi_cdb_len(id); 2599 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2600 if (ata_msg_warn(ap)) 2601 ata_dev_warn(dev, "unsupported CDB len\n"); 2602 rc = -EINVAL; 2603 goto err_out_nosup; 2604 } 2605 dev->cdb_len = (unsigned int) rc; 2606 2607 /* Enable ATAPI AN if both the host and device have 2608 * the support. If PMP is attached, SNTF is required 2609 * to enable ATAPI AN to discern between PHY status 2610 * changed notifications and ATAPI ANs. 2611 */ 2612 if (atapi_an && 2613 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2614 (!sata_pmp_attached(ap) || 2615 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2616 /* issue SET feature command to turn this on */ 2617 err_mask = ata_dev_set_feature(dev, 2618 SETFEATURES_SATA_ENABLE, SATA_AN); 2619 if (err_mask) 2620 ata_dev_err(dev, 2621 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2622 err_mask); 2623 else { 2624 dev->flags |= ATA_DFLAG_AN; 2625 atapi_an_string = ", ATAPI AN"; 2626 } 2627 } 2628 2629 if (ata_id_cdb_intr(dev->id)) { 2630 dev->flags |= ATA_DFLAG_CDB_INTR; 2631 cdb_intr_string = ", CDB intr"; 2632 } 2633 2634 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2635 dev->flags |= ATA_DFLAG_DMADIR; 2636 dma_dir_string = ", DMADIR"; 2637 } 2638 2639 if (ata_id_has_da(dev->id)) { 2640 dev->flags |= ATA_DFLAG_DA; 2641 zpodd_init(dev); 2642 } 2643 2644 /* print device info to dmesg */ 2645 if (ata_msg_drv(ap) && print_info) 2646 ata_dev_info(dev, 2647 "ATAPI: %s, %s, max %s%s%s%s\n", 2648 modelbuf, fwrevbuf, 2649 ata_mode_string(xfer_mask), 2650 cdb_intr_string, atapi_an_string, 2651 dma_dir_string); 2652 } 2653 2654 /* determine max_sectors */ 2655 dev->max_sectors = ATA_MAX_SECTORS; 2656 if (dev->flags & ATA_DFLAG_LBA48) 2657 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2658 2659 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2660 200 sectors */ 2661 if (ata_dev_knobble(dev)) { 2662 if (ata_msg_drv(ap) && print_info) 2663 ata_dev_info(dev, "applying bridge limits\n"); 2664 dev->udma_mask &= ATA_UDMA5; 2665 dev->max_sectors = ATA_MAX_SECTORS; 2666 } 2667 2668 if ((dev->class == ATA_DEV_ATAPI) && 2669 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2670 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2671 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2672 } 2673 2674 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2675 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2676 dev->max_sectors); 2677 2678 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2679 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2680 dev->max_sectors); 2681 2682 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2683 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2684 2685 if (ap->ops->dev_config) 2686 ap->ops->dev_config(dev); 2687 2688 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2689 /* Let the user know. We don't want to disallow opens for 2690 rescue purposes, or in case the vendor is just a blithering 2691 idiot. Do this after the dev_config call as some controllers 2692 with buggy firmware may want to avoid reporting false device 2693 bugs */ 2694 2695 if (print_info) { 2696 ata_dev_warn(dev, 2697 "Drive reports diagnostics failure. This may indicate a drive\n"); 2698 ata_dev_warn(dev, 2699 "fault or invalid emulation. Contact drive vendor for information.\n"); 2700 } 2701 } 2702 2703 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2704 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2705 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2706 } 2707 2708 return 0; 2709 2710 err_out_nosup: 2711 if (ata_msg_probe(ap)) 2712 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2713 return rc; 2714 } 2715 2716 /** 2717 * ata_cable_40wire - return 40 wire cable type 2718 * @ap: port 2719 * 2720 * Helper method for drivers which want to hardwire 40 wire cable 2721 * detection. 2722 */ 2723 2724 int ata_cable_40wire(struct ata_port *ap) 2725 { 2726 return ATA_CBL_PATA40; 2727 } 2728 2729 /** 2730 * ata_cable_80wire - return 80 wire cable type 2731 * @ap: port 2732 * 2733 * Helper method for drivers which want to hardwire 80 wire cable 2734 * detection. 2735 */ 2736 2737 int ata_cable_80wire(struct ata_port *ap) 2738 { 2739 return ATA_CBL_PATA80; 2740 } 2741 2742 /** 2743 * ata_cable_unknown - return unknown PATA cable. 2744 * @ap: port 2745 * 2746 * Helper method for drivers which have no PATA cable detection. 2747 */ 2748 2749 int ata_cable_unknown(struct ata_port *ap) 2750 { 2751 return ATA_CBL_PATA_UNK; 2752 } 2753 2754 /** 2755 * ata_cable_ignore - return ignored PATA cable. 2756 * @ap: port 2757 * 2758 * Helper method for drivers which don't use cable type to limit 2759 * transfer mode. 2760 */ 2761 int ata_cable_ignore(struct ata_port *ap) 2762 { 2763 return ATA_CBL_PATA_IGN; 2764 } 2765 2766 /** 2767 * ata_cable_sata - return SATA cable type 2768 * @ap: port 2769 * 2770 * Helper method for drivers which have SATA cables 2771 */ 2772 2773 int ata_cable_sata(struct ata_port *ap) 2774 { 2775 return ATA_CBL_SATA; 2776 } 2777 2778 /** 2779 * ata_bus_probe - Reset and probe ATA bus 2780 * @ap: Bus to probe 2781 * 2782 * Master ATA bus probing function. Initiates a hardware-dependent 2783 * bus reset, then attempts to identify any devices found on 2784 * the bus. 2785 * 2786 * LOCKING: 2787 * PCI/etc. bus probe sem. 2788 * 2789 * RETURNS: 2790 * Zero on success, negative errno otherwise. 2791 */ 2792 2793 int ata_bus_probe(struct ata_port *ap) 2794 { 2795 unsigned int classes[ATA_MAX_DEVICES]; 2796 int tries[ATA_MAX_DEVICES]; 2797 int rc; 2798 struct ata_device *dev; 2799 2800 ata_for_each_dev(dev, &ap->link, ALL) 2801 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2802 2803 retry: 2804 ata_for_each_dev(dev, &ap->link, ALL) { 2805 /* If we issue an SRST then an ATA drive (not ATAPI) 2806 * may change configuration and be in PIO0 timing. If 2807 * we do a hard reset (or are coming from power on) 2808 * this is true for ATA or ATAPI. Until we've set a 2809 * suitable controller mode we should not touch the 2810 * bus as we may be talking too fast. 2811 */ 2812 dev->pio_mode = XFER_PIO_0; 2813 dev->dma_mode = 0xff; 2814 2815 /* If the controller has a pio mode setup function 2816 * then use it to set the chipset to rights. Don't 2817 * touch the DMA setup as that will be dealt with when 2818 * configuring devices. 2819 */ 2820 if (ap->ops->set_piomode) 2821 ap->ops->set_piomode(ap, dev); 2822 } 2823 2824 /* reset and determine device classes */ 2825 ap->ops->phy_reset(ap); 2826 2827 ata_for_each_dev(dev, &ap->link, ALL) { 2828 if (dev->class != ATA_DEV_UNKNOWN) 2829 classes[dev->devno] = dev->class; 2830 else 2831 classes[dev->devno] = ATA_DEV_NONE; 2832 2833 dev->class = ATA_DEV_UNKNOWN; 2834 } 2835 2836 /* read IDENTIFY page and configure devices. We have to do the identify 2837 specific sequence bass-ackwards so that PDIAG- is released by 2838 the slave device */ 2839 2840 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2841 if (tries[dev->devno]) 2842 dev->class = classes[dev->devno]; 2843 2844 if (!ata_dev_enabled(dev)) 2845 continue; 2846 2847 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2848 dev->id); 2849 if (rc) 2850 goto fail; 2851 } 2852 2853 /* Now ask for the cable type as PDIAG- should have been released */ 2854 if (ap->ops->cable_detect) 2855 ap->cbl = ap->ops->cable_detect(ap); 2856 2857 /* We may have SATA bridge glue hiding here irrespective of 2858 * the reported cable types and sensed types. When SATA 2859 * drives indicate we have a bridge, we don't know which end 2860 * of the link the bridge is which is a problem. 2861 */ 2862 ata_for_each_dev(dev, &ap->link, ENABLED) 2863 if (ata_id_is_sata(dev->id)) 2864 ap->cbl = ATA_CBL_SATA; 2865 2866 /* After the identify sequence we can now set up the devices. We do 2867 this in the normal order so that the user doesn't get confused */ 2868 2869 ata_for_each_dev(dev, &ap->link, ENABLED) { 2870 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2871 rc = ata_dev_configure(dev); 2872 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2873 if (rc) 2874 goto fail; 2875 } 2876 2877 /* configure transfer mode */ 2878 rc = ata_set_mode(&ap->link, &dev); 2879 if (rc) 2880 goto fail; 2881 2882 ata_for_each_dev(dev, &ap->link, ENABLED) 2883 return 0; 2884 2885 return -ENODEV; 2886 2887 fail: 2888 tries[dev->devno]--; 2889 2890 switch (rc) { 2891 case -EINVAL: 2892 /* eeek, something went very wrong, give up */ 2893 tries[dev->devno] = 0; 2894 break; 2895 2896 case -ENODEV: 2897 /* give it just one more chance */ 2898 tries[dev->devno] = min(tries[dev->devno], 1); 2899 case -EIO: 2900 if (tries[dev->devno] == 1) { 2901 /* This is the last chance, better to slow 2902 * down than lose it. 2903 */ 2904 sata_down_spd_limit(&ap->link, 0); 2905 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2906 } 2907 } 2908 2909 if (!tries[dev->devno]) 2910 ata_dev_disable(dev); 2911 2912 goto retry; 2913 } 2914 2915 /** 2916 * sata_print_link_status - Print SATA link status 2917 * @link: SATA link to printk link status about 2918 * 2919 * This function prints link speed and status of a SATA link. 2920 * 2921 * LOCKING: 2922 * None. 2923 */ 2924 static void sata_print_link_status(struct ata_link *link) 2925 { 2926 u32 sstatus, scontrol, tmp; 2927 2928 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2929 return; 2930 sata_scr_read(link, SCR_CONTROL, &scontrol); 2931 2932 if (ata_phys_link_online(link)) { 2933 tmp = (sstatus >> 4) & 0xf; 2934 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2935 sata_spd_string(tmp), sstatus, scontrol); 2936 } else { 2937 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2938 sstatus, scontrol); 2939 } 2940 } 2941 2942 /** 2943 * ata_dev_pair - return other device on cable 2944 * @adev: device 2945 * 2946 * Obtain the other device on the same cable, or if none is 2947 * present NULL is returned 2948 */ 2949 2950 struct ata_device *ata_dev_pair(struct ata_device *adev) 2951 { 2952 struct ata_link *link = adev->link; 2953 struct ata_device *pair = &link->device[1 - adev->devno]; 2954 if (!ata_dev_enabled(pair)) 2955 return NULL; 2956 return pair; 2957 } 2958 2959 /** 2960 * sata_down_spd_limit - adjust SATA spd limit downward 2961 * @link: Link to adjust SATA spd limit for 2962 * @spd_limit: Additional limit 2963 * 2964 * Adjust SATA spd limit of @link downward. Note that this 2965 * function only adjusts the limit. The change must be applied 2966 * using sata_set_spd(). 2967 * 2968 * If @spd_limit is non-zero, the speed is limited to equal to or 2969 * lower than @spd_limit if such speed is supported. If 2970 * @spd_limit is slower than any supported speed, only the lowest 2971 * supported speed is allowed. 2972 * 2973 * LOCKING: 2974 * Inherited from caller. 2975 * 2976 * RETURNS: 2977 * 0 on success, negative errno on failure 2978 */ 2979 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2980 { 2981 u32 sstatus, spd, mask; 2982 int rc, bit; 2983 2984 if (!sata_scr_valid(link)) 2985 return -EOPNOTSUPP; 2986 2987 /* If SCR can be read, use it to determine the current SPD. 2988 * If not, use cached value in link->sata_spd. 2989 */ 2990 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2991 if (rc == 0 && ata_sstatus_online(sstatus)) 2992 spd = (sstatus >> 4) & 0xf; 2993 else 2994 spd = link->sata_spd; 2995 2996 mask = link->sata_spd_limit; 2997 if (mask <= 1) 2998 return -EINVAL; 2999 3000 /* unconditionally mask off the highest bit */ 3001 bit = fls(mask) - 1; 3002 mask &= ~(1 << bit); 3003 3004 /* Mask off all speeds higher than or equal to the current 3005 * one. Force 1.5Gbps if current SPD is not available. 3006 */ 3007 if (spd > 1) 3008 mask &= (1 << (spd - 1)) - 1; 3009 else 3010 mask &= 1; 3011 3012 /* were we already at the bottom? */ 3013 if (!mask) 3014 return -EINVAL; 3015 3016 if (spd_limit) { 3017 if (mask & ((1 << spd_limit) - 1)) 3018 mask &= (1 << spd_limit) - 1; 3019 else { 3020 bit = ffs(mask) - 1; 3021 mask = 1 << bit; 3022 } 3023 } 3024 3025 link->sata_spd_limit = mask; 3026 3027 ata_link_warn(link, "limiting SATA link speed to %s\n", 3028 sata_spd_string(fls(mask))); 3029 3030 return 0; 3031 } 3032 3033 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 3034 { 3035 struct ata_link *host_link = &link->ap->link; 3036 u32 limit, target, spd; 3037 3038 limit = link->sata_spd_limit; 3039 3040 /* Don't configure downstream link faster than upstream link. 3041 * It doesn't speed up anything and some PMPs choke on such 3042 * configuration. 3043 */ 3044 if (!ata_is_host_link(link) && host_link->sata_spd) 3045 limit &= (1 << host_link->sata_spd) - 1; 3046 3047 if (limit == UINT_MAX) 3048 target = 0; 3049 else 3050 target = fls(limit); 3051 3052 spd = (*scontrol >> 4) & 0xf; 3053 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 3054 3055 return spd != target; 3056 } 3057 3058 /** 3059 * sata_set_spd_needed - is SATA spd configuration needed 3060 * @link: Link in question 3061 * 3062 * Test whether the spd limit in SControl matches 3063 * @link->sata_spd_limit. This function is used to determine 3064 * whether hardreset is necessary to apply SATA spd 3065 * configuration. 3066 * 3067 * LOCKING: 3068 * Inherited from caller. 3069 * 3070 * RETURNS: 3071 * 1 if SATA spd configuration is needed, 0 otherwise. 3072 */ 3073 static int sata_set_spd_needed(struct ata_link *link) 3074 { 3075 u32 scontrol; 3076 3077 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3078 return 1; 3079 3080 return __sata_set_spd_needed(link, &scontrol); 3081 } 3082 3083 /** 3084 * sata_set_spd - set SATA spd according to spd limit 3085 * @link: Link to set SATA spd for 3086 * 3087 * Set SATA spd of @link according to sata_spd_limit. 3088 * 3089 * LOCKING: 3090 * Inherited from caller. 3091 * 3092 * RETURNS: 3093 * 0 if spd doesn't need to be changed, 1 if spd has been 3094 * changed. Negative errno if SCR registers are inaccessible. 3095 */ 3096 int sata_set_spd(struct ata_link *link) 3097 { 3098 u32 scontrol; 3099 int rc; 3100 3101 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3102 return rc; 3103 3104 if (!__sata_set_spd_needed(link, &scontrol)) 3105 return 0; 3106 3107 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3108 return rc; 3109 3110 return 1; 3111 } 3112 3113 /* 3114 * This mode timing computation functionality is ported over from 3115 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 3116 */ 3117 /* 3118 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 3119 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 3120 * for UDMA6, which is currently supported only by Maxtor drives. 3121 * 3122 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 3123 */ 3124 3125 static const struct ata_timing ata_timing[] = { 3126 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 3127 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 3128 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 3129 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 3130 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 3131 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 3132 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 3133 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 3134 3135 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 3136 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 3137 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 3138 3139 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 3140 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 3141 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 3142 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 3143 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 3144 3145 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 3146 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 3147 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 3148 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 3149 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 3150 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 3151 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 3152 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 3153 3154 { 0xFF } 3155 }; 3156 3157 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 3158 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 3159 3160 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 3161 { 3162 q->setup = EZ(t->setup * 1000, T); 3163 q->act8b = EZ(t->act8b * 1000, T); 3164 q->rec8b = EZ(t->rec8b * 1000, T); 3165 q->cyc8b = EZ(t->cyc8b * 1000, T); 3166 q->active = EZ(t->active * 1000, T); 3167 q->recover = EZ(t->recover * 1000, T); 3168 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 3169 q->cycle = EZ(t->cycle * 1000, T); 3170 q->udma = EZ(t->udma * 1000, UT); 3171 } 3172 3173 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3174 struct ata_timing *m, unsigned int what) 3175 { 3176 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3177 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3178 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3179 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3180 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3181 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3182 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 3183 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3184 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3185 } 3186 3187 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3188 { 3189 const struct ata_timing *t = ata_timing; 3190 3191 while (xfer_mode > t->mode) 3192 t++; 3193 3194 if (xfer_mode == t->mode) 3195 return t; 3196 3197 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 3198 __func__, xfer_mode); 3199 3200 return NULL; 3201 } 3202 3203 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3204 struct ata_timing *t, int T, int UT) 3205 { 3206 const u16 *id = adev->id; 3207 const struct ata_timing *s; 3208 struct ata_timing p; 3209 3210 /* 3211 * Find the mode. 3212 */ 3213 3214 if (!