xref: /openbmc/linux/drivers/ata/libata-core.c (revision 82ced6fd)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
67 
68 #include "libata.h"
69 
70 
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
73 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
74 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
75 
76 const struct ata_port_operations ata_base_port_ops = {
77 	.prereset		= ata_std_prereset,
78 	.postreset		= ata_std_postreset,
79 	.error_handler		= ata_std_error_handler,
80 };
81 
82 const struct ata_port_operations sata_port_ops = {
83 	.inherits		= &ata_base_port_ops,
84 
85 	.qc_defer		= ata_std_qc_defer,
86 	.hardreset		= sata_std_hardreset,
87 };
88 
89 static unsigned int ata_dev_init_params(struct ata_device *dev,
90 					u16 heads, u16 sectors);
91 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
92 static unsigned int ata_dev_set_feature(struct ata_device *dev,
93 					u8 enable, u8 feature);
94 static void ata_dev_xfermask(struct ata_device *dev);
95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96 
97 unsigned int ata_print_id = 1;
98 static struct workqueue_struct *ata_wq;
99 
100 struct workqueue_struct *ata_aux_wq;
101 
102 struct ata_force_param {
103 	const char	*name;
104 	unsigned int	cbl;
105 	int		spd_limit;
106 	unsigned long	xfer_mask;
107 	unsigned int	horkage_on;
108 	unsigned int	horkage_off;
109 	unsigned int	lflags;
110 };
111 
112 struct ata_force_ent {
113 	int			port;
114 	int			device;
115 	struct ata_force_param	param;
116 };
117 
118 static struct ata_force_ent *ata_force_tbl;
119 static int ata_force_tbl_size;
120 
121 static char ata_force_param_buf[PAGE_SIZE] __initdata;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125 
126 static int atapi_enabled = 1;
127 module_param(atapi_enabled, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
129 
130 static int atapi_dmadir = 0;
131 module_param(atapi_dmadir, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
133 
134 int atapi_passthru16 = 1;
135 module_param(atapi_passthru16, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
137 
138 int libata_fua = 0;
139 module_param_named(fua, libata_fua, int, 0444);
140 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
141 
142 static int ata_ignore_hpa;
143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145 
146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
147 module_param_named(dma, libata_dma_mask, int, 0444);
148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149 
150 static int ata_probe_timeout;
151 module_param(ata_probe_timeout, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
153 
154 int libata_noacpi = 0;
155 module_param_named(noacpi, libata_noacpi, int, 0444);
156 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
157 
158 int libata_allow_tpm = 0;
159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
161 
162 MODULE_AUTHOR("Jeff Garzik");
163 MODULE_DESCRIPTION("Library module for ATA devices");
164 MODULE_LICENSE("GPL");
165 MODULE_VERSION(DRV_VERSION);
166 
167 
168 static bool ata_sstatus_online(u32 sstatus)
169 {
170 	return (sstatus & 0xf) == 0x3;
171 }
172 
173 /**
174  *	ata_link_next - link iteration helper
175  *	@link: the previous link, NULL to start
176  *	@ap: ATA port containing links to iterate
177  *	@mode: iteration mode, one of ATA_LITER_*
178  *
179  *	LOCKING:
180  *	Host lock or EH context.
181  *
182  *	RETURNS:
183  *	Pointer to the next link.
184  */
185 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
186 			       enum ata_link_iter_mode mode)
187 {
188 	BUG_ON(mode != ATA_LITER_EDGE &&
189 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
190 
191 	/* NULL link indicates start of iteration */
192 	if (!link)
193 		switch (mode) {
194 		case ATA_LITER_EDGE:
195 		case ATA_LITER_PMP_FIRST:
196 			if (sata_pmp_attached(ap))
197 				return ap->pmp_link;
198 			/* fall through */
199 		case ATA_LITER_HOST_FIRST:
200 			return &ap->link;
201 		}
202 
203 	/* we just iterated over the host link, what's next? */
204 	if (link == &ap->link)
205 		switch (mode) {
206 		case ATA_LITER_HOST_FIRST:
207 			if (sata_pmp_attached(ap))
208 				return ap->pmp_link;
209 			/* fall through */
210 		case ATA_LITER_PMP_FIRST:
211 			if (unlikely(ap->slave_link))
212 				return ap->slave_link;
213 			/* fall through */
214 		case ATA_LITER_EDGE:
215 			return NULL;
216 		}
217 
218 	/* slave_link excludes PMP */
219 	if (unlikely(link == ap->slave_link))
220 		return NULL;
221 
222 	/* we were over a PMP link */
223 	if (++link < ap->pmp_link + ap->nr_pmp_links)
224 		return link;
225 
226 	if (mode == ATA_LITER_PMP_FIRST)
227 		return &ap->link;
228 
229 	return NULL;
230 }
231 
232 /**
233  *	ata_dev_next - device iteration helper
234  *	@dev: the previous device, NULL to start
235  *	@link: ATA link containing devices to iterate
236  *	@mode: iteration mode, one of ATA_DITER_*
237  *
238  *	LOCKING:
239  *	Host lock or EH context.
240  *
241  *	RETURNS:
242  *	Pointer to the next device.
243  */
244 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
245 				enum ata_dev_iter_mode mode)
246 {
247 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
248 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
249 
250 	/* NULL dev indicates start of iteration */
251 	if (!dev)
252 		switch (mode) {
253 		case ATA_DITER_ENABLED:
254 		case ATA_DITER_ALL:
255 			dev = link->device;
256 			goto check;
257 		case ATA_DITER_ENABLED_REVERSE:
258 		case ATA_DITER_ALL_REVERSE:
259 			dev = link->device + ata_link_max_devices(link) - 1;
260 			goto check;
261 		}
262 
263  next:
264 	/* move to the next one */
265 	switch (mode) {
266 	case ATA_DITER_ENABLED:
267 	case ATA_DITER_ALL:
268 		if (++dev < link->device + ata_link_max_devices(link))
269 			goto check;
270 		return NULL;
271 	case ATA_DITER_ENABLED_REVERSE:
272 	case ATA_DITER_ALL_REVERSE:
273 		if (--dev >= link->device)
274 			goto check;
275 		return NULL;
276 	}
277 
278  check:
279 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
280 	    !ata_dev_enabled(dev))
281 		goto next;
282 	return dev;
283 }
284 
285 /**
286  *	ata_dev_phys_link - find physical link for a device
287  *	@dev: ATA device to look up physical link for
288  *
289  *	Look up physical link which @dev is attached to.  Note that
290  *	this is different from @dev->link only when @dev is on slave
291  *	link.  For all other cases, it's the same as @dev->link.
292  *
293  *	LOCKING:
294  *	Don't care.
295  *
296  *	RETURNS:
297  *	Pointer to the found physical link.
298  */
299 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
300 {
301 	struct ata_port *ap = dev->link->ap;
302 
303 	if (!ap->slave_link)
304 		return dev->link;
305 	if (!dev->devno)
306 		return &ap->link;
307 	return ap->slave_link;
308 }
309 
310 /**
311  *	ata_force_cbl - force cable type according to libata.force
312  *	@ap: ATA port of interest
313  *
314  *	Force cable type according to libata.force and whine about it.
315  *	The last entry which has matching port number is used, so it
316  *	can be specified as part of device force parameters.  For
317  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
318  *	same effect.
319  *
320  *	LOCKING:
321  *	EH context.
322  */
323 void ata_force_cbl(struct ata_port *ap)
324 {
325 	int i;
326 
327 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
328 		const struct ata_force_ent *fe = &ata_force_tbl[i];
329 
330 		if (fe->port != -1 && fe->port != ap->print_id)
331 			continue;
332 
333 		if (fe->param.cbl == ATA_CBL_NONE)
334 			continue;
335 
336 		ap->cbl = fe->param.cbl;
337 		ata_port_printk(ap, KERN_NOTICE,
338 				"FORCE: cable set to %s\n", fe->param.name);
339 		return;
340 	}
341 }
342 
343 /**
344  *	ata_force_link_limits - force link limits according to libata.force
345  *	@link: ATA link of interest
346  *
347  *	Force link flags and SATA spd limit according to libata.force
348  *	and whine about it.  When only the port part is specified
349  *	(e.g. 1:), the limit applies to all links connected to both
350  *	the host link and all fan-out ports connected via PMP.  If the
351  *	device part is specified as 0 (e.g. 1.00:), it specifies the
352  *	first fan-out link not the host link.  Device number 15 always
353  *	points to the host link whether PMP is attached or not.  If the
354  *	controller has slave link, device number 16 points to it.
355  *
356  *	LOCKING:
357  *	EH context.
358  */
359 static void ata_force_link_limits(struct ata_link *link)
360 {
361 	bool did_spd = false;
362 	int linkno = link->pmp;
363 	int i;
364 
365 	if (ata_is_host_link(link))
366 		linkno += 15;
367 
368 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
369 		const struct ata_force_ent *fe = &ata_force_tbl[i];
370 
371 		if (fe->port != -1 && fe->port != link->ap->print_id)
372 			continue;
373 
374 		if (fe->device != -1 && fe->device != linkno)
375 			continue;
376 
377 		/* only honor the first spd limit */
378 		if (!did_spd && fe->param.spd_limit) {
379 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
380 			ata_link_printk(link, KERN_NOTICE,
381 					"FORCE: PHY spd limit set to %s\n",
382 					fe->param.name);
383 			did_spd = true;
384 		}
385 
386 		/* let lflags stack */
387 		if (fe->param.lflags) {
388 			link->flags |= fe->param.lflags;
389 			ata_link_printk(link, KERN_NOTICE,
390 					"FORCE: link flag 0x%x forced -> 0x%x\n",
391 					fe->param.lflags, link->flags);
392 		}
393 	}
394 }
395 
396 /**
397  *	ata_force_xfermask - force xfermask according to libata.force
398  *	@dev: ATA device of interest
399  *
400  *	Force xfer_mask according to libata.force and whine about it.
401  *	For consistency with link selection, device number 15 selects
402  *	the first device connected to the host link.
403  *
404  *	LOCKING:
405  *	EH context.
406  */
407 static void ata_force_xfermask(struct ata_device *dev)
408 {
409 	int devno = dev->link->pmp + dev->devno;
410 	int alt_devno = devno;
411 	int i;
412 
413 	/* allow n.15/16 for devices attached to host port */
414 	if (ata_is_host_link(dev->link))
415 		alt_devno += 15;
416 
417 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
418 		const struct ata_force_ent *fe = &ata_force_tbl[i];
419 		unsigned long pio_mask, mwdma_mask, udma_mask;
420 
421 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
422 			continue;
423 
424 		if (fe->device != -1 && fe->device != devno &&
425 		    fe->device != alt_devno)
426 			continue;
427 
428 		if (!fe->param.xfer_mask)
429 			continue;
430 
431 		ata_unpack_xfermask(fe->param.xfer_mask,
432 				    &pio_mask, &mwdma_mask, &udma_mask);
433 		if (udma_mask)
434 			dev->udma_mask = udma_mask;
435 		else if (mwdma_mask) {
436 			dev->udma_mask = 0;
437 			dev->mwdma_mask = mwdma_mask;
438 		} else {
439 			dev->udma_mask = 0;
440 			dev->mwdma_mask = 0;
441 			dev->pio_mask = pio_mask;
442 		}
443 
444 		ata_dev_printk(dev, KERN_NOTICE,
445 			"FORCE: xfer_mask set to %s\n", fe->param.name);
446 		return;
447 	}
448 }
449 
450 /**
451  *	ata_force_horkage - force horkage according to libata.force
452  *	@dev: ATA device of interest
453  *
454  *	Force horkage according to libata.force and whine about it.
455  *	For consistency with link selection, device number 15 selects
456  *	the first device connected to the host link.
457  *
458  *	LOCKING:
459  *	EH context.
460  */
461 static void ata_force_horkage(struct ata_device *dev)
462 {
463 	int devno = dev->link->pmp + dev->devno;
464 	int alt_devno = devno;
465 	int i;
466 
467 	/* allow n.15/16 for devices attached to host port */
468 	if (ata_is_host_link(dev->link))
469 		alt_devno += 15;
470 
471 	for (i = 0; i < ata_force_tbl_size; i++) {
472 		const struct ata_force_ent *fe = &ata_force_tbl[i];
473 
474 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
475 			continue;
476 
477 		if (fe->device != -1 && fe->device != devno &&
478 		    fe->device != alt_devno)
479 			continue;
480 
481 		if (!(~dev->horkage & fe->param.horkage_on) &&
482 		    !(dev->horkage & fe->param.horkage_off))
483 			continue;
484 
485 		dev->horkage |= fe->param.horkage_on;
486 		dev->horkage &= ~fe->param.horkage_off;
487 
488 		ata_dev_printk(dev, KERN_NOTICE,
489 			"FORCE: horkage modified (%s)\n", fe->param.name);
490 	}
491 }
492 
493 /**
494  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495  *	@opcode: SCSI opcode
496  *
497  *	Determine ATAPI command type from @opcode.
498  *
499  *	LOCKING:
500  *	None.
501  *
502  *	RETURNS:
503  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504  */
505 int atapi_cmd_type(u8 opcode)
506 {
507 	switch (opcode) {
508 	case GPCMD_READ_10:
509 	case GPCMD_READ_12:
510 		return ATAPI_READ;
511 
512 	case GPCMD_WRITE_10:
513 	case GPCMD_WRITE_12:
514 	case GPCMD_WRITE_AND_VERIFY_10:
515 		return ATAPI_WRITE;
516 
517 	case GPCMD_READ_CD:
518 	case GPCMD_READ_CD_MSF:
519 		return ATAPI_READ_CD;
520 
521 	case ATA_16:
522 	case ATA_12:
523 		if (atapi_passthru16)
524 			return ATAPI_PASS_THRU;
525 		/* fall thru */
526 	default:
527 		return ATAPI_MISC;
528 	}
529 }
530 
531 /**
532  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533  *	@tf: Taskfile to convert
534  *	@pmp: Port multiplier port
535  *	@is_cmd: This FIS is for command
536  *	@fis: Buffer into which data will output
537  *
538  *	Converts a standard ATA taskfile to a Serial ATA
539  *	FIS structure (Register - Host to Device).
540  *
541  *	LOCKING:
542  *	Inherited from caller.
543  */
544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
545 {
546 	fis[0] = 0x27;			/* Register - Host to Device FIS */
547 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
548 	if (is_cmd)
549 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
550 
551 	fis[2] = tf->command;
552 	fis[3] = tf->feature;
553 
554 	fis[4] = tf->lbal;
555 	fis[5] = tf->lbam;
556 	fis[6] = tf->lbah;
557 	fis[7] = tf->device;
558 
559 	fis[8] = tf->hob_lbal;
560 	fis[9] = tf->hob_lbam;
561 	fis[10] = tf->hob_lbah;
562 	fis[11] = tf->hob_feature;
563 
564 	fis[12] = tf->nsect;
565 	fis[13] = tf->hob_nsect;
566 	fis[14] = 0;
567 	fis[15] = tf->ctl;
568 
569 	fis[16] = 0;
570 	fis[17] = 0;
571 	fis[18] = 0;
572 	fis[19] = 0;
573 }
574 
575 /**
576  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577  *	@fis: Buffer from which data will be input
578  *	@tf: Taskfile to output
579  *
580  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
581  *
582  *	LOCKING:
583  *	Inherited from caller.
584  */
585 
586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
587 {
588 	tf->command	= fis[2];	/* status */
589 	tf->feature	= fis[3];	/* error */
590 
591 	tf->lbal	= fis[4];
592 	tf->lbam	= fis[5];
593 	tf->lbah	= fis[6];
594 	tf->device	= fis[7];
595 
596 	tf->hob_lbal	= fis[8];
597 	tf->hob_lbam	= fis[9];
598 	tf->hob_lbah	= fis[10];
599 
600 	tf->nsect	= fis[12];
601 	tf->hob_nsect	= fis[13];
602 }
603 
604 static const u8 ata_rw_cmds[] = {
605 	/* pio multi */
606 	ATA_CMD_READ_MULTI,
607 	ATA_CMD_WRITE_MULTI,
608 	ATA_CMD_READ_MULTI_EXT,
609 	ATA_CMD_WRITE_MULTI_EXT,
610 	0,
611 	0,
612 	0,
613 	ATA_CMD_WRITE_MULTI_FUA_EXT,
614 	/* pio */
615 	ATA_CMD_PIO_READ,
616 	ATA_CMD_PIO_WRITE,
617 	ATA_CMD_PIO_READ_EXT,
618 	ATA_CMD_PIO_WRITE_EXT,
619 	0,
620 	0,
621 	0,
622 	0,
623 	/* dma */
624 	ATA_CMD_READ,
625 	ATA_CMD_WRITE,
626 	ATA_CMD_READ_EXT,
627 	ATA_CMD_WRITE_EXT,
628 	0,
629 	0,
630 	0,
631 	ATA_CMD_WRITE_FUA_EXT
632 };
633 
634 /**
635  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
636  *	@tf: command to examine and configure
637  *	@dev: device tf belongs to
638  *
639  *	Examine the device configuration and tf->flags to calculate
640  *	the proper read/write commands and protocol to use.
641  *
642  *	LOCKING:
643  *	caller.
644  */
645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
646 {
647 	u8 cmd;
648 
649 	int index, fua, lba48, write;
650 
651 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
652 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
653 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
654 
655 	if (dev->flags & ATA_DFLAG_PIO) {
656 		tf->protocol = ATA_PROT_PIO;
657 		index = dev->multi_count ? 0 : 8;
658 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
659 		/* Unable to use DMA due to host limitation */
660 		tf->protocol = ATA_PROT_PIO;
661 		index = dev->multi_count ? 0 : 8;
662 	} else {
663 		tf->protocol = ATA_PROT_DMA;
664 		index = 16;
665 	}
666 
667 	cmd = ata_rw_cmds[index + fua + lba48 + write];
668 	if (cmd) {
669 		tf->command = cmd;
670 		return 0;
671 	}
672 	return -1;
673 }
674 
675 /**
676  *	ata_tf_read_block - Read block address from ATA taskfile
677  *	@tf: ATA taskfile of interest
678  *	@dev: ATA device @tf belongs to
679  *
680  *	LOCKING:
681  *	None.
682  *
683  *	Read block address from @tf.  This function can handle all
684  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
685  *	flags select the address format to use.
686  *
687  *	RETURNS:
688  *	Block address read from @tf.
689  */
690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
691 {
692 	u64 block = 0;
693 
694 	if (tf->flags & ATA_TFLAG_LBA) {
695 		if (tf->flags & ATA_TFLAG_LBA48) {
696 			block |= (u64)tf->hob_lbah << 40;
697 			block |= (u64)tf->hob_lbam << 32;
698 			block |= (u64)tf->hob_lbal << 24;
699 		} else
700 			block |= (tf->device & 0xf) << 24;
701 
702 		block |= tf->lbah << 16;
703 		block |= tf->lbam << 8;
704 		block |= tf->lbal;
705 	} else {
706 		u32 cyl, head, sect;
707 
708 		cyl = tf->lbam | (tf->lbah << 8);
709 		head = tf->device & 0xf;
710 		sect = tf->lbal;
711 
712 		block = (cyl * dev->heads + head) * dev->sectors + sect;
713 	}
714 
715 	return block;
716 }
717 
718 /**
719  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
720  *	@tf: Target ATA taskfile
721  *	@dev: ATA device @tf belongs to
722  *	@block: Block address
723  *	@n_block: Number of blocks
724  *	@tf_flags: RW/FUA etc...
725  *	@tag: tag
726  *
727  *	LOCKING:
728  *	None.
729  *
730  *	Build ATA taskfile @tf for read/write request described by
731  *	@block, @n_block, @tf_flags and @tag on @dev.
732  *
733  *	RETURNS:
734  *
735  *	0 on success, -ERANGE if the request is too large for @dev,
736  *	-EINVAL if the request is invalid.
737  */
738 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
739 		    u64 block, u32 n_block, unsigned int tf_flags,
740 		    unsigned int tag)
741 {
742 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
743 	tf->flags |= tf_flags;
744 
745 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
746 		/* yay, NCQ */
747 		if (!lba_48_ok(block, n_block))
748 			return -ERANGE;
749 
750 		tf->protocol = ATA_PROT_NCQ;
751 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
752 
753 		if (tf->flags & ATA_TFLAG_WRITE)
754 			tf->command = ATA_CMD_FPDMA_WRITE;
755 		else
756 			tf->command = ATA_CMD_FPDMA_READ;
757 
758 		tf->nsect = tag << 3;
759 		tf->hob_feature = (n_block >> 8) & 0xff;
760 		tf->feature = n_block & 0xff;
761 
762 		tf->hob_lbah = (block >> 40) & 0xff;
763 		tf->hob_lbam = (block >> 32) & 0xff;
764 		tf->hob_lbal = (block >> 24) & 0xff;
765 		tf->lbah = (block >> 16) & 0xff;
766 		tf->lbam = (block >> 8) & 0xff;
767 		tf->lbal = block & 0xff;
768 
769 		tf->device = 1 << 6;
770 		if (tf->flags & ATA_TFLAG_FUA)
771 			tf->device |= 1 << 7;
772 	} else if (dev->flags & ATA_DFLAG_LBA) {
773 		tf->flags |= ATA_TFLAG_LBA;
774 
775 		if (lba_28_ok(block, n_block)) {
776 			/* use LBA28 */
777 			tf->device |= (block >> 24) & 0xf;
778 		} else if (lba_48_ok(block, n_block)) {
779 			if (!(dev->flags & ATA_DFLAG_LBA48))
780 				return -ERANGE;
781 
782 			/* use LBA48 */
783 			tf->flags |= ATA_TFLAG_LBA48;
784 
785 			tf->hob_nsect = (n_block >> 8) & 0xff;
786 
787 			tf->hob_lbah = (block >> 40) & 0xff;
788 			tf->hob_lbam = (block >> 32) & 0xff;
789 			tf->hob_lbal = (block >> 24) & 0xff;
790 		} else
791 			/* request too large even for LBA48 */
792 			return -ERANGE;
793 
794 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
795 			return -EINVAL;
796 
797 		tf->nsect = n_block & 0xff;
798 
799 		tf->lbah = (block >> 16) & 0xff;
800 		tf->lbam = (block >> 8) & 0xff;
801 		tf->lbal = block & 0xff;
802 
803 		tf->device |= ATA_LBA;
804 	} else {
805 		/* CHS */
806 		u32 sect, head, cyl, track;
807 
808 		/* The request -may- be too large for CHS addressing. */
809 		if (!lba_28_ok(block, n_block))
810 			return -ERANGE;
811 
812 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
813 			return -EINVAL;
814 
815 		/* Convert LBA to CHS */
816 		track = (u32)block / dev->sectors;
817 		cyl   = track / dev->heads;
818 		head  = track % dev->heads;
819 		sect  = (u32)block % dev->sectors + 1;
820 
821 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
822 			(u32)block, track, cyl, head, sect);
823 
824 		/* Check whether the converted CHS can fit.
825 		   Cylinder: 0-65535
826 		   Head: 0-15
827 		   Sector: 1-255*/
828 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
829 			return -ERANGE;
830 
831 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
832 		tf->lbal = sect;
833 		tf->lbam = cyl;
834 		tf->lbah = cyl >> 8;
835 		tf->device |= head;
836 	}
837 
838 	return 0;
839 }
840 
841 /**
842  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
843  *	@pio_mask: pio_mask
844  *	@mwdma_mask: mwdma_mask
845  *	@udma_mask: udma_mask
846  *
847  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
848  *	unsigned int xfer_mask.
849  *
850  *	LOCKING:
851  *	None.
852  *
853  *	RETURNS:
854  *	Packed xfer_mask.
855  */
856 unsigned long ata_pack_xfermask(unsigned long pio_mask,
857 				unsigned long mwdma_mask,
858 				unsigned long udma_mask)
859 {
860 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
861 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
862 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
863 }
864 
865 /**
866  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
867  *	@xfer_mask: xfer_mask to unpack
868  *	@pio_mask: resulting pio_mask
869  *	@mwdma_mask: resulting mwdma_mask
870  *	@udma_mask: resulting udma_mask
871  *
872  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
873  *	Any NULL distination masks will be ignored.
874  */
875 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
876 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
877 {
878 	if (pio_mask)
879 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
880 	if (mwdma_mask)
881 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
882 	if (udma_mask)
883 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
884 }
885 
886 static const struct ata_xfer_ent {
887 	int shift, bits;
888 	u8 base;
889 } ata_xfer_tbl[] = {
890 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
891 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
892 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
893 	{ -1, },
894 };
895 
896 /**
897  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
898  *	@xfer_mask: xfer_mask of interest
899  *
900  *	Return matching XFER_* value for @xfer_mask.  Only the highest
901  *	bit of @xfer_mask is considered.
902  *
903  *	LOCKING:
904  *	None.
905  *
906  *	RETURNS:
907  *	Matching XFER_* value, 0xff if no match found.
908  */
909 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
910 {
911 	int highbit = fls(xfer_mask) - 1;
912 	const struct ata_xfer_ent *ent;
913 
914 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
915 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
916 			return ent->base + highbit - ent->shift;
917 	return 0xff;
918 }
919 
920 /**
921  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
922  *	@xfer_mode: XFER_* of interest
923  *
924  *	Return matching xfer_mask for @xfer_mode.
925  *
926  *	LOCKING:
927  *	None.
928  *
929  *	RETURNS:
930  *	Matching xfer_mask, 0 if no match found.
931  */
932 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
933 {
934 	const struct ata_xfer_ent *ent;
935 
936 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
937 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
938 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
939 				& ~((1 << ent->shift) - 1);
940 	return 0;
941 }
942 
943 /**
944  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
945  *	@xfer_mode: XFER_* of interest
946  *
947  *	Return matching xfer_shift for @xfer_mode.
948  *
949  *	LOCKING:
950  *	None.
951  *
952  *	RETURNS:
953  *	Matching xfer_shift, -1 if no match found.
954  */
955 int ata_xfer_mode2shift(unsigned long xfer_mode)
956 {
957 	const struct ata_xfer_ent *ent;
958 
959 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 			return ent->shift;
962 	return -1;
963 }
964 
965 /**
966  *	ata_mode_string - convert xfer_mask to string
967  *	@xfer_mask: mask of bits supported; only highest bit counts.
