1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/driver-api/libata.rst 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/time.h> 54 #include <linux/interrupt.h> 55 #include <linux/completion.h> 56 #include <linux/suspend.h> 57 #include <linux/workqueue.h> 58 #include <linux/scatterlist.h> 59 #include <linux/io.h> 60 #include <linux/async.h> 61 #include <linux/log2.h> 62 #include <linux/slab.h> 63 #include <linux/glob.h> 64 #include <scsi/scsi.h> 65 #include <scsi/scsi_cmnd.h> 66 #include <scsi/scsi_host.h> 67 #include <linux/libata.h> 68 #include <asm/byteorder.h> 69 #include <asm/unaligned.h> 70 #include <linux/cdrom.h> 71 #include <linux/ratelimit.h> 72 #include <linux/leds.h> 73 #include <linux/pm_runtime.h> 74 #include <linux/platform_device.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/libata.h> 78 79 #include "libata.h" 80 #include "libata-transport.h" 81 82 /* debounce timing parameters in msecs { interval, duration, timeout } */ 83 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 84 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 85 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 86 87 const struct ata_port_operations ata_base_port_ops = { 88 .prereset = ata_std_prereset, 89 .postreset = ata_std_postreset, 90 .error_handler = ata_std_error_handler, 91 .sched_eh = ata_std_sched_eh, 92 .end_eh = ata_std_end_eh, 93 }; 94 95 const struct ata_port_operations sata_port_ops = { 96 .inherits = &ata_base_port_ops, 97 98 .qc_defer = ata_std_qc_defer, 99 .hardreset = sata_std_hardreset, 100 }; 101 102 static unsigned int ata_dev_init_params(struct ata_device *dev, 103 u16 heads, u16 sectors); 104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 105 static void ata_dev_xfermask(struct ata_device *dev); 106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 107 108 atomic_t ata_print_id = ATOMIC_INIT(0); 109 110 struct ata_force_param { 111 const char *name; 112 unsigned int cbl; 113 int spd_limit; 114 unsigned long xfer_mask; 115 unsigned int horkage_on; 116 unsigned int horkage_off; 117 unsigned int lflags; 118 }; 119 120 struct ata_force_ent { 121 int port; 122 int device; 123 struct ata_force_param param; 124 }; 125 126 static struct ata_force_ent *ata_force_tbl; 127 static int ata_force_tbl_size; 128 129 static char ata_force_param_buf[PAGE_SIZE] __initdata; 130 /* param_buf is thrown away after initialization, disallow read */ 131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 133 134 static int atapi_enabled = 1; 135 module_param(atapi_enabled, int, 0444); 136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 137 138 static int atapi_dmadir = 0; 139 module_param(atapi_dmadir, int, 0444); 140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 141 142 int atapi_passthru16 = 1; 143 module_param(atapi_passthru16, int, 0444); 144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 145 146 int libata_fua = 0; 147 module_param_named(fua, libata_fua, int, 0444); 148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 149 150 static int ata_ignore_hpa; 151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 153 154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 155 module_param_named(dma, libata_dma_mask, int, 0444); 156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 157 158 static int ata_probe_timeout; 159 module_param(ata_probe_timeout, int, 0444); 160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 161 162 int libata_noacpi = 0; 163 module_param_named(noacpi, libata_noacpi, int, 0444); 164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 165 166 int libata_allow_tpm = 0; 167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 169 170 static int atapi_an; 171 module_param(atapi_an, int, 0444); 172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 173 174 MODULE_AUTHOR("Jeff Garzik"); 175 MODULE_DESCRIPTION("Library module for ATA devices"); 176 MODULE_LICENSE("GPL"); 177 MODULE_VERSION(DRV_VERSION); 178 179 180 static bool ata_sstatus_online(u32 sstatus) 181 { 182 return (sstatus & 0xf) == 0x3; 183 } 184 185 /** 186 * ata_link_next - link iteration helper 187 * @link: the previous link, NULL to start 188 * @ap: ATA port containing links to iterate 189 * @mode: iteration mode, one of ATA_LITER_* 190 * 191 * LOCKING: 192 * Host lock or EH context. 193 * 194 * RETURNS: 195 * Pointer to the next link. 196 */ 197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 198 enum ata_link_iter_mode mode) 199 { 200 BUG_ON(mode != ATA_LITER_EDGE && 201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 202 203 /* NULL link indicates start of iteration */ 204 if (!link) 205 switch (mode) { 206 case ATA_LITER_EDGE: 207 case ATA_LITER_PMP_FIRST: 208 if (sata_pmp_attached(ap)) 209 return ap->pmp_link; 210 /* fall through */ 211 case ATA_LITER_HOST_FIRST: 212 return &ap->link; 213 } 214 215 /* we just iterated over the host link, what's next? */ 216 if (link == &ap->link) 217 switch (mode) { 218 case ATA_LITER_HOST_FIRST: 219 if (sata_pmp_attached(ap)) 220 return ap->pmp_link; 221 /* fall through */ 222 case ATA_LITER_PMP_FIRST: 223 if (unlikely(ap->slave_link)) 224 return ap->slave_link; 225 /* fall through */ 226 case ATA_LITER_EDGE: 227 return NULL; 228 } 229 230 /* slave_link excludes PMP */ 231 if (unlikely(link == ap->slave_link)) 232 return NULL; 233 234 /* we were over a PMP link */ 235 if (++link < ap->pmp_link + ap->nr_pmp_links) 236 return link; 237 238 if (mode == ATA_LITER_PMP_FIRST) 239 return &ap->link; 240 241 return NULL; 242 } 243 244 /** 245 * ata_dev_next - device iteration helper 246 * @dev: the previous device, NULL to start 247 * @link: ATA link containing devices to iterate 248 * @mode: iteration mode, one of ATA_DITER_* 249 * 250 * LOCKING: 251 * Host lock or EH context. 252 * 253 * RETURNS: 254 * Pointer to the next device. 255 */ 256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 257 enum ata_dev_iter_mode mode) 258 { 259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 261 262 /* NULL dev indicates start of iteration */ 263 if (!dev) 264 switch (mode) { 265 case ATA_DITER_ENABLED: 266 case ATA_DITER_ALL: 267 dev = link->device; 268 goto check; 269 case ATA_DITER_ENABLED_REVERSE: 270 case ATA_DITER_ALL_REVERSE: 271 dev = link->device + ata_link_max_devices(link) - 1; 272 goto check; 273 } 274 275 next: 276 /* move to the next one */ 277 switch (mode) { 278 case ATA_DITER_ENABLED: 279 case ATA_DITER_ALL: 280 if (++dev < link->device + ata_link_max_devices(link)) 281 goto check; 282 return NULL; 283 case ATA_DITER_ENABLED_REVERSE: 284 case ATA_DITER_ALL_REVERSE: 285 if (--dev >= link->device) 286 goto check; 287 return NULL; 288 } 289 290 check: 291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 292 !ata_dev_enabled(dev)) 293 goto next; 294 return dev; 295 } 296 297 /** 298 * ata_dev_phys_link - find physical link for a device 299 * @dev: ATA device to look up physical link for 300 * 301 * Look up physical link which @dev is attached to. Note that 302 * this is different from @dev->link only when @dev is on slave 303 * link. For all other cases, it's the same as @dev->link. 304 * 305 * LOCKING: 306 * Don't care. 307 * 308 * RETURNS: 309 * Pointer to the found physical link. 310 */ 311 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 312 { 313 struct ata_port *ap = dev->link->ap; 314 315 if (!ap->slave_link) 316 return dev->link; 317 if (!dev->devno) 318 return &ap->link; 319 return ap->slave_link; 320 } 321 322 /** 323 * ata_force_cbl - force cable type according to libata.force 324 * @ap: ATA port of interest 325 * 326 * Force cable type according to libata.force and whine about it. 327 * The last entry which has matching port number is used, so it 328 * can be specified as part of device force parameters. For 329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 330 * same effect. 331 * 332 * LOCKING: 333 * EH context. 334 */ 335 void ata_force_cbl(struct ata_port *ap) 336 { 337 int i; 338 339 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 340 const struct ata_force_ent *fe = &ata_force_tbl[i]; 341 342 if (fe->port != -1 && fe->port != ap->print_id) 343 continue; 344 345 if (fe->param.cbl == ATA_CBL_NONE) 346 continue; 347 348 ap->cbl = fe->param.cbl; 349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 350 return; 351 } 352 } 353 354 /** 355 * ata_force_link_limits - force link limits according to libata.force 356 * @link: ATA link of interest 357 * 358 * Force link flags and SATA spd limit according to libata.force 359 * and whine about it. When only the port part is specified 360 * (e.g. 1:), the limit applies to all links connected to both 361 * the host link and all fan-out ports connected via PMP. If the 362 * device part is specified as 0 (e.g. 1.00:), it specifies the 363 * first fan-out link not the host link. Device number 15 always 364 * points to the host link whether PMP is attached or not. If the 365 * controller has slave link, device number 16 points to it. 366 * 367 * LOCKING: 368 * EH context. 369 */ 370 static void ata_force_link_limits(struct ata_link *link) 371 { 372 bool did_spd = false; 373 int linkno = link->pmp; 374 int i; 375 376 if (ata_is_host_link(link)) 377 linkno += 15; 378 379 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 380 const struct ata_force_ent *fe = &ata_force_tbl[i]; 381 382 if (fe->port != -1 && fe->port != link->ap->print_id) 383 continue; 384 385 if (fe->device != -1 && fe->device != linkno) 386 continue; 387 388 /* only honor the first spd limit */ 389 if (!did_spd && fe->param.spd_limit) { 390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 392 fe->param.name); 393 did_spd = true; 394 } 395 396 /* let lflags stack */ 397 if (fe->param.lflags) { 398 link->flags |= fe->param.lflags; 399 ata_link_notice(link, 400 "FORCE: link flag 0x%x forced -> 0x%x\n", 401 fe->param.lflags, link->flags); 402 } 403 } 404 } 405 406 /** 407 * ata_force_xfermask - force xfermask according to libata.force 408 * @dev: ATA device of interest 409 * 410 * Force xfer_mask according to libata.force and whine about it. 411 * For consistency with link selection, device number 15 selects 412 * the first device connected to the host link. 413 * 414 * LOCKING: 415 * EH context. 416 */ 417 static void ata_force_xfermask(struct ata_device *dev) 418 { 419 int devno = dev->link->pmp + dev->devno; 420 int alt_devno = devno; 421 int i; 422 423 /* allow n.15/16 for devices attached to host port */ 424 if (ata_is_host_link(dev->link)) 425 alt_devno += 15; 426 427 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 428 const struct ata_force_ent *fe = &ata_force_tbl[i]; 429 unsigned long pio_mask, mwdma_mask, udma_mask; 430 431 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 432 continue; 433 434 if (fe->device != -1 && fe->device != devno && 435 fe->device != alt_devno) 436 continue; 437 438 if (!fe->param.xfer_mask) 439 continue; 440 441 ata_unpack_xfermask(fe->param.xfer_mask, 442 &pio_mask, &mwdma_mask, &udma_mask); 443 if (udma_mask) 444 dev->udma_mask = udma_mask; 445 else if (mwdma_mask) { 446 dev->udma_mask = 0; 447 dev->mwdma_mask = mwdma_mask; 448 } else { 449 dev->udma_mask = 0; 450 dev->mwdma_mask = 0; 451 dev->pio_mask = pio_mask; 452 } 453 454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 455 fe->param.name); 456 return; 457 } 458 } 459 460 /** 461 * ata_force_horkage - force horkage according to libata.force 462 * @dev: ATA device of interest 463 * 464 * Force horkage according to libata.force and whine about it. 465 * For consistency with link selection, device number 15 selects 466 * the first device connected to the host link. 467 * 468 * LOCKING: 469 * EH context. 470 */ 471 static void ata_force_horkage(struct ata_device *dev) 472 { 473 int devno = dev->link->pmp + dev->devno; 474 int alt_devno = devno; 475 int i; 476 477 /* allow n.15/16 for devices attached to host port */ 478 if (ata_is_host_link(dev->link)) 479 alt_devno += 15; 480 481 for (i = 0; i < ata_force_tbl_size; i++) { 482 const struct ata_force_ent *fe = &ata_force_tbl[i]; 483 484 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 485 continue; 486 487 if (fe->device != -1 && fe->device != devno && 488 fe->device != alt_devno) 489 continue; 490 491 if (!(~dev->horkage & fe->param.horkage_on) && 492 !(dev->horkage & fe->param.horkage_off)) 493 continue; 494 495 dev->horkage |= fe->param.horkage_on; 496 dev->horkage &= ~fe->param.horkage_off; 497 498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 499 fe->param.name); 500 } 501 } 502 503 /** 504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 505 * @opcode: SCSI opcode 506 * 507 * Determine ATAPI command type from @opcode. 508 * 509 * LOCKING: 510 * None. 511 * 512 * RETURNS: 513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 514 */ 515 int atapi_cmd_type(u8 opcode) 516 { 517 switch (opcode) { 518 case GPCMD_READ_10: 519 case GPCMD_READ_12: 520 return ATAPI_READ; 521 522 case GPCMD_WRITE_10: 523 case GPCMD_WRITE_12: 524 case GPCMD_WRITE_AND_VERIFY_10: 525 return ATAPI_WRITE; 526 527 case GPCMD_READ_CD: 528 case GPCMD_READ_CD_MSF: 529 return ATAPI_READ_CD; 530 531 case ATA_16: 532 case ATA_12: 533 if (atapi_passthru16) 534 return ATAPI_PASS_THRU; 535 /* fall thru */ 536 default: 537 return ATAPI_MISC; 538 } 539 } 540 541 /** 542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 543 * @tf: Taskfile to convert 544 * @pmp: Port multiplier port 545 * @is_cmd: This FIS is for command 546 * @fis: Buffer into which data will output 547 * 548 * Converts a standard ATA taskfile to a Serial ATA 549 * FIS structure (Register - Host to Device). 550 * 551 * LOCKING: 552 * Inherited from caller. 553 */ 554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 555 { 556 fis[0] = 0x27; /* Register - Host to Device FIS */ 557 fis[1] = pmp & 0xf; /* Port multiplier number*/ 558 if (is_cmd) 559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 560 561 fis[2] = tf->command; 562 fis[3] = tf->feature; 563 564 fis[4] = tf->lbal; 565 fis[5] = tf->lbam; 566 fis[6] = tf->lbah; 567 fis[7] = tf->device; 568 569 fis[8] = tf->hob_lbal; 570 fis[9] = tf->hob_lbam; 571 fis[10] = tf->hob_lbah; 572 fis[11] = tf->hob_feature; 573 574 fis[12] = tf->nsect; 575 fis[13] = tf->hob_nsect; 576 fis[14] = 0; 577 fis[15] = tf->ctl; 578 579 fis[16] = tf->auxiliary & 0xff; 580 fis[17] = (tf->auxiliary >> 8) & 0xff; 581 fis[18] = (tf->auxiliary >> 16) & 0xff; 582 fis[19] = (tf->auxiliary >> 24) & 0xff; 583 } 584 585 /** 586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 587 * @fis: Buffer from which data will be input 588 * @tf: Taskfile to output 589 * 590 * Converts a serial ATA FIS structure to a standard ATA taskfile. 591 * 592 * LOCKING: 593 * Inherited from caller. 594 */ 595 596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 597 { 598 tf->command = fis[2]; /* status */ 599 tf->feature = fis[3]; /* error */ 600 601 tf->lbal = fis[4]; 602 tf->lbam = fis[5]; 603 tf->lbah = fis[6]; 604 tf->device = fis[7]; 605 606 tf->hob_lbal = fis[8]; 607 tf->hob_lbam = fis[9]; 608 tf->hob_lbah = fis[10]; 609 610 tf->nsect = fis[12]; 611 tf->hob_nsect = fis[13]; 612 } 613 614 static const u8 ata_rw_cmds[] = { 615 /* pio multi */ 616 ATA_CMD_READ_MULTI, 617 ATA_CMD_WRITE_MULTI, 618 ATA_CMD_READ_MULTI_EXT, 619 ATA_CMD_WRITE_MULTI_EXT, 620 0, 621 0, 622 0, 623 ATA_CMD_WRITE_MULTI_FUA_EXT, 624 /* pio */ 625 ATA_CMD_PIO_READ, 626 ATA_CMD_PIO_WRITE, 627 ATA_CMD_PIO_READ_EXT, 628 ATA_CMD_PIO_WRITE_EXT, 629 0, 630 0, 631 0, 632 0, 633 /* dma */ 634 ATA_CMD_READ, 635 ATA_CMD_WRITE, 636 ATA_CMD_READ_EXT, 637 ATA_CMD_WRITE_EXT, 638 0, 639 0, 640 0, 641 ATA_CMD_WRITE_FUA_EXT 642 }; 643 644 /** 645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 646 * @tf: command to examine and configure 647 * @dev: device tf belongs to 648 * 649 * Examine the device configuration and tf->flags to calculate 650 * the proper read/write commands and protocol to use. 651 * 652 * LOCKING: 653 * caller. 654 */ 655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 656 { 657 u8 cmd; 658 659 int index, fua, lba48, write; 660 661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 664 665 if (dev->flags & ATA_DFLAG_PIO) { 666 tf->protocol = ATA_PROT_PIO; 667 index = dev->multi_count ? 0 : 8; 668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 669 /* Unable to use DMA due to host limitation */ 670 tf->protocol = ATA_PROT_PIO; 671 index = dev->multi_count ? 0 : 8; 672 } else { 673 tf->protocol = ATA_PROT_DMA; 674 index = 16; 675 } 676 677 cmd = ata_rw_cmds[index + fua + lba48 + write]; 678 if (cmd) { 679 tf->command = cmd; 680 return 0; 681 } 682 return -1; 683 } 684 685 /** 686 * ata_tf_read_block - Read block address from ATA taskfile 687 * @tf: ATA taskfile of interest 688 * @dev: ATA device @tf belongs to 689 * 690 * LOCKING: 691 * None. 692 * 693 * Read block address from @tf. This function can handle all 694 * three address formats - LBA, LBA48 and CHS. tf->protocol and 695 * flags select the address format to use. 696 * 697 * RETURNS: 698 * Block address read from @tf. 699 */ 700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 701 { 702 u64 block = 0; 703 704 if (tf->flags & ATA_TFLAG_LBA) { 705 if (tf->flags & ATA_TFLAG_LBA48) { 706 block |= (u64)tf->hob_lbah << 40; 707 block |= (u64)tf->hob_lbam << 32; 708 block |= (u64)tf->hob_lbal << 24; 709 } else 710 block |= (tf->device & 0xf) << 24; 711 712 block |= tf->lbah << 16; 713 block |= tf->lbam << 8; 714 block |= tf->lbal; 715 } else { 716 u32 cyl, head, sect; 717 718 cyl = tf->lbam | (tf->lbah << 8); 719 head = tf->device & 0xf; 720 sect = tf->lbal; 721 722 if (!sect) { 723 ata_dev_warn(dev, 724 "device reported invalid CHS sector 0\n"); 725 return U64_MAX; 726 } 727 728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 729 } 730 731 return block; 732 } 733 734 /** 735 * ata_build_rw_tf - Build ATA taskfile for given read/write request 736 * @tf: Target ATA taskfile 737 * @dev: ATA device @tf belongs to 738 * @block: Block address 739 * @n_block: Number of blocks 740 * @tf_flags: RW/FUA etc... 741 * @tag: tag 742 * @class: IO priority class 743 * 744 * LOCKING: 745 * None. 746 * 747 * Build ATA taskfile @tf for read/write request described by 748 * @block, @n_block, @tf_flags and @tag on @dev. 749 * 750 * RETURNS: 751 * 752 * 0 on success, -ERANGE if the request is too large for @dev, 753 * -EINVAL if the request is invalid. 754 */ 755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 756 u64 block, u32 n_block, unsigned int tf_flags, 757 unsigned int tag, int class) 758 { 759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 760 tf->flags |= tf_flags; 761 762 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) { 763 /* yay, NCQ */ 764 if (!lba_48_ok(block, n_block)) 765 return -ERANGE; 766 767 tf->protocol = ATA_PROT_NCQ; 768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 769 770 if (tf->flags & ATA_TFLAG_WRITE) 771 tf->command = ATA_CMD_FPDMA_WRITE; 772 else 773 tf->command = ATA_CMD_FPDMA_READ; 774 775 tf->nsect = tag << 3; 776 tf->hob_feature = (n_block >> 8) & 0xff; 777 tf->feature = n_block & 0xff; 778 779 tf->hob_lbah = (block >> 40) & 0xff; 780 tf->hob_lbam = (block >> 32) & 0xff; 781 tf->hob_lbal = (block >> 24) & 0xff; 782 tf->lbah = (block >> 16) & 0xff; 783 tf->lbam = (block >> 8) & 0xff; 784 tf->lbal = block & 0xff; 785 786 tf->device = ATA_LBA; 787 if (tf->flags & ATA_TFLAG_FUA) 788 tf->device |= 1 << 7; 789 790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) { 791 if (class == IOPRIO_CLASS_RT) 792 tf->hob_nsect |= ATA_PRIO_HIGH << 793 ATA_SHIFT_PRIO; 794 } 795 } else if (dev->flags & ATA_DFLAG_LBA) { 796 tf->flags |= ATA_TFLAG_LBA; 797 798 if (lba_28_ok(block, n_block)) { 799 /* use LBA28 */ 800 tf->device |= (block >> 24) & 0xf; 801 } else if (lba_48_ok(block, n_block)) { 802 if (!(dev->flags & ATA_DFLAG_LBA48)) 803 return -ERANGE; 804 805 /* use LBA48 */ 806 tf->flags |= ATA_TFLAG_LBA48; 807 808 tf->hob_nsect = (n_block >> 8) & 0xff; 809 810 tf->hob_lbah = (block >> 40) & 0xff; 811 tf->hob_lbam = (block >> 32) & 0xff; 812 tf->hob_lbal = (block >> 24) & 0xff; 813 } else 814 /* request too large even for LBA48 */ 815 return -ERANGE; 816 817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 818 return -EINVAL; 819 820 tf->nsect = n_block & 0xff; 821 822 tf->lbah = (block >> 16) & 0xff; 823 tf->lbam = (block >> 8) & 0xff; 824 tf->lbal = block & 0xff; 825 826 tf->device |= ATA_LBA; 827 } else { 828 /* CHS */ 829 u32 sect, head, cyl, track; 830 831 /* The request -may- be too large for CHS addressing. */ 832 if (!lba_28_ok(block, n_block)) 833 return -ERANGE; 834 835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 836 return -EINVAL; 837 838 /* Convert LBA to CHS */ 839 track = (u32)block / dev->sectors; 840 cyl = track / dev->heads; 841 head = track % dev->heads; 842 sect = (u32)block % dev->sectors + 1; 843 844 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 845 (u32)block, track, cyl, head, sect); 846 847 /* Check whether the converted CHS can fit. 848 Cylinder: 0-65535 849 Head: 0-15 850 Sector: 1-255*/ 851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 852 return -ERANGE; 853 854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 855 tf->lbal = sect; 856 tf->lbam = cyl; 857 tf->lbah = cyl >> 8; 858 tf->device |= head; 859 } 860 861 return 0; 862 } 863 864 /** 865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 866 * @pio_mask: pio_mask 867 * @mwdma_mask: mwdma_mask 868 * @udma_mask: udma_mask 869 * 870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 871 * unsigned int xfer_mask. 872 * 873 * LOCKING: 874 * None. 875 * 876 * RETURNS: 877 * Packed xfer_mask. 878 */ 879 unsigned long ata_pack_xfermask(unsigned long pio_mask, 880 unsigned long mwdma_mask, 881 unsigned long udma_mask) 882 { 883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 886 } 887 888 /** 889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 890 * @xfer_mask: xfer_mask to unpack 891 * @pio_mask: resulting pio_mask 892 * @mwdma_mask: resulting mwdma_mask 893 * @udma_mask: resulting udma_mask 894 * 895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 896 * Any NULL destination masks will be ignored. 897 */ 898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 899 unsigned long *mwdma_mask, unsigned long *udma_mask) 900 { 901 if (pio_mask) 902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 903 if (mwdma_mask) 904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 905 if (udma_mask) 906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 907 } 908 909 static const struct ata_xfer_ent { 910 int shift, bits; 911 u8 base; 912 } ata_xfer_tbl[] = { 913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 916 { -1, }, 917 }; 918 919 /** 920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 921 * @xfer_mask: xfer_mask of interest 922 * 923 * Return matching XFER_* value for @xfer_mask. Only the highest 924 * bit of @xfer_mask is considered. 925 * 926 * LOCKING: 927 * None. 928 * 929 * RETURNS: 930 * Matching XFER_* value, 0xff if no match found. 931 */ 932 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 933 { 934 int highbit = fls(xfer_mask) - 1; 935 const struct ata_xfer_ent *ent; 936 937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 939 return ent->base + highbit - ent->shift; 940 return 0xff; 941 } 942 943 /** 944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 945 * @xfer_mode: XFER_* of interest 946 * 947 * Return matching xfer_mask for @xfer_mode. 948 * 949 * LOCKING: 950 * None. 951 * 952 * RETURNS: 953 * Matching xfer_mask, 0 if no match found. 954 */ 955 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 956 { 957 const struct ata_xfer_ent *ent; 958 959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 962 & ~((1 << ent->shift) - 1); 963 return 0; 964 } 965 966 /** 967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 968 * @xfer_mode: XFER_* of interest 969 * 970 * Return matching xfer_shift for @xfer_mode. 971 * 972 * LOCKING: 973 * None. 974 * 975 * RETURNS: 976 * Matching xfer_shift, -1 if no match found. 977 */ 978 int ata_xfer_mode2shift(unsigned long xfer_mode) 979 { 980 const struct ata_xfer_ent *ent; 981 982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 984 return ent->shift; 985 return -1; 986 } 987 988 /** 989 * ata_mode_string - convert xfer_mask to string 990 * @xfer_mask: mask of bits supported; only highest bit counts. 991 * 992 * Determine string which represents the highest speed 993 * (highest bit in @modemask). 994 * 995 * LOCKING: 996 * None. 997 * 998 * RETURNS: 999 * Constant C string representing highest speed listed in 1000 * @mode_mask, or the constant C string "<n/a>". 1001 */ 1002 const char *ata_mode_string(unsigned long xfer_mask) 1003 { 1004 static const char * const xfer_mode_str[] = { 1005 "PIO0", 1006 "PIO1", 1007 "PIO2", 1008 "PIO3", 1009 "PIO4", 1010 "PIO5", 1011 "PIO6", 1012 "MWDMA0", 1013 "MWDMA1", 1014 "MWDMA2", 1015 "MWDMA3", 1016 "MWDMA4", 1017 "UDMA/16", 1018 "UDMA/25", 1019 "UDMA/33", 1020 "UDMA/44", 1021 "UDMA/66", 1022 "UDMA/100", 1023 "UDMA/133", 1024 "UDMA7", 1025 }; 1026 int highbit; 1027 1028 highbit = fls(xfer_mask) - 1; 1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1030 return xfer_mode_str[highbit]; 1031 return "<n/a>"; 1032 } 1033 1034 const char *sata_spd_string(unsigned int spd) 1035 { 1036 static const char * const spd_str[] = { 1037 "1.5 Gbps", 1038 "3.0 Gbps", 1039 "6.0 Gbps", 1040 }; 1041 1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1043 return "<unknown>"; 1044 return spd_str[spd - 1]; 1045 } 1046 1047 /** 1048 * ata_dev_classify - determine device type based on ATA-spec signature 1049 * @tf: ATA taskfile register set for device to be identified 1050 * 1051 * Determine from taskfile register contents whether a device is 1052 * ATA or ATAPI, as per "Signature and persistence" section 1053 * of ATA/PI spec (volume 1, sect 5.14). 1054 * 1055 * LOCKING: 1056 * None. 1057 * 1058 * RETURNS: 1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1061 */ 1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1063 { 1064 /* Apple's open source Darwin code hints that some devices only 1065 * put a proper signature into the LBA mid/high registers, 1066 * So, we only check those. It's sufficient for uniqueness. 1067 * 1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1069 * signatures for ATA and ATAPI devices attached on SerialATA, 1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1071 * spec has never mentioned about using different signatures 1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1073 * Multiplier specification began to use 0x69/0x96 to identify 1074 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1076 * 0x69/0x96 shortly and described them as reserved for 1077 * SerialATA. 