(s = ata_timing_find_mode(speed))) 3215 return -EINVAL; 3216 3217 memcpy(t, s, sizeof(*s)); 3218 3219 /* 3220 * If the drive is an EIDE drive, it can tell us it needs extended 3221 * PIO/MW_DMA cycle timing. 3222 */ 3223 3224 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3225 memset(&p, 0, sizeof(p)); 3226 3227 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 3228 if (speed <= XFER_PIO_2) 3229 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3230 else if ((speed <= XFER_PIO_4) || 3231 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3232 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3233 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3234 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3235 3236 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3237 } 3238 3239 /* 3240 * Convert the timing to bus clock counts. 3241 */ 3242 3243 ata_timing_quantize(t, t, T, UT); 3244 3245 /* 3246 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3247 * S.M.A.R.T * and some other commands. We have to ensure that the 3248 * DMA cycle timing is slower/equal than the fastest PIO timing. 3249 */ 3250 3251 if (speed > XFER_PIO_6) { 3252 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3253 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3254 } 3255 3256 /* 3257 * Lengthen active & recovery time so that cycle time is correct. 3258 */ 3259 3260 if (t->act8b + t->rec8b < t->cyc8b) { 3261 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3262 t->rec8b = t->cyc8b - t->act8b; 3263 } 3264 3265 if (t->active + t->recover < t->cycle) { 3266 t->active += (t->cycle - (t->active + t->recover)) / 2; 3267 t->recover = t->cycle - t->active; 3268 } 3269 3270 /* In a few cases quantisation may produce enough errors to 3271 leave t->cycle too low for the sum of active and recovery 3272 if so we must correct this */ 3273 if (t->active + t->recover > t->cycle) 3274 t->cycle = t->active + t->recover; 3275 3276 return 0; 3277 } 3278 3279 /** 3280 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3281 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3282 * @cycle: cycle duration in ns 3283 * 3284 * Return matching xfer mode for @cycle. The returned mode is of 3285 * the transfer type specified by @xfer_shift. If @cycle is too 3286 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3287 * than the fastest known mode, the fasted mode is returned. 3288 * 3289 * LOCKING: 3290 * None. 3291 * 3292 * RETURNS: 3293 * Matching xfer_mode, 0xff if no match found. 3294 */ 3295 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3296 { 3297 u8 base_mode = 0xff, last_mode = 0xff; 3298 const struct ata_xfer_ent *ent; 3299 const struct ata_timing *t; 3300 3301 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3302 if (ent->shift == xfer_shift) 3303 base_mode = ent->base; 3304 3305 for (t = ata_timing_find_mode(base_mode); 3306 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3307 unsigned short this_cycle; 3308 3309 switch (xfer_shift) { 3310 case ATA_SHIFT_PIO: 3311 case ATA_SHIFT_MWDMA: 3312 this_cycle = t->cycle; 3313 break; 3314 case ATA_SHIFT_UDMA: 3315 this_cycle = t->udma; 3316 break; 3317 default: 3318 return 0xff; 3319 } 3320 3321 if (cycle > this_cycle) 3322 break; 3323 3324 last_mode = t->mode; 3325 } 3326 3327 return last_mode; 3328 } 3329 3330 /** 3331 * ata_down_xfermask_limit - adjust dev xfer masks downward 3332 * @dev: Device to adjust xfer masks 3333 * @sel: ATA_DNXFER_* selector 3334 * 3335 * Adjust xfer masks of @dev downward. Note that this function 3336 * does not apply the change. Invoking ata_set_mode() afterwards 3337 * will apply the limit. 3338 * 3339 * LOCKING: 3340 * Inherited from caller. 3341 * 3342 * RETURNS: 3343 * 0 on success, negative errno on failure 3344 */ 3345 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3346 { 3347 char buf[32]; 3348 unsigned long orig_mask, xfer_mask; 3349 unsigned long pio_mask, mwdma_mask, udma_mask; 3350 int quiet, highbit; 3351 3352 quiet = !!(sel & ATA_DNXFER_QUIET); 3353 sel &= ~ATA_DNXFER_QUIET; 3354 3355 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3356 dev->mwdma_mask, 3357 dev->udma_mask); 3358 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3359 3360 switch (sel) { 3361 case ATA_DNXFER_PIO: 3362 highbit = fls(pio_mask) - 1; 3363 pio_mask &= ~(1 << highbit); 3364 break; 3365 3366 case ATA_DNXFER_DMA: 3367 if (udma_mask) { 3368 highbit = fls(udma_mask) - 1; 3369 udma_mask &= ~(1 << highbit); 3370 if (!udma_mask) 3371 return -ENOENT; 3372 } else if (mwdma_mask) { 3373 highbit = fls(mwdma_mask) - 1; 3374 mwdma_mask &= ~(1 << highbit); 3375 if (!mwdma_mask) 3376 return -ENOENT; 3377 } 3378 break; 3379 3380 case ATA_DNXFER_40C: 3381 udma_mask &= ATA_UDMA_MASK_40C; 3382 break; 3383 3384 case ATA_DNXFER_FORCE_PIO0: 3385 pio_mask &= 1; 3386 case ATA_DNXFER_FORCE_PIO: 3387 mwdma_mask = 0; 3388 udma_mask = 0; 3389 break; 3390 3391 default: 3392 BUG(); 3393 } 3394 3395 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3396 3397 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3398 return -ENOENT; 3399 3400 if (!quiet) { 3401 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3402 snprintf(buf, sizeof(buf), "%s:%s", 3403 ata_mode_string(xfer_mask), 3404 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3405 else 3406 snprintf(buf, sizeof(buf), "%s", 3407 ata_mode_string(xfer_mask)); 3408 3409 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3410 } 3411 3412 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3413 &dev->udma_mask); 3414 3415 return 0; 3416 } 3417 3418 static int ata_dev_set_mode(struct ata_device *dev) 3419 { 3420 struct ata_port *ap = dev->link->ap; 3421 struct ata_eh_context *ehc = &dev->link->eh_context; 3422 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3423 const char *dev_err_whine = ""; 3424 int ign_dev_err = 0; 3425 unsigned int err_mask = 0; 3426 int rc; 3427 3428 dev->flags &= ~ATA_DFLAG_PIO; 3429 if (dev->xfer_shift == ATA_SHIFT_PIO) 3430 dev->flags |= ATA_DFLAG_PIO; 3431 3432 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3433 dev_err_whine = " (SET_XFERMODE skipped)"; 3434 else { 3435 if (nosetxfer) 3436 ata_dev_warn(dev, 3437 "NOSETXFER but PATA detected - can't " 3438 "skip SETXFER, might malfunction\n"); 3439 err_mask = ata_dev_set_xfermode(dev); 3440 } 3441 3442 if (err_mask & ~AC_ERR_DEV) 3443 goto fail; 3444 3445 /* revalidate */ 3446 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3447 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3448 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3449 if (rc) 3450 return rc; 3451 3452 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3453 /* Old CFA may refuse this command, which is just fine */ 3454 if (ata_id_is_cfa(dev->id)) 3455 ign_dev_err = 1; 3456 /* Catch several broken garbage emulations plus some pre 3457 ATA devices */ 3458 if (ata_id_major_version(dev->id) == 0 && 3459 dev->pio_mode <= XFER_PIO_2) 3460 ign_dev_err = 1; 3461 /* Some very old devices and some bad newer ones fail 3462 any kind of SET_XFERMODE request but support PIO0-2 3463 timings and no IORDY */ 3464 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3465 ign_dev_err = 1; 3466 } 3467 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3468 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3469 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3470 dev->dma_mode == XFER_MW_DMA_0 && 3471 (dev->id[63] >> 8) & 1) 3472 ign_dev_err = 1; 3473 3474 /* if the device is actually configured correctly, ignore dev err */ 3475 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3476 ign_dev_err = 1; 3477 3478 if (err_mask & AC_ERR_DEV) { 3479 if (!ign_dev_err) 3480 goto fail; 3481 else 3482 dev_err_whine = " (device error ignored)"; 3483 } 3484 3485 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3486 dev->xfer_shift, (int)dev->xfer_mode); 3487 3488 ata_dev_info(dev, "configured for %s%s\n", 3489 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3490 dev_err_whine); 3491 3492 return 0; 3493 3494 fail: 3495 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3496 return -EIO; 3497 } 3498 3499 /** 3500 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3501 * @link: link on which timings will be programmed 3502 * @r_failed_dev: out parameter for failed device 3503 * 3504 * Standard implementation of the function used to tune and set 3505 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3506 * ata_dev_set_mode() fails, pointer to the failing device is 3507 * returned in @r_failed_dev. 3508 * 3509 * LOCKING: 3510 * PCI/etc. bus probe sem. 3511 * 3512 * RETURNS: 3513 * 0 on success, negative errno otherwise 3514 */ 3515 3516 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3517 { 3518 struct ata_port *ap = link->ap; 3519 struct ata_device *dev; 3520 int rc = 0, used_dma = 0, found = 0; 3521 3522 /* step 1: calculate xfer_mask */ 3523 ata_for_each_dev(dev, link, ENABLED) { 3524 unsigned long pio_mask, dma_mask; 3525 unsigned int mode_mask; 3526 3527 mode_mask = ATA_DMA_MASK_ATA; 3528 if (dev->class == ATA_DEV_ATAPI) 3529 mode_mask = ATA_DMA_MASK_ATAPI; 3530 else if (ata_id_is_cfa(dev->id)) 3531 mode_mask = ATA_DMA_MASK_CFA; 3532 3533 ata_dev_xfermask(dev); 3534 ata_force_xfermask(dev); 3535 3536 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3537 3538 if (libata_dma_mask & mode_mask) 3539 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3540 dev->udma_mask); 3541 else 3542 dma_mask = 0; 3543 3544 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3545 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3546 3547 found = 1; 3548 if (ata_dma_enabled(dev)) 3549 used_dma = 1; 3550 } 3551 if (!found) 3552 goto out; 3553 3554 /* step 2: always set host PIO timings */ 3555 ata_for_each_dev(dev, link, ENABLED) { 3556 if (dev->pio_mode == 0xff) { 3557 ata_dev_warn(dev, "no PIO support\n"); 3558 rc = -EINVAL; 3559 goto out; 3560 } 3561 3562 dev->xfer_mode = dev->pio_mode; 3563 dev->xfer_shift = ATA_SHIFT_PIO; 3564 if (ap->ops->set_piomode) 3565 ap->ops->set_piomode(ap, dev); 3566 } 3567 3568 /* step 3: set host DMA timings */ 3569 ata_for_each_dev(dev, link, ENABLED) { 3570 if (!ata_dma_enabled(dev)) 3571 continue; 3572 3573 dev->xfer_mode = dev->dma_mode; 3574 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3575 if (ap->ops->set_dmamode) 3576 ap->ops->set_dmamode(ap, dev); 3577 } 3578 3579 /* step 4: update devices' xfer mode */ 3580 ata_for_each_dev(dev, link, ENABLED) { 3581 rc = ata_dev_set_mode(dev); 3582 if (rc) 3583 goto out; 3584 } 3585 3586 /* Record simplex status. If we selected DMA then the other 3587 * host channels are not permitted to do so. 3588 */ 3589 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3590 ap->host->simplex_claimed = ap; 3591 3592 out: 3593 if (rc) 3594 *r_failed_dev = dev; 3595 return rc; 3596 } 3597 3598 /** 3599 * ata_wait_ready - wait for link to become ready 3600 * @link: link to be waited on 3601 * @deadline: deadline jiffies for the operation 3602 * @check_ready: callback to check link readiness 3603 * 3604 * Wait for @link to become ready. @check_ready should return 3605 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3606 * link doesn't seem to be occupied, other errno for other error 3607 * conditions. 3608 * 3609 * Transient -ENODEV conditions are allowed for 3610 * ATA_TMOUT_FF_WAIT. 3611 * 3612 * LOCKING: 3613 * EH context. 3614 * 3615 * RETURNS: 3616 * 0 if @link is ready before @deadline; otherwise, -errno. 3617 */ 3618 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3619 int (*check_ready)(struct ata_link *link)) 3620 { 3621 unsigned long start = jiffies; 3622 unsigned long nodev_deadline; 3623 int warned = 0; 3624 3625 /* choose which 0xff timeout to use, read comment in libata.h */ 3626 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3627 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3628 else 3629 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3630 3631 /* Slave readiness can't be tested separately from master. On 3632 * M/S emulation configuration, this function should be called 3633 * only on the master and it will handle both master and slave. 3634 */ 3635 WARN_ON(link == link->ap->slave_link); 3636 3637 if (time_after(nodev_deadline, deadline)) 3638 nodev_deadline = deadline; 3639 3640 while (1) { 3641 unsigned long now = jiffies; 3642 int ready, tmp; 3643 3644 ready = tmp = check_ready(link); 3645 if (ready > 0) 3646 return 0; 3647 3648 /* 3649 * -ENODEV could be transient. Ignore -ENODEV if link 3650 * is online. Also, some SATA devices take a long 3651 * time to clear 0xff after reset. Wait for 3652 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3653 * offline. 3654 * 3655 * Note that some PATA controllers (pata_ali) explode 3656 * if status register is read more than once when 3657 * there's no device attached. 3658 */ 3659 if (ready == -ENODEV) { 3660 if (ata_link_online(link)) 3661 ready = 0; 3662 else if ((link->ap->flags & ATA_FLAG_SATA) && 3663 !ata_link_offline(link) && 3664 time_before(now, nodev_deadline)) 3665 ready = 0; 3666 } 3667 3668 if (ready) 3669 return ready; 3670 if (time_after(now, deadline)) 3671 return -EBUSY; 3672 3673 if (!warned && time_after(now, start + 5 * HZ) && 3674 (deadline - now > 3 * HZ)) { 3675 ata_link_warn(link, 3676 "link is slow to respond, please be patient " 3677 "(ready=%d)\n", tmp); 3678 warned = 1; 3679 } 3680 3681 ata_msleep(link->ap, 50); 3682 } 3683 } 3684 3685 /** 3686 * ata_wait_after_reset - wait for link to become ready after reset 3687 * @link: link to be waited on 3688 * @deadline: deadline jiffies for the operation 3689 * @check_ready: callback to check link readiness 3690 * 3691 * Wait for @link to become ready after reset. 3692 * 3693 * LOCKING: 3694 * EH context. 3695 * 3696 * RETURNS: 3697 * 0 if @link is ready before @deadline; otherwise, -errno. 3698 */ 3699 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3700 int (*check_ready)(struct ata_link *link)) 3701 { 3702 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3703 3704 return ata_wait_ready(link, deadline, check_ready); 3705 } 3706 3707 /** 3708 * sata_link_debounce - debounce SATA phy status 3709 * @link: ATA link to debounce SATA phy status for 3710 * @params: timing parameters { interval, duration, timeout } in msec 3711 * @deadline: deadline jiffies for the operation 3712 * 3713 * Make sure SStatus of @link reaches stable state, determined by 3714 * holding the same value where DET is not 1 for @duration polled 3715 * every @interval, before @timeout. Timeout constraints the 3716 * beginning of the stable state. Because DET gets stuck at 1 on 3717 * some controllers after hot unplugging, this functions waits 3718 * until timeout then returns 0 if DET is stable at 1. 3719 * 3720 * @timeout is further limited by @deadline. The sooner of the 3721 * two is used. 3722 * 3723 * LOCKING: 3724 * Kernel thread context (may sleep) 3725 * 3726 * RETURNS: 3727 * 0 on success, -errno on failure. 3728 */ 3729 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3730 unsigned long deadline) 3731 { 3732 unsigned long interval = params[0]; 3733 unsigned long duration = params[1]; 3734 unsigned long last_jiffies, t; 3735 u32 last, cur; 3736 int rc; 3737 3738 t = ata_deadline(jiffies, params[2]); 3739 if (time_before(t, deadline)) 3740 deadline = t; 3741 3742 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3743 return rc; 3744 cur &= 0xf; 3745 3746 last = cur; 3747 last_jiffies = jiffies; 3748 3749 while (1) { 3750 ata_msleep(link->ap, interval); 3751 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3752 return rc; 3753 cur &= 0xf; 3754 3755 /* DET stable? */ 3756 if (cur == last) { 3757 if (cur == 1 && time_before(jiffies, deadline)) 3758 continue; 3759 if (time_after(jiffies, 3760 ata_deadline(last_jiffies, duration))) 3761 return 0; 3762 continue; 3763 } 3764 3765 /* unstable, start over */ 3766 last = cur; 3767 last_jiffies = jiffies; 3768 3769 /* Check deadline. If debouncing failed, return 3770 * -EPIPE to tell upper layer to lower link speed. 3771 */ 3772 if (time_after(jiffies, deadline)) 3773 return -EPIPE; 3774 } 3775 } 3776 3777 /** 3778 * sata_link_resume - resume SATA link 3779 * @link: ATA link to resume SATA 3780 * @params: timing parameters { interval, duration, timeout } in msec 3781 * @deadline: deadline jiffies for the operation 3782 * 3783 * Resume SATA phy @link and debounce it. 3784 * 3785 * LOCKING: 3786 * Kernel thread context (may sleep) 3787 * 3788 * RETURNS: 3789 * 0 on success, -errno on failure. 