1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned long xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags_on; 100 u16 lflags_off; 101 }; 102 103 struct ata_force_ent { 104 int port; 105 int device; 106 struct ata_force_param param; 107 }; 108 109 static struct ata_force_ent *ata_force_tbl; 110 static int ata_force_tbl_size; 111 112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 113 /* param_buf is thrown away after initialization, disallow read */ 114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 116 #endif 117 118 static int atapi_enabled = 1; 119 module_param(atapi_enabled, int, 0444); 120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 121 122 static int atapi_dmadir = 0; 123 module_param(atapi_dmadir, int, 0444); 124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 125 126 int atapi_passthru16 = 1; 127 module_param(atapi_passthru16, int, 0444); 128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 129 130 int libata_fua = 0; 131 module_param_named(fua, libata_fua, int, 0444); 132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 133 134 static int ata_ignore_hpa; 135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 137 138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 139 module_param_named(dma, libata_dma_mask, int, 0444); 140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 141 142 static int ata_probe_timeout; 143 module_param(ata_probe_timeout, int, 0444); 144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 145 146 int libata_noacpi = 0; 147 module_param_named(noacpi, libata_noacpi, int, 0444); 148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 149 150 int libata_allow_tpm = 0; 151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 153 154 static int atapi_an; 155 module_param(atapi_an, int, 0444); 156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 157 158 MODULE_AUTHOR("Jeff Garzik"); 159 MODULE_DESCRIPTION("Library module for ATA devices"); 160 MODULE_LICENSE("GPL"); 161 MODULE_VERSION(DRV_VERSION); 162 163 static inline bool ata_dev_print_info(struct ata_device *dev) 164 { 165 struct ata_eh_context *ehc = &dev->link->eh_context; 166 167 return ehc->i.flags & ATA_EHI_PRINTINFO; 168 } 169 170 static bool ata_sstatus_online(u32 sstatus) 171 { 172 return (sstatus & 0xf) == 0x3; 173 } 174 175 /** 176 * ata_link_next - link iteration helper 177 * @link: the previous link, NULL to start 178 * @ap: ATA port containing links to iterate 179 * @mode: iteration mode, one of ATA_LITER_* 180 * 181 * LOCKING: 182 * Host lock or EH context. 183 * 184 * RETURNS: 185 * Pointer to the next link. 186 */ 187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 188 enum ata_link_iter_mode mode) 189 { 190 BUG_ON(mode != ATA_LITER_EDGE && 191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 192 193 /* NULL link indicates start of iteration */ 194 if (!link) 195 switch (mode) { 196 case ATA_LITER_EDGE: 197 case ATA_LITER_PMP_FIRST: 198 if (sata_pmp_attached(ap)) 199 return ap->pmp_link; 200 fallthrough; 201 case ATA_LITER_HOST_FIRST: 202 return &ap->link; 203 } 204 205 /* we just iterated over the host link, what's next? */ 206 if (link == &ap->link) 207 switch (mode) { 208 case ATA_LITER_HOST_FIRST: 209 if (sata_pmp_attached(ap)) 210 return ap->pmp_link; 211 fallthrough; 212 case ATA_LITER_PMP_FIRST: 213 if (unlikely(ap->slave_link)) 214 return ap->slave_link; 215 fallthrough; 216 case ATA_LITER_EDGE: 217 return NULL; 218 } 219 220 /* slave_link excludes PMP */ 221 if (unlikely(link == ap->slave_link)) 222 return NULL; 223 224 /* we were over a PMP link */ 225 if (++link < ap->pmp_link + ap->nr_pmp_links) 226 return link; 227 228 if (mode == ATA_LITER_PMP_FIRST) 229 return &ap->link; 230 231 return NULL; 232 } 233 EXPORT_SYMBOL_GPL(ata_link_next); 234 235 /** 236 * ata_dev_next - device iteration helper 237 * @dev: the previous device, NULL to start 238 * @link: ATA link containing devices to iterate 239 * @mode: iteration mode, one of ATA_DITER_* 240 * 241 * LOCKING: 242 * Host lock or EH context. 243 * 244 * RETURNS: 245 * Pointer to the next device. 246 */ 247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 248 enum ata_dev_iter_mode mode) 249 { 250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 252 253 /* NULL dev indicates start of iteration */ 254 if (!dev) 255 switch (mode) { 256 case ATA_DITER_ENABLED: 257 case ATA_DITER_ALL: 258 dev = link->device; 259 goto check; 260 case ATA_DITER_ENABLED_REVERSE: 261 case ATA_DITER_ALL_REVERSE: 262 dev = link->device + ata_link_max_devices(link) - 1; 263 goto check; 264 } 265 266 next: 267 /* move to the next one */ 268 switch (mode) { 269 case ATA_DITER_ENABLED: 270 case ATA_DITER_ALL: 271 if (++dev < link->device + ata_link_max_devices(link)) 272 goto check; 273 return NULL; 274 case ATA_DITER_ENABLED_REVERSE: 275 case ATA_DITER_ALL_REVERSE: 276 if (--dev >= link->device) 277 goto check; 278 return NULL; 279 } 280 281 check: 282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 283 !ata_dev_enabled(dev)) 284 goto next; 285 return dev; 286 } 287 EXPORT_SYMBOL_GPL(ata_dev_next); 288 289 /** 290 * ata_dev_phys_link - find physical link for a device 291 * @dev: ATA device to look up physical link for 292 * 293 * Look up physical link which @dev is attached to. Note that 294 * this is different from @dev->link only when @dev is on slave 295 * link. For all other cases, it's the same as @dev->link. 296 * 297 * LOCKING: 298 * Don't care. 299 * 300 * RETURNS: 301 * Pointer to the found physical link. 302 */ 303 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 304 { 305 struct ata_port *ap = dev->link->ap; 306 307 if (!ap->slave_link) 308 return dev->link; 309 if (!dev->devno) 310 return &ap->link; 311 return ap->slave_link; 312 } 313 314 #ifdef CONFIG_ATA_FORCE 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags_on) { 391 link->flags |= fe->param.lflags_on; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags_on, link->flags); 395 } 396 if (fe->param.lflags_off) { 397 link->flags &= ~fe->param.lflags_off; 398 ata_link_notice(link, 399 "FORCE: link flag 0x%x cleared -> 0x%x\n", 400 fe->param.lflags_off, link->flags); 401 } 402 } 403 } 404 405 /** 406 * ata_force_xfermask - force xfermask according to libata.force 407 * @dev: ATA device of interest 408 * 409 * Force xfer_mask according to libata.force and whine about it. 410 * For consistency with link selection, device number 15 selects 411 * the first device connected to the host link. 412 * 413 * LOCKING: 414 * EH context. 415 */ 416 static void ata_force_xfermask(struct ata_device *dev) 417 { 418 int devno = dev->link->pmp + dev->devno; 419 int alt_devno = devno; 420 int i; 421 422 /* allow n.15/16 for devices attached to host port */ 423 if (ata_is_host_link(dev->link)) 424 alt_devno += 15; 425 426 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 427 const struct ata_force_ent *fe = &ata_force_tbl[i]; 428 unsigned long pio_mask, mwdma_mask, udma_mask; 429 430 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 431 continue; 432 433 if (fe->device != -1 && fe->device != devno && 434 fe->device != alt_devno) 435 continue; 436 437 if (!fe->param.xfer_mask) 438 continue; 439 440 ata_unpack_xfermask(fe->param.xfer_mask, 441 &pio_mask, &mwdma_mask, &udma_mask); 442 if (udma_mask) 443 dev->udma_mask = udma_mask; 444 else if (mwdma_mask) { 445 dev->udma_mask = 0; 446 dev->mwdma_mask = mwdma_mask; 447 } else { 448 dev->udma_mask = 0; 449 dev->mwdma_mask = 0; 450 dev->pio_mask = pio_mask; 451 } 452 453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 454 fe->param.name); 455 return; 456 } 457 } 458 459 /** 460 * ata_force_horkage - force horkage according to libata.force 461 * @dev: ATA device of interest 462 * 463 * Force horkage according to libata.force and whine about it. 464 * For consistency with link selection, device number 15 selects 465 * the first device connected to the host link. 466 * 467 * LOCKING: 468 * EH context. 469 */ 470 static void ata_force_horkage(struct ata_device *dev) 471 { 472 int devno = dev->link->pmp + dev->devno; 473 int alt_devno = devno; 474 int i; 475 476 /* allow n.15/16 for devices attached to host port */ 477 if (ata_is_host_link(dev->link)) 478 alt_devno += 15; 479 480 for (i = 0; i < ata_force_tbl_size; i++) { 481 const struct ata_force_ent *fe = &ata_force_tbl[i]; 482 483 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 484 continue; 485 486 if (fe->device != -1 && fe->device != devno && 487 fe->device != alt_devno) 488 continue; 489 490 if (!(~dev->horkage & fe->param.horkage_on) && 491 !(dev->horkage & fe->param.horkage_off)) 492 continue; 493 494 dev->horkage |= fe->param.horkage_on; 495 dev->horkage &= ~fe->param.horkage_off; 496 497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 498 fe->param.name); 499 } 500 } 501 #else 502 static inline void ata_force_link_limits(struct ata_link *link) { } 503 static inline void ata_force_xfermask(struct ata_device *dev) { } 504 static inline void ata_force_horkage(struct ata_device *dev) { } 505 #endif 506 507 /** 508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 509 * @opcode: SCSI opcode 510 * 511 * Determine ATAPI command type from @opcode. 