1078 * 1079 * We follow the current spec and consider that 0x69/0x96 1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1082 * SEMB signature. This is worked around in 1083 * ata_dev_read_id(). 1084 */ 1085 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1086 DPRINTK("found ATA device by sig\n"); 1087 return ATA_DEV_ATA; 1088 } 1089 1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1091 DPRINTK("found ATAPI device by sig\n"); 1092 return ATA_DEV_ATAPI; 1093 } 1094 1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1096 DPRINTK("found PMP device by sig\n"); 1097 return ATA_DEV_PMP; 1098 } 1099 1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1101 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1102 return ATA_DEV_SEMB; 1103 } 1104 1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { 1106 DPRINTK("found ZAC device by sig\n"); 1107 return ATA_DEV_ZAC; 1108 } 1109 1110 DPRINTK("unknown device\n"); 1111 return ATA_DEV_UNKNOWN; 1112 } 1113 1114 /** 1115 * ata_id_string - Convert IDENTIFY DEVICE page into string 1116 * @id: IDENTIFY DEVICE results we will examine 1117 * @s: string into which data is output 1118 * @ofs: offset into identify device page 1119 * @len: length of string to return. must be an even number. 1120 * 1121 * The strings in the IDENTIFY DEVICE page are broken up into 1122 * 16-bit chunks. Run through the string, and output each 1123 * 8-bit chunk linearly, regardless of platform. 1124 * 1125 * LOCKING: 1126 * caller. 1127 */ 1128 1129 void ata_id_string(const u16 *id, unsigned char *s, 1130 unsigned int ofs, unsigned int len) 1131 { 1132 unsigned int c; 1133 1134 BUG_ON(len & 1); 1135 1136 while (len > 0) { 1137 c = id[ofs] >> 8; 1138 *s = c; 1139 s++; 1140 1141 c = id[ofs] & 0xff; 1142 *s = c; 1143 s++; 1144 1145 ofs++; 1146 len -= 2; 1147 } 1148 } 1149 1150 /** 1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1152 * @id: IDENTIFY DEVICE results we will examine 1153 * @s: string into which data is output 1154 * @ofs: offset into identify device page 1155 * @len: length of string to return. must be an odd number. 1156 * 1157 * This function is identical to ata_id_string except that it 1158 * trims trailing spaces and terminates the resulting string with 1159 * null. @len must be actual maximum length (even number) + 1. 1160 * 1161 * LOCKING: 1162 * caller. 1163 */ 1164 void ata_id_c_string(const u16 *id, unsigned char *s, 1165 unsigned int ofs, unsigned int len) 1166 { 1167 unsigned char *p; 1168 1169 ata_id_string(id, s, ofs, len - 1); 1170 1171 p = s + strnlen(s, len - 1); 1172 while (p > s && p[-1] == ' ') 1173 p--; 1174 *p = '\0'; 1175 } 1176 1177 static u64 ata_id_n_sectors(const u16 *id) 1178 { 1179 if (ata_id_has_lba(id)) { 1180 if (ata_id_has_lba48(id)) 1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1182 else 1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1184 } else { 1185 if (ata_id_current_chs_valid(id)) 1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1187 id[ATA_ID_CUR_SECTORS]; 1188 else 1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1190 id[ATA_ID_SECTORS]; 1191 } 1192 } 1193 1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1195 { 1196 u64 sectors = 0; 1197 1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1201 sectors |= (tf->lbah & 0xff) << 16; 1202 sectors |= (tf->lbam & 0xff) << 8; 1203 sectors |= (tf->lbal & 0xff); 1204 1205 return sectors; 1206 } 1207 1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1209 { 1210 u64 sectors = 0; 1211 1212 sectors |= (tf->device & 0x0f) << 24; 1213 sectors |= (tf->lbah & 0xff) << 16; 1214 sectors |= (tf->lbam & 0xff) << 8; 1215 sectors |= (tf->lbal & 0xff); 1216 1217 return sectors; 1218 } 1219 1220 /** 1221 * ata_read_native_max_address - Read native max address 1222 * @dev: target device 1223 * @max_sectors: out parameter for the result native max address 1224 * 1225 * Perform an LBA48 or LBA28 native size query upon the device in 1226 * question. 1227 * 1228 * RETURNS: 1229 * 0 on success, -EACCES if command is aborted by the drive. 1230 * -EIO on other errors. 1231 */ 1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1233 { 1234 unsigned int err_mask; 1235 struct ata_taskfile tf; 1236 int lba48 = ata_id_has_lba48(dev->id); 1237 1238 ata_tf_init(dev, &tf); 1239 1240 /* always clear all address registers */ 1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1242 1243 if (lba48) { 1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1245 tf.flags |= ATA_TFLAG_LBA48; 1246 } else 1247 tf.command = ATA_CMD_READ_NATIVE_MAX; 1248 1249 tf.protocol = ATA_PROT_NODATA; 1250 tf.device |= ATA_LBA; 1251 1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1253 if (err_mask) { 1254 ata_dev_warn(dev, 1255 "failed to read native max address (err_mask=0x%x)\n", 1256 err_mask); 1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1258 return -EACCES; 1259 return -EIO; 1260 } 1261 1262 if (lba48) 1263 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1264 else 1265 *max_sectors = ata_tf_to_lba(&tf) + 1; 1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1267 (*max_sectors)--; 1268 return 0; 1269 } 1270 1271 /** 1272 * ata_set_max_sectors - Set max sectors 1273 * @dev: target device 1274 * @new_sectors: new max sectors value to set for the device 1275 * 1276 * Set max sectors of @dev to @new_sectors. 1277 * 1278 * RETURNS: 1279 * 0 on success, -EACCES if command is aborted or denied (due to 1280 * previous non-volatile SET_MAX) by the drive. -EIO on other 1281 * errors. 1282 */ 1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1284 { 1285 unsigned int err_mask; 1286 struct ata_taskfile tf; 1287 int lba48 = ata_id_has_lba48(dev->id); 1288 1289 new_sectors--; 1290 1291 ata_tf_init(dev, &tf); 1292 1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1294 1295 if (lba48) { 1296 tf.command = ATA_CMD_SET_MAX_EXT; 1297 tf.flags |= ATA_TFLAG_LBA48; 1298 1299 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1300 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1301 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1302 } else { 1303 tf.command = ATA_CMD_SET_MAX; 1304 1305 tf.device |= (new_sectors >> 24) & 0xf; 1306 } 1307 1308 tf.protocol = ATA_PROT_NODATA; 1309 tf.device |= ATA_LBA; 1310 1311 tf.lbal = (new_sectors >> 0) & 0xff; 1312 tf.lbam = (new_sectors >> 8) & 0xff; 1313 tf.lbah = (new_sectors >> 16) & 0xff; 1314 1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1316 if (err_mask) { 1317 ata_dev_warn(dev, 1318 "failed to set max address (err_mask=0x%x)\n", 1319 err_mask); 1320 if (err_mask == AC_ERR_DEV && 1321 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1322 return -EACCES; 1323 return -EIO; 1324 } 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * ata_hpa_resize - Resize a device with an HPA set 1331 * @dev: Device to resize 1332 * 1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1334 * it if required to the full size of the media. The caller must check 1335 * the drive has the HPA feature set enabled. 1336 * 1337 * RETURNS: 1338 * 0 on success, -errno on failure. 1339 */ 1340 static int ata_hpa_resize(struct ata_device *dev) 1341 { 1342 struct ata_eh_context *ehc = &dev->link->eh_context; 1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1345 u64 sectors = ata_id_n_sectors(dev->id); 1346 u64 native_sectors; 1347 int rc; 1348 1349 /* do we need to do it? */ 1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1353 return 0; 1354 1355 /* read native max address */ 1356 rc = ata_read_native_max_address(dev, &native_sectors); 1357 if (rc) { 1358 /* If device aborted the command or HPA isn't going to 1359 * be unlocked, skip HPA resizing. 1360 */ 1361 if (rc == -EACCES || !unlock_hpa) { 1362 ata_dev_warn(dev, 1363 "HPA support seems broken, skipping HPA handling\n"); 1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1365 1366 /* we can continue if device aborted the command */ 1367 if (rc == -EACCES) 1368 rc = 0; 1369 } 1370 1371 return rc; 1372 } 1373 dev->n_native_sectors = native_sectors; 1374 1375 /* nothing to do? */ 1376 if (native_sectors <= sectors || !unlock_hpa) { 1377 if (!print_info || native_sectors == sectors) 1378 return 0; 1379 1380 if (native_sectors > sectors) 1381 ata_dev_info(dev, 1382 "HPA detected: current %llu, native %llu\n", 1383 (unsigned long long)sectors, 1384 (unsigned long long)native_sectors); 1385 else if (native_sectors < sectors) 1386 ata_dev_warn(dev, 1387 "native sectors (%llu) is smaller than sectors (%llu)\n", 1388 (unsigned long long)native_sectors, 1389 (unsigned long long)sectors); 1390 return 0; 1391 } 1392 1393 /* let's unlock HPA */ 1394 rc = ata_set_max_sectors(dev, native_sectors); 1395 if (rc == -EACCES) { 1396 /* if device aborted the command, skip HPA resizing */ 1397 ata_dev_warn(dev, 1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1399 (unsigned long long)sectors, 1400 (unsigned long long)native_sectors); 1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1402 return 0; 1403 } else if (rc) 1404 return rc; 1405 1406 /* re-read IDENTIFY data */ 1407 rc = ata_dev_reread_id(dev, 0); 1408 if (rc) { 1409 ata_dev_err(dev, 1410 "failed to re-read IDENTIFY data after HPA resizing\n"); 1411 return rc; 1412 } 1413 1414 if (print_info) { 1415 u64 new_sectors = ata_id_n_sectors(dev->id); 1416 ata_dev_info(dev, 1417 "HPA unlocked: %llu -> %llu, native %llu\n", 1418 (unsigned long long)sectors, 1419 (unsigned long long)new_sectors, 1420 (unsigned long long)native_sectors); 1421 } 1422 1423 return 0; 1424 } 1425 1426 /** 1427 * ata_dump_id - IDENTIFY DEVICE info debugging output 1428 * @id: IDENTIFY DEVICE page to dump 1429 * 1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1431 * page. 1432 * 1433 * LOCKING: 1434 * caller. 1435 */ 1436 1437 static inline void ata_dump_id(const u16 *id) 1438 { 1439 DPRINTK("49==0x%04x " 1440 "53==0x%04x " 1441 "63==0x%04x " 1442 "64==0x%04x " 1443 "75==0x%04x \n", 1444 id[49], 1445 id[53], 1446 id[63], 1447 id[64], 1448 id[75]); 1449 DPRINTK("80==0x%04x " 1450 "81==0x%04x " 1451 "82==0x%04x " 1452 "83==0x%04x " 1453 "84==0x%04x \n", 1454 id[80], 1455 id[81], 1456 id[82], 1457 id[83], 1458 id[84]); 1459 DPRINTK("88==0x%04x " 1460 "93==0x%04x\n", 1461 id[88], 1462 id[93]); 1463 } 1464 1465 /** 1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1467 * @id: IDENTIFY data to compute xfer mask from 1468 * 1469 * Compute the xfermask for this device. This is not as trivial 1470 * as it seems if we must consider early devices correctly. 1471 * 1472 * FIXME: pre IDE drive timing (do we care ?). 1473 * 1474 * LOCKING: 1475 * None. 1476 * 1477 * RETURNS: 1478 * Computed xfermask 1479 */ 1480 unsigned long ata_id_xfermask(const u16 *id) 1481 { 1482 unsigned long pio_mask, mwdma_mask, udma_mask; 1483 1484 /* Usual case. Word 53 indicates word 64 is valid */ 1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1487 pio_mask <<= 3; 1488 pio_mask |= 0x7; 1489 } else { 1490 /* If word 64 isn't valid then Word 51 high byte holds 1491 * the PIO timing number for the maximum. Turn it into 1492 * a mask. 1493 */ 1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1495 if (mode < 5) /* Valid PIO range */ 1496 pio_mask = (2 << mode) - 1; 1497 else 1498 pio_mask = 1; 1499 1500 /* But wait.. there's more. Design your standards by 1501 * committee and you too can get a free iordy field to 1502 * process. However its the speeds not the modes that 1503 * are supported... Note drivers using the timing API 1504 * will get this right anyway 1505 */ 1506 } 1507 1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1509 1510 if (ata_id_is_cfa(id)) { 1511 /* 1512 * Process compact flash extended modes 1513 */ 1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1516 1517 if (pio) 1518 pio_mask |= (1 << 5); 1519 if (pio > 1) 1520 pio_mask |= (1 << 6); 1521 if (dma) 1522 mwdma_mask |= (1 << 3); 1523 if (dma > 1) 1524 mwdma_mask |= (1 << 4); 1525 } 1526 1527 udma_mask = 0; 1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1530 1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1532 } 1533 1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1535 { 1536 struct completion *waiting = qc->private_data; 1537 1538 complete(waiting); 1539 } 1540 1541 /** 1542 * ata_exec_internal_sg - execute libata internal command 1543 * @dev: Device to which the command is sent 1544 * @tf: Taskfile registers for the command and the result 1545 * @cdb: CDB for packet command 1546 * @dma_dir: Data transfer direction of the command 1547 * @sgl: sg list for the data buffer of the command 1548 * @n_elem: Number of sg entries 1549 * @timeout: Timeout in msecs (0 for default) 1550 * 1551 * Executes libata internal command with timeout. @tf contains 1552 * command on entry and result on return. Timeout and error 1553 * conditions are reported via return value. No recovery action 1554 * is taken after a command times out. It's caller's duty to 1555 * clean up after timeout. 1556 * 1557 * LOCKING: 1558 * None. Should be called with kernel context, might sleep. 1559 * 1560 * RETURNS: 1561 * Zero on success, AC_ERR_* mask on failure 1562 */ 1563 unsigned ata_exec_internal_sg(struct ata_device *dev, 1564 struct ata_taskfile *tf, const u8 *cdb, 1565 int dma_dir, struct scatterlist *sgl, 1566 unsigned int n_elem, unsigned long timeout) 1567 { 1568 struct ata_link *link = dev->link; 1569 struct ata_port *ap = link->ap; 1570 u8 command = tf->command; 1571 int auto_timeout = 0; 1572 struct ata_queued_cmd *qc; 1573 unsigned int preempted_tag; 1574 u32 preempted_sactive; 1575 u64 preempted_qc_active; 1576 int preempted_nr_active_links; 1577 DECLARE_COMPLETION_ONSTACK(wait); 1578 unsigned long flags; 1579 unsigned int err_mask; 1580 int rc; 1581 1582 spin_lock_irqsave(ap->lock, flags); 1583 1584 /* no internal command while frozen */ 1585 if (ap->pflags & ATA_PFLAG_FROZEN) { 1586 spin_unlock_irqrestore(ap->lock, flags); 1587 return AC_ERR_SYSTEM; 1588 } 1589 1590 /* initialize internal qc */ 1591 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1592 1593 qc->tag = ATA_TAG_INTERNAL; 1594 qc->hw_tag = 0; 1595 qc->scsicmd = NULL; 1596 qc->ap = ap; 1597 qc->dev = dev; 1598 ata_qc_reinit(qc); 1599 1600 preempted_tag = link->active_tag; 1601 preempted_sactive = link->sactive; 1602 preempted_qc_active = ap->qc_active; 1603 preempted_nr_active_links = ap->nr_active_links; 1604 link->active_tag = ATA_TAG_POISON; 1605 link->sactive = 0; 1606 ap->qc_active = 0; 1607 ap->nr_active_links = 0; 1608 1609 /* prepare & issue qc */ 1610 qc->tf = *tf; 1611 if (cdb) 1612 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1613 1614 /* some SATA bridges need us to indicate data xfer direction */ 1615 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1616 dma_dir == DMA_FROM_DEVICE) 1617 qc->tf.feature |= ATAPI_DMADIR; 1618 1619 qc->flags |= ATA_QCFLAG_RESULT_TF; 1620 qc->dma_dir = dma_dir; 1621 if (dma_dir != DMA_NONE) { 1622 unsigned int i, buflen = 0; 1623 struct scatterlist *sg; 1624 1625 for_each_sg(sgl, sg, n_elem, i) 1626 buflen += sg->length; 1627 1628 ata_sg_init(qc, sgl, n_elem); 1629 qc->nbytes = buflen; 1630 } 1631 1632 qc->private_data = &wait; 1633 qc->complete_fn = ata_qc_complete_internal; 1634 1635 ata_qc_issue(qc); 1636 1637 spin_unlock_irqrestore(ap->lock, flags); 1638 1639 if (!timeout) { 1640 if (ata_probe_timeout) 1641 timeout = ata_probe_timeout * 1000; 1642 else { 1643 timeout = ata_internal_cmd_timeout(dev, command); 1644 auto_timeout = 1; 1645 } 1646 } 1647 1648 if (ap->ops->error_handler) 1649 ata_eh_release(ap); 1650 1651 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1652 1653 if (ap->ops->error_handler) 1654 ata_eh_acquire(ap); 1655 1656 ata_sff_flush_pio_task(ap); 1657 1658 if (!rc) { 1659 spin_lock_irqsave(ap->lock, flags); 1660 1661 /* We're racing with irq here. If we lose, the 1662 * following test prevents us from completing the qc 1663 * twice. If we win, the port is frozen and will be 1664 * cleaned up by ->post_internal_cmd(). 1665 */ 1666 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1667 qc->err_mask |= AC_ERR_TIMEOUT; 1668 1669 if (ap->ops->error_handler) 1670 ata_port_freeze(ap); 1671 else 1672 ata_qc_complete(qc); 1673 1674 if (ata_msg_warn(ap)) 1675 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1676 command); 1677 } 1678 1679 spin_unlock_irqrestore(ap->lock, flags); 1680 } 1681 1682 /* do post_internal_cmd */ 1683 if (ap->ops->post_internal_cmd) 1684 ap->ops->post_internal_cmd(qc); 1685 1686 /* perform minimal error analysis */ 1687 if (qc->flags & ATA_QCFLAG_FAILED) { 1688 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1689 qc->err_mask |= AC_ERR_DEV; 1690 1691 if (!qc->err_mask) 1692 qc->err_mask |= AC_ERR_OTHER; 1693 1694 if (qc->err_mask & ~AC_ERR_OTHER) 1695 qc->err_mask &= ~AC_ERR_OTHER; 1696 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1697 qc->result_tf.command |= ATA_SENSE; 1698 } 1699 1700 /* finish up */ 1701 spin_lock_irqsave(ap->lock, flags); 1702 1703 *tf = qc->result_tf; 1704 err_mask = qc->err_mask; 1705 1706 ata_qc_free(qc); 1707 link->active_tag = preempted_tag; 1708 link->sactive = preempted_sactive; 1709 ap->qc_active = preempted_qc_active; 1710 ap->nr_active_links = preempted_nr_active_links; 1711 1712 spin_unlock_irqrestore(ap->lock, flags); 1713 1714 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1715 ata_internal_cmd_timed_out(dev, command); 1716 1717 return err_mask; 1718 } 1719 1720 /** 1721 * ata_exec_internal - execute libata internal command 1722 * @dev: Device to which the command is sent 1723 * @tf: Taskfile registers for the command and the result 1724 * @cdb: CDB for packet command 1725 * @dma_dir: Data transfer direction of the command 1726 * @buf: Data buffer of the command 1727 * @buflen: Length of data buffer 1728 * @timeout: Timeout in msecs (0 for default) 1729 * 1730 * Wrapper around ata_exec_internal_sg() which takes simple 1731 * buffer instead of sg list. 1732 * 1733 * LOCKING: 1734 * None. Should be called with kernel context, might sleep. 1735 * 1736 * RETURNS: 1737 * Zero on success, AC_ERR_* mask on failure 1738 */ 1739 unsigned ata_exec_internal(struct ata_device *dev, 1740 struct ata_taskfile *tf, const u8 *cdb, 1741 int dma_dir, void *buf, unsigned int buflen, 1742 unsigned long timeout) 1743 { 1744 struct scatterlist *psg = NULL, sg; 1745 unsigned int n_elem = 0; 1746 1747 if (dma_dir != DMA_NONE) { 1748 WARN_ON(!buf); 1749 sg_init_one(&sg, buf, buflen); 1750 psg = &sg; 1751 n_elem++; 1752 } 1753 1754 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1755 timeout); 1756 } 1757 1758 /** 1759 * ata_pio_need_iordy - check if iordy needed 1760 * @adev: ATA device 1761 * 1762 * Check if the current speed of the device requires IORDY. Used 1763 * by various controllers for chip configuration. 1764 */ 1765 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1766 { 1767 /* Don't set IORDY if we're preparing for reset. IORDY may 1768 * lead to controller lock up on certain controllers if the 1769 * port is not occupied. See bko#11703 for details. 1770 */ 1771 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1772 return 0; 1773 /* Controller doesn't support IORDY. Probably a pointless 1774 * check as the caller should know this. 1775 */ 1776 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1777 return 0; 1778 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1779 if (ata_id_is_cfa(adev->id) 1780 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1781 return 0; 1782 /* PIO3 and higher it is mandatory */ 1783 if (adev->pio_mode > XFER_PIO_2) 1784 return 1; 1785 /* We turn it on when possible */ 1786 if (ata_id_has_iordy(adev->id)) 1787 return 1; 1788 return 0; 1789 } 1790 1791 /** 1792 * ata_pio_mask_no_iordy - Return the non IORDY mask 1793 * @adev: ATA device 1794 * 1795 * Compute the highest mode possible if we are not using iordy. Return 1796 * -1 if no iordy mode is available. 1797 */ 1798 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1799 { 1800 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1801 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1802 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1803 /* Is the speed faster than the drive allows non IORDY ? */ 1804 if (pio) { 1805 /* This is cycle times not frequency - watch the logic! */ 1806 if (pio > 240) /* PIO2 is 240nS per cycle */ 1807 return 3 << ATA_SHIFT_PIO; 1808 return 7 << ATA_SHIFT_PIO; 1809 } 1810 } 1811 return 3 << ATA_SHIFT_PIO; 1812 } 1813 1814 /** 1815 * ata_do_dev_read_id - default ID read method 1816 * @dev: device 1817 * @tf: proposed taskfile 1818 * @id: data buffer 1819 * 1820 * Issue the identify taskfile and hand back the buffer containing 1821 * identify data. For some RAID controllers and for pre ATA devices 1822 * this function is wrapped or replaced by the driver 1823 */ 1824 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1825 struct ata_taskfile *tf, u16 *id) 1826 { 1827 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1828 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1829 } 1830 1831 /** 1832 * ata_dev_read_id - Read ID data from the specified device 1833 * @dev: target device 1834 * @p_class: pointer to class of the target device (may be changed) 1835 * @flags: ATA_READID_* flags 1836 * @id: buffer to read IDENTIFY data into 1837 * 1838 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1839 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1840 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1841 * for pre-ATA4 drives. 1842 * 1843 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1844 * now we abort if we hit that case. 1845 * 1846 * LOCKING: 1847 * Kernel thread context (may sleep) 1848 * 1849 * RETURNS: 1850 * 0 on success, -errno otherwise. 1851 */ 1852 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1853 unsigned int flags, u16 *id) 1854 { 1855 struct ata_port *ap = dev->link->ap; 1856 unsigned int class = *p_class; 1857 struct ata_taskfile tf; 1858 unsigned int err_mask = 0; 1859 const char *reason; 1860 bool is_semb = class == ATA_DEV_SEMB; 1861 int may_fallback = 1, tried_spinup = 0; 1862 int rc; 1863 1864 if (ata_msg_ctl(ap)) 1865 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1866 1867 retry: 1868 ata_tf_init(dev, &tf); 1869 1870 switch (class) { 1871 case ATA_DEV_SEMB: 1872 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1873 /* fall through */ 1874 case ATA_DEV_ATA: 1875 case ATA_DEV_ZAC: 1876 tf.command = ATA_CMD_ID_ATA; 1877 break; 1878 case ATA_DEV_ATAPI: 1879 tf.command = ATA_CMD_ID_ATAPI; 1880 break; 1881 default: 1882 rc = -ENODEV; 1883 reason = "unsupported class"; 1884 goto err_out; 1885 } 1886 1887 tf.protocol = ATA_PROT_PIO; 1888 1889 /* Some devices choke if TF registers contain garbage. Make 1890 * sure those are properly initialized. 1891 */ 1892 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1893 1894 /* Device presence detection is unreliable on some 1895 * controllers. Always poll IDENTIFY if available. 1896 */ 1897 tf.flags |= ATA_TFLAG_POLLING; 1898 1899 if (ap->ops->read_id) 1900 err_mask = ap->ops->read_id(dev, &tf, id); 1901 else 1902 err_mask = ata_do_dev_read_id(dev, &tf, id); 1903 1904 if (err_mask) { 1905 if (err_mask & AC_ERR_NODEV_HINT) { 1906 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1907 return -ENOENT; 1908 } 1909 1910 if (is_semb) { 1911 ata_dev_info(dev, 1912 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1913 /* SEMB is not supported yet */ 1914 *p_class = ATA_DEV_SEMB_UNSUP; 1915 return 0; 1916 } 1917 1918 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1919 /* Device or controller might have reported 1920 * the wrong device class. Give a shot at the 1921 * other IDENTIFY if the current one is 1922 * aborted by the device. 1923 */ 1924 if (may_fallback) { 1925 may_fallback = 0; 1926 1927 if (class == ATA_DEV_ATA) 1928 class = ATA_DEV_ATAPI; 1929 else 1930 class = ATA_DEV_ATA; 1931 goto retry; 1932 } 1933 1934 /* Control reaches here iff the device aborted 1935 * both flavors of IDENTIFYs which happens 1936 * sometimes with phantom devices. 1937 */ 1938 ata_dev_dbg(dev, 1939 "both IDENTIFYs aborted, assuming NODEV\n"); 1940 return -ENOENT; 1941 } 1942 1943 rc = -EIO; 1944 reason = "I/O error"; 1945 goto err_out; 1946 } 1947 1948 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1949 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1950 "class=%d may_fallback=%d tried_spinup=%d\n", 1951 class, may_fallback, tried_spinup); 1952 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1953 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1954 } 1955 1956 /* Falling back doesn't make sense if ID data was read 1957 * successfully at least once. 1958 */ 1959 may_fallback = 0; 1960 1961 swap_buf_le16(id, ATA_ID_WORDS); 1962 1963 /* sanity check */ 1964 rc = -EINVAL; 1965 reason = "device reports invalid type"; 1966 1967 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1968 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1969 goto err_out; 1970 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1971 ata_id_is_ata(id)) { 1972 ata_dev_dbg(dev, 1973 "host indicates ignore ATA devices, ignored\n"); 1974 return -ENOENT; 1975 } 1976 } else { 1977 if (ata_id_is_ata(id)) 1978 goto err_out; 1979 } 1980 1981 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1982 tried_spinup = 1; 1983 /* 1984 * Drive powered-up in standby mode, and requires a specific 1985 * SET_FEATURES spin-up subcommand before it will accept 1986 * anything other than the original IDENTIFY command. 1987 */ 1988 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1989 if (err_mask && id[2] != 0x738c) { 1990 rc = -EIO; 1991 reason = "SPINUP failed"; 1992 goto err_out; 1993 } 1994 /* 1995 * If the drive initially returned incomplete IDENTIFY info, 1996 * we now must reissue the IDENTIFY command. 1997 */ 1998 if (id[2] == 0x37c8) 1999 goto retry; 2000 } 2001 2002 if ((flags & ATA_READID_POSTRESET) && 2003 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 2004 /* 2005 * The exact sequence expected by certain pre-ATA4 drives is: 2006 * SRST RESET 2007 * IDENTIFY (optional in early ATA) 2008 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2009 * anything else.. 2010 * Some drives were very specific about that exact sequence. 2011 * 2012 * Note that ATA4 says lba is mandatory so the second check 2013 * should never trigger. 