3790 */ 3791 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3792 unsigned long deadline) 3793 { 3794 int tries = ATA_LINK_RESUME_TRIES; 3795 u32 scontrol, serror; 3796 int rc; 3797 3798 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3799 return rc; 3800 3801 /* 3802 * Writes to SControl sometimes get ignored under certain 3803 * controllers (ata_piix SIDPR). Make sure DET actually is 3804 * cleared. 3805 */ 3806 do { 3807 scontrol = (scontrol & 0x0f0) | 0x300; 3808 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3809 return rc; 3810 /* 3811 * Some PHYs react badly if SStatus is pounded 3812 * immediately after resuming. Delay 200ms before 3813 * debouncing. 3814 */ 3815 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY)) 3816 ata_msleep(link->ap, 200); 3817 3818 /* is SControl restored correctly? */ 3819 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3820 return rc; 3821 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3822 3823 if ((scontrol & 0xf0f) != 0x300) { 3824 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3825 scontrol); 3826 return 0; 3827 } 3828 3829 if (tries < ATA_LINK_RESUME_TRIES) 3830 ata_link_warn(link, "link resume succeeded after %d retries\n", 3831 ATA_LINK_RESUME_TRIES - tries); 3832 3833 if ((rc = sata_link_debounce(link, params, deadline))) 3834 return rc; 3835 3836 /* clear SError, some PHYs require this even for SRST to work */ 3837 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3838 rc = sata_scr_write(link, SCR_ERROR, serror); 3839 3840 return rc != -EINVAL ? rc : 0; 3841 } 3842 3843 /** 3844 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3845 * @link: ATA link to manipulate SControl for 3846 * @policy: LPM policy to configure 3847 * @spm_wakeup: initiate LPM transition to active state 3848 * 3849 * Manipulate the IPM field of the SControl register of @link 3850 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3851 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3852 * the link. This function also clears PHYRDY_CHG before 3853 * returning. 3854 * 3855 * LOCKING: 3856 * EH context. 3857 * 3858 * RETURNS: 3859 * 0 on success, -errno otherwise. 3860 */ 3861 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3862 bool spm_wakeup) 3863 { 3864 struct ata_eh_context *ehc = &link->eh_context; 3865 bool woken_up = false; 3866 u32 scontrol; 3867 int rc; 3868 3869 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3870 if (rc) 3871 return rc; 3872 3873 switch (policy) { 3874 case ATA_LPM_MAX_POWER: 3875 /* disable all LPM transitions */ 3876 scontrol |= (0x7 << 8); 3877 /* initiate transition to active state */ 3878 if (spm_wakeup) { 3879 scontrol |= (0x4 << 12); 3880 woken_up = true; 3881 } 3882 break; 3883 case ATA_LPM_MED_POWER: 3884 /* allow LPM to PARTIAL */ 3885 scontrol &= ~(0x1 << 8); 3886 scontrol |= (0x6 << 8); 3887 break; 3888 case ATA_LPM_MIN_POWER: 3889 if (ata_link_nr_enabled(link) > 0) 3890 /* no restrictions on LPM transitions */ 3891 scontrol &= ~(0x7 << 8); 3892 else { 3893 /* empty port, power off */ 3894 scontrol &= ~0xf; 3895 scontrol |= (0x1 << 2); 3896 } 3897 break; 3898 default: 3899 WARN_ON(1); 3900 } 3901 3902 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3903 if (rc) 3904 return rc; 3905 3906 /* give the link time to transit out of LPM state */ 3907 if (woken_up) 3908 msleep(10); 3909 3910 /* clear PHYRDY_CHG from SError */ 3911 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3912 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3913 } 3914 3915 /** 3916 * ata_std_prereset - prepare for reset 3917 * @link: ATA link to be reset 3918 * @deadline: deadline jiffies for the operation 3919 * 3920 * @link is about to be reset. Initialize it. Failure from 3921 * prereset makes libata abort whole reset sequence and give up 3922 * that port, so prereset should be best-effort. It does its 3923 * best to prepare for reset sequence but if things go wrong, it 3924 * should just whine, not fail. 3925 * 3926 * LOCKING: 3927 * Kernel thread context (may sleep) 3928 * 3929 * RETURNS: 3930 * 0 on success, -errno otherwise. 3931 */ 3932 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3933 { 3934 struct ata_port *ap = link->ap; 3935 struct ata_eh_context *ehc = &link->eh_context; 3936 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3937 int rc; 3938 3939 /* if we're about to do hardreset, nothing more to do */ 3940 if (ehc->i.action & ATA_EH_HARDRESET) 3941 return 0; 3942 3943 /* if SATA, resume link */ 3944 if (ap->flags & ATA_FLAG_SATA) { 3945 rc = sata_link_resume(link, timing, deadline); 3946 /* whine about phy resume failure but proceed */ 3947 if (rc && rc != -EOPNOTSUPP) 3948 ata_link_warn(link, 3949 "failed to resume link for reset (errno=%d)\n", 3950 rc); 3951 } 3952 3953 /* no point in trying softreset on offline link */ 3954 if (ata_phys_link_offline(link)) 3955 ehc->i.action &= ~ATA_EH_SOFTRESET; 3956 3957 return 0; 3958 } 3959 3960 /** 3961 * sata_link_hardreset - reset link via SATA phy reset 3962 * @link: link to reset 3963 * @timing: timing parameters { interval, duration, timeout } in msec 3964 * @deadline: deadline jiffies for the operation 3965 * @online: optional out parameter indicating link onlineness 3966 * @check_ready: optional callback to check link readiness 3967 * 3968 * SATA phy-reset @link using DET bits of SControl register. 3969 * After hardreset, link readiness is waited upon using 3970 * ata_wait_ready() if @check_ready is specified. LLDs are 3971 * allowed to not specify @check_ready and wait itself after this 3972 * function returns. Device classification is LLD's 3973 * responsibility. 3974 * 3975 * *@online is set to one iff reset succeeded and @link is online 3976 * after reset. 3977 * 3978 * LOCKING: 3979 * Kernel thread context (may sleep) 3980 * 3981 * RETURNS: 3982 * 0 on success, -errno otherwise. 3983 */ 3984 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3985 unsigned long deadline, 3986 bool *online, int (*check_ready)(struct ata_link *)) 3987 { 3988 u32 scontrol; 3989 int rc; 3990 3991 DPRINTK("ENTER\n"); 3992 3993 if (online) 3994 *online = false; 3995 3996 if (sata_set_spd_needed(link)) { 3997 /* SATA spec says nothing about how to reconfigure 3998 * spd. To be on the safe side, turn off phy during 3999 * reconfiguration. This works for at least ICH7 AHCI 4000 * and Sil3124. 4001 */ 4002 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 4003 goto out; 4004 4005 scontrol = (scontrol & 0x0f0) | 0x304; 4006 4007 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 4008 goto out; 4009 4010 sata_set_spd(link); 4011 } 4012 4013 /* issue phy wake/reset */ 4014 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 4015 goto out; 4016 4017 scontrol = (scontrol & 0x0f0) | 0x301; 4018 4019 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 4020 goto out; 4021 4022 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 4023 * 10.4.2 says at least 1 ms. 4024 */ 4025 ata_msleep(link->ap, 1); 4026 4027 /* bring link back */ 4028 rc = sata_link_resume(link, timing, deadline); 4029 if (rc) 4030 goto out; 4031 /* if link is offline nothing more to do */ 4032 if (ata_phys_link_offline(link)) 4033 goto out; 4034 4035 /* Link is online. From this point, -ENODEV too is an error. */ 4036 if (online) 4037 *online = true; 4038 4039 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 4040 /* If PMP is supported, we have to do follow-up SRST. 4041 * Some PMPs don't send D2H Reg FIS after hardreset if 4042 * the first port is empty. Wait only for 4043 * ATA_TMOUT_PMP_SRST_WAIT. 4044 */ 4045 if (check_ready) { 4046 unsigned long pmp_deadline; 4047 4048 pmp_deadline = ata_deadline(jiffies, 4049 ATA_TMOUT_PMP_SRST_WAIT); 4050 if (time_after(pmp_deadline, deadline)) 4051 pmp_deadline = deadline; 4052 ata_wait_ready(link, pmp_deadline, check_ready); 4053 } 4054 rc = -EAGAIN; 4055 goto out; 4056 } 4057 4058 rc = 0; 4059 if (check_ready) 4060 rc = ata_wait_ready(link, deadline, check_ready); 4061 out: 4062 if (rc && rc != -EAGAIN) { 4063 /* online is set iff link is online && reset succeeded */ 4064 if (online) 4065 *online = false; 4066 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 4067 } 4068 DPRINTK("EXIT, rc=%d\n", rc); 4069 return rc; 4070 } 4071 4072 /** 4073 * sata_std_hardreset - COMRESET w/o waiting or classification 4074 * @link: link to reset 4075 * @class: resulting class of attached device 4076 * @deadline: deadline jiffies for the operation 4077 * 4078 * Standard SATA COMRESET w/o waiting or classification. 4079 * 4080 * LOCKING: 4081 * Kernel thread context (may sleep) 4082 * 4083 * RETURNS: 4084 * 0 if link offline, -EAGAIN if link online, -errno on errors. 4085 */ 4086 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 4087 unsigned long deadline) 4088 { 4089 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 4090 bool online; 4091 int rc; 4092 4093 /* do hardreset */ 4094 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 4095 return online ? -EAGAIN : rc; 4096 } 4097 4098 /** 4099 * ata_std_postreset - standard postreset callback 4100 * @link: the target ata_link 4101 * @classes: classes of attached devices 4102 * 4103 * This function is invoked after a successful reset. Note that 4104 * the device might have been reset more than once using 4105 * different reset methods before postreset is invoked. 4106 * 4107 * LOCKING: 4108 * Kernel thread context (may sleep) 4109 */ 4110 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 4111 { 4112 u32 serror; 4113 4114 DPRINTK("ENTER\n"); 4115 4116 /* reset complete, clear SError */ 4117 if (!sata_scr_read(link, SCR_ERROR, &serror)) 4118 sata_scr_write(link, SCR_ERROR, serror); 4119 4120 /* print link status */ 4121 sata_print_link_status(link); 4122 4123 DPRINTK("EXIT\n"); 4124 } 4125 4126 /** 4127 * ata_dev_same_device - Determine whether new ID matches configured device 4128 * @dev: device to compare against 4129 * @new_class: class of the new device 4130 * @new_id: IDENTIFY page of the new device 4131 * 4132 * Compare @new_class and @new_id against @dev and determine 4133 * whether @dev is the device indicated by @new_class and 4134 * @new_id. 4135 * 4136 * LOCKING: 4137 * None. 4138 * 4139 * RETURNS: 4140 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 4141 */ 4142 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 4143 const u16 *new_id) 4144 { 4145 const u16 *old_id = dev->id; 4146 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 4147 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 4148 4149 if (dev->class != new_class) { 4150 ata_dev_info(dev, "class mismatch %d != %d\n", 4151 dev->class, new_class); 4152 return 0; 4153 } 4154 4155 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 4156 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 4157 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 4158 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 4159 4160 if (strcmp(model[0], model[1])) { 4161 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 4162 model[0], model[1]); 4163 return 0; 4164 } 4165 4166 if (strcmp(serial[0], serial[1])) { 4167 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 4168 serial[0], serial[1]); 4169 return 0; 4170 } 4171 4172 return 1; 4173 } 4174 4175 /** 4176 * ata_dev_reread_id - Re-read IDENTIFY data 4177 * @dev: target ATA device 4178 * @readid_flags: read ID flags 4179 * 4180 * Re-read IDENTIFY page and make sure @dev is still attached to 4181 * the port. 4182 * 4183 * LOCKING: 4184 * Kernel thread context (may sleep) 4185 * 4186 * RETURNS: 4187 * 0 on success, negative errno otherwise 4188 */ 4189 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 4190 { 4191 unsigned int class = dev->class; 4192 u16 *id = (void *)dev->link->ap->sector_buf; 4193 int rc; 4194 4195 /* read ID data */ 4196 rc = ata_dev_read_id(dev, &class, readid_flags, id); 4197 if (rc) 4198 return rc; 4199 4200 /* is the device still there? */ 4201 if (!ata_dev_same_device(dev, class, id)) 4202 return -ENODEV; 4203 4204 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4205 return 0; 4206 } 4207 4208 /** 4209 * ata_dev_revalidate - Revalidate ATA device 4210 * @dev: device to revalidate 4211 * @new_class: new class code 4212 * @readid_flags: read ID flags 4213 * 4214 * Re-read IDENTIFY page, make sure @dev is still attached to the 4215 * port and reconfigure it according to the new IDENTIFY page. 4216 * 4217 * LOCKING: 4218 * Kernel thread context (may sleep) 4219 * 4220 * RETURNS: 4221 * 0 on success, negative errno otherwise 4222 */ 4223 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4224 unsigned int readid_flags) 4225 { 4226 u64 n_sectors = dev->n_sectors; 4227 u64 n_native_sectors = dev->n_native_sectors; 4228 int rc; 4229 4230 if (!ata_dev_enabled(dev)) 4231 return -ENODEV; 4232 4233 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4234 if (ata_class_enabled(new_class) && 4235 new_class != ATA_DEV_ATA && 4236 new_class != ATA_DEV_ATAPI && 4237 new_class != ATA_DEV_ZAC && 4238 new_class != ATA_DEV_SEMB) { 4239 ata_dev_info(dev, "class mismatch %u != %u\n", 4240 dev->class, new_class); 4241 rc = -ENODEV; 4242 goto fail; 4243 } 4244 4245 /* re-read ID */ 4246 rc = ata_dev_reread_id(dev, readid_flags); 4247 if (rc) 4248 goto fail; 4249 4250 /* configure device according to the new ID */ 4251 rc = ata_dev_configure(dev); 4252 if (rc) 4253 goto fail; 4254 4255 /* verify n_sectors hasn't changed */ 4256 if (dev->class != ATA_DEV_ATA || !n_sectors || 4257 dev->n_sectors == n_sectors) 4258 return 0; 4259 4260 /* n_sectors has changed */ 4261 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4262 (unsigned long long)n_sectors, 4263 (unsigned long long)dev->n_sectors); 4264 4265 /* 4266 * Something could have caused HPA to be unlocked 4267 * involuntarily. If n_native_sectors hasn't changed and the 4268 * new size matches it, keep the device. 4269 */ 4270 if (dev->n_native_sectors == n_native_sectors && 4271 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4272 ata_dev_warn(dev, 4273 "new n_sectors matches native, probably " 4274 "late HPA unlock, n_sectors updated\n"); 4275 /* use the larger n_sectors */ 4276 return 0; 4277 } 4278 4279 /* 4280 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4281 * unlocking HPA in those cases. 4282 * 4283 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4284 */ 4285 if (dev->n_native_sectors == n_native_sectors && 4286 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4287 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4288 ata_dev_warn(dev, 4289 "old n_sectors matches native, probably " 4290 "late HPA lock, will try to unlock HPA\n"); 4291 /* try unlocking HPA */ 4292 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4293 rc = -EIO; 4294 } else 4295 rc = -ENODEV; 4296 4297 /* restore original n_[native_]sectors and fail */ 4298 dev->n_native_sectors = n_native_sectors; 4299 dev->n_sectors = n_sectors; 4300 fail: 4301 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4302 return rc; 4303 } 4304 4305 struct ata_blacklist_entry { 4306 const char *model_num; 4307 const char *model_rev; 4308 unsigned long horkage; 4309 }; 4310 4311 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4312 /* Devices with DMA related problems under Linux */ 4313 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4314 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4315 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4316 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4317 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4318 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4319 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4320 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4321 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4322 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4323 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4324 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4325 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4326 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4327 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4328 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4329 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4330 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4331 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4332 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4333 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4334 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4335 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4336 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4337 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4338 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4339 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4340 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4341 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4342 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 4343 /* Odd clown on sil3726/4726 PMPs */ 4344 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4345 4346 /* Weird ATAPI devices */ 4347 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4348 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4349 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4350 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4351 4352 /* 4353 * Causes silent data corruption with higher max sects. 4354 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 4355 */ 4356 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 4357 4358 /* 4359 * Device times out with higher max sects. 