512 * 513 * LOCKING: 514 * None. 515 * 516 * RETURNS: 517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 518 */ 519 int atapi_cmd_type(u8 opcode) 520 { 521 switch (opcode) { 522 case GPCMD_READ_10: 523 case GPCMD_READ_12: 524 return ATAPI_READ; 525 526 case GPCMD_WRITE_10: 527 case GPCMD_WRITE_12: 528 case GPCMD_WRITE_AND_VERIFY_10: 529 return ATAPI_WRITE; 530 531 case GPCMD_READ_CD: 532 case GPCMD_READ_CD_MSF: 533 return ATAPI_READ_CD; 534 535 case ATA_16: 536 case ATA_12: 537 if (atapi_passthru16) 538 return ATAPI_PASS_THRU; 539 fallthrough; 540 default: 541 return ATAPI_MISC; 542 } 543 } 544 EXPORT_SYMBOL_GPL(atapi_cmd_type); 545 546 static const u8 ata_rw_cmds[] = { 547 /* pio multi */ 548 ATA_CMD_READ_MULTI, 549 ATA_CMD_WRITE_MULTI, 550 ATA_CMD_READ_MULTI_EXT, 551 ATA_CMD_WRITE_MULTI_EXT, 552 0, 553 0, 554 0, 555 ATA_CMD_WRITE_MULTI_FUA_EXT, 556 /* pio */ 557 ATA_CMD_PIO_READ, 558 ATA_CMD_PIO_WRITE, 559 ATA_CMD_PIO_READ_EXT, 560 ATA_CMD_PIO_WRITE_EXT, 561 0, 562 0, 563 0, 564 0, 565 /* dma */ 566 ATA_CMD_READ, 567 ATA_CMD_WRITE, 568 ATA_CMD_READ_EXT, 569 ATA_CMD_WRITE_EXT, 570 0, 571 0, 572 0, 573 ATA_CMD_WRITE_FUA_EXT 574 }; 575 576 /** 577 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 578 * @tf: command to examine and configure 579 * @dev: device tf belongs to 580 * 581 * Examine the device configuration and tf->flags to calculate 582 * the proper read/write commands and protocol to use. 583 * 584 * LOCKING: 585 * caller. 586 */ 587 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 588 { 589 u8 cmd; 590 591 int index, fua, lba48, write; 592 593 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 594 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 595 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 596 597 if (dev->flags & ATA_DFLAG_PIO) { 598 tf->protocol = ATA_PROT_PIO; 599 index = dev->multi_count ? 0 : 8; 600 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 601 /* Unable to use DMA due to host limitation */ 602 tf->protocol = ATA_PROT_PIO; 603 index = dev->multi_count ? 0 : 8; 604 } else { 605 tf->protocol = ATA_PROT_DMA; 606 index = 16; 607 } 608 609 cmd = ata_rw_cmds[index + fua + lba48 + write]; 610 if (cmd) { 611 tf->command = cmd; 612 return 0; 613 } 614 return -1; 615 } 616 617 /** 618 * ata_tf_read_block - Read block address from ATA taskfile 619 * @tf: ATA taskfile of interest 620 * @dev: ATA device @tf belongs to 621 * 622 * LOCKING: 623 * None. 624 * 625 * Read block address from @tf. This function can handle all 626 * three address formats - LBA, LBA48 and CHS. tf->protocol and 627 * flags select the address format to use. 628 * 629 * RETURNS: 630 * Block address read from @tf. 631 */ 632 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 633 { 634 u64 block = 0; 635 636 if (tf->flags & ATA_TFLAG_LBA) { 637 if (tf->flags & ATA_TFLAG_LBA48) { 638 block |= (u64)tf->hob_lbah << 40; 639 block |= (u64)tf->hob_lbam << 32; 640 block |= (u64)tf->hob_lbal << 24; 641 } else 642 block |= (tf->device & 0xf) << 24; 643 644 block |= tf->lbah << 16; 645 block |= tf->lbam << 8; 646 block |= tf->lbal; 647 } else { 648 u32 cyl, head, sect; 649 650 cyl = tf->lbam | (tf->lbah << 8); 651 head = tf->device & 0xf; 652 sect = tf->lbal; 653 654 if (!sect) { 655 ata_dev_warn(dev, 656 "device reported invalid CHS sector 0\n"); 657 return U64_MAX; 658 } 659 660 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 661 } 662 663 return block; 664 } 665 666 /** 667 * ata_build_rw_tf - Build ATA taskfile for given read/write request 668 * @tf: Target ATA taskfile 669 * @dev: ATA device @tf belongs to 670 * @block: Block address 671 * @n_block: Number of blocks 672 * @tf_flags: RW/FUA etc... 673 * @tag: tag 674 * @class: IO priority class 675 * 676 * LOCKING: 677 * None. 678 * 679 * Build ATA taskfile @tf for read/write request described by 680 * @block, @n_block, @tf_flags and @tag on @dev. 681 * 682 * RETURNS: 683 * 684 * 0 on success, -ERANGE if the request is too large for @dev, 685 * -EINVAL if the request is invalid. 686 */ 687 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 688 u64 block, u32 n_block, unsigned int tf_flags, 689 unsigned int tag, int class) 690 { 691 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 692 tf->flags |= tf_flags; 693 694 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) { 695 /* yay, NCQ */ 696 if (!lba_48_ok(block, n_block)) 697 return -ERANGE; 698 699 tf->protocol = ATA_PROT_NCQ; 700 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 701 702 if (tf->flags & ATA_TFLAG_WRITE) 703 tf->command = ATA_CMD_FPDMA_WRITE; 704 else 705 tf->command = ATA_CMD_FPDMA_READ; 706 707 tf->nsect = tag << 3; 708 tf->hob_feature = (n_block >> 8) & 0xff; 709 tf->feature = n_block & 0xff; 710 711 tf->hob_lbah = (block >> 40) & 0xff; 712 tf->hob_lbam = (block >> 32) & 0xff; 713 tf->hob_lbal = (block >> 24) & 0xff; 714 tf->lbah = (block >> 16) & 0xff; 715 tf->lbam = (block >> 8) & 0xff; 716 tf->lbal = block & 0xff; 717 718 tf->device = ATA_LBA; 719 if (tf->flags & ATA_TFLAG_FUA) 720 tf->device |= 1 << 7; 721 722 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE && 723 class == IOPRIO_CLASS_RT) 724 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 725 } else if (dev->flags & ATA_DFLAG_LBA) { 726 tf->flags |= ATA_TFLAG_LBA; 727 728 if (lba_28_ok(block, n_block)) { 729 /* use LBA28 */ 730 tf->device |= (block >> 24) & 0xf; 731 } else if (lba_48_ok(block, n_block)) { 732 if (!(dev->flags & ATA_DFLAG_LBA48)) 733 return -ERANGE; 734 735 /* use LBA48 */ 736 tf->flags |= ATA_TFLAG_LBA48; 737 738 tf->hob_nsect = (n_block >> 8) & 0xff; 739 740 tf->hob_lbah = (block >> 40) & 0xff; 741 tf->hob_lbam = (block >> 32) & 0xff; 742 tf->hob_lbal = (block >> 24) & 0xff; 743 } else 744 /* request too large even for LBA48 */ 745 return -ERANGE; 746 747 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 748 return -EINVAL; 749 750 tf->nsect = n_block & 0xff; 751 752 tf->lbah = (block >> 16) & 0xff; 753 tf->lbam = (block >> 8) & 0xff; 754 tf->lbal = block & 0xff; 755 756 tf->device |= ATA_LBA; 757 } else { 758 /* CHS */ 759 u32 sect, head, cyl, track; 760 761 /* The request -may- be too large for CHS addressing. */ 762 if (!lba_28_ok(block, n_block)) 763 return -ERANGE; 764 765 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 766 return -EINVAL; 767 768 /* Convert LBA to CHS */ 769 track = (u32)block / dev->sectors; 770 cyl = track / dev->heads; 771 head = track % dev->heads; 772 sect = (u32)block % dev->sectors + 1; 773 774 /* Check whether the converted CHS can fit. 775 Cylinder: 0-65535 776 Head: 0-15 777 Sector: 1-255*/ 778 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 779 return -ERANGE; 780 781 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 782 tf->lbal = sect; 783 tf->lbam = cyl; 784 tf->lbah = cyl >> 8; 785 tf->device |= head; 786 } 787 788 return 0; 789 } 790 791 /** 792 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 793 * @pio_mask: pio_mask 794 * @mwdma_mask: mwdma_mask 795 * @udma_mask: udma_mask 796 * 797 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 798 * unsigned int xfer_mask. 799 * 800 * LOCKING: 801 * None. 802 * 803 * RETURNS: 804 * Packed xfer_mask. 805 */ 806 unsigned long ata_pack_xfermask(unsigned long pio_mask, 807 unsigned long mwdma_mask, 808 unsigned long udma_mask) 809 { 810 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 811 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 812 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 813 } 814 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 815 816 /** 817 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 818 * @xfer_mask: xfer_mask to unpack 819 * @pio_mask: resulting pio_mask 820 * @mwdma_mask: resulting mwdma_mask 821 * @udma_mask: resulting udma_mask 822 * 823 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 824 * Any NULL destination masks will be ignored. 825 */ 826 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 827 unsigned long *mwdma_mask, unsigned long *udma_mask) 828 { 829 if (pio_mask) 830 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 831 if (mwdma_mask) 832 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 833 if (udma_mask) 834 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 835 } 836 837 static const struct ata_xfer_ent { 838 int shift, bits; 839 u8 base; 840 } ata_xfer_tbl[] = { 841 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 842 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 843 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 844 { -1, }, 845 }; 846 847 /** 848 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 849 * @xfer_mask: xfer_mask of interest 850 * 851 * Return matching XFER_* value for @xfer_mask. Only the highest 852 * bit of @xfer_mask is considered. 