2014 */ 2015 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2016 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2017 if (err_mask) { 2018 rc = -EIO; 2019 reason = "INIT_DEV_PARAMS failed"; 2020 goto err_out; 2021 } 2022 2023 /* current CHS translation info (id[53-58]) might be 2024 * changed. reread the identify device info. 2025 */ 2026 flags &= ~ATA_READID_POSTRESET; 2027 goto retry; 2028 } 2029 } 2030 2031 *p_class = class; 2032 2033 return 0; 2034 2035 err_out: 2036 if (ata_msg_warn(ap)) 2037 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2038 reason, err_mask); 2039 return rc; 2040 } 2041 2042 /** 2043 * ata_read_log_page - read a specific log page 2044 * @dev: target device 2045 * @log: log to read 2046 * @page: page to read 2047 * @buf: buffer to store read page 2048 * @sectors: number of sectors to read 2049 * 2050 * Read log page using READ_LOG_EXT command. 2051 * 2052 * LOCKING: 2053 * Kernel thread context (may sleep). 2054 * 2055 * RETURNS: 2056 * 0 on success, AC_ERR_* mask otherwise. 2057 */ 2058 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 2059 u8 page, void *buf, unsigned int sectors) 2060 { 2061 unsigned long ap_flags = dev->link->ap->flags; 2062 struct ata_taskfile tf; 2063 unsigned int err_mask; 2064 bool dma = false; 2065 2066 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page); 2067 2068 /* 2069 * Return error without actually issuing the command on controllers 2070 * which e.g. lockup on a read log page. 2071 */ 2072 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2073 return AC_ERR_DEV; 2074 2075 retry: 2076 ata_tf_init(dev, &tf); 2077 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) && 2078 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2079 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2080 tf.protocol = ATA_PROT_DMA; 2081 dma = true; 2082 } else { 2083 tf.command = ATA_CMD_READ_LOG_EXT; 2084 tf.protocol = ATA_PROT_PIO; 2085 dma = false; 2086 } 2087 tf.lbal = log; 2088 tf.lbam = page; 2089 tf.nsect = sectors; 2090 tf.hob_nsect = sectors >> 8; 2091 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2092 2093 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2094 buf, sectors * ATA_SECT_SIZE, 0); 2095 2096 if (err_mask && dma) { 2097 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2098 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n"); 2099 goto retry; 2100 } 2101 2102 DPRINTK("EXIT, err_mask=%x\n", err_mask); 2103 return err_mask; 2104 } 2105 2106 static bool ata_log_supported(struct ata_device *dev, u8 log) 2107 { 2108 struct ata_port *ap = dev->link->ap; 2109 2110 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2111 return false; 2112 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false; 2113 } 2114 2115 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2116 { 2117 struct ata_port *ap = dev->link->ap; 2118 unsigned int err, i; 2119 2120 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2121 ata_dev_warn(dev, "ATA Identify Device Log not supported\n"); 2122 return false; 2123 } 2124 2125 /* 2126 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2127 * supported. 2128 */ 2129 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2130 1); 2131 if (err) { 2132 ata_dev_info(dev, 2133 "failed to get Device Identify Log Emask 0x%x\n", 2134 err); 2135 return false; 2136 } 2137 2138 for (i = 0; i < ap->sector_buf[8]; i++) { 2139 if (ap->sector_buf[9 + i] == page) 2140 return true; 2141 } 2142 2143 return false; 2144 } 2145 2146 static int ata_do_link_spd_horkage(struct ata_device *dev) 2147 { 2148 struct ata_link *plink = ata_dev_phys_link(dev); 2149 u32 target, target_limit; 2150 2151 if (!sata_scr_valid(plink)) 2152 return 0; 2153 2154 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2155 target = 1; 2156 else 2157 return 0; 2158 2159 target_limit = (1 << target) - 1; 2160 2161 /* if already on stricter limit, no need to push further */ 2162 if (plink->sata_spd_limit <= target_limit) 2163 return 0; 2164 2165 plink->sata_spd_limit = target_limit; 2166 2167 /* Request another EH round by returning -EAGAIN if link is 2168 * going faster than the target speed. Forward progress is 2169 * guaranteed by setting sata_spd_limit to target_limit above. 2170 */ 2171 if (plink->sata_spd > target) { 2172 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2173 sata_spd_string(target)); 2174 return -EAGAIN; 2175 } 2176 return 0; 2177 } 2178 2179 static inline u8 ata_dev_knobble(struct ata_device *dev) 2180 { 2181 struct ata_port *ap = dev->link->ap; 2182 2183 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2184 return 0; 2185 2186 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2187 } 2188 2189 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2190 { 2191 struct ata_port *ap = dev->link->ap; 2192 unsigned int err_mask; 2193 2194 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2195 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2196 return; 2197 } 2198 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2199 0, ap->sector_buf, 1); 2200 if (err_mask) { 2201 ata_dev_dbg(dev, 2202 "failed to get NCQ Send/Recv Log Emask 0x%x\n", 2203 err_mask); 2204 } else { 2205 u8 *cmds = dev->ncq_send_recv_cmds; 2206 2207 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2208 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2209 2210 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2211 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2212 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2213 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2214 } 2215 } 2216 } 2217 2218 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2219 { 2220 struct ata_port *ap = dev->link->ap; 2221 unsigned int err_mask; 2222 2223 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2224 ata_dev_warn(dev, 2225 "NCQ Send/Recv Log not supported\n"); 2226 return; 2227 } 2228 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2229 0, ap->sector_buf, 1); 2230 if (err_mask) { 2231 ata_dev_dbg(dev, 2232 "failed to get NCQ Non-Data Log Emask 0x%x\n", 2233 err_mask); 2234 } else { 2235 u8 *cmds = dev->ncq_non_data_cmds; 2236 2237 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2238 } 2239 } 2240 2241 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2242 { 2243 struct ata_port *ap = dev->link->ap; 2244 unsigned int err_mask; 2245 2246 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) { 2247 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2248 return; 2249 } 2250 2251 err_mask = ata_read_log_page(dev, 2252 ATA_LOG_IDENTIFY_DEVICE, 2253 ATA_LOG_SATA_SETTINGS, 2254 ap->sector_buf, 2255 1); 2256 if (err_mask) { 2257 ata_dev_dbg(dev, 2258 "failed to get Identify Device data, Emask 0x%x\n", 2259 err_mask); 2260 return; 2261 } 2262 2263 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) { 2264 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2265 } else { 2266 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2267 ata_dev_dbg(dev, "SATA page does not support priority\n"); 2268 } 2269 2270 } 2271 2272 static int ata_dev_config_ncq(struct ata_device *dev, 2273 char *desc, size_t desc_sz) 2274 { 2275 struct ata_port *ap = dev->link->ap; 2276 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2277 unsigned int err_mask; 2278 char *aa_desc = ""; 2279 2280 if (!ata_id_has_ncq(dev->id)) { 2281 desc[0] = '\0'; 2282 return 0; 2283 } 2284 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2285 snprintf(desc, desc_sz, "NCQ (not used)"); 2286 return 0; 2287 } 2288 if (ap->flags & ATA_FLAG_NCQ) { 2289 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2290 dev->flags |= ATA_DFLAG_NCQ; 2291 } 2292 2293 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2294 (ap->flags & ATA_FLAG_FPDMA_AA) && 2295 ata_id_has_fpdma_aa(dev->id)) { 2296 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2297 SATA_FPDMA_AA); 2298 if (err_mask) { 2299 ata_dev_err(dev, 2300 "failed to enable AA (error_mask=0x%x)\n", 2301 err_mask); 2302 if (err_mask != AC_ERR_DEV) { 2303 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2304 return -EIO; 2305 } 2306 } else 2307 aa_desc = ", AA"; 2308 } 2309 2310 if (hdepth >= ddepth) 2311 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2312 else 2313 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2314 ddepth, aa_desc); 2315 2316 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2317 if (ata_id_has_ncq_send_and_recv(dev->id)) 2318 ata_dev_config_ncq_send_recv(dev); 2319 if (ata_id_has_ncq_non_data(dev->id)) 2320 ata_dev_config_ncq_non_data(dev); 2321 if (ata_id_has_ncq_prio(dev->id)) 2322 ata_dev_config_ncq_prio(dev); 2323 } 2324 2325 return 0; 2326 } 2327 2328 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2329 { 2330 unsigned int err_mask; 2331 2332 if (!ata_id_has_sense_reporting(dev->id)) 2333 return; 2334 2335 if (ata_id_sense_reporting_enabled(dev->id)) 2336 return; 2337 2338 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2339 if (err_mask) { 2340 ata_dev_dbg(dev, 2341 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2342 err_mask); 2343 } 2344 } 2345 2346 static void ata_dev_config_zac(struct ata_device *dev) 2347 { 2348 struct ata_port *ap = dev->link->ap; 2349 unsigned int err_mask; 2350 u8 *identify_buf = ap->sector_buf; 2351 2352 dev->zac_zones_optimal_open = U32_MAX; 2353 dev->zac_zones_optimal_nonseq = U32_MAX; 2354 dev->zac_zones_max_open = U32_MAX; 2355 2356 /* 2357 * Always set the 'ZAC' flag for Host-managed devices. 2358 */ 2359 if (dev->class == ATA_DEV_ZAC) 2360 dev->flags |= ATA_DFLAG_ZAC; 2361 else if (ata_id_zoned_cap(dev->id) == 0x01) 2362 /* 2363 * Check for host-aware devices. 2364 */ 2365 dev->flags |= ATA_DFLAG_ZAC; 2366 2367 if (!(dev->flags & ATA_DFLAG_ZAC)) 2368 return; 2369 2370 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2371 ata_dev_warn(dev, 2372 "ATA Zoned Information Log not supported\n"); 2373 return; 2374 } 2375 2376 /* 2377 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2378 */ 2379 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2380 ATA_LOG_ZONED_INFORMATION, 2381 identify_buf, 1); 2382 if (!err_mask) { 2383 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2384 2385 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2386 if ((zoned_cap >> 63)) 2387 dev->zac_zoned_cap = (zoned_cap & 1); 2388 opt_open = get_unaligned_le64(&identify_buf[24]); 2389 if ((opt_open >> 63)) 2390 dev->zac_zones_optimal_open = (u32)opt_open; 2391 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2392 if ((opt_nonseq >> 63)) 2393 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2394 max_open = get_unaligned_le64(&identify_buf[40]); 2395 if ((max_open >> 63)) 2396 dev->zac_zones_max_open = (u32)max_open; 2397 } 2398 } 2399 2400 static void ata_dev_config_trusted(struct ata_device *dev) 2401 { 2402 struct ata_port *ap = dev->link->ap; 2403 u64 trusted_cap; 2404 unsigned int err; 2405 2406 if (!ata_id_has_trusted(dev->id)) 2407 return; 2408 2409 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2410 ata_dev_warn(dev, 2411 "Security Log not supported\n"); 2412 return; 2413 } 2414 2415 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2416 ap->sector_buf, 1); 2417 if (err) { 2418 ata_dev_dbg(dev, 2419 "failed to read Security Log, Emask 0x%x\n", err); 2420 return; 2421 } 2422 2423 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2424 if (!(trusted_cap & (1ULL << 63))) { 2425 ata_dev_dbg(dev, 2426 "Trusted Computing capability qword not valid!\n"); 2427 return; 2428 } 2429 2430 if (trusted_cap & (1 << 0)) 2431 dev->flags |= ATA_DFLAG_TRUSTED; 2432 } 2433 2434 /** 2435 * ata_dev_configure - Configure the specified ATA/ATAPI device 2436 * @dev: Target device to configure 2437 * 2438 * Configure @dev according to @dev->id. Generic and low-level 2439 * driver specific fixups are also applied. 2440 * 2441 * LOCKING: 2442 * Kernel thread context (may sleep) 2443 * 2444 * RETURNS: 2445 * 0 on success, -errno otherwise 2446 */ 2447 int ata_dev_configure(struct ata_device *dev) 2448 { 2449 struct ata_port *ap = dev->link->ap; 2450 struct ata_eh_context *ehc = &dev->link->eh_context; 2451 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2452 const u16 *id = dev->id; 2453 unsigned long xfer_mask; 2454 unsigned int err_mask; 2455 char revbuf[7]; /* XYZ-99\0 */ 2456 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2457 char modelbuf[ATA_ID_PROD_LEN+1]; 2458 int rc; 2459 2460 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2461 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2462 return 0; 2463 } 2464 2465 if (ata_msg_probe(ap)) 2466 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2467 2468 /* set horkage */ 2469 dev->horkage |= ata_dev_blacklisted(dev); 2470 ata_force_horkage(dev); 2471 2472 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2473 ata_dev_info(dev, "unsupported device, disabling\n"); 2474 ata_dev_disable(dev); 2475 return 0; 2476 } 2477 2478 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2479 dev->class == ATA_DEV_ATAPI) { 2480 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2481 atapi_enabled ? "not supported with this driver" 2482 : "disabled"); 2483 ata_dev_disable(dev); 2484 return 0; 2485 } 2486 2487 rc = ata_do_link_spd_horkage(dev); 2488 if (rc) 2489 return rc; 2490 2491 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2492 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2493 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2494 dev->horkage |= ATA_HORKAGE_NOLPM; 2495 2496 if (ap->flags & ATA_FLAG_NO_LPM) 2497 dev->horkage |= ATA_HORKAGE_NOLPM; 2498 2499 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2500 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2501 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2502 } 2503 2504 /* let ACPI work its magic */ 2505 rc = ata_acpi_on_devcfg(dev); 2506 if (rc) 2507 return rc; 2508 2509 /* massage HPA, do it early as it might change IDENTIFY data */ 2510 rc = ata_hpa_resize(dev); 2511 if (rc) 2512 return rc; 2513 2514 /* print device capabilities */ 2515 if (ata_msg_probe(ap)) 2516 ata_dev_dbg(dev, 2517 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2518 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2519 __func__, 2520 id[49], id[82], id[83], id[84], 2521 id[85], id[86], id[87], id[88]); 2522 2523 /* initialize to-be-configured parameters */ 2524 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2525 dev->max_sectors = 0; 2526 dev->cdb_len = 0; 2527 dev->n_sectors = 0; 2528 dev->cylinders = 0; 2529 dev->heads = 0; 2530 dev->sectors = 0; 2531 dev->multi_count = 0; 2532 2533 /* 2534 * common ATA, ATAPI feature tests 2535 */ 2536 2537 /* find max transfer mode; for printk only */ 2538 xfer_mask = ata_id_xfermask(id); 2539 2540 if (ata_msg_probe(ap)) 2541 ata_dump_id(id); 2542 2543 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2544 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2545 sizeof(fwrevbuf)); 2546 2547 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2548 sizeof(modelbuf)); 2549 2550 /* ATA-specific feature tests */ 2551 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2552 if (ata_id_is_cfa(id)) { 2553 /* CPRM may make this media unusable */ 2554 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2555 ata_dev_warn(dev, 2556 "supports DRM functions and may not be fully accessible\n"); 2557 snprintf(revbuf, 7, "CFA"); 2558 } else { 2559 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2560 /* Warn the user if the device has TPM extensions */ 2561 if (ata_id_has_tpm(id)) 2562 ata_dev_warn(dev, 2563 "supports DRM functions and may not be fully accessible\n"); 2564 } 2565 2566 dev->n_sectors = ata_id_n_sectors(id); 2567 2568 /* get current R/W Multiple count setting */ 2569 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2570 unsigned int max = dev->id[47] & 0xff; 2571 unsigned int cnt = dev->id[59] & 0xff; 2572 /* only recognize/allow powers of two here */ 2573 if (is_power_of_2(max) && is_power_of_2(cnt)) 2574 if (cnt <= max) 2575 dev->multi_count = cnt; 2576 } 2577 2578 if (ata_id_has_lba(id)) { 2579 const char *lba_desc; 2580 char ncq_desc[24]; 2581 2582 lba_desc = "LBA"; 2583 dev->flags |= ATA_DFLAG_LBA; 2584 if (ata_id_has_lba48(id)) { 2585 dev->flags |= ATA_DFLAG_LBA48; 2586 lba_desc = "LBA48"; 2587 2588 if (dev->n_sectors >= (1UL << 28) && 2589 ata_id_has_flush_ext(id)) 2590 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2591 } 2592 2593 /* config NCQ */ 2594 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2595 if (rc) 2596 return rc; 2597 2598 /* print device info to dmesg */ 2599 if (ata_msg_drv(ap) && print_info) { 2600 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2601 revbuf, modelbuf, fwrevbuf, 2602 ata_mode_string(xfer_mask)); 2603 ata_dev_info(dev, 2604 "%llu sectors, multi %u: %s %s\n", 2605 (unsigned long long)dev->n_sectors, 2606 dev->multi_count, lba_desc, ncq_desc); 2607 } 2608 } else { 2609 /* CHS */ 2610 2611 /* Default translation */ 2612 dev->cylinders = id[1]; 2613 dev->heads = id[3]; 2614 dev->sectors = id[6]; 2615 2616 if (ata_id_current_chs_valid(id)) { 2617 /* Current CHS translation is valid. */ 2618 dev->cylinders = id[54]; 2619 dev->heads = id[55]; 2620 dev->sectors = id[56]; 2621 } 2622 2623 /* print device info to dmesg */ 2624 if (ata_msg_drv(ap) && print_info) { 2625 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2626 revbuf, modelbuf, fwrevbuf, 2627 ata_mode_string(xfer_mask)); 2628 ata_dev_info(dev, 2629 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2630 (unsigned long long)dev->n_sectors, 2631 dev->multi_count, dev->cylinders, 2632 dev->heads, dev->sectors); 2633 } 2634 } 2635 2636 /* Check and mark DevSlp capability. Get DevSlp timing variables 2637 * from SATA Settings page of Identify Device Data Log. 2638 */ 2639 if (ata_id_has_devslp(dev->id)) { 2640 u8 *sata_setting = ap->sector_buf; 2641 int i, j; 2642 2643 dev->flags |= ATA_DFLAG_DEVSLP; 2644 err_mask = ata_read_log_page(dev, 2645 ATA_LOG_IDENTIFY_DEVICE, 2646 ATA_LOG_SATA_SETTINGS, 2647 sata_setting, 2648 1); 2649 if (err_mask) 2650 ata_dev_dbg(dev, 2651 "failed to get Identify Device Data, Emask 0x%x\n", 2652 err_mask); 2653 else 2654 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2655 j = ATA_LOG_DEVSLP_OFFSET + i; 2656 dev->devslp_timing[i] = sata_setting[j]; 2657 } 2658 } 2659 ata_dev_config_sense_reporting(dev); 2660 ata_dev_config_zac(dev); 2661 ata_dev_config_trusted(dev); 2662 dev->cdb_len = 32; 2663 } 2664 2665 /* ATAPI-specific feature tests */ 2666 else if (dev->class == ATA_DEV_ATAPI) { 2667 const char *cdb_intr_string = ""; 2668 const char *atapi_an_string = ""; 2669 const char *dma_dir_string = ""; 2670 u32 sntf; 2671 2672 rc = atapi_cdb_len(id); 2673 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2674 if (ata_msg_warn(ap)) 2675 ata_dev_warn(dev, "unsupported CDB len\n"); 2676 rc = -EINVAL; 2677 goto err_out_nosup; 2678 } 2679 dev->cdb_len = (unsigned int) rc; 2680 2681 /* Enable ATAPI AN if both the host and device have 2682 * the support. If PMP is attached, SNTF is required 2683 * to enable ATAPI AN to discern between PHY status 2684 * changed notifications and ATAPI ANs. 2685 */ 2686 if (atapi_an && 2687 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2688 (!sata_pmp_attached(ap) || 2689 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2690 /* issue SET feature command to turn this on */ 2691 err_mask = ata_dev_set_feature(dev, 2692 SETFEATURES_SATA_ENABLE, SATA_AN); 2693 if (err_mask) 2694 ata_dev_err(dev, 2695 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2696 err_mask); 2697 else { 2698 dev->flags |= ATA_DFLAG_AN; 2699 atapi_an_string = ", ATAPI AN"; 2700 } 2701 } 2702 2703 if (ata_id_cdb_intr(dev->id)) { 2704 dev->flags |= ATA_DFLAG_CDB_INTR; 2705 cdb_intr_string = ", CDB intr"; 2706 } 2707 2708 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2709 dev->flags |= ATA_DFLAG_DMADIR; 2710 dma_dir_string = ", DMADIR"; 2711 } 2712 2713 if (ata_id_has_da(dev->id)) { 2714 dev->flags |= ATA_DFLAG_DA; 2715 zpodd_init(dev); 2716 } 2717 2718 /* print device info to dmesg */ 2719 if (ata_msg_drv(ap) && print_info) 2720 ata_dev_info(dev, 2721 "ATAPI: %s, %s, max %s%s%s%s\n", 2722 modelbuf, fwrevbuf, 2723 ata_mode_string(xfer_mask), 2724 cdb_intr_string, atapi_an_string, 2725 dma_dir_string); 2726 } 2727 2728 /* determine max_sectors */ 2729 dev->max_sectors = ATA_MAX_SECTORS; 2730 if (dev->flags & ATA_DFLAG_LBA48) 2731 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2732 2733 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2734 200 sectors */ 2735 if (ata_dev_knobble(dev)) { 2736 if (ata_msg_drv(ap) && print_info) 2737 ata_dev_info(dev, "applying bridge limits\n"); 2738 dev->udma_mask &= ATA_UDMA5; 2739 dev->max_sectors = ATA_MAX_SECTORS; 2740 } 2741 2742 if ((dev->class == ATA_DEV_ATAPI) && 2743 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2744 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2745 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2746 } 2747 2748 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2749 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2750 dev->max_sectors); 2751 2752 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2753 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2754 dev->max_sectors); 2755 2756 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2757 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2758 2759 if (ap->ops->dev_config) 2760 ap->ops->dev_config(dev); 2761 2762 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2763 /* Let the user know. We don't want to disallow opens for 2764 rescue purposes, or in case the vendor is just a blithering 2765 idiot. Do this after the dev_config call as some controllers 2766 with buggy firmware may want to avoid reporting false device 2767 bugs */ 2768 2769 if (print_info) { 2770 ata_dev_warn(dev, 2771 "Drive reports diagnostics failure. This may indicate a drive\n"); 2772 ata_dev_warn(dev, 2773 "fault or invalid emulation. Contact drive vendor for information.\n"); 2774 } 2775 } 2776 2777 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2778 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2779 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2780 } 2781 2782 return 0; 2783 2784 err_out_nosup: 2785 if (ata_msg_probe(ap)) 2786 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2787 return rc; 2788 } 2789 2790 /** 2791 * ata_cable_40wire - return 40 wire cable type 2792 * @ap: port 2793 * 2794 * Helper method for drivers which want to hardwire 40 wire cable 2795 * detection. 2796 */ 2797 2798 int ata_cable_40wire(struct ata_port *ap) 2799 { 2800 return ATA_CBL_PATA40; 2801 } 2802 2803 /** 2804 * ata_cable_80wire - return 80 wire cable type 2805 * @ap: port 2806 * 2807 * Helper method for drivers which want to hardwire 80 wire cable 2808 * detection. 2809 */ 2810 2811 int ata_cable_80wire(struct ata_port *ap) 2812 { 2813 return ATA_CBL_PATA80; 2814 } 2815 2816 /** 2817 * ata_cable_unknown - return unknown PATA cable. 2818 * @ap: port 2819 * 2820 * Helper method for drivers which have no PATA cable detection. 2821 */ 2822 2823 int ata_cable_unknown(struct ata_port *ap) 2824 { 2825 return ATA_CBL_PATA_UNK; 2826 } 2827 2828 /** 2829 * ata_cable_ignore - return ignored PATA cable. 2830 * @ap: port 2831 * 2832 * Helper method for drivers which don't use cable type to limit 2833 * transfer mode. 2834 */ 2835 int ata_cable_ignore(struct ata_port *ap) 2836 { 2837 return ATA_CBL_PATA_IGN; 2838 } 2839 2840 /** 2841 * ata_cable_sata - return SATA cable type 2842 * @ap: port 2843 * 2844 * Helper method for drivers which have SATA cables 2845 */ 2846 2847 int ata_cable_sata(struct ata_port *ap) 2848 { 2849 return ATA_CBL_SATA; 2850 } 2851 2852 /** 2853 * ata_bus_probe - Reset and probe ATA bus 2854 * @ap: Bus to probe 2855 * 2856 * Master ATA bus probing function. Initiates a hardware-dependent 2857 * bus reset, then attempts to identify any devices found on 2858 * the bus. 2859 * 2860 * LOCKING: 2861 * PCI/etc. bus probe sem. 2862 * 2863 * RETURNS: 2864 * Zero on success, negative errno otherwise. 2865 */ 2866 2867 int ata_bus_probe(struct ata_port *ap) 2868 { 2869 unsigned int classes[ATA_MAX_DEVICES]; 2870 int tries[ATA_MAX_DEVICES]; 2871 int rc; 2872 struct ata_device *dev; 2873 2874 ata_for_each_dev(dev, &ap->link, ALL) 2875 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2876 2877 retry: 2878 ata_for_each_dev(dev, &ap->link, ALL) { 2879 /* If we issue an SRST then an ATA drive (not ATAPI) 2880 * may change configuration and be in PIO0 timing. If 2881 * we do a hard reset (or are coming from power on) 2882 * this is true for ATA or ATAPI. Until we've set a 2883 * suitable controller mode we should not touch the 2884 * bus as we may be talking too fast. 2885 */ 2886 dev->pio_mode = XFER_PIO_0; 2887 dev->dma_mode = 0xff; 2888 2889 /* If the controller has a pio mode setup function 2890 * then use it to set the chipset to rights. Don't 2891 * touch the DMA setup as that will be dealt with when 2892 * configuring devices. 2893 */ 2894 if (ap->ops->set_piomode) 2895 ap->ops->set_piomode(ap, dev); 2896 } 2897 2898 /* reset and determine device classes */ 2899 ap->ops->phy_reset(ap); 2900 2901 ata_for_each_dev(dev, &ap->link, ALL) { 2902 if (dev->class != ATA_DEV_UNKNOWN) 2903 classes[dev->devno] = dev->class; 2904 else 2905 classes[dev->devno] = ATA_DEV_NONE; 2906 2907 dev->class = ATA_DEV_UNKNOWN; 2908 } 2909 2910 /* read IDENTIFY page and configure devices. We have to do the identify 2911 specific sequence bass-ackwards so that PDIAG- is released by 2912 the slave device */ 2913 2914 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2915 if (tries[dev->devno]) 2916 dev->class = classes[dev->devno]; 2917 2918 if (!ata_dev_enabled(dev)) 2919 continue; 2920 2921 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2922 dev->id); 2923 if (rc) 2924 goto fail; 2925 } 2926 2927 /* Now ask for the cable type as PDIAG- should have been released */ 2928 if (ap->ops->cable_detect) 2929 ap->cbl = ap->ops->cable_detect(ap); 2930 2931 /* We may have SATA bridge glue hiding here irrespective of 2932 * the reported cable types and sensed types. When SATA 2933 * drives indicate we have a bridge, we don't know which end 2934 * of the link the bridge is which is a problem. 