4360 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 4361 */ 4362 { "LITEON CX1-JB256-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4363 4364 /* Devices we expect to fail diagnostics */ 4365 4366 /* Devices where NCQ should be avoided */ 4367 /* NCQ is slow */ 4368 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4369 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4370 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4371 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4372 /* NCQ is broken */ 4373 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4374 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4375 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4376 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4377 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4378 4379 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4380 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4381 ATA_HORKAGE_FIRMWARE_WARN }, 4382 4383 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4384 ATA_HORKAGE_FIRMWARE_WARN }, 4385 4386 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4387 ATA_HORKAGE_FIRMWARE_WARN }, 4388 4389 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4390 ATA_HORKAGE_FIRMWARE_WARN }, 4391 4392 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */ 4393 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4394 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4395 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4396 4397 /* Blacklist entries taken from Silicon Image 3124/3132 4398 Windows driver .inf file - also several Linux problem reports */ 4399 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4400 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4401 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4402 4403 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4404 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4405 4406 /* devices which puke on READ_NATIVE_MAX */ 4407 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4408 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4409 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4410 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4411 4412 /* this one allows HPA unlocking but fails IOs on the area */ 4413 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4414 4415 /* Devices which report 1 sector over size HPA */ 4416 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4417 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4418 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4419 4420 /* Devices which get the IVB wrong */ 4421 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4422 /* Maybe we should just blacklist TSSTcorp... */ 4423 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4424 4425 /* Devices that do not need bridging limits applied */ 4426 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4427 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4428 4429 /* Devices which aren't very happy with higher link speeds */ 4430 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4431 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4432 4433 /* 4434 * Devices which choke on SETXFER. Applies only if both the 4435 * device and controller are SATA. 4436 */ 4437 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4438 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4439 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4440 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4441 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4442 4443 /* devices that don't properly handle queued TRIM commands */ 4444 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4445 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4446 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4447 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4448 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4449 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4450 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4451 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4452 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4453 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4454 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4455 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4456 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4457 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4458 4459 /* devices that don't properly handle TRIM commands */ 4460 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, 4461 4462 /* 4463 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4464 * (Return Zero After Trim) flags in the ATA Command Set are 4465 * unreliable in the sense that they only define what happens if 4466 * the device successfully executed the DSM TRIM command. TRIM 4467 * is only advisory, however, and the device is free to silently 4468 * ignore all or parts of the request. 4469 * 4470 * Whitelist drives that are known to reliably return zeroes 4471 * after TRIM. 4472 */ 4473 4474 /* 4475 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4476 * that model before whitelisting all other intel SSDs. 4477 */ 4478 { "INTEL*SSDSC2MH*", NULL, 0, }, 4479 4480 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4481 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4482 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4483 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4484 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4485 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4486 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4487 4488 /* 4489 * Some WD SATA-I drives spin up and down erratically when the link 4490 * is put into the slumber mode. We don't have full list of the 4491 * affected devices. Disable LPM if the device matches one of the 4492 * known prefixes and is SATA-1. As a side effect LPM partial is 4493 * lost too. 4494 * 4495 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4496 */ 4497 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4498 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4499 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4500 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4501 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4502 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4503 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4504 4505 /* End Marker */ 4506 { } 4507 }; 4508 4509 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4510 { 4511 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4512 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4513 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4514 4515 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4516 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4517 4518 while (ad->model_num) { 4519 if (glob_match(ad->model_num, model_num)) { 4520 if (ad->model_rev == NULL) 4521 return ad->horkage; 4522 if (glob_match(ad->model_rev, model_rev)) 4523 return ad->horkage; 4524 } 4525 ad++; 4526 } 4527 return 0; 4528 } 4529 4530 static int ata_dma_blacklisted(const struct ata_device *dev) 4531 { 4532 /* We don't support polling DMA. 4533 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4534 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4535 */ 4536 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4537 (dev->flags & ATA_DFLAG_CDB_INTR)) 4538 return 1; 4539 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4540 } 4541 4542 /** 4543 * ata_is_40wire - check drive side detection 4544 * @dev: device 4545 * 4546 * Perform drive side detection decoding, allowing for device vendors 4547 * who can't follow the documentation. 4548 */ 4549 4550 static int ata_is_40wire(struct ata_device *dev) 4551 { 4552 if (dev->horkage & ATA_HORKAGE_IVB) 4553 return ata_drive_40wire_relaxed(dev->id); 4554 return ata_drive_40wire(dev->id); 4555 } 4556 4557 /** 4558 * cable_is_40wire - 40/80/SATA decider 4559 * @ap: port to consider 4560 * 4561 * This function encapsulates the policy for speed management 4562 * in one place. At the moment we don't cache the result but 4563 * there is a good case for setting ap->cbl to the result when 4564 * we are called with unknown cables (and figuring out if it 4565 * impacts hotplug at all). 4566 * 4567 * Return 1 if the cable appears to be 40 wire. 4568 */ 4569 4570 static int cable_is_40wire(struct ata_port *ap) 4571 { 4572 struct ata_link *link; 4573 struct ata_device *dev; 4574 4575 /* If the controller thinks we are 40 wire, we are. */ 4576 if (ap->cbl == ATA_CBL_PATA40) 4577 return 1; 4578 4579 /* If the controller thinks we are 80 wire, we are. */ 4580 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4581 return 0; 4582 4583 /* If the system is known to be 40 wire short cable (eg 4584 * laptop), then we allow 80 wire modes even if the drive 4585 * isn't sure. 4586 */ 4587 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4588 return 0; 4589 4590 /* If the controller doesn't know, we scan. 4591 * 4592 * Note: We look for all 40 wire detects at this point. Any 4593 * 80 wire detect is taken to be 80 wire cable because 4594 * - in many setups only the one drive (slave if present) will 4595 * give a valid detect 4596 * - if you have a non detect capable drive you don't want it 4597 * to colour the choice 4598 */ 4599 ata_for_each_link(link, ap, EDGE) { 4600 ata_for_each_dev(dev, link, ENABLED) { 4601 if (!ata_is_40wire(dev)) 4602 return 0; 4603 } 4604 } 4605 return 1; 4606 } 4607 4608 /** 4609 * ata_dev_xfermask - Compute supported xfermask of the given device 4610 * @dev: Device to compute xfermask for 4611 * 4612 * Compute supported xfermask of @dev and store it in 4613 * dev->*_mask. This function is responsible for applying all 4614 * known limits including host controller limits, device 4615 * blacklist, etc... 4616 * 4617 * LOCKING: 4618 * None. 4619 */ 4620 static void ata_dev_xfermask(struct ata_device *dev) 4621 { 4622 struct ata_link *link = dev->link; 4623 struct ata_port *ap = link->ap; 4624 struct ata_host *host = ap->host; 4625 unsigned long xfer_mask; 4626 4627 /* controller modes available */ 4628 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4629 ap->mwdma_mask, ap->udma_mask); 4630 4631 /* drive modes available */ 4632 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4633 dev->mwdma_mask, dev->udma_mask); 4634 xfer_mask &= ata_id_xfermask(dev->id); 4635 4636 /* 4637 * CFA Advanced TrueIDE timings are not allowed on a shared 4638 * cable 4639 */ 4640 if (ata_dev_pair(dev)) { 4641 /* No PIO5 or PIO6 */ 4642 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4643 /* No MWDMA3 or MWDMA 4 */ 4644 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4645 } 4646 4647 if (ata_dma_blacklisted(dev)) { 4648 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4649 ata_dev_warn(dev, 4650 "device is on DMA blacklist, disabling DMA\n"); 4651 } 4652 4653 if ((host->flags & ATA_HOST_SIMPLEX) && 4654 host->simplex_claimed && host->simplex_claimed != ap) { 4655 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4656 ata_dev_warn(dev, 4657 "simplex DMA is claimed by other device, disabling DMA\n"); 4658 } 4659 4660 if (ap->flags & ATA_FLAG_NO_IORDY) 4661 xfer_mask &= ata_pio_mask_no_iordy(dev); 4662 4663 if (ap->ops->mode_filter) 4664 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4665 4666 /* Apply cable rule here. Don't apply it early because when 4667 * we handle hot plug the cable type can itself change. 4668 * Check this last so that we know if the transfer rate was 4669 * solely limited by the cable. 4670 * Unknown or 80 wire cables reported host side are checked 4671 * drive side as well. Cases where we know a 40wire cable 4672 * is used safely for 80 are not checked here. 4673 */ 4674 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4675 /* UDMA/44 or higher would be available */ 4676 if (cable_is_40wire(ap)) { 4677 ata_dev_warn(dev, 4678 "limited to UDMA/33 due to 40-wire cable\n"); 4679 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4680 } 4681 4682 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4683 &dev->mwdma_mask, &dev->udma_mask); 4684 } 4685 4686 /** 4687 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4688 * @dev: Device to which command will be sent 4689 * 4690 * Issue SET FEATURES - XFER MODE command to device @dev 4691 * on port @ap. 4692 * 4693 * LOCKING: 4694 * PCI/etc. bus probe sem. 4695 * 4696 * RETURNS: 4697 * 0 on success, AC_ERR_* mask otherwise. 4698 */ 4699 4700 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4701 { 4702 struct ata_taskfile tf; 4703 unsigned int err_mask; 4704 4705 /* set up set-features taskfile */ 4706 DPRINTK("set features - xfer mode\n"); 4707 4708 /* Some controllers and ATAPI devices show flaky interrupt 4709 * behavior after setting xfer mode. Use polling instead. 4710 */ 4711 ata_tf_init(dev, &tf); 4712 tf.command = ATA_CMD_SET_FEATURES; 4713 tf.feature = SETFEATURES_XFER; 4714 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4715 tf.protocol = ATA_PROT_NODATA; 4716 /* If we are using IORDY we must send the mode setting command */ 4717 if (ata_pio_need_iordy(dev)) 4718 tf.nsect = dev->xfer_mode; 4719 /* If the device has IORDY and the controller does not - turn it off */ 4720 else if (ata_id_has_iordy(dev->id)) 4721 tf.nsect = 0x01; 4722 else /* In the ancient relic department - skip all of this */ 4723 return 0; 4724 4725 /* On some disks, this command causes spin-up, so we need longer timeout */ 4726 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4727 4728 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4729 return err_mask; 4730 } 4731 4732 /** 4733 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4734 * @dev: Device to which command will be sent 4735 * @enable: Whether to enable or disable the feature 4736 * @feature: The sector count represents the feature to set 4737 * 4738 * Issue SET FEATURES - SATA FEATURES command to device @dev 4739 * on port @ap with sector count 4740 * 4741 * LOCKING: 4742 * PCI/etc. bus probe sem. 4743 * 4744 * RETURNS: 4745 * 0 on success, AC_ERR_* mask otherwise. 4746 */ 4747 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4748 { 4749 struct ata_taskfile tf; 4750 unsigned int err_mask; 4751 unsigned long timeout = 0; 4752 4753 /* set up set-features taskfile */ 4754 DPRINTK("set features - SATA features\n"); 4755 4756 ata_tf_init(dev, &tf); 4757 tf.command = ATA_CMD_SET_FEATURES; 4758 tf.feature = enable; 4759 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4760 tf.protocol = ATA_PROT_NODATA; 4761 tf.nsect = feature; 4762 4763 if (enable == SETFEATURES_SPINUP) 4764 timeout = ata_probe_timeout ? 4765 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4766 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4767 4768 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4769 return err_mask; 4770 } 4771 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4772 4773 /** 4774 * ata_dev_init_params - Issue INIT DEV PARAMS command 4775 * @dev: Device to which command will be sent 4776 * @heads: Number of heads (taskfile parameter) 4777 * @sectors: Number of sectors (taskfile parameter) 4778 * 4779 * LOCKING: 4780 * Kernel thread context (may sleep) 4781 * 4782 * RETURNS: 4783 * 0 on success, AC_ERR_* mask otherwise. 4784 */ 4785 static unsigned int ata_dev_init_params(struct ata_device *dev, 4786 u16 heads, u16 sectors) 4787 { 4788 struct ata_taskfile tf; 4789 unsigned int err_mask; 4790 4791 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4792 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4793 return AC_ERR_INVALID; 4794 4795 /* set up init dev params taskfile */ 4796 DPRINTK("init dev params \n"); 4797 4798 ata_tf_init(dev, &tf); 4799 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4800 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4801 tf.protocol = ATA_PROT_NODATA; 4802 tf.nsect = sectors; 4803 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4804 4805 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4806 /* A clean abort indicates an original or just out of spec drive 4807 and we should continue as we issue the setup based on the 4808 drive reported working geometry */ 4809 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4810 err_mask = 0; 4811 4812 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4813 return err_mask; 4814 } 4815 4816 /** 4817 * ata_sg_clean - Unmap DMA memory associated with command 4818 * @qc: Command containing DMA memory to be released 4819 * 4820 * Unmap all mapped DMA memory associated with this command. 4821 * 4822 * LOCKING: 4823 * spin_lock_irqsave(host lock) 4824 */ 4825 void ata_sg_clean(struct ata_queued_cmd *qc) 4826 { 4827 struct ata_port *ap = qc->ap; 4828 struct scatterlist *sg = qc->sg; 4829 int dir = qc->dma_dir; 4830 4831 WARN_ON_ONCE(sg == NULL); 4832 4833 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4834 4835 if (qc->n_elem) 4836 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4837 4838 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4839 qc->sg = NULL; 4840 } 4841 4842 /** 4843 * atapi_check_dma - Check whether ATAPI DMA can be supported 4844 * @qc: Metadata associated with taskfile to check 4845 * 4846 * Allow low-level driver to filter ATA PACKET commands, returning 4847 * a status indicating whether or not it is OK to use DMA for the 4848 * supplied PACKET command. 