968  *
969  *	Determine string which represents the highest speed
970  *	(highest bit in @modemask).
971  *
972  *	LOCKING:
973  *	None.
974  *
975  *	RETURNS:
976  *	Constant C string representing highest speed listed in
977  *	@mode_mask, or the constant C string "<n/a>".
978  */
979 const char *ata_mode_string(unsigned long xfer_mask)
980 {
981 	static const char * const xfer_mode_str[] = {
982 		"PIO0",
983 		"PIO1",
984 		"PIO2",
985 		"PIO3",
986 		"PIO4",
987 		"PIO5",
988 		"PIO6",
989 		"MWDMA0",
990 		"MWDMA1",
991 		"MWDMA2",
992 		"MWDMA3",
993 		"MWDMA4",
994 		"UDMA/16",
995 		"UDMA/25",
996 		"UDMA/33",
997 		"UDMA/44",
998 		"UDMA/66",
999 		"UDMA/100",
1000 		"UDMA/133",
1001 		"UDMA7",
1002 	};
1003 	int highbit;
1004 
1005 	highbit = fls(xfer_mask) - 1;
1006 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1007 		return xfer_mode_str[highbit];
1008 	return "<n/a>";
1009 }
1010 
1011 static const char *sata_spd_string(unsigned int spd)
1012 {
1013 	static const char * const spd_str[] = {
1014 		"1.5 Gbps",
1015 		"3.0 Gbps",
1016 		"6.0 Gbps",
1017 	};
1018 
1019 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1020 		return "<unknown>";
1021 	return spd_str[spd - 1];
1022 }
1023 
1024 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1025 {
1026 	struct ata_link *link = dev->link;
1027 	struct ata_port *ap = link->ap;
1028 	u32 scontrol;
1029 	unsigned int err_mask;
1030 	int rc;
1031 
1032 	/*
1033 	 * disallow DIPM for drivers which haven't set
1034 	 * ATA_FLAG_IPM.  This is because when DIPM is enabled,
1035 	 * phy ready will be set in the interrupt status on
1036 	 * state changes, which will cause some drivers to
1037 	 * think there are errors - additionally drivers will
1038 	 * need to disable hot plug.
1039 	 */
1040 	if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1041 		ap->pm_policy = NOT_AVAILABLE;
1042 		return -EINVAL;
1043 	}
1044 
1045 	/*
1046 	 * For DIPM, we will only enable it for the
1047 	 * min_power setting.
1048 	 *
1049 	 * Why?  Because Disks are too stupid to know that
1050 	 * If the host rejects a request to go to SLUMBER
1051 	 * they should retry at PARTIAL, and instead it
1052 	 * just would give up.  So, for medium_power to
1053 	 * work at all, we need to only allow HIPM.
1054 	 */
1055 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1056 	if (rc)
1057 		return rc;
1058 
1059 	switch (policy) {
1060 	case MIN_POWER:
1061 		/* no restrictions on IPM transitions */
1062 		scontrol &= ~(0x3 << 8);
1063 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1064 		if (rc)
1065 			return rc;
1066 
1067 		/* enable DIPM */
1068 		if (dev->flags & ATA_DFLAG_DIPM)
1069 			err_mask = ata_dev_set_feature(dev,
1070 					SETFEATURES_SATA_ENABLE, SATA_DIPM);
1071 		break;
1072 	case MEDIUM_POWER:
1073 		/* allow IPM to PARTIAL */
1074 		scontrol &= ~(0x1 << 8);
1075 		scontrol |= (0x2 << 8);
1076 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1077 		if (rc)
1078 			return rc;
1079 
1080 		/*
1081 		 * we don't have to disable DIPM since IPM flags
1082 		 * disallow transitions to SLUMBER, which effectively
1083 		 * disable DIPM if it does not support PARTIAL
1084 		 */
1085 		break;
1086 	case NOT_AVAILABLE:
1087 	case MAX_PERFORMANCE:
1088 		/* disable all IPM transitions */
1089 		scontrol |= (0x3 << 8);
1090 		rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1091 		if (rc)
1092 			return rc;
1093 
1094 		/*
1095 		 * we don't have to disable DIPM since IPM flags
1096 		 * disallow all transitions which effectively
1097 		 * disable DIPM anyway.
1098 		 */
1099 		break;
1100 	}
1101 
1102 	/* FIXME: handle SET FEATURES failure */
1103 	(void) err_mask;
1104 
1105 	return 0;
1106 }
1107 
1108 /**
1109  *	ata_dev_enable_pm - enable SATA interface power management
1110  *	@dev:  device to enable power management
1111  *	@policy: the link power management policy
1112  *
1113  *	Enable SATA Interface power management.  This will enable
1114  *	Device Interface Power Management (DIPM) for min_power
1115  * 	policy, and then call driver specific callbacks for
1116  *	enabling Host Initiated Power management.
1117  *
1118  *	Locking: Caller.
1119  *	Returns: -EINVAL if IPM is not supported, 0 otherwise.
1120  */
1121 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1122 {
1123 	int rc = 0;
1124 	struct ata_port *ap = dev->link->ap;
1125 
1126 	/* set HIPM first, then DIPM */
1127 	if (ap->ops->enable_pm)
1128 		rc = ap->ops->enable_pm(ap, policy);
1129 	if (rc)
1130 		goto enable_pm_out;
1131 	rc = ata_dev_set_dipm(dev, policy);
1132 
1133 enable_pm_out:
1134 	if (rc)
1135 		ap->pm_policy = MAX_PERFORMANCE;
1136 	else
1137 		ap->pm_policy = policy;
1138 	return /* rc */;	/* hopefully we can use 'rc' eventually */
1139 }
1140 
1141 #ifdef CONFIG_PM
1142 /**
1143  *	ata_dev_disable_pm - disable SATA interface power management
1144  *	@dev: device to disable power management
1145  *
1146  *	Disable SATA Interface power management.  This will disable
1147  *	Device Interface Power Management (DIPM) without changing
1148  * 	policy,  call driver specific callbacks for disabling Host
1149  * 	Initiated Power management.
1150  *
1151  *	Locking: Caller.
1152  *	Returns: void
1153  */
1154 static void ata_dev_disable_pm(struct ata_device *dev)
1155 {
1156 	struct ata_port *ap = dev->link->ap;
1157 
1158 	ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1159 	if (ap->ops->disable_pm)
1160 		ap->ops->disable_pm(ap);
1161 }
1162 #endif	/* CONFIG_PM */
1163 
1164 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1165 {
1166 	ap->pm_policy = policy;
1167 	ap->link.eh_info.action |= ATA_EH_LPM;
1168 	ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1169 	ata_port_schedule_eh(ap);
1170 }
1171 
1172 #ifdef CONFIG_PM
1173 static void ata_lpm_enable(struct ata_host *host)
1174 {
1175 	struct ata_link *link;
1176 	struct ata_port *ap;
1177 	struct ata_device *dev;
1178 	int i;
1179 
1180 	for (i = 0; i < host->n_ports; i++) {
1181 		ap = host->ports[i];
1182 		ata_for_each_link(link, ap, EDGE) {
1183 			ata_for_each_dev(dev, link, ALL)
1184 				ata_dev_disable_pm(dev);
1185 		}
1186 	}
1187 }
1188 
1189 static void ata_lpm_disable(struct ata_host *host)
1190 {
1191 	int i;
1192 
1193 	for (i = 0; i < host->n_ports; i++) {
1194 		struct ata_port *ap = host->ports[i];
1195 		ata_lpm_schedule(ap, ap->pm_policy);
1196 	}
1197 }
1198 #endif	/* CONFIG_PM */
1199 
1200 /**
1201  *	ata_dev_classify - determine device type based on ATA-spec signature
1202  *	@tf: ATA taskfile register set for device to be identified
1203  *
1204  *	Determine from taskfile register contents whether a device is
1205  *	ATA or ATAPI, as per "Signature and persistence" section
1206  *	of ATA/PI spec (volume 1, sect 5.14).
1207  *
1208  *	LOCKING:
1209  *	None.
1210  *
1211  *	RETURNS:
1212  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1213  *	%ATA_DEV_UNKNOWN the event of failure.
1214  */
1215 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1216 {
1217 	/* Apple's open source Darwin code hints that some devices only
1218 	 * put a proper signature into the LBA mid/high registers,
1219 	 * So, we only check those.  It's sufficient for uniqueness.
1220 	 *
1221 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1222 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1223 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1224 	 * spec has never mentioned about using different signatures
1225 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1226 	 * Multiplier specification began to use 0x69/0x96 to identify
1227 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1228 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1229 	 * 0x69/0x96 shortly and described them as reserved for
1230 	 * SerialATA.
1231 	 *
1232 	 * We follow the current spec and consider that 0x69/0x96
1233 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1234 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1235 	 * SEMB signature.  This is worked around in
1236 	 * ata_dev_read_id().
1237 	 */
1238 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1239 		DPRINTK("found ATA device by sig\n");
1240 		return ATA_DEV_ATA;
1241 	}
1242 
1243 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1244 		DPRINTK("found ATAPI device by sig\n");
1245 		return ATA_DEV_ATAPI;
1246 	}
1247 
1248 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1249 		DPRINTK("found PMP device by sig\n");
1250 		return ATA_DEV_PMP;
1251 	}
1252 
1253 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1254 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1255 		return ATA_DEV_SEMB;
1256 	}
1257 
1258 	DPRINTK("unknown device\n");
1259 	return ATA_DEV_UNKNOWN;
1260 }
1261 
1262 /**
1263  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1264  *	@id: IDENTIFY DEVICE results we will examine
1265  *	@s: string into which data is output
1266  *	@ofs: offset into identify device page
1267  *	@len: length of string to return. must be an even number.
1268  *
1269  *	The strings in the IDENTIFY DEVICE page are broken up into
1270  *	16-bit chunks.  Run through the string, and output each
1271  *	8-bit chunk linearly, regardless of platform.
1272  *
1273  *	LOCKING:
1274  *	caller.
1275  */
1276 
1277 void ata_id_string(const u16 *id, unsigned char *s,
1278 		   unsigned int ofs, unsigned int len)
1279 {
1280 	unsigned int c;
1281 
1282 	BUG_ON(len & 1);
1283 
1284 	while (len > 0) {
1285 		c = id[ofs] >> 8;
1286 		*s = c;
1287 		s++;
1288 
1289 		c = id[ofs] & 0xff;
1290 		*s = c;
1291 		s++;
1292 
1293 		ofs++;
1294 		len -= 2;
1295 	}
1296 }
1297 
1298 /**
1299  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1300  *	@id: IDENTIFY DEVICE results we will examine
1301  *	@s: string into which data is output
1302  *	@ofs: offset into identify device page
1303  *	@len: length of string to return. must be an odd number.
1304  *
1305  *	This function is identical to ata_id_string except that it
1306  *	trims trailing spaces and terminates the resulting string with
1307  *	null.  @len must be actual maximum length (even number) + 1.
1308  *
1309  *	LOCKING:
1310  *	caller.
1311  */
1312 void ata_id_c_string(const u16 *id, unsigned char *s,
1313 		     unsigned int ofs, unsigned int len)
1314 {
1315 	unsigned char *p;
1316 
1317 	ata_id_string(id, s, ofs, len - 1);
1318 
1319 	p = s + strnlen(s, len - 1);
1320 	while (p > s && p[-1] == ' ')
1321 		p--;
1322 	*p = '\0';
1323 }
1324 
1325 static u64 ata_id_n_sectors(const u16 *id)
1326 {
1327 	if (ata_id_has_lba(id)) {
1328 		if (ata_id_has_lba48(id))
1329 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1330 		else
1331 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1332 	} else {
1333 		if (ata_id_current_chs_valid(id))
1334 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1335 			       id[ATA_ID_CUR_SECTORS];
1336 		else
1337 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1338 			       id[ATA_ID_SECTORS];
1339 	}
1340 }
1341 
1342 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1343 {
1344 	u64 sectors = 0;
1345 
1346 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1347 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1348 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1349 	sectors |= (tf->lbah & 0xff) << 16;
1350 	sectors |= (tf->lbam & 0xff) << 8;
1351 	sectors |= (tf->lbal & 0xff);
1352 
1353 	return sectors;
1354 }
1355 
1356 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1357 {
1358 	u64 sectors = 0;
1359 
1360 	sectors |= (tf->device & 0x0f) << 24;
1361 	sectors |= (tf->lbah & 0xff) << 16;
1362 	sectors |= (tf->lbam & 0xff) << 8;
1363 	sectors |= (tf->lbal & 0xff);
1364 
1365 	return sectors;
1366 }
1367 
1368 /**
1369  *	ata_read_native_max_address - Read native max address
1370  *	@dev: target device
1371  *	@max_sectors: out parameter for the result native max address
1372  *
1373  *	Perform an LBA48 or LBA28 native size query upon the device in
1374  *	question.
1375  *
1376  *	RETURNS:
1377  *	0 on success, -EACCES if command is aborted by the drive.
1378  *	-EIO on other errors.
1379  */
1380 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1381 {
1382 	unsigned int err_mask;
1383 	struct ata_taskfile tf;
1384 	int lba48 = ata_id_has_lba48(dev->id);
1385 
1386 	ata_tf_init(dev, &tf);
1387 
1388 	/* always clear all address registers */
1389 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1390 
1391 	if (lba48) {
1392 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1393 		tf.flags |= ATA_TFLAG_LBA48;
1394 	} else
1395 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1396 
1397 	tf.protocol |= ATA_PROT_NODATA;
1398 	tf.device |= ATA_LBA;
1399 
1400 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1401 	if (err_mask) {
1402 		ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1403 			       "max address (err_mask=0x%x)\n", err_mask);
1404 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1405 			return -EACCES;
1406 		return -EIO;
1407 	}
1408 
1409 	if (lba48)
1410 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1411 	else
1412 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1413 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1414 		(*max_sectors)--;
1415 	return 0;
1416 }
1417 
1418 /**
1419  *	ata_set_max_sectors - Set max sectors
1420  *	@dev: target device
1421  *	@new_sectors: new max sectors value to set for the device
1422  *
1423  *	Set max sectors of @dev to @new_sectors.
1424  *
1425  *	RETURNS:
1426  *	0 on success, -EACCES if command is aborted or denied (due to
1427  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1428  *	errors.
1429  */
1430 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1431 {
1432 	unsigned int err_mask;
1433 	struct ata_taskfile tf;
1434 	int lba48 = ata_id_has_lba48(dev->id);
1435 
1436 	new_sectors--;
1437 
1438 	ata_tf_init(dev, &tf);
1439 
1440 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1441 
1442 	if (lba48) {
1443 		tf.command = ATA_CMD_SET_MAX_EXT;
1444 		tf.flags |= ATA_TFLAG_LBA48;
1445 
1446 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1447 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1448 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1449 	} else {
1450 		tf.command = ATA_CMD_SET_MAX;
1451 
1452 		tf.device |= (new_sectors >> 24) & 0xf;
1453 	}
1454 
1455 	tf.protocol |= ATA_PROT_NODATA;
1456 	tf.device |= ATA_LBA;
1457 
1458 	tf.lbal = (new_sectors >> 0) & 0xff;
1459 	tf.lbam = (new_sectors >> 8) & 0xff;
1460 	tf.lbah = (new_sectors >> 16) & 0xff;
1461 
1462 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1463 	if (err_mask) {
1464 		ata_dev_printk(dev, KERN_WARNING, "failed to set "
1465 			       "max address (err_mask=0x%x)\n", err_mask);
1466 		if (err_mask == AC_ERR_DEV &&
1467 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1468 			return -EACCES;
1469 		return -EIO;
1470 	}
1471 
1472 	return 0;
1473 }
1474 
1475 /**
1476  *	ata_hpa_resize		-	Resize a device with an HPA set
1477  *	@dev: Device to resize
1478  *
1479  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1480  *	it if required to the full size of the media. The caller must check
1481  *	the drive has the HPA feature set enabled.
1482  *
1483  *	RETURNS:
1484  *	0 on success, -errno on failure.
1485  */
1486 static int ata_hpa_resize(struct ata_device *dev)
1487 {
1488 	struct ata_eh_context *ehc = &dev->link->eh_context;
1489 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1490 	u64 sectors = ata_id_n_sectors(dev->id);
1491 	u64 native_sectors;
1492 	int rc;
1493 
1494 	/* do we need to do it? */
1495 	if (dev->class != ATA_DEV_ATA ||
1496 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1497 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1498 		return 0;
1499 
1500 	/* read native max address */
1501 	rc = ata_read_native_max_address(dev, &native_sectors);
1502 	if (rc) {
1503 		/* If device aborted the command or HPA isn't going to
1504 		 * be unlocked, skip HPA resizing.
1505 		 */
1506 		if (rc == -EACCES || !ata_ignore_hpa) {
1507 			ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1508 				       "broken, skipping HPA handling\n");
1509 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1510 
1511 			/* we can continue if device aborted the command */
1512 			if (rc == -EACCES)
1513 				rc = 0;
1514 		}
1515 
1516 		return rc;
1517 	}
1518 
1519 	/* nothing to do? */
1520 	if (native_sectors <= sectors || !ata_ignore_hpa) {
1521 		if (!print_info || native_sectors == sectors)
1522 			return 0;
1523 
1524 		if (native_sectors > sectors)
1525 			ata_dev_printk(dev, KERN_INFO,
1526 				"HPA detected: current %llu, native %llu\n",
1527 				(unsigned long long)sectors,
1528 				(unsigned long long)native_sectors);
1529 		else if (native_sectors < sectors)
1530 			ata_dev_printk(dev, KERN_WARNING,
1531 				"native sectors (%llu) is smaller than "
1532 				"sectors (%llu)\n",
1533 				(unsigned long long)native_sectors,
1534 				(unsigned long long)sectors);
1535 		return 0;
1536 	}
1537 
1538 	/* let's unlock HPA */
1539 	rc = ata_set_max_sectors(dev, native_sectors);
1540 	if (rc == -EACCES) {
1541 		/* if device aborted the command, skip HPA resizing */
1542 		ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1543 			       "(%llu -> %llu), skipping HPA handling\n",
1544 			       (unsigned long long)sectors,
1545 			       (unsigned long long)native_sectors);
1546 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1547 		return 0;
1548 	} else if (rc)
1549 		return rc;
1550 
1551 	/* re-read IDENTIFY data */
1552 	rc = ata_dev_reread_id(dev, 0);
1553 	if (rc) {
1554 		ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1555 			       "data after HPA resizing\n");
1556 		return rc;
1557 	}
1558 
1559 	if (print_info) {
1560 		u64 new_sectors = ata_id_n_sectors(dev->id);
1561 		ata_dev_printk(dev, KERN_INFO,
1562 			"HPA unlocked: %llu -> %llu, native %llu\n",
1563 			(unsigned long long)sectors,
1564 			(unsigned long long)new_sectors,
1565 			(unsigned long long)native_sectors);
1566 	}
1567 
1568 	return 0;
1569 }
1570 
1571 /**
1572  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1573  *	@id: IDENTIFY DEVICE page to dump
1574  *
1575  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1576  *	page.
1577  *
1578  *	LOCKING:
1579  *	caller.
1580  */
1581 
1582 static inline void ata_dump_id(const u16 *id)
1583 {
1584 	DPRINTK("49==0x%04x  "
1585 		"53==0x%04x  "
1586 		"63==0x%04x  "
1587 		"64==0x%04x  "
1588 		"75==0x%04x  \n",
1589 		id[49],
1590 		id[53],
1591 		id[63],
1592 		id[64],
1593 		id[75]);
1594 	DPRINTK("80==0x%04x  "
1595 		"81==0x%04x  "
1596 		"82==0x%04x  "
1597 		"83==0x%04x  "
1598 		"84==0x%04x  \n",
1599 		id[80],
1600 		id[81],
1601 		id[82],
1602 		id[83],
1603 		id[84]);
1604 	DPRINTK("88==0x%04x  "
1605 		"93==0x%04x\n",
1606 		id[88],
1607 		id[93]);
1608 }
1609 
1610 /**
1611  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1612  *	@id: IDENTIFY data to compute xfer mask from
1613  *
1614  *	Compute the xfermask for this device. This is not as trivial
1615  *	as it seems if we must consider early devices correctly.
1616  *
1617  *	FIXME: pre IDE drive timing (do we care ?).
1618  *
1619  *	LOCKING:
1620  *	None.
1621  *
1622  *	RETURNS:
1623  *	Computed xfermask
1624  */
1625 unsigned long ata_id_xfermask(const u16 *id)
1626 {
1627 	unsigned long pio_mask, mwdma_mask, udma_mask;
1628 
1629 	/* Usual case. Word 53 indicates word 64 is valid */
1630 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1631 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1632 		pio_mask <<= 3;
1633 		pio_mask |= 0x7;
1634 	} else {
1635 		/* If word 64 isn't valid then Word 51 high byte holds
1636 		 * the PIO timing number for the maximum. Turn it into
1637 		 * a mask.
1638 		 */
1639 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1640 		if (mode < 5)	/* Valid PIO range */
1641 			pio_mask = (2 << mode) - 1;
1642 		else
1643 			pio_mask = 1;
1644 
1645 		/* But wait.. there's more. Design your standards by
1646 		 * committee and you too can get a free iordy field to
1647 		 * process. However its the speeds not the modes that
1648 		 * are supported... Note drivers using the timing API
1649 		 * will get this right anyway
1650 		 */
1651 	}
1652 
1653 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1654 
1655 	if (ata_id_is_cfa(id)) {
1656 		/*
1657 		 *	Process compact flash extended modes
1658 		 */
1659 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1660 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1661 
1662 		if (pio)
1663 			pio_mask |= (1 << 5);
1664 		if (pio > 1)
1665 			pio_mask |= (1 << 6);
1666 		if (dma)
1667 			mwdma_mask |= (1 << 3);
1668 		if (dma > 1)
1669 			mwdma_mask |= (1 << 4);
1670 	}
1671 
1672 	udma_mask = 0;
1673 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1674 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1675 
1676 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1677 }
1678 
1679 /**
1680  *	ata_pio_queue_task - Queue port_task
1681  *	@ap: The ata_port to queue port_task for
1682  *	@data: data for @fn to use
1683  *	@delay: delay time in msecs for workqueue function
1684  *
1685  *	Schedule @fn(@data) for execution after @delay jiffies using
1686  *	port_task.  There is one port_task per port and it's the
1687  *	user(low level driver)'s responsibility to make sure that only
1688  *	one task is active at any given time.
1689  *
1690  *	libata core layer takes care of synchronization between
1691  *	port_task and EH.  ata_pio_queue_task() may be ignored for EH
1692  *	synchronization.
1693  *
1694  *	LOCKING:
1695  *	Inherited from caller.
1696  */
1697 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1698 {
1699 	ap->port_task_data = data;
1700 
1701 	/* may fail if ata_port_flush_task() in progress */
1702 	queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1703 }
1704 
1705 /**
1706  *	ata_port_flush_task - Flush port_task
1707  *	@ap: The ata_port to flush port_task for
1708  *
1709  *	After this function completes, port_task is guranteed not to
1710  *	be running or scheduled.
1711  *
1712  *	LOCKING:
1713  *	Kernel thread context (may sleep)
1714  */
1715 void ata_port_flush_task(struct ata_port *ap)
1716 {
1717 	DPRINTK("ENTER\n");
1718 
1719 	cancel_rearming_delayed_work(&ap->port_task);
1720 
1721 	if (ata_msg_ctl(ap))
1722 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1723 }
1724 
1725 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1726 {
1727 	struct completion *waiting = qc->private_data;
1728 
1729 	complete(waiting);
1730 }
1731 
1732 /**
1733  *	ata_exec_internal_sg - execute libata internal command
1734  *	@dev: Device to which the command is sent
1735  *	@tf: Taskfile registers for the command and the result
1736  *	@cdb: CDB for packet command
1737  *	@dma_dir: Data tranfer direction of the command
1738  *	@sgl: sg list for the data buffer of the command
1739  *	@n_elem: Number of sg entries
1740  *	@timeout: Timeout in msecs (0 for default)
1741  *
1742  *	Executes libata internal command with timeout.  @tf contains
1743  *	command on entry and result on return.  Timeout and error
1744  *	conditions are reported via return value.  No recovery action
1745  *	is taken after a command times out.  It's caller's duty to
1746  *	clean up after timeout.
1747  *
1748  *	LOCKING:
1749  *	None.  Should be called with kernel context, might sleep.
1750  *
1751  *	RETURNS:
1752  *	Zero on success, AC_ERR_* mask on failure
1753  */
1754 unsigned ata_exec_internal_sg(struct ata_device *dev,
1755 			      struct ata_taskfile *tf, const u8 *cdb,
1756 			      int dma_dir, struct scatterlist *sgl,
1757 			      unsigned int n_elem, unsigned long timeout)
1758 {
1759 	struct ata_link *link = dev->link;
1760 	struct ata_port *ap = link->ap;
1761 	u8 command = tf->command;
1762 	int auto_timeout = 0;
1763 	struct ata_queued_cmd *qc;
1764 	unsigned int tag, preempted_tag;
1765 	u32 preempted_sactive, preempted_qc_active;
1766 	int preempted_nr_active_links;
1767 	DECLARE_COMPLETION_ONSTACK(wait);
1768 	unsigned long flags;
1769 	unsigned int err_mask;
1770 	int rc;
1771 
1772 	spin_lock_irqsave(ap->lock, flags);
1773 
1774 	/* no internal command while frozen */
1775 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1776 		spin_unlock_irqrestore(ap->lock, flags);
1777 		return AC_ERR_SYSTEM;
1778 	}
1779 
1780 	/* initialize internal qc */
1781 
1782 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1783 	 * drivers choke if any other tag is given.  This breaks
1784 	 * ata_tag_internal() test for those drivers.  Don't use new
1785 	 * EH stuff without converting to it.