853 * 854 * LOCKING: 855 * None. 856 * 857 * RETURNS: 858 * Matching XFER_* value, 0xff if no match found. 859 */ 860 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 861 { 862 int highbit = fls(xfer_mask) - 1; 863 const struct ata_xfer_ent *ent; 864 865 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 866 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 867 return ent->base + highbit - ent->shift; 868 return 0xff; 869 } 870 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 871 872 /** 873 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 874 * @xfer_mode: XFER_* of interest 875 * 876 * Return matching xfer_mask for @xfer_mode. 877 * 878 * LOCKING: 879 * None. 880 * 881 * RETURNS: 882 * Matching xfer_mask, 0 if no match found. 883 */ 884 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 885 { 886 const struct ata_xfer_ent *ent; 887 888 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 889 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 890 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 891 & ~((1 << ent->shift) - 1); 892 return 0; 893 } 894 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 895 896 /** 897 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 898 * @xfer_mode: XFER_* of interest 899 * 900 * Return matching xfer_shift for @xfer_mode. 901 * 902 * LOCKING: 903 * None. 904 * 905 * RETURNS: 906 * Matching xfer_shift, -1 if no match found. 907 */ 908 int ata_xfer_mode2shift(u8 xfer_mode) 909 { 910 const struct ata_xfer_ent *ent; 911 912 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 913 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 914 return ent->shift; 915 return -1; 916 } 917 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 918 919 /** 920 * ata_mode_string - convert xfer_mask to string 921 * @xfer_mask: mask of bits supported; only highest bit counts. 922 * 923 * Determine string which represents the highest speed 924 * (highest bit in @modemask). 925 * 926 * LOCKING: 927 * None. 928 * 929 * RETURNS: 930 * Constant C string representing highest speed listed in 931 * @mode_mask, or the constant C string "<n/a>". 932 */ 933 const char *ata_mode_string(unsigned long xfer_mask) 934 { 935 static const char * const xfer_mode_str[] = { 936 "PIO0", 937 "PIO1", 938 "PIO2", 939 "PIO3", 940 "PIO4", 941 "PIO5", 942 "PIO6", 943 "MWDMA0", 944 "MWDMA1", 945 "MWDMA2", 946 "MWDMA3", 947 "MWDMA4", 948 "UDMA/16", 949 "UDMA/25", 950 "UDMA/33", 951 "UDMA/44", 952 "UDMA/66", 953 "UDMA/100", 954 "UDMA/133", 955 "UDMA7", 956 }; 957 int highbit; 958 959 highbit = fls(xfer_mask) - 1; 960 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 961 return xfer_mode_str[highbit]; 962 return "<n/a>"; 963 } 964 EXPORT_SYMBOL_GPL(ata_mode_string); 965 966 const char *sata_spd_string(unsigned int spd) 967 { 968 static const char * const spd_str[] = { 969 "1.5 Gbps", 970 "3.0 Gbps", 971 "6.0 Gbps", 972 }; 973 974 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 975 return "<unknown>"; 976 return spd_str[spd - 1]; 977 } 978 979 /** 980 * ata_dev_classify - determine device type based on ATA-spec signature 981 * @tf: ATA taskfile register set for device to be identified 982 * 983 * Determine from taskfile register contents whether a device is 984 * ATA or ATAPI, as per "Signature and persistence" section 985 * of ATA/PI spec (volume 1, sect 5.14). 986 * 987 * LOCKING: 988 * None. 989 * 990 * RETURNS: 991 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 992 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 993 */ 994 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 995 { 996 /* Apple's open source Darwin code hints that some devices only 997 * put a proper signature into the LBA mid/high registers, 998 * So, we only check those. It's sufficient for uniqueness. 999 * 1000 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1001 * signatures for ATA and ATAPI devices attached on SerialATA, 1002 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1003 * spec has never mentioned about using different signatures 1004 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1005 * Multiplier specification began to use 0x69/0x96 to identify 1006 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1007 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1008 * 0x69/0x96 shortly and described them as reserved for 1009 * SerialATA. 1010 * 1011 * We follow the current spec and consider that 0x69/0x96 1012 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1013 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1014 * SEMB signature. This is worked around in 1015 * ata_dev_read_id(). 1016 */ 1017 if (tf->lbam == 0 && tf->lbah == 0) 1018 return ATA_DEV_ATA; 1019 1020 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1021 return ATA_DEV_ATAPI; 1022 1023 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1024 return ATA_DEV_PMP; 1025 1026 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1027 return ATA_DEV_SEMB; 1028 1029 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1030 return ATA_DEV_ZAC; 1031 1032 return ATA_DEV_UNKNOWN; 1033 } 1034 EXPORT_SYMBOL_GPL(ata_dev_classify); 1035 1036 /** 1037 * ata_id_string - Convert IDENTIFY DEVICE page into string 1038 * @id: IDENTIFY DEVICE results we will examine 1039 * @s: string into which data is output 1040 * @ofs: offset into identify device page 1041 * @len: length of string to return. must be an even number. 1042 * 1043 * The strings in the IDENTIFY DEVICE page are broken up into 1044 * 16-bit chunks. Run through the string, and output each 1045 * 8-bit chunk linearly, regardless of platform. 1046 * 1047 * LOCKING: 1048 * caller. 1049 */ 1050 1051 void ata_id_string(const u16 *id, unsigned char *s, 1052 unsigned int ofs, unsigned int len) 1053 { 1054 unsigned int c; 1055 1056 BUG_ON(len & 1); 1057 1058 while (len > 0) { 1059 c = id[ofs] >> 8; 1060 *s = c; 1061 s++; 1062 1063 c = id[ofs] & 0xff; 1064 *s = c; 1065 s++; 1066 1067 ofs++; 1068 len -= 2; 1069 } 1070 } 1071 EXPORT_SYMBOL_GPL(ata_id_string); 1072 1073 /** 1074 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1075 * @id: IDENTIFY DEVICE results we will examine 1076 * @s: string into which data is output 1077 * @ofs: offset into identify device page 1078 * @len: length of string to return. must be an odd number. 1079 * 1080 * This function is identical to ata_id_string except that it 1081 * trims trailing spaces and terminates the resulting string with 1082 * null. @len must be actual maximum length (even number) + 1. 1083 * 1084 * LOCKING: 1085 * caller. 1086 */ 1087 void ata_id_c_string(const u16 *id, unsigned char *s, 1088 unsigned int ofs, unsigned int len) 1089 { 1090 unsigned char *p; 1091 1092 ata_id_string(id, s, ofs, len - 1); 1093 1094 p = s + strnlen(s, len - 1); 1095 while (p > s && p[-1] == ' ') 1096 p--; 1097 *p = '\0'; 1098 } 1099 EXPORT_SYMBOL_GPL(ata_id_c_string); 1100 1101 static u64 ata_id_n_sectors(const u16 *id) 1102 { 1103 if (ata_id_has_lba(id)) { 1104 if (ata_id_has_lba48(id)) 1105 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1106 else 1107 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1108 } else { 1109 if (ata_id_current_chs_valid(id)) 1110 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1111 id[ATA_ID_CUR_SECTORS]; 1112 else 1113 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1114 id[ATA_ID_SECTORS]; 1115 } 1116 } 1117 1118 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1119 { 1120 u64 sectors = 0; 1121 1122 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1123 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1124 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1125 sectors |= (tf->lbah & 0xff) << 16; 1126 sectors |= (tf->lbam & 0xff) << 8; 1127 sectors |= (tf->lbal & 0xff); 1128 1129 return sectors; 1130 } 1131 1132 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1133 { 1134 u64 sectors = 0; 1135 1136 sectors |= (tf->device & 0x0f) << 24; 1137 sectors |= (tf->lbah & 0xff) << 16; 1138 sectors |= (tf->lbam & 0xff) << 8; 1139 sectors |= (tf->lbal & 0xff); 1140 1141 return sectors; 1142 } 1143 1144 /** 1145 * ata_read_native_max_address - Read native max address 1146 * @dev: target device 1147 * @max_sectors: out parameter for the result native max address 1148 * 1149 * Perform an LBA48 or LBA28 native size query upon the device in 1150 * question. 1151 * 1152 * RETURNS: 1153 * 0 on success, -EACCES if command is aborted by the drive. 1154 * -EIO on other errors. 