4849 * 4850 * LOCKING: 4851 * spin_lock_irqsave(host lock) 4852 * 4853 * RETURNS: 0 when ATAPI DMA can be used 4854 * nonzero otherwise 4855 */ 4856 int atapi_check_dma(struct ata_queued_cmd *qc) 4857 { 4858 struct ata_port *ap = qc->ap; 4859 4860 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4861 * few ATAPI devices choke on such DMA requests. 4862 */ 4863 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4864 unlikely(qc->nbytes & 15)) 4865 return 1; 4866 4867 if (ap->ops->check_atapi_dma) 4868 return ap->ops->check_atapi_dma(qc); 4869 4870 return 0; 4871 } 4872 4873 /** 4874 * ata_std_qc_defer - Check whether a qc needs to be deferred 4875 * @qc: ATA command in question 4876 * 4877 * Non-NCQ commands cannot run with any other command, NCQ or 4878 * not. As upper layer only knows the queue depth, we are 4879 * responsible for maintaining exclusion. This function checks 4880 * whether a new command @qc can be issued. 4881 * 4882 * LOCKING: 4883 * spin_lock_irqsave(host lock) 4884 * 4885 * RETURNS: 4886 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4887 */ 4888 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4889 { 4890 struct ata_link *link = qc->dev->link; 4891 4892 if (ata_is_ncq(qc->tf.protocol)) { 4893 if (!ata_tag_valid(link->active_tag)) 4894 return 0; 4895 } else { 4896 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4897 return 0; 4898 } 4899 4900 return ATA_DEFER_LINK; 4901 } 4902 4903 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4904 4905 /** 4906 * ata_sg_init - Associate command with scatter-gather table. 4907 * @qc: Command to be associated 4908 * @sg: Scatter-gather table. 4909 * @n_elem: Number of elements in s/g table. 4910 * 4911 * Initialize the data-related elements of queued_cmd @qc 4912 * to point to a scatter-gather table @sg, containing @n_elem 4913 * elements. 4914 * 4915 * LOCKING: 4916 * spin_lock_irqsave(host lock) 4917 */ 4918 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4919 unsigned int n_elem) 4920 { 4921 qc->sg = sg; 4922 qc->n_elem = n_elem; 4923 qc->cursg = qc->sg; 4924 } 4925 4926 /** 4927 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4928 * @qc: Command with scatter-gather table to be mapped. 4929 * 4930 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4931 * 4932 * LOCKING: 4933 * spin_lock_irqsave(host lock) 4934 * 4935 * RETURNS: 4936 * Zero on success, negative on error. 4937 * 4938 */ 4939 static int ata_sg_setup(struct ata_queued_cmd *qc) 4940 { 4941 struct ata_port *ap = qc->ap; 4942 unsigned int n_elem; 4943 4944 VPRINTK("ENTER, ata%u\n", ap->print_id); 4945 4946 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4947 if (n_elem < 1) 4948 return -1; 4949 4950 DPRINTK("%d sg elements mapped\n", n_elem); 4951 qc->orig_n_elem = qc->n_elem; 4952 qc->n_elem = n_elem; 4953 qc->flags |= ATA_QCFLAG_DMAMAP; 4954 4955 return 0; 4956 } 4957 4958 /** 4959 * swap_buf_le16 - swap halves of 16-bit words in place 4960 * @buf: Buffer to swap 4961 * @buf_words: Number of 16-bit words in buffer. 4962 * 4963 * Swap halves of 16-bit words if needed to convert from 4964 * little-endian byte order to native cpu byte order, or 4965 * vice-versa. 4966 * 4967 * LOCKING: 4968 * Inherited from caller. 4969 */ 4970 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4971 { 4972 #ifdef __BIG_ENDIAN 4973 unsigned int i; 4974 4975 for (i = 0; i < buf_words; i++) 4976 buf[i] = le16_to_cpu(buf[i]); 4977 #endif /* __BIG_ENDIAN */ 4978 } 4979 4980 /** 4981 * ata_qc_new_init - Request an available ATA command, and initialize it 4982 * @dev: Device from whom we request an available command structure 4983 * @tag: tag 4984 * 4985 * LOCKING: 4986 * None. 4987 */ 4988 4989 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 4990 { 4991 struct ata_port *ap = dev->link->ap; 4992 struct ata_queued_cmd *qc; 4993 4994 /* no command while frozen */ 4995 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4996 return NULL; 4997 4998 /* libsas case */ 4999 if (ap->flags & ATA_FLAG_SAS_HOST) { 5000 tag = ata_sas_allocate_tag(ap); 5001 if (tag < 0) 5002 return NULL; 5003 } 5004 5005 qc = __ata_qc_from_tag(ap, tag); 5006 qc->tag = tag; 5007 qc->scsicmd = NULL; 5008 qc->ap = ap; 5009 qc->dev = dev; 5010 5011 ata_qc_reinit(qc); 5012 5013 return qc; 5014 } 5015 5016 /** 5017 * ata_qc_free - free unused ata_queued_cmd 5018 * @qc: Command to complete 5019 * 5020 * Designed to free unused ata_queued_cmd object 5021 * in case something prevents using it. 5022 * 5023 * LOCKING: 5024 * spin_lock_irqsave(host lock) 5025 */ 5026 void ata_qc_free(struct ata_queued_cmd *qc) 5027 { 5028 struct ata_port *ap; 5029 unsigned int tag; 5030 5031 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5032 ap = qc->ap; 5033 5034 qc->flags = 0; 5035 tag = qc->tag; 5036 if (likely(ata_tag_valid(tag))) { 5037 qc->tag = ATA_TAG_POISON; 5038 if (ap->flags & ATA_FLAG_SAS_HOST) 5039 ata_sas_free_tag(tag, ap); 5040 } 5041 } 5042 5043 void __ata_qc_complete(struct ata_queued_cmd *qc) 5044 { 5045 struct ata_port *ap; 5046 struct ata_link *link; 5047 5048 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5049 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 5050 ap = qc->ap; 5051 link = qc->dev->link; 5052 5053 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 5054 ata_sg_clean(qc); 5055 5056 /* command should be marked inactive atomically with qc completion */ 5057 if (ata_is_ncq(qc->tf.protocol)) { 5058 link->sactive &= ~(1 << qc->tag); 5059 if (!link->sactive) 5060 ap->nr_active_links--; 5061 } else { 5062 link->active_tag = ATA_TAG_POISON; 5063 ap->nr_active_links--; 5064 } 5065 5066 /* clear exclusive status */ 5067 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 5068 ap->excl_link == link)) 5069 ap->excl_link = NULL; 5070 5071 /* atapi: mark qc as inactive to prevent the interrupt handler 5072 * from completing the command twice later, before the error handler 5073 * is called. (when rc != 0 and atapi request sense is needed) 5074 */ 5075 qc->flags &= ~ATA_QCFLAG_ACTIVE; 5076 ap->qc_active &= ~(1 << qc->tag); 5077 5078 /* call completion callback */ 5079 qc->complete_fn(qc); 5080 } 5081 5082 static void fill_result_tf(struct ata_queued_cmd *qc) 5083 { 5084 struct ata_port *ap = qc->ap; 5085 5086 qc->result_tf.flags = qc->tf.flags; 5087 ap->ops->qc_fill_rtf(qc); 5088 } 5089 5090 static void ata_verify_xfer(struct ata_queued_cmd *qc) 5091 { 5092 struct ata_device *dev = qc->dev; 5093 5094 if (!ata_is_data(qc->tf.protocol)) 5095 return; 5096 5097 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 5098 return; 5099 5100 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 5101 } 5102 5103 /** 5104 * ata_qc_complete - Complete an active ATA command 5105 * @qc: Command to complete 5106 * 5107 * Indicate to the mid and upper layers that an ATA command has 5108 * completed, with either an ok or not-ok status. 5109 * 5110 * Refrain from calling this function multiple times when 5111 * successfully completing multiple NCQ commands. 5112 * ata_qc_complete_multiple() should be used instead, which will 5113 * properly update IRQ expect state. 5114 * 5115 * LOCKING: 5116 * spin_lock_irqsave(host lock) 5117 */ 5118 void ata_qc_complete(struct ata_queued_cmd *qc) 5119 { 5120 struct ata_port *ap = qc->ap; 5121 5122 /* Trigger the LED (if available) */ 5123 ledtrig_disk_activity(); 5124 5125 /* XXX: New EH and old EH use different mechanisms to 5126 * synchronize EH with regular execution path. 5127 * 5128 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 5129 * Normal execution path is responsible for not accessing a 5130 * failed qc. libata core enforces the rule by returning NULL 5131 * from ata_qc_from_tag() for failed qcs. 5132 * 5133 * Old EH depends on ata_qc_complete() nullifying completion 5134 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 5135 * not synchronize with interrupt handler. Only PIO task is 5136 * taken care of. 5137 */ 5138 if (ap->ops->error_handler) { 5139 struct ata_device *dev = qc->dev; 5140 struct ata_eh_info *ehi = &dev->link->eh_info; 5141 5142 if (unlikely(qc->err_mask)) 5143 qc->flags |= ATA_QCFLAG_FAILED; 5144 5145 /* 5146 * Finish internal commands without any further processing 5147 * and always with the result TF filled. 5148 */ 5149 if (unlikely(ata_tag_internal(qc->tag))) { 5150 fill_result_tf(qc); 5151 trace_ata_qc_complete_internal(qc); 5152 __ata_qc_complete(qc); 5153 return; 5154 } 5155 5156 /* 5157 * Non-internal qc has failed. Fill the result TF and 5158 * summon EH. 5159 */ 5160 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 5161 fill_result_tf(qc); 5162 trace_ata_qc_complete_failed(qc); 5163 ata_qc_schedule_eh(qc); 5164 return; 5165 } 5166 5167 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 5168 5169 /* read result TF if requested */ 5170 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5171 fill_result_tf(qc); 5172 5173 trace_ata_qc_complete_done(qc); 5174 /* Some commands need post-processing after successful 5175 * completion. 5176 */ 5177 switch (qc->tf.command) { 5178 case ATA_CMD_SET_FEATURES: 5179 if (qc->tf.feature != SETFEATURES_WC_ON && 5180 qc->tf.feature != SETFEATURES_WC_OFF && 5181 qc->tf.feature != SETFEATURES_RA_ON && 5182 qc->tf.feature != SETFEATURES_RA_OFF) 5183 break; 5184 /* fall through */ 5185 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 5186 case ATA_CMD_SET_MULTI: /* multi_count changed */ 5187 /* revalidate device */ 5188 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 5189 ata_port_schedule_eh(ap); 5190 break; 5191 5192 case ATA_CMD_SLEEP: 5193 dev->flags |= ATA_DFLAG_SLEEPING; 5194 break; 5195 } 5196 5197 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 5198 ata_verify_xfer(qc); 5199 5200 __ata_qc_complete(qc); 5201 } else { 5202 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5203 return; 5204 5205 /* read result TF if failed or requested */ 5206 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5207 fill_result_tf(qc); 5208 5209 __ata_qc_complete(qc); 5210 } 5211 } 5212 5213 /** 5214 * ata_qc_complete_multiple - Complete multiple qcs successfully 5215 * @ap: port in question 5216 * @qc_active: new qc_active mask 5217 * 5218 * Complete in-flight commands. This functions is meant to be 5219 * called from low-level driver's interrupt routine to complete 5220 * requests normally. ap->qc_active and @qc_active is compared 5221 * and commands are completed accordingly. 5222 * 5223 * Always use this function when completing multiple NCQ commands 5224 * from IRQ handlers instead of calling ata_qc_complete() 5225 * multiple times to keep IRQ expect status properly in sync. 5226 * 5227 * LOCKING: 5228 * spin_lock_irqsave(host lock) 5229 * 5230 * RETURNS: 5231 * Number of completed commands on success, -errno otherwise. 5232 */ 5233 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5234 { 5235 int nr_done = 0; 5236 u32 done_mask; 5237 5238 done_mask = ap->qc_active ^ qc_active; 5239 5240 if (unlikely(done_mask & qc_active)) { 5241 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 5242 ap->qc_active, qc_active); 5243 return -EINVAL; 5244 } 5245 5246 while (done_mask) { 5247 struct ata_queued_cmd *qc; 5248 unsigned int tag = __ffs(done_mask); 5249 5250 qc = ata_qc_from_tag(ap, tag); 5251 if (qc) { 5252 ata_qc_complete(qc); 5253 nr_done++; 5254 } 5255 done_mask &= ~(1 << tag); 5256 } 5257 5258 return nr_done; 5259 } 5260 5261 /** 5262 * ata_qc_issue - issue taskfile to device 5263 * @qc: command to issue to device 5264 * 5265 * Prepare an ATA command to submission to device. 5266 * This includes mapping the data into a DMA-able 5267 * area, filling in the S/G table, and finally 5268 * writing the taskfile to hardware, starting the command. 5269 * 5270 * LOCKING: 5271 * spin_lock_irqsave(host lock) 5272 */ 5273 void ata_qc_issue(struct ata_queued_cmd *qc) 5274 { 5275 struct ata_port *ap = qc->ap; 5276 struct ata_link *link = qc->dev->link; 5277 u8 prot = qc->tf.protocol; 5278 5279 /* Make sure only one non-NCQ command is outstanding. The 5280 * check is skipped for old EH because it reuses active qc to 5281 * request ATAPI sense. 5282 */ 5283 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5284 5285 if (ata_is_ncq(prot)) { 5286 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5287 5288 if (!link->sactive) 5289 ap->nr_active_links++; 5290 link->sactive |= 1 << qc->tag; 5291 } else { 5292 WARN_ON_ONCE(link->sactive); 5293 5294 ap->nr_active_links++; 5295 link->active_tag = qc->tag; 5296 } 5297 5298 qc->flags |= ATA_QCFLAG_ACTIVE; 5299 ap->qc_active |= 1 << qc->tag; 5300 5301 /* 5302 * We guarantee to LLDs that they will have at least one 5303 * non-zero sg if the command is a data command. 5304 */ 5305 if (WARN_ON_ONCE(ata_is_data(prot) && 5306 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5307 goto sys_err; 5308 5309 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5310 (ap->flags & ATA_FLAG_PIO_DMA))) 5311 if (ata_sg_setup(qc)) 5312 goto sys_err; 5313 5314 /* if device is sleeping, schedule reset and abort the link */ 5315 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5316 link->eh_info.action |= ATA_EH_RESET; 5317 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5318 ata_link_abort(link); 5319 return; 5320 } 5321 5322 ap->ops->qc_prep(qc); 5323 trace_ata_qc_issue(qc); 5324 qc->err_mask |= ap->ops->qc_issue(qc); 5325 if (unlikely(qc->err_mask)) 5326 goto err; 5327 return; 5328 5329 sys_err: 5330 qc->err_mask |= AC_ERR_SYSTEM; 5331 err: 5332 ata_qc_complete(qc); 5333 } 5334 5335 /** 5336 * sata_scr_valid - test whether SCRs are accessible 5337 * @link: ATA link to test SCR accessibility for 5338 * 5339 * Test whether SCRs are accessible for @link. 5340 * 5341 * LOCKING: 5342 * None. 5343 * 5344 * RETURNS: 5345 * 1 if SCRs are accessible, 0 otherwise. 5346 */ 5347 int sata_scr_valid(struct ata_link *link) 5348 { 5349 struct ata_port *ap = link->ap; 5350 5351 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5352 } 5353 5354 /** 5355 * sata_scr_read - read SCR register of the specified port 5356 * @link: ATA link to read SCR for 5357 * @reg: SCR to read 5358 * @val: Place to store read value 5359 * 5360 * Read SCR register @reg of @link into *@val. This function is 5361 * guaranteed to succeed if @link is ap->link, the cable type of 5362 * the port is SATA and the port implements ->scr_read. 5363 * 5364 * LOCKING: 5365 * None if @link is ap->link. Kernel thread context otherwise. 5366 * 5367 * RETURNS: 5368 * 0 on success, negative errno on failure. 5369 */ 5370 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5371 { 5372 if (ata_is_host_link(link)) { 5373 if (sata_scr_valid(link)) 5374 return link->ap->ops->scr_read(link, reg, val); 5375 return -EOPNOTSUPP; 5376 } 5377 5378 return sata_pmp_scr_read(link, reg, val); 5379 } 5380 5381 /** 5382 * sata_scr_write - write SCR register of the specified port 5383 * @link: ATA link to write SCR for 5384 * @reg: SCR to write 5385 * @val: value to write 5386 * 5387 * Write @val to SCR register @reg of @link. This function is 5388 * guaranteed to succeed if @link is ap->link, the cable type of 5389 * the port is SATA and the port implements ->scr_read. 5390 * 5391 * LOCKING: 5392 * None if @link is ap->link. Kernel thread context otherwise. 5393 * 5394 * RETURNS: 5395 * 0 on success, negative errno on failure. 5396 */ 5397 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5398 { 5399 if (ata_is_host_link(link)) { 5400 if (sata_scr_valid(link)) 5401 return link->ap->ops->scr_write(link, reg, val); 5402 return -EOPNOTSUPP; 5403 } 5404 5405 return sata_pmp_scr_write(link, reg, val); 5406 } 5407 5408 /** 5409 * sata_scr_write_flush - write SCR register of the specified port and flush 5410 * @link: ATA link to write SCR for 5411 * @reg: SCR to write 5412 * @val: value to write 5413 * 5414 * This function is identical to sata_scr_write() except that this 5415 * function performs flush after writing to the register. 5416 * 5417 * LOCKING: 5418 * None if @link is ap->link. Kernel thread context otherwise. 5419 * 5420 * RETURNS: 5421 * 0 on success, negative errno on failure. 5422 */ 5423 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5424 { 5425 if (ata_is_host_link(link)) { 5426 int rc; 5427 5428 if (sata_scr_valid(link)) { 5429 rc = link->ap->ops->scr_write(link, reg, val); 5430 if (rc == 0) 5431 rc = link->ap->ops->scr_read(link, reg, &val); 5432 return rc; 5433 } 5434 return -EOPNOTSUPP; 5435 } 5436 5437 return sata_pmp_scr_write(link, reg, val); 5438 } 5439 5440 /** 5441 * ata_phys_link_online - test whether the given link is online 5442 * @link: ATA link to test 5443 * 5444 * Test whether @link is online. Note that this function returns 5445 * 0 if online status of @link cannot be obtained, so 5446 * ata_link_online(link) != !ata_link_offline(link). 5447 * 5448 * LOCKING: 5449 * None. 5450 * 5451 * RETURNS: 5452 * True if the port online status is available and online. 