1786 	 */
1787 	if (ap->ops->error_handler)
1788 		tag = ATA_TAG_INTERNAL;
1789 	else
1790 		tag = 0;
1791 
1792 	if (test_and_set_bit(tag, &ap->qc_allocated))
1793 		BUG();
1794 	qc = __ata_qc_from_tag(ap, tag);
1795 
1796 	qc->tag = tag;
1797 	qc->scsicmd = NULL;
1798 	qc->ap = ap;
1799 	qc->dev = dev;
1800 	ata_qc_reinit(qc);
1801 
1802 	preempted_tag = link->active_tag;
1803 	preempted_sactive = link->sactive;
1804 	preempted_qc_active = ap->qc_active;
1805 	preempted_nr_active_links = ap->nr_active_links;
1806 	link->active_tag = ATA_TAG_POISON;
1807 	link->sactive = 0;
1808 	ap->qc_active = 0;
1809 	ap->nr_active_links = 0;
1810 
1811 	/* prepare & issue qc */
1812 	qc->tf = *tf;
1813 	if (cdb)
1814 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1815 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1816 	qc->dma_dir = dma_dir;
1817 	if (dma_dir != DMA_NONE) {
1818 		unsigned int i, buflen = 0;
1819 		struct scatterlist *sg;
1820 
1821 		for_each_sg(sgl, sg, n_elem, i)
1822 			buflen += sg->length;
1823 
1824 		ata_sg_init(qc, sgl, n_elem);
1825 		qc->nbytes = buflen;
1826 	}
1827 
1828 	qc->private_data = &wait;
1829 	qc->complete_fn = ata_qc_complete_internal;
1830 
1831 	ata_qc_issue(qc);
1832 
1833 	spin_unlock_irqrestore(ap->lock, flags);
1834 
1835 	if (!timeout) {
1836 		if (ata_probe_timeout)
1837 			timeout = ata_probe_timeout * 1000;
1838 		else {
1839 			timeout = ata_internal_cmd_timeout(dev, command);
1840 			auto_timeout = 1;
1841 		}
1842 	}
1843 
1844 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1845 
1846 	ata_port_flush_task(ap);
1847 
1848 	if (!rc) {
1849 		spin_lock_irqsave(ap->lock, flags);
1850 
1851 		/* We're racing with irq here.  If we lose, the
1852 		 * following test prevents us from completing the qc
1853 		 * twice.  If we win, the port is frozen and will be
1854 		 * cleaned up by ->post_internal_cmd().
1855 		 */
1856 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1857 			qc->err_mask |= AC_ERR_TIMEOUT;
1858 
1859 			if (ap->ops->error_handler)
1860 				ata_port_freeze(ap);
1861 			else
1862 				ata_qc_complete(qc);
1863 
1864 			if (ata_msg_warn(ap))
1865 				ata_dev_printk(dev, KERN_WARNING,
1866 					"qc timeout (cmd 0x%x)\n", command);
1867 		}
1868 
1869 		spin_unlock_irqrestore(ap->lock, flags);
1870 	}
1871 
1872 	/* do post_internal_cmd */
1873 	if (ap->ops->post_internal_cmd)
1874 		ap->ops->post_internal_cmd(qc);
1875 
1876 	/* perform minimal error analysis */
1877 	if (qc->flags & ATA_QCFLAG_FAILED) {
1878 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1879 			qc->err_mask |= AC_ERR_DEV;
1880 
1881 		if (!qc->err_mask)
1882 			qc->err_mask |= AC_ERR_OTHER;
1883 
1884 		if (qc->err_mask & ~AC_ERR_OTHER)
1885 			qc->err_mask &= ~AC_ERR_OTHER;
1886 	}
1887 
1888 	/* finish up */
1889 	spin_lock_irqsave(ap->lock, flags);
1890 
1891 	*tf = qc->result_tf;
1892 	err_mask = qc->err_mask;
1893 
1894 	ata_qc_free(qc);
1895 	link->active_tag = preempted_tag;
1896 	link->sactive = preempted_sactive;
1897 	ap->qc_active = preempted_qc_active;
1898 	ap->nr_active_links = preempted_nr_active_links;
1899 
1900 	/* XXX - Some LLDDs (sata_mv) disable port on command failure.
1901 	 * Until those drivers are fixed, we detect the condition
1902 	 * here, fail the command with AC_ERR_SYSTEM and reenable the
1903 	 * port.
1904 	 *
1905 	 * Note that this doesn't change any behavior as internal
1906 	 * command failure results in disabling the device in the
1907 	 * higher layer for LLDDs without new reset/EH callbacks.
1908 	 *
1909 	 * Kill the following code as soon as those drivers are fixed.
1910 	 */
1911 	if (ap->flags & ATA_FLAG_DISABLED) {
1912 		err_mask |= AC_ERR_SYSTEM;
1913 		ata_port_probe(ap);
1914 	}
1915 
1916 	spin_unlock_irqrestore(ap->lock, flags);
1917 
1918 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1919 		ata_internal_cmd_timed_out(dev, command);
1920 
1921 	return err_mask;
1922 }
1923 
1924 /**
1925  *	ata_exec_internal - execute libata internal command
1926  *	@dev: Device to which the command is sent
1927  *	@tf: Taskfile registers for the command and the result
1928  *	@cdb: CDB for packet command
1929  *	@dma_dir: Data tranfer direction of the command
1930  *	@buf: Data buffer of the command
1931  *	@buflen: Length of data buffer
1932  *	@timeout: Timeout in msecs (0 for default)
1933  *
1934  *	Wrapper around ata_exec_internal_sg() which takes simple
1935  *	buffer instead of sg list.
1936  *
1937  *	LOCKING:
1938  *	None.  Should be called with kernel context, might sleep.
1939  *
1940  *	RETURNS:
1941  *	Zero on success, AC_ERR_* mask on failure
1942  */
1943 unsigned ata_exec_internal(struct ata_device *dev,
1944 			   struct ata_taskfile *tf, const u8 *cdb,
1945 			   int dma_dir, void *buf, unsigned int buflen,
1946 			   unsigned long timeout)
1947 {
1948 	struct scatterlist *psg = NULL, sg;
1949 	unsigned int n_elem = 0;
1950 
1951 	if (dma_dir != DMA_NONE) {
1952 		WARN_ON(!buf);
1953 		sg_init_one(&sg, buf, buflen);
1954 		psg = &sg;
1955 		n_elem++;
1956 	}
1957 
1958 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1959 				    timeout);
1960 }
1961 
1962 /**
1963  *	ata_do_simple_cmd - execute simple internal command
1964  *	@dev: Device to which the command is sent
1965  *	@cmd: Opcode to execute
1966  *
1967  *	Execute a 'simple' command, that only consists of the opcode
1968  *	'cmd' itself, without filling any other registers
1969  *
1970  *	LOCKING:
1971  *	Kernel thread context (may sleep).
1972  *
1973  *	RETURNS:
1974  *	Zero on success, AC_ERR_* mask on failure
1975  */
1976 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1977 {
1978 	struct ata_taskfile tf;
1979 
1980 	ata_tf_init(dev, &tf);
1981 
1982 	tf.command = cmd;
1983 	tf.flags |= ATA_TFLAG_DEVICE;
1984 	tf.protocol = ATA_PROT_NODATA;
1985 
1986 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1987 }
1988 
1989 /**
1990  *	ata_pio_need_iordy	-	check if iordy needed
1991  *	@adev: ATA device
1992  *
1993  *	Check if the current speed of the device requires IORDY. Used
1994  *	by various controllers for chip configuration.
1995  */
1996 
1997 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1998 {
1999 	/* Controller doesn't support  IORDY. Probably a pointless check
2000 	   as the caller should know this */
2001 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
2002 		return 0;
2003 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
2004 	if (ata_id_is_cfa(adev->id)
2005 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2006 		return 0;
2007 	/* PIO3 and higher it is mandatory */
2008 	if (adev->pio_mode > XFER_PIO_2)
2009 		return 1;
2010 	/* We turn it on when possible */
2011 	if (ata_id_has_iordy(adev->id))
2012 		return 1;
2013 	return 0;
2014 }
2015 
2016 /**
2017  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
2018  *	@adev: ATA device
2019  *
2020  *	Compute the highest mode possible if we are not using iordy. Return
2021  *	-1 if no iordy mode is available.
2022  */
2023 
2024 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2025 {
2026 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
2027 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
2028 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
2029 		/* Is the speed faster than the drive allows non IORDY ? */
2030 		if (pio) {
2031 			/* This is cycle times not frequency - watch the logic! */
2032 			if (pio > 240)	/* PIO2 is 240nS per cycle */
2033 				return 3 << ATA_SHIFT_PIO;
2034 			return 7 << ATA_SHIFT_PIO;
2035 		}
2036 	}
2037 	return 3 << ATA_SHIFT_PIO;
2038 }
2039 
2040 /**
2041  *	ata_do_dev_read_id		-	default ID read method
2042  *	@dev: device
2043  *	@tf: proposed taskfile
2044  *	@id: data buffer
2045  *
2046  *	Issue the identify taskfile and hand back the buffer containing
2047  *	identify data. For some RAID controllers and for pre ATA devices
2048  *	this function is wrapped or replaced by the driver
2049  */
2050 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2051 					struct ata_taskfile *tf, u16 *id)
2052 {
2053 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2054 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2055 }
2056 
2057 /**
2058  *	ata_dev_read_id - Read ID data from the specified device
2059  *	@dev: target device
2060  *	@p_class: pointer to class of the target device (may be changed)
2061  *	@flags: ATA_READID_* flags
2062  *	@id: buffer to read IDENTIFY data into
2063  *
2064  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
2065  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2066  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
2067  *	for pre-ATA4 drives.
2068  *
2069  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2070  *	now we abort if we hit that case.
2071  *
2072  *	LOCKING:
2073  *	Kernel thread context (may sleep)
2074  *
2075  *	RETURNS:
2076  *	0 on success, -errno otherwise.
2077  */
2078 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2079 		    unsigned int flags, u16 *id)
2080 {
2081 	struct ata_port *ap = dev->link->ap;
2082 	unsigned int class = *p_class;
2083 	struct ata_taskfile tf;
2084 	unsigned int err_mask = 0;
2085 	const char *reason;
2086 	bool is_semb = class == ATA_DEV_SEMB;
2087 	int may_fallback = 1, tried_spinup = 0;
2088 	int rc;
2089 
2090 	if (ata_msg_ctl(ap))
2091 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2092 
2093 retry:
2094 	ata_tf_init(dev, &tf);
2095 
2096 	switch (class) {
2097 	case ATA_DEV_SEMB:
2098 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
2099 	case ATA_DEV_ATA:
2100 		tf.command = ATA_CMD_ID_ATA;
2101 		break;
2102 	case ATA_DEV_ATAPI:
2103 		tf.command = ATA_CMD_ID_ATAPI;
2104 		break;
2105 	default:
2106 		rc = -ENODEV;
2107 		reason = "unsupported class";
2108 		goto err_out;
2109 	}
2110 
2111 	tf.protocol = ATA_PROT_PIO;
2112 
2113 	/* Some devices choke if TF registers contain garbage.  Make
2114 	 * sure those are properly initialized.
2115 	 */
2116 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2117 
2118 	/* Device presence detection is unreliable on some
2119 	 * controllers.  Always poll IDENTIFY if available.
2120 	 */
2121 	tf.flags |= ATA_TFLAG_POLLING;
2122 
2123 	if (ap->ops->read_id)
2124 		err_mask = ap->ops->read_id(dev, &tf, id);
2125 	else
2126 		err_mask = ata_do_dev_read_id(dev, &tf, id);
2127 
2128 	if (err_mask) {
2129 		if (err_mask & AC_ERR_NODEV_HINT) {
2130 			ata_dev_printk(dev, KERN_DEBUG,
2131 				       "NODEV after polling detection\n");
2132 			return -ENOENT;
2133 		}
2134 
2135 		if (is_semb) {
2136 			ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2137 				       "device w/ SEMB sig, disabled\n");
2138 			/* SEMB is not supported yet */
2139 			*p_class = ATA_DEV_SEMB_UNSUP;
2140 			return 0;
2141 		}
2142 
2143 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2144 			/* Device or controller might have reported
2145 			 * the wrong device class.  Give a shot at the
2146 			 * other IDENTIFY if the current one is
2147 			 * aborted by the device.
2148 			 */
2149 			if (may_fallback) {
2150 				may_fallback = 0;
2151 
2152 				if (class == ATA_DEV_ATA)
2153 					class = ATA_DEV_ATAPI;
2154 				else
2155 					class = ATA_DEV_ATA;
2156 				goto retry;
2157 			}
2158 
2159 			/* Control reaches here iff the device aborted
2160 			 * both flavors of IDENTIFYs which happens
2161 			 * sometimes with phantom devices.
2162 			 */
2163 			ata_dev_printk(dev, KERN_DEBUG,
2164 				       "both IDENTIFYs aborted, assuming NODEV\n");
2165 			return -ENOENT;
2166 		}
2167 
2168 		rc = -EIO;
2169 		reason = "I/O error";
2170 		goto err_out;
2171 	}
2172 
2173 	/* Falling back doesn't make sense if ID data was read
2174 	 * successfully at least once.
2175 	 */
2176 	may_fallback = 0;
2177 
2178 	swap_buf_le16(id, ATA_ID_WORDS);
2179 
2180 	/* sanity check */
2181 	rc = -EINVAL;
2182 	reason = "device reports invalid type";
2183 
2184 	if (class == ATA_DEV_ATA) {
2185 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2186 			goto err_out;
2187 	} else {
2188 		if (ata_id_is_ata(id))
2189 			goto err_out;
2190 	}
2191 
2192 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2193 		tried_spinup = 1;
2194 		/*
2195 		 * Drive powered-up in standby mode, and requires a specific
2196 		 * SET_FEATURES spin-up subcommand before it will accept
2197 		 * anything other than the original IDENTIFY command.
2198 		 */
2199 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2200 		if (err_mask && id[2] != 0x738c) {
2201 			rc = -EIO;
2202 			reason = "SPINUP failed";
2203 			goto err_out;
2204 		}
2205 		/*
2206 		 * If the drive initially returned incomplete IDENTIFY info,
2207 		 * we now must reissue the IDENTIFY command.
2208 		 */
2209 		if (id[2] == 0x37c8)
2210 			goto retry;
2211 	}
2212 
2213 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2214 		/*
2215 		 * The exact sequence expected by certain pre-ATA4 drives is:
2216 		 * SRST RESET
2217 		 * IDENTIFY (optional in early ATA)
2218 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2219 		 * anything else..
2220 		 * Some drives were very specific about that exact sequence.
2221 		 *
2222 		 * Note that ATA4 says lba is mandatory so the second check
2223 		 * shoud never trigger.
2224 		 */
2225 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2226 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2227 			if (err_mask) {
2228 				rc = -EIO;
2229 				reason = "INIT_DEV_PARAMS failed";
2230 				goto err_out;
2231 			}
2232 
2233 			/* current CHS translation info (id[53-58]) might be
2234 			 * changed. reread the identify device info.
2235 			 */
2236 			flags &= ~ATA_READID_POSTRESET;
2237 			goto retry;
2238 		}
2239 	}
2240 
2241 	*p_class = class;
2242 
2243 	return 0;
2244 
2245  err_out:
2246 	if (ata_msg_warn(ap))
2247 		ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2248 			       "(%s, err_mask=0x%x)\n", reason, err_mask);
2249 	return rc;
2250 }
2251 
2252 static int ata_do_link_spd_horkage(struct ata_device *dev)
2253 {
2254 	struct ata_link *plink = ata_dev_phys_link(dev);
2255 	u32 target, target_limit;
2256 
2257 	if (!sata_scr_valid(plink))
2258 		return 0;
2259 
2260 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2261 		target = 1;
2262 	else
2263 		return 0;
2264 
2265 	target_limit = (1 << target) - 1;
2266 
2267 	/* if already on stricter limit, no need to push further */
2268 	if (plink->sata_spd_limit <= target_limit)
2269 		return 0;
2270 
2271 	plink->sata_spd_limit = target_limit;
2272 
2273 	/* Request another EH round by returning -EAGAIN if link is
2274 	 * going faster than the target speed.  Forward progress is
2275 	 * guaranteed by setting sata_spd_limit to target_limit above.
2276 	 */
2277 	if (plink->sata_spd > target) {
2278 		ata_dev_printk(dev, KERN_INFO,
2279 			       "applying link speed limit horkage to %s\n",
2280 			       sata_spd_string(target));
2281 		return -EAGAIN;
2282 	}
2283 	return 0;
2284 }
2285 
2286 static inline u8 ata_dev_knobble(struct ata_device *dev)
2287 {
2288 	struct ata_port *ap = dev->link->ap;
2289 
2290 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2291 		return 0;
2292 
2293 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2294 }
2295 
2296 static void ata_dev_config_ncq(struct ata_device *dev,
2297 			       char *desc, size_t desc_sz)
2298 {
2299 	struct ata_port *ap = dev->link->ap;
2300 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2301 
2302 	if (!ata_id_has_ncq(dev->id)) {
2303 		desc[0] = '\0';
2304 		return;
2305 	}
2306 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2307 		snprintf(desc, desc_sz, "NCQ (not used)");
2308 		return;
2309 	}
2310 	if (ap->flags & ATA_FLAG_NCQ) {
2311 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2312 		dev->flags |= ATA_DFLAG_NCQ;
2313 	}
2314 
2315 	if (hdepth >= ddepth)
2316 		snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2317 	else
2318 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2319 }
2320 
2321 /**
2322  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2323  *	@dev: Target device to configure
2324  *
2325  *	Configure @dev according to @dev->id.  Generic and low-level
2326  *	driver specific fixups are also applied.
2327  *
2328  *	LOCKING:
2329  *	Kernel thread context (may sleep)
2330  *
2331  *	RETURNS:
2332  *	0 on success, -errno otherwise
2333  */
2334 int ata_dev_configure(struct ata_device *dev)
2335 {
2336 	struct ata_port *ap = dev->link->ap;
2337 	struct ata_eh_context *ehc = &dev->link->eh_context;
2338 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2339 	const u16 *id = dev->id;
2340 	unsigned long xfer_mask;
2341 	char revbuf[7];		/* XYZ-99\0 */
2342 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2343 	char modelbuf[ATA_ID_PROD_LEN+1];
2344 	int rc;
2345 
2346 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2347 		ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2348 			       __func__);
2349 		return 0;
2350 	}
2351 
2352 	if (ata_msg_probe(ap))
2353 		ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2354 
2355 	/* set horkage */
2356 	dev->horkage |= ata_dev_blacklisted(dev);
2357 	ata_force_horkage(dev);
2358 
2359 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2360 		ata_dev_printk(dev, KERN_INFO,
2361 			       "unsupported device, disabling\n");
2362 		ata_dev_disable(dev);
2363 		return 0;
2364 	}
2365 
2366 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2367 	    dev->class == ATA_DEV_ATAPI) {
2368 		ata_dev_printk(dev, KERN_WARNING,
2369 			"WARNING: ATAPI is %s, device ignored.\n",
2370 			atapi_enabled ? "not supported with this driver"
2371 				      : "disabled");
2372 		ata_dev_disable(dev);
2373 		return 0;
2374 	}
2375 
2376 	rc = ata_do_link_spd_horkage(dev);
2377 	if (rc)
2378 		return rc;
2379 
2380 	/* let ACPI work its magic */
2381 	rc = ata_acpi_on_devcfg(dev);
2382 	if (rc)
2383 		return rc;
2384 
2385 	/* massage HPA, do it early as it might change IDENTIFY data */
2386 	rc = ata_hpa_resize(dev);
2387 	if (rc)
2388 		return rc;
2389 
2390 	/* print device capabilities */
2391 	if (ata_msg_probe(ap))
2392 		ata_dev_printk(dev, KERN_DEBUG,
2393 			       "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2394 			       "85:%04x 86:%04x 87:%04x 88:%04x\n",
2395 			       __func__,
2396 			       id[49], id[82], id[83], id[84],
2397 			       id[85], id[86], id[87], id[88]);
2398 
2399 	/* initialize to-be-configured parameters */
2400 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2401 	dev->max_sectors = 0;
2402 	dev->cdb_len = 0;
2403 	dev->n_sectors = 0;
2404 	dev->cylinders = 0;
2405 	dev->heads = 0;
2406 	dev->sectors = 0;
2407 	dev->multi_count = 0;
2408 
2409 	/*
2410 	 * common ATA, ATAPI feature tests
2411 	 */
2412 
2413 	/* find max transfer mode; for printk only */
2414 	xfer_mask = ata_id_xfermask(id);
2415 
2416 	if (ata_msg_probe(ap))
2417 		ata_dump_id(id);
2418 
2419 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2420 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2421 			sizeof(fwrevbuf));
2422 
2423 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2424 			sizeof(modelbuf));
2425 
2426 	/* ATA-specific feature tests */
2427 	if (dev->class == ATA_DEV_ATA) {
2428 		if (ata_id_is_cfa(id)) {
2429 			/* CPRM may make this media unusable */
2430 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2431 				ata_dev_printk(dev, KERN_WARNING,
2432 					       "supports DRM functions and may "
2433 					       "not be fully accessable.\n");
2434 			snprintf(revbuf, 7, "CFA");
2435 		} else {
2436 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2437 			/* Warn the user if the device has TPM extensions */
2438 			if (ata_id_has_tpm(id))
2439 				ata_dev_printk(dev, KERN_WARNING,
2440 					       "supports DRM functions and may "
2441 					       "not be fully accessable.\n");
2442 		}
2443 
2444 		dev->n_sectors = ata_id_n_sectors(id);
2445 
2446 		/* get current R/W Multiple count setting */
2447 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2448 			unsigned int max = dev->id[47] & 0xff;
2449 			unsigned int cnt = dev->id[59] & 0xff;
2450 			/* only recognize/allow powers of two here */
2451 			if (is_power_of_2(max) && is_power_of_2(cnt))
2452 				if (cnt <= max)
2453 					dev->multi_count = cnt;
2454 		}
2455 
2456 		if (ata_id_has_lba(id)) {
2457 			const char *lba_desc;
2458 			char ncq_desc[20];
2459 
2460 			lba_desc = "LBA";
2461 			dev->flags |= ATA_DFLAG_LBA;
2462 			if (ata_id_has_lba48(id)) {
2463 				dev->flags |= ATA_DFLAG_LBA48;
2464 				lba_desc = "LBA48";
2465 
2466 				if (dev->n_sectors >= (1UL << 28) &&
2467 				    ata_id_has_flush_ext(id))
2468 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2469 			}
2470 
2471 			/* config NCQ */
2472 			ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2473 
2474 			/* print device info to dmesg */
2475 			if (ata_msg_drv(ap) && print_info) {
2476 				ata_dev_printk(dev, KERN_INFO,
2477 					"%s: %s, %s, max %s\n",
2478 					revbuf, modelbuf, fwrevbuf,
2479 					ata_mode_string(xfer_mask));
2480 				ata_dev_printk(dev, KERN_INFO,
2481 					"%Lu sectors, multi %u: %s %s\n",
2482 					(unsigned long long)dev->n_sectors,
2483 					dev->multi_count, lba_desc, ncq_desc);
2484 			}
2485 		} else {
2486 			/* CHS */
2487 
2488 			/* Default translation */
2489 			dev->cylinders	= id[1];
2490 			dev->heads	= id[3];
2491 			dev->sectors	= id[6];
2492 
2493 			if (ata_id_current_chs_valid(id)) {
2494 				/* Current CHS translation is valid. */
2495 				dev->cylinders = id[54];
2496 				dev->heads     = id[55];
2497 				dev->sectors   = id[56];
2498 			}
2499 
2500 			/* print device info to dmesg */
2501 			if (ata_msg_drv(ap) && print_info) {
2502 				ata_dev_printk(dev, KERN_INFO,
2503 					"%s: %s, %s, max %s\n",
2504 					revbuf,	modelbuf, fwrevbuf,
2505 					ata_mode_string(xfer_mask));
2506 				ata_dev_printk(dev, KERN_INFO,
2507 					"%Lu sectors, multi %u, CHS %u/%u/%u\n",
2508 					(unsigned long long)dev->n_sectors,
2509 					dev->multi_count, dev->cylinders,
2510 					dev->heads, dev->sectors);
2511 			}
2512 		}
2513 
2514 		dev->cdb_len = 16;
2515 	}
2516 
2517 	/* ATAPI-specific feature tests */
2518 	else if (dev->class == ATA_DEV_ATAPI) {
2519 		const char *cdb_intr_string = "";
2520 		const char *atapi_an_string = "";
2521 		const char *dma_dir_string = "";
2522 		u32 sntf;
2523 
2524 		rc = atapi_cdb_len(id);
2525 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2526 			if (ata_msg_warn(ap))
2527 				ata_dev_printk(dev, KERN_WARNING,
2528 					       "unsupported CDB len\n");
2529 			rc = -EINVAL;
2530 			goto err_out_nosup;
2531 		}
2532 		dev->cdb_len = (unsigned int) rc;
2533 
2534 		/* Enable ATAPI AN if both the host and device have
2535 		 * the support.  If PMP is attached, SNTF is required
2536 		 * to enable ATAPI AN to discern between PHY status
2537 		 * changed notifications and ATAPI ANs.