1155 */ 1156 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1157 { 1158 unsigned int err_mask; 1159 struct ata_taskfile tf; 1160 int lba48 = ata_id_has_lba48(dev->id); 1161 1162 ata_tf_init(dev, &tf); 1163 1164 /* always clear all address registers */ 1165 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1166 1167 if (lba48) { 1168 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1169 tf.flags |= ATA_TFLAG_LBA48; 1170 } else 1171 tf.command = ATA_CMD_READ_NATIVE_MAX; 1172 1173 tf.protocol = ATA_PROT_NODATA; 1174 tf.device |= ATA_LBA; 1175 1176 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1177 if (err_mask) { 1178 ata_dev_warn(dev, 1179 "failed to read native max address (err_mask=0x%x)\n", 1180 err_mask); 1181 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 1182 return -EACCES; 1183 return -EIO; 1184 } 1185 1186 if (lba48) 1187 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1188 else 1189 *max_sectors = ata_tf_to_lba(&tf) + 1; 1190 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1191 (*max_sectors)--; 1192 return 0; 1193 } 1194 1195 /** 1196 * ata_set_max_sectors - Set max sectors 1197 * @dev: target device 1198 * @new_sectors: new max sectors value to set for the device 1199 * 1200 * Set max sectors of @dev to @new_sectors. 1201 * 1202 * RETURNS: 1203 * 0 on success, -EACCES if command is aborted or denied (due to 1204 * previous non-volatile SET_MAX) by the drive. -EIO on other 1205 * errors. 1206 */ 1207 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1208 { 1209 unsigned int err_mask; 1210 struct ata_taskfile tf; 1211 int lba48 = ata_id_has_lba48(dev->id); 1212 1213 new_sectors--; 1214 1215 ata_tf_init(dev, &tf); 1216 1217 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1218 1219 if (lba48) { 1220 tf.command = ATA_CMD_SET_MAX_EXT; 1221 tf.flags |= ATA_TFLAG_LBA48; 1222 1223 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1224 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1225 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1226 } else { 1227 tf.command = ATA_CMD_SET_MAX; 1228 1229 tf.device |= (new_sectors >> 24) & 0xf; 1230 } 1231 1232 tf.protocol = ATA_PROT_NODATA; 1233 tf.device |= ATA_LBA; 1234 1235 tf.lbal = (new_sectors >> 0) & 0xff; 1236 tf.lbam = (new_sectors >> 8) & 0xff; 1237 tf.lbah = (new_sectors >> 16) & 0xff; 1238 1239 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1240 if (err_mask) { 1241 ata_dev_warn(dev, 1242 "failed to set max address (err_mask=0x%x)\n", 1243 err_mask); 1244 if (err_mask == AC_ERR_DEV && 1245 (tf.error & (ATA_ABORTED | ATA_IDNF))) 1246 return -EACCES; 1247 return -EIO; 1248 } 1249 1250 return 0; 1251 } 1252 1253 /** 1254 * ata_hpa_resize - Resize a device with an HPA set 1255 * @dev: Device to resize 1256 * 1257 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1258 * it if required to the full size of the media. The caller must check 1259 * the drive has the HPA feature set enabled. 1260 * 1261 * RETURNS: 1262 * 0 on success, -errno on failure. 1263 */ 1264 static int ata_hpa_resize(struct ata_device *dev) 1265 { 1266 bool print_info = ata_dev_print_info(dev); 1267 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1268 u64 sectors = ata_id_n_sectors(dev->id); 1269 u64 native_sectors; 1270 int rc; 1271 1272 /* do we need to do it? */ 1273 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1274 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1275 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1276 return 0; 1277 1278 /* read native max address */ 1279 rc = ata_read_native_max_address(dev, &native_sectors); 1280 if (rc) { 1281 /* If device aborted the command or HPA isn't going to 1282 * be unlocked, skip HPA resizing. 1283 */ 1284 if (rc == -EACCES || !unlock_hpa) { 1285 ata_dev_warn(dev, 1286 "HPA support seems broken, skipping HPA handling\n"); 1287 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1288 1289 /* we can continue if device aborted the command */ 1290 if (rc == -EACCES) 1291 rc = 0; 1292 } 1293 1294 return rc; 1295 } 1296 dev->n_native_sectors = native_sectors; 1297 1298 /* nothing to do? */ 1299 if (native_sectors <= sectors || !unlock_hpa) { 1300 if (!print_info || native_sectors == sectors) 1301 return 0; 1302 1303 if (native_sectors > sectors) 1304 ata_dev_info(dev, 1305 "HPA detected: current %llu, native %llu\n", 1306 (unsigned long long)sectors, 1307 (unsigned long long)native_sectors); 1308 else if (native_sectors < sectors) 1309 ata_dev_warn(dev, 1310 "native sectors (%llu) is smaller than sectors (%llu)\n", 1311 (unsigned long long)native_sectors, 1312 (unsigned long long)sectors); 1313 return 0; 1314 } 1315 1316 /* let's unlock HPA */ 1317 rc = ata_set_max_sectors(dev, native_sectors); 1318 if (rc == -EACCES) { 1319 /* if device aborted the command, skip HPA resizing */ 1320 ata_dev_warn(dev, 1321 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1322 (unsigned long long)sectors, 1323 (unsigned long long)native_sectors); 1324 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1325 return 0; 1326 } else if (rc) 1327 return rc; 1328 1329 /* re-read IDENTIFY data */ 1330 rc = ata_dev_reread_id(dev, 0); 1331 if (rc) { 1332 ata_dev_err(dev, 1333 "failed to re-read IDENTIFY data after HPA resizing\n"); 1334 return rc; 1335 } 1336 1337 if (print_info) { 1338 u64 new_sectors = ata_id_n_sectors(dev->id); 1339 ata_dev_info(dev, 1340 "HPA unlocked: %llu -> %llu, native %llu\n", 1341 (unsigned long long)sectors, 1342 (unsigned long long)new_sectors, 1343 (unsigned long long)native_sectors); 1344 } 1345 1346 return 0; 1347 } 1348 1349 /** 1350 * ata_dump_id - IDENTIFY DEVICE info debugging output 1351 * @dev: device from which the information is fetched 1352 * @id: IDENTIFY DEVICE page to dump 1353 * 1354 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1355 * page. 1356 * 1357 * LOCKING: 1358 * caller. 1359 */ 1360 1361 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1362 { 1363 ata_dev_dbg(dev, 1364 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1365 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1366 "88==0x%04x 93==0x%04x\n", 1367 id[49], id[53], id[63], id[64], id[75], id[80], 1368 id[81], id[82], id[83], id[84], id[88], id[93]); 1369 } 1370 1371 /** 1372 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1373 * @id: IDENTIFY data to compute xfer mask from 1374 * 1375 * Compute the xfermask for this device. This is not as trivial 1376 * as it seems if we must consider early devices correctly. 1377 * 1378 * FIXME: pre IDE drive timing (do we care ?). 1379 * 1380 * LOCKING: 1381 * None. 1382 * 1383 * RETURNS: 1384 * Computed xfermask 1385 */ 1386 unsigned long ata_id_xfermask(const u16 *id) 1387 { 1388 unsigned long pio_mask, mwdma_mask, udma_mask; 1389 1390 /* Usual case. Word 53 indicates word 64 is valid */ 1391 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1392 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1393 pio_mask <<= 3; 1394 pio_mask |= 0x7; 1395 } else { 1396 /* If word 64 isn't valid then Word 51 high byte holds 1397 * the PIO timing number for the maximum. Turn it into 1398 * a mask. 1399 */ 1400 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1401 if (mode < 5) /* Valid PIO range */ 1402 pio_mask = (2 << mode) - 1; 1403 else 1404 pio_mask = 1; 1405 1406 /* But wait.. there's more. Design your standards by 1407 * committee and you too can get a free iordy field to 1408 * process. However it is the speeds not the modes that 1409 * are supported... Note drivers using the timing API 1410 * will get this right anyway 1411 */ 1412 } 1413 1414 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1415 1416 if (ata_id_is_cfa(id)) { 1417 /* 1418 * Process compact flash extended modes 1419 */ 1420 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1421 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1422 1423 if (pio) 1424 pio_mask |= (1 << 5); 1425 if (pio > 1) 1426 pio_mask |= (1 << 6); 1427 if (dma) 1428 mwdma_mask |= (1 << 3); 1429 if (dma > 1) 1430 mwdma_mask |= (1 << 4); 1431 } 1432 1433 udma_mask = 0; 1434 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1435 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1436 1437 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1438 } 1439 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1440 1441 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1442 { 1443 struct completion *waiting = qc->private_data; 1444 1445 complete(waiting); 1446 } 1447 1448 /** 1449 * ata_exec_internal_sg - execute libata internal command 1450 * @dev: Device to which the command is sent 1451 * @tf: Taskfile registers for the command and the result 1452 * @cdb: CDB for packet command 1453 * @dma_dir: Data transfer direction of the command 1454 * @sgl: sg list for the data buffer of the command 1455 * @n_elem: Number of sg entries 1456 * @timeout: Timeout in msecs (0 for default) 1457 * 1458 * Executes libata internal command with timeout. @tf contains 1459 * command on entry and result on return. Timeout and error 1460 * conditions are reported via return value. No recovery action 1461 * is taken after a command times out. It's caller's duty to 1462 * clean up after timeout. 1463 * 1464 * LOCKING: 1465 * None. Should be called with kernel context, might sleep. 