5453 */ 5454 bool ata_phys_link_online(struct ata_link *link) 5455 { 5456 u32 sstatus; 5457 5458 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5459 ata_sstatus_online(sstatus)) 5460 return true; 5461 return false; 5462 } 5463 5464 /** 5465 * ata_phys_link_offline - test whether the given link is offline 5466 * @link: ATA link to test 5467 * 5468 * Test whether @link is offline. Note that this function 5469 * returns 0 if offline status of @link cannot be obtained, so 5470 * ata_link_online(link) != !ata_link_offline(link). 5471 * 5472 * LOCKING: 5473 * None. 5474 * 5475 * RETURNS: 5476 * True if the port offline status is available and offline. 5477 */ 5478 bool ata_phys_link_offline(struct ata_link *link) 5479 { 5480 u32 sstatus; 5481 5482 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5483 !ata_sstatus_online(sstatus)) 5484 return true; 5485 return false; 5486 } 5487 5488 /** 5489 * ata_link_online - test whether the given link is online 5490 * @link: ATA link to test 5491 * 5492 * Test whether @link is online. This is identical to 5493 * ata_phys_link_online() when there's no slave link. When 5494 * there's a slave link, this function should only be called on 5495 * the master link and will return true if any of M/S links is 5496 * online. 5497 * 5498 * LOCKING: 5499 * None. 5500 * 5501 * RETURNS: 5502 * True if the port online status is available and online. 5503 */ 5504 bool ata_link_online(struct ata_link *link) 5505 { 5506 struct ata_link *slave = link->ap->slave_link; 5507 5508 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5509 5510 return ata_phys_link_online(link) || 5511 (slave && ata_phys_link_online(slave)); 5512 } 5513 5514 /** 5515 * ata_link_offline - test whether the given link is offline 5516 * @link: ATA link to test 5517 * 5518 * Test whether @link is offline. This is identical to 5519 * ata_phys_link_offline() when there's no slave link. When 5520 * there's a slave link, this function should only be called on 5521 * the master link and will return true if both M/S links are 5522 * offline. 5523 * 5524 * LOCKING: 5525 * None. 5526 * 5527 * RETURNS: 5528 * True if the port offline status is available and offline. 5529 */ 5530 bool ata_link_offline(struct ata_link *link) 5531 { 5532 struct ata_link *slave = link->ap->slave_link; 5533 5534 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5535 5536 return ata_phys_link_offline(link) && 5537 (!slave || ata_phys_link_offline(slave)); 5538 } 5539 5540 #ifdef CONFIG_PM 5541 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5542 unsigned int action, unsigned int ehi_flags, 5543 bool async) 5544 { 5545 struct ata_link *link; 5546 unsigned long flags; 5547 5548 /* Previous resume operation might still be in 5549 * progress. Wait for PM_PENDING to clear. 5550 */ 5551 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5552 ata_port_wait_eh(ap); 5553 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5554 } 5555 5556 /* request PM ops to EH */ 5557 spin_lock_irqsave(ap->lock, flags); 5558 5559 ap->pm_mesg = mesg; 5560 ap->pflags |= ATA_PFLAG_PM_PENDING; 5561 ata_for_each_link(link, ap, HOST_FIRST) { 5562 link->eh_info.action |= action; 5563 link->eh_info.flags |= ehi_flags; 5564 } 5565 5566 ata_port_schedule_eh(ap); 5567 5568 spin_unlock_irqrestore(ap->lock, flags); 5569 5570 if (!async) { 5571 ata_port_wait_eh(ap); 5572 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5573 } 5574 } 5575 5576 /* 5577 * On some hardware, device fails to respond after spun down for suspend. As 5578 * the device won't be used before being resumed, we don't need to touch the 5579 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5580 * 5581 * http://thread.gmane.org/gmane.linux.ide/46764 5582 */ 5583 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5584 | ATA_EHI_NO_AUTOPSY 5585 | ATA_EHI_NO_RECOVERY; 5586 5587 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5588 { 5589 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5590 } 5591 5592 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5593 { 5594 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5595 } 5596 5597 static int ata_port_pm_suspend(struct device *dev) 5598 { 5599 struct ata_port *ap = to_ata_port(dev); 5600 5601 if (pm_runtime_suspended(dev)) 5602 return 0; 5603 5604 ata_port_suspend(ap, PMSG_SUSPEND); 5605 return 0; 5606 } 5607 5608 static int ata_port_pm_freeze(struct device *dev) 5609 { 5610 struct ata_port *ap = to_ata_port(dev); 5611 5612 if (pm_runtime_suspended(dev)) 5613 return 0; 5614 5615 ata_port_suspend(ap, PMSG_FREEZE); 5616 return 0; 5617 } 5618 5619 static int ata_port_pm_poweroff(struct device *dev) 5620 { 5621 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5622 return 0; 5623 } 5624 5625 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5626 | ATA_EHI_QUIET; 5627 5628 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5629 { 5630 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5631 } 5632 5633 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5634 { 5635 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5636 } 5637 5638 static int ata_port_pm_resume(struct device *dev) 5639 { 5640 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5641 pm_runtime_disable(dev); 5642 pm_runtime_set_active(dev); 5643 pm_runtime_enable(dev); 5644 return 0; 5645 } 5646 5647 /* 5648 * For ODDs, the upper layer will poll for media change every few seconds, 5649 * which will make it enter and leave suspend state every few seconds. And 5650 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5651 * is very little and the ODD may malfunction after constantly being reset. 5652 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5653 * ODD is attached to the port. 5654 */ 5655 static int ata_port_runtime_idle(struct device *dev) 5656 { 5657 struct ata_port *ap = to_ata_port(dev); 5658 struct ata_link *link; 5659 struct ata_device *adev; 5660 5661 ata_for_each_link(link, ap, HOST_FIRST) { 5662 ata_for_each_dev(adev, link, ENABLED) 5663 if (adev->class == ATA_DEV_ATAPI && 5664 !zpodd_dev_enabled(adev)) 5665 return -EBUSY; 5666 } 5667 5668 return 0; 5669 } 5670 5671 static int ata_port_runtime_suspend(struct device *dev) 5672 { 5673 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5674 return 0; 5675 } 5676 5677 static int ata_port_runtime_resume(struct device *dev) 5678 { 5679 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5680 return 0; 5681 } 5682 5683 static const struct dev_pm_ops ata_port_pm_ops = { 5684 .suspend = ata_port_pm_suspend, 5685 .resume = ata_port_pm_resume, 5686 .freeze = ata_port_pm_freeze, 5687 .thaw = ata_port_pm_resume, 5688 .poweroff = ata_port_pm_poweroff, 5689 .restore = ata_port_pm_resume, 5690 5691 .runtime_suspend = ata_port_runtime_suspend, 5692 .runtime_resume = ata_port_runtime_resume, 5693 .runtime_idle = ata_port_runtime_idle, 5694 }; 5695 5696 /* sas ports don't participate in pm runtime management of ata_ports, 5697 * and need to resume ata devices at the domain level, not the per-port 5698 * level. sas suspend/resume is async to allow parallel port recovery 5699 * since sas has multiple ata_port instances per Scsi_Host. 5700 */ 5701 void ata_sas_port_suspend(struct ata_port *ap) 5702 { 5703 ata_port_suspend_async(ap, PMSG_SUSPEND); 5704 } 5705 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5706 5707 void ata_sas_port_resume(struct ata_port *ap) 5708 { 5709 ata_port_resume_async(ap, PMSG_RESUME); 5710 } 5711 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5712 5713 /** 5714 * ata_host_suspend - suspend host 5715 * @host: host to suspend 5716 * @mesg: PM message 5717 * 5718 * Suspend @host. Actual operation is performed by port suspend. 5719 */ 5720 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5721 { 5722 host->dev->power.power_state = mesg; 5723 return 0; 5724 } 5725 5726 /** 5727 * ata_host_resume - resume host 5728 * @host: host to resume 5729 * 5730 * Resume @host. Actual operation is performed by port resume. 5731 */ 5732 void ata_host_resume(struct ata_host *host) 5733 { 5734 host->dev->power.power_state = PMSG_ON; 5735 } 5736 #endif 5737 5738 struct device_type ata_port_type = { 5739 .name = "ata_port", 5740 #ifdef CONFIG_PM 5741 .pm = &ata_port_pm_ops, 5742 #endif 5743 }; 5744 5745 /** 5746 * ata_dev_init - Initialize an ata_device structure 5747 * @dev: Device structure to initialize 5748 * 5749 * Initialize @dev in preparation for probing. 5750 * 5751 * LOCKING: 5752 * Inherited from caller. 5753 */ 5754 void ata_dev_init(struct ata_device *dev) 5755 { 5756 struct ata_link *link = ata_dev_phys_link(dev); 5757 struct ata_port *ap = link->ap; 5758 unsigned long flags; 5759 5760 /* SATA spd limit is bound to the attached device, reset together */ 5761 link->sata_spd_limit = link->hw_sata_spd_limit; 5762 link->sata_spd = 0; 5763 5764 /* High bits of dev->flags are used to record warm plug 5765 * requests which occur asynchronously. Synchronize using 5766 * host lock. 5767 */ 5768 spin_lock_irqsave(ap->lock, flags); 5769 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5770 dev->horkage = 0; 5771 spin_unlock_irqrestore(ap->lock, flags); 5772 5773 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5774 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5775 dev->pio_mask = UINT_MAX; 5776 dev->mwdma_mask = UINT_MAX; 5777 dev->udma_mask = UINT_MAX; 5778 } 5779 5780 /** 5781 * ata_link_init - Initialize an ata_link structure 5782 * @ap: ATA port link is attached to 5783 * @link: Link structure to initialize 5784 * @pmp: Port multiplier port number 5785 * 5786 * Initialize @link. 5787 * 5788 * LOCKING: 5789 * Kernel thread context (may sleep) 5790 */ 5791 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5792 { 5793 int i; 5794 5795 /* clear everything except for devices */ 5796 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5797 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5798 5799 link->ap = ap; 5800 link->pmp = pmp; 5801 link->active_tag = ATA_TAG_POISON; 5802 link->hw_sata_spd_limit = UINT_MAX; 5803 5804 /* can't use iterator, ap isn't initialized yet */ 5805 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5806 struct ata_device *dev = &link->device[i]; 5807 5808 dev->link = link; 5809 dev->devno = dev - link->device; 5810 #ifdef CONFIG_ATA_ACPI 5811 dev->gtf_filter = ata_acpi_gtf_filter; 5812 #endif 5813 ata_dev_init(dev); 5814 } 5815 } 5816 5817 /** 5818 * sata_link_init_spd - Initialize link->sata_spd_limit 5819 * @link: Link to configure sata_spd_limit for 5820 * 5821 * Initialize @link->[hw_]sata_spd_limit to the currently 5822 * configured value. 5823 * 5824 * LOCKING: 5825 * Kernel thread context (may sleep). 5826 * 5827 * RETURNS: 5828 * 0 on success, -errno on failure. 5829 */ 5830 int sata_link_init_spd(struct ata_link *link) 5831 { 5832 u8 spd; 5833 int rc; 5834 5835 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5836 if (rc) 5837 return rc; 5838 5839 spd = (link->saved_scontrol >> 4) & 0xf; 5840 if (spd) 5841 link->hw_sata_spd_limit &= (1 << spd) - 1; 5842 5843 ata_force_link_limits(link); 5844 5845 link->sata_spd_limit = link->hw_sata_spd_limit; 5846 5847 return 0; 5848 } 5849 5850 /** 5851 * ata_port_alloc - allocate and initialize basic ATA port resources 5852 * @host: ATA host this allocated port belongs to 5853 * 5854 * Allocate and initialize basic ATA port resources. 5855 * 5856 * RETURNS: 5857 * Allocate ATA port on success, NULL on failure. 5858 * 5859 * LOCKING: 5860 * Inherited from calling layer (may sleep). 5861 */ 5862 struct ata_port *ata_port_alloc(struct ata_host *host) 5863 { 5864 struct ata_port *ap; 5865 5866 DPRINTK("ENTER\n"); 5867 5868 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5869 if (!ap) 5870 return NULL; 5871 5872 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5873 ap->lock = &host->lock; 5874 ap->print_id = -1; 5875 ap->local_port_no = -1; 5876 ap->host = host; 5877 ap->dev = host->dev; 5878 5879 #if defined(ATA_VERBOSE_DEBUG) 5880 /* turn on all debugging levels */ 5881 ap->msg_enable = 0x00FF; 5882 #elif defined(ATA_DEBUG) 5883 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5884 #else 5885 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5886 #endif 5887 5888 mutex_init(&ap->scsi_scan_mutex); 5889 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5890 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5891 INIT_LIST_HEAD(&ap->eh_done_q); 5892 init_waitqueue_head(&ap->eh_wait_q); 5893 init_completion(&ap->park_req_pending); 5894 init_timer_deferrable(&ap->fastdrain_timer); 5895 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5896 ap->fastdrain_timer.data = (unsigned long)ap; 5897 5898 ap->cbl = ATA_CBL_NONE; 5899 5900 ata_link_init(ap, &ap->link, 0); 5901 5902 #ifdef ATA_IRQ_TRAP 5903 ap->stats.unhandled_irq = 1; 5904 ap->stats.idle_irq = 1; 5905 #endif 5906 ata_sff_port_init(ap); 5907 5908 return ap; 5909 } 5910 5911 static void ata_host_release(struct device *gendev, void *res) 5912 { 5913 struct ata_host *host = dev_get_drvdata(gendev); 5914 int i; 5915 5916 for (i = 0; i < host->n_ports; i++) { 5917 struct ata_port *ap = host->ports[i]; 5918 5919 if (!ap) 5920 continue; 5921 5922 if (ap->scsi_host) 5923 scsi_host_put(ap->scsi_host); 5924 5925 kfree(ap->pmp_link); 5926 kfree(ap->slave_link); 5927 kfree(ap); 5928 host->ports[i] = NULL; 5929 } 5930 5931 dev_set_drvdata(gendev, NULL); 5932 } 5933 5934 /** 5935 * ata_host_alloc - allocate and init basic ATA host resources 5936 * @dev: generic device this host is associated with 5937 * @max_ports: maximum number of ATA ports associated with this host 5938 * 5939 * Allocate and initialize basic ATA host resources. LLD calls 5940 * this function to allocate a host, initializes it fully and 5941 * attaches it using ata_host_register(). 5942 * 5943 * @max_ports ports are allocated and host->n_ports is 5944 * initialized to @max_ports. The caller is allowed to decrease 5945 * host->n_ports before calling ata_host_register(). The unused 5946 * ports will be automatically freed on registration. 5947 * 5948 * RETURNS: 5949 * Allocate ATA host on success, NULL on failure. 5950 * 5951 * LOCKING: 5952 * Inherited from calling layer (may sleep). 5953 */ 5954 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5955 { 5956 struct ata_host *host; 5957 size_t sz; 5958 int i; 5959 5960 DPRINTK("ENTER\n"); 5961 5962 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5963 return NULL; 5964 5965 /* alloc a container for our list of ATA ports (buses) */ 5966 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5967 /* alloc a container for our list of ATA ports (buses) */ 5968 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5969 if (!host) 5970 goto err_out; 5971 5972 devres_add(dev, host); 5973 dev_set_drvdata(dev, host); 5974 5975 spin_lock_init(&host->lock); 5976 mutex_init(&host->eh_mutex); 5977 host->dev = dev; 5978 host->n_ports = max_ports; 5979 5980 /* allocate ports bound to this host */ 5981 for (i = 0; i < max_ports; i++) { 5982 struct ata_port *ap; 5983 5984 ap = ata_port_alloc(host); 5985 if (!ap) 5986 goto err_out; 5987 5988 ap->port_no = i; 5989 host->ports[i] = ap; 5990 } 5991 5992 devres_remove_group(dev, NULL); 5993 return host; 5994 5995 err_out: 5996 devres_release_group(dev, NULL); 5997 return NULL; 5998 } 5999 6000 /** 6001 * ata_host_alloc_pinfo - alloc host and init with port_info array 6002 * @dev: generic device this host is associated with 6003 * @ppi: array of ATA port_info to initialize host with 6004 * @n_ports: number of ATA ports attached to this host 6005 * 6006 * Allocate ATA host and initialize with info from @ppi. If NULL 6007 * terminated, @ppi may contain fewer entries than @n_ports. The 6008 * last entry will be used for the remaining ports. 6009 * 6010 * RETURNS: 6011 * Allocate ATA host on success, NULL on failure. 6012 * 6013 * LOCKING: 6014 * Inherited from calling layer (may sleep). 6015 */ 6016 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 6017 const struct ata_port_info * const * ppi, 6018 int n_ports) 6019 { 6020 const struct ata_port_info *pi; 6021 struct ata_host *host; 6022 int i, j; 6023 6024 host = ata_host_alloc(dev, n_ports); 6025 if (!host) 6026 return NULL; 6027 6028 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 6029 struct ata_port *ap = host->ports[i]; 6030 6031 if (ppi[j]) 6032 pi = ppi[j++]; 6033 6034 ap->pio_mask = pi->pio_mask; 6035 ap->mwdma_mask = pi->mwdma_mask; 6036 ap->udma_mask = pi->udma_mask; 6037 ap->flags |= pi->flags; 6038 ap->link.flags |= pi->link_flags; 6039 ap->ops = pi->port_ops; 6040 6041 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 6042 host->ops = pi->port_ops; 6043 } 6044 6045 return host; 6046 } 6047 6048 /** 6049 * ata_slave_link_init - initialize slave link 6050 * @ap: port to initialize slave link for 6051 * 6052 * Create and initialize slave link for @ap. This enables slave 6053 * link handling on the port. 6054 * 6055 * In libata, a port contains links and a link contains devices. 6056 * There is single host link but if a PMP is attached to it, 6057 * there can be multiple fan-out links. On SATA, there's usually 6058 * a single device connected to a link but PATA and SATA 6059 * controllers emulating TF based interface can have two - master 6060 * and slave. 6061 * 6062 * However, there are a few controllers which don't fit into this 6063 * abstraction too well - SATA controllers which emulate TF 6064 * interface with both master and slave devices but also have 6065 * separate SCR register sets for each device. These controllers 6066 * need separate links for physical link handling 6067 * (e.g. onlineness, link speed) but should be treated like a 6068 * traditional M/S controller for everything else (e.g. command 6069 * issue, softreset). 