2935 */ 2936 ata_for_each_dev(dev, &ap->link, ENABLED) 2937 if (ata_id_is_sata(dev->id)) 2938 ap->cbl = ATA_CBL_SATA; 2939 2940 /* After the identify sequence we can now set up the devices. We do 2941 this in the normal order so that the user doesn't get confused */ 2942 2943 ata_for_each_dev(dev, &ap->link, ENABLED) { 2944 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2945 rc = ata_dev_configure(dev); 2946 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2947 if (rc) 2948 goto fail; 2949 } 2950 2951 /* configure transfer mode */ 2952 rc = ata_set_mode(&ap->link, &dev); 2953 if (rc) 2954 goto fail; 2955 2956 ata_for_each_dev(dev, &ap->link, ENABLED) 2957 return 0; 2958 2959 return -ENODEV; 2960 2961 fail: 2962 tries[dev->devno]--; 2963 2964 switch (rc) { 2965 case -EINVAL: 2966 /* eeek, something went very wrong, give up */ 2967 tries[dev->devno] = 0; 2968 break; 2969 2970 case -ENODEV: 2971 /* give it just one more chance */ 2972 tries[dev->devno] = min(tries[dev->devno], 1); 2973 /* fall through */ 2974 case -EIO: 2975 if (tries[dev->devno] == 1) { 2976 /* This is the last chance, better to slow 2977 * down than lose it. 2978 */ 2979 sata_down_spd_limit(&ap->link, 0); 2980 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2981 } 2982 } 2983 2984 if (!tries[dev->devno]) 2985 ata_dev_disable(dev); 2986 2987 goto retry; 2988 } 2989 2990 /** 2991 * sata_print_link_status - Print SATA link status 2992 * @link: SATA link to printk link status about 2993 * 2994 * This function prints link speed and status of a SATA link. 2995 * 2996 * LOCKING: 2997 * None. 2998 */ 2999 static void sata_print_link_status(struct ata_link *link) 3000 { 3001 u32 sstatus, scontrol, tmp; 3002 3003 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3004 return; 3005 sata_scr_read(link, SCR_CONTROL, &scontrol); 3006 3007 if (ata_phys_link_online(link)) { 3008 tmp = (sstatus >> 4) & 0xf; 3009 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3010 sata_spd_string(tmp), sstatus, scontrol); 3011 } else { 3012 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3013 sstatus, scontrol); 3014 } 3015 } 3016 3017 /** 3018 * ata_dev_pair - return other device on cable 3019 * @adev: device 3020 * 3021 * Obtain the other device on the same cable, or if none is 3022 * present NULL is returned 3023 */ 3024 3025 struct ata_device *ata_dev_pair(struct ata_device *adev) 3026 { 3027 struct ata_link *link = adev->link; 3028 struct ata_device *pair = &link->device[1 - adev->devno]; 3029 if (!ata_dev_enabled(pair)) 3030 return NULL; 3031 return pair; 3032 } 3033 3034 /** 3035 * sata_down_spd_limit - adjust SATA spd limit downward 3036 * @link: Link to adjust SATA spd limit for 3037 * @spd_limit: Additional limit 3038 * 3039 * Adjust SATA spd limit of @link downward. Note that this 3040 * function only adjusts the limit. The change must be applied 3041 * using sata_set_spd(). 3042 * 3043 * If @spd_limit is non-zero, the speed is limited to equal to or 3044 * lower than @spd_limit if such speed is supported. If 3045 * @spd_limit is slower than any supported speed, only the lowest 3046 * supported speed is allowed. 3047 * 3048 * LOCKING: 3049 * Inherited from caller. 3050 * 3051 * RETURNS: 3052 * 0 on success, negative errno on failure 3053 */ 3054 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3055 { 3056 u32 sstatus, spd, mask; 3057 int rc, bit; 3058 3059 if (!sata_scr_valid(link)) 3060 return -EOPNOTSUPP; 3061 3062 /* If SCR can be read, use it to determine the current SPD. 3063 * If not, use cached value in link->sata_spd. 3064 */ 3065 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3066 if (rc == 0 && ata_sstatus_online(sstatus)) 3067 spd = (sstatus >> 4) & 0xf; 3068 else 3069 spd = link->sata_spd; 3070 3071 mask = link->sata_spd_limit; 3072 if (mask <= 1) 3073 return -EINVAL; 3074 3075 /* unconditionally mask off the highest bit */ 3076 bit = fls(mask) - 1; 3077 mask &= ~(1 << bit); 3078 3079 /* 3080 * Mask off all speeds higher than or equal to the current one. At 3081 * this point, if current SPD is not available and we previously 3082 * recorded the link speed from SStatus, the driver has already 3083 * masked off the highest bit so mask should already be 1 or 0. 3084 * Otherwise, we should not force 1.5Gbps on a link where we have 3085 * not previously recorded speed from SStatus. Just return in this 3086 * case. 3087 */ 3088 if (spd > 1) 3089 mask &= (1 << (spd - 1)) - 1; 3090 else 3091 return -EINVAL; 3092 3093 /* were we already at the bottom? */ 3094 if (!mask) 3095 return -EINVAL; 3096 3097 if (spd_limit) { 3098 if (mask & ((1 << spd_limit) - 1)) 3099 mask &= (1 << spd_limit) - 1; 3100 else { 3101 bit = ffs(mask) - 1; 3102 mask = 1 << bit; 3103 } 3104 } 3105 3106 link->sata_spd_limit = mask; 3107 3108 ata_link_warn(link, "limiting SATA link speed to %s\n", 3109 sata_spd_string(fls(mask))); 3110 3111 return 0; 3112 } 3113 3114 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 3115 { 3116 struct ata_link *host_link = &link->ap->link; 3117 u32 limit, target, spd; 3118 3119 limit = link->sata_spd_limit; 3120 3121 /* Don't configure downstream link faster than upstream link. 3122 * It doesn't speed up anything and some PMPs choke on such 3123 * configuration. 3124 */ 3125 if (!ata_is_host_link(link) && host_link->sata_spd) 3126 limit &= (1 << host_link->sata_spd) - 1; 3127 3128 if (limit == UINT_MAX) 3129 target = 0; 3130 else 3131 target = fls(limit); 3132 3133 spd = (*scontrol >> 4) & 0xf; 3134 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 3135 3136 return spd != target; 3137 } 3138 3139 /** 3140 * sata_set_spd_needed - is SATA spd configuration needed 3141 * @link: Link in question 3142 * 3143 * Test whether the spd limit in SControl matches 3144 * @link->sata_spd_limit. This function is used to determine 3145 * whether hardreset is necessary to apply SATA spd 3146 * configuration. 3147 * 3148 * LOCKING: 3149 * Inherited from caller. 3150 * 3151 * RETURNS: 3152 * 1 if SATA spd configuration is needed, 0 otherwise. 3153 */ 3154 static int sata_set_spd_needed(struct ata_link *link) 3155 { 3156 u32 scontrol; 3157 3158 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3159 return 1; 3160 3161 return __sata_set_spd_needed(link, &scontrol); 3162 } 3163 3164 /** 3165 * sata_set_spd - set SATA spd according to spd limit 3166 * @link: Link to set SATA spd for 3167 * 3168 * Set SATA spd of @link according to sata_spd_limit. 3169 * 3170 * LOCKING: 3171 * Inherited from caller. 3172 * 3173 * RETURNS: 3174 * 0 if spd doesn't need to be changed, 1 if spd has been 3175 * changed. Negative errno if SCR registers are inaccessible. 3176 */ 3177 int sata_set_spd(struct ata_link *link) 3178 { 3179 u32 scontrol; 3180 int rc; 3181 3182 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3183 return rc; 3184 3185 if (!__sata_set_spd_needed(link, &scontrol)) 3186 return 0; 3187 3188 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3189 return rc; 3190 3191 return 1; 3192 } 3193 3194 /* 3195 * This mode timing computation functionality is ported over from 3196 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 3197 */ 3198 /* 3199 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 3200 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 3201 * for UDMA6, which is currently supported only by Maxtor drives. 3202 * 3203 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 3204 */ 3205 3206 static const struct ata_timing ata_timing[] = { 3207 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 3208 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 3209 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 3210 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 3211 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 3212 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 3213 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 3214 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 3215 3216 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 3217 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 3218 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 3219 3220 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 3221 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 3222 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 3223 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 3224 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 3225 3226 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 3227 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 3228 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 3229 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 3230 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 3231 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 3232 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 3233 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 3234 3235 { 0xFF } 3236 }; 3237 3238 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 3239 #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0) 3240 3241 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 3242 { 3243 q->setup = EZ(t->setup, T); 3244 q->act8b = EZ(t->act8b, T); 3245 q->rec8b = EZ(t->rec8b, T); 3246 q->cyc8b = EZ(t->cyc8b, T); 3247 q->active = EZ(t->active, T); 3248 q->recover = EZ(t->recover, T); 3249 q->dmack_hold = EZ(t->dmack_hold, T); 3250 q->cycle = EZ(t->cycle, T); 3251 q->udma = EZ(t->udma, UT); 3252 } 3253 3254 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3255 struct ata_timing *m, unsigned int what) 3256 { 3257 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3258 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3259 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3260 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3261 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3262 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3263 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 3264 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3265 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3266 } 3267 3268 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3269 { 3270 const struct ata_timing *t = ata_timing; 3271 3272 while (xfer_mode > t->mode) 3273 t++; 3274 3275 if (xfer_mode == t->mode) 3276 return t; 3277 3278 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 3279 __func__, xfer_mode); 3280 3281 return NULL; 3282 } 3283 3284 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3285 struct ata_timing *t, int T, int UT) 3286 { 3287 const u16 *id = adev->id; 3288 const struct ata_timing *s; 3289 struct ata_timing p; 3290 3291 /* 3292 * Find the mode. 3293 */ 3294 3295 if (!(s = ata_timing_find_mode(speed))) 3296 return -EINVAL; 3297 3298 memcpy(t, s, sizeof(*s)); 3299 3300 /* 3301 * If the drive is an EIDE drive, it can tell us it needs extended 3302 * PIO/MW_DMA cycle timing. 3303 */ 3304 3305 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3306 memset(&p, 0, sizeof(p)); 3307 3308 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 3309 if (speed <= XFER_PIO_2) 3310 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3311 else if ((speed <= XFER_PIO_4) || 3312 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3313 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3314 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3315 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3316 3317 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3318 } 3319 3320 /* 3321 * Convert the timing to bus clock counts. 3322 */ 3323 3324 ata_timing_quantize(t, t, T, UT); 3325 3326 /* 3327 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3328 * S.M.A.R.T * and some other commands. We have to ensure that the 3329 * DMA cycle timing is slower/equal than the fastest PIO timing. 3330 */ 3331 3332 if (speed > XFER_PIO_6) { 3333 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3334 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3335 } 3336 3337 /* 3338 * Lengthen active & recovery time so that cycle time is correct. 3339 */ 3340 3341 if (t->act8b + t->rec8b < t->cyc8b) { 3342 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3343 t->rec8b = t->cyc8b - t->act8b; 3344 } 3345 3346 if (t->active + t->recover < t->cycle) { 3347 t->active += (t->cycle - (t->active + t->recover)) / 2; 3348 t->recover = t->cycle - t->active; 3349 } 3350 3351 /* In a few cases quantisation may produce enough errors to 3352 leave t->cycle too low for the sum of active and recovery 3353 if so we must correct this */ 3354 if (t->active + t->recover > t->cycle) 3355 t->cycle = t->active + t->recover; 3356 3357 return 0; 3358 } 3359 3360 /** 3361 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3362 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3363 * @cycle: cycle duration in ns 3364 * 3365 * Return matching xfer mode for @cycle. The returned mode is of 3366 * the transfer type specified by @xfer_shift. If @cycle is too 3367 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3368 * than the fastest known mode, the fasted mode is returned. 3369 * 3370 * LOCKING: 3371 * None. 3372 * 3373 * RETURNS: 3374 * Matching xfer_mode, 0xff if no match found. 3375 */ 3376 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3377 { 3378 u8 base_mode = 0xff, last_mode = 0xff; 3379 const struct ata_xfer_ent *ent; 3380 const struct ata_timing *t; 3381 3382 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3383 if (ent->shift == xfer_shift) 3384 base_mode = ent->base; 3385 3386 for (t = ata_timing_find_mode(base_mode); 3387 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3388 unsigned short this_cycle; 3389 3390 switch (xfer_shift) { 3391 case ATA_SHIFT_PIO: 3392 case ATA_SHIFT_MWDMA: 3393 this_cycle = t->cycle; 3394 break; 3395 case ATA_SHIFT_UDMA: 3396 this_cycle = t->udma; 3397 break; 3398 default: 3399 return 0xff; 3400 } 3401 3402 if (cycle > this_cycle) 3403 break; 3404 3405 last_mode = t->mode; 3406 } 3407 3408 return last_mode; 3409 } 3410 3411 /** 3412 * ata_down_xfermask_limit - adjust dev xfer masks downward 3413 * @dev: Device to adjust xfer masks 3414 * @sel: ATA_DNXFER_* selector 3415 * 3416 * Adjust xfer masks of @dev downward. Note that this function 3417 * does not apply the change. Invoking ata_set_mode() afterwards 3418 * will apply the limit. 3419 * 3420 * LOCKING: 3421 * Inherited from caller. 3422 * 3423 * RETURNS: 3424 * 0 on success, negative errno on failure 3425 */ 3426 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3427 { 3428 char buf[32]; 3429 unsigned long orig_mask, xfer_mask; 3430 unsigned long pio_mask, mwdma_mask, udma_mask; 3431 int quiet, highbit; 3432 3433 quiet = !!(sel & ATA_DNXFER_QUIET); 3434 sel &= ~ATA_DNXFER_QUIET; 3435 3436 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3437 dev->mwdma_mask, 3438 dev->udma_mask); 3439 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3440 3441 switch (sel) { 3442 case ATA_DNXFER_PIO: 3443 highbit = fls(pio_mask) - 1; 3444 pio_mask &= ~(1 << highbit); 3445 break; 3446 3447 case ATA_DNXFER_DMA: 3448 if (udma_mask) { 3449 highbit = fls(udma_mask) - 1; 3450 udma_mask &= ~(1 << highbit); 3451 if (!udma_mask) 3452 return -ENOENT; 3453 } else if (mwdma_mask) { 3454 highbit = fls(mwdma_mask) - 1; 3455 mwdma_mask &= ~(1 << highbit); 3456 if (!mwdma_mask) 3457 return -ENOENT; 3458 } 3459 break; 3460 3461 case ATA_DNXFER_40C: 3462 udma_mask &= ATA_UDMA_MASK_40C; 3463 break; 3464 3465 case ATA_DNXFER_FORCE_PIO0: 3466 pio_mask &= 1; 3467 /* fall through */ 3468 case ATA_DNXFER_FORCE_PIO: 3469 mwdma_mask = 0; 3470 udma_mask = 0; 3471 break; 3472 3473 default: 3474 BUG(); 3475 } 3476 3477 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3478 3479 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3480 return -ENOENT; 3481 3482 if (!quiet) { 3483 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3484 snprintf(buf, sizeof(buf), "%s:%s", 3485 ata_mode_string(xfer_mask), 3486 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3487 else 3488 snprintf(buf, sizeof(buf), "%s", 3489 ata_mode_string(xfer_mask)); 3490 3491 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3492 } 3493 3494 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3495 &dev->udma_mask); 3496 3497 return 0; 3498 } 3499 3500 static int ata_dev_set_mode(struct ata_device *dev) 3501 { 3502 struct ata_port *ap = dev->link->ap; 3503 struct ata_eh_context *ehc = &dev->link->eh_context; 3504 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3505 const char *dev_err_whine = ""; 3506 int ign_dev_err = 0; 3507 unsigned int err_mask = 0; 3508 int rc; 3509 3510 dev->flags &= ~ATA_DFLAG_PIO; 3511 if (dev->xfer_shift == ATA_SHIFT_PIO) 3512 dev->flags |= ATA_DFLAG_PIO; 3513 3514 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3515 dev_err_whine = " (SET_XFERMODE skipped)"; 3516 else { 3517 if (nosetxfer) 3518 ata_dev_warn(dev, 3519 "NOSETXFER but PATA detected - can't " 3520 "skip SETXFER, might malfunction\n"); 3521 err_mask = ata_dev_set_xfermode(dev); 3522 } 3523 3524 if (err_mask & ~AC_ERR_DEV) 3525 goto fail; 3526 3527 /* revalidate */ 3528 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3529 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3530 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3531 if (rc) 3532 return rc; 3533 3534 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3535 /* Old CFA may refuse this command, which is just fine */ 3536 if (ata_id_is_cfa(dev->id)) 3537 ign_dev_err = 1; 3538 /* Catch several broken garbage emulations plus some pre 3539 ATA devices */ 3540 if (ata_id_major_version(dev->id) == 0 && 3541 dev->pio_mode <= XFER_PIO_2) 3542 ign_dev_err = 1; 3543 /* Some very old devices and some bad newer ones fail 3544 any kind of SET_XFERMODE request but support PIO0-2 3545 timings and no IORDY */ 3546 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3547 ign_dev_err = 1; 3548 } 3549 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3550 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3551 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3552 dev->dma_mode == XFER_MW_DMA_0 && 3553 (dev->id[63] >> 8) & 1) 3554 ign_dev_err = 1; 3555 3556 /* if the device is actually configured correctly, ignore dev err */ 3557 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3558 ign_dev_err = 1; 3559 3560 if (err_mask & AC_ERR_DEV) { 3561 if (!ign_dev_err) 3562 goto fail; 3563 else 3564 dev_err_whine = " (device error ignored)"; 3565 } 3566 3567 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3568 dev->xfer_shift, (int)dev->xfer_mode); 3569 3570 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3571 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3572 ata_dev_info(dev, "configured for %s%s\n", 3573 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3574 dev_err_whine); 3575 3576 return 0; 3577 3578 fail: 3579 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3580 return -EIO; 3581 } 3582 3583 /** 3584 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3585 * @link: link on which timings will be programmed 3586 * @r_failed_dev: out parameter for failed device 3587 * 3588 * Standard implementation of the function used to tune and set 3589 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3590 * ata_dev_set_mode() fails, pointer to the failing device is 3591 * returned in @r_failed_dev. 3592 * 3593 * LOCKING: 3594 * PCI/etc. bus probe sem. 3595 * 3596 * RETURNS: 3597 * 0 on success, negative errno otherwise 3598 */ 3599 3600 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3601 { 3602 struct ata_port *ap = link->ap; 3603 struct ata_device *dev; 3604 int rc = 0, used_dma = 0, found = 0; 3605 3606 /* step 1: calculate xfer_mask */ 3607 ata_for_each_dev(dev, link, ENABLED) { 3608 unsigned long pio_mask, dma_mask; 3609 unsigned int mode_mask; 3610 3611 mode_mask = ATA_DMA_MASK_ATA; 3612 if (dev->class == ATA_DEV_ATAPI) 3613 mode_mask = ATA_DMA_MASK_ATAPI; 3614 else if (ata_id_is_cfa(dev->id)) 3615 mode_mask = ATA_DMA_MASK_CFA; 3616 3617 ata_dev_xfermask(dev); 3618 ata_force_xfermask(dev); 3619 3620 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3621 3622 if (libata_dma_mask & mode_mask) 3623 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3624 dev->udma_mask); 3625 else 3626 dma_mask = 0; 3627 3628 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3629 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3630 3631 found = 1; 3632 if (ata_dma_enabled(dev)) 3633 used_dma = 1; 3634 } 3635 if (!found) 3636 goto out; 3637 3638 /* step 2: always set host PIO timings */ 3639 ata_for_each_dev(dev, link, ENABLED) { 3640 if (dev->pio_mode == 0xff) { 3641 ata_dev_warn(dev, "no PIO support\n"); 3642 rc = -EINVAL; 3643 goto out; 3644 } 3645 3646 dev->xfer_mode = dev->pio_mode; 3647 dev->xfer_shift = ATA_SHIFT_PIO; 3648 if (ap->ops->set_piomode) 3649 ap->ops->set_piomode(ap, dev); 3650 } 3651 3652 /* step 3: set host DMA timings */ 3653 ata_for_each_dev(dev, link, ENABLED) { 3654 if (!ata_dma_enabled(dev)) 3655 continue; 3656 3657 dev->xfer_mode = dev->dma_mode; 3658 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3659 if (ap->ops->set_dmamode) 3660 ap->ops->set_dmamode(ap, dev); 3661 } 3662 3663 /* step 4: update devices' xfer mode */ 3664 ata_for_each_dev(dev, link, ENABLED) { 3665 rc = ata_dev_set_mode(dev); 3666 if (rc) 3667 goto out; 3668 } 3669 3670 /* Record simplex status. If we selected DMA then the other 3671 * host channels are not permitted to do so. 3672 */ 3673 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3674 ap->host->simplex_claimed = ap; 3675 3676 out: 3677 if (rc) 3678 *r_failed_dev = dev; 3679 return rc; 3680 } 3681 3682 /** 3683 * ata_wait_ready - wait for link to become ready 3684 * @link: link to be waited on 3685 * @deadline: deadline jiffies for the operation 3686 * @check_ready: callback to check link readiness 3687 * 3688 * Wait for @link to become ready. @check_ready should return 3689 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3690 * link doesn't seem to be occupied, other errno for other error 3691 * conditions. 3692 * 3693 * Transient -ENODEV conditions are allowed for 3694 * ATA_TMOUT_FF_WAIT. 3695 * 3696 * LOCKING: 3697 * EH context. 3698 * 3699 * RETURNS: 3700 * 0 if @link is ready before @deadline; otherwise, -errno. 3701 */ 3702 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3703 int (*check_ready)(struct ata_link *link)) 3704 { 3705 unsigned long start = jiffies; 3706 unsigned long nodev_deadline; 3707 int warned = 0; 3708 3709 /* choose which 0xff timeout to use, read comment in libata.h */ 3710 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3711 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3712 else 3713 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3714 3715 /* Slave readiness can't be tested separately from master. On 3716 * M/S emulation configuration, this function should be called 3717 * only on the master and it will handle both master and slave. 3718 */ 3719 WARN_ON(link == link->ap->slave_link); 3720 3721 if (time_after(nodev_deadline, deadline)) 3722 nodev_deadline = deadline; 3723 3724 while (1) { 3725 unsigned long now = jiffies; 3726 int ready, tmp; 3727 3728 ready = tmp = check_ready(link); 3729 if (ready > 0) 3730 return 0; 3731 3732 /* 3733 * -ENODEV could be transient. Ignore -ENODEV if link 3734 * is online. Also, some SATA devices take a long 3735 * time to clear 0xff after reset. Wait for 3736 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3737 * offline. 3738 * 3739 * Note that some PATA controllers (pata_ali) explode 3740 * if status register is read more than once when 3741 * there's no device attached. 3742 */ 3743 if (ready == -ENODEV) { 3744 if (ata_link_online(link)) 3745 ready = 0; 3746 else if ((link->ap->flags & ATA_FLAG_SATA) && 3747 !ata_link_offline(link) && 3748 time_before(now, nodev_deadline)) 3749 ready = 0; 3750 } 3751 3752 if (ready) 3753 return ready; 3754 if (time_after(now, deadline)) 3755 return -EBUSY; 3756 3757 if (!warned && time_after(now, start + 5 * HZ) && 3758 (deadline - now > 3 * HZ)) { 3759 ata_link_warn(link, 3760 "link is slow to respond, please be patient " 3761 "(ready=%d)\n", tmp); 3762 warned = 1; 3763 } 3764 3765 ata_msleep(link->ap, 50); 3766 } 3767 } 3768 3769 /** 3770 * ata_wait_after_reset - wait for link to become ready after reset 3771 * @link: link to be waited on 3772 * @deadline: deadline jiffies for the operation 3773 * @check_ready: callback to check link readiness 3774 * 3775 * Wait for @link to become ready after reset. 3776 * 3777 * LOCKING: 3778 * EH context. 3779 * 3780 * RETURNS: 3781 * 0 if @link is ready before @deadline; otherwise, -errno. 3782 */ 3783 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3784 int (*check_ready)(struct ata_link *link)) 3785 { 3786 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3787 3788 return ata_wait_ready(link, deadline, check_ready); 3789 } 3790 3791 /** 3792 * sata_link_debounce - debounce SATA phy status 3793 * @link: ATA link to debounce SATA phy status for 3794 * @params: timing parameters { interval, duration, timeout } in msec 3795 * @deadline: deadline jiffies for the operation 3796 * 3797 * Make sure SStatus of @link reaches stable state, determined by 3798 * holding the same value where DET is not 1 for @duration polled 3799 * every @interval, before @timeout. Timeout constraints the 3800 * beginning of the stable state. Because DET gets stuck at 1 on 3801 * some controllers after hot unplugging, this functions waits 3802 * until timeout then returns 0 if DET is stable at 1. 3803 * 3804 * @timeout is further limited by @deadline. The sooner of the 3805 * two is used. 3806 * 3807 * LOCKING: 3808 * Kernel thread context (may sleep) 3809 * 3810 * RETURNS: 3811 * 0 on success, -errno on failure. 3812 */ 3813 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3814 unsigned long deadline) 3815 { 3816 unsigned long interval = params[0]; 3817 unsigned long duration = params[1]; 3818 unsigned long last_jiffies, t; 3819 u32 last, cur; 3820 int rc; 3821 3822 t = ata_deadline(jiffies, params[2]); 3823 if (time_before(t, deadline)) 3824 deadline = t; 3825 3826 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3827 return rc; 3828 cur &= 0xf; 3829 3830 last = cur; 3831 last_jiffies = jiffies; 3832 3833 while (1) { 3834 ata_msleep(link->ap, interval); 3835 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3836 return rc; 3837 cur &= 0xf; 3838 3839 /* DET stable? */ 3840 if (cur == last) { 3841 if (cur == 1 && time_before(jiffies, deadline)) 3842 continue; 3843 if (time_after(jiffies, 3844 ata_deadline(last_jiffies, duration))) 3845 return 0; 3846 continue; 3847 } 3848 3849 /* unstable, start over */ 3850 last = cur; 3851 last_jiffies = jiffies; 3852 3853 /* Check deadline. If debouncing failed, return 3854 * -EPIPE to tell upper layer to lower link speed. 3855 */ 3856 if (time_after(jiffies, deadline)) 3857 return -EPIPE; 3858 } 3859 } 3860 3861 /** 3862 * sata_link_resume - resume SATA link 3863 * @link: ATA link to resume SATA 3864 * @params: timing parameters { interval, duration, timeout } in msec 3865 * @deadline: deadline jiffies for the operation 3866 * 3867 * Resume SATA phy @link and debounce it. 3868 * 3869 * LOCKING: 3870 * Kernel thread context (may sleep) 3871 * 3872 * RETURNS: 3873 * 0 on success, -errno on failure. 3874 */ 3875 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3876 unsigned long deadline) 3877 { 3878 int tries = ATA_LINK_RESUME_TRIES; 3879 u32 scontrol, serror; 3880 int rc; 3881 3882 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3883 return rc; 3884 3885 /* 3886 * Writes to SControl sometimes get ignored under certain 3887 * controllers (ata_piix SIDPR). Make sure DET actually is 3888 * cleared. 