1466 * 1467 * RETURNS: 1468 * Zero on success, AC_ERR_* mask on failure 1469 */ 1470 unsigned ata_exec_internal_sg(struct ata_device *dev, 1471 struct ata_taskfile *tf, const u8 *cdb, 1472 int dma_dir, struct scatterlist *sgl, 1473 unsigned int n_elem, unsigned long timeout) 1474 { 1475 struct ata_link *link = dev->link; 1476 struct ata_port *ap = link->ap; 1477 u8 command = tf->command; 1478 int auto_timeout = 0; 1479 struct ata_queued_cmd *qc; 1480 unsigned int preempted_tag; 1481 u32 preempted_sactive; 1482 u64 preempted_qc_active; 1483 int preempted_nr_active_links; 1484 DECLARE_COMPLETION_ONSTACK(wait); 1485 unsigned long flags; 1486 unsigned int err_mask; 1487 int rc; 1488 1489 spin_lock_irqsave(ap->lock, flags); 1490 1491 /* no internal command while frozen */ 1492 if (ap->pflags & ATA_PFLAG_FROZEN) { 1493 spin_unlock_irqrestore(ap->lock, flags); 1494 return AC_ERR_SYSTEM; 1495 } 1496 1497 /* initialize internal qc */ 1498 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1499 1500 qc->tag = ATA_TAG_INTERNAL; 1501 qc->hw_tag = 0; 1502 qc->scsicmd = NULL; 1503 qc->ap = ap; 1504 qc->dev = dev; 1505 ata_qc_reinit(qc); 1506 1507 preempted_tag = link->active_tag; 1508 preempted_sactive = link->sactive; 1509 preempted_qc_active = ap->qc_active; 1510 preempted_nr_active_links = ap->nr_active_links; 1511 link->active_tag = ATA_TAG_POISON; 1512 link->sactive = 0; 1513 ap->qc_active = 0; 1514 ap->nr_active_links = 0; 1515 1516 /* prepare & issue qc */ 1517 qc->tf = *tf; 1518 if (cdb) 1519 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1520 1521 /* some SATA bridges need us to indicate data xfer direction */ 1522 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1523 dma_dir == DMA_FROM_DEVICE) 1524 qc->tf.feature |= ATAPI_DMADIR; 1525 1526 qc->flags |= ATA_QCFLAG_RESULT_TF; 1527 qc->dma_dir = dma_dir; 1528 if (dma_dir != DMA_NONE) { 1529 unsigned int i, buflen = 0; 1530 struct scatterlist *sg; 1531 1532 for_each_sg(sgl, sg, n_elem, i) 1533 buflen += sg->length; 1534 1535 ata_sg_init(qc, sgl, n_elem); 1536 qc->nbytes = buflen; 1537 } 1538 1539 qc->private_data = &wait; 1540 qc->complete_fn = ata_qc_complete_internal; 1541 1542 ata_qc_issue(qc); 1543 1544 spin_unlock_irqrestore(ap->lock, flags); 1545 1546 if (!timeout) { 1547 if (ata_probe_timeout) 1548 timeout = ata_probe_timeout * 1000; 1549 else { 1550 timeout = ata_internal_cmd_timeout(dev, command); 1551 auto_timeout = 1; 1552 } 1553 } 1554 1555 if (ap->ops->error_handler) 1556 ata_eh_release(ap); 1557 1558 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1559 1560 if (ap->ops->error_handler) 1561 ata_eh_acquire(ap); 1562 1563 ata_sff_flush_pio_task(ap); 1564 1565 if (!rc) { 1566 spin_lock_irqsave(ap->lock, flags); 1567 1568 /* We're racing with irq here. If we lose, the 1569 * following test prevents us from completing the qc 1570 * twice. If we win, the port is frozen and will be 1571 * cleaned up by ->post_internal_cmd(). 1572 */ 1573 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1574 qc->err_mask |= AC_ERR_TIMEOUT; 1575 1576 if (ap->ops->error_handler) 1577 ata_port_freeze(ap); 1578 else 1579 ata_qc_complete(qc); 1580 1581 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1582 command); 1583 } 1584 1585 spin_unlock_irqrestore(ap->lock, flags); 1586 } 1587 1588 /* do post_internal_cmd */ 1589 if (ap->ops->post_internal_cmd) 1590 ap->ops->post_internal_cmd(qc); 1591 1592 /* perform minimal error analysis */ 1593 if (qc->flags & ATA_QCFLAG_FAILED) { 1594 if (qc->result_tf.status & (ATA_ERR | ATA_DF)) 1595 qc->err_mask |= AC_ERR_DEV; 1596 1597 if (!qc->err_mask) 1598 qc->err_mask |= AC_ERR_OTHER; 1599 1600 if (qc->err_mask & ~AC_ERR_OTHER) 1601 qc->err_mask &= ~AC_ERR_OTHER; 1602 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1603 qc->result_tf.status |= ATA_SENSE; 1604 } 1605 1606 /* finish up */ 1607 spin_lock_irqsave(ap->lock, flags); 1608 1609 *tf = qc->result_tf; 1610 err_mask = qc->err_mask; 1611 1612 ata_qc_free(qc); 1613 link->active_tag = preempted_tag; 1614 link->sactive = preempted_sactive; 1615 ap->qc_active = preempted_qc_active; 1616 ap->nr_active_links = preempted_nr_active_links; 1617 1618 spin_unlock_irqrestore(ap->lock, flags); 1619 1620 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1621 ata_internal_cmd_timed_out(dev, command); 1622 1623 return err_mask; 1624 } 1625 1626 /** 1627 * ata_exec_internal - execute libata internal command 1628 * @dev: Device to which the command is sent 1629 * @tf: Taskfile registers for the command and the result 1630 * @cdb: CDB for packet command 1631 * @dma_dir: Data transfer direction of the command 1632 * @buf: Data buffer of the command 1633 * @buflen: Length of data buffer 1634 * @timeout: Timeout in msecs (0 for default) 1635 * 1636 * Wrapper around ata_exec_internal_sg() which takes simple 1637 * buffer instead of sg list. 1638 * 1639 * LOCKING: 1640 * None. Should be called with kernel context, might sleep. 1641 * 1642 * RETURNS: 1643 * Zero on success, AC_ERR_* mask on failure 1644 */ 1645 unsigned ata_exec_internal(struct ata_device *dev, 1646 struct ata_taskfile *tf, const u8 *cdb, 1647 int dma_dir, void *buf, unsigned int buflen, 1648 unsigned long timeout) 1649 { 1650 struct scatterlist *psg = NULL, sg; 1651 unsigned int n_elem = 0; 1652 1653 if (dma_dir != DMA_NONE) { 1654 WARN_ON(!buf); 1655 sg_init_one(&sg, buf, buflen); 1656 psg = &sg; 1657 n_elem++; 1658 } 1659 1660 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1661 timeout); 1662 } 1663 1664 /** 1665 * ata_pio_need_iordy - check if iordy needed 1666 * @adev: ATA device 1667 * 1668 * Check if the current speed of the device requires IORDY. Used 1669 * by various controllers for chip configuration. 1670 */ 1671 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1672 { 1673 /* Don't set IORDY if we're preparing for reset. IORDY may 1674 * lead to controller lock up on certain controllers if the 1675 * port is not occupied. See bko#11703 for details. 1676 */ 1677 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1678 return 0; 1679 /* Controller doesn't support IORDY. Probably a pointless 1680 * check as the caller should know this. 1681 */ 1682 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1683 return 0; 1684 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1685 if (ata_id_is_cfa(adev->id) 1686 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1687 return 0; 1688 /* PIO3 and higher it is mandatory */ 1689 if (adev->pio_mode > XFER_PIO_2) 1690 return 1; 1691 /* We turn it on when possible */ 1692 if (ata_id_has_iordy(adev->id)) 1693 return 1; 1694 return 0; 1695 } 1696 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1697 1698 /** 1699 * ata_pio_mask_no_iordy - Return the non IORDY mask 1700 * @adev: ATA device 1701 * 1702 * Compute the highest mode possible if we are not using iordy. Return 1703 * -1 if no iordy mode is available. 1704 */ 1705 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1706 { 1707 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1708 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1709 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1710 /* Is the speed faster than the drive allows non IORDY ? */ 1711 if (pio) { 1712 /* This is cycle times not frequency - watch the logic! */ 1713 if (pio > 240) /* PIO2 is 240nS per cycle */ 1714 return 3 << ATA_SHIFT_PIO; 1715 return 7 << ATA_SHIFT_PIO; 1716 } 1717 } 1718 return 3 << ATA_SHIFT_PIO; 1719 } 1720 1721 /** 1722 * ata_do_dev_read_id - default ID read method 1723 * @dev: device 1724 * @tf: proposed taskfile 1725 * @id: data buffer 1726 * 1727 * Issue the identify taskfile and hand back the buffer containing 1728 * identify data. For some RAID controllers and for pre ATA devices 1729 * this function is wrapped or replaced by the driver 1730 */ 1731 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1732 struct ata_taskfile *tf, __le16 *id) 1733 { 1734 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1735 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1736 } 1737 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1738 1739 /** 1740 * ata_dev_read_id - Read ID data from the specified device 1741 * @dev: target device 1742 * @p_class: pointer to class of the target device (may be changed) 1743 * @flags: ATA_READID_* flags 1744 * @id: buffer to read IDENTIFY data into 1745 * 1746 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1747 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1748 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1749 * for pre-ATA4 drives. 1750 * 1751 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1752 * now we abort if we hit that case. 1753 * 1754 * LOCKING: 1755 * Kernel thread context (may sleep) 1756 * 1757 * RETURNS: 1758 * 0 on success, -errno otherwise. 