2538 		 */
2539 		if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2540 		    (!sata_pmp_attached(ap) ||
2541 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2542 			unsigned int err_mask;
2543 
2544 			/* issue SET feature command to turn this on */
2545 			err_mask = ata_dev_set_feature(dev,
2546 					SETFEATURES_SATA_ENABLE, SATA_AN);
2547 			if (err_mask)
2548 				ata_dev_printk(dev, KERN_ERR,
2549 					"failed to enable ATAPI AN "
2550 					"(err_mask=0x%x)\n", err_mask);
2551 			else {
2552 				dev->flags |= ATA_DFLAG_AN;
2553 				atapi_an_string = ", ATAPI AN";
2554 			}
2555 		}
2556 
2557 		if (ata_id_cdb_intr(dev->id)) {
2558 			dev->flags |= ATA_DFLAG_CDB_INTR;
2559 			cdb_intr_string = ", CDB intr";
2560 		}
2561 
2562 		if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2563 			dev->flags |= ATA_DFLAG_DMADIR;
2564 			dma_dir_string = ", DMADIR";
2565 		}
2566 
2567 		/* print device info to dmesg */
2568 		if (ata_msg_drv(ap) && print_info)
2569 			ata_dev_printk(dev, KERN_INFO,
2570 				       "ATAPI: %s, %s, max %s%s%s%s\n",
2571 				       modelbuf, fwrevbuf,
2572 				       ata_mode_string(xfer_mask),
2573 				       cdb_intr_string, atapi_an_string,
2574 				       dma_dir_string);
2575 	}
2576 
2577 	/* determine max_sectors */
2578 	dev->max_sectors = ATA_MAX_SECTORS;
2579 	if (dev->flags & ATA_DFLAG_LBA48)
2580 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2581 
2582 	if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2583 		if (ata_id_has_hipm(dev->id))
2584 			dev->flags |= ATA_DFLAG_HIPM;
2585 		if (ata_id_has_dipm(dev->id))
2586 			dev->flags |= ATA_DFLAG_DIPM;
2587 	}
2588 
2589 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2590 	   200 sectors */
2591 	if (ata_dev_knobble(dev)) {
2592 		if (ata_msg_drv(ap) && print_info)
2593 			ata_dev_printk(dev, KERN_INFO,
2594 				       "applying bridge limits\n");
2595 		dev->udma_mask &= ATA_UDMA5;
2596 		dev->max_sectors = ATA_MAX_SECTORS;
2597 	}
2598 
2599 	if ((dev->class == ATA_DEV_ATAPI) &&
2600 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2601 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2602 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2603 	}
2604 
2605 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2606 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2607 					 dev->max_sectors);
2608 
2609 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2610 		dev->horkage |= ATA_HORKAGE_IPM;
2611 
2612 		/* reset link pm_policy for this port to no pm */
2613 		ap->pm_policy = MAX_PERFORMANCE;
2614 	}
2615 
2616 	if (ap->ops->dev_config)
2617 		ap->ops->dev_config(dev);
2618 
2619 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2620 		/* Let the user know. We don't want to disallow opens for
2621 		   rescue purposes, or in case the vendor is just a blithering
2622 		   idiot. Do this after the dev_config call as some controllers
2623 		   with buggy firmware may want to avoid reporting false device
2624 		   bugs */
2625 
2626 		if (print_info) {
2627 			ata_dev_printk(dev, KERN_WARNING,
2628 "Drive reports diagnostics failure. This may indicate a drive\n");
2629 			ata_dev_printk(dev, KERN_WARNING,
2630 "fault or invalid emulation. Contact drive vendor for information.\n");
2631 		}
2632 	}
2633 
2634 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2635 		ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2636 			       "firmware update to be fully functional.\n");
2637 		ata_dev_printk(dev, KERN_WARNING, "         contact the vendor "
2638 			       "or visit http://ata.wiki.kernel.org.\n");
2639 	}
2640 
2641 	return 0;
2642 
2643 err_out_nosup:
2644 	if (ata_msg_probe(ap))
2645 		ata_dev_printk(dev, KERN_DEBUG,
2646 			       "%s: EXIT, err\n", __func__);
2647 	return rc;
2648 }
2649 
2650 /**
2651  *	ata_cable_40wire	-	return 40 wire cable type
2652  *	@ap: port
2653  *
2654  *	Helper method for drivers which want to hardwire 40 wire cable
2655  *	detection.
2656  */
2657 
2658 int ata_cable_40wire(struct ata_port *ap)
2659 {
2660 	return ATA_CBL_PATA40;
2661 }
2662 
2663 /**
2664  *	ata_cable_80wire	-	return 80 wire cable type
2665  *	@ap: port
2666  *
2667  *	Helper method for drivers which want to hardwire 80 wire cable
2668  *	detection.
2669  */
2670 
2671 int ata_cable_80wire(struct ata_port *ap)
2672 {
2673 	return ATA_CBL_PATA80;
2674 }
2675 
2676 /**
2677  *	ata_cable_unknown	-	return unknown PATA cable.
2678  *	@ap: port
2679  *
2680  *	Helper method for drivers which have no PATA cable detection.
2681  */
2682 
2683 int ata_cable_unknown(struct ata_port *ap)
2684 {
2685 	return ATA_CBL_PATA_UNK;
2686 }
2687 
2688 /**
2689  *	ata_cable_ignore	-	return ignored PATA cable.
2690  *	@ap: port
2691  *
2692  *	Helper method for drivers which don't use cable type to limit
2693  *	transfer mode.
2694  */
2695 int ata_cable_ignore(struct ata_port *ap)
2696 {
2697 	return ATA_CBL_PATA_IGN;
2698 }
2699 
2700 /**
2701  *	ata_cable_sata	-	return SATA cable type
2702  *	@ap: port
2703  *
2704  *	Helper method for drivers which have SATA cables
2705  */
2706 
2707 int ata_cable_sata(struct ata_port *ap)
2708 {
2709 	return ATA_CBL_SATA;
2710 }
2711 
2712 /**
2713  *	ata_bus_probe - Reset and probe ATA bus
2714  *	@ap: Bus to probe
2715  *
2716  *	Master ATA bus probing function.  Initiates a hardware-dependent
2717  *	bus reset, then attempts to identify any devices found on
2718  *	the bus.
2719  *
2720  *	LOCKING:
2721  *	PCI/etc. bus probe sem.
2722  *
2723  *	RETURNS:
2724  *	Zero on success, negative errno otherwise.
2725  */
2726 
2727 int ata_bus_probe(struct ata_port *ap)
2728 {
2729 	unsigned int classes[ATA_MAX_DEVICES];
2730 	int tries[ATA_MAX_DEVICES];
2731 	int rc;
2732 	struct ata_device *dev;
2733 
2734 	ata_port_probe(ap);
2735 
2736 	ata_for_each_dev(dev, &ap->link, ALL)
2737 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2738 
2739  retry:
2740 	ata_for_each_dev(dev, &ap->link, ALL) {
2741 		/* If we issue an SRST then an ATA drive (not ATAPI)
2742 		 * may change configuration and be in PIO0 timing. If
2743 		 * we do a hard reset (or are coming from power on)
2744 		 * this is true for ATA or ATAPI. Until we've set a
2745 		 * suitable controller mode we should not touch the
2746 		 * bus as we may be talking too fast.
2747 		 */
2748 		dev->pio_mode = XFER_PIO_0;
2749 
2750 		/* If the controller has a pio mode setup function
2751 		 * then use it to set the chipset to rights. Don't
2752 		 * touch the DMA setup as that will be dealt with when
2753 		 * configuring devices.
2754 		 */
2755 		if (ap->ops->set_piomode)
2756 			ap->ops->set_piomode(ap, dev);
2757 	}
2758 
2759 	/* reset and determine device classes */
2760 	ap->ops->phy_reset(ap);
2761 
2762 	ata_for_each_dev(dev, &ap->link, ALL) {
2763 		if (!(ap->flags & ATA_FLAG_DISABLED) &&
2764 		    dev->class != ATA_DEV_UNKNOWN)
2765 			classes[dev->devno] = dev->class;
2766 		else
2767 			classes[dev->devno] = ATA_DEV_NONE;
2768 
2769 		dev->class = ATA_DEV_UNKNOWN;
2770 	}
2771 
2772 	ata_port_probe(ap);
2773 
2774 	/* read IDENTIFY page and configure devices. We have to do the identify
2775 	   specific sequence bass-ackwards so that PDIAG- is released by
2776 	   the slave device */
2777 
2778 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2779 		if (tries[dev->devno])
2780 			dev->class = classes[dev->devno];
2781 
2782 		if (!ata_dev_enabled(dev))
2783 			continue;
2784 
2785 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2786 				     dev->id);
2787 		if (rc)
2788 			goto fail;
2789 	}
2790 
2791 	/* Now ask for the cable type as PDIAG- should have been released */
2792 	if (ap->ops->cable_detect)
2793 		ap->cbl = ap->ops->cable_detect(ap);
2794 
2795 	/* We may have SATA bridge glue hiding here irrespective of
2796 	 * the reported cable types and sensed types.  When SATA
2797 	 * drives indicate we have a bridge, we don't know which end
2798 	 * of the link the bridge is which is a problem.
2799 	 */
2800 	ata_for_each_dev(dev, &ap->link, ENABLED)
2801 		if (ata_id_is_sata(dev->id))
2802 			ap->cbl = ATA_CBL_SATA;
2803 
2804 	/* After the identify sequence we can now set up the devices. We do
2805 	   this in the normal order so that the user doesn't get confused */
2806 
2807 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2808 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2809 		rc = ata_dev_configure(dev);
2810 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2811 		if (rc)
2812 			goto fail;
2813 	}
2814 
2815 	/* configure transfer mode */
2816 	rc = ata_set_mode(&ap->link, &dev);
2817 	if (rc)
2818 		goto fail;
2819 
2820 	ata_for_each_dev(dev, &ap->link, ENABLED)
2821 		return 0;
2822 
2823 	/* no device present, disable port */
2824 	ata_port_disable(ap);
2825 	return -ENODEV;
2826 
2827  fail:
2828 	tries[dev->devno]--;
2829 
2830 	switch (rc) {
2831 	case -EINVAL:
2832 		/* eeek, something went very wrong, give up */
2833 		tries[dev->devno] = 0;
2834 		break;
2835 
2836 	case -ENODEV:
2837 		/* give it just one more chance */
2838 		tries[dev->devno] = min(tries[dev->devno], 1);
2839 	case -EIO:
2840 		if (tries[dev->devno] == 1) {
2841 			/* This is the last chance, better to slow
2842 			 * down than lose it.
2843 			 */
2844 			sata_down_spd_limit(&ap->link, 0);
2845 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2846 		}
2847 	}
2848 
2849 	if (!tries[dev->devno])
2850 		ata_dev_disable(dev);
2851 
2852 	goto retry;
2853 }
2854 
2855 /**
2856  *	ata_port_probe - Mark port as enabled
2857  *	@ap: Port for which we indicate enablement
2858  *
2859  *	Modify @ap data structure such that the system
2860  *	thinks that the entire port is enabled.
2861  *
2862  *	LOCKING: host lock, or some other form of
2863  *	serialization.
2864  */
2865 
2866 void ata_port_probe(struct ata_port *ap)
2867 {
2868 	ap->flags &= ~ATA_FLAG_DISABLED;
2869 }
2870 
2871 /**
2872  *	sata_print_link_status - Print SATA link status
2873  *	@link: SATA link to printk link status about
2874  *
2875  *	This function prints link speed and status of a SATA link.
2876  *
2877  *	LOCKING:
2878  *	None.
2879  */
2880 static void sata_print_link_status(struct ata_link *link)
2881 {
2882 	u32 sstatus, scontrol, tmp;
2883 
2884 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2885 		return;
2886 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2887 
2888 	if (ata_phys_link_online(link)) {
2889 		tmp = (sstatus >> 4) & 0xf;
2890 		ata_link_printk(link, KERN_INFO,
2891 				"SATA link up %s (SStatus %X SControl %X)\n",
2892 				sata_spd_string(tmp), sstatus, scontrol);
2893 	} else {
2894 		ata_link_printk(link, KERN_INFO,
2895 				"SATA link down (SStatus %X SControl %X)\n",
2896 				sstatus, scontrol);
2897 	}
2898 }
2899 
2900 /**
2901  *	ata_dev_pair		-	return other device on cable
2902  *	@adev: device
2903  *
2904  *	Obtain the other device on the same cable, or if none is
2905  *	present NULL is returned
2906  */
2907 
2908 struct ata_device *ata_dev_pair(struct ata_device *adev)
2909 {
2910 	struct ata_link *link = adev->link;
2911 	struct ata_device *pair = &link->device[1 - adev->devno];
2912 	if (!ata_dev_enabled(pair))
2913 		return NULL;
2914 	return pair;
2915 }
2916 
2917 /**
2918  *	ata_port_disable - Disable port.
2919  *	@ap: Port to be disabled.
2920  *
2921  *	Modify @ap data structure such that the system
2922  *	thinks that the entire port is disabled, and should
2923  *	never attempt to probe or communicate with devices
2924  *	on this port.
2925  *
2926  *	LOCKING: host lock, or some other form of
2927  *	serialization.
2928  */
2929 
2930 void ata_port_disable(struct ata_port *ap)
2931 {
2932 	ap->link.device[0].class = ATA_DEV_NONE;
2933 	ap->link.device[1].class = ATA_DEV_NONE;
2934 	ap->flags |= ATA_FLAG_DISABLED;
2935 }
2936 
2937 /**
2938  *	sata_down_spd_limit - adjust SATA spd limit downward
2939  *	@link: Link to adjust SATA spd limit for
2940  *	@spd_limit: Additional limit
2941  *
2942  *	Adjust SATA spd limit of @link downward.  Note that this
2943  *	function only adjusts the limit.  The change must be applied
2944  *	using sata_set_spd().
2945  *
2946  *	If @spd_limit is non-zero, the speed is limited to equal to or
2947  *	lower than @spd_limit if such speed is supported.  If
2948  *	@spd_limit is slower than any supported speed, only the lowest
2949  *	supported speed is allowed.
2950  *
2951  *	LOCKING:
2952  *	Inherited from caller.
2953  *
2954  *	RETURNS:
2955  *	0 on success, negative errno on failure
2956  */
2957 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2958 {
2959 	u32 sstatus, spd, mask;
2960 	int rc, bit;
2961 
2962 	if (!sata_scr_valid(link))
2963 		return -EOPNOTSUPP;
2964 
2965 	/* If SCR can be read, use it to determine the current SPD.
2966 	 * If not, use cached value in link->sata_spd.
2967 	 */
2968 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2969 	if (rc == 0 && ata_sstatus_online(sstatus))
2970 		spd = (sstatus >> 4) & 0xf;
2971 	else
2972 		spd = link->sata_spd;
2973 
2974 	mask = link->sata_spd_limit;
2975 	if (mask <= 1)
2976 		return -EINVAL;
2977 
2978 	/* unconditionally mask off the highest bit */
2979 	bit = fls(mask) - 1;
2980 	mask &= ~(1 << bit);
2981 
2982 	/* Mask off all speeds higher than or equal to the current
2983 	 * one.  Force 1.5Gbps if current SPD is not available.
2984 	 */
2985 	if (spd > 1)
2986 		mask &= (1 << (spd - 1)) - 1;
2987 	else
2988 		mask &= 1;
2989 
2990 	/* were we already at the bottom? */
2991 	if (!mask)
2992 		return -EINVAL;
2993 
2994 	if (spd_limit) {
2995 		if (mask & ((1 << spd_limit) - 1))
2996 			mask &= (1 << spd_limit) - 1;
2997 		else {
2998 			bit = ffs(mask) - 1;
2999 			mask = 1 << bit;
3000 		}
3001 	}
3002 
3003 	link->sata_spd_limit = mask;
3004 
3005 	ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
3006 			sata_spd_string(fls(mask)));
3007 
3008 	return 0;
3009 }
3010 
3011 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3012 {
3013 	struct ata_link *host_link = &link->ap->link;
3014 	u32 limit, target, spd;
3015 
3016 	limit = link->sata_spd_limit;
3017 
3018 	/* Don't configure downstream link faster than upstream link.
3019 	 * It doesn't speed up anything and some PMPs choke on such
3020 	 * configuration.
3021 	 */
3022 	if (!ata_is_host_link(link) && host_link->sata_spd)
3023 		limit &= (1 << host_link->sata_spd) - 1;
3024 
3025 	if (limit == UINT_MAX)
3026 		target = 0;
3027 	else
3028 		target = fls(limit);
3029 
3030 	spd = (*scontrol >> 4) & 0xf;
3031 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3032 
3033 	return spd != target;
3034 }
3035 
3036 /**
3037  *	sata_set_spd_needed - is SATA spd configuration needed
3038  *	@link: Link in question
3039  *
3040  *	Test whether the spd limit in SControl matches
3041  *	@link->sata_spd_limit.  This function is used to determine
3042  *	whether hardreset is necessary to apply SATA spd
3043  *	configuration.
3044  *
3045  *	LOCKING:
3046  *	Inherited from caller.
3047  *
3048  *	RETURNS:
3049  *	1 if SATA spd configuration is needed, 0 otherwise.
3050  */
3051 static int sata_set_spd_needed(struct ata_link *link)
3052 {
3053 	u32 scontrol;
3054 
3055 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3056 		return 1;
3057 
3058 	return __sata_set_spd_needed(link, &scontrol);
3059 }
3060 
3061 /**
3062  *	sata_set_spd - set SATA spd according to spd limit
3063  *	@link: Link to set SATA spd for
3064  *
3065  *	Set SATA spd of @link according to sata_spd_limit.
3066  *
3067  *	LOCKING:
3068  *	Inherited from caller.
3069  *
3070  *	RETURNS:
3071  *	0 if spd doesn't need to be changed, 1 if spd has been
3072  *	changed.  Negative errno if SCR registers are inaccessible.
3073  */
3074 int sata_set_spd(struct ata_link *link)
3075 {
3076 	u32 scontrol;
3077 	int rc;
3078 
3079 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3080 		return rc;
3081 
3082 	if (!__sata_set_spd_needed(link, &scontrol))
3083 		return 0;
3084 
3085 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3086 		return rc;
3087 
3088 	return 1;
3089 }
3090 
3091 /*
3092  * This mode timing computation functionality is ported over from
3093  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3094  */
3095 /*
3096  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3097  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3098  * for UDMA6, which is currently supported only by Maxtor drives.
3099  *
3100  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3101  */
3102 
3103 static const struct ata_timing ata_timing[] = {
3104 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3105 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3106 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3107 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3108 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3109 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3110 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3111 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3112 
3113 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3114 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3115 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3116 
3117 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3118 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3119 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3120 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3121 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3122 
3123 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3124 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3125 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3126 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3127 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3128 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3129 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3130 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3131 
3132 	{ 0xFF }
3133 };
3134 
3135 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3136 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
3137 
3138 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3139 {
3140 	q->setup	= EZ(t->setup      * 1000,  T);
3141 	q->act8b	= EZ(t->act8b      * 1000,  T);
3142 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
3143 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
3144 	q->active	= EZ(t->active     * 1000,  T);
3145 	q->recover	= EZ(t->recover    * 1000,  T);
3146 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
3147 	q->cycle	= EZ(t->cycle      * 1000,  T);
3148 	q->udma		= EZ(t->udma       * 1000, UT);
3149 }
3150 
3151 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3152 		      struct ata_timing *m, unsigned int what)
3153 {
3154 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3155 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3156 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3157 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3158 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3159 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3160 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3161 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3162 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3163 }
3164 
3165 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3166 {
3167 	const struct ata_timing *t = ata_timing;
3168 
3169 	while (xfer_mode > t->mode)
3170 		t++;
3171 
3172 	if (xfer_mode == t->mode)
3173 		return t;
3174 	return NULL;
3175 }
3176 
3177 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3178 		       struct ata_timing *t, int T, int UT)
3179 {
3180 	const struct ata_timing *s;
3181 	struct ata_timing p;
3182 
3183 	/*
3184 	 * Find the mode.
3185 	 */
3186 
3187 	if (!(s = ata_timing_find_mode(speed)))
3188 		return -EINVAL;
3189 
3190 	memcpy(t, s, sizeof(*s));
3191 
3192 	/*
3193 	 * If the drive is an EIDE drive, it can tell us it needs extended
3194 	 * PIO/MW_DMA cycle timing.
3195 	 */
3196 
3197 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3198 		memset(&p, 0, sizeof(p));
3199 		if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3200 			if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3201 					    else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3202 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3203 			p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3204 		}
3205 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3206 	}
3207 
3208 	/*
3209 	 * Convert the timing to bus clock counts.
3210 	 */
3211 
3212 	ata_timing_quantize(t, t, T, UT);
3213 
3214 	/*
3215 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3216 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3217 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3218 	 */
3219 
3220 	if (speed > XFER_PIO_6) {
3221 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3222 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3223 	}
3224 
3225 	/*
3226 	 * Lengthen active & recovery time so that cycle time is correct.
3227 	 */
3228 
3229 	if (t->act8b + t->rec8b < t->cyc8b) {
3230 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3231 		t->rec8b = t->cyc8b - t->act8b;
3232 	}
3233 
3234 	if (t->active + t->recover < t->cycle) {
3235 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3236 		t->recover = t->cycle - t->active;
3237 	}
3238 
3239 	/* In a few cases quantisation may produce enough errors to
3240 	   leave t->cycle too low for the sum of active and recovery
3241 	   if so we must correct this */
3242 	if (t->active + t->recover > t->cycle)
3243 		t->cycle = t->active + t->recover;
3244 
3245 	return 0;
3246 }
3247 
3248 /**
3249  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3250  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3251  *	@cycle: cycle duration in ns
3252  *
3253  *	Return matching xfer mode for @cycle.  The returned mode is of
3254  *	the transfer type specified by @xfer_shift.  If @cycle is too
3255  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3256  *	than the fastest known mode, the fasted mode is returned.
3257  *
3258  *	LOCKING:
3259  *	None.
3260  *
3261  *	RETURNS:
3262  *	Matching xfer_mode, 0xff if no match found.
3263  */
3264 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3265 {
3266 	u8 base_mode = 0xff, last_mode = 0xff;
3267 	const struct ata_xfer_ent *ent;
3268 	const struct ata_timing *t;
3269 
3270 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3271 		if (ent->shift == xfer_shift)
3272 			base_mode = ent->base;
3273 
3274 	for (t = ata_timing_find_mode(base_mode);
3275 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3276 		unsigned short this_cycle;
3277 
3278 		switch (xfer_shift) {
3279 		case ATA_SHIFT_PIO:
3280 		case ATA_SHIFT_MWDMA:
3281 			this_cycle = t->cycle;
3282 			break;
3283 		case ATA_SHIFT_UDMA:
3284 			this_cycle = t->udma;
3285 			break;
3286 		default:
3287 			return 0xff;
3288 		}
3289 
3290 		if (cycle > this_cycle)
3291 			break;
3292 
3293 		last_mode = t->mode;
3294 	}
3295 
3296 	return last_mode;
3297 }
3298 
3299 /**
3300  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3301  *	@dev: Device to adjust xfer masks
3302  *	@sel: ATA_DNXFER_* selector
3303  *
3304  *	Adjust xfer masks of @dev downward.  Note that this function
3305  *	does not apply the change.  Invoking ata_set_mode() afterwards
3306  *	will apply the limit.
3307  *
3308  *	LOCKING:
3309  *	Inherited from caller.
3310  *
3311  *	RETURNS:
3312  *	0 on success, negative errno on failure
3313  */
3314 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3315 {
3316 	char buf[32];
3317 	unsigned long orig_mask, xfer_mask;
3318 	unsigned long pio_mask, mwdma_mask, udma_mask;
3319 	int quiet, highbit;
3320 
3321 	quiet = !!(sel & ATA_DNXFER_QUIET);
3322 	sel &= ~ATA_DNXFER_QUIET;
3323 
3324 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3325 						  dev->mwdma_mask,
3326 						  dev->udma_mask);
3327 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3328 
3329 	switch (sel) {
3330 	case ATA_DNXFER_PIO:
3331 		highbit = fls(pio_mask) - 1;
3332 		pio_mask &= ~(1 << highbit);
3333 		break;
3334 
3335 	case ATA_DNXFER_DMA:
3336 		if (udma_mask) {
3337 			highbit = fls(udma_mask) - 1;
3338 			udma_mask &= ~(1 << highbit);
3339 			if (!udma_mask)
3340 				return -ENOENT;
3341 		} else if (mwdma_mask) {
3342 			highbit = fls(mwdma_mask) - 1;
3343 			mwdma_mask &= ~(1 << highbit);
3344 			if (!mwdma_mask)
3345 				return -ENOENT;
3346 		}
3347 		break;
3348 
3349 	case ATA_DNXFER_40C:
3350 		udma_mask &= ATA_UDMA_MASK_40C;
3351 		break;
3352 
3353 	case ATA_DNXFER_FORCE_PIO0:
3354 		pio_mask &= 1;
3355 	case ATA_DNXFER_FORCE_PIO:
3356 		mwdma_mask = 0;
3357 		udma_mask = 0;
3358 		break;
3359 
3360 	default:
3361 		BUG();
3362 	}
3363 
3364 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3365 
3366 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3367 		return -ENOENT;
3368 
3369 	if (!quiet) {
3370 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3371 			snprintf(buf, sizeof(buf), "%s:%s",
3372 				 ata_mode_string(xfer_mask),
3373 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3374 		else
3375 			snprintf(buf, sizeof(buf), "%s",
3376 				 ata_mode_string(xfer_mask));
3377 
3378 		ata_dev_printk(dev, KERN_WARNING,
3379 			       "limiting speed to %s\n", buf);
3380 	}
3381 
3382 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3383 			    &dev->udma_mask);
3384 
3385 	return 0;
3386 }
3387 
3388 static int ata_dev_set_mode(struct ata_device *dev)
3389 {
3390 	struct ata_eh_context *ehc = &dev->link->eh_context;
3391 	const char *dev_err_whine = "";
3392 	int ign_dev_err = 0;
3393 	unsigned int err_mask;
3394 	int rc;
3395 
3396 	dev->flags &= ~ATA_DFLAG_PIO;
3397 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3398 		dev->flags |= ATA_DFLAG_PIO;
3399 
3400 	err_mask = ata_dev_set_xfermode(dev);
3401 
3402 	if (err_mask & ~AC_ERR_DEV)
3403 		goto fail;
3404 
3405 	/* revalidate */
3406 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3407 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3408 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3409 	if (rc)
3410 		return rc;
3411 
3412 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3413 		/* Old CFA may refuse this command, which is just fine */
3414 		if (ata_id_is_cfa(dev->id))
3415 			ign_dev_err = 1;
3416 		/* Catch several broken garbage emulations plus some pre
3417 		   ATA devices */
3418 		if (ata_id_major_version(dev->id) == 0 &&
3419 					dev->pio_mode <= XFER_PIO_2)
3420 			ign_dev_err = 1;
3421 		/* Some very old devices and some bad newer ones fail
3422 		   any kind of SET_XFERMODE request but support PIO0-2
3423 		   timings and no IORDY */
3424 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3425 			ign_dev_err = 1;
3426 	}
3427 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3428 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3429 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3430 	    dev->dma_mode == XFER_MW_DMA_0 &&
3431 	    (dev->id[63] >> 8) & 1)
3432 		ign_dev_err = 1;
3433 
3434 	/* if the device is actually configured correctly, ignore dev err */
3435 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3436 		ign_dev_err = 1;
3437 
3438 	if (err_mask & AC_ERR_DEV) {
3439 		if (!ign_dev_err)
3440 			goto fail;
3441 		else
3442 			dev_err_whine = " (device error ignored)";
3443 	}
3444 
3445 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3446 		dev->xfer_shift, (int)dev->xfer_mode);
3447 
3448 	ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3449 		       ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3450 		       dev_err_whine);
3451 
3452 	return 0;
3453 
3454  fail:
3455 	ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3456 		       "(err_mask=0x%x)\n", err_mask);
3457 	return -EIO;
3458 }
3459 
3460 /**
3461  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3462  *	@link: link on which timings will be programmed
3463  *	@r_failed_dev: out parameter for failed device
3464  *
3465  *	Standard implementation of the function used to tune and set
3466  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3467  *	ata_dev_set_mode() fails, pointer to the failing device is
3468  *	returned in @r_failed_dev.