3889 */ 3890 do { 3891 scontrol = (scontrol & 0x0f0) | 0x300; 3892 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3893 return rc; 3894 /* 3895 * Some PHYs react badly if SStatus is pounded 3896 * immediately after resuming. Delay 200ms before 3897 * debouncing. 3898 */ 3899 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY)) 3900 ata_msleep(link->ap, 200); 3901 3902 /* is SControl restored correctly? */ 3903 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3904 return rc; 3905 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3906 3907 if ((scontrol & 0xf0f) != 0x300) { 3908 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3909 scontrol); 3910 return 0; 3911 } 3912 3913 if (tries < ATA_LINK_RESUME_TRIES) 3914 ata_link_warn(link, "link resume succeeded after %d retries\n", 3915 ATA_LINK_RESUME_TRIES - tries); 3916 3917 if ((rc = sata_link_debounce(link, params, deadline))) 3918 return rc; 3919 3920 /* clear SError, some PHYs require this even for SRST to work */ 3921 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3922 rc = sata_scr_write(link, SCR_ERROR, serror); 3923 3924 return rc != -EINVAL ? rc : 0; 3925 } 3926 3927 /** 3928 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3929 * @link: ATA link to manipulate SControl for 3930 * @policy: LPM policy to configure 3931 * @spm_wakeup: initiate LPM transition to active state 3932 * 3933 * Manipulate the IPM field of the SControl register of @link 3934 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3935 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3936 * the link. This function also clears PHYRDY_CHG before 3937 * returning. 3938 * 3939 * LOCKING: 3940 * EH context. 3941 * 3942 * RETURNS: 3943 * 0 on success, -errno otherwise. 3944 */ 3945 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3946 bool spm_wakeup) 3947 { 3948 struct ata_eh_context *ehc = &link->eh_context; 3949 bool woken_up = false; 3950 u32 scontrol; 3951 int rc; 3952 3953 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3954 if (rc) 3955 return rc; 3956 3957 switch (policy) { 3958 case ATA_LPM_MAX_POWER: 3959 /* disable all LPM transitions */ 3960 scontrol |= (0x7 << 8); 3961 /* initiate transition to active state */ 3962 if (spm_wakeup) { 3963 scontrol |= (0x4 << 12); 3964 woken_up = true; 3965 } 3966 break; 3967 case ATA_LPM_MED_POWER: 3968 /* allow LPM to PARTIAL */ 3969 scontrol &= ~(0x1 << 8); 3970 scontrol |= (0x6 << 8); 3971 break; 3972 case ATA_LPM_MED_POWER_WITH_DIPM: 3973 case ATA_LPM_MIN_POWER_WITH_PARTIAL: 3974 case ATA_LPM_MIN_POWER: 3975 if (ata_link_nr_enabled(link) > 0) 3976 /* no restrictions on LPM transitions */ 3977 scontrol &= ~(0x7 << 8); 3978 else { 3979 /* empty port, power off */ 3980 scontrol &= ~0xf; 3981 scontrol |= (0x1 << 2); 3982 } 3983 break; 3984 default: 3985 WARN_ON(1); 3986 } 3987 3988 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3989 if (rc) 3990 return rc; 3991 3992 /* give the link time to transit out of LPM state */ 3993 if (woken_up) 3994 msleep(10); 3995 3996 /* clear PHYRDY_CHG from SError */ 3997 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3998 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3999 } 4000 4001 /** 4002 * ata_std_prereset - prepare for reset 4003 * @link: ATA link to be reset 4004 * @deadline: deadline jiffies for the operation 4005 * 4006 * @link is about to be reset. Initialize it. Failure from 4007 * prereset makes libata abort whole reset sequence and give up 4008 * that port, so prereset should be best-effort. It does its 4009 * best to prepare for reset sequence but if things go wrong, it 4010 * should just whine, not fail. 4011 * 4012 * LOCKING: 4013 * Kernel thread context (may sleep) 4014 * 4015 * RETURNS: 4016 * 0 on success, -errno otherwise. 4017 */ 4018 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 4019 { 4020 struct ata_port *ap = link->ap; 4021 struct ata_eh_context *ehc = &link->eh_context; 4022 const unsigned long *timing = sata_ehc_deb_timing(ehc); 4023 int rc; 4024 4025 /* if we're about to do hardreset, nothing more to do */ 4026 if (ehc->i.action & ATA_EH_HARDRESET) 4027 return 0; 4028 4029 /* if SATA, resume link */ 4030 if (ap->flags & ATA_FLAG_SATA) { 4031 rc = sata_link_resume(link, timing, deadline); 4032 /* whine about phy resume failure but proceed */ 4033 if (rc && rc != -EOPNOTSUPP) 4034 ata_link_warn(link, 4035 "failed to resume link for reset (errno=%d)\n", 4036 rc); 4037 } 4038 4039 /* no point in trying softreset on offline link */ 4040 if (ata_phys_link_offline(link)) 4041 ehc->i.action &= ~ATA_EH_SOFTRESET; 4042 4043 return 0; 4044 } 4045 4046 /** 4047 * sata_link_hardreset - reset link via SATA phy reset 4048 * @link: link to reset 4049 * @timing: timing parameters { interval, duration, timeout } in msec 4050 * @deadline: deadline jiffies for the operation 4051 * @online: optional out parameter indicating link onlineness 4052 * @check_ready: optional callback to check link readiness 4053 * 4054 * SATA phy-reset @link using DET bits of SControl register. 4055 * After hardreset, link readiness is waited upon using 4056 * ata_wait_ready() if @check_ready is specified. LLDs are 4057 * allowed to not specify @check_ready and wait itself after this 4058 * function returns. Device classification is LLD's 4059 * responsibility. 4060 * 4061 * *@online is set to one iff reset succeeded and @link is online 4062 * after reset. 4063 * 4064 * LOCKING: 4065 * Kernel thread context (may sleep) 4066 * 4067 * RETURNS: 4068 * 0 on success, -errno otherwise. 4069 */ 4070 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 4071 unsigned long deadline, 4072 bool *online, int (*check_ready)(struct ata_link *)) 4073 { 4074 u32 scontrol; 4075 int rc; 4076 4077 DPRINTK("ENTER\n"); 4078 4079 if (online) 4080 *online = false; 4081 4082 if (sata_set_spd_needed(link)) { 4083 /* SATA spec says nothing about how to reconfigure 4084 * spd. To be on the safe side, turn off phy during 4085 * reconfiguration. This works for at least ICH7 AHCI 4086 * and Sil3124. 4087 */ 4088 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 4089 goto out; 4090 4091 scontrol = (scontrol & 0x0f0) | 0x304; 4092 4093 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 4094 goto out; 4095 4096 sata_set_spd(link); 4097 } 4098 4099 /* issue phy wake/reset */ 4100 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 4101 goto out; 4102 4103 scontrol = (scontrol & 0x0f0) | 0x301; 4104 4105 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 4106 goto out; 4107 4108 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 4109 * 10.4.2 says at least 1 ms. 4110 */ 4111 ata_msleep(link->ap, 1); 4112 4113 /* bring link back */ 4114 rc = sata_link_resume(link, timing, deadline); 4115 if (rc) 4116 goto out; 4117 /* if link is offline nothing more to do */ 4118 if (ata_phys_link_offline(link)) 4119 goto out; 4120 4121 /* Link is online. From this point, -ENODEV too is an error. */ 4122 if (online) 4123 *online = true; 4124 4125 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 4126 /* If PMP is supported, we have to do follow-up SRST. 4127 * Some PMPs don't send D2H Reg FIS after hardreset if 4128 * the first port is empty. Wait only for 4129 * ATA_TMOUT_PMP_SRST_WAIT. 4130 */ 4131 if (check_ready) { 4132 unsigned long pmp_deadline; 4133 4134 pmp_deadline = ata_deadline(jiffies, 4135 ATA_TMOUT_PMP_SRST_WAIT); 4136 if (time_after(pmp_deadline, deadline)) 4137 pmp_deadline = deadline; 4138 ata_wait_ready(link, pmp_deadline, check_ready); 4139 } 4140 rc = -EAGAIN; 4141 goto out; 4142 } 4143 4144 rc = 0; 4145 if (check_ready) 4146 rc = ata_wait_ready(link, deadline, check_ready); 4147 out: 4148 if (rc && rc != -EAGAIN) { 4149 /* online is set iff link is online && reset succeeded */ 4150 if (online) 4151 *online = false; 4152 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 4153 } 4154 DPRINTK("EXIT, rc=%d\n", rc); 4155 return rc; 4156 } 4157 4158 /** 4159 * sata_std_hardreset - COMRESET w/o waiting or classification 4160 * @link: link to reset 4161 * @class: resulting class of attached device 4162 * @deadline: deadline jiffies for the operation 4163 * 4164 * Standard SATA COMRESET w/o waiting or classification. 4165 * 4166 * LOCKING: 4167 * Kernel thread context (may sleep) 4168 * 4169 * RETURNS: 4170 * 0 if link offline, -EAGAIN if link online, -errno on errors. 4171 */ 4172 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 4173 unsigned long deadline) 4174 { 4175 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 4176 bool online; 4177 int rc; 4178 4179 /* do hardreset */ 4180 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 4181 return online ? -EAGAIN : rc; 4182 } 4183 4184 /** 4185 * ata_std_postreset - standard postreset callback 4186 * @link: the target ata_link 4187 * @classes: classes of attached devices 4188 * 4189 * This function is invoked after a successful reset. Note that 4190 * the device might have been reset more than once using 4191 * different reset methods before postreset is invoked. 4192 * 4193 * LOCKING: 4194 * Kernel thread context (may sleep) 4195 */ 4196 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 4197 { 4198 u32 serror; 4199 4200 DPRINTK("ENTER\n"); 4201 4202 /* reset complete, clear SError */ 4203 if (!sata_scr_read(link, SCR_ERROR, &serror)) 4204 sata_scr_write(link, SCR_ERROR, serror); 4205 4206 /* print link status */ 4207 sata_print_link_status(link); 4208 4209 DPRINTK("EXIT\n"); 4210 } 4211 4212 /** 4213 * ata_dev_same_device - Determine whether new ID matches configured device 4214 * @dev: device to compare against 4215 * @new_class: class of the new device 4216 * @new_id: IDENTIFY page of the new device 4217 * 4218 * Compare @new_class and @new_id against @dev and determine 4219 * whether @dev is the device indicated by @new_class and 4220 * @new_id. 4221 * 4222 * LOCKING: 4223 * None. 4224 * 4225 * RETURNS: 4226 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 4227 */ 4228 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 4229 const u16 *new_id) 4230 { 4231 const u16 *old_id = dev->id; 4232 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 4233 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 4234 4235 if (dev->class != new_class) { 4236 ata_dev_info(dev, "class mismatch %d != %d\n", 4237 dev->class, new_class); 4238 return 0; 4239 } 4240 4241 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 4242 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 4243 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 4244 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 4245 4246 if (strcmp(model[0], model[1])) { 4247 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 4248 model[0], model[1]); 4249 return 0; 4250 } 4251 4252 if (strcmp(serial[0], serial[1])) { 4253 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 4254 serial[0], serial[1]); 4255 return 0; 4256 } 4257 4258 return 1; 4259 } 4260 4261 /** 4262 * ata_dev_reread_id - Re-read IDENTIFY data 4263 * @dev: target ATA device 4264 * @readid_flags: read ID flags 4265 * 4266 * Re-read IDENTIFY page and make sure @dev is still attached to 4267 * the port. 4268 * 4269 * LOCKING: 4270 * Kernel thread context (may sleep) 4271 * 4272 * RETURNS: 4273 * 0 on success, negative errno otherwise 4274 */ 4275 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 4276 { 4277 unsigned int class = dev->class; 4278 u16 *id = (void *)dev->link->ap->sector_buf; 4279 int rc; 4280 4281 /* read ID data */ 4282 rc = ata_dev_read_id(dev, &class, readid_flags, id); 4283 if (rc) 4284 return rc; 4285 4286 /* is the device still there? */ 4287 if (!ata_dev_same_device(dev, class, id)) 4288 return -ENODEV; 4289 4290 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4291 return 0; 4292 } 4293 4294 /** 4295 * ata_dev_revalidate - Revalidate ATA device 4296 * @dev: device to revalidate 4297 * @new_class: new class code 4298 * @readid_flags: read ID flags 4299 * 4300 * Re-read IDENTIFY page, make sure @dev is still attached to the 4301 * port and reconfigure it according to the new IDENTIFY page. 4302 * 4303 * LOCKING: 4304 * Kernel thread context (may sleep) 4305 * 4306 * RETURNS: 4307 * 0 on success, negative errno otherwise 4308 */ 4309 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4310 unsigned int readid_flags) 4311 { 4312 u64 n_sectors = dev->n_sectors; 4313 u64 n_native_sectors = dev->n_native_sectors; 4314 int rc; 4315 4316 if (!ata_dev_enabled(dev)) 4317 return -ENODEV; 4318 4319 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4320 if (ata_class_enabled(new_class) && 4321 new_class != ATA_DEV_ATA && 4322 new_class != ATA_DEV_ATAPI && 4323 new_class != ATA_DEV_ZAC && 4324 new_class != ATA_DEV_SEMB) { 4325 ata_dev_info(dev, "class mismatch %u != %u\n", 4326 dev->class, new_class); 4327 rc = -ENODEV; 4328 goto fail; 4329 } 4330 4331 /* re-read ID */ 4332 rc = ata_dev_reread_id(dev, readid_flags); 4333 if (rc) 4334 goto fail; 4335 4336 /* configure device according to the new ID */ 4337 rc = ata_dev_configure(dev); 4338 if (rc) 4339 goto fail; 4340 4341 /* verify n_sectors hasn't changed */ 4342 if (dev->class != ATA_DEV_ATA || !n_sectors || 4343 dev->n_sectors == n_sectors) 4344 return 0; 4345 4346 /* n_sectors has changed */ 4347 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4348 (unsigned long long)n_sectors, 4349 (unsigned long long)dev->n_sectors); 4350 4351 /* 4352 * Something could have caused HPA to be unlocked 4353 * involuntarily. If n_native_sectors hasn't changed and the 4354 * new size matches it, keep the device. 4355 */ 4356 if (dev->n_native_sectors == n_native_sectors && 4357 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4358 ata_dev_warn(dev, 4359 "new n_sectors matches native, probably " 4360 "late HPA unlock, n_sectors updated\n"); 4361 /* use the larger n_sectors */ 4362 return 0; 4363 } 4364 4365 /* 4366 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4367 * unlocking HPA in those cases. 4368 * 4369 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4370 */ 4371 if (dev->n_native_sectors == n_native_sectors && 4372 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4373 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4374 ata_dev_warn(dev, 4375 "old n_sectors matches native, probably " 4376 "late HPA lock, will try to unlock HPA\n"); 4377 /* try unlocking HPA */ 4378 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4379 rc = -EIO; 4380 } else 4381 rc = -ENODEV; 4382 4383 /* restore original n_[native_]sectors and fail */ 4384 dev->n_native_sectors = n_native_sectors; 4385 dev->n_sectors = n_sectors; 4386 fail: 4387 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4388 return rc; 4389 } 4390 4391 struct ata_blacklist_entry { 4392 const char *model_num; 4393 const char *model_rev; 4394 unsigned long horkage; 4395 }; 4396 4397 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4398 /* Devices with DMA related problems under Linux */ 4399 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4400 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4401 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4402 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4403 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4404 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4405 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4406 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4407 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4408 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4409 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4410 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4411 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4412 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4413 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4414 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4415 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4416 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4417 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4418 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4419 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4420 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4421 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4422 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4423 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4424 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4425 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4426 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4427 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4428 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 4429 /* Odd clown on sil3726/4726 PMPs */ 4430 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4431 4432 /* Weird ATAPI devices */ 4433 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4434 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4435 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4436 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4437 4438 /* 4439 * Causes silent data corruption with higher max sects. 4440 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 4441 */ 4442 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 4443 4444 /* 4445 * These devices time out with higher max sects. 4446 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 4447 */ 4448 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4449 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4450 4451 /* Devices we expect to fail diagnostics */ 4452 4453 /* Devices where NCQ should be avoided */ 4454 /* NCQ is slow */ 4455 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4456 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4457 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4458 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4459 /* NCQ is broken */ 4460 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4461 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4462 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4463 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4464 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4465 4466 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4467 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4468 ATA_HORKAGE_FIRMWARE_WARN }, 4469 4470 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4471 ATA_HORKAGE_FIRMWARE_WARN }, 4472 4473 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4474 ATA_HORKAGE_FIRMWARE_WARN }, 4475 4476 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4477 ATA_HORKAGE_FIRMWARE_WARN }, 4478 4479 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */ 4480 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4481 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4482 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4483 4484 /* Blacklist entries taken from Silicon Image 3124/3132 4485 Windows driver .inf file - also several Linux problem reports */ 4486 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4487 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4488 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4489 4490 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4491 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4492 4493 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on 4494 SD7SN6S256G and SD8SN8U256G */ 4495 { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, }, 4496 4497 /* devices which puke on READ_NATIVE_MAX */ 4498 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4499 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4500 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4501 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4502 4503 /* this one allows HPA unlocking but fails IOs on the area */ 4504 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4505 4506 /* Devices which report 1 sector over size HPA */ 4507 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4508 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4509 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4510 4511 /* Devices which get the IVB wrong */ 4512 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4513 /* Maybe we should just blacklist TSSTcorp... */ 4514 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4515 4516 /* Devices that do not need bridging limits applied */ 4517 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4518 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4519 4520 /* Devices which aren't very happy with higher link speeds */ 4521 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4522 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4523 4524 /* 4525 * Devices which choke on SETXFER. Applies only if both the 4526 * device and controller are SATA. 4527 */ 4528 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4529 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4530 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4531 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4532 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4533 4534 /* Crucial BX100 SSD 500GB has broken LPM support */ 4535 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 4536 4537 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4538 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4539 ATA_HORKAGE_ZERO_AFTER_TRIM | 4540 ATA_HORKAGE_NOLPM, }, 4541 /* 512GB MX100 with newer firmware has only LPM issues */ 4542 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 4543 ATA_HORKAGE_NOLPM, }, 4544 4545 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4546 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4547 ATA_HORKAGE_ZERO_AFTER_TRIM | 4548 ATA_HORKAGE_NOLPM, }, 4549 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4550 ATA_HORKAGE_ZERO_AFTER_TRIM | 4551 ATA_HORKAGE_NOLPM, }, 4552 4553 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4554 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, }, 4555 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, }, 4556 { "SAMSUNG MZ7TD256HAFV-000L9", "DXT02L5Q", ATA_HORKAGE_NOLPM, }, 4557 4558 /* devices that don't properly handle queued TRIM commands */ 4559 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4560 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4561 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4562 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4563 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4564 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4565 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4566 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4567 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4568 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4569 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4570 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4571 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4572 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4573 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4574 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4575 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4576 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4577 4578 /* devices that don't properly handle TRIM commands */ 4579 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, 4580 4581 /* 4582 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4583 * (Return Zero After Trim) flags in the ATA Command Set are 4584 * unreliable in the sense that they only define what happens if 4585 * the device successfully executed the DSM TRIM command. TRIM 4586 * is only advisory, however, and the device is free to silently 4587 * ignore all or parts of the request. 4588 * 4589 * Whitelist drives that are known to reliably return zeroes 4590 * after TRIM. 4591 */ 4592 4593 /* 4594 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4595 * that model before whitelisting all other intel SSDs. 4596 */ 4597 { "INTEL*SSDSC2MH*", NULL, 0, }, 4598 4599 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4600 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4601 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4602 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4603 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4604 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4605 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4606 4607 /* 4608 * Some WD SATA-I drives spin up and down erratically when the link 4609 * is put into the slumber mode. We don't have full list of the 4610 * affected devices. Disable LPM if the device matches one of the 4611 * known prefixes and is SATA-1. As a side effect LPM partial is 4612 * lost too. 4613 * 4614 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4615 */ 4616 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4617 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4618 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4619 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4620 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4621 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4622 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4623 4624 /* End Marker */ 4625 { } 4626 }; 4627 4628 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4629 { 4630 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4631 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4632 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4633 4634 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4635 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4636 4637 while (ad->model_num) { 4638 if (glob_match(ad->model_num, model_num)) { 4639 if (ad->model_rev == NULL) 4640 return ad->horkage; 4641 if (glob_match(ad->model_rev, model_rev)) 4642 return ad->horkage; 4643 } 4644 ad++; 4645 } 4646 return 0; 4647 } 4648 4649 static int ata_dma_blacklisted(const struct ata_device *dev) 4650 { 4651 /* We don't support polling DMA. 4652 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4653 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4654 */ 4655 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4656 (dev->flags & ATA_DFLAG_CDB_INTR)) 4657 return 1; 4658 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4659 } 4660 4661 /** 4662 * ata_is_40wire - check drive side detection 4663 * @dev: device 4664 * 4665 * Perform drive side detection decoding, allowing for device vendors 4666 * who can't follow the documentation. 