6070 * 6071 * slave_link is libata's way of handling this class of 6072 * controllers without impacting core layer too much. For 6073 * anything other than physical link handling, the default host 6074 * link is used for both master and slave. For physical link 6075 * handling, separate @ap->slave_link is used. All dirty details 6076 * are implemented inside libata core layer. From LLD's POV, the 6077 * only difference is that prereset, hardreset and postreset are 6078 * called once more for the slave link, so the reset sequence 6079 * looks like the following. 6080 * 6081 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 6082 * softreset(M) -> postreset(M) -> postreset(S) 6083 * 6084 * Note that softreset is called only for the master. Softreset 6085 * resets both M/S by definition, so SRST on master should handle 6086 * both (the standard method will work just fine). 6087 * 6088 * LOCKING: 6089 * Should be called before host is registered. 6090 * 6091 * RETURNS: 6092 * 0 on success, -errno on failure. 6093 */ 6094 int ata_slave_link_init(struct ata_port *ap) 6095 { 6096 struct ata_link *link; 6097 6098 WARN_ON(ap->slave_link); 6099 WARN_ON(ap->flags & ATA_FLAG_PMP); 6100 6101 link = kzalloc(sizeof(*link), GFP_KERNEL); 6102 if (!link) 6103 return -ENOMEM; 6104 6105 ata_link_init(ap, link, 1); 6106 ap->slave_link = link; 6107 return 0; 6108 } 6109 6110 static void ata_host_stop(struct device *gendev, void *res) 6111 { 6112 struct ata_host *host = dev_get_drvdata(gendev); 6113 int i; 6114 6115 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 6116 6117 for (i = 0; i < host->n_ports; i++) { 6118 struct ata_port *ap = host->ports[i]; 6119 6120 if (ap->ops->port_stop) 6121 ap->ops->port_stop(ap); 6122 } 6123 6124 if (host->ops->host_stop) 6125 host->ops->host_stop(host); 6126 } 6127 6128 /** 6129 * ata_finalize_port_ops - finalize ata_port_operations 6130 * @ops: ata_port_operations to finalize 6131 * 6132 * An ata_port_operations can inherit from another ops and that 6133 * ops can again inherit from another. This can go on as many 6134 * times as necessary as long as there is no loop in the 6135 * inheritance chain. 6136 * 6137 * Ops tables are finalized when the host is started. NULL or 6138 * unspecified entries are inherited from the closet ancestor 6139 * which has the method and the entry is populated with it. 6140 * After finalization, the ops table directly points to all the 6141 * methods and ->inherits is no longer necessary and cleared. 6142 * 6143 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 6144 * 6145 * LOCKING: 6146 * None. 6147 */ 6148 static void ata_finalize_port_ops(struct ata_port_operations *ops) 6149 { 6150 static DEFINE_SPINLOCK(lock); 6151 const struct ata_port_operations *cur; 6152 void **begin = (void **)ops; 6153 void **end = (void **)&ops->inherits; 6154 void **pp; 6155 6156 if (!ops || !ops->inherits) 6157 return; 6158 6159 spin_lock(&lock); 6160 6161 for (cur = ops->inherits; cur; cur = cur->inherits) { 6162 void **inherit = (void **)cur; 6163 6164 for (pp = begin; pp < end; pp++, inherit++) 6165 if (!*pp) 6166 *pp = *inherit; 6167 } 6168 6169 for (pp = begin; pp < end; pp++) 6170 if (IS_ERR(*pp)) 6171 *pp = NULL; 6172 6173 ops->inherits = NULL; 6174 6175 spin_unlock(&lock); 6176 } 6177 6178 /** 6179 * ata_host_start - start and freeze ports of an ATA host 6180 * @host: ATA host to start ports for 6181 * 6182 * Start and then freeze ports of @host. Started status is 6183 * recorded in host->flags, so this function can be called 6184 * multiple times. Ports are guaranteed to get started only 6185 * once. If host->ops isn't initialized yet, its set to the 6186 * first non-dummy port ops. 6187 * 6188 * LOCKING: 6189 * Inherited from calling layer (may sleep). 6190 * 6191 * RETURNS: 6192 * 0 if all ports are started successfully, -errno otherwise. 6193 */ 6194 int ata_host_start(struct ata_host *host) 6195 { 6196 int have_stop = 0; 6197 void *start_dr = NULL; 6198 int i, rc; 6199 6200 if (host->flags & ATA_HOST_STARTED) 6201 return 0; 6202 6203 ata_finalize_port_ops(host->ops); 6204 6205 for (i = 0; i < host->n_ports; i++) { 6206 struct ata_port *ap = host->ports[i]; 6207 6208 ata_finalize_port_ops(ap->ops); 6209 6210 if (!host->ops && !ata_port_is_dummy(ap)) 6211 host->ops = ap->ops; 6212 6213 if (ap->ops->port_stop) 6214 have_stop = 1; 6215 } 6216 6217 if (host->ops->host_stop) 6218 have_stop = 1; 6219 6220 if (have_stop) { 6221 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 6222 if (!start_dr) 6223 return -ENOMEM; 6224 } 6225 6226 for (i = 0; i < host->n_ports; i++) { 6227 struct ata_port *ap = host->ports[i]; 6228 6229 if (ap->ops->port_start) { 6230 rc = ap->ops->port_start(ap); 6231 if (rc) { 6232 if (rc != -ENODEV) 6233 dev_err(host->dev, 6234 "failed to start port %d (errno=%d)\n", 6235 i, rc); 6236 goto err_out; 6237 } 6238 } 6239 ata_eh_freeze_port(ap); 6240 } 6241 6242 if (start_dr) 6243 devres_add(host->dev, start_dr); 6244 host->flags |= ATA_HOST_STARTED; 6245 return 0; 6246 6247 err_out: 6248 while (--i >= 0) { 6249 struct ata_port *ap = host->ports[i]; 6250 6251 if (ap->ops->port_stop) 6252 ap->ops->port_stop(ap); 6253 } 6254 devres_free(start_dr); 6255 return rc; 6256 } 6257 6258 /** 6259 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 6260 * @host: host to initialize 6261 * @dev: device host is attached to 6262 * @ops: port_ops 6263 * 6264 */ 6265 void ata_host_init(struct ata_host *host, struct device *dev, 6266 struct ata_port_operations *ops) 6267 { 6268 spin_lock_init(&host->lock); 6269 mutex_init(&host->eh_mutex); 6270 host->n_tags = ATA_MAX_QUEUE - 1; 6271 host->dev = dev; 6272 host->ops = ops; 6273 } 6274 6275 void __ata_port_probe(struct ata_port *ap) 6276 { 6277 struct ata_eh_info *ehi = &ap->link.eh_info; 6278 unsigned long flags; 6279 6280 /* kick EH for boot probing */ 6281 spin_lock_irqsave(ap->lock, flags); 6282 6283 ehi->probe_mask |= ATA_ALL_DEVICES; 6284 ehi->action |= ATA_EH_RESET; 6285 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6286 6287 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6288 ap->pflags |= ATA_PFLAG_LOADING; 6289 ata_port_schedule_eh(ap); 6290 6291 spin_unlock_irqrestore(ap->lock, flags); 6292 } 6293 6294 int ata_port_probe(struct ata_port *ap) 6295 { 6296 int rc = 0; 6297 6298 if (ap->ops->error_handler) { 6299 __ata_port_probe(ap); 6300 ata_port_wait_eh(ap); 6301 } else { 6302 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6303 rc = ata_bus_probe(ap); 6304 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6305 } 6306 return rc; 6307 } 6308 6309 6310 static void async_port_probe(void *data, async_cookie_t cookie) 6311 { 6312 struct ata_port *ap = data; 6313 6314 /* 6315 * If we're not allowed to scan this host in parallel, 6316 * we need to wait until all previous scans have completed 6317 * before going further. 6318 * Jeff Garzik says this is only within a controller, so we 6319 * don't need to wait for port 0, only for later ports. 6320 */ 6321 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6322 async_synchronize_cookie(cookie); 6323 6324 (void)ata_port_probe(ap); 6325 6326 /* in order to keep device order, we need to synchronize at this point */ 6327 async_synchronize_cookie(cookie); 6328 6329 ata_scsi_scan_host(ap, 1); 6330 } 6331 6332 /** 6333 * ata_host_register - register initialized ATA host 6334 * @host: ATA host to register 6335 * @sht: template for SCSI host 6336 * 6337 * Register initialized ATA host. @host is allocated using 6338 * ata_host_alloc() and fully initialized by LLD. This function 6339 * starts ports, registers @host with ATA and SCSI layers and 6340 * probe registered devices. 6341 * 6342 * LOCKING: 6343 * Inherited from calling layer (may sleep). 6344 * 6345 * RETURNS: 6346 * 0 on success, -errno otherwise. 6347 */ 6348 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6349 { 6350 int i, rc; 6351 6352 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1); 6353 6354 /* host must have been started */ 6355 if (!(host->flags & ATA_HOST_STARTED)) { 6356 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6357 WARN_ON(1); 6358 return -EINVAL; 6359 } 6360 6361 /* Blow away unused ports. This happens when LLD can't 6362 * determine the exact number of ports to allocate at 6363 * allocation time. 6364 */ 6365 for (i = host->n_ports; host->ports[i]; i++) 6366 kfree(host->ports[i]); 6367 6368 /* give ports names and add SCSI hosts */ 6369 for (i = 0; i < host->n_ports; i++) { 6370 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6371 host->ports[i]->local_port_no = i + 1; 6372 } 6373 6374 /* Create associated sysfs transport objects */ 6375 for (i = 0; i < host->n_ports; i++) { 6376 rc = ata_tport_add(host->dev,host->ports[i]); 6377 if (rc) { 6378 goto err_tadd; 6379 } 6380 } 6381 6382 rc = ata_scsi_add_hosts(host, sht); 6383 if (rc) 6384 goto err_tadd; 6385 6386 /* set cable, sata_spd_limit and report */ 6387 for (i = 0; i < host->n_ports; i++) { 6388 struct ata_port *ap = host->ports[i]; 6389 unsigned long xfer_mask; 6390 6391 /* set SATA cable type if still unset */ 6392 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6393 ap->cbl = ATA_CBL_SATA; 6394 6395 /* init sata_spd_limit to the current value */ 6396 sata_link_init_spd(&ap->link); 6397 if (ap->slave_link) 6398 sata_link_init_spd(ap->slave_link); 6399 6400 /* print per-port info to dmesg */ 6401 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6402 ap->udma_mask); 6403 6404 if (!ata_port_is_dummy(ap)) { 6405 ata_port_info(ap, "%cATA max %s %s\n", 6406 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6407 ata_mode_string(xfer_mask), 6408 ap->link.eh_info.desc); 6409 ata_ehi_clear_desc(&ap->link.eh_info); 6410 } else 6411 ata_port_info(ap, "DUMMY\n"); 6412 } 6413 6414 /* perform each probe asynchronously */ 6415 for (i = 0; i < host->n_ports; i++) { 6416 struct ata_port *ap = host->ports[i]; 6417 async_schedule(async_port_probe, ap); 6418 } 6419 6420 return 0; 6421 6422 err_tadd: 6423 while (--i >= 0) { 6424 ata_tport_delete(host->ports[i]); 6425 } 6426 return rc; 6427 6428 } 6429 6430 /** 6431 * ata_host_activate - start host, request IRQ and register it 6432 * @host: target ATA host 6433 * @irq: IRQ to request 6434 * @irq_handler: irq_handler used when requesting IRQ 6435 * @irq_flags: irq_flags used when requesting IRQ 6436 * @sht: scsi_host_template to use when registering the host 6437 * 6438 * After allocating an ATA host and initializing it, most libata 6439 * LLDs perform three steps to activate the host - start host, 6440 * request IRQ and register it. This helper takes necessary 6441 * arguments and performs the three steps in one go. 6442 * 6443 * An invalid IRQ skips the IRQ registration and expects the host to 6444 * have set polling mode on the port. In this case, @irq_handler 6445 * should be NULL. 6446 * 6447 * LOCKING: 6448 * Inherited from calling layer (may sleep). 6449 * 6450 * RETURNS: 6451 * 0 on success, -errno otherwise. 6452 */ 6453 int ata_host_activate(struct ata_host *host, int irq, 6454 irq_handler_t irq_handler, unsigned long irq_flags, 6455 struct scsi_host_template *sht) 6456 { 6457 int i, rc; 6458 char *irq_desc; 6459 6460 rc = ata_host_start(host); 6461 if (rc) 6462 return rc; 6463 6464 /* Special case for polling mode */ 6465 if (!irq) { 6466 WARN_ON(irq_handler); 6467 return ata_host_register(host, sht); 6468 } 6469 6470 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 6471 dev_driver_string(host->dev), 6472 dev_name(host->dev)); 6473 if (!irq_desc) 6474 return -ENOMEM; 6475 6476 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6477 irq_desc, host); 6478 if (rc) 6479 return rc; 6480 6481 for (i = 0; i < host->n_ports; i++) 6482 ata_port_desc(host->ports[i], "irq %d", irq); 6483 6484 rc = ata_host_register(host, sht); 6485 /* if failed, just free the IRQ and leave ports alone */ 6486 if (rc) 6487 devm_free_irq(host->dev, irq, host); 6488 6489 return rc; 6490 } 6491 6492 /** 6493 * ata_port_detach - Detach ATA port in preparation of device removal 6494 * @ap: ATA port to be detached 6495 * 6496 * Detach all ATA devices and the associated SCSI devices of @ap; 6497 * then, remove the associated SCSI host. @ap is guaranteed to 6498 * be quiescent on return from this function. 6499 * 6500 * LOCKING: 6501 * Kernel thread context (may sleep). 6502 */ 6503 static void ata_port_detach(struct ata_port *ap) 6504 { 6505 unsigned long flags; 6506 struct ata_link *link; 6507 struct ata_device *dev; 6508 6509 if (!ap->ops->error_handler) 6510 goto skip_eh; 6511 6512 /* tell EH we're leaving & flush EH */ 6513 spin_lock_irqsave(ap->lock, flags); 6514 ap->pflags |= ATA_PFLAG_UNLOADING; 6515 ata_port_schedule_eh(ap); 6516 spin_unlock_irqrestore(ap->lock, flags); 6517 6518 /* wait till EH commits suicide */ 6519 ata_port_wait_eh(ap); 6520 6521 /* it better be dead now */ 6522 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6523 6524 cancel_delayed_work_sync(&ap->hotplug_task); 6525 6526 skip_eh: 6527 /* clean up zpodd on port removal */ 6528 ata_for_each_link(link, ap, HOST_FIRST) { 6529 ata_for_each_dev(dev, link, ALL) { 6530 if (zpodd_dev_enabled(dev)) 6531 zpodd_exit(dev); 6532 } 6533 } 6534 if (ap->pmp_link) { 6535 int i; 6536 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6537 ata_tlink_delete(&ap->pmp_link[i]); 6538 } 6539 /* remove the associated SCSI host */ 6540 scsi_remove_host(ap->scsi_host); 6541 ata_tport_delete(ap); 6542 } 6543 6544 /** 6545 * ata_host_detach - Detach all ports of an ATA host 6546 * @host: Host to detach 6547 * 6548 * Detach all ports of @host. 6549 * 6550 * LOCKING: 6551 * Kernel thread context (may sleep). 6552 */ 6553 void ata_host_detach(struct ata_host *host) 6554 { 6555 int i; 6556 6557 for (i = 0; i < host->n_ports; i++) 6558 ata_port_detach(host->ports[i]); 6559 6560 /* the host is dead now, dissociate ACPI */ 6561 ata_acpi_dissociate(host); 6562 } 6563 6564 #ifdef CONFIG_PCI 6565 6566 /** 6567 * ata_pci_remove_one - PCI layer callback for device removal 6568 * @pdev: PCI device that was removed 6569 * 6570 * PCI layer indicates to libata via this hook that hot-unplug or 6571 * module unload event has occurred. Detach all ports. Resource 6572 * release is handled via devres. 6573 * 6574 * LOCKING: 6575 * Inherited from PCI layer (may sleep). 6576 */ 6577 void ata_pci_remove_one(struct pci_dev *pdev) 6578 { 6579 struct ata_host *host = pci_get_drvdata(pdev); 6580 6581 ata_host_detach(host); 6582 } 6583 6584 /* move to PCI subsystem */ 6585 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6586 { 6587 unsigned long tmp = 0; 6588 6589 switch (bits->width) { 6590 case 1: { 6591 u8 tmp8 = 0; 6592 pci_read_config_byte(pdev, bits->reg, &tmp8); 6593 tmp = tmp8; 6594 break; 6595 } 6596 case 2: { 6597 u16 tmp16 = 0; 6598 pci_read_config_word(pdev, bits->reg, &tmp16); 6599 tmp = tmp16; 6600 break; 6601 } 6602 case 4: { 6603 u32 tmp32 = 0; 6604 pci_read_config_dword(pdev, bits->reg, &tmp32); 6605 tmp = tmp32; 6606 break; 6607 } 6608 6609 default: 6610 return -EINVAL; 6611 } 6612 6613 tmp &= bits->mask; 6614 6615 return (tmp == bits->val) ? 1 : 0; 6616 } 6617 6618 #ifdef CONFIG_PM 6619 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6620 { 6621 pci_save_state(pdev); 6622 pci_disable_device(pdev); 6623 6624 if (mesg.event & PM_EVENT_SLEEP) 6625 pci_set_power_state(pdev, PCI_D3hot); 6626 } 6627 6628 int ata_pci_device_do_resume(struct pci_dev *pdev) 6629 { 6630 int rc; 6631 6632 pci_set_power_state(pdev, PCI_D0); 6633 pci_restore_state(pdev); 6634 6635 rc = pcim_enable_device(pdev); 6636 if (rc) { 6637 dev_err(&pdev->dev, 6638 "failed to enable device after resume (%d)\n", rc); 6639 return rc; 6640 } 6641 6642 pci_set_master(pdev); 6643 return 0; 6644 } 6645 6646 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6647 { 6648 struct ata_host *host = pci_get_drvdata(pdev); 6649 int rc = 0; 6650 6651 rc = ata_host_suspend(host, mesg); 6652 if (rc) 6653 return rc; 6654 6655 ata_pci_device_do_suspend(pdev, mesg); 6656 6657 return 0; 6658 } 6659 6660 int ata_pci_device_resume(struct pci_dev *pdev) 6661 { 6662 struct ata_host *host = pci_get_drvdata(pdev); 6663 int rc; 6664 6665 rc = ata_pci_device_do_resume(pdev); 6666 if (rc == 0) 6667 ata_host_resume(host); 6668 return rc; 6669 } 6670 #endif /* CONFIG_PM */ 6671 6672 #endif /* CONFIG_PCI */ 6673 6674 /** 6675 * ata_platform_remove_one - Platform layer callback for device removal 6676 * @pdev: Platform device that was removed 6677 * 6678 * Platform layer indicates to libata via this hook that hot-unplug or 6679 * module unload event has occurred. Detach all ports. Resource 6680 * release is handled via devres. 6681 * 6682 * LOCKING: 6683 * Inherited from platform layer (may sleep). 