3469  *
3470  *	LOCKING:
3471  *	PCI/etc. bus probe sem.
3472  *
3473  *	RETURNS:
3474  *	0 on success, negative errno otherwise
3475  */
3476 
3477 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3478 {
3479 	struct ata_port *ap = link->ap;
3480 	struct ata_device *dev;
3481 	int rc = 0, used_dma = 0, found = 0;
3482 
3483 	/* step 1: calculate xfer_mask */
3484 	ata_for_each_dev(dev, link, ENABLED) {
3485 		unsigned long pio_mask, dma_mask;
3486 		unsigned int mode_mask;
3487 
3488 		mode_mask = ATA_DMA_MASK_ATA;
3489 		if (dev->class == ATA_DEV_ATAPI)
3490 			mode_mask = ATA_DMA_MASK_ATAPI;
3491 		else if (ata_id_is_cfa(dev->id))
3492 			mode_mask = ATA_DMA_MASK_CFA;
3493 
3494 		ata_dev_xfermask(dev);
3495 		ata_force_xfermask(dev);
3496 
3497 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3498 		dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3499 
3500 		if (libata_dma_mask & mode_mask)
3501 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3502 		else
3503 			dma_mask = 0;
3504 
3505 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3506 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3507 
3508 		found = 1;
3509 		if (ata_dma_enabled(dev))
3510 			used_dma = 1;
3511 	}
3512 	if (!found)
3513 		goto out;
3514 
3515 	/* step 2: always set host PIO timings */
3516 	ata_for_each_dev(dev, link, ENABLED) {
3517 		if (dev->pio_mode == 0xff) {
3518 			ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3519 			rc = -EINVAL;
3520 			goto out;
3521 		}
3522 
3523 		dev->xfer_mode = dev->pio_mode;
3524 		dev->xfer_shift = ATA_SHIFT_PIO;
3525 		if (ap->ops->set_piomode)
3526 			ap->ops->set_piomode(ap, dev);
3527 	}
3528 
3529 	/* step 3: set host DMA timings */
3530 	ata_for_each_dev(dev, link, ENABLED) {
3531 		if (!ata_dma_enabled(dev))
3532 			continue;
3533 
3534 		dev->xfer_mode = dev->dma_mode;
3535 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3536 		if (ap->ops->set_dmamode)
3537 			ap->ops->set_dmamode(ap, dev);
3538 	}
3539 
3540 	/* step 4: update devices' xfer mode */
3541 	ata_for_each_dev(dev, link, ENABLED) {
3542 		rc = ata_dev_set_mode(dev);
3543 		if (rc)
3544 			goto out;
3545 	}
3546 
3547 	/* Record simplex status. If we selected DMA then the other
3548 	 * host channels are not permitted to do so.
3549 	 */
3550 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3551 		ap->host->simplex_claimed = ap;
3552 
3553  out:
3554 	if (rc)
3555 		*r_failed_dev = dev;
3556 	return rc;
3557 }
3558 
3559 /**
3560  *	ata_wait_ready - wait for link to become ready
3561  *	@link: link to be waited on
3562  *	@deadline: deadline jiffies for the operation
3563  *	@check_ready: callback to check link readiness
3564  *
3565  *	Wait for @link to become ready.  @check_ready should return
3566  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3567  *	link doesn't seem to be occupied, other errno for other error
3568  *	conditions.
3569  *
3570  *	Transient -ENODEV conditions are allowed for
3571  *	ATA_TMOUT_FF_WAIT.
3572  *
3573  *	LOCKING:
3574  *	EH context.
3575  *
3576  *	RETURNS:
3577  *	0 if @linke is ready before @deadline; otherwise, -errno.
3578  */
3579 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3580 		   int (*check_ready)(struct ata_link *link))
3581 {
3582 	unsigned long start = jiffies;
3583 	unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3584 	int warned = 0;
3585 
3586 	/* Slave readiness can't be tested separately from master.  On
3587 	 * M/S emulation configuration, this function should be called
3588 	 * only on the master and it will handle both master and slave.
3589 	 */
3590 	WARN_ON(link == link->ap->slave_link);
3591 
3592 	if (time_after(nodev_deadline, deadline))
3593 		nodev_deadline = deadline;
3594 
3595 	while (1) {
3596 		unsigned long now = jiffies;
3597 		int ready, tmp;
3598 
3599 		ready = tmp = check_ready(link);
3600 		if (ready > 0)
3601 			return 0;
3602 
3603 		/* -ENODEV could be transient.  Ignore -ENODEV if link
3604 		 * is online.  Also, some SATA devices take a long
3605 		 * time to clear 0xff after reset.  For example,
3606 		 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3607 		 * GoVault needs even more than that.  Wait for
3608 		 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3609 		 *
3610 		 * Note that some PATA controllers (pata_ali) explode
3611 		 * if status register is read more than once when
3612 		 * there's no device attached.
3613 		 */
3614 		if (ready == -ENODEV) {
3615 			if (ata_link_online(link))
3616 				ready = 0;
3617 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3618 				 !ata_link_offline(link) &&
3619 				 time_before(now, nodev_deadline))
3620 				ready = 0;
3621 		}
3622 
3623 		if (ready)
3624 			return ready;
3625 		if (time_after(now, deadline))
3626 			return -EBUSY;
3627 
3628 		if (!warned && time_after(now, start + 5 * HZ) &&
3629 		    (deadline - now > 3 * HZ)) {
3630 			ata_link_printk(link, KERN_WARNING,
3631 				"link is slow to respond, please be patient "
3632 				"(ready=%d)\n", tmp);
3633 			warned = 1;
3634 		}
3635 
3636 		msleep(50);
3637 	}
3638 }
3639 
3640 /**
3641  *	ata_wait_after_reset - wait for link to become ready after reset
3642  *	@link: link to be waited on
3643  *	@deadline: deadline jiffies for the operation
3644  *	@check_ready: callback to check link readiness
3645  *
3646  *	Wait for @link to become ready after reset.
3647  *
3648  *	LOCKING:
3649  *	EH context.
3650  *
3651  *	RETURNS:
3652  *	0 if @linke is ready before @deadline; otherwise, -errno.
3653  */
3654 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3655 				int (*check_ready)(struct ata_link *link))
3656 {
3657 	msleep(ATA_WAIT_AFTER_RESET);
3658 
3659 	return ata_wait_ready(link, deadline, check_ready);
3660 }
3661 
3662 /**
3663  *	sata_link_debounce - debounce SATA phy status
3664  *	@link: ATA link to debounce SATA phy status for
3665  *	@params: timing parameters { interval, duratinon, timeout } in msec
3666  *	@deadline: deadline jiffies for the operation
3667  *
3668 *	Make sure SStatus of @link reaches stable state, determined by
3669  *	holding the same value where DET is not 1 for @duration polled
3670  *	every @interval, before @timeout.  Timeout constraints the
3671  *	beginning of the stable state.  Because DET gets stuck at 1 on
3672  *	some controllers after hot unplugging, this functions waits
3673  *	until timeout then returns 0 if DET is stable at 1.
3674  *
3675  *	@timeout is further limited by @deadline.  The sooner of the
3676  *	two is used.
3677  *
3678  *	LOCKING:
3679  *	Kernel thread context (may sleep)
3680  *
3681  *	RETURNS:
3682  *	0 on success, -errno on failure.
3683  */
3684 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3685 		       unsigned long deadline)
3686 {
3687 	unsigned long interval = params[0];
3688 	unsigned long duration = params[1];
3689 	unsigned long last_jiffies, t;
3690 	u32 last, cur;
3691 	int rc;
3692 
3693 	t = ata_deadline(jiffies, params[2]);
3694 	if (time_before(t, deadline))
3695 		deadline = t;
3696 
3697 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3698 		return rc;
3699 	cur &= 0xf;
3700 
3701 	last = cur;
3702 	last_jiffies = jiffies;
3703 
3704 	while (1) {
3705 		msleep(interval);
3706 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3707 			return rc;
3708 		cur &= 0xf;
3709 
3710 		/* DET stable? */
3711 		if (cur == last) {
3712 			if (cur == 1 && time_before(jiffies, deadline))
3713 				continue;
3714 			if (time_after(jiffies,
3715 				       ata_deadline(last_jiffies, duration)))
3716 				return 0;
3717 			continue;
3718 		}
3719 
3720 		/* unstable, start over */
3721 		last = cur;
3722 		last_jiffies = jiffies;
3723 
3724 		/* Check deadline.  If debouncing failed, return
3725 		 * -EPIPE to tell upper layer to lower link speed.
3726 		 */
3727 		if (time_after(jiffies, deadline))
3728 			return -EPIPE;
3729 	}
3730 }
3731 
3732 /**
3733  *	sata_link_resume - resume SATA link
3734  *	@link: ATA link to resume SATA
3735  *	@params: timing parameters { interval, duratinon, timeout } in msec
3736  *	@deadline: deadline jiffies for the operation
3737  *
3738  *	Resume SATA phy @link and debounce it.
3739  *
3740  *	LOCKING:
3741  *	Kernel thread context (may sleep)
3742  *
3743  *	RETURNS:
3744  *	0 on success, -errno on failure.
3745  */
3746 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3747 		     unsigned long deadline)
3748 {
3749 	u32 scontrol, serror;
3750 	int rc;
3751 
3752 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3753 		return rc;
3754 
3755 	scontrol = (scontrol & 0x0f0) | 0x300;
3756 
3757 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3758 		return rc;
3759 
3760 	/* Some PHYs react badly if SStatus is pounded immediately
3761 	 * after resuming.  Delay 200ms before debouncing.
3762 	 */
3763 	msleep(200);
3764 
3765 	if ((rc = sata_link_debounce(link, params, deadline)))
3766 		return rc;
3767 
3768 	/* clear SError, some PHYs require this even for SRST to work */
3769 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3770 		rc = sata_scr_write(link, SCR_ERROR, serror);
3771 
3772 	return rc != -EINVAL ? rc : 0;
3773 }
3774 
3775 /**
3776  *	ata_std_prereset - prepare for reset
3777  *	@link: ATA link to be reset
3778  *	@deadline: deadline jiffies for the operation
3779  *
3780  *	@link is about to be reset.  Initialize it.  Failure from
3781  *	prereset makes libata abort whole reset sequence and give up
3782  *	that port, so prereset should be best-effort.  It does its
3783  *	best to prepare for reset sequence but if things go wrong, it
3784  *	should just whine, not fail.
3785  *
3786  *	LOCKING:
3787  *	Kernel thread context (may sleep)
3788  *
3789  *	RETURNS:
3790  *	0 on success, -errno otherwise.
3791  */
3792 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3793 {
3794 	struct ata_port *ap = link->ap;
3795 	struct ata_eh_context *ehc = &link->eh_context;
3796 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3797 	int rc;
3798 
3799 	/* if we're about to do hardreset, nothing more to do */
3800 	if (ehc->i.action & ATA_EH_HARDRESET)
3801 		return 0;
3802 
3803 	/* if SATA, resume link */
3804 	if (ap->flags & ATA_FLAG_SATA) {
3805 		rc = sata_link_resume(link, timing, deadline);
3806 		/* whine about phy resume failure but proceed */
3807 		if (rc && rc != -EOPNOTSUPP)
3808 			ata_link_printk(link, KERN_WARNING, "failed to resume "
3809 					"link for reset (errno=%d)\n", rc);
3810 	}
3811 
3812 	/* no point in trying softreset on offline link */
3813 	if (ata_phys_link_offline(link))
3814 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3815 
3816 	return 0;
3817 }
3818 
3819 /**
3820  *	sata_link_hardreset - reset link via SATA phy reset
3821  *	@link: link to reset
3822  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3823  *	@deadline: deadline jiffies for the operation
3824  *	@online: optional out parameter indicating link onlineness
3825  *	@check_ready: optional callback to check link readiness
3826  *
3827  *	SATA phy-reset @link using DET bits of SControl register.
3828  *	After hardreset, link readiness is waited upon using
3829  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3830  *	allowed to not specify @check_ready and wait itself after this
3831  *	function returns.  Device classification is LLD's
3832  *	responsibility.
3833  *
3834  *	*@online is set to one iff reset succeeded and @link is online
3835  *	after reset.
3836  *
3837  *	LOCKING:
3838  *	Kernel thread context (may sleep)
3839  *
3840  *	RETURNS:
3841  *	0 on success, -errno otherwise.
3842  */
3843 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3844 			unsigned long deadline,
3845 			bool *online, int (*check_ready)(struct ata_link *))
3846 {
3847 	u32 scontrol;
3848 	int rc;
3849 
3850 	DPRINTK("ENTER\n");
3851 
3852 	if (online)
3853 		*online = false;
3854 
3855 	if (sata_set_spd_needed(link)) {
3856 		/* SATA spec says nothing about how to reconfigure
3857 		 * spd.  To be on the safe side, turn off phy during
3858 		 * reconfiguration.  This works for at least ICH7 AHCI
3859 		 * and Sil3124.
3860 		 */
3861 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3862 			goto out;
3863 
3864 		scontrol = (scontrol & 0x0f0) | 0x304;
3865 
3866 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3867 			goto out;
3868 
3869 		sata_set_spd(link);
3870 	}
3871 
3872 	/* issue phy wake/reset */
3873 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3874 		goto out;
3875 
3876 	scontrol = (scontrol & 0x0f0) | 0x301;
3877 
3878 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3879 		goto out;
3880 
3881 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3882 	 * 10.4.2 says at least 1 ms.
3883 	 */
3884 	msleep(1);
3885 
3886 	/* bring link back */
3887 	rc = sata_link_resume(link, timing, deadline);
3888 	if (rc)
3889 		goto out;
3890 	/* if link is offline nothing more to do */
3891 	if (ata_phys_link_offline(link))
3892 		goto out;
3893 
3894 	/* Link is online.  From this point, -ENODEV too is an error. */
3895 	if (online)
3896 		*online = true;
3897 
3898 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3899 		/* If PMP is supported, we have to do follow-up SRST.
3900 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3901 		 * the first port is empty.  Wait only for
3902 		 * ATA_TMOUT_PMP_SRST_WAIT.
3903 		 */
3904 		if (check_ready) {
3905 			unsigned long pmp_deadline;
3906 
3907 			pmp_deadline = ata_deadline(jiffies,
3908 						    ATA_TMOUT_PMP_SRST_WAIT);
3909 			if (time_after(pmp_deadline, deadline))
3910 				pmp_deadline = deadline;
3911 			ata_wait_ready(link, pmp_deadline, check_ready);
3912 		}
3913 		rc = -EAGAIN;
3914 		goto out;
3915 	}
3916 
3917 	rc = 0;
3918 	if (check_ready)
3919 		rc = ata_wait_ready(link, deadline, check_ready);
3920  out:
3921 	if (rc && rc != -EAGAIN) {
3922 		/* online is set iff link is online && reset succeeded */
3923 		if (online)
3924 			*online = false;
3925 		ata_link_printk(link, KERN_ERR,
3926 				"COMRESET failed (errno=%d)\n", rc);
3927 	}
3928 	DPRINTK("EXIT, rc=%d\n", rc);
3929 	return rc;
3930 }
3931 
3932 /**
3933  *	sata_std_hardreset - COMRESET w/o waiting or classification
3934  *	@link: link to reset
3935  *	@class: resulting class of attached device
3936  *	@deadline: deadline jiffies for the operation
3937  *
3938  *	Standard SATA COMRESET w/o waiting or classification.
3939  *
3940  *	LOCKING:
3941  *	Kernel thread context (may sleep)
3942  *
3943  *	RETURNS:
3944  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3945  */
3946 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3947 		       unsigned long deadline)
3948 {
3949 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3950 	bool online;
3951 	int rc;
3952 
3953 	/* do hardreset */
3954 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3955 	return online ? -EAGAIN : rc;
3956 }
3957 
3958 /**
3959  *	ata_std_postreset - standard postreset callback
3960  *	@link: the target ata_link
3961  *	@classes: classes of attached devices
3962  *
3963  *	This function is invoked after a successful reset.  Note that
3964  *	the device might have been reset more than once using
3965  *	different reset methods before postreset is invoked.
3966  *
3967  *	LOCKING:
3968  *	Kernel thread context (may sleep)
3969  */
3970 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3971 {
3972 	u32 serror;
3973 
3974 	DPRINTK("ENTER\n");
3975 
3976 	/* reset complete, clear SError */
3977 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3978 		sata_scr_write(link, SCR_ERROR, serror);
3979 
3980 	/* print link status */
3981 	sata_print_link_status(link);
3982 
3983 	DPRINTK("EXIT\n");
3984 }
3985 
3986 /**
3987  *	ata_dev_same_device - Determine whether new ID matches configured device
3988  *	@dev: device to compare against
3989  *	@new_class: class of the new device
3990  *	@new_id: IDENTIFY page of the new device
3991  *
3992  *	Compare @new_class and @new_id against @dev and determine
3993  *	whether @dev is the device indicated by @new_class and
3994  *	@new_id.
3995  *
3996  *	LOCKING:
3997  *	None.
3998  *
3999  *	RETURNS:
4000  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
4001  */
4002 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4003 			       const u16 *new_id)
4004 {
4005 	const u16 *old_id = dev->id;
4006 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
4007 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4008 
4009 	if (dev->class != new_class) {
4010 		ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4011 			       dev->class, new_class);
4012 		return 0;
4013 	}
4014 
4015 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4016 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4017 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4018 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4019 
4020 	if (strcmp(model[0], model[1])) {
4021 		ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4022 			       "'%s' != '%s'\n", model[0], model[1]);
4023 		return 0;
4024 	}
4025 
4026 	if (strcmp(serial[0], serial[1])) {
4027 		ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4028 			       "'%s' != '%s'\n", serial[0], serial[1]);
4029 		return 0;
4030 	}
4031 
4032 	return 1;
4033 }
4034 
4035 /**
4036  *	ata_dev_reread_id - Re-read IDENTIFY data
4037  *	@dev: target ATA device
4038  *	@readid_flags: read ID flags
4039  *
4040  *	Re-read IDENTIFY page and make sure @dev is still attached to
4041  *	the port.
4042  *
4043  *	LOCKING:
4044  *	Kernel thread context (may sleep)
4045  *
4046  *	RETURNS:
4047  *	0 on success, negative errno otherwise
4048  */
4049 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4050 {
4051 	unsigned int class = dev->class;
4052 	u16 *id = (void *)dev->link->ap->sector_buf;
4053 	int rc;
4054 
4055 	/* read ID data */
4056 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4057 	if (rc)
4058 		return rc;
4059 
4060 	/* is the device still there? */
4061 	if (!ata_dev_same_device(dev, class, id))
4062 		return -ENODEV;
4063 
4064 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4065 	return 0;
4066 }
4067 
4068 /**
4069  *	ata_dev_revalidate - Revalidate ATA device
4070  *	@dev: device to revalidate
4071  *	@new_class: new class code
4072  *	@readid_flags: read ID flags
4073  *
4074  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4075  *	port and reconfigure it according to the new IDENTIFY page.
4076  *
4077  *	LOCKING:
4078  *	Kernel thread context (may sleep)
4079  *
4080  *	RETURNS:
4081  *	0 on success, negative errno otherwise
4082  */
4083 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4084 		       unsigned int readid_flags)
4085 {
4086 	u64 n_sectors = dev->n_sectors;
4087 	int rc;
4088 
4089 	if (!ata_dev_enabled(dev))
4090 		return -ENODEV;
4091 
4092 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4093 	if (ata_class_enabled(new_class) &&
4094 	    new_class != ATA_DEV_ATA &&
4095 	    new_class != ATA_DEV_ATAPI &&
4096 	    new_class != ATA_DEV_SEMB) {
4097 		ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4098 			       dev->class, new_class);
4099 		rc = -ENODEV;
4100 		goto fail;
4101 	}
4102 
4103 	/* re-read ID */
4104 	rc = ata_dev_reread_id(dev, readid_flags);
4105 	if (rc)
4106 		goto fail;
4107 
4108 	/* configure device according to the new ID */
4109 	rc = ata_dev_configure(dev);
4110 	if (rc)
4111 		goto fail;
4112 
4113 	/* verify n_sectors hasn't changed */
4114 	if (dev->class == ATA_DEV_ATA && n_sectors &&
4115 	    dev->n_sectors != n_sectors) {
4116 		ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4117 			       "%llu != %llu\n",
4118 			       (unsigned long long)n_sectors,
4119 			       (unsigned long long)dev->n_sectors);
4120 
4121 		/* restore original n_sectors */
4122 		dev->n_sectors = n_sectors;
4123 
4124 		rc = -ENODEV;
4125 		goto fail;
4126 	}
4127 
4128 	return 0;
4129 
4130  fail:
4131 	ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4132 	return rc;
4133 }
4134 
4135 struct ata_blacklist_entry {
4136 	const char *model_num;
4137 	const char *model_rev;
4138 	unsigned long horkage;
4139 };
4140 
4141 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4142 	/* Devices with DMA related problems under Linux */
4143 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4144 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4145 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4146 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4147 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4148 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4149 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4150 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4151 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4152 	{ "CRD-8480B",		NULL,		ATA_HORKAGE_NODMA },
4153 	{ "CRD-8482B",		NULL,		ATA_HORKAGE_NODMA },
4154 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4155 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4156 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4157 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4158 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4159 	{ "HITACHI CDR-8335",	NULL,		ATA_HORKAGE_NODMA },
4160 	{ "HITACHI CDR-8435",	NULL,		ATA_HORKAGE_NODMA },
4161 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4162 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4163 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4164 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4165 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4166 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4167 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4168 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4169 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4170 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4171 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4172 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4173 	/* Odd clown on sil3726/4726 PMPs */
4174 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4175 
4176 	/* Weird ATAPI devices */
4177 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4178 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4179 
4180 	/* Devices we expect to fail diagnostics */
4181 
4182 	/* Devices where NCQ should be avoided */
4183 	/* NCQ is slow */
4184 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4185 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4186 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4187 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4188 	/* NCQ is broken */
4189 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4190 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4191 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4192 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4193 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4194 
4195 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4196 	{ "ST31500341AS",	"SD15",		ATA_HORKAGE_NONCQ |
4197 						ATA_HORKAGE_FIRMWARE_WARN },
4198 	{ "ST31500341AS",	"SD16",		ATA_HORKAGE_NONCQ |
4199 						ATA_HORKAGE_FIRMWARE_WARN },
4200 	{ "ST31500341AS",	"SD17",		ATA_HORKAGE_NONCQ |
4201 						ATA_HORKAGE_FIRMWARE_WARN },
4202 	{ "ST31500341AS",	"SD18",		ATA_HORKAGE_NONCQ |
4203 						ATA_HORKAGE_FIRMWARE_WARN },
4204 	{ "ST31500341AS",	"SD19",		ATA_HORKAGE_NONCQ |
4205 						ATA_HORKAGE_FIRMWARE_WARN },
4206 
4207 	{ "ST31000333AS",	"SD15",		ATA_HORKAGE_NONCQ |
4208 						ATA_HORKAGE_FIRMWARE_WARN },
4209 	{ "ST31000333AS",	"SD16",		ATA_HORKAGE_NONCQ |
4210 						ATA_HORKAGE_FIRMWARE_WARN },
4211 	{ "ST31000333AS",	"SD17",		ATA_HORKAGE_NONCQ |
4212 						ATA_HORKAGE_FIRMWARE_WARN },
4213 	{ "ST31000333AS",	"SD18",		ATA_HORKAGE_NONCQ |
4214 						ATA_HORKAGE_FIRMWARE_WARN },
4215 	{ "ST31000333AS",	"SD19",		ATA_HORKAGE_NONCQ |
4216 						ATA_HORKAGE_FIRMWARE_WARN },
4217 
4218 	{ "ST3640623AS",	"SD15",		ATA_HORKAGE_NONCQ |
4219 						ATA_HORKAGE_FIRMWARE_WARN },
4220 	{ "ST3640623AS",	"SD16",		ATA_HORKAGE_NONCQ |
4221 						ATA_HORKAGE_FIRMWARE_WARN },
4222 	{ "ST3640623AS",	"SD17",		ATA_HORKAGE_NONCQ |
4223 						ATA_HORKAGE_FIRMWARE_WARN },
4224 	{ "ST3640623AS",	"SD18",		ATA_HORKAGE_NONCQ |
4225 						ATA_HORKAGE_FIRMWARE_WARN },
4226 	{ "ST3640623AS",	"SD19",		ATA_HORKAGE_NONCQ |
4227 						ATA_HORKAGE_FIRMWARE_WARN },
4228 
4229 	{ "ST3640323AS",	"SD15",		ATA_HORKAGE_NONCQ |
4230 						ATA_HORKAGE_FIRMWARE_WARN },
4231 	{ "ST3640323AS",	"SD16",		ATA_HORKAGE_NONCQ |
4232 						ATA_HORKAGE_FIRMWARE_WARN },
4233 	{ "ST3640323AS",	"SD17",		ATA_HORKAGE_NONCQ |
4234 						ATA_HORKAGE_FIRMWARE_WARN },
4235 	{ "ST3640323AS",	"SD18",		ATA_HORKAGE_NONCQ |
4236 						ATA_HORKAGE_FIRMWARE_WARN },
4237 	{ "ST3640323AS",	"SD19",		ATA_HORKAGE_NONCQ |
4238 						ATA_HORKAGE_FIRMWARE_WARN },
4239 
4240 	{ "ST3320813AS",	"SD15",		ATA_HORKAGE_NONCQ |
4241 						ATA_HORKAGE_FIRMWARE_WARN },
4242 	{ "ST3320813AS",	"SD16",		ATA_HORKAGE_NONCQ |
4243 						ATA_HORKAGE_FIRMWARE_WARN },
4244 	{ "ST3320813AS",	"SD17",		ATA_HORKAGE_NONCQ |
4245 						ATA_HORKAGE_FIRMWARE_WARN },
4246 	{ "ST3320813AS",	"SD18",		ATA_HORKAGE_NONCQ |
4247 						ATA_HORKAGE_FIRMWARE_WARN },
4248 	{ "ST3320813AS",	"SD19",		ATA_HORKAGE_NONCQ |
4249 						ATA_HORKAGE_FIRMWARE_WARN },
4250 
4251 	{ "ST3320613AS",	"SD15",		ATA_HORKAGE_NONCQ |
4252 						ATA_HORKAGE_FIRMWARE_WARN },
4253 	{ "ST3320613AS",	"SD16",		ATA_HORKAGE_NONCQ |
4254 						ATA_HORKAGE_FIRMWARE_WARN },
4255 	{ "ST3320613AS",	"SD17",		ATA_HORKAGE_NONCQ |
4256 						ATA_HORKAGE_FIRMWARE_WARN },
4257 	{ "ST3320613AS",	"SD18",		ATA_HORKAGE_NONCQ |
4258 						ATA_HORKAGE_FIRMWARE_WARN },
4259 	{ "ST3320613AS",	"SD19",		ATA_HORKAGE_NONCQ |
4260 						ATA_HORKAGE_FIRMWARE_WARN },
4261 
4262 	/* Blacklist entries taken from Silicon Image 3124/3132
4263 	   Windows driver .inf file - also several Linux problem reports */
4264 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4265 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4266 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4267 
4268 	/* devices which puke on READ_NATIVE_MAX */
4269 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4270 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4271 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4272 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4273 
4274 	/* Devices which report 1 sector over size HPA */
4275 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4276 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4277 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4278 
4279 	/* Devices which get the IVB wrong */
4280 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4281 	/* Maybe we should just blacklist TSSTcorp... */
4282 	{ "TSSTcorp CDDVDW SH-S202H", "SB00",	  ATA_HORKAGE_IVB, },
4283 	{ "TSSTcorp CDDVDW SH-S202H", "SB01",	  ATA_HORKAGE_IVB, },
4284 	{ "TSSTcorp CDDVDW SH-S202J", "SB00",	  ATA_HORKAGE_IVB, },
4285 	{ "TSSTcorp CDDVDW SH-S202J", "SB01",	  ATA_HORKAGE_IVB, },
4286 	{ "TSSTcorp CDDVDW SH-S202N", "SB00",	  ATA_HORKAGE_IVB, },
4287 	{ "TSSTcorp CDDVDW SH-S202N", "SB01",	  ATA_HORKAGE_IVB, },
4288 
4289 	/* Devices that do not need bridging limits applied */
4290 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4291 
4292 	/* Devices which aren't very happy with higher link speeds */
4293 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4294 
4295 	/* End Marker */
4296 	{ }
4297 };
4298 
4299 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4300 {
4301 	const char *p;
4302 	int len;
4303 
4304 	/*
4305 	 * check for trailing wildcard: *\0
4306 	 */
4307 	p = strchr(patt, wildchar);
4308 	if (p && ((*(p + 1)) == 0))
4309 		len = p - patt;
4310 	else {
4311 		len = strlen(name);
4312 		if (!len) {
4313 			if (!*patt)
4314 				return 0;
4315 			return -1;
4316 		}
4317 	}
4318 
4319 	return strncmp(patt, name, len);
4320 }
4321 
4322 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4323 {
4324 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4325 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4326 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4327 
4328 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4329 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4330 
4331 	while (ad->model_num) {
4332 		if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4333 			if (ad->model_rev == NULL)
4334 				return ad->horkage;
4335 			if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4336 				return ad->horkage;
4337 		}
4338 		ad++;
4339 	}
4340 	return 0;
4341 }
4342 
4343 static int ata_dma_blacklisted(const struct ata_device *dev)
4344 {
4345 	/* We don't support polling DMA.