4667 */ 4668 4669 static int ata_is_40wire(struct ata_device *dev) 4670 { 4671 if (dev->horkage & ATA_HORKAGE_IVB) 4672 return ata_drive_40wire_relaxed(dev->id); 4673 return ata_drive_40wire(dev->id); 4674 } 4675 4676 /** 4677 * cable_is_40wire - 40/80/SATA decider 4678 * @ap: port to consider 4679 * 4680 * This function encapsulates the policy for speed management 4681 * in one place. At the moment we don't cache the result but 4682 * there is a good case for setting ap->cbl to the result when 4683 * we are called with unknown cables (and figuring out if it 4684 * impacts hotplug at all). 4685 * 4686 * Return 1 if the cable appears to be 40 wire. 4687 */ 4688 4689 static int cable_is_40wire(struct ata_port *ap) 4690 { 4691 struct ata_link *link; 4692 struct ata_device *dev; 4693 4694 /* If the controller thinks we are 40 wire, we are. */ 4695 if (ap->cbl == ATA_CBL_PATA40) 4696 return 1; 4697 4698 /* If the controller thinks we are 80 wire, we are. */ 4699 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4700 return 0; 4701 4702 /* If the system is known to be 40 wire short cable (eg 4703 * laptop), then we allow 80 wire modes even if the drive 4704 * isn't sure. 4705 */ 4706 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4707 return 0; 4708 4709 /* If the controller doesn't know, we scan. 4710 * 4711 * Note: We look for all 40 wire detects at this point. Any 4712 * 80 wire detect is taken to be 80 wire cable because 4713 * - in many setups only the one drive (slave if present) will 4714 * give a valid detect 4715 * - if you have a non detect capable drive you don't want it 4716 * to colour the choice 4717 */ 4718 ata_for_each_link(link, ap, EDGE) { 4719 ata_for_each_dev(dev, link, ENABLED) { 4720 if (!ata_is_40wire(dev)) 4721 return 0; 4722 } 4723 } 4724 return 1; 4725 } 4726 4727 /** 4728 * ata_dev_xfermask - Compute supported xfermask of the given device 4729 * @dev: Device to compute xfermask for 4730 * 4731 * Compute supported xfermask of @dev and store it in 4732 * dev->*_mask. This function is responsible for applying all 4733 * known limits including host controller limits, device 4734 * blacklist, etc... 4735 * 4736 * LOCKING: 4737 * None. 4738 */ 4739 static void ata_dev_xfermask(struct ata_device *dev) 4740 { 4741 struct ata_link *link = dev->link; 4742 struct ata_port *ap = link->ap; 4743 struct ata_host *host = ap->host; 4744 unsigned long xfer_mask; 4745 4746 /* controller modes available */ 4747 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4748 ap->mwdma_mask, ap->udma_mask); 4749 4750 /* drive modes available */ 4751 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4752 dev->mwdma_mask, dev->udma_mask); 4753 xfer_mask &= ata_id_xfermask(dev->id); 4754 4755 /* 4756 * CFA Advanced TrueIDE timings are not allowed on a shared 4757 * cable 4758 */ 4759 if (ata_dev_pair(dev)) { 4760 /* No PIO5 or PIO6 */ 4761 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4762 /* No MWDMA3 or MWDMA 4 */ 4763 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4764 } 4765 4766 if (ata_dma_blacklisted(dev)) { 4767 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4768 ata_dev_warn(dev, 4769 "device is on DMA blacklist, disabling DMA\n"); 4770 } 4771 4772 if ((host->flags & ATA_HOST_SIMPLEX) && 4773 host->simplex_claimed && host->simplex_claimed != ap) { 4774 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4775 ata_dev_warn(dev, 4776 "simplex DMA is claimed by other device, disabling DMA\n"); 4777 } 4778 4779 if (ap->flags & ATA_FLAG_NO_IORDY) 4780 xfer_mask &= ata_pio_mask_no_iordy(dev); 4781 4782 if (ap->ops->mode_filter) 4783 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4784 4785 /* Apply cable rule here. Don't apply it early because when 4786 * we handle hot plug the cable type can itself change. 4787 * Check this last so that we know if the transfer rate was 4788 * solely limited by the cable. 4789 * Unknown or 80 wire cables reported host side are checked 4790 * drive side as well. Cases where we know a 40wire cable 4791 * is used safely for 80 are not checked here. 4792 */ 4793 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4794 /* UDMA/44 or higher would be available */ 4795 if (cable_is_40wire(ap)) { 4796 ata_dev_warn(dev, 4797 "limited to UDMA/33 due to 40-wire cable\n"); 4798 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4799 } 4800 4801 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4802 &dev->mwdma_mask, &dev->udma_mask); 4803 } 4804 4805 /** 4806 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4807 * @dev: Device to which command will be sent 4808 * 4809 * Issue SET FEATURES - XFER MODE command to device @dev 4810 * on port @ap. 4811 * 4812 * LOCKING: 4813 * PCI/etc. bus probe sem. 4814 * 4815 * RETURNS: 4816 * 0 on success, AC_ERR_* mask otherwise. 4817 */ 4818 4819 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4820 { 4821 struct ata_taskfile tf; 4822 unsigned int err_mask; 4823 4824 /* set up set-features taskfile */ 4825 DPRINTK("set features - xfer mode\n"); 4826 4827 /* Some controllers and ATAPI devices show flaky interrupt 4828 * behavior after setting xfer mode. Use polling instead. 4829 */ 4830 ata_tf_init(dev, &tf); 4831 tf.command = ATA_CMD_SET_FEATURES; 4832 tf.feature = SETFEATURES_XFER; 4833 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4834 tf.protocol = ATA_PROT_NODATA; 4835 /* If we are using IORDY we must send the mode setting command */ 4836 if (ata_pio_need_iordy(dev)) 4837 tf.nsect = dev->xfer_mode; 4838 /* If the device has IORDY and the controller does not - turn it off */ 4839 else if (ata_id_has_iordy(dev->id)) 4840 tf.nsect = 0x01; 4841 else /* In the ancient relic department - skip all of this */ 4842 return 0; 4843 4844 /* On some disks, this command causes spin-up, so we need longer timeout */ 4845 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4846 4847 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4848 return err_mask; 4849 } 4850 4851 /** 4852 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4853 * @dev: Device to which command will be sent 4854 * @enable: Whether to enable or disable the feature 4855 * @feature: The sector count represents the feature to set 4856 * 4857 * Issue SET FEATURES - SATA FEATURES command to device @dev 4858 * on port @ap with sector count 4859 * 4860 * LOCKING: 4861 * PCI/etc. bus probe sem. 4862 * 4863 * RETURNS: 4864 * 0 on success, AC_ERR_* mask otherwise. 4865 */ 4866 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4867 { 4868 struct ata_taskfile tf; 4869 unsigned int err_mask; 4870 unsigned long timeout = 0; 4871 4872 /* set up set-features taskfile */ 4873 DPRINTK("set features - SATA features\n"); 4874 4875 ata_tf_init(dev, &tf); 4876 tf.command = ATA_CMD_SET_FEATURES; 4877 tf.feature = enable; 4878 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4879 tf.protocol = ATA_PROT_NODATA; 4880 tf.nsect = feature; 4881 4882 if (enable == SETFEATURES_SPINUP) 4883 timeout = ata_probe_timeout ? 4884 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4885 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4886 4887 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4888 return err_mask; 4889 } 4890 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4891 4892 /** 4893 * ata_dev_init_params - Issue INIT DEV PARAMS command 4894 * @dev: Device to which command will be sent 4895 * @heads: Number of heads (taskfile parameter) 4896 * @sectors: Number of sectors (taskfile parameter) 4897 * 4898 * LOCKING: 4899 * Kernel thread context (may sleep) 4900 * 4901 * RETURNS: 4902 * 0 on success, AC_ERR_* mask otherwise. 4903 */ 4904 static unsigned int ata_dev_init_params(struct ata_device *dev, 4905 u16 heads, u16 sectors) 4906 { 4907 struct ata_taskfile tf; 4908 unsigned int err_mask; 4909 4910 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4911 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4912 return AC_ERR_INVALID; 4913 4914 /* set up init dev params taskfile */ 4915 DPRINTK("init dev params \n"); 4916 4917 ata_tf_init(dev, &tf); 4918 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4919 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4920 tf.protocol = ATA_PROT_NODATA; 4921 tf.nsect = sectors; 4922 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4923 4924 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4925 /* A clean abort indicates an original or just out of spec drive 4926 and we should continue as we issue the setup based on the 4927 drive reported working geometry */ 4928 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4929 err_mask = 0; 4930 4931 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4932 return err_mask; 4933 } 4934 4935 /** 4936 * atapi_check_dma - Check whether ATAPI DMA can be supported 4937 * @qc: Metadata associated with taskfile to check 4938 * 4939 * Allow low-level driver to filter ATA PACKET commands, returning 4940 * a status indicating whether or not it is OK to use DMA for the 4941 * supplied PACKET command. 4942 * 4943 * LOCKING: 4944 * spin_lock_irqsave(host lock) 4945 * 4946 * RETURNS: 0 when ATAPI DMA can be used 4947 * nonzero otherwise 4948 */ 4949 int atapi_check_dma(struct ata_queued_cmd *qc) 4950 { 4951 struct ata_port *ap = qc->ap; 4952 4953 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4954 * few ATAPI devices choke on such DMA requests. 4955 */ 4956 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4957 unlikely(qc->nbytes & 15)) 4958 return 1; 4959 4960 if (ap->ops->check_atapi_dma) 4961 return ap->ops->check_atapi_dma(qc); 4962 4963 return 0; 4964 } 4965 4966 /** 4967 * ata_std_qc_defer - Check whether a qc needs to be deferred 4968 * @qc: ATA command in question 4969 * 4970 * Non-NCQ commands cannot run with any other command, NCQ or 4971 * not. As upper layer only knows the queue depth, we are 4972 * responsible for maintaining exclusion. This function checks 4973 * whether a new command @qc can be issued. 4974 * 4975 * LOCKING: 4976 * spin_lock_irqsave(host lock) 4977 * 4978 * RETURNS: 4979 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4980 */ 4981 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4982 { 4983 struct ata_link *link = qc->dev->link; 4984 4985 if (ata_is_ncq(qc->tf.protocol)) { 4986 if (!ata_tag_valid(link->active_tag)) 4987 return 0; 4988 } else { 4989 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4990 return 0; 4991 } 4992 4993 return ATA_DEFER_LINK; 4994 } 4995 4996 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4997 4998 /** 4999 * ata_sg_init - Associate command with scatter-gather table. 5000 * @qc: Command to be associated 5001 * @sg: Scatter-gather table. 5002 * @n_elem: Number of elements in s/g table. 5003 * 5004 * Initialize the data-related elements of queued_cmd @qc 5005 * to point to a scatter-gather table @sg, containing @n_elem 5006 * elements. 5007 * 5008 * LOCKING: 5009 * spin_lock_irqsave(host lock) 5010 */ 5011 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 5012 unsigned int n_elem) 5013 { 5014 qc->sg = sg; 5015 qc->n_elem = n_elem; 5016 qc->cursg = qc->sg; 5017 } 5018 5019 #ifdef CONFIG_HAS_DMA 5020 5021 /** 5022 * ata_sg_clean - Unmap DMA memory associated with command 5023 * @qc: Command containing DMA memory to be released 5024 * 5025 * Unmap all mapped DMA memory associated with this command. 5026 * 5027 * LOCKING: 5028 * spin_lock_irqsave(host lock) 5029 */ 5030 static void ata_sg_clean(struct ata_queued_cmd *qc) 5031 { 5032 struct ata_port *ap = qc->ap; 5033 struct scatterlist *sg = qc->sg; 5034 int dir = qc->dma_dir; 5035 5036 WARN_ON_ONCE(sg == NULL); 5037 5038 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 5039 5040 if (qc->n_elem) 5041 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 5042 5043 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5044 qc->sg = NULL; 5045 } 5046 5047 /** 5048 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 5049 * @qc: Command with scatter-gather table to be mapped. 5050 * 5051 * DMA-map the scatter-gather table associated with queued_cmd @qc. 5052 * 5053 * LOCKING: 5054 * spin_lock_irqsave(host lock) 5055 * 5056 * RETURNS: 5057 * Zero on success, negative on error. 5058 * 5059 */ 5060 static int ata_sg_setup(struct ata_queued_cmd *qc) 5061 { 5062 struct ata_port *ap = qc->ap; 5063 unsigned int n_elem; 5064 5065 VPRINTK("ENTER, ata%u\n", ap->print_id); 5066 5067 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 5068 if (n_elem < 1) 5069 return -1; 5070 5071 VPRINTK("%d sg elements mapped\n", n_elem); 5072 qc->orig_n_elem = qc->n_elem; 5073 qc->n_elem = n_elem; 5074 qc->flags |= ATA_QCFLAG_DMAMAP; 5075 5076 return 0; 5077 } 5078 5079 #else /* !CONFIG_HAS_DMA */ 5080 5081 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 5082 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 5083 5084 #endif /* !CONFIG_HAS_DMA */ 5085 5086 /** 5087 * swap_buf_le16 - swap halves of 16-bit words in place 5088 * @buf: Buffer to swap 5089 * @buf_words: Number of 16-bit words in buffer. 5090 * 5091 * Swap halves of 16-bit words if needed to convert from 5092 * little-endian byte order to native cpu byte order, or 5093 * vice-versa. 5094 * 5095 * LOCKING: 5096 * Inherited from caller. 5097 */ 5098 void swap_buf_le16(u16 *buf, unsigned int buf_words) 5099 { 5100 #ifdef __BIG_ENDIAN 5101 unsigned int i; 5102 5103 for (i = 0; i < buf_words; i++) 5104 buf[i] = le16_to_cpu(buf[i]); 5105 #endif /* __BIG_ENDIAN */ 5106 } 5107 5108 /** 5109 * ata_qc_new_init - Request an available ATA command, and initialize it 5110 * @dev: Device from whom we request an available command structure 5111 * @tag: tag 5112 * 5113 * LOCKING: 5114 * None. 5115 */ 5116 5117 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 5118 { 5119 struct ata_port *ap = dev->link->ap; 5120 struct ata_queued_cmd *qc; 5121 5122 /* no command while frozen */ 5123 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 5124 return NULL; 5125 5126 /* libsas case */ 5127 if (ap->flags & ATA_FLAG_SAS_HOST) { 5128 tag = ata_sas_allocate_tag(ap); 5129 if (tag < 0) 5130 return NULL; 5131 } 5132 5133 qc = __ata_qc_from_tag(ap, tag); 5134 qc->tag = qc->hw_tag = tag; 5135 qc->scsicmd = NULL; 5136 qc->ap = ap; 5137 qc->dev = dev; 5138 5139 ata_qc_reinit(qc); 5140 5141 return qc; 5142 } 5143 5144 /** 5145 * ata_qc_free - free unused ata_queued_cmd 5146 * @qc: Command to complete 5147 * 5148 * Designed to free unused ata_queued_cmd object 5149 * in case something prevents using it. 5150 * 5151 * LOCKING: 5152 * spin_lock_irqsave(host lock) 5153 */ 5154 void ata_qc_free(struct ata_queued_cmd *qc) 5155 { 5156 struct ata_port *ap; 5157 unsigned int tag; 5158 5159 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5160 ap = qc->ap; 5161 5162 qc->flags = 0; 5163 tag = qc->tag; 5164 if (ata_tag_valid(tag)) { 5165 qc->tag = ATA_TAG_POISON; 5166 if (ap->flags & ATA_FLAG_SAS_HOST) 5167 ata_sas_free_tag(tag, ap); 5168 } 5169 } 5170 5171 void __ata_qc_complete(struct ata_queued_cmd *qc) 5172 { 5173 struct ata_port *ap; 5174 struct ata_link *link; 5175 5176 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5177 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 5178 ap = qc->ap; 5179 link = qc->dev->link; 5180 5181 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 5182 ata_sg_clean(qc); 5183 5184 /* command should be marked inactive atomically with qc completion */ 5185 if (ata_is_ncq(qc->tf.protocol)) { 5186 link->sactive &= ~(1 << qc->hw_tag); 5187 if (!link->sactive) 5188 ap->nr_active_links--; 5189 } else { 5190 link->active_tag = ATA_TAG_POISON; 5191 ap->nr_active_links--; 5192 } 5193 5194 /* clear exclusive status */ 5195 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 5196 ap->excl_link == link)) 5197 ap->excl_link = NULL; 5198 5199 /* atapi: mark qc as inactive to prevent the interrupt handler 5200 * from completing the command twice later, before the error handler 5201 * is called. (when rc != 0 and atapi request sense is needed) 5202 */ 5203 qc->flags &= ~ATA_QCFLAG_ACTIVE; 5204 ap->qc_active &= ~(1ULL << qc->tag); 5205 5206 /* call completion callback */ 5207 qc->complete_fn(qc); 5208 } 5209 5210 static void fill_result_tf(struct ata_queued_cmd *qc) 5211 { 5212 struct ata_port *ap = qc->ap; 5213 5214 qc->result_tf.flags = qc->tf.flags; 5215 ap->ops->qc_fill_rtf(qc); 5216 } 5217 5218 static void ata_verify_xfer(struct ata_queued_cmd *qc) 5219 { 5220 struct ata_device *dev = qc->dev; 5221 5222 if (!ata_is_data(qc->tf.protocol)) 5223 return; 5224 5225 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 5226 return; 5227 5228 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 5229 } 5230 5231 /** 5232 * ata_qc_complete - Complete an active ATA command 5233 * @qc: Command to complete 5234 * 5235 * Indicate to the mid and upper layers that an ATA command has 5236 * completed, with either an ok or not-ok status. 5237 * 5238 * Refrain from calling this function multiple times when 5239 * successfully completing multiple NCQ commands. 5240 * ata_qc_complete_multiple() should be used instead, which will 5241 * properly update IRQ expect state. 5242 * 5243 * LOCKING: 5244 * spin_lock_irqsave(host lock) 5245 */ 5246 void ata_qc_complete(struct ata_queued_cmd *qc) 5247 { 5248 struct ata_port *ap = qc->ap; 5249 5250 /* Trigger the LED (if available) */ 5251 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 5252 5253 /* XXX: New EH and old EH use different mechanisms to 5254 * synchronize EH with regular execution path. 5255 * 5256 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 5257 * Normal execution path is responsible for not accessing a 5258 * failed qc. libata core enforces the rule by returning NULL 5259 * from ata_qc_from_tag() for failed qcs. 5260 * 5261 * Old EH depends on ata_qc_complete() nullifying completion 5262 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 5263 * not synchronize with interrupt handler. Only PIO task is 5264 * taken care of. 5265 */ 5266 if (ap->ops->error_handler) { 5267 struct ata_device *dev = qc->dev; 5268 struct ata_eh_info *ehi = &dev->link->eh_info; 5269 5270 if (unlikely(qc->err_mask)) 5271 qc->flags |= ATA_QCFLAG_FAILED; 5272 5273 /* 5274 * Finish internal commands without any further processing 5275 * and always with the result TF filled. 5276 */ 5277 if (unlikely(ata_tag_internal(qc->tag))) { 5278 fill_result_tf(qc); 5279 trace_ata_qc_complete_internal(qc); 5280 __ata_qc_complete(qc); 5281 return; 5282 } 5283 5284 /* 5285 * Non-internal qc has failed. Fill the result TF and 5286 * summon EH. 5287 */ 5288 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 5289 fill_result_tf(qc); 5290 trace_ata_qc_complete_failed(qc); 5291 ata_qc_schedule_eh(qc); 5292 return; 5293 } 5294 5295 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 5296 5297 /* read result TF if requested */ 5298 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5299 fill_result_tf(qc); 5300 5301 trace_ata_qc_complete_done(qc); 5302 /* Some commands need post-processing after successful 5303 * completion. 5304 */ 5305 switch (qc->tf.command) { 5306 case ATA_CMD_SET_FEATURES: 5307 if (qc->tf.feature != SETFEATURES_WC_ON && 5308 qc->tf.feature != SETFEATURES_WC_OFF && 5309 qc->tf.feature != SETFEATURES_RA_ON && 5310 qc->tf.feature != SETFEATURES_RA_OFF) 5311 break; 5312 /* fall through */ 5313 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 5314 case ATA_CMD_SET_MULTI: /* multi_count changed */ 5315 /* revalidate device */ 5316 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 5317 ata_port_schedule_eh(ap); 5318 break; 5319 5320 case ATA_CMD_SLEEP: 5321 dev->flags |= ATA_DFLAG_SLEEPING; 5322 break; 5323 } 5324 5325 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 5326 ata_verify_xfer(qc); 5327 5328 __ata_qc_complete(qc); 5329 } else { 5330 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5331 return; 5332 5333 /* read result TF if failed or requested */ 5334 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5335 fill_result_tf(qc); 5336 5337 __ata_qc_complete(qc); 5338 } 5339 } 5340 5341 /** 5342 * ata_qc_complete_multiple - Complete multiple qcs successfully 5343 * @ap: port in question 5344 * @qc_active: new qc_active mask 5345 * 5346 * Complete in-flight commands. This functions is meant to be 5347 * called from low-level driver's interrupt routine to complete 5348 * requests normally. ap->qc_active and @qc_active is compared 5349 * and commands are completed accordingly. 5350 * 5351 * Always use this function when completing multiple NCQ commands 5352 * from IRQ handlers instead of calling ata_qc_complete() 5353 * multiple times to keep IRQ expect status properly in sync. 5354 * 5355 * LOCKING: 5356 * spin_lock_irqsave(host lock) 5357 * 5358 * RETURNS: 5359 * Number of completed commands on success, -errno otherwise. 5360 */ 5361 int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active) 5362 { 5363 u64 done_mask, ap_qc_active = ap->qc_active; 5364 int nr_done = 0; 5365 5366 /* 5367 * If the internal tag is set on ap->qc_active, then we care about 5368 * bit0 on the passed in qc_active mask. Move that bit up to match 5369 * the internal tag. 5370 */ 5371 if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) { 5372 qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL; 5373 qc_active ^= qc_active & 0x01; 5374 } 5375 5376 done_mask = ap_qc_active ^ qc_active; 5377 5378 if (unlikely(done_mask & qc_active)) { 5379 ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n", 5380 ap->qc_active, qc_active); 5381 return -EINVAL; 5382 } 5383 5384 while (done_mask) { 5385 struct ata_queued_cmd *qc; 5386 unsigned int tag = __ffs64(done_mask); 5387 5388 qc = ata_qc_from_tag(ap, tag); 5389 if (qc) { 5390 ata_qc_complete(qc); 5391 nr_done++; 5392 } 5393 done_mask &= ~(1ULL << tag); 5394 } 5395 5396 return nr_done; 5397 } 5398 5399 /** 5400 * ata_qc_issue - issue taskfile to device 5401 * @qc: command to issue to device 5402 * 5403 * Prepare an ATA command to submission to device. 5404 * This includes mapping the data into a DMA-able 5405 * area, filling in the S/G table, and finally 5406 * writing the taskfile to hardware, starting the command. 5407 * 5408 * LOCKING: 5409 * spin_lock_irqsave(host lock) 5410 */ 5411 void ata_qc_issue(struct ata_queued_cmd *qc) 5412 { 5413 struct ata_port *ap = qc->ap; 5414 struct ata_link *link = qc->dev->link; 5415 u8 prot = qc->tf.protocol; 5416 5417 /* Make sure only one non-NCQ command is outstanding. The 5418 * check is skipped for old EH because it reuses active qc to 5419 * request ATAPI sense. 5420 */ 5421 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5422 5423 if (ata_is_ncq(prot)) { 5424 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 5425 5426 if (!link->sactive) 5427 ap->nr_active_links++; 5428 link->sactive |= 1 << qc->hw_tag; 5429 } else { 5430 WARN_ON_ONCE(link->sactive); 5431 5432 ap->nr_active_links++; 5433 link->active_tag = qc->tag; 5434 } 5435 5436 qc->flags |= ATA_QCFLAG_ACTIVE; 5437 ap->qc_active |= 1ULL << qc->tag; 5438 5439 /* 5440 * We guarantee to LLDs that they will have at least one 5441 * non-zero sg if the command is a data command. 5442 */ 5443 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 5444 goto sys_err; 5445 5446 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5447 (ap->flags & ATA_FLAG_PIO_DMA))) 5448 if (ata_sg_setup(qc)) 5449 goto sys_err; 5450 5451 /* if device is sleeping, schedule reset and abort the link */ 5452 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5453 link->eh_info.action |= ATA_EH_RESET; 5454 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5455 ata_link_abort(link); 5456 return; 5457 } 5458 5459 ap->ops->qc_prep(qc); 5460 trace_ata_qc_issue(qc); 5461 qc->err_mask |= ap->ops->qc_issue(qc); 5462 if (unlikely(qc->err_mask)) 5463 goto err; 5464 return; 5465 5466 sys_err: 5467 qc->err_mask |= AC_ERR_SYSTEM; 5468 err: 5469 ata_qc_complete(qc); 5470 } 5471 5472 /** 5473 * sata_scr_valid - test whether SCRs are accessible 5474 * @link: ATA link to test SCR accessibility for 5475 * 5476 * Test whether SCRs are accessible for @link. 5477 * 5478 * LOCKING: 5479 * None. 5480 * 5481 * RETURNS: 5482 * 1 if SCRs are accessible, 0 otherwise. 5483 */ 5484 int sata_scr_valid(struct ata_link *link) 5485 { 5486 struct ata_port *ap = link->ap; 5487 5488 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5489 } 5490 5491 /** 5492 * sata_scr_read - read SCR register of the specified port 5493 * @link: ATA link to read SCR for 5494 * @reg: SCR to read 5495 * @val: Place to store read value 5496 * 5497 * Read SCR register @reg of @link into *@val. This function is 5498 * guaranteed to succeed if @link is ap->link, the cable type of 5499 * the port is SATA and the port implements ->scr_read. 5500 * 5501 * LOCKING: 5502 * None if @link is ap->link. Kernel thread context otherwise. 5503 * 5504 * RETURNS: 5505 * 0 on success, negative errno on failure. 5506 */ 5507 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5508 { 5509 if (ata_is_host_link(link)) { 5510 if (sata_scr_valid(link)) 5511 return link->ap->ops->scr_read(link, reg, val); 5512 return -EOPNOTSUPP; 5513 } 5514 5515 return sata_pmp_scr_read(link, reg, val); 5516 } 5517 5518 /** 5519 * sata_scr_write - write SCR register of the specified port 5520 * @link: ATA link to write SCR for 5521 * @reg: SCR to write 5522 * @val: value to write 5523 * 5524 * Write @val to SCR register @reg of @link. This function is 5525 * guaranteed to succeed if @link is ap->link, the cable type of 5526 * the port is SATA and the port implements ->scr_read. 5527 * 5528 * LOCKING: 5529 * None if @link is ap->link. Kernel thread context otherwise. 5530 * 5531 * RETURNS: 5532 * 0 on success, negative errno on failure. 5533 */ 5534 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5535 { 5536 if (ata_is_host_link(link)) { 5537 if (sata_scr_valid(link)) 5538 return link->ap->ops->scr_write(link, reg, val); 5539 return -EOPNOTSUPP; 5540 } 5541 5542 return sata_pmp_scr_write(link, reg, val); 5543 } 5544 5545 /** 5546 * sata_scr_write_flush - write SCR register of the specified port and flush 5547 * @link: ATA link to write SCR for 5548 * @reg: SCR to write 5549 * @val: value to write 5550 * 5551 * This function is identical to sata_scr_write() except that this 5552 * function performs flush after writing to the register. 5553 * 5554 * LOCKING: 5555 * None if @link is ap->link. Kernel thread context otherwise. 5556 * 5557 * RETURNS: 5558 * 0 on success, negative errno on failure. 