6684 */ 6685 int ata_platform_remove_one(struct platform_device *pdev) 6686 { 6687 struct ata_host *host = platform_get_drvdata(pdev); 6688 6689 ata_host_detach(host); 6690 6691 return 0; 6692 } 6693 6694 static int __init ata_parse_force_one(char **cur, 6695 struct ata_force_ent *force_ent, 6696 const char **reason) 6697 { 6698 static const struct ata_force_param force_tbl[] __initconst = { 6699 { "40c", .cbl = ATA_CBL_PATA40 }, 6700 { "80c", .cbl = ATA_CBL_PATA80 }, 6701 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6702 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6703 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6704 { "sata", .cbl = ATA_CBL_SATA }, 6705 { "1.5Gbps", .spd_limit = 1 }, 6706 { "3.0Gbps", .spd_limit = 2 }, 6707 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6708 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6709 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, 6710 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, 6711 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6712 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6713 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6714 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6715 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6716 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6717 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6718 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6719 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6720 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6721 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6722 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6723 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6724 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6725 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6726 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6727 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6728 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6729 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6730 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6731 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6732 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6733 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6734 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6735 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6736 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6737 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6738 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6739 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6740 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6741 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6742 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6743 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6744 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6745 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6746 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6747 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6748 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6749 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6750 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6751 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6752 }; 6753 char *start = *cur, *p = *cur; 6754 char *id, *val, *endp; 6755 const struct ata_force_param *match_fp = NULL; 6756 int nr_matches = 0, i; 6757 6758 /* find where this param ends and update *cur */ 6759 while (*p != '\0' && *p != ',') 6760 p++; 6761 6762 if (*p == '\0') 6763 *cur = p; 6764 else 6765 *cur = p + 1; 6766 6767 *p = '\0'; 6768 6769 /* parse */ 6770 p = strchr(start, ':'); 6771 if (!p) { 6772 val = strstrip(start); 6773 goto parse_val; 6774 } 6775 *p = '\0'; 6776 6777 id = strstrip(start); 6778 val = strstrip(p + 1); 6779 6780 /* parse id */ 6781 p = strchr(id, '.'); 6782 if (p) { 6783 *p++ = '\0'; 6784 force_ent->device = simple_strtoul(p, &endp, 10); 6785 if (p == endp || *endp != '\0') { 6786 *reason = "invalid device"; 6787 return -EINVAL; 6788 } 6789 } 6790 6791 force_ent->port = simple_strtoul(id, &endp, 10); 6792 if (p == endp || *endp != '\0') { 6793 *reason = "invalid port/link"; 6794 return -EINVAL; 6795 } 6796 6797 parse_val: 6798 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6799 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6800 const struct ata_force_param *fp = &force_tbl[i]; 6801 6802 if (strncasecmp(val, fp->name, strlen(val))) 6803 continue; 6804 6805 nr_matches++; 6806 match_fp = fp; 6807 6808 if (strcasecmp(val, fp->name) == 0) { 6809 nr_matches = 1; 6810 break; 6811 } 6812 } 6813 6814 if (!nr_matches) { 6815 *reason = "unknown value"; 6816 return -EINVAL; 6817 } 6818 if (nr_matches > 1) { 6819 *reason = "ambigious value"; 6820 return -EINVAL; 6821 } 6822 6823 force_ent->param = *match_fp; 6824 6825 return 0; 6826 } 6827 6828 static void __init ata_parse_force_param(void) 6829 { 6830 int idx = 0, size = 1; 6831 int last_port = -1, last_device = -1; 6832 char *p, *cur, *next; 6833 6834 /* calculate maximum number of params and allocate force_tbl */ 6835 for (p = ata_force_param_buf; *p; p++) 6836 if (*p == ',') 6837 size++; 6838 6839 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6840 if (!ata_force_tbl) { 6841 printk(KERN_WARNING "ata: failed to extend force table, " 6842 "libata.force ignored\n"); 6843 return; 6844 } 6845 6846 /* parse and populate the table */ 6847 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6848 const char *reason = ""; 6849 struct ata_force_ent te = { .port = -1, .device = -1 }; 6850 6851 next = cur; 6852 if (ata_parse_force_one(&next, &te, &reason)) { 6853 printk(KERN_WARNING "ata: failed to parse force " 6854 "parameter \"%s\" (%s)\n", 6855 cur, reason); 6856 continue; 6857 } 6858 6859 if (te.port == -1) { 6860 te.port = last_port; 6861 te.device = last_device; 6862 } 6863 6864 ata_force_tbl[idx++] = te; 6865 6866 last_port = te.port; 6867 last_device = te.device; 6868 } 6869 6870 ata_force_tbl_size = idx; 6871 } 6872 6873 static int __init ata_init(void) 6874 { 6875 int rc; 6876 6877 ata_parse_force_param(); 6878 6879 rc = ata_sff_init(); 6880 if (rc) { 6881 kfree(ata_force_tbl); 6882 return rc; 6883 } 6884 6885 libata_transport_init(); 6886 ata_scsi_transport_template = ata_attach_transport(); 6887 if (!ata_scsi_transport_template) { 6888 ata_sff_exit(); 6889 rc = -ENOMEM; 6890 goto err_out; 6891 } 6892 6893 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6894 return 0; 6895 6896 err_out: 6897 return rc; 6898 } 6899 6900 static void __exit ata_exit(void) 6901 { 6902 ata_release_transport(ata_scsi_transport_template); 6903 libata_transport_exit(); 6904 ata_sff_exit(); 6905 kfree(ata_force_tbl); 6906 } 6907 6908 subsys_initcall(ata_init); 6909 module_exit(ata_exit); 6910 6911 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6912 6913 int ata_ratelimit(void) 6914 { 6915 return __ratelimit(&ratelimit); 6916 } 6917 6918 /** 6919 * ata_msleep - ATA EH owner aware msleep 6920 * @ap: ATA port to attribute the sleep to 6921 * @msecs: duration to sleep in milliseconds 6922 * 6923 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6924 * ownership is released before going to sleep and reacquired 6925 * after the sleep is complete. IOW, other ports sharing the 6926 * @ap->host will be allowed to own the EH while this task is 6927 * sleeping. 6928 * 6929 * LOCKING: 6930 * Might sleep. 6931 */ 6932 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6933 { 6934 bool owns_eh = ap && ap->host->eh_owner == current; 6935 6936 if (owns_eh) 6937 ata_eh_release(ap); 6938 6939 if (msecs < 20) { 6940 unsigned long usecs = msecs * USEC_PER_MSEC; 6941 usleep_range(usecs, usecs + 50); 6942 } else { 6943 msleep(msecs); 6944 } 6945 6946 if (owns_eh) 6947 ata_eh_acquire(ap); 6948 } 6949 6950 /** 6951 * ata_wait_register - wait until register value changes 6952 * @ap: ATA port to wait register for, can be NULL 6953 * @reg: IO-mapped register 6954 * @mask: Mask to apply to read register value 6955 * @val: Wait condition 6956 * @interval: polling interval in milliseconds 6957 * @timeout: timeout in milliseconds 6958 * 6959 * Waiting for some bits of register to change is a common 6960 * operation for ATA controllers. This function reads 32bit LE 6961 * IO-mapped register @reg and tests for the following condition. 6962 * 6963 * (*@reg & mask) != val 6964 * 6965 * If the condition is met, it returns; otherwise, the process is 6966 * repeated after @interval_msec until timeout. 6967 * 6968 * LOCKING: 6969 * Kernel thread context (may sleep) 6970 * 6971 * RETURNS: 6972 * The final register value. 6973 */ 6974 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6975 unsigned long interval, unsigned long timeout) 6976 { 6977 unsigned long deadline; 6978 u32 tmp; 6979 6980 tmp = ioread32(reg); 6981 6982 /* Calculate timeout _after_ the first read to make sure 6983 * preceding writes reach the controller before starting to 6984 * eat away the timeout. 6985 */ 6986 deadline = ata_deadline(jiffies, timeout); 6987 6988 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6989 ata_msleep(ap, interval); 6990 tmp = ioread32(reg); 6991 } 6992 6993 return tmp; 6994 } 6995 6996 /** 6997 * sata_lpm_ignore_phy_events - test if PHY event should be ignored 6998 * @link: Link receiving the event 6999 * 7000 * Test whether the received PHY event has to be ignored or not. 7001 * 7002 * LOCKING: 7003 * None: 7004 * 7005 * RETURNS: 7006 * True if the event has to be ignored. 7007 */ 7008 bool sata_lpm_ignore_phy_events(struct ata_link *link) 7009 { 7010 unsigned long lpm_timeout = link->last_lpm_change + 7011 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY); 7012 7013 /* if LPM is enabled, PHYRDY doesn't mean anything */ 7014 if (link->lpm_policy > ATA_LPM_MAX_POWER) 7015 return true; 7016 7017 /* ignore the first PHY event after the LPM policy changed 7018 * as it is might be spurious 7019 */ 7020 if ((link->flags & ATA_LFLAG_CHANGED) && 7021 time_before(jiffies, lpm_timeout)) 7022 return true; 7023 7024 return false; 7025 } 7026 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events); 7027 7028 /* 7029 * Dummy port_ops 7030 */ 7031 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 7032 { 7033 return AC_ERR_SYSTEM; 7034 } 7035 7036 static void ata_dummy_error_handler(struct ata_port *ap) 7037 { 7038 /* truly dummy */ 7039 } 7040 7041 struct ata_port_operations ata_dummy_port_ops = { 7042 .qc_prep = ata_noop_qc_prep, 7043 .qc_issue = ata_dummy_qc_issue, 7044 .error_handler = ata_dummy_error_handler, 7045 .sched_eh = ata_std_sched_eh, 7046 .end_eh = ata_std_end_eh, 7047 }; 7048 7049 const struct ata_port_info ata_dummy_port_info = { 7050 .port_ops = &ata_dummy_port_ops, 7051 }; 7052 7053 /* 7054 * Utility print functions 7055 */ 7056 void ata_port_printk(const struct ata_port *ap, const char *level, 7057 const char *fmt, ...) 7058 { 7059 struct va_format vaf; 7060 va_list args; 7061 7062 va_start(args, fmt); 7063 7064 vaf.fmt = fmt; 7065 vaf.va = &args; 7066 7067 printk("%sata%u: %pV", level, ap->print_id, &vaf); 7068 7069 va_end(args); 7070 } 7071 EXPORT_SYMBOL(ata_port_printk); 7072 7073 void ata_link_printk(const struct ata_link *link, const char *level, 7074 const char *fmt, ...) 7075 { 7076 struct va_format vaf; 7077 va_list args; 7078 7079 va_start(args, fmt); 7080 7081 vaf.fmt = fmt; 7082 vaf.va = &args; 7083 7084 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 7085 printk("%sata%u.%02u: %pV", 7086 level, link->ap->print_id, link->pmp, &vaf); 7087 else 7088 printk("%sata%u: %pV", 7089 level, link->ap->print_id, &vaf); 7090 7091 va_end(args); 7092 } 7093 EXPORT_SYMBOL(ata_link_printk); 7094 7095 void ata_dev_printk(const struct ata_device *dev, const char *level, 7096 const char *fmt, ...) 7097 { 7098 struct va_format vaf; 7099 va_list args; 7100 7101 va_start(args, fmt); 7102 7103 vaf.fmt = fmt; 7104 vaf.va = &args; 7105 7106 printk("%sata%u.%02u: %pV", 7107 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 7108 &vaf); 7109 7110 va_end(args); 7111 } 7112 EXPORT_SYMBOL(ata_dev_printk); 7113 7114 void ata_print_version(const struct device *dev, const char *version) 7115 { 7116 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 7117 } 7118 EXPORT_SYMBOL(ata_print_version); 7119 7120 /* 7121 * libata is essentially a library of internal helper functions for 7122 * low-level ATA host controller drivers. As such, the API/ABI is 7123 * likely to change as new drivers are added and updated. 7124 * Do not depend on ABI/API stability. 7125 */ 7126 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 7127 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 7128 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 7129 EXPORT_SYMBOL_GPL(ata_base_port_ops); 7130 EXPORT_SYMBOL_GPL(sata_port_ops); 7131 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 7132 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 7133 EXPORT_SYMBOL_GPL(ata_link_next); 7134 EXPORT_SYMBOL_GPL(ata_dev_next); 7135 EXPORT_SYMBOL_GPL(ata_std_bios_param); 7136 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 7137 EXPORT_SYMBOL_GPL(ata_host_init); 7138 EXPORT_SYMBOL_GPL(ata_host_alloc); 7139 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 7140 EXPORT_SYMBOL_GPL(ata_slave_link_init); 7141 EXPORT_SYMBOL_GPL(ata_host_start); 7142 EXPORT_SYMBOL_GPL(ata_host_register); 7143 EXPORT_SYMBOL_GPL(ata_host_activate); 7144 EXPORT_SYMBOL_GPL(ata_host_detach); 7145 EXPORT_SYMBOL_GPL(ata_sg_init); 7146 EXPORT_SYMBOL_GPL(ata_qc_complete); 7147 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 7148 EXPORT_SYMBOL_GPL(atapi_cmd_type); 7149 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 7150 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 7151 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 7152 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 7153 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 7154 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 7155 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 7156 EXPORT_SYMBOL_GPL(ata_mode_string); 7157 EXPORT_SYMBOL_GPL(ata_id_xfermask); 7158 EXPORT_SYMBOL_GPL(ata_do_set_mode); 7159 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 7160 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 7161 EXPORT_SYMBOL_GPL(ata_dev_disable); 7162 EXPORT_SYMBOL_GPL(sata_set_spd); 7163 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 7164 EXPORT_SYMBOL_GPL(sata_link_debounce); 7165 EXPORT_SYMBOL_GPL(sata_link_resume); 7166 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 7167 EXPORT_SYMBOL_GPL(ata_std_prereset); 7168 EXPORT_SYMBOL_GPL(sata_link_hardreset); 7169 EXPORT_SYMBOL_GPL(sata_std_hardreset); 7170 EXPORT_SYMBOL_GPL(ata_std_postreset); 7171 EXPORT_SYMBOL_GPL(ata_dev_classify); 7172 EXPORT_SYMBOL_GPL(ata_dev_pair); 7173 EXPORT_SYMBOL_GPL(ata_ratelimit); 7174 EXPORT_SYMBOL_GPL(ata_msleep); 7175 EXPORT_SYMBOL_GPL(ata_wait_register); 7176 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 7177 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 7178 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 7179 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 7180 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 7181 EXPORT_SYMBOL_GPL(sata_scr_valid); 7182 EXPORT_SYMBOL_GPL(sata_scr_read); 7183 EXPORT_SYMBOL_GPL(sata_scr_write); 7184 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 7185 EXPORT_SYMBOL_GPL(ata_link_online); 7186 EXPORT_SYMBOL_GPL(ata_link_offline); 7187 #ifdef CONFIG_PM 7188 EXPORT_SYMBOL_GPL(ata_host_suspend); 7189 EXPORT_SYMBOL_GPL(ata_host_resume); 7190 #endif /* CONFIG_PM */ 7191 EXPORT_SYMBOL_GPL(ata_id_string); 7192 EXPORT_SYMBOL_GPL(ata_id_c_string); 7193 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 7194 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 7195 7196 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 7197 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 7198 EXPORT_SYMBOL_GPL(ata_timing_compute); 7199 EXPORT_SYMBOL_GPL(ata_timing_merge); 7200 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 7201 7202 #ifdef CONFIG_PCI 7203 EXPORT_SYMBOL_GPL(pci_test_config_bits); 7204 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 7205 #ifdef CONFIG_PM 7206 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 7207 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 7208 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 7209 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 7210 #endif /* CONFIG_PM */ 7211 #endif /* CONFIG_PCI */ 7212 7213 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 7214 7215 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 7216 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 7217 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 7218 EXPORT_SYMBOL_GPL(ata_port_desc); 7219 #ifdef CONFIG_PCI 7220 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 7221 #endif /* CONFIG_PCI */ 7222 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 7223 EXPORT_SYMBOL_GPL(ata_link_abort); 7224 EXPORT_SYMBOL_GPL(ata_port_abort); 7225 EXPORT_SYMBOL_GPL(ata_port_freeze); 7226 EXPORT_SYMBOL_GPL(sata_async_notification); 7227 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 7228 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 7229 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 7230 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 7231 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 7232 EXPORT_SYMBOL_GPL(ata_do_eh); 7233 EXPORT_SYMBOL_GPL(ata_std_error_handler); 7234 7235 EXPORT_SYMBOL_GPL(ata_cable_40wire); 7236 EXPORT_SYMBOL_GPL(ata_cable_80wire); 7237 EXPORT_SYMBOL_GPL(ata_cable_unknown); 7238 EXPORT_SYMBOL_GPL(ata_cable_ignore); 7239 EXPORT_SYMBOL_GPL(ata_cable_sata); 7240