4346 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4347 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4348 	 */
4349 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4350 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4351 		return 1;
4352 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4353 }
4354 
4355 /**
4356  *	ata_is_40wire		-	check drive side detection
4357  *	@dev: device
4358  *
4359  *	Perform drive side detection decoding, allowing for device vendors
4360  *	who can't follow the documentation.
4361  */
4362 
4363 static int ata_is_40wire(struct ata_device *dev)
4364 {
4365 	if (dev->horkage & ATA_HORKAGE_IVB)
4366 		return ata_drive_40wire_relaxed(dev->id);
4367 	return ata_drive_40wire(dev->id);
4368 }
4369 
4370 /**
4371  *	cable_is_40wire		-	40/80/SATA decider
4372  *	@ap: port to consider
4373  *
4374  *	This function encapsulates the policy for speed management
4375  *	in one place. At the moment we don't cache the result but
4376  *	there is a good case for setting ap->cbl to the result when
4377  *	we are called with unknown cables (and figuring out if it
4378  *	impacts hotplug at all).
4379  *
4380  *	Return 1 if the cable appears to be 40 wire.
4381  */
4382 
4383 static int cable_is_40wire(struct ata_port *ap)
4384 {
4385 	struct ata_link *link;
4386 	struct ata_device *dev;
4387 
4388 	/* If the controller thinks we are 40 wire, we are. */
4389 	if (ap->cbl == ATA_CBL_PATA40)
4390 		return 1;
4391 
4392 	/* If the controller thinks we are 80 wire, we are. */
4393 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4394 		return 0;
4395 
4396 	/* If the system is known to be 40 wire short cable (eg
4397 	 * laptop), then we allow 80 wire modes even if the drive
4398 	 * isn't sure.
4399 	 */
4400 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4401 		return 0;
4402 
4403 	/* If the controller doesn't know, we scan.
4404 	 *
4405 	 * Note: We look for all 40 wire detects at this point.  Any
4406 	 *       80 wire detect is taken to be 80 wire cable because
4407 	 * - in many setups only the one drive (slave if present) will
4408 	 *   give a valid detect
4409 	 * - if you have a non detect capable drive you don't want it
4410 	 *   to colour the choice
4411 	 */
4412 	ata_for_each_link(link, ap, EDGE) {
4413 		ata_for_each_dev(dev, link, ENABLED) {
4414 			if (!ata_is_40wire(dev))
4415 				return 0;
4416 		}
4417 	}
4418 	return 1;
4419 }
4420 
4421 /**
4422  *	ata_dev_xfermask - Compute supported xfermask of the given device
4423  *	@dev: Device to compute xfermask for
4424  *
4425  *	Compute supported xfermask of @dev and store it in
4426  *	dev->*_mask.  This function is responsible for applying all
4427  *	known limits including host controller limits, device
4428  *	blacklist, etc...
4429  *
4430  *	LOCKING:
4431  *	None.
4432  */
4433 static void ata_dev_xfermask(struct ata_device *dev)
4434 {
4435 	struct ata_link *link = dev->link;
4436 	struct ata_port *ap = link->ap;
4437 	struct ata_host *host = ap->host;
4438 	unsigned long xfer_mask;
4439 
4440 	/* controller modes available */
4441 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4442 				      ap->mwdma_mask, ap->udma_mask);
4443 
4444 	/* drive modes available */
4445 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4446 				       dev->mwdma_mask, dev->udma_mask);
4447 	xfer_mask &= ata_id_xfermask(dev->id);
4448 
4449 	/*
4450 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4451 	 *	cable
4452 	 */
4453 	if (ata_dev_pair(dev)) {
4454 		/* No PIO5 or PIO6 */
4455 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4456 		/* No MWDMA3 or MWDMA 4 */
4457 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4458 	}
4459 
4460 	if (ata_dma_blacklisted(dev)) {
4461 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4462 		ata_dev_printk(dev, KERN_WARNING,
4463 			       "device is on DMA blacklist, disabling DMA\n");
4464 	}
4465 
4466 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4467 	    host->simplex_claimed && host->simplex_claimed != ap) {
4468 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4469 		ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4470 			       "other device, disabling DMA\n");
4471 	}
4472 
4473 	if (ap->flags & ATA_FLAG_NO_IORDY)
4474 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4475 
4476 	if (ap->ops->mode_filter)
4477 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4478 
4479 	/* Apply cable rule here.  Don't apply it early because when
4480 	 * we handle hot plug the cable type can itself change.
4481 	 * Check this last so that we know if the transfer rate was
4482 	 * solely limited by the cable.
4483 	 * Unknown or 80 wire cables reported host side are checked
4484 	 * drive side as well. Cases where we know a 40wire cable
4485 	 * is used safely for 80 are not checked here.
4486 	 */
4487 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4488 		/* UDMA/44 or higher would be available */
4489 		if (cable_is_40wire(ap)) {
4490 			ata_dev_printk(dev, KERN_WARNING,
4491 				 "limited to UDMA/33 due to 40-wire cable\n");
4492 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4493 		}
4494 
4495 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4496 			    &dev->mwdma_mask, &dev->udma_mask);
4497 }
4498 
4499 /**
4500  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4501  *	@dev: Device to which command will be sent
4502  *
4503  *	Issue SET FEATURES - XFER MODE command to device @dev
4504  *	on port @ap.
4505  *
4506  *	LOCKING:
4507  *	PCI/etc. bus probe sem.
4508  *
4509  *	RETURNS:
4510  *	0 on success, AC_ERR_* mask otherwise.
4511  */
4512 
4513 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4514 {
4515 	struct ata_taskfile tf;
4516 	unsigned int err_mask;
4517 
4518 	/* set up set-features taskfile */
4519 	DPRINTK("set features - xfer mode\n");
4520 
4521 	/* Some controllers and ATAPI devices show flaky interrupt
4522 	 * behavior after setting xfer mode.  Use polling instead.
4523 	 */
4524 	ata_tf_init(dev, &tf);
4525 	tf.command = ATA_CMD_SET_FEATURES;
4526 	tf.feature = SETFEATURES_XFER;
4527 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4528 	tf.protocol = ATA_PROT_NODATA;
4529 	/* If we are using IORDY we must send the mode setting command */
4530 	if (ata_pio_need_iordy(dev))
4531 		tf.nsect = dev->xfer_mode;
4532 	/* If the device has IORDY and the controller does not - turn it off */
4533  	else if (ata_id_has_iordy(dev->id))
4534 		tf.nsect = 0x01;
4535 	else /* In the ancient relic department - skip all of this */
4536 		return 0;
4537 
4538 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4539 
4540 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4541 	return err_mask;
4542 }
4543 /**
4544  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4545  *	@dev: Device to which command will be sent
4546  *	@enable: Whether to enable or disable the feature
4547  *	@feature: The sector count represents the feature to set
4548  *
4549  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4550  *	on port @ap with sector count
4551  *
4552  *	LOCKING:
4553  *	PCI/etc. bus probe sem.
4554  *
4555  *	RETURNS:
4556  *	0 on success, AC_ERR_* mask otherwise.
4557  */
4558 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4559 					u8 feature)
4560 {
4561 	struct ata_taskfile tf;
4562 	unsigned int err_mask;
4563 
4564 	/* set up set-features taskfile */
4565 	DPRINTK("set features - SATA features\n");
4566 
4567 	ata_tf_init(dev, &tf);
4568 	tf.command = ATA_CMD_SET_FEATURES;
4569 	tf.feature = enable;
4570 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4571 	tf.protocol = ATA_PROT_NODATA;
4572 	tf.nsect = feature;
4573 
4574 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4575 
4576 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4577 	return err_mask;
4578 }
4579 
4580 /**
4581  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4582  *	@dev: Device to which command will be sent
4583  *	@heads: Number of heads (taskfile parameter)
4584  *	@sectors: Number of sectors (taskfile parameter)
4585  *
4586  *	LOCKING:
4587  *	Kernel thread context (may sleep)
4588  *
4589  *	RETURNS:
4590  *	0 on success, AC_ERR_* mask otherwise.
4591  */
4592 static unsigned int ata_dev_init_params(struct ata_device *dev,
4593 					u16 heads, u16 sectors)
4594 {
4595 	struct ata_taskfile tf;
4596 	unsigned int err_mask;
4597 
4598 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4599 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4600 		return AC_ERR_INVALID;
4601 
4602 	/* set up init dev params taskfile */
4603 	DPRINTK("init dev params \n");
4604 
4605 	ata_tf_init(dev, &tf);
4606 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4607 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4608 	tf.protocol = ATA_PROT_NODATA;
4609 	tf.nsect = sectors;
4610 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4611 
4612 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4613 	/* A clean abort indicates an original or just out of spec drive
4614 	   and we should continue as we issue the setup based on the
4615 	   drive reported working geometry */
4616 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4617 		err_mask = 0;
4618 
4619 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4620 	return err_mask;
4621 }
4622 
4623 /**
4624  *	ata_sg_clean - Unmap DMA memory associated with command
4625  *	@qc: Command containing DMA memory to be released
4626  *
4627  *	Unmap all mapped DMA memory associated with this command.
4628  *
4629  *	LOCKING:
4630  *	spin_lock_irqsave(host lock)
4631  */
4632 void ata_sg_clean(struct ata_queued_cmd *qc)
4633 {
4634 	struct ata_port *ap = qc->ap;
4635 	struct scatterlist *sg = qc->sg;
4636 	int dir = qc->dma_dir;
4637 
4638 	WARN_ON_ONCE(sg == NULL);
4639 
4640 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4641 
4642 	if (qc->n_elem)
4643 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4644 
4645 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4646 	qc->sg = NULL;
4647 }
4648 
4649 /**
4650  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4651  *	@qc: Metadata associated with taskfile to check
4652  *
4653  *	Allow low-level driver to filter ATA PACKET commands, returning
4654  *	a status indicating whether or not it is OK to use DMA for the
4655  *	supplied PACKET command.
4656  *
4657  *	LOCKING:
4658  *	spin_lock_irqsave(host lock)
4659  *
4660  *	RETURNS: 0 when ATAPI DMA can be used
4661  *               nonzero otherwise
4662  */
4663 int atapi_check_dma(struct ata_queued_cmd *qc)
4664 {
4665 	struct ata_port *ap = qc->ap;
4666 
4667 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4668 	 * few ATAPI devices choke on such DMA requests.
4669 	 */
4670 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4671 	    unlikely(qc->nbytes & 15))
4672 		return 1;
4673 
4674 	if (ap->ops->check_atapi_dma)
4675 		return ap->ops->check_atapi_dma(qc);
4676 
4677 	return 0;
4678 }
4679 
4680 /**
4681  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4682  *	@qc: ATA command in question
4683  *
4684  *	Non-NCQ commands cannot run with any other command, NCQ or
4685  *	not.  As upper layer only knows the queue depth, we are
4686  *	responsible for maintaining exclusion.  This function checks
4687  *	whether a new command @qc can be issued.
4688  *
4689  *	LOCKING:
4690  *	spin_lock_irqsave(host lock)
4691  *
4692  *	RETURNS:
4693  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4694  */
4695 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4696 {
4697 	struct ata_link *link = qc->dev->link;
4698 
4699 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4700 		if (!ata_tag_valid(link->active_tag))
4701 			return 0;
4702 	} else {
4703 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4704 			return 0;
4705 	}
4706 
4707 	return ATA_DEFER_LINK;
4708 }
4709 
4710 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4711 
4712 /**
4713  *	ata_sg_init - Associate command with scatter-gather table.
4714  *	@qc: Command to be associated
4715  *	@sg: Scatter-gather table.
4716  *	@n_elem: Number of elements in s/g table.
4717  *
4718  *	Initialize the data-related elements of queued_cmd @qc
4719  *	to point to a scatter-gather table @sg, containing @n_elem
4720  *	elements.
4721  *
4722  *	LOCKING:
4723  *	spin_lock_irqsave(host lock)
4724  */
4725 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4726 		 unsigned int n_elem)
4727 {
4728 	qc->sg = sg;
4729 	qc->n_elem = n_elem;
4730 	qc->cursg = qc->sg;
4731 }
4732 
4733 /**
4734  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4735  *	@qc: Command with scatter-gather table to be mapped.
4736  *
4737  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4738  *
4739  *	LOCKING:
4740  *	spin_lock_irqsave(host lock)
4741  *
4742  *	RETURNS:
4743  *	Zero on success, negative on error.
4744  *
4745  */
4746 static int ata_sg_setup(struct ata_queued_cmd *qc)
4747 {
4748 	struct ata_port *ap = qc->ap;
4749 	unsigned int n_elem;
4750 
4751 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4752 
4753 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4754 	if (n_elem < 1)
4755 		return -1;
4756 
4757 	DPRINTK("%d sg elements mapped\n", n_elem);
4758 	qc->orig_n_elem = qc->n_elem;
4759 	qc->n_elem = n_elem;
4760 	qc->flags |= ATA_QCFLAG_DMAMAP;
4761 
4762 	return 0;
4763 }
4764 
4765 /**
4766  *	swap_buf_le16 - swap halves of 16-bit words in place
4767  *	@buf:  Buffer to swap
4768  *	@buf_words:  Number of 16-bit words in buffer.
4769  *
4770  *	Swap halves of 16-bit words if needed to convert from
4771  *	little-endian byte order to native cpu byte order, or
4772  *	vice-versa.
4773  *
4774  *	LOCKING:
4775  *	Inherited from caller.
4776  */
4777 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4778 {
4779 #ifdef __BIG_ENDIAN
4780 	unsigned int i;
4781 
4782 	for (i = 0; i < buf_words; i++)
4783 		buf[i] = le16_to_cpu(buf[i]);
4784 #endif /* __BIG_ENDIAN */
4785 }
4786 
4787 /**
4788  *	ata_qc_new - Request an available ATA command, for queueing
4789  *	@ap: target port
4790  *
4791  *	LOCKING:
4792  *	None.
4793  */
4794 
4795 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4796 {
4797 	struct ata_queued_cmd *qc = NULL;
4798 	unsigned int i;
4799 
4800 	/* no command while frozen */
4801 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4802 		return NULL;
4803 
4804 	/* the last tag is reserved for internal command. */
4805 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4806 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4807 			qc = __ata_qc_from_tag(ap, i);
4808 			break;
4809 		}
4810 
4811 	if (qc)
4812 		qc->tag = i;
4813 
4814 	return qc;
4815 }
4816 
4817 /**
4818  *	ata_qc_new_init - Request an available ATA command, and initialize it
4819  *	@dev: Device from whom we request an available command structure
4820  *
4821  *	LOCKING:
4822  *	None.
4823  */
4824 
4825 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4826 {
4827 	struct ata_port *ap = dev->link->ap;
4828 	struct ata_queued_cmd *qc;
4829 
4830 	qc = ata_qc_new(ap);
4831 	if (qc) {
4832 		qc->scsicmd = NULL;
4833 		qc->ap = ap;
4834 		qc->dev = dev;
4835 
4836 		ata_qc_reinit(qc);
4837 	}
4838 
4839 	return qc;
4840 }
4841 
4842 /**
4843  *	ata_qc_free - free unused ata_queued_cmd
4844  *	@qc: Command to complete
4845  *
4846  *	Designed to free unused ata_queued_cmd object
4847  *	in case something prevents using it.
4848  *
4849  *	LOCKING:
4850  *	spin_lock_irqsave(host lock)
4851  */
4852 void ata_qc_free(struct ata_queued_cmd *qc)
4853 {
4854 	struct ata_port *ap = qc->ap;
4855 	unsigned int tag;
4856 
4857 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4858 
4859 	qc->flags = 0;
4860 	tag = qc->tag;
4861 	if (likely(ata_tag_valid(tag))) {
4862 		qc->tag = ATA_TAG_POISON;
4863 		clear_bit(tag, &ap->qc_allocated);
4864 	}
4865 }
4866 
4867 void __ata_qc_complete(struct ata_queued_cmd *qc)
4868 {
4869 	struct ata_port *ap = qc->ap;
4870 	struct ata_link *link = qc->dev->link;
4871 
4872 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4873 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4874 
4875 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4876 		ata_sg_clean(qc);
4877 
4878 	/* command should be marked inactive atomically with qc completion */
4879 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4880 		link->sactive &= ~(1 << qc->tag);
4881 		if (!link->sactive)
4882 			ap->nr_active_links--;
4883 	} else {
4884 		link->active_tag = ATA_TAG_POISON;
4885 		ap->nr_active_links--;
4886 	}
4887 
4888 	/* clear exclusive status */
4889 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4890 		     ap->excl_link == link))
4891 		ap->excl_link = NULL;
4892 
4893 	/* atapi: mark qc as inactive to prevent the interrupt handler
4894 	 * from completing the command twice later, before the error handler
4895 	 * is called. (when rc != 0 and atapi request sense is needed)
4896 	 */
4897 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4898 	ap->qc_active &= ~(1 << qc->tag);
4899 
4900 	/* call completion callback */
4901 	qc->complete_fn(qc);
4902 }
4903 
4904 static void fill_result_tf(struct ata_queued_cmd *qc)
4905 {
4906 	struct ata_port *ap = qc->ap;
4907 
4908 	qc->result_tf.flags = qc->tf.flags;
4909 	ap->ops->qc_fill_rtf(qc);
4910 }
4911 
4912 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4913 {
4914 	struct ata_device *dev = qc->dev;
4915 
4916 	if (ata_tag_internal(qc->tag))
4917 		return;
4918 
4919 	if (ata_is_nodata(qc->tf.protocol))
4920 		return;
4921 
4922 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4923 		return;
4924 
4925 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4926 }
4927 
4928 /**
4929  *	ata_qc_complete - Complete an active ATA command
4930  *	@qc: Command to complete
4931  *
4932  *	Indicate to the mid and upper layers that an ATA
4933  *	command has completed, with either an ok or not-ok status.
4934  *
4935  *	LOCKING:
4936  *	spin_lock_irqsave(host lock)
4937  */
4938 void ata_qc_complete(struct ata_queued_cmd *qc)
4939 {
4940 	struct ata_port *ap = qc->ap;
4941 
4942 	/* XXX: New EH and old EH use different mechanisms to
4943 	 * synchronize EH with regular execution path.
4944 	 *
4945 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4946 	 * Normal execution path is responsible for not accessing a
4947 	 * failed qc.  libata core enforces the rule by returning NULL
4948 	 * from ata_qc_from_tag() for failed qcs.
4949 	 *
4950 	 * Old EH depends on ata_qc_complete() nullifying completion
4951 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4952 	 * not synchronize with interrupt handler.  Only PIO task is
4953 	 * taken care of.
4954 	 */
4955 	if (ap->ops->error_handler) {
4956 		struct ata_device *dev = qc->dev;
4957 		struct ata_eh_info *ehi = &dev->link->eh_info;
4958 
4959 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4960 
4961 		if (unlikely(qc->err_mask))
4962 			qc->flags |= ATA_QCFLAG_FAILED;
4963 
4964 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4965 			if (!ata_tag_internal(qc->tag)) {
4966 				/* always fill result TF for failed qc */
4967 				fill_result_tf(qc);
4968 				ata_qc_schedule_eh(qc);
4969 				return;
4970 			}
4971 		}
4972 
4973 		/* read result TF if requested */
4974 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4975 			fill_result_tf(qc);
4976 
4977 		/* Some commands need post-processing after successful
4978 		 * completion.
4979 		 */
4980 		switch (qc->tf.command) {
4981 		case ATA_CMD_SET_FEATURES:
4982 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4983 			    qc->tf.feature != SETFEATURES_WC_OFF)
4984 				break;
4985 			/* fall through */
4986 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4987 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4988 			/* revalidate device */
4989 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4990 			ata_port_schedule_eh(ap);
4991 			break;
4992 
4993 		case ATA_CMD_SLEEP:
4994 			dev->flags |= ATA_DFLAG_SLEEPING;
4995 			break;
4996 		}
4997 
4998 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4999 			ata_verify_xfer(qc);
5000 
5001 		__ata_qc_complete(qc);
5002 	} else {
5003 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5004 			return;
5005 
5006 		/* read result TF if failed or requested */
5007 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5008 			fill_result_tf(qc);
5009 
5010 		__ata_qc_complete(qc);
5011 	}
5012 }
5013 
5014 /**
5015  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5016  *	@ap: port in question
5017  *	@qc_active: new qc_active mask
5018  *
5019  *	Complete in-flight commands.  This functions is meant to be
5020  *	called from low-level driver's interrupt routine to complete
5021  *	requests normally.  ap->qc_active and @qc_active is compared
5022  *	and commands are completed accordingly.
5023  *
5024  *	LOCKING:
5025  *	spin_lock_irqsave(host lock)
5026  *
5027  *	RETURNS:
5028  *	Number of completed commands on success, -errno otherwise.
5029  */
5030 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5031 {
5032 	int nr_done = 0;
5033 	u32 done_mask;
5034 	int i;
5035 
5036 	done_mask = ap->qc_active ^ qc_active;
5037 
5038 	if (unlikely(done_mask & qc_active)) {
5039 		ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5040 				"(%08x->%08x)\n", ap->qc_active, qc_active);
5041 		return -EINVAL;
5042 	}
5043 
5044 	for (i = 0; i < ATA_MAX_QUEUE; i++) {
5045 		struct ata_queued_cmd *qc;
5046 
5047 		if (!(done_mask & (1 << i)))
5048 			continue;
5049 
5050 		if ((qc = ata_qc_from_tag(ap, i))) {
5051 			ata_qc_complete(qc);
5052 			nr_done++;
5053 		}
5054 	}
5055 
5056 	return nr_done;
5057 }
5058 
5059 /**
5060  *	ata_qc_issue - issue taskfile to device
5061  *	@qc: command to issue to device
5062  *
5063  *	Prepare an ATA command to submission to device.
5064  *	This includes mapping the data into a DMA-able
5065  *	area, filling in the S/G table, and finally
5066  *	writing the taskfile to hardware, starting the command.
5067  *
5068  *	LOCKING:
5069  *	spin_lock_irqsave(host lock)
5070  */
5071 void ata_qc_issue(struct ata_queued_cmd *qc)
5072 {
5073 	struct ata_port *ap = qc->ap;
5074 	struct ata_link *link = qc->dev->link;
5075 	u8 prot = qc->tf.protocol;
5076 
5077 	/* Make sure only one non-NCQ command is outstanding.  The
5078 	 * check is skipped for old EH because it reuses active qc to
5079 	 * request ATAPI sense.
5080 	 */
5081 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5082 
5083 	if (ata_is_ncq(prot)) {
5084 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5085 
5086 		if (!link->sactive)
5087 			ap->nr_active_links++;
5088 		link->sactive |= 1 << qc->tag;
5089 	} else {
5090 		WARN_ON_ONCE(link->sactive);
5091 
5092 		ap->nr_active_links++;
5093 		link->active_tag = qc->tag;
5094 	}
5095 
5096 	qc->flags |= ATA_QCFLAG_ACTIVE;
5097 	ap->qc_active |= 1 << qc->tag;
5098 
5099 	/* We guarantee to LLDs that they will have at least one
5100 	 * non-zero sg if the command is a data command.