5559 */ 5560 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5561 { 5562 if (ata_is_host_link(link)) { 5563 int rc; 5564 5565 if (sata_scr_valid(link)) { 5566 rc = link->ap->ops->scr_write(link, reg, val); 5567 if (rc == 0) 5568 rc = link->ap->ops->scr_read(link, reg, &val); 5569 return rc; 5570 } 5571 return -EOPNOTSUPP; 5572 } 5573 5574 return sata_pmp_scr_write(link, reg, val); 5575 } 5576 5577 /** 5578 * ata_phys_link_online - test whether the given link is online 5579 * @link: ATA link to test 5580 * 5581 * Test whether @link is online. Note that this function returns 5582 * 0 if online status of @link cannot be obtained, so 5583 * ata_link_online(link) != !ata_link_offline(link). 5584 * 5585 * LOCKING: 5586 * None. 5587 * 5588 * RETURNS: 5589 * True if the port online status is available and online. 5590 */ 5591 bool ata_phys_link_online(struct ata_link *link) 5592 { 5593 u32 sstatus; 5594 5595 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5596 ata_sstatus_online(sstatus)) 5597 return true; 5598 return false; 5599 } 5600 5601 /** 5602 * ata_phys_link_offline - test whether the given link is offline 5603 * @link: ATA link to test 5604 * 5605 * Test whether @link is offline. Note that this function 5606 * returns 0 if offline status of @link cannot be obtained, so 5607 * ata_link_online(link) != !ata_link_offline(link). 5608 * 5609 * LOCKING: 5610 * None. 5611 * 5612 * RETURNS: 5613 * True if the port offline status is available and offline. 5614 */ 5615 bool ata_phys_link_offline(struct ata_link *link) 5616 { 5617 u32 sstatus; 5618 5619 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5620 !ata_sstatus_online(sstatus)) 5621 return true; 5622 return false; 5623 } 5624 5625 /** 5626 * ata_link_online - test whether the given link is online 5627 * @link: ATA link to test 5628 * 5629 * Test whether @link is online. This is identical to 5630 * ata_phys_link_online() when there's no slave link. When 5631 * there's a slave link, this function should only be called on 5632 * the master link and will return true if any of M/S links is 5633 * online. 5634 * 5635 * LOCKING: 5636 * None. 5637 * 5638 * RETURNS: 5639 * True if the port online status is available and online. 5640 */ 5641 bool ata_link_online(struct ata_link *link) 5642 { 5643 struct ata_link *slave = link->ap->slave_link; 5644 5645 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5646 5647 return ata_phys_link_online(link) || 5648 (slave && ata_phys_link_online(slave)); 5649 } 5650 5651 /** 5652 * ata_link_offline - test whether the given link is offline 5653 * @link: ATA link to test 5654 * 5655 * Test whether @link is offline. This is identical to 5656 * ata_phys_link_offline() when there's no slave link. When 5657 * there's a slave link, this function should only be called on 5658 * the master link and will return true if both M/S links are 5659 * offline. 5660 * 5661 * LOCKING: 5662 * None. 5663 * 5664 * RETURNS: 5665 * True if the port offline status is available and offline. 5666 */ 5667 bool ata_link_offline(struct ata_link *link) 5668 { 5669 struct ata_link *slave = link->ap->slave_link; 5670 5671 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5672 5673 return ata_phys_link_offline(link) && 5674 (!slave || ata_phys_link_offline(slave)); 5675 } 5676 5677 #ifdef CONFIG_PM 5678 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5679 unsigned int action, unsigned int ehi_flags, 5680 bool async) 5681 { 5682 struct ata_link *link; 5683 unsigned long flags; 5684 5685 /* Previous resume operation might still be in 5686 * progress. Wait for PM_PENDING to clear. 5687 */ 5688 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5689 ata_port_wait_eh(ap); 5690 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5691 } 5692 5693 /* request PM ops to EH */ 5694 spin_lock_irqsave(ap->lock, flags); 5695 5696 ap->pm_mesg = mesg; 5697 ap->pflags |= ATA_PFLAG_PM_PENDING; 5698 ata_for_each_link(link, ap, HOST_FIRST) { 5699 link->eh_info.action |= action; 5700 link->eh_info.flags |= ehi_flags; 5701 } 5702 5703 ata_port_schedule_eh(ap); 5704 5705 spin_unlock_irqrestore(ap->lock, flags); 5706 5707 if (!async) { 5708 ata_port_wait_eh(ap); 5709 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5710 } 5711 } 5712 5713 /* 5714 * On some hardware, device fails to respond after spun down for suspend. As 5715 * the device won't be used before being resumed, we don't need to touch the 5716 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5717 * 5718 * http://thread.gmane.org/gmane.linux.ide/46764 5719 */ 5720 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5721 | ATA_EHI_NO_AUTOPSY 5722 | ATA_EHI_NO_RECOVERY; 5723 5724 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5725 { 5726 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5727 } 5728 5729 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5730 { 5731 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5732 } 5733 5734 static int ata_port_pm_suspend(struct device *dev) 5735 { 5736 struct ata_port *ap = to_ata_port(dev); 5737 5738 if (pm_runtime_suspended(dev)) 5739 return 0; 5740 5741 ata_port_suspend(ap, PMSG_SUSPEND); 5742 return 0; 5743 } 5744 5745 static int ata_port_pm_freeze(struct device *dev) 5746 { 5747 struct ata_port *ap = to_ata_port(dev); 5748 5749 if (pm_runtime_suspended(dev)) 5750 return 0; 5751 5752 ata_port_suspend(ap, PMSG_FREEZE); 5753 return 0; 5754 } 5755 5756 static int ata_port_pm_poweroff(struct device *dev) 5757 { 5758 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5759 return 0; 5760 } 5761 5762 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5763 | ATA_EHI_QUIET; 5764 5765 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5766 { 5767 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5768 } 5769 5770 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5771 { 5772 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5773 } 5774 5775 static int ata_port_pm_resume(struct device *dev) 5776 { 5777 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5778 pm_runtime_disable(dev); 5779 pm_runtime_set_active(dev); 5780 pm_runtime_enable(dev); 5781 return 0; 5782 } 5783 5784 /* 5785 * For ODDs, the upper layer will poll for media change every few seconds, 5786 * which will make it enter and leave suspend state every few seconds. And 5787 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5788 * is very little and the ODD may malfunction after constantly being reset. 5789 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5790 * ODD is attached to the port. 5791 */ 5792 static int ata_port_runtime_idle(struct device *dev) 5793 { 5794 struct ata_port *ap = to_ata_port(dev); 5795 struct ata_link *link; 5796 struct ata_device *adev; 5797 5798 ata_for_each_link(link, ap, HOST_FIRST) { 5799 ata_for_each_dev(adev, link, ENABLED) 5800 if (adev->class == ATA_DEV_ATAPI && 5801 !zpodd_dev_enabled(adev)) 5802 return -EBUSY; 5803 } 5804 5805 return 0; 5806 } 5807 5808 static int ata_port_runtime_suspend(struct device *dev) 5809 { 5810 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5811 return 0; 5812 } 5813 5814 static int ata_port_runtime_resume(struct device *dev) 5815 { 5816 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5817 return 0; 5818 } 5819 5820 static const struct dev_pm_ops ata_port_pm_ops = { 5821 .suspend = ata_port_pm_suspend, 5822 .resume = ata_port_pm_resume, 5823 .freeze = ata_port_pm_freeze, 5824 .thaw = ata_port_pm_resume, 5825 .poweroff = ata_port_pm_poweroff, 5826 .restore = ata_port_pm_resume, 5827 5828 .runtime_suspend = ata_port_runtime_suspend, 5829 .runtime_resume = ata_port_runtime_resume, 5830 .runtime_idle = ata_port_runtime_idle, 5831 }; 5832 5833 /* sas ports don't participate in pm runtime management of ata_ports, 5834 * and need to resume ata devices at the domain level, not the per-port 5835 * level. sas suspend/resume is async to allow parallel port recovery 5836 * since sas has multiple ata_port instances per Scsi_Host. 5837 */ 5838 void ata_sas_port_suspend(struct ata_port *ap) 5839 { 5840 ata_port_suspend_async(ap, PMSG_SUSPEND); 5841 } 5842 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5843 5844 void ata_sas_port_resume(struct ata_port *ap) 5845 { 5846 ata_port_resume_async(ap, PMSG_RESUME); 5847 } 5848 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5849 5850 /** 5851 * ata_host_suspend - suspend host 5852 * @host: host to suspend 5853 * @mesg: PM message 5854 * 5855 * Suspend @host. Actual operation is performed by port suspend. 5856 */ 5857 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5858 { 5859 host->dev->power.power_state = mesg; 5860 return 0; 5861 } 5862 5863 /** 5864 * ata_host_resume - resume host 5865 * @host: host to resume 5866 * 5867 * Resume @host. Actual operation is performed by port resume. 5868 */ 5869 void ata_host_resume(struct ata_host *host) 5870 { 5871 host->dev->power.power_state = PMSG_ON; 5872 } 5873 #endif 5874 5875 const struct device_type ata_port_type = { 5876 .name = "ata_port", 5877 #ifdef CONFIG_PM 5878 .pm = &ata_port_pm_ops, 5879 #endif 5880 }; 5881 5882 /** 5883 * ata_dev_init - Initialize an ata_device structure 5884 * @dev: Device structure to initialize 5885 * 5886 * Initialize @dev in preparation for probing. 5887 * 5888 * LOCKING: 5889 * Inherited from caller. 5890 */ 5891 void ata_dev_init(struct ata_device *dev) 5892 { 5893 struct ata_link *link = ata_dev_phys_link(dev); 5894 struct ata_port *ap = link->ap; 5895 unsigned long flags; 5896 5897 /* SATA spd limit is bound to the attached device, reset together */ 5898 link->sata_spd_limit = link->hw_sata_spd_limit; 5899 link->sata_spd = 0; 5900 5901 /* High bits of dev->flags are used to record warm plug 5902 * requests which occur asynchronously. Synchronize using 5903 * host lock. 5904 */ 5905 spin_lock_irqsave(ap->lock, flags); 5906 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5907 dev->horkage = 0; 5908 spin_unlock_irqrestore(ap->lock, flags); 5909 5910 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5911 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5912 dev->pio_mask = UINT_MAX; 5913 dev->mwdma_mask = UINT_MAX; 5914 dev->udma_mask = UINT_MAX; 5915 } 5916 5917 /** 5918 * ata_link_init - Initialize an ata_link structure 5919 * @ap: ATA port link is attached to 5920 * @link: Link structure to initialize 5921 * @pmp: Port multiplier port number 5922 * 5923 * Initialize @link. 5924 * 5925 * LOCKING: 5926 * Kernel thread context (may sleep) 5927 */ 5928 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5929 { 5930 int i; 5931 5932 /* clear everything except for devices */ 5933 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5934 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5935 5936 link->ap = ap; 5937 link->pmp = pmp; 5938 link->active_tag = ATA_TAG_POISON; 5939 link->hw_sata_spd_limit = UINT_MAX; 5940 5941 /* can't use iterator, ap isn't initialized yet */ 5942 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5943 struct ata_device *dev = &link->device[i]; 5944 5945 dev->link = link; 5946 dev->devno = dev - link->device; 5947 #ifdef CONFIG_ATA_ACPI 5948 dev->gtf_filter = ata_acpi_gtf_filter; 5949 #endif 5950 ata_dev_init(dev); 5951 } 5952 } 5953 5954 /** 5955 * sata_link_init_spd - Initialize link->sata_spd_limit 5956 * @link: Link to configure sata_spd_limit for 5957 * 5958 * Initialize @link->[hw_]sata_spd_limit to the currently 5959 * configured value. 5960 * 5961 * LOCKING: 5962 * Kernel thread context (may sleep). 5963 * 5964 * RETURNS: 5965 * 0 on success, -errno on failure. 5966 */ 5967 int sata_link_init_spd(struct ata_link *link) 5968 { 5969 u8 spd; 5970 int rc; 5971 5972 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5973 if (rc) 5974 return rc; 5975 5976 spd = (link->saved_scontrol >> 4) & 0xf; 5977 if (spd) 5978 link->hw_sata_spd_limit &= (1 << spd) - 1; 5979 5980 ata_force_link_limits(link); 5981 5982 link->sata_spd_limit = link->hw_sata_spd_limit; 5983 5984 return 0; 5985 } 5986 5987 /** 5988 * ata_port_alloc - allocate and initialize basic ATA port resources 5989 * @host: ATA host this allocated port belongs to 5990 * 5991 * Allocate and initialize basic ATA port resources. 5992 * 5993 * RETURNS: 5994 * Allocate ATA port on success, NULL on failure. 5995 * 5996 * LOCKING: 5997 * Inherited from calling layer (may sleep). 5998 */ 5999 struct ata_port *ata_port_alloc(struct ata_host *host) 6000 { 6001 struct ata_port *ap; 6002 6003 DPRINTK("ENTER\n"); 6004 6005 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 6006 if (!ap) 6007 return NULL; 6008 6009 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 6010 ap->lock = &host->lock; 6011 ap->print_id = -1; 6012 ap->local_port_no = -1; 6013 ap->host = host; 6014 ap->dev = host->dev; 6015 6016 #if defined(ATA_VERBOSE_DEBUG) 6017 /* turn on all debugging levels */ 6018 ap->msg_enable = 0x00FF; 6019 #elif defined(ATA_DEBUG) 6020 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 6021 #else 6022 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 6023 #endif 6024 6025 mutex_init(&ap->scsi_scan_mutex); 6026 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 6027 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 6028 INIT_LIST_HEAD(&ap->eh_done_q); 6029 init_waitqueue_head(&ap->eh_wait_q); 6030 init_completion(&ap->park_req_pending); 6031 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 6032 TIMER_DEFERRABLE); 6033 6034 ap->cbl = ATA_CBL_NONE; 6035 6036 ata_link_init(ap, &ap->link, 0); 6037 6038 #ifdef ATA_IRQ_TRAP 6039 ap->stats.unhandled_irq = 1; 6040 ap->stats.idle_irq = 1; 6041 #endif 6042 ata_sff_port_init(ap); 6043 6044 return ap; 6045 } 6046 6047 static void ata_devres_release(struct device *gendev, void *res) 6048 { 6049 struct ata_host *host = dev_get_drvdata(gendev); 6050 int i; 6051 6052 for (i = 0; i < host->n_ports; i++) { 6053 struct ata_port *ap = host->ports[i]; 6054 6055 if (!ap) 6056 continue; 6057 6058 if (ap->scsi_host) 6059 scsi_host_put(ap->scsi_host); 6060 6061 } 6062 6063 dev_set_drvdata(gendev, NULL); 6064 ata_host_put(host); 6065 } 6066 6067 static void ata_host_release(struct kref *kref) 6068 { 6069 struct ata_host *host = container_of(kref, struct ata_host, kref); 6070 int i; 6071 6072 for (i = 0; i < host->n_ports; i++) { 6073 struct ata_port *ap = host->ports[i]; 6074 6075 kfree(ap->pmp_link); 6076 kfree(ap->slave_link); 6077 kfree(ap); 6078 host->ports[i] = NULL; 6079 } 6080 kfree(host); 6081 } 6082 6083 void ata_host_get(struct ata_host *host) 6084 { 6085 kref_get(&host->kref); 6086 } 6087 6088 void ata_host_put(struct ata_host *host) 6089 { 6090 kref_put(&host->kref, ata_host_release); 6091 } 6092 6093 /** 6094 * ata_host_alloc - allocate and init basic ATA host resources 6095 * @dev: generic device this host is associated with 6096 * @max_ports: maximum number of ATA ports associated with this host 6097 * 6098 * Allocate and initialize basic ATA host resources. LLD calls 6099 * this function to allocate a host, initializes it fully and 6100 * attaches it using ata_host_register(). 6101 * 6102 * @max_ports ports are allocated and host->n_ports is 6103 * initialized to @max_ports. The caller is allowed to decrease 6104 * host->n_ports before calling ata_host_register(). The unused 6105 * ports will be automatically freed on registration. 6106 * 6107 * RETURNS: 6108 * Allocate ATA host on success, NULL on failure. 6109 * 6110 * LOCKING: 6111 * Inherited from calling layer (may sleep). 6112 */ 6113 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 6114 { 6115 struct ata_host *host; 6116 size_t sz; 6117 int i; 6118 void *dr; 6119 6120 DPRINTK("ENTER\n"); 6121 6122 /* alloc a container for our list of ATA ports (buses) */ 6123 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 6124 host = kzalloc(sz, GFP_KERNEL); 6125 if (!host) 6126 return NULL; 6127 6128 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 6129 goto err_free; 6130 6131 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 6132 if (!dr) 6133 goto err_out; 6134 6135 devres_add(dev, dr); 6136 dev_set_drvdata(dev, host); 6137 6138 spin_lock_init(&host->lock); 6139 mutex_init(&host->eh_mutex); 6140 host->dev = dev; 6141 host->n_ports = max_ports; 6142 kref_init(&host->kref); 6143 6144 /* allocate ports bound to this host */ 6145 for (i = 0; i < max_ports; i++) { 6146 struct ata_port *ap; 6147 6148 ap = ata_port_alloc(host); 6149 if (!ap) 6150 goto err_out; 6151 6152 ap->port_no = i; 6153 host->ports[i] = ap; 6154 } 6155 6156 devres_remove_group(dev, NULL); 6157 return host; 6158 6159 err_out: 6160 devres_release_group(dev, NULL); 6161 err_free: 6162 kfree(host); 6163 return NULL; 6164 } 6165 6166 /** 6167 * ata_host_alloc_pinfo - alloc host and init with port_info array 6168 * @dev: generic device this host is associated with 6169 * @ppi: array of ATA port_info to initialize host with 6170 * @n_ports: number of ATA ports attached to this host 6171 * 6172 * Allocate ATA host and initialize with info from @ppi. If NULL 6173 * terminated, @ppi may contain fewer entries than @n_ports. The 6174 * last entry will be used for the remaining ports. 6175 * 6176 * RETURNS: 6177 * Allocate ATA host on success, NULL on failure. 6178 * 6179 * LOCKING: 6180 * Inherited from calling layer (may sleep). 6181 */ 6182 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 6183 const struct ata_port_info * const * ppi, 6184 int n_ports) 6185 { 6186 const struct ata_port_info *pi; 6187 struct ata_host *host; 6188 int i, j; 6189 6190 host = ata_host_alloc(dev, n_ports); 6191 if (!host) 6192 return NULL; 6193 6194 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 6195 struct ata_port *ap = host->ports[i]; 6196 6197 if (ppi[j]) 6198 pi = ppi[j++]; 6199 6200 ap->pio_mask = pi->pio_mask; 6201 ap->mwdma_mask = pi->mwdma_mask; 6202 ap->udma_mask = pi->udma_mask; 6203 ap->flags |= pi->flags; 6204 ap->link.flags |= pi->link_flags; 6205 ap->ops = pi->port_ops; 6206 6207 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 6208 host->ops = pi->port_ops; 6209 } 6210 6211 return host; 6212 } 6213 6214 /** 6215 * ata_slave_link_init - initialize slave link 6216 * @ap: port to initialize slave link for 6217 * 6218 * Create and initialize slave link for @ap. This enables slave 6219 * link handling on the port. 6220 * 6221 * In libata, a port contains links and a link contains devices. 6222 * There is single host link but if a PMP is attached to it, 6223 * there can be multiple fan-out links. On SATA, there's usually 6224 * a single device connected to a link but PATA and SATA 6225 * controllers emulating TF based interface can have two - master 6226 * and slave. 6227 * 6228 * However, there are a few controllers which don't fit into this 6229 * abstraction too well - SATA controllers which emulate TF 6230 * interface with both master and slave devices but also have 6231 * separate SCR register sets for each device. These controllers 6232 * need separate links for physical link handling 6233 * (e.g. onlineness, link speed) but should be treated like a 6234 * traditional M/S controller for everything else (e.g. command 6235 * issue, softreset). 6236 * 6237 * slave_link is libata's way of handling this class of 6238 * controllers without impacting core layer too much. For 6239 * anything other than physical link handling, the default host 6240 * link is used for both master and slave. For physical link 6241 * handling, separate @ap->slave_link is used. All dirty details 6242 * are implemented inside libata core layer. From LLD's POV, the 6243 * only difference is that prereset, hardreset and postreset are 6244 * called once more for the slave link, so the reset sequence 6245 * looks like the following. 6246 * 6247 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 6248 * softreset(M) -> postreset(M) -> postreset(S) 6249 * 6250 * Note that softreset is called only for the master. Softreset 6251 * resets both M/S by definition, so SRST on master should handle 6252 * both (the standard method will work just fine). 6253 * 6254 * LOCKING: 6255 * Should be called before host is registered. 6256 * 6257 * RETURNS: 6258 * 0 on success, -errno on failure. 6259 */ 6260 int ata_slave_link_init(struct ata_port *ap) 6261 { 6262 struct ata_link *link; 6263 6264 WARN_ON(ap->slave_link); 6265 WARN_ON(ap->flags & ATA_FLAG_PMP); 6266 6267 link = kzalloc(sizeof(*link), GFP_KERNEL); 6268 if (!link) 6269 return -ENOMEM; 6270 6271 ata_link_init(ap, link, 1); 6272 ap->slave_link = link; 6273 return 0; 6274 } 6275 6276 static void ata_host_stop(struct device *gendev, void *res) 6277 { 6278 struct ata_host *host = dev_get_drvdata(gendev); 6279 int i; 6280 6281 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 6282 6283 for (i = 0; i < host->n_ports; i++) { 6284 struct ata_port *ap = host->ports[i]; 6285 6286 if (ap->ops->port_stop) 6287 ap->ops->port_stop(ap); 6288 } 6289 6290 if (host->ops->host_stop) 6291 host->ops->host_stop(host); 6292 } 6293 6294 /** 6295 * ata_finalize_port_ops - finalize ata_port_operations 6296 * @ops: ata_port_operations to finalize 6297 * 6298 * An ata_port_operations can inherit from another ops and that 6299 * ops can again inherit from another. This can go on as many 6300 * times as necessary as long as there is no loop in the 6301 * inheritance chain. 6302 * 6303 * Ops tables are finalized when the host is started. NULL or 6304 * unspecified entries are inherited from the closet ancestor 6305 * which has the method and the entry is populated with it. 6306 * After finalization, the ops table directly points to all the 6307 * methods and ->inherits is no longer necessary and cleared. 6308 * 6309 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 6310 * 6311 * LOCKING: 6312 * None. 6313 */ 6314 static void ata_finalize_port_ops(struct ata_port_operations *ops) 6315 { 6316 static DEFINE_SPINLOCK(lock); 6317 const struct ata_port_operations *cur; 6318 void **begin = (void **)ops; 6319 void **end = (void **)&ops->inherits; 6320 void **pp; 6321 6322 if (!ops || !ops->inherits) 6323 return; 6324 6325 spin_lock(&lock); 6326 6327 for (cur = ops->inherits; cur; cur = cur->inherits) { 6328 void **inherit = (void **)cur; 6329 6330 for (pp = begin; pp < end; pp++, inherit++) 6331 if (!*pp) 6332 *pp = *inherit; 6333 } 6334 6335 for (pp = begin; pp < end; pp++) 6336 if (IS_ERR(*pp)) 6337 *pp = NULL; 6338 6339 ops->inherits = NULL; 6340 6341 spin_unlock(&lock); 6342 } 6343 6344 /** 6345 * ata_host_start - start and freeze ports of an ATA host 6346 * @host: ATA host to start ports for 6347 * 6348 * Start and then freeze ports of @host. Started status is 6349 * recorded in host->flags, so this function can be called 6350 * multiple times. Ports are guaranteed to get started only 6351 * once. If host->ops isn't initialized yet, its set to the 6352 * first non-dummy port ops. 6353 * 6354 * LOCKING: 6355 * Inherited from calling layer (may sleep). 6356 * 6357 * RETURNS: 6358 * 0 if all ports are started successfully, -errno otherwise. 6359 */ 6360 int ata_host_start(struct ata_host *host) 6361 { 6362 int have_stop = 0; 6363 void *start_dr = NULL; 6364 int i, rc; 6365 6366 if (host->flags & ATA_HOST_STARTED) 6367 return 0; 6368 6369 ata_finalize_port_ops(host->ops); 6370 6371 for (i = 0; i < host->n_ports; i++) { 6372 struct ata_port *ap = host->ports[i]; 6373 6374 ata_finalize_port_ops(ap->ops); 6375 6376 if (!host->ops && !ata_port_is_dummy(ap)) 6377 host->ops = ap->ops; 6378 6379 if (ap->ops->port_stop) 6380 have_stop = 1; 6381 } 6382 6383 if (host->ops->host_stop) 6384 have_stop = 1; 6385 6386 if (have_stop) { 6387 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 6388 if (!start_dr) 6389 return -ENOMEM; 6390 } 6391 6392 for (i = 0; i < host->n_ports; i++) { 6393 struct ata_port *ap = host->ports[i]; 6394 6395 if (ap->ops->port_start) { 6396 rc = ap->ops->port_start(ap); 6397 if (rc) { 6398 if (rc != -ENODEV) 6399 dev_err(host->dev, 6400 "failed to start port %d (errno=%d)\n", 6401 i, rc); 6402 goto err_out; 6403 } 6404 } 6405 ata_eh_freeze_port(ap); 6406 } 6407 6408 if (start_dr) 6409 devres_add(host->dev, start_dr); 6410 host->flags |= ATA_HOST_STARTED; 6411 return 0; 6412 6413 err_out: 6414 while (--i >= 0) { 6415 struct ata_port *ap = host->ports[i]; 6416 6417 if (ap->ops->port_stop) 6418 ap->ops->port_stop(ap); 6419 } 6420 devres_free(start_dr); 6421 return rc; 6422 } 6423 6424 /** 6425 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 6426 * @host: host to initialize 6427 * @dev: device host is attached to 6428 * @ops: port_ops 6429 * 6430 */ 6431 void ata_host_init(struct ata_host *host, struct device *dev, 6432 struct ata_port_operations *ops) 6433 { 6434 spin_lock_init(&host->lock); 6435 mutex_init(&host->eh_mutex); 6436 host->n_tags = ATA_MAX_QUEUE; 6437 host->dev = dev; 6438 host->ops = ops; 6439 kref_init(&host->kref); 6440 } 6441 6442 void __ata_port_probe(struct ata_port *ap) 6443 { 6444 struct ata_eh_info *ehi = &ap->link.eh_info; 6445 unsigned long flags; 6446 6447 /* kick EH for boot probing */ 6448 spin_lock_irqsave(ap->lock, flags); 6449 6450 ehi->probe_mask |= ATA_ALL_DEVICES; 6451 ehi->action |= ATA_EH_RESET; 6452 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6453 6454 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6455 ap->pflags |= ATA_PFLAG_LOADING; 6456 ata_port_schedule_eh(ap); 6457 6458 spin_unlock_irqrestore(ap->lock, flags); 6459 } 6460 6461 int ata_port_probe(struct ata_port *ap) 6462 { 6463 int rc = 0; 6464 6465 if (ap->ops->error_handler) { 6466 __ata_port_probe(ap); 6467 ata_port_wait_eh(ap); 6468 } else { 6469 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6470 rc = ata_bus_probe(ap); 6471 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6472 } 6473 return rc; 6474 } 6475 6476 6477 static void async_port_probe(void *data, async_cookie_t cookie) 6478 { 6479 struct ata_port *ap = data; 6480 6481 /* 6482 * If we're not allowed to scan this host in parallel, 6483 * we need to wait until all previous scans have completed 6484 * before going further. 6485 * Jeff Garzik says this is only within a controller, so we 6486 * don't need to wait for port 0, only for later ports. 6487 */ 6488 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6489 async_synchronize_cookie(cookie); 6490 6491 (void)ata_port_probe(ap); 6492 6493 /* in order to keep device order, we need to synchronize at this point */ 6494 async_synchronize_cookie(cookie); 6495 6496 ata_scsi_scan_host(ap, 1); 6497 } 6498 6499 /** 6500 * ata_host_register - register initialized ATA host 6501 * @host: ATA host to register 6502 * @sht: template for SCSI host 6503 * 6504 * Register initialized ATA host. @host is allocated using 6505 * ata_host_alloc() and fully initialized by LLD. This function 6506 * starts ports, registers @host with ATA and SCSI layers and 6507 * probe registered devices. 6508 * 6509 * LOCKING: 6510 * Inherited from calling layer (may sleep). 6511 * 6512 * RETURNS: 6513 * 0 on success, -errno otherwise. 6514 */ 6515 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6516 { 6517 int i, rc; 6518 6519 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 6520 6521 /* host must have been started */ 6522 if (!