1759 */ 1760 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1761 unsigned int flags, u16 *id) 1762 { 1763 struct ata_port *ap = dev->link->ap; 1764 unsigned int class = *p_class; 1765 struct ata_taskfile tf; 1766 unsigned int err_mask = 0; 1767 const char *reason; 1768 bool is_semb = class == ATA_DEV_SEMB; 1769 int may_fallback = 1, tried_spinup = 0; 1770 int rc; 1771 1772 retry: 1773 ata_tf_init(dev, &tf); 1774 1775 switch (class) { 1776 case ATA_DEV_SEMB: 1777 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1778 fallthrough; 1779 case ATA_DEV_ATA: 1780 case ATA_DEV_ZAC: 1781 tf.command = ATA_CMD_ID_ATA; 1782 break; 1783 case ATA_DEV_ATAPI: 1784 tf.command = ATA_CMD_ID_ATAPI; 1785 break; 1786 default: 1787 rc = -ENODEV; 1788 reason = "unsupported class"; 1789 goto err_out; 1790 } 1791 1792 tf.protocol = ATA_PROT_PIO; 1793 1794 /* Some devices choke if TF registers contain garbage. Make 1795 * sure those are properly initialized. 1796 */ 1797 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1798 1799 /* Device presence detection is unreliable on some 1800 * controllers. Always poll IDENTIFY if available. 1801 */ 1802 tf.flags |= ATA_TFLAG_POLLING; 1803 1804 if (ap->ops->read_id) 1805 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1806 else 1807 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1808 1809 if (err_mask) { 1810 if (err_mask & AC_ERR_NODEV_HINT) { 1811 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1812 return -ENOENT; 1813 } 1814 1815 if (is_semb) { 1816 ata_dev_info(dev, 1817 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1818 /* SEMB is not supported yet */ 1819 *p_class = ATA_DEV_SEMB_UNSUP; 1820 return 0; 1821 } 1822 1823 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) { 1824 /* Device or controller might have reported 1825 * the wrong device class. Give a shot at the 1826 * other IDENTIFY if the current one is 1827 * aborted by the device. 1828 */ 1829 if (may_fallback) { 1830 may_fallback = 0; 1831 1832 if (class == ATA_DEV_ATA) 1833 class = ATA_DEV_ATAPI; 1834 else 1835 class = ATA_DEV_ATA; 1836 goto retry; 1837 } 1838 1839 /* Control reaches here iff the device aborted 1840 * both flavors of IDENTIFYs which happens 1841 * sometimes with phantom devices. 1842 */ 1843 ata_dev_dbg(dev, 1844 "both IDENTIFYs aborted, assuming NODEV\n"); 1845 return -ENOENT; 1846 } 1847 1848 rc = -EIO; 1849 reason = "I/O error"; 1850 goto err_out; 1851 } 1852 1853 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1854 ata_dev_info(dev, "dumping IDENTIFY data, " 1855 "class=%d may_fallback=%d tried_spinup=%d\n", 1856 class, may_fallback, tried_spinup); 1857 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1858 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1859 } 1860 1861 /* Falling back doesn't make sense if ID data was read 1862 * successfully at least once. 1863 */ 1864 may_fallback = 0; 1865 1866 swap_buf_le16(id, ATA_ID_WORDS); 1867 1868 /* sanity check */ 1869 rc = -EINVAL; 1870 reason = "device reports invalid type"; 1871 1872 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1873 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1874 goto err_out; 1875 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1876 ata_id_is_ata(id)) { 1877 ata_dev_dbg(dev, 1878 "host indicates ignore ATA devices, ignored\n"); 1879 return -ENOENT; 1880 } 1881 } else { 1882 if (ata_id_is_ata(id)) 1883 goto err_out; 1884 } 1885 1886 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1887 tried_spinup = 1; 1888 /* 1889 * Drive powered-up in standby mode, and requires a specific 1890 * SET_FEATURES spin-up subcommand before it will accept 1891 * anything other than the original IDENTIFY command. 1892 */ 1893 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1894 if (err_mask && id[2] != 0x738c) { 1895 rc = -EIO; 1896 reason = "SPINUP failed"; 1897 goto err_out; 1898 } 1899 /* 1900 * If the drive initially returned incomplete IDENTIFY info, 1901 * we now must reissue the IDENTIFY command. 1902 */ 1903 if (id[2] == 0x37c8) 1904 goto retry; 1905 } 1906 1907 if ((flags & ATA_READID_POSTRESET) && 1908 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1909 /* 1910 * The exact sequence expected by certain pre-ATA4 drives is: 1911 * SRST RESET 1912 * IDENTIFY (optional in early ATA) 1913 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1914 * anything else.. 1915 * Some drives were very specific about that exact sequence. 1916 * 1917 * Note that ATA4 says lba is mandatory so the second check 1918 * should never trigger. 1919 */ 1920 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1921 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1922 if (err_mask) { 1923 rc = -EIO; 1924 reason = "INIT_DEV_PARAMS failed"; 1925 goto err_out; 1926 } 1927 1928 /* current CHS translation info (id[53-58]) might be 1929 * changed. reread the identify device info. 1930 */ 1931 flags &= ~ATA_READID_POSTRESET; 1932 goto retry; 1933 } 1934 } 1935 1936 *p_class = class; 1937 1938 return 0; 1939 1940 err_out: 1941 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1942 reason, err_mask); 1943 return rc; 1944 } 1945 1946 /** 1947 * ata_read_log_page - read a specific log page 1948 * @dev: target device 1949 * @log: log to read 1950 * @page: page to read 1951 * @buf: buffer to store read page 1952 * @sectors: number of sectors to read 1953 * 1954 * Read log page using READ_LOG_EXT command. 1955 * 1956 * LOCKING: 1957 * Kernel thread context (may sleep). 1958 * 1959 * RETURNS: 1960 * 0 on success, AC_ERR_* mask otherwise. 1961 */ 1962 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 1963 u8 page, void *buf, unsigned int sectors) 1964 { 1965 unsigned long ap_flags = dev->link->ap->flags; 1966 struct ata_taskfile tf; 1967 unsigned int err_mask; 1968 bool dma = false; 1969 1970 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 1971 1972 /* 1973 * Return error without actually issuing the command on controllers 1974 * which e.g. lockup on a read log page. 1975 */ 1976 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 1977 return AC_ERR_DEV; 1978 1979 retry: 1980 ata_tf_init(dev, &tf); 1981 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 1982 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 1983 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 1984 tf.protocol = ATA_PROT_DMA; 1985 dma = true; 1986 } else { 1987 tf.command = ATA_CMD_READ_LOG_EXT; 1988 tf.protocol = ATA_PROT_PIO; 1989 dma = false; 1990 } 1991 tf.lbal = log; 1992 tf.lbam = page; 1993 tf.nsect = sectors; 1994 tf.hob_nsect = sectors >> 8; 1995 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 1996 1997 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 1998 buf, sectors * ATA_SECT_SIZE, 0); 1999 2000 if (err_mask) { 2001 if (dma) { 2002 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2003 goto retry; 2004 } 2005 ata_dev_err(dev, 2006 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2007 (unsigned int)log, (unsigned int)page, err_mask); 2008 } 2009 2010 return err_mask; 2011 } 2012 2013 static bool ata_log_supported(struct ata_device *dev, u8 log) 2014 { 2015 struct ata_port *ap = dev->link->ap; 2016 2017 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR) 2018 return false; 2019 2020 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2021 return false; 2022 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false; 2023 } 2024 2025 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2026 { 2027 struct ata_port *ap = dev->link->ap; 2028 unsigned int err, i; 2029 2030 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG) 2031 return false; 2032 2033 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2034 /* 2035 * IDENTIFY DEVICE data log is defined as mandatory starting 2036 * with ACS-3 (ATA version 10). Warn about the missing log 2037 * for drives which implement this ATA level or above. 2038 */ 2039 if (ata_id_major_version(dev->id) >= 10) 2040 ata_dev_warn(dev, 2041 "ATA Identify Device Log not supported\n"); 2042 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG; 2043 return false; 2044 } 2045 2046 /* 2047 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2048 * supported. 2049 */ 2050 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2051 1); 2052 if (err) 2053 return false; 2054 2055 for (i = 0; i < ap->sector_buf[8]; i++) { 2056 if (ap->sector_buf[9 + i] == page) 2057 return true; 2058 } 2059 2060 return false; 2061 } 2062 2063 static int ata_do_link_spd_horkage(struct ata_device *dev) 2064 { 2065 struct ata_link *plink = ata_dev_phys_link(dev); 2066 u32 target, target_limit; 2067 2068 if (!sata_scr_valid(plink)) 2069 return 0; 2070 2071 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2072 target = 1; 2073 else 2074 return 0; 2075 2076 target_limit = (1 << target) - 1; 2077 2078 /* if already on stricter limit, no need to push further */ 2079 if (plink->sata_spd_limit <= target_limit) 2080 return 0; 2081 2082 plink->sata_spd_limit = target_limit; 2083 2084 /* Request another EH round by returning -EAGAIN if link is 2085 * going faster than the target speed. Forward progress is 2086 * guaranteed by setting sata_spd_limit to target_limit above. 