5101 	 */
5102 	BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5103 
5104 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5105 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5106 		if (ata_sg_setup(qc))
5107 			goto sg_err;
5108 
5109 	/* if device is sleeping, schedule reset and abort the link */
5110 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5111 		link->eh_info.action |= ATA_EH_RESET;
5112 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5113 		ata_link_abort(link);
5114 		return;
5115 	}
5116 
5117 	ap->ops->qc_prep(qc);
5118 
5119 	qc->err_mask |= ap->ops->qc_issue(qc);
5120 	if (unlikely(qc->err_mask))
5121 		goto err;
5122 	return;
5123 
5124 sg_err:
5125 	qc->err_mask |= AC_ERR_SYSTEM;
5126 err:
5127 	ata_qc_complete(qc);
5128 }
5129 
5130 /**
5131  *	sata_scr_valid - test whether SCRs are accessible
5132  *	@link: ATA link to test SCR accessibility for
5133  *
5134  *	Test whether SCRs are accessible for @link.
5135  *
5136  *	LOCKING:
5137  *	None.
5138  *
5139  *	RETURNS:
5140  *	1 if SCRs are accessible, 0 otherwise.
5141  */
5142 int sata_scr_valid(struct ata_link *link)
5143 {
5144 	struct ata_port *ap = link->ap;
5145 
5146 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5147 }
5148 
5149 /**
5150  *	sata_scr_read - read SCR register of the specified port
5151  *	@link: ATA link to read SCR for
5152  *	@reg: SCR to read
5153  *	@val: Place to store read value
5154  *
5155  *	Read SCR register @reg of @link into *@val.  This function is
5156  *	guaranteed to succeed if @link is ap->link, the cable type of
5157  *	the port is SATA and the port implements ->scr_read.
5158  *
5159  *	LOCKING:
5160  *	None if @link is ap->link.  Kernel thread context otherwise.
5161  *
5162  *	RETURNS:
5163  *	0 on success, negative errno on failure.
5164  */
5165 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5166 {
5167 	if (ata_is_host_link(link)) {
5168 		if (sata_scr_valid(link))
5169 			return link->ap->ops->scr_read(link, reg, val);
5170 		return -EOPNOTSUPP;
5171 	}
5172 
5173 	return sata_pmp_scr_read(link, reg, val);
5174 }
5175 
5176 /**
5177  *	sata_scr_write - write SCR register of the specified port
5178  *	@link: ATA link to write SCR for
5179  *	@reg: SCR to write
5180  *	@val: value to write
5181  *
5182  *	Write @val to SCR register @reg of @link.  This function is
5183  *	guaranteed to succeed if @link is ap->link, the cable type of
5184  *	the port is SATA and the port implements ->scr_read.
5185  *
5186  *	LOCKING:
5187  *	None if @link is ap->link.  Kernel thread context otherwise.
5188  *
5189  *	RETURNS:
5190  *	0 on success, negative errno on failure.
5191  */
5192 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5193 {
5194 	if (ata_is_host_link(link)) {
5195 		if (sata_scr_valid(link))
5196 			return link->ap->ops->scr_write(link, reg, val);
5197 		return -EOPNOTSUPP;
5198 	}
5199 
5200 	return sata_pmp_scr_write(link, reg, val);
5201 }
5202 
5203 /**
5204  *	sata_scr_write_flush - write SCR register of the specified port and flush
5205  *	@link: ATA link to write SCR for
5206  *	@reg: SCR to write
5207  *	@val: value to write
5208  *
5209  *	This function is identical to sata_scr_write() except that this
5210  *	function performs flush after writing to the register.
5211  *
5212  *	LOCKING:
5213  *	None if @link is ap->link.  Kernel thread context otherwise.
5214  *
5215  *	RETURNS:
5216  *	0 on success, negative errno on failure.
5217  */
5218 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5219 {
5220 	if (ata_is_host_link(link)) {
5221 		int rc;
5222 
5223 		if (sata_scr_valid(link)) {
5224 			rc = link->ap->ops->scr_write(link, reg, val);
5225 			if (rc == 0)
5226 				rc = link->ap->ops->scr_read(link, reg, &val);
5227 			return rc;
5228 		}
5229 		return -EOPNOTSUPP;
5230 	}
5231 
5232 	return sata_pmp_scr_write(link, reg, val);
5233 }
5234 
5235 /**
5236  *	ata_phys_link_online - test whether the given link is online
5237  *	@link: ATA link to test
5238  *
5239  *	Test whether @link is online.  Note that this function returns
5240  *	0 if online status of @link cannot be obtained, so
5241  *	ata_link_online(link) != !ata_link_offline(link).
5242  *
5243  *	LOCKING:
5244  *	None.
5245  *
5246  *	RETURNS:
5247  *	True if the port online status is available and online.
5248  */
5249 bool ata_phys_link_online(struct ata_link *link)
5250 {
5251 	u32 sstatus;
5252 
5253 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5254 	    ata_sstatus_online(sstatus))
5255 		return true;
5256 	return false;
5257 }
5258 
5259 /**
5260  *	ata_phys_link_offline - test whether the given link is offline
5261  *	@link: ATA link to test
5262  *
5263  *	Test whether @link is offline.  Note that this function
5264  *	returns 0 if offline status of @link cannot be obtained, so
5265  *	ata_link_online(link) != !ata_link_offline(link).
5266  *
5267  *	LOCKING:
5268  *	None.
5269  *
5270  *	RETURNS:
5271  *	True if the port offline status is available and offline.
5272  */
5273 bool ata_phys_link_offline(struct ata_link *link)
5274 {
5275 	u32 sstatus;
5276 
5277 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5278 	    !ata_sstatus_online(sstatus))
5279 		return true;
5280 	return false;
5281 }
5282 
5283 /**
5284  *	ata_link_online - test whether the given link is online
5285  *	@link: ATA link to test
5286  *
5287  *	Test whether @link is online.  This is identical to
5288  *	ata_phys_link_online() when there's no slave link.  When
5289  *	there's a slave link, this function should only be called on
5290  *	the master link and will return true if any of M/S links is
5291  *	online.
5292  *
5293  *	LOCKING:
5294  *	None.
5295  *
5296  *	RETURNS:
5297  *	True if the port online status is available and online.
5298  */
5299 bool ata_link_online(struct ata_link *link)
5300 {
5301 	struct ata_link *slave = link->ap->slave_link;
5302 
5303 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5304 
5305 	return ata_phys_link_online(link) ||
5306 		(slave && ata_phys_link_online(slave));
5307 }
5308 
5309 /**
5310  *	ata_link_offline - test whether the given link is offline
5311  *	@link: ATA link to test
5312  *
5313  *	Test whether @link is offline.  This is identical to
5314  *	ata_phys_link_offline() when there's no slave link.  When
5315  *	there's a slave link, this function should only be called on
5316  *	the master link and will return true if both M/S links are
5317  *	offline.
5318  *
5319  *	LOCKING:
5320  *	None.
5321  *
5322  *	RETURNS:
5323  *	True if the port offline status is available and offline.
5324  */
5325 bool ata_link_offline(struct ata_link *link)
5326 {
5327 	struct ata_link *slave = link->ap->slave_link;
5328 
5329 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5330 
5331 	return ata_phys_link_offline(link) &&
5332 		(!slave || ata_phys_link_offline(slave));
5333 }
5334 
5335 #ifdef CONFIG_PM
5336 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5337 			       unsigned int action, unsigned int ehi_flags,
5338 			       int wait)
5339 {
5340 	unsigned long flags;
5341 	int i, rc;
5342 
5343 	for (i = 0; i < host->n_ports; i++) {
5344 		struct ata_port *ap = host->ports[i];
5345 		struct ata_link *link;
5346 
5347 		/* Previous resume operation might still be in
5348 		 * progress.  Wait for PM_PENDING to clear.
5349 		 */
5350 		if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5351 			ata_port_wait_eh(ap);
5352 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5353 		}
5354 
5355 		/* request PM ops to EH */
5356 		spin_lock_irqsave(ap->lock, flags);
5357 
5358 		ap->pm_mesg = mesg;
5359 		if (wait) {
5360 			rc = 0;
5361 			ap->pm_result = &rc;
5362 		}
5363 
5364 		ap->pflags |= ATA_PFLAG_PM_PENDING;
5365 		ata_for_each_link(link, ap, HOST_FIRST) {
5366 			link->eh_info.action |= action;
5367 			link->eh_info.flags |= ehi_flags;
5368 		}
5369 
5370 		ata_port_schedule_eh(ap);
5371 
5372 		spin_unlock_irqrestore(ap->lock, flags);
5373 
5374 		/* wait and check result */
5375 		if (wait) {
5376 			ata_port_wait_eh(ap);
5377 			WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5378 			if (rc)
5379 				return rc;
5380 		}
5381 	}
5382 
5383 	return 0;
5384 }
5385 
5386 /**
5387  *	ata_host_suspend - suspend host
5388  *	@host: host to suspend
5389  *	@mesg: PM message
5390  *
5391  *	Suspend @host.  Actual operation is performed by EH.  This
5392  *	function requests EH to perform PM operations and waits for EH
5393  *	to finish.
5394  *
5395  *	LOCKING:
5396  *	Kernel thread context (may sleep).
5397  *
5398  *	RETURNS:
5399  *	0 on success, -errno on failure.
5400  */
5401 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5402 {
5403 	int rc;
5404 
5405 	/*
5406 	 * disable link pm on all ports before requesting
5407 	 * any pm activity
5408 	 */
5409 	ata_lpm_enable(host);
5410 
5411 	rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5412 	if (rc == 0)
5413 		host->dev->power.power_state = mesg;
5414 	return rc;
5415 }
5416 
5417 /**
5418  *	ata_host_resume - resume host
5419  *	@host: host to resume
5420  *
5421  *	Resume @host.  Actual operation is performed by EH.  This
5422  *	function requests EH to perform PM operations and returns.
5423  *	Note that all resume operations are performed parallely.
5424  *
5425  *	LOCKING:
5426  *	Kernel thread context (may sleep).
5427  */
5428 void ata_host_resume(struct ata_host *host)
5429 {
5430 	ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5431 			    ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5432 	host->dev->power.power_state = PMSG_ON;
5433 
5434 	/* reenable link pm */
5435 	ata_lpm_disable(host);
5436 }
5437 #endif
5438 
5439 /**
5440  *	ata_port_start - Set port up for dma.
5441  *	@ap: Port to initialize
5442  *
5443  *	Called just after data structures for each port are
5444  *	initialized.  Allocates space for PRD table.
5445  *
5446  *	May be used as the port_start() entry in ata_port_operations.
5447  *
5448  *	LOCKING:
5449  *	Inherited from caller.
5450  */
5451 int ata_port_start(struct ata_port *ap)
5452 {
5453 	struct device *dev = ap->dev;
5454 
5455 	ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5456 				      GFP_KERNEL);
5457 	if (!ap->prd)
5458 		return -ENOMEM;
5459 
5460 	return 0;
5461 }
5462 
5463 /**
5464  *	ata_dev_init - Initialize an ata_device structure
5465  *	@dev: Device structure to initialize
5466  *
5467  *	Initialize @dev in preparation for probing.
5468  *
5469  *	LOCKING:
5470  *	Inherited from caller.
5471  */
5472 void ata_dev_init(struct ata_device *dev)
5473 {
5474 	struct ata_link *link = ata_dev_phys_link(dev);
5475 	struct ata_port *ap = link->ap;
5476 	unsigned long flags;
5477 
5478 	/* SATA spd limit is bound to the attached device, reset together */
5479 	link->sata_spd_limit = link->hw_sata_spd_limit;
5480 	link->sata_spd = 0;
5481 
5482 	/* High bits of dev->flags are used to record warm plug
5483 	 * requests which occur asynchronously.  Synchronize using
5484 	 * host lock.
5485 	 */
5486 	spin_lock_irqsave(ap->lock, flags);
5487 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5488 	dev->horkage = 0;
5489 	spin_unlock_irqrestore(ap->lock, flags);
5490 
5491 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5492 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5493 	dev->pio_mask = UINT_MAX;
5494 	dev->mwdma_mask = UINT_MAX;
5495 	dev->udma_mask = UINT_MAX;
5496 }
5497 
5498 /**
5499  *	ata_link_init - Initialize an ata_link structure
5500  *	@ap: ATA port link is attached to
5501  *	@link: Link structure to initialize
5502  *	@pmp: Port multiplier port number
5503  *
5504  *	Initialize @link.
5505  *
5506  *	LOCKING:
5507  *	Kernel thread context (may sleep)
5508  */
5509 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5510 {
5511 	int i;
5512 
5513 	/* clear everything except for devices */
5514 	memset(link, 0, offsetof(struct ata_link, device[0]));
5515 
5516 	link->ap = ap;
5517 	link->pmp = pmp;
5518 	link->active_tag = ATA_TAG_POISON;
5519 	link->hw_sata_spd_limit = UINT_MAX;
5520 
5521 	/* can't use iterator, ap isn't initialized yet */
5522 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5523 		struct ata_device *dev = &link->device[i];
5524 
5525 		dev->link = link;
5526 		dev->devno = dev - link->device;
5527 		ata_dev_init(dev);
5528 	}
5529 }
5530 
5531 /**
5532  *	sata_link_init_spd - Initialize link->sata_spd_limit
5533  *	@link: Link to configure sata_spd_limit for
5534  *
5535  *	Initialize @link->[hw_]sata_spd_limit to the currently
5536  *	configured value.
5537  *
5538  *	LOCKING:
5539  *	Kernel thread context (may sleep).
5540  *
5541  *	RETURNS:
5542  *	0 on success, -errno on failure.
5543  */
5544 int sata_link_init_spd(struct ata_link *link)
5545 {
5546 	u8 spd;
5547 	int rc;
5548 
5549 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5550 	if (rc)
5551 		return rc;
5552 
5553 	spd = (link->saved_scontrol >> 4) & 0xf;
5554 	if (spd)
5555 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5556 
5557 	ata_force_link_limits(link);
5558 
5559 	link->sata_spd_limit = link->hw_sata_spd_limit;
5560 
5561 	return 0;
5562 }
5563 
5564 /**
5565  *	ata_port_alloc - allocate and initialize basic ATA port resources
5566  *	@host: ATA host this allocated port belongs to
5567  *
5568  *	Allocate and initialize basic ATA port resources.
5569  *
5570  *	RETURNS:
5571  *	Allocate ATA port on success, NULL on failure.
5572  *
5573  *	LOCKING:
5574  *	Inherited from calling layer (may sleep).
5575  */
5576 struct ata_port *ata_port_alloc(struct ata_host *host)
5577 {
5578 	struct ata_port *ap;
5579 
5580 	DPRINTK("ENTER\n");
5581 
5582 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5583 	if (!ap)
5584 		return NULL;
5585 
5586 	ap->pflags |= ATA_PFLAG_INITIALIZING;
5587 	ap->lock = &host->lock;
5588 	ap->flags = ATA_FLAG_DISABLED;
5589 	ap->print_id = -1;
5590 	ap->ctl = ATA_DEVCTL_OBS;
5591 	ap->host = host;
5592 	ap->dev = host->dev;
5593 	ap->last_ctl = 0xFF;
5594 
5595 #if defined(ATA_VERBOSE_DEBUG)
5596 	/* turn on all debugging levels */
5597 	ap->msg_enable = 0x00FF;
5598 #elif defined(ATA_DEBUG)
5599 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5600 #else
5601 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5602 #endif
5603 
5604 #ifdef CONFIG_ATA_SFF
5605 	INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5606 #else
5607 	INIT_DELAYED_WORK(&ap->port_task, NULL);
5608 #endif
5609 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5610 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5611 	INIT_LIST_HEAD(&ap->eh_done_q);
5612 	init_waitqueue_head(&ap->eh_wait_q);
5613 	init_completion(&ap->park_req_pending);
5614 	init_timer_deferrable(&ap->fastdrain_timer);
5615 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5616 	ap->fastdrain_timer.data = (unsigned long)ap;
5617 
5618 	ap->cbl = ATA_CBL_NONE;
5619 
5620 	ata_link_init(ap, &ap->link, 0);
5621 
5622 #ifdef ATA_IRQ_TRAP
5623 	ap->stats.unhandled_irq = 1;
5624 	ap->stats.idle_irq = 1;
5625 #endif
5626 	return ap;
5627 }
5628 
5629 static void ata_host_release(struct device *gendev, void *res)
5630 {
5631 	struct ata_host *host = dev_get_drvdata(gendev);
5632 	int i;
5633 
5634 	for (i = 0; i < host->n_ports; i++) {
5635 		struct ata_port *ap = host->ports[i];
5636 
5637 		if (!ap)
5638 			continue;
5639 
5640 		if (ap->scsi_host)
5641 			scsi_host_put(ap->scsi_host);
5642 
5643 		kfree(ap->pmp_link);
5644 		kfree(ap->slave_link);
5645 		kfree(ap);
5646 		host->ports[i] = NULL;
5647 	}
5648 
5649 	dev_set_drvdata(gendev, NULL);
5650 }
5651 
5652 /**
5653  *	ata_host_alloc - allocate and init basic ATA host resources
5654  *	@dev: generic device this host is associated with
5655  *	@max_ports: maximum number of ATA ports associated with this host
5656  *
5657  *	Allocate and initialize basic ATA host resources.  LLD calls
5658  *	this function to allocate a host, initializes it fully and
5659  *	attaches it using ata_host_register().
5660  *
5661  *	@max_ports ports are allocated and host->n_ports is
5662  *	initialized to @max_ports.  The caller is allowed to decrease
5663  *	host->n_ports before calling ata_host_register().  The unused
5664  *	ports will be automatically freed on registration.
5665  *
5666  *	RETURNS:
5667  *	Allocate ATA host on success, NULL on failure.
5668  *
5669  *	LOCKING:
5670  *	Inherited from calling layer (may sleep).
5671  */
5672 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5673 {
5674 	struct ata_host *host;
5675 	size_t sz;
5676 	int i;
5677 
5678 	DPRINTK("ENTER\n");
5679 
5680 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5681 		return NULL;
5682 
5683 	/* alloc a container for our list of ATA ports (buses) */
5684 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5685 	/* alloc a container for our list of ATA ports (buses) */
5686 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5687 	if (!host)
5688 		goto err_out;
5689 
5690 	devres_add(dev, host);
5691 	dev_set_drvdata(dev, host);
5692 
5693 	spin_lock_init(&host->lock);
5694 	host->dev = dev;
5695 	host->n_ports = max_ports;
5696 
5697 	/* allocate ports bound to this host */
5698 	for (i = 0; i < max_ports; i++) {
5699 		struct ata_port *ap;
5700 
5701 		ap = ata_port_alloc(host);
5702 		if (!ap)
5703 			goto err_out;
5704 
5705 		ap->port_no = i;
5706 		host->ports[i] = ap;
5707 	}
5708 
5709 	devres_remove_group(dev, NULL);
5710 	return host;
5711 
5712  err_out:
5713 	devres_release_group(dev, NULL);
5714 	return NULL;
5715 }
5716 
5717 /**
5718  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5719  *	@dev: generic device this host is associated with
5720  *	@ppi: array of ATA port_info to initialize host with
5721  *	@n_ports: number of ATA ports attached to this host
5722  *
5723  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5724  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5725  *	last entry will be used for the remaining ports.
5726  *
5727  *	RETURNS:
5728  *	Allocate ATA host on success, NULL on failure.
5729  *
5730  *	LOCKING:
5731  *	Inherited from calling layer (may sleep).
5732  */
5733 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5734 				      const struct ata_port_info * const * ppi,
5735 				      int n_ports)
5736 {
5737 	const struct ata_port_info *pi;
5738 	struct ata_host *host;
5739 	int i, j;
5740 
5741 	host = ata_host_alloc(dev, n_ports);
5742 	if (!host)
5743 		return NULL;
5744 
5745 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5746 		struct ata_port *ap = host->ports[i];
5747 
5748 		if (ppi[j])
5749 			pi = ppi[j++];
5750 
5751 		ap->pio_mask = pi->pio_mask;
5752 		ap->mwdma_mask = pi->mwdma_mask;
5753 		ap->udma_mask = pi->udma_mask;
5754 		ap->flags |= pi->flags;
5755 		ap->link.flags |= pi->link_flags;
5756 		ap->ops = pi->port_ops;
5757 
5758 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5759 			host->ops = pi->port_ops;
5760 	}
5761 
5762 	return host;
5763 }
5764 
5765 /**
5766  *	ata_slave_link_init - initialize slave link
5767  *	@ap: port to initialize slave link for
5768  *
5769  *	Create and initialize slave link for @ap.  This enables slave
5770  *	link handling on the port.
5771  *
5772  *	In libata, a port contains links and a link contains devices.
5773  *	There is single host link but if a PMP is attached to it,
5774  *	there can be multiple fan-out links.  On SATA, there's usually
5775  *	a single device connected to a link but PATA and SATA
5776  *	controllers emulating TF based interface can have two - master
5777  *	and slave.
5778  *
5779  *	However, there are a few controllers which don't fit into this
5780  *	abstraction too well - SATA controllers which emulate TF
5781  *	interface with both master and slave devices but also have
5782  *	separate SCR register sets for each device.  These controllers
5783  *	need separate links for physical link handling
5784  *	(e.g. onlineness, link speed) but should be treated like a
5785  *	traditional M/S controller for everything else (e.g. command
5786  *	issue, softreset).
5787  *
5788  *	slave_link is libata's way of handling this class of
5789  *	controllers without impacting core layer too much.  For
5790  *	anything other than physical link handling, the default host
5791  *	link is used for both master and slave.  For physical link
5792  *	handling, separate @ap->slave_link is used.  All dirty details
5793  *	are implemented inside libata core layer.  From LLD's POV, the
5794  *	only difference is that prereset, hardreset and postreset are
5795  *	called once more for the slave link, so the reset sequence
5796  *	looks like the following.
5797  *
5798  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5799  *	softreset(M) -> postreset(M) -> postreset(S)
5800  *
5801  *	Note that softreset is called only for the master.  Softreset
5802  *	resets both M/S by definition, so SRST on master should handle
5803  *	both (the standard method will work just fine).
5804  *
5805  *	LOCKING:
5806  *	Should be called before host is registered.
5807  *
5808  *	RETURNS:
5809  *	0 on success, -errno on failure.
5810  */
5811 int ata_slave_link_init(struct ata_port *ap)
5812 {
5813 	struct ata_link *link;
5814 
5815 	WARN_ON(ap->slave_link);
5816 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5817 
5818 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5819 	if (!link)
5820 		return -ENOMEM;
5821 
5822 	ata_link_init(ap, link, 1);
5823 	ap->slave_link = link;
5824 	return 0;
5825 }
5826 
5827 static void ata_host_stop(struct device *gendev, void *res)
5828 {
5829 	struct ata_host *host = dev_get_drvdata(gendev);
5830 	int i;
5831 
5832 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5833 
5834 	for (i = 0; i < host->n_ports; i++) {
5835 		struct ata_port *ap = host->ports[i];
5836 
5837 		if (ap->ops->port_stop)
5838 			ap->ops->port_stop(ap);
5839 	}
5840 
5841 	if (host->ops->host_stop)
5842 		host->ops->host_stop(host);
5843 }
5844 
5845 /**
5846  *	ata_finalize_port_ops - finalize ata_port_operations
5847  *	@ops: ata_port_operations to finalize
5848  *
5849  *	An ata_port_operations can inherit from another ops and that
5850  *	ops can again inherit from another.  This can go on as many
5851  *	times as necessary as long as there is no loop in the
5852  *	inheritance chain.
5853  *
5854  *	Ops tables are finalized when the host is started.  NULL or
5855  *	unspecified entries are inherited from the closet ancestor
5856  *	which has the method and the entry is populated with it.
5857  *	After finalization, the ops table directly points to all the
5858  *	methods and ->inherits is no longer necessary and cleared.
5859  *
5860  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5861  *
5862  *	LOCKING:
5863  *	None.
5864  */
5865 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5866 {
5867 	static DEFINE_SPINLOCK(lock);
5868 	const struct ata_port_operations *cur;
5869 	void **begin = (void **)ops;
5870 	void **end = (void **)&ops->inherits;
5871 	void **pp;
5872 
5873 	if (!ops || !ops->inherits)
5874 		return;
5875 
5876 	spin_lock(&lock);
5877 
5878 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5879 		void **inherit = (void **)cur;
5880 
5881 		for (pp = begin; pp < end; pp++, inherit++)
5882 			if (!*pp)
5883 				*pp = *inherit;
5884 	}
5885 
5886 	for (pp = begin; pp < end; pp++)
5887 		if (IS_ERR(*pp))
5888 			*pp = NULL;
5889 
5890 	ops->inherits = NULL;
5891 
5892 	spin_unlock(&lock);
5893 }
5894 
5895 /**
5896  *	ata_host_start - start and freeze ports of an ATA host
5897  *	@host: ATA host to start ports for
5898  *
5899  *	Start and then freeze ports of @host.  Started status is
5900  *	recorded in host->flags, so this function can be called
5901  *	multiple times.  Ports are guaranteed to get started only
5902  *	once.  If host->ops isn't initialized yet, its set to the
5903  *	first non-dummy port ops.
5904  *
5905  *	LOCKING:
5906  *	Inherited from calling layer (may sleep).
5907  *
5908  *	RETURNS:
5909  *	0 if all ports are started successfully, -errno otherwise.