(host->flags & ATA_HOST_STARTED)) { 6523 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6524 WARN_ON(1); 6525 return -EINVAL; 6526 } 6527 6528 /* Blow away unused ports. This happens when LLD can't 6529 * determine the exact number of ports to allocate at 6530 * allocation time. 6531 */ 6532 for (i = host->n_ports; host->ports[i]; i++) 6533 kfree(host->ports[i]); 6534 6535 /* give ports names and add SCSI hosts */ 6536 for (i = 0; i < host->n_ports; i++) { 6537 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6538 host->ports[i]->local_port_no = i + 1; 6539 } 6540 6541 /* Create associated sysfs transport objects */ 6542 for (i = 0; i < host->n_ports; i++) { 6543 rc = ata_tport_add(host->dev,host->ports[i]); 6544 if (rc) { 6545 goto err_tadd; 6546 } 6547 } 6548 6549 rc = ata_scsi_add_hosts(host, sht); 6550 if (rc) 6551 goto err_tadd; 6552 6553 /* set cable, sata_spd_limit and report */ 6554 for (i = 0; i < host->n_ports; i++) { 6555 struct ata_port *ap = host->ports[i]; 6556 unsigned long xfer_mask; 6557 6558 /* set SATA cable type if still unset */ 6559 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6560 ap->cbl = ATA_CBL_SATA; 6561 6562 /* init sata_spd_limit to the current value */ 6563 sata_link_init_spd(&ap->link); 6564 if (ap->slave_link) 6565 sata_link_init_spd(ap->slave_link); 6566 6567 /* print per-port info to dmesg */ 6568 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6569 ap->udma_mask); 6570 6571 if (!ata_port_is_dummy(ap)) { 6572 ata_port_info(ap, "%cATA max %s %s\n", 6573 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6574 ata_mode_string(xfer_mask), 6575 ap->link.eh_info.desc); 6576 ata_ehi_clear_desc(&ap->link.eh_info); 6577 } else 6578 ata_port_info(ap, "DUMMY\n"); 6579 } 6580 6581 /* perform each probe asynchronously */ 6582 for (i = 0; i < host->n_ports; i++) { 6583 struct ata_port *ap = host->ports[i]; 6584 async_schedule(async_port_probe, ap); 6585 } 6586 6587 return 0; 6588 6589 err_tadd: 6590 while (--i >= 0) { 6591 ata_tport_delete(host->ports[i]); 6592 } 6593 return rc; 6594 6595 } 6596 6597 /** 6598 * ata_host_activate - start host, request IRQ and register it 6599 * @host: target ATA host 6600 * @irq: IRQ to request 6601 * @irq_handler: irq_handler used when requesting IRQ 6602 * @irq_flags: irq_flags used when requesting IRQ 6603 * @sht: scsi_host_template to use when registering the host 6604 * 6605 * After allocating an ATA host and initializing it, most libata 6606 * LLDs perform three steps to activate the host - start host, 6607 * request IRQ and register it. This helper takes necessary 6608 * arguments and performs the three steps in one go. 6609 * 6610 * An invalid IRQ skips the IRQ registration and expects the host to 6611 * have set polling mode on the port. In this case, @irq_handler 6612 * should be NULL. 6613 * 6614 * LOCKING: 6615 * Inherited from calling layer (may sleep). 6616 * 6617 * RETURNS: 6618 * 0 on success, -errno otherwise. 6619 */ 6620 int ata_host_activate(struct ata_host *host, int irq, 6621 irq_handler_t irq_handler, unsigned long irq_flags, 6622 struct scsi_host_template *sht) 6623 { 6624 int i, rc; 6625 char *irq_desc; 6626 6627 rc = ata_host_start(host); 6628 if (rc) 6629 return rc; 6630 6631 /* Special case for polling mode */ 6632 if (!irq) { 6633 WARN_ON(irq_handler); 6634 return ata_host_register(host, sht); 6635 } 6636 6637 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 6638 dev_driver_string(host->dev), 6639 dev_name(host->dev)); 6640 if (!irq_desc) 6641 return -ENOMEM; 6642 6643 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6644 irq_desc, host); 6645 if (rc) 6646 return rc; 6647 6648 for (i = 0; i < host->n_ports; i++) 6649 ata_port_desc(host->ports[i], "irq %d", irq); 6650 6651 rc = ata_host_register(host, sht); 6652 /* if failed, just free the IRQ and leave ports alone */ 6653 if (rc) 6654 devm_free_irq(host->dev, irq, host); 6655 6656 return rc; 6657 } 6658 6659 /** 6660 * ata_port_detach - Detach ATA port in preparation of device removal 6661 * @ap: ATA port to be detached 6662 * 6663 * Detach all ATA devices and the associated SCSI devices of @ap; 6664 * then, remove the associated SCSI host. @ap is guaranteed to 6665 * be quiescent on return from this function. 6666 * 6667 * LOCKING: 6668 * Kernel thread context (may sleep). 6669 */ 6670 static void ata_port_detach(struct ata_port *ap) 6671 { 6672 unsigned long flags; 6673 struct ata_link *link; 6674 struct ata_device *dev; 6675 6676 if (!ap->ops->error_handler) 6677 goto skip_eh; 6678 6679 /* tell EH we're leaving & flush EH */ 6680 spin_lock_irqsave(ap->lock, flags); 6681 ap->pflags |= ATA_PFLAG_UNLOADING; 6682 ata_port_schedule_eh(ap); 6683 spin_unlock_irqrestore(ap->lock, flags); 6684 6685 /* wait till EH commits suicide */ 6686 ata_port_wait_eh(ap); 6687 6688 /* it better be dead now */ 6689 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6690 6691 cancel_delayed_work_sync(&ap->hotplug_task); 6692 6693 skip_eh: 6694 /* clean up zpodd on port removal */ 6695 ata_for_each_link(link, ap, HOST_FIRST) { 6696 ata_for_each_dev(dev, link, ALL) { 6697 if (zpodd_dev_enabled(dev)) 6698 zpodd_exit(dev); 6699 } 6700 } 6701 if (ap->pmp_link) { 6702 int i; 6703 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6704 ata_tlink_delete(&ap->pmp_link[i]); 6705 } 6706 /* remove the associated SCSI host */ 6707 scsi_remove_host(ap->scsi_host); 6708 ata_tport_delete(ap); 6709 } 6710 6711 /** 6712 * ata_host_detach - Detach all ports of an ATA host 6713 * @host: Host to detach 6714 * 6715 * Detach all ports of @host. 6716 * 6717 * LOCKING: 6718 * Kernel thread context (may sleep). 6719 */ 6720 void ata_host_detach(struct ata_host *host) 6721 { 6722 int i; 6723 6724 for (i = 0; i < host->n_ports; i++) 6725 ata_port_detach(host->ports[i]); 6726 6727 /* the host is dead now, dissociate ACPI */ 6728 ata_acpi_dissociate(host); 6729 } 6730 6731 #ifdef CONFIG_PCI 6732 6733 /** 6734 * ata_pci_remove_one - PCI layer callback for device removal 6735 * @pdev: PCI device that was removed 6736 * 6737 * PCI layer indicates to libata via this hook that hot-unplug or 6738 * module unload event has occurred. Detach all ports. Resource 6739 * release is handled via devres. 6740 * 6741 * LOCKING: 6742 * Inherited from PCI layer (may sleep). 6743 */ 6744 void ata_pci_remove_one(struct pci_dev *pdev) 6745 { 6746 struct ata_host *host = pci_get_drvdata(pdev); 6747 6748 ata_host_detach(host); 6749 } 6750 6751 /* move to PCI subsystem */ 6752 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6753 { 6754 unsigned long tmp = 0; 6755 6756 switch (bits->width) { 6757 case 1: { 6758 u8 tmp8 = 0; 6759 pci_read_config_byte(pdev, bits->reg, &tmp8); 6760 tmp = tmp8; 6761 break; 6762 } 6763 case 2: { 6764 u16 tmp16 = 0; 6765 pci_read_config_word(pdev, bits->reg, &tmp16); 6766 tmp = tmp16; 6767 break; 6768 } 6769 case 4: { 6770 u32 tmp32 = 0; 6771 pci_read_config_dword(pdev, bits->reg, &tmp32); 6772 tmp = tmp32; 6773 break; 6774 } 6775 6776 default: 6777 return -EINVAL; 6778 } 6779 6780 tmp &= bits->mask; 6781 6782 return (tmp == bits->val) ? 1 : 0; 6783 } 6784 6785 #ifdef CONFIG_PM 6786 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6787 { 6788 pci_save_state(pdev); 6789 pci_disable_device(pdev); 6790 6791 if (mesg.event & PM_EVENT_SLEEP) 6792 pci_set_power_state(pdev, PCI_D3hot); 6793 } 6794 6795 int ata_pci_device_do_resume(struct pci_dev *pdev) 6796 { 6797 int rc; 6798 6799 pci_set_power_state(pdev, PCI_D0); 6800 pci_restore_state(pdev); 6801 6802 rc = pcim_enable_device(pdev); 6803 if (rc) { 6804 dev_err(&pdev->dev, 6805 "failed to enable device after resume (%d)\n", rc); 6806 return rc; 6807 } 6808 6809 pci_set_master(pdev); 6810 return 0; 6811 } 6812 6813 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6814 { 6815 struct ata_host *host = pci_get_drvdata(pdev); 6816 int rc = 0; 6817 6818 rc = ata_host_suspend(host, mesg); 6819 if (rc) 6820 return rc; 6821 6822 ata_pci_device_do_suspend(pdev, mesg); 6823 6824 return 0; 6825 } 6826 6827 int ata_pci_device_resume(struct pci_dev *pdev) 6828 { 6829 struct ata_host *host = pci_get_drvdata(pdev); 6830 int rc; 6831 6832 rc = ata_pci_device_do_resume(pdev); 6833 if (rc == 0) 6834 ata_host_resume(host); 6835 return rc; 6836 } 6837 #endif /* CONFIG_PM */ 6838 6839 #endif /* CONFIG_PCI */ 6840 6841 /** 6842 * ata_platform_remove_one - Platform layer callback for device removal 6843 * @pdev: Platform device that was removed 6844 * 6845 * Platform layer indicates to libata via this hook that hot-unplug or 6846 * module unload event has occurred. Detach all ports. Resource 6847 * release is handled via devres. 6848 * 6849 * LOCKING: 6850 * Inherited from platform layer (may sleep). 6851 */ 6852 int ata_platform_remove_one(struct platform_device *pdev) 6853 { 6854 struct ata_host *host = platform_get_drvdata(pdev); 6855 6856 ata_host_detach(host); 6857 6858 return 0; 6859 } 6860 6861 static int __init ata_parse_force_one(char **cur, 6862 struct ata_force_ent *force_ent, 6863 const char **reason) 6864 { 6865 static const struct ata_force_param force_tbl[] __initconst = { 6866 { "40c", .cbl = ATA_CBL_PATA40 }, 6867 { "80c", .cbl = ATA_CBL_PATA80 }, 6868 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6869 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6870 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6871 { "sata", .cbl = ATA_CBL_SATA }, 6872 { "1.5Gbps", .spd_limit = 1 }, 6873 { "3.0Gbps", .spd_limit = 2 }, 6874 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6875 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6876 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, 6877 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, 6878 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6879 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6880 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6881 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6882 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6883 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6884 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6885 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6886 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6887 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6888 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6889 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6890 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6891 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6892 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6893 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6894 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6895 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6896 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6897 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6898 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6899 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6900 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6901 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6902 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6903 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6904 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6905 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6906 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6907 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6908 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6909 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6910 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6911 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6912 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6913 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6914 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6915 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6916 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6917 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6918 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6919 }; 6920 char *start = *cur, *p = *cur; 6921 char *id, *val, *endp; 6922 const struct ata_force_param *match_fp = NULL; 6923 int nr_matches = 0, i; 6924 6925 /* find where this param ends and update *cur */ 6926 while (*p != '\0' && *p != ',') 6927 p++; 6928 6929 if (*p == '\0') 6930 *cur = p; 6931 else 6932 *cur = p + 1; 6933 6934 *p = '\0'; 6935 6936 /* parse */ 6937 p = strchr(start, ':'); 6938 if (!p) { 6939 val = strstrip(start); 6940 goto parse_val; 6941 } 6942 *p = '\0'; 6943 6944 id = strstrip(start); 6945 val = strstrip(p + 1); 6946 6947 /* parse id */ 6948 p = strchr(id, '.'); 6949 if (p) { 6950 *p++ = '\0'; 6951 force_ent->device = simple_strtoul(p, &endp, 10); 6952 if (p == endp || *endp != '\0') { 6953 *reason = "invalid device"; 6954 return -EINVAL; 6955 } 6956 } 6957 6958 force_ent->port = simple_strtoul(id, &endp, 10); 6959 if (id == endp || *endp != '\0') { 6960 *reason = "invalid port/link"; 6961 return -EINVAL; 6962 } 6963 6964 parse_val: 6965 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6966 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6967 const struct ata_force_param *fp = &force_tbl[i]; 6968 6969 if (strncasecmp(val, fp->name, strlen(val))) 6970 continue; 6971 6972 nr_matches++; 6973 match_fp = fp; 6974 6975 if (strcasecmp(val, fp->name) == 0) { 6976 nr_matches = 1; 6977 break; 6978 } 6979 } 6980 6981 if (!nr_matches) { 6982 *reason = "unknown value"; 6983 return -EINVAL; 6984 } 6985 if (nr_matches > 1) { 6986 *reason = "ambiguous value"; 6987 return -EINVAL; 6988 } 6989 6990 force_ent->param = *match_fp; 6991 6992 return 0; 6993 } 6994 6995 static void __init ata_parse_force_param(void) 6996 { 6997 int idx = 0, size = 1; 6998 int last_port = -1, last_device = -1; 6999 char *p, *cur, *next; 7000 7001 /* calculate maximum number of params and allocate force_tbl */ 7002 for (p = ata_force_param_buf; *p; p++) 7003 if (*p == ',') 7004 size++; 7005 7006 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 7007 if (!ata_force_tbl) { 7008 printk(KERN_WARNING "ata: failed to extend force table, " 7009 "libata.force ignored\n"); 7010 return; 7011 } 7012 7013 /* parse and populate the table */ 7014 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 7015 const char *reason = ""; 7016 struct ata_force_ent te = { .port = -1, .device = -1 }; 7017 7018 next = cur; 7019 if (ata_parse_force_one(&next, &te, &reason)) { 7020 printk(KERN_WARNING "ata: failed to parse force " 7021 "parameter \"%s\" (%s)\n", 7022 cur, reason); 7023 continue; 7024 } 7025 7026 if (te.port == -1) { 7027 te.port = last_port; 7028 te.device = last_device; 7029 } 7030 7031 ata_force_tbl[idx++] = te; 7032 7033 last_port = te.port; 7034 last_device = te.device; 7035 } 7036 7037 ata_force_tbl_size = idx; 7038 } 7039 7040 static int __init ata_init(void) 7041 { 7042 int rc; 7043 7044 ata_parse_force_param(); 7045 7046 rc = ata_sff_init(); 7047 if (rc) { 7048 kfree(ata_force_tbl); 7049 return rc; 7050 } 7051 7052 libata_transport_init(); 7053 ata_scsi_transport_template = ata_attach_transport(); 7054 if (!ata_scsi_transport_template) { 7055 ata_sff_exit(); 7056 rc = -ENOMEM; 7057 goto err_out; 7058 } 7059 7060 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 7061 return 0; 7062 7063 err_out: 7064 return rc; 7065 } 7066 7067 static void __exit ata_exit(void) 7068 { 7069 ata_release_transport(ata_scsi_transport_template); 7070 libata_transport_exit(); 7071 ata_sff_exit(); 7072 kfree(ata_force_tbl); 7073 } 7074 7075 subsys_initcall(ata_init); 7076 module_exit(ata_exit); 7077 7078 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 7079 7080 int ata_ratelimit(void) 7081 { 7082 return __ratelimit(&ratelimit); 7083 } 7084 7085 /** 7086 * ata_msleep - ATA EH owner aware msleep 7087 * @ap: ATA port to attribute the sleep to 7088 * @msecs: duration to sleep in milliseconds 7089 * 7090 * Sleeps @msecs. If the current task is owner of @ap's EH, the 7091 * ownership is released before going to sleep and reacquired 7092 * after the sleep is complete. IOW, other ports sharing the 7093 * @ap->host will be allowed to own the EH while this task is 7094 * sleeping. 7095 * 7096 * LOCKING: 7097 * Might sleep. 7098 */ 7099 void ata_msleep(struct ata_port *ap, unsigned int msecs) 7100 { 7101 bool owns_eh = ap && ap->host->eh_owner == current; 7102 7103 if (owns_eh) 7104 ata_eh_release(ap); 7105 7106 if (msecs < 20) { 7107 unsigned long usecs = msecs * USEC_PER_MSEC; 7108 usleep_range(usecs, usecs + 50); 7109 } else { 7110 msleep(msecs); 7111 } 7112 7113 if (owns_eh) 7114 ata_eh_acquire(ap); 7115 } 7116 7117 /** 7118 * ata_wait_register - wait until register value changes 7119 * @ap: ATA port to wait register for, can be NULL 7120 * @reg: IO-mapped register 7121 * @mask: Mask to apply to read register value 7122 * @val: Wait condition 7123 * @interval: polling interval in milliseconds 7124 * @timeout: timeout in milliseconds 7125 * 7126 * Waiting for some bits of register to change is a common 7127 * operation for ATA controllers. This function reads 32bit LE 7128 * IO-mapped register @reg and tests for the following condition. 7129 * 7130 * (*@reg & mask) != val 7131 * 7132 * If the condition is met, it returns; otherwise, the process is 7133 * repeated after @interval_msec until timeout. 7134 * 7135 * LOCKING: 7136 * Kernel thread context (may sleep) 7137 * 7138 * RETURNS: 7139 * The final register value. 7140 */ 7141 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 7142 unsigned long interval, unsigned long timeout) 7143 { 7144 unsigned long deadline; 7145 u32 tmp; 7146 7147 tmp = ioread32(reg); 7148 7149 /* Calculate timeout _after_ the first read to make sure 7150 * preceding writes reach the controller before starting to 7151 * eat away the timeout. 7152 */ 7153 deadline = ata_deadline(jiffies, timeout); 7154 7155 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 7156 ata_msleep(ap, interval); 7157 tmp = ioread32(reg); 7158 } 7159 7160 return tmp; 7161 } 7162 7163 /** 7164 * sata_lpm_ignore_phy_events - test if PHY event should be ignored 7165 * @link: Link receiving the event 7166 * 7167 * Test whether the received PHY event has to be ignored or not. 7168 * 7169 * LOCKING: 7170 * None: 7171 * 7172 * RETURNS: 7173 * True if the event has to be ignored. 7174 */ 7175 bool sata_lpm_ignore_phy_events(struct ata_link *link) 7176 { 7177 unsigned long lpm_timeout = link->last_lpm_change + 7178 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY); 7179 7180 /* if LPM is enabled, PHYRDY doesn't mean anything */ 7181 if (link->lpm_policy > ATA_LPM_MAX_POWER) 7182 return true; 7183 7184 /* ignore the first PHY event after the LPM policy changed 7185 * as it is might be spurious 7186 */ 7187 if ((link->flags & ATA_LFLAG_CHANGED) && 7188 time_before(jiffies, lpm_timeout)) 7189 return true; 7190 7191 return false; 7192 } 7193 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events); 7194 7195 /* 7196 * Dummy port_ops 7197 */ 7198 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 7199 { 7200 return AC_ERR_SYSTEM; 7201 } 7202 7203 static void ata_dummy_error_handler(struct ata_port *ap) 7204 { 7205 /* truly dummy */ 7206 } 7207 7208 struct ata_port_operations ata_dummy_port_ops = { 7209 .qc_prep = ata_noop_qc_prep, 7210 .qc_issue = ata_dummy_qc_issue, 7211 .error_handler = ata_dummy_error_handler, 7212 .sched_eh = ata_std_sched_eh, 7213 .end_eh = ata_std_end_eh, 7214 }; 7215 7216 const struct ata_port_info ata_dummy_port_info = { 7217 .port_ops = &ata_dummy_port_ops, 7218 }; 7219 7220 /* 7221 * Utility print functions 7222 */ 7223 void ata_port_printk(const struct ata_port *ap, const char *level, 7224 const char *fmt, ...) 7225 { 7226 struct va_format vaf; 7227 va_list args; 7228 7229 va_start(args, fmt); 7230 7231 vaf.fmt = fmt; 7232 vaf.va = &args; 7233 7234 printk("%sata%u: %pV", level, ap->print_id, &vaf); 7235 7236 va_end(args); 7237 } 7238 EXPORT_SYMBOL(ata_port_printk); 7239 7240 void ata_link_printk(const struct ata_link *link, const char *level, 7241 const char *fmt, ...) 7242 { 7243 struct va_format vaf; 7244 va_list args; 7245 7246 va_start(args, fmt); 7247 7248 vaf.fmt = fmt; 7249 vaf.va = &args; 7250 7251 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 7252 printk("%sata%u.%02u: %pV", 7253 level, link->ap->print_id, link->pmp, &vaf); 7254 else 7255 printk("%sata%u: %pV", 7256 level, link->ap->print_id, &vaf); 7257 7258 va_end(args); 7259 } 7260 EXPORT_SYMBOL(ata_link_printk); 7261 7262 void ata_dev_printk(const struct ata_device *dev, const char *level, 7263 const char *fmt, ...) 7264 { 7265 struct va_format vaf; 7266 va_list args; 7267 7268 va_start(args, fmt); 7269 7270 vaf.fmt = fmt; 7271 vaf.va = &args; 7272 7273 printk("%sata%u.%02u: %pV", 7274 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 7275 &vaf); 7276 7277 va_end(args); 7278 } 7279 EXPORT_SYMBOL(ata_dev_printk); 7280 7281 void ata_print_version(const struct device *dev, const char *version) 7282 { 7283 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 7284 } 7285 EXPORT_SYMBOL(ata_print_version); 7286 7287 /* 7288 * libata is essentially a library of internal helper functions for 7289 * low-level ATA host controller drivers. As such, the API/ABI is 7290 * likely to change as new drivers are added and updated. 7291 * Do not depend on ABI/API stability. 7292 */ 7293 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 7294 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 7295 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 7296 EXPORT_SYMBOL_GPL(ata_base_port_ops); 7297 EXPORT_SYMBOL_GPL(sata_port_ops); 7298 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 7299 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 7300 EXPORT_SYMBOL_GPL(ata_link_next); 7301 EXPORT_SYMBOL_GPL(ata_dev_next); 7302 EXPORT_SYMBOL_GPL(ata_std_bios_param); 7303 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 7304 EXPORT_SYMBOL_GPL(ata_host_init); 7305 EXPORT_SYMBOL_GPL(ata_host_alloc); 7306 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 7307 EXPORT_SYMBOL_GPL(ata_slave_link_init); 7308 EXPORT_SYMBOL_GPL(ata_host_start); 7309 EXPORT_SYMBOL_GPL(ata_host_register); 7310 EXPORT_SYMBOL_GPL(ata_host_activate); 7311 EXPORT_SYMBOL_GPL(ata_host_detach); 7312 EXPORT_SYMBOL_GPL(ata_sg_init); 7313 EXPORT_SYMBOL_GPL(ata_qc_complete); 7314 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 7315 EXPORT_SYMBOL_GPL(atapi_cmd_type); 7316 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 7317 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 7318 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 7319 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 7320 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 7321 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 7322 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 7323 EXPORT_SYMBOL_GPL(ata_mode_string); 7324 EXPORT_SYMBOL_GPL(ata_id_xfermask); 7325 EXPORT_SYMBOL_GPL(ata_do_set_mode); 7326 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 7327 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 7328 EXPORT_SYMBOL_GPL(ata_dev_disable); 7329 EXPORT_SYMBOL_GPL(sata_set_spd); 7330 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 7331 EXPORT_SYMBOL_GPL(sata_link_debounce); 7332 EXPORT_SYMBOL_GPL(sata_link_resume); 7333 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 7334 EXPORT_SYMBOL_GPL(ata_std_prereset); 7335 EXPORT_SYMBOL_GPL(sata_link_hardreset); 7336 EXPORT_SYMBOL_GPL(sata_std_hardreset); 7337 EXPORT_SYMBOL_GPL(ata_std_postreset); 7338 EXPORT_SYMBOL_GPL(ata_dev_classify); 7339 EXPORT_SYMBOL_GPL(ata_dev_pair); 7340 EXPORT_SYMBOL_GPL(ata_ratelimit); 7341 EXPORT_SYMBOL_GPL(ata_msleep); 7342 EXPORT_SYMBOL_GPL(ata_wait_register); 7343 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 7344 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 7345 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 7346 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 7347 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 7348 EXPORT_SYMBOL_GPL(sata_scr_valid); 7349 EXPORT_SYMBOL_GPL(sata_scr_read); 7350 EXPORT_SYMBOL_GPL(sata_scr_write); 7351 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 7352 EXPORT_SYMBOL_GPL(ata_link_online); 7353 EXPORT_SYMBOL_GPL(ata_link_offline); 7354 #ifdef CONFIG_PM 7355 EXPORT_SYMBOL_GPL(ata_host_suspend); 7356 EXPORT_SYMBOL_GPL(ata_host_resume); 7357 #endif /* CONFIG_PM */ 7358 EXPORT_SYMBOL_GPL(ata_id_string); 7359 EXPORT_SYMBOL_GPL(ata_id_c_string); 7360 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 7361 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 7362 7363 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 7364 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 7365 EXPORT_SYMBOL_GPL(ata_timing_compute); 7366 EXPORT_SYMBOL_GPL(ata_timing_merge); 7367 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 7368 7369 #ifdef CONFIG_PCI 7370 EXPORT_SYMBOL_GPL(pci_test_config_bits); 7371 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 7372 #ifdef CONFIG_PM 7373 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 7374 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 7375 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 7376 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 7377 #endif /* CONFIG_PM */ 7378 #endif /* CONFIG_PCI */ 7379 7380 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 7381 7382 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 7383 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 7384 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 7385 EXPORT_SYMBOL_GPL(ata_port_desc); 7386 #ifdef CONFIG_PCI 7387 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 7388 #endif /* CONFIG_PCI */ 7389 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 7390 EXPORT_SYMBOL_GPL(ata_link_abort); 7391 EXPORT_SYMBOL_GPL(ata_port_abort); 7392 EXPORT_SYMBOL_GPL(ata_port_freeze); 7393 EXPORT_SYMBOL_GPL(sata_async_notification); 7394 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 7395 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 7396 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 7397 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 7398 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 7399 EXPORT_SYMBOL_GPL(ata_do_eh); 7400 EXPORT_SYMBOL_GPL(ata_std_error_handler); 7401 7402 EXPORT_SYMBOL_GPL(ata_cable_40wire); 7403 EXPORT_SYMBOL_GPL(ata_cable_80wire); 7404 EXPORT_SYMBOL_GPL(ata_cable_unknown); 7405 EXPORT_SYMBOL_GPL(ata_cable_ignore); 7406 EXPORT_SYMBOL_GPL(ata_cable_sata); 7407 EXPORT_SYMBOL_GPL(ata_host_get); 7408 EXPORT_SYMBOL_GPL(ata_host_put); 7409