5910  */
5911 int ata_host_start(struct ata_host *host)
5912 {
5913 	int have_stop = 0;
5914 	void *start_dr = NULL;
5915 	int i, rc;
5916 
5917 	if (host->flags & ATA_HOST_STARTED)
5918 		return 0;
5919 
5920 	ata_finalize_port_ops(host->ops);
5921 
5922 	for (i = 0; i < host->n_ports; i++) {
5923 		struct ata_port *ap = host->ports[i];
5924 
5925 		ata_finalize_port_ops(ap->ops);
5926 
5927 		if (!host->ops && !ata_port_is_dummy(ap))
5928 			host->ops = ap->ops;
5929 
5930 		if (ap->ops->port_stop)
5931 			have_stop = 1;
5932 	}
5933 
5934 	if (host->ops->host_stop)
5935 		have_stop = 1;
5936 
5937 	if (have_stop) {
5938 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5939 		if (!start_dr)
5940 			return -ENOMEM;
5941 	}
5942 
5943 	for (i = 0; i < host->n_ports; i++) {
5944 		struct ata_port *ap = host->ports[i];
5945 
5946 		if (ap->ops->port_start) {
5947 			rc = ap->ops->port_start(ap);
5948 			if (rc) {
5949 				if (rc != -ENODEV)
5950 					dev_printk(KERN_ERR, host->dev,
5951 						"failed to start port %d "
5952 						"(errno=%d)\n", i, rc);
5953 				goto err_out;
5954 			}
5955 		}
5956 		ata_eh_freeze_port(ap);
5957 	}
5958 
5959 	if (start_dr)
5960 		devres_add(host->dev, start_dr);
5961 	host->flags |= ATA_HOST_STARTED;
5962 	return 0;
5963 
5964  err_out:
5965 	while (--i >= 0) {
5966 		struct ata_port *ap = host->ports[i];
5967 
5968 		if (ap->ops->port_stop)
5969 			ap->ops->port_stop(ap);
5970 	}
5971 	devres_free(start_dr);
5972 	return rc;
5973 }
5974 
5975 /**
5976  *	ata_sas_host_init - Initialize a host struct
5977  *	@host:	host to initialize
5978  *	@dev:	device host is attached to
5979  *	@flags:	host flags
5980  *	@ops:	port_ops
5981  *
5982  *	LOCKING:
5983  *	PCI/etc. bus probe sem.
5984  *
5985  */
5986 /* KILLME - the only user left is ipr */
5987 void ata_host_init(struct ata_host *host, struct device *dev,
5988 		   unsigned long flags, struct ata_port_operations *ops)
5989 {
5990 	spin_lock_init(&host->lock);
5991 	host->dev = dev;
5992 	host->flags = flags;
5993 	host->ops = ops;
5994 }
5995 
5996 
5997 static void async_port_probe(void *data, async_cookie_t cookie)
5998 {
5999 	int rc;
6000 	struct ata_port *ap = data;
6001 
6002 	/*
6003 	 * If we're not allowed to scan this host in parallel,
6004 	 * we need to wait until all previous scans have completed
6005 	 * before going further.
6006 	 * Jeff Garzik says this is only within a controller, so we
6007 	 * don't need to wait for port 0, only for later ports.
6008 	 */
6009 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6010 		async_synchronize_cookie(cookie);
6011 
6012 	/* probe */
6013 	if (ap->ops->error_handler) {
6014 		struct ata_eh_info *ehi = &ap->link.eh_info;
6015 		unsigned long flags;
6016 
6017 		ata_port_probe(ap);
6018 
6019 		/* kick EH for boot probing */
6020 		spin_lock_irqsave(ap->lock, flags);
6021 
6022 		ehi->probe_mask |= ATA_ALL_DEVICES;
6023 		ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6024 		ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6025 
6026 		ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6027 		ap->pflags |= ATA_PFLAG_LOADING;
6028 		ata_port_schedule_eh(ap);
6029 
6030 		spin_unlock_irqrestore(ap->lock, flags);
6031 
6032 		/* wait for EH to finish */
6033 		ata_port_wait_eh(ap);
6034 	} else {
6035 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6036 		rc = ata_bus_probe(ap);
6037 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6038 
6039 		if (rc) {
6040 			/* FIXME: do something useful here?
6041 			 * Current libata behavior will
6042 			 * tear down everything when
6043 			 * the module is removed
6044 			 * or the h/w is unplugged.
6045 			 */
6046 		}
6047 	}
6048 
6049 	/* in order to keep device order, we need to synchronize at this point */
6050 	async_synchronize_cookie(cookie);
6051 
6052 	ata_scsi_scan_host(ap, 1);
6053 
6054 }
6055 /**
6056  *	ata_host_register - register initialized ATA host
6057  *	@host: ATA host to register
6058  *	@sht: template for SCSI host
6059  *
6060  *	Register initialized ATA host.  @host is allocated using
6061  *	ata_host_alloc() and fully initialized by LLD.  This function
6062  *	starts ports, registers @host with ATA and SCSI layers and
6063  *	probe registered devices.
6064  *
6065  *	LOCKING:
6066  *	Inherited from calling layer (may sleep).
6067  *
6068  *	RETURNS:
6069  *	0 on success, -errno otherwise.
6070  */
6071 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6072 {
6073 	int i, rc;
6074 
6075 	/* host must have been started */
6076 	if (!(host->flags & ATA_HOST_STARTED)) {
6077 		dev_printk(KERN_ERR, host->dev,
6078 			   "BUG: trying to register unstarted host\n");
6079 		WARN_ON(1);
6080 		return -EINVAL;
6081 	}
6082 
6083 	/* Blow away unused ports.  This happens when LLD can't
6084 	 * determine the exact number of ports to allocate at
6085 	 * allocation time.
6086 	 */
6087 	for (i = host->n_ports; host->ports[i]; i++)
6088 		kfree(host->ports[i]);
6089 
6090 	/* give ports names and add SCSI hosts */
6091 	for (i = 0; i < host->n_ports; i++)
6092 		host->ports[i]->print_id = ata_print_id++;
6093 
6094 	rc = ata_scsi_add_hosts(host, sht);
6095 	if (rc)
6096 		return rc;
6097 
6098 	/* associate with ACPI nodes */
6099 	ata_acpi_associate(host);
6100 
6101 	/* set cable, sata_spd_limit and report */
6102 	for (i = 0; i < host->n_ports; i++) {
6103 		struct ata_port *ap = host->ports[i];
6104 		unsigned long xfer_mask;
6105 
6106 		/* set SATA cable type if still unset */
6107 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6108 			ap->cbl = ATA_CBL_SATA;
6109 
6110 		/* init sata_spd_limit to the current value */
6111 		sata_link_init_spd(&ap->link);
6112 		if (ap->slave_link)
6113 			sata_link_init_spd(ap->slave_link);
6114 
6115 		/* print per-port info to dmesg */
6116 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6117 					      ap->udma_mask);
6118 
6119 		if (!ata_port_is_dummy(ap)) {
6120 			ata_port_printk(ap, KERN_INFO,
6121 					"%cATA max %s %s\n",
6122 					(ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6123 					ata_mode_string(xfer_mask),
6124 					ap->link.eh_info.desc);
6125 			ata_ehi_clear_desc(&ap->link.eh_info);
6126 		} else
6127 			ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6128 	}
6129 
6130 	/* perform each probe asynchronously */
6131 	for (i = 0; i < host->n_ports; i++) {
6132 		struct ata_port *ap = host->ports[i];
6133 		async_schedule(async_port_probe, ap);
6134 	}
6135 
6136 	return 0;
6137 }
6138 
6139 /**
6140  *	ata_host_activate - start host, request IRQ and register it
6141  *	@host: target ATA host
6142  *	@irq: IRQ to request
6143  *	@irq_handler: irq_handler used when requesting IRQ
6144  *	@irq_flags: irq_flags used when requesting IRQ
6145  *	@sht: scsi_host_template to use when registering the host
6146  *
6147  *	After allocating an ATA host and initializing it, most libata
6148  *	LLDs perform three steps to activate the host - start host,
6149  *	request IRQ and register it.  This helper takes necessasry
6150  *	arguments and performs the three steps in one go.
6151  *
6152  *	An invalid IRQ skips the IRQ registration and expects the host to
6153  *	have set polling mode on the port. In this case, @irq_handler
6154  *	should be NULL.
6155  *
6156  *	LOCKING:
6157  *	Inherited from calling layer (may sleep).
6158  *
6159  *	RETURNS:
6160  *	0 on success, -errno otherwise.
6161  */
6162 int ata_host_activate(struct ata_host *host, int irq,
6163 		      irq_handler_t irq_handler, unsigned long irq_flags,
6164 		      struct scsi_host_template *sht)
6165 {
6166 	int i, rc;
6167 
6168 	rc = ata_host_start(host);
6169 	if (rc)
6170 		return rc;
6171 
6172 	/* Special case for polling mode */
6173 	if (!irq) {
6174 		WARN_ON(irq_handler);
6175 		return ata_host_register(host, sht);
6176 	}
6177 
6178 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6179 			      dev_driver_string(host->dev), host);
6180 	if (rc)
6181 		return rc;
6182 
6183 	for (i = 0; i < host->n_ports; i++)
6184 		ata_port_desc(host->ports[i], "irq %d", irq);
6185 
6186 	rc = ata_host_register(host, sht);
6187 	/* if failed, just free the IRQ and leave ports alone */
6188 	if (rc)
6189 		devm_free_irq(host->dev, irq, host);
6190 
6191 	return rc;
6192 }
6193 
6194 /**
6195  *	ata_port_detach - Detach ATA port in prepration of device removal
6196  *	@ap: ATA port to be detached
6197  *
6198  *	Detach all ATA devices and the associated SCSI devices of @ap;
6199  *	then, remove the associated SCSI host.  @ap is guaranteed to
6200  *	be quiescent on return from this function.
6201  *
6202  *	LOCKING:
6203  *	Kernel thread context (may sleep).
6204  */
6205 static void ata_port_detach(struct ata_port *ap)
6206 {
6207 	unsigned long flags;
6208 
6209 	if (!ap->ops->error_handler)
6210 		goto skip_eh;
6211 
6212 	/* tell EH we're leaving & flush EH */
6213 	spin_lock_irqsave(ap->lock, flags);
6214 	ap->pflags |= ATA_PFLAG_UNLOADING;
6215 	ata_port_schedule_eh(ap);
6216 	spin_unlock_irqrestore(ap->lock, flags);
6217 
6218 	/* wait till EH commits suicide */
6219 	ata_port_wait_eh(ap);
6220 
6221 	/* it better be dead now */
6222 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6223 
6224 	cancel_rearming_delayed_work(&ap->hotplug_task);
6225 
6226  skip_eh:
6227 	/* remove the associated SCSI host */
6228 	scsi_remove_host(ap->scsi_host);
6229 }
6230 
6231 /**
6232  *	ata_host_detach - Detach all ports of an ATA host
6233  *	@host: Host to detach
6234  *
6235  *	Detach all ports of @host.
6236  *
6237  *	LOCKING:
6238  *	Kernel thread context (may sleep).
6239  */
6240 void ata_host_detach(struct ata_host *host)
6241 {
6242 	int i;
6243 
6244 	for (i = 0; i < host->n_ports; i++)
6245 		ata_port_detach(host->ports[i]);
6246 
6247 	/* the host is dead now, dissociate ACPI */
6248 	ata_acpi_dissociate(host);
6249 }
6250 
6251 #ifdef CONFIG_PCI
6252 
6253 /**
6254  *	ata_pci_remove_one - PCI layer callback for device removal
6255  *	@pdev: PCI device that was removed
6256  *
6257  *	PCI layer indicates to libata via this hook that hot-unplug or
6258  *	module unload event has occurred.  Detach all ports.  Resource
6259  *	release is handled via devres.
6260  *
6261  *	LOCKING:
6262  *	Inherited from PCI layer (may sleep).
6263  */
6264 void ata_pci_remove_one(struct pci_dev *pdev)
6265 {
6266 	struct device *dev = &pdev->dev;
6267 	struct ata_host *host = dev_get_drvdata(dev);
6268 
6269 	ata_host_detach(host);
6270 }
6271 
6272 /* move to PCI subsystem */
6273 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6274 {
6275 	unsigned long tmp = 0;
6276 
6277 	switch (bits->width) {
6278 	case 1: {
6279 		u8 tmp8 = 0;
6280 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6281 		tmp = tmp8;
6282 		break;
6283 	}
6284 	case 2: {
6285 		u16 tmp16 = 0;
6286 		pci_read_config_word(pdev, bits->reg, &tmp16);
6287 		tmp = tmp16;
6288 		break;
6289 	}
6290 	case 4: {
6291 		u32 tmp32 = 0;
6292 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6293 		tmp = tmp32;
6294 		break;
6295 	}
6296 
6297 	default:
6298 		return -EINVAL;
6299 	}
6300 
6301 	tmp &= bits->mask;
6302 
6303 	return (tmp == bits->val) ? 1 : 0;
6304 }
6305 
6306 #ifdef CONFIG_PM
6307 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6308 {
6309 	pci_save_state(pdev);
6310 	pci_disable_device(pdev);
6311 
6312 	if (mesg.event & PM_EVENT_SLEEP)
6313 		pci_set_power_state(pdev, PCI_D3hot);
6314 }
6315 
6316 int ata_pci_device_do_resume(struct pci_dev *pdev)
6317 {
6318 	int rc;
6319 
6320 	pci_set_power_state(pdev, PCI_D0);
6321 	pci_restore_state(pdev);
6322 
6323 	rc = pcim_enable_device(pdev);
6324 	if (rc) {
6325 		dev_printk(KERN_ERR, &pdev->dev,
6326 			   "failed to enable device after resume (%d)\n", rc);
6327 		return rc;
6328 	}
6329 
6330 	pci_set_master(pdev);
6331 	return 0;
6332 }
6333 
6334 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6335 {
6336 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6337 	int rc = 0;
6338 
6339 	rc = ata_host_suspend(host, mesg);
6340 	if (rc)
6341 		return rc;
6342 
6343 	ata_pci_device_do_suspend(pdev, mesg);
6344 
6345 	return 0;
6346 }
6347 
6348 int ata_pci_device_resume(struct pci_dev *pdev)
6349 {
6350 	struct ata_host *host = dev_get_drvdata(&pdev->dev);
6351 	int rc;
6352 
6353 	rc = ata_pci_device_do_resume(pdev);
6354 	if (rc == 0)
6355 		ata_host_resume(host);
6356 	return rc;
6357 }
6358 #endif /* CONFIG_PM */
6359 
6360 #endif /* CONFIG_PCI */
6361 
6362 static int __init ata_parse_force_one(char **cur,
6363 				      struct ata_force_ent *force_ent,
6364 				      const char **reason)
6365 {
6366 	/* FIXME: Currently, there's no way to tag init const data and
6367 	 * using __initdata causes build failure on some versions of
6368 	 * gcc.  Once __initdataconst is implemented, add const to the
6369 	 * following structure.
6370 	 */
6371 	static struct ata_force_param force_tbl[] __initdata = {
6372 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6373 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6374 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6375 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6376 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6377 		{ "sata",	.cbl		= ATA_CBL_SATA },
6378 		{ "1.5Gbps",	.spd_limit	= 1 },
6379 		{ "3.0Gbps",	.spd_limit	= 2 },
6380 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6381 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6382 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6383 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6384 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6385 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6386 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6387 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6388 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6389 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6390 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6391 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6392 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6393 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6394 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6395 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6396 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6397 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6398 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6399 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6400 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6401 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6402 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6403 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6404 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6405 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6406 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6407 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6408 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6409 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6410 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6411 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6412 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6413 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6414 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6415 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6416 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6417 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6418 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6419 	};
6420 	char *start = *cur, *p = *cur;
6421 	char *id, *val, *endp;
6422 	const struct ata_force_param *match_fp = NULL;
6423 	int nr_matches = 0, i;
6424 
6425 	/* find where this param ends and update *cur */
6426 	while (*p != '\0' && *p != ',')
6427 		p++;
6428 
6429 	if (*p == '\0')
6430 		*cur = p;
6431 	else
6432 		*cur = p + 1;
6433 
6434 	*p = '\0';
6435 
6436 	/* parse */
6437 	p = strchr(start, ':');
6438 	if (!p) {
6439 		val = strstrip(start);
6440 		goto parse_val;
6441 	}
6442 	*p = '\0';
6443 
6444 	id = strstrip(start);
6445 	val = strstrip(p + 1);
6446 
6447 	/* parse id */
6448 	p = strchr(id, '.');
6449 	if (p) {
6450 		*p++ = '\0';
6451 		force_ent->device = simple_strtoul(p, &endp, 10);
6452 		if (p == endp || *endp != '\0') {
6453 			*reason = "invalid device";
6454 			return -EINVAL;
6455 		}
6456 	}
6457 
6458 	force_ent->port = simple_strtoul(id, &endp, 10);
6459 	if (p == endp || *endp != '\0') {
6460 		*reason = "invalid port/link";
6461 		return -EINVAL;
6462 	}
6463 
6464  parse_val:
6465 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6466 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6467 		const struct ata_force_param *fp = &force_tbl[i];
6468 
6469 		if (strncasecmp(val, fp->name, strlen(val)))
6470 			continue;
6471 
6472 		nr_matches++;
6473 		match_fp = fp;
6474 
6475 		if (strcasecmp(val, fp->name) == 0) {
6476 			nr_matches = 1;
6477 			break;
6478 		}
6479 	}
6480 
6481 	if (!nr_matches) {
6482 		*reason = "unknown value";
6483 		return -EINVAL;
6484 	}
6485 	if (nr_matches > 1) {
6486 		*reason = "ambigious value";
6487 		return -EINVAL;
6488 	}
6489 
6490 	force_ent->param = *match_fp;
6491 
6492 	return 0;
6493 }
6494 
6495 static void __init ata_parse_force_param(void)
6496 {
6497 	int idx = 0, size = 1;
6498 	int last_port = -1, last_device = -1;
6499 	char *p, *cur, *next;
6500 
6501 	/* calculate maximum number of params and allocate force_tbl */
6502 	for (p = ata_force_param_buf; *p; p++)
6503 		if (*p == ',')
6504 			size++;
6505 
6506 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6507 	if (!ata_force_tbl) {
6508 		printk(KERN_WARNING "ata: failed to extend force table, "
6509 		       "libata.force ignored\n");
6510 		return;
6511 	}
6512 
6513 	/* parse and populate the table */
6514 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6515 		const char *reason = "";
6516 		struct ata_force_ent te = { .port = -1, .device = -1 };
6517 
6518 		next = cur;
6519 		if (ata_parse_force_one(&next, &te, &reason)) {
6520 			printk(KERN_WARNING "ata: failed to parse force "
6521 			       "parameter \"%s\" (%s)\n",
6522 			       cur, reason);
6523 			continue;
6524 		}
6525 
6526 		if (te.port == -1) {
6527 			te.port = last_port;
6528 			te.device = last_device;
6529 		}
6530 
6531 		ata_force_tbl[idx++] = te;
6532 
6533 		last_port = te.port;
6534 		last_device = te.device;
6535 	}
6536 
6537 	ata_force_tbl_size = idx;
6538 }
6539 
6540 static int __init ata_init(void)
6541 {
6542 	ata_parse_force_param();
6543 
6544 	ata_wq = create_workqueue("ata");
6545 	if (!ata_wq)
6546 		goto free_force_tbl;
6547 
6548 	ata_aux_wq = create_singlethread_workqueue("ata_aux");
6549 	if (!ata_aux_wq)
6550 		goto free_wq;
6551 
6552 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6553 	return 0;
6554 
6555 free_wq:
6556 	destroy_workqueue(ata_wq);
6557 free_force_tbl:
6558 	kfree(ata_force_tbl);
6559 	return -ENOMEM;
6560 }
6561 
6562 static void __exit ata_exit(void)
6563 {
6564 	kfree(ata_force_tbl);
6565 	destroy_workqueue(ata_wq);
6566 	destroy_workqueue(ata_aux_wq);
6567 }
6568 
6569 subsys_initcall(ata_init);
6570 module_exit(ata_exit);
6571 
6572 static unsigned long ratelimit_time;
6573 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6574 
6575 int ata_ratelimit(void)
6576 {
6577 	int rc;
6578 	unsigned long flags;
6579 
6580 	spin_lock_irqsave(&ata_ratelimit_lock, flags);
6581 
6582 	if (time_after(jiffies, ratelimit_time)) {
6583 		rc = 1;
6584 		ratelimit_time = jiffies + (HZ/5);
6585 	} else
6586 		rc = 0;
6587 
6588 	spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6589 
6590 	return rc;
6591 }
6592 
6593 /**
6594  *	ata_wait_register - wait until register value changes
6595  *	@reg: IO-mapped register
6596  *	@mask: Mask to apply to read register value
6597  *	@val: Wait condition
6598  *	@interval: polling interval in milliseconds
6599  *	@timeout: timeout in milliseconds
6600  *
6601  *	Waiting for some bits of register to change is a common
6602  *	operation for ATA controllers.  This function reads 32bit LE
6603  *	IO-mapped register @reg and tests for the following condition.
6604  *
6605  *	(*@reg & mask) != val
6606  *
6607  *	If the condition is met, it returns; otherwise, the process is
6608  *	repeated after @interval_msec until timeout.
6609  *
6610  *	LOCKING:
6611  *	Kernel thread context (may sleep)
6612  *
6613  *	RETURNS:
6614  *	The final register value.
6615  */
6616 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6617 		      unsigned long interval, unsigned long timeout)
6618 {
6619 	unsigned long deadline;
6620 	u32 tmp;
6621 
6622 	tmp = ioread32(reg);
6623 
6624 	/* Calculate timeout _after_ the first read to make sure
6625 	 * preceding writes reach the controller before starting to
6626 	 * eat away the timeout.
6627 	 */
6628 	deadline = ata_deadline(jiffies, timeout);
6629 
6630 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6631 		msleep(interval);
6632 		tmp = ioread32(reg);
6633 	}
6634 
6635 	return tmp;
6636 }
6637 
6638 /*
6639  * Dummy port_ops
6640  */
6641 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6642 {
6643 	return AC_ERR_SYSTEM;
6644 }
6645 
6646 static void ata_dummy_error_handler(struct ata_port *ap)
6647 {
6648 	/* truly dummy */
6649 }
6650 
6651 struct ata_port_operations ata_dummy_port_ops = {
6652 	.qc_prep		= ata_noop_qc_prep,
6653 	.qc_issue		= ata_dummy_qc_issue,
6654 	.error_handler		= ata_dummy_error_handler,
6655 };
6656 
6657 const struct ata_port_info ata_dummy_port_info = {
6658 	.port_ops		= &ata_dummy_port_ops,
6659 };
6660 
6661 /*
6662  * libata is essentially a library of internal helper functions for
6663  * low-level ATA host controller drivers.  As such, the API/ABI is
6664  * likely to change as new drivers are added and updated.
6665  * Do not depend on ABI/API stability.
6666  */
6667 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6668 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6669 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6670 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6671 EXPORT_SYMBOL_GPL(sata_port_ops);
6672 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6673 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6674 EXPORT_SYMBOL_GPL(ata_link_next);
6675 EXPORT_SYMBOL_GPL(ata_dev_next);
6676 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6677 EXPORT_SYMBOL_GPL(ata_host_init);
6678 EXPORT_SYMBOL_GPL(ata_host_alloc);
6679 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6680 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6681 EXPORT_SYMBOL_GPL(ata_host_start);
6682 EXPORT_SYMBOL_GPL(ata_host_register);
6683 EXPORT_SYMBOL_GPL(ata_host_activate);
6684 EXPORT_SYMBOL_GPL(ata_host_detach);
6685 EXPORT_SYMBOL_GPL(ata_sg_init);
6686 EXPORT_SYMBOL_GPL(ata_qc_complete);
6687 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6688 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6689 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6690 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6691 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6692 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6693 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6694 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6695 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6696 EXPORT_SYMBOL_GPL(ata_mode_string);
6697 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6698 EXPORT_SYMBOL_GPL(ata_port_start);
6699 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6700 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6701 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6702 EXPORT_SYMBOL_GPL(ata_port_probe);
6703 EXPORT_SYMBOL_GPL(ata_dev_disable);
6704 EXPORT_SYMBOL_GPL(sata_set_spd);
6705 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6706 EXPORT_SYMBOL_GPL(sata_link_debounce);
6707 EXPORT_SYMBOL_GPL(sata_link_resume);
6708 EXPORT_SYMBOL_GPL(ata_std_prereset);
6709 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6710 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6711 EXPORT_SYMBOL_GPL(ata_std_postreset);
6712 EXPORT_SYMBOL_GPL(ata_dev_classify);
6713 EXPORT_SYMBOL_GPL(ata_dev_pair);
6714 EXPORT_SYMBOL_GPL(ata_port_disable);
6715 EXPORT_SYMBOL_GPL(ata_ratelimit);
6716 EXPORT_SYMBOL_GPL(ata_wait_register);
6717 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6718 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6719 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6720 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6721 EXPORT_SYMBOL_GPL(sata_scr_valid);
6722 EXPORT_SYMBOL_GPL(sata_scr_read);
6723 EXPORT_SYMBOL_GPL(sata_scr_write);
6724 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6725 EXPORT_SYMBOL_GPL(ata_link_online);
6726 EXPORT_SYMBOL_GPL(ata_link_offline);
6727 #ifdef CONFIG_PM
6728 EXPORT_SYMBOL_GPL(ata_host_suspend);
6729 EXPORT_SYMBOL_GPL(ata_host_resume);
6730 #endif /* CONFIG_PM */
6731 EXPORT_SYMBOL_GPL(ata_id_string);
6732 EXPORT_SYMBOL_GPL(ata_id_c_string);
6733 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6734 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6735 
6736 EXPORT_SYMBOL_GPL(ata_pio_queue_task);
6737 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6738 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6739 EXPORT_SYMBOL_GPL(ata_timing_compute);
6740 EXPORT_SYMBOL_GPL(ata_timing_merge);
6741 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6742 
6743 #ifdef CONFIG_PCI
6744 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6745 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6746 #ifdef CONFIG_PM
6747 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6748 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6749 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6750 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6751 #endif /* CONFIG_PM */
6752 #endif /* CONFIG_PCI */
6753 
6754 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6755 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6756 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6757 EXPORT_SYMBOL_GPL(ata_port_desc);
6758 #ifdef CONFIG_PCI
6759 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6760 #endif /* CONFIG_PCI */
6761 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6762 EXPORT_SYMBOL_GPL(ata_link_abort);
6763 EXPORT_SYMBOL_GPL(ata_port_abort);
6764 EXPORT_SYMBOL_GPL(ata_port_freeze);
6765 EXPORT_SYMBOL_GPL(sata_async_notification);
6766 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6767 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6768 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6769 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6770 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6771 EXPORT_SYMBOL_GPL(ata_do_eh);
6772 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6773 
6774 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6775 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6776 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6777 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6778 EXPORT_SYMBOL_GPL(ata_cable_sata);
6779