2087 */ 2088 if (plink->sata_spd > target) { 2089 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2090 sata_spd_string(target)); 2091 return -EAGAIN; 2092 } 2093 return 0; 2094 } 2095 2096 static inline u8 ata_dev_knobble(struct ata_device *dev) 2097 { 2098 struct ata_port *ap = dev->link->ap; 2099 2100 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2101 return 0; 2102 2103 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2104 } 2105 2106 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2107 { 2108 struct ata_port *ap = dev->link->ap; 2109 unsigned int err_mask; 2110 2111 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2112 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2113 return; 2114 } 2115 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2116 0, ap->sector_buf, 1); 2117 if (!err_mask) { 2118 u8 *cmds = dev->ncq_send_recv_cmds; 2119 2120 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2121 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2122 2123 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2124 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2125 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2126 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2127 } 2128 } 2129 } 2130 2131 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2132 { 2133 struct ata_port *ap = dev->link->ap; 2134 unsigned int err_mask; 2135 2136 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2137 ata_dev_warn(dev, 2138 "NCQ Send/Recv Log not supported\n"); 2139 return; 2140 } 2141 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2142 0, ap->sector_buf, 1); 2143 if (!err_mask) { 2144 u8 *cmds = dev->ncq_non_data_cmds; 2145 2146 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2147 } 2148 } 2149 2150 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2151 { 2152 struct ata_port *ap = dev->link->ap; 2153 unsigned int err_mask; 2154 2155 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2156 return; 2157 2158 err_mask = ata_read_log_page(dev, 2159 ATA_LOG_IDENTIFY_DEVICE, 2160 ATA_LOG_SATA_SETTINGS, 2161 ap->sector_buf, 2162 1); 2163 if (err_mask) 2164 goto not_supported; 2165 2166 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2167 goto not_supported; 2168 2169 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2170 2171 return; 2172 2173 not_supported: 2174 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE; 2175 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2176 } 2177 2178 static bool ata_dev_check_adapter(struct ata_device *dev, 2179 unsigned short vendor_id) 2180 { 2181 struct pci_dev *pcidev = NULL; 2182 struct device *parent_dev = NULL; 2183 2184 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2185 parent_dev = parent_dev->parent) { 2186 if (dev_is_pci(parent_dev)) { 2187 pcidev = to_pci_dev(parent_dev); 2188 if (pcidev->vendor == vendor_id) 2189 return true; 2190 break; 2191 } 2192 } 2193 2194 return false; 2195 } 2196 2197 static int ata_dev_config_ncq(struct ata_device *dev, 2198 char *desc, size_t desc_sz) 2199 { 2200 struct ata_port *ap = dev->link->ap; 2201 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2202 unsigned int err_mask; 2203 char *aa_desc = ""; 2204 2205 if (!ata_id_has_ncq(dev->id)) { 2206 desc[0] = '\0'; 2207 return 0; 2208 } 2209 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2210 return 0; 2211 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2212 snprintf(desc, desc_sz, "NCQ (not used)"); 2213 return 0; 2214 } 2215 2216 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2217 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2218 snprintf(desc, desc_sz, "NCQ (not used)"); 2219 return 0; 2220 } 2221 2222 if (ap->flags & ATA_FLAG_NCQ) { 2223 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2224 dev->flags |= ATA_DFLAG_NCQ; 2225 } 2226 2227 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2228 (ap->flags & ATA_FLAG_FPDMA_AA) && 2229 ata_id_has_fpdma_aa(dev->id)) { 2230 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2231 SATA_FPDMA_AA); 2232 if (err_mask) { 2233 ata_dev_err(dev, 2234 "failed to enable AA (error_mask=0x%x)\n", 2235 err_mask); 2236 if (err_mask != AC_ERR_DEV) { 2237 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2238 return -EIO; 2239 } 2240 } else 2241 aa_desc = ", AA"; 2242 } 2243 2244 if (hdepth >= ddepth) 2245 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2246 else 2247 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2248 ddepth, aa_desc); 2249 2250 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2251 if (ata_id_has_ncq_send_and_recv(dev->id)) 2252 ata_dev_config_ncq_send_recv(dev); 2253 if (ata_id_has_ncq_non_data(dev->id)) 2254 ata_dev_config_ncq_non_data(dev); 2255 if (ata_id_has_ncq_prio(dev->id)) 2256 ata_dev_config_ncq_prio(dev); 2257 } 2258 2259 return 0; 2260 } 2261 2262 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2263 { 2264 unsigned int err_mask; 2265 2266 if (!ata_id_has_sense_reporting(dev->id)) 2267 return; 2268 2269 if (ata_id_sense_reporting_enabled(dev->id)) 2270 return; 2271 2272 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2273 if (err_mask) { 2274 ata_dev_dbg(dev, 2275 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2276 err_mask); 2277 } 2278 } 2279 2280 static void ata_dev_config_zac(struct ata_device *dev) 2281 { 2282 struct ata_port *ap = dev->link->ap; 2283 unsigned int err_mask; 2284 u8 *identify_buf = ap->sector_buf; 2285 2286 dev->zac_zones_optimal_open = U32_MAX; 2287 dev->zac_zones_optimal_nonseq = U32_MAX; 2288 dev->zac_zones_max_open = U32_MAX; 2289 2290 /* 2291 * Always set the 'ZAC' flag for Host-managed devices. 2292 */ 2293 if (dev->class == ATA_DEV_ZAC) 2294 dev->flags |= ATA_DFLAG_ZAC; 2295 else if (ata_id_zoned_cap(dev->id) == 0x01) 2296 /* 2297 * Check for host-aware devices. 2298 */ 2299 dev->flags |= ATA_DFLAG_ZAC; 2300 2301 if (!(dev->flags & ATA_DFLAG_ZAC)) 2302 return; 2303 2304 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2305 ata_dev_warn(dev, 2306 "ATA Zoned Information Log not supported\n"); 2307 return; 2308 } 2309 2310 /* 2311 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2312 */ 2313 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2314 ATA_LOG_ZONED_INFORMATION, 2315 identify_buf, 1); 2316 if (!err_mask) { 2317 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2318 2319 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2320 if ((zoned_cap >> 63)) 2321 dev->zac_zoned_cap = (zoned_cap & 1); 2322 opt_open = get_unaligned_le64(&identify_buf[24]); 2323 if ((opt_open >> 63)) 2324 dev->zac_zones_optimal_open = (u32)opt_open; 2325 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2326 if ((opt_nonseq >> 63)) 2327 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2328 max_open = get_unaligned_le64(&identify_buf[40]); 2329 if ((max_open >> 63)) 2330 dev->zac_zones_max_open = (u32)max_open; 2331 } 2332 } 2333 2334 static void ata_dev_config_trusted(struct ata_device *dev) 2335 { 2336 struct ata_port *ap = dev->link->ap; 2337 u64 trusted_cap; 2338 unsigned int err; 2339 2340 if (!ata_id_has_trusted(dev->id)) 2341 return; 2342 2343 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2344 ata_dev_warn(dev, 2345 "Security Log not supported\n"); 2346 return; 2347 } 2348 2349 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2350 ap->sector_buf, 1); 2351 if (err) 2352 return; 2353 2354 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2355 if (!(trusted_cap & (1ULL << 63))) { 2356 ata_dev_dbg(dev, 2357 "Trusted Computing capability qword not valid!\n"); 2358 return; 2359 } 2360 2361 if (trusted_cap & (1 << 0)) 2362 dev->flags |= ATA_DFLAG_TRUSTED; 2363 } 2364 2365 static int ata_dev_config_lba(struct ata_device *dev) 2366 { 2367 const u16 *id = dev->id; 2368 const char *lba_desc; 2369 char ncq_desc[24]; 2370 int ret; 2371 2372 dev->flags |= ATA_DFLAG_LBA; 2373 2374 if (ata_id_has_lba48(id)) { 2375 lba_desc = "LBA48"; 2376 dev->flags |= ATA_DFLAG_LBA48; 2377 if (dev->n_sectors >= (1UL << 28) && 2378 ata_id_has_flush_ext(id)) 2379 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2380 } else { 2381 lba_desc = "LBA"; 2382 } 2383 2384 /* config NCQ */ 2385 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2386 2387 /* print device info to dmesg */ 2388 if (ata_dev_print_info(dev)) 2389 ata_dev_info(dev, 2390 "%llu sectors, multi %u: %s %s\n", 2391 (unsigned long long)dev->n_sectors, 2392 dev->multi_count, lba_desc, ncq_desc); 2393 2394 return ret; 2395 } 2396 2397 static void ata_dev_config_chs(struct ata_device *dev) 2398 { 2399 const u16 *id = dev->id; 2400 2401 if (ata_id_current_chs_valid(id)) { 2402 /* Current CHS translation is valid. */ 2403 dev->cylinders = id[54]; 2404 dev->heads = id[55]; 2405 dev->sectors = id[56]; 2406 } else { 2407 /* Default translation */ 2408 dev->cylinders = id[1]; 2409 dev->heads = id[3]; 2410 dev->sectors = id[6]; 2411 } 2412 2413 /* print device info to dmesg */ 2414 if (ata_dev_print_info(dev)) 2415 ata_dev_info(dev, 2416 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2417 (unsigned long long)dev->n_sectors, 2418 dev->multi_count, dev->cylinders, 2419 dev->heads, dev->sectors); 2420 } 2421 2422 static void ata_dev_config_devslp(struct ata_device *dev) 2423 { 2424 u8 *sata_setting = dev->link->ap->sector_buf; 2425 unsigned int err_mask; 2426 int i, j; 2427 2428 /* 2429 * Check device sleep capability. Get DevSlp timing variables 2430 * from SATA Settings page of Identify Device Data Log. 2431 */ 2432 if (!ata_id_has_devslp(dev->id) || 2433 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2434 return; 2435 2436 err_mask = ata_read_log_page(dev, 2437 ATA_LOG_IDENTIFY_DEVICE, 2438 ATA_LOG_SATA_SETTINGS, 2439 sata_setting, 1); 2440 if (err_mask) 2441 return; 2442 2443 dev->flags |= ATA_DFLAG_DEVSLP; 2444 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2445 j = ATA_LOG_DEVSLP_OFFSET + i; 2446 dev->devslp_timing[i] = sata_setting[j]; 2447 } 2448 } 2449 2450 static void ata_dev_config_cpr(struct ata_device *dev) 2451 { 2452 unsigned int err_mask; 2453 size_t buf_len; 2454 int i, nr_cpr = 0; 2455 struct ata_cpr_log *cpr_log = NULL; 2456 u8 *desc, *buf = NULL; 2457 2458 if (ata_id_major_version(dev->id) < 11 || 2459 !ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES)) 2460 goto out; 2461 2462 /* 2463 * Read the concurrent positioning ranges log (0x47). We can have at 2464 * most 255 32B range descriptors plus a 64B header. 2465 */ 2466 buf_len = (64 + 255 * 32 + 511) & ~511; 2467 buf = kzalloc(buf_len, GFP_KERNEL); 2468 if (!buf) 2469 goto out; 2470 2471 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2472 0, buf, buf_len >> 9); 2473 if (err_mask) 2474 goto out; 2475 2476 nr_cpr = buf[0]; 2477 if (!nr_cpr) 2478 goto out; 2479 2480 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2481 if (!cpr_log) 2482 goto out; 2483 2484 cpr_log->nr_cpr = nr_cpr; 2485 desc = &buf[64]; 2486 for (i = 0; i < nr_cpr; i++, desc += 32) { 2487 cpr_log->cpr[i].num = desc[0]; 2488 cpr_log->cpr[i].num_storage_elements = desc[1]; 2489 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2490 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2491 } 2492 2493 out: 2494 swap(dev->cpr_log, cpr_log); 2495 kfree(cpr_log); 2496 kfree(buf); 2497 } 2498 2499 static void ata_dev_print_features(struct ata_device *dev) 2500 { 2501 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2502 return; 2503 2504 ata_dev_info(dev, 2505 "Features:%s%s%s%s%s%s\n", 2506 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2507 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2508 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2509 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2510 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2511 dev->cpr_log ? " CPR" : ""); 2512 } 2513 2514 /** 2515 * ata_dev_configure - Configure the specified ATA/ATAPI device 2516 * @dev: Target device to configure 2517 * 2518 * Configure @dev according to @dev->id. Generic and low-level 2519 * driver specific fixups are also applied. 2520 * 2521 * LOCKING: 2522 * Kernel thread context (may sleep) 2523 * 2524 * RETURNS: 2525 * 0 on success, -errno otherwise 2526 */ 2527 int ata_dev_configure(struct ata_device *dev) 2528 { 2529 struct ata_port *ap = dev->link->ap; 2530 bool print_info = ata_dev_print_info(dev); 2531 const u16 *id = dev->id; 2532 unsigned long xfer_mask; 2533 unsigned int err_mask; 2534 char revbuf[7]; /* XYZ-99\0 */ 2535 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2536 char modelbuf[ATA_ID_PROD_LEN+1]; 2537 int rc; 2538 2539 if (!ata_dev_enabled(dev)) { 2540 ata_dev_dbg(dev, "no device\n"); 2541 return 0; 2542 } 2543 2544 /* set horkage */ 2545 dev->horkage |= ata_dev_blacklisted(dev); 2546 ata_force_horkage(dev); 2547 2548 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2549 ata_dev_info(dev, "unsupported device, disabling\n"); 2550 ata_dev_disable(dev); 2551 return 0; 2552 } 2553 2554 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2555 dev->class == ATA_DEV_ATAPI) { 2556 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2557 atapi_enabled ? "not supported with this driver" 2558 : "disabled"); 2559 ata_dev_disable(dev); 2560 return 0; 2561 } 2562 2563 rc = ata_do_link_spd_horkage(dev); 2564 if (rc) 2565 return rc; 2566 2567 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2568 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2569 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2570 dev->horkage |= ATA_HORKAGE_NOLPM; 2571 2572 if (ap->flags & ATA_FLAG_NO_LPM) 2573 dev->horkage |= ATA_HORKAGE_NOLPM; 2574 2575 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2576 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2577 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2578 } 2579 2580 /* let ACPI work its magic */ 2581 rc = ata_acpi_on_devcfg(dev); 2582 if (rc) 2583 return rc; 2584 2585 /* massage HPA, do it early as it might change IDENTIFY data */ 2586 rc = ata_hpa_resize(dev); 2587 if (rc) 2588 return rc; 2589 2590 /* print device capabilities */ 2591 ata_dev_dbg(dev, 2592 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2593 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2594 __func__, 2595 id[49], id[82], id[83], id[84], 2596 id[85], id[86], id[87], id[88]); 2597 2598 /* initialize to-be-configured parameters */ 2599 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2600 dev->max_sectors = 0; 2601 dev->cdb_len = 0; 2602 dev->n_sectors = 0; 2603 dev->cylinders = 0; 2604 dev->heads = 0; 2605 dev->sectors = 0; 2606 dev->multi_count = 0; 2607 2608 /* 2609 * common ATA, ATAPI feature tests 2610 */ 2611 2612 /* find max transfer mode; for printk only */ 2613 xfer_mask = ata_id_xfermask(id); 2614 2615 ata_dump_id(dev, id); 2616 2617 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2618 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2619 sizeof(fwrevbuf)); 2620 2621 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2622 sizeof(modelbuf)); 2623 2624 /* ATA-specific feature tests */ 2625 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2626 if (ata_id_is_cfa(id)) { 2627 /* CPRM may make this media unusable */ 2628 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2629 ata_dev_warn(dev, 2630 "supports DRM functions and may not be fully accessible\n"); 2631 snprintf(revbuf, 7, "CFA"); 2632 } else { 2633 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2634 /* Warn the user if the device has TPM extensions */ 2635 if (ata_id_has_tpm(id)) 2636 ata_dev_warn(dev, 2637 "supports DRM functions and may not be fully accessible\n"); 2638 } 2639 2640 dev->n_sectors = ata_id_n_sectors(id); 2641 2642 /* get current R/W Multiple count setting */ 2643 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2644 unsigned int max = dev->id[47] & 0xff; 2645 unsigned int cnt = dev->id[59] & 0xff; 2646 /* only recognize/allow powers of two here */ 2647 if (is_power_of_2(max) && is_power_of_2(cnt)) 2648 if (cnt <= max) 2649 dev->multi_count = cnt; 2650 } 2651 2652 /* print device info to dmesg */ 2653 if (print_info) 2654 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2655 revbuf, modelbuf, fwrevbuf, 2656 ata_mode_string(xfer_mask)); 2657 2658 if (ata_id_has_lba(id)) { 2659 rc = ata_dev_config_lba(dev); 2660 if (rc) 2661 return rc; 2662 } else { 2663 ata_dev_config_chs(dev); 2664 } 2665 2666 ata_dev_config_devslp(dev); 2667 ata_dev_config_sense_reporting(dev); 2668 ata_dev_config_zac(dev); 2669 ata_dev_config_trusted(dev); 2670 ata_dev_config_cpr(dev); 2671 dev->cdb_len = 32; 2672 2673 if (print_info) 2674 ata_dev_print_features(dev); 2675 } 2676 2677 /* ATAPI-specific feature tests */ 2678 else if (dev->class == ATA_DEV_ATAPI) { 2679 const char *cdb_intr_string = ""; 2680 const char *atapi_an_string = ""; 2681 const char *dma_dir_string = ""; 2682 u32 sntf; 2683 2684 rc = atapi_cdb_len(id); 2685 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2686 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 2687 rc = -EINVAL; 2688 goto err_out_nosup; 2689 } 2690 dev->cdb_len = (unsigned int) rc; 2691 2692 /* Enable ATAPI AN if both the host and device have 2693 * the support. If PMP is attached, SNTF is required 2694 * to enable ATAPI AN to discern between PHY status 2695 * changed notifications and ATAPI ANs. 2696 */ 2697 if (atapi_an && 2698 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2699 (!sata_pmp_attached(ap) || 2700 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2701 /* issue SET feature command to turn this on */ 2702 err_mask = ata_dev_set_feature(dev, 2703 SETFEATURES_SATA_ENABLE, SATA_AN); 2704 if (err_mask) 2705 ata_dev_err(dev, 2706 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2707 err_mask); 2708 else { 2709 dev->flags |= ATA_DFLAG_AN; 2710 atapi_an_string = ", ATAPI AN"; 2711 } 2712 } 2713 2714 if (ata_id_cdb_intr(dev->id)) { 2715 dev->flags |= ATA_DFLAG_CDB_INTR; 2716 cdb_intr_string = ", CDB intr"; 2717 } 2718 2719 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2720 dev->flags |= ATA_DFLAG_DMADIR; 2721 dma_dir_string = ", DMADIR"; 2722 } 2723 2724 if (ata_id_has_da(dev->id)) { 2725 dev->flags |= ATA_DFLAG_DA; 2726 zpodd_init(dev); 2727 } 2728 2729 /* print device info to dmesg */ 2730 if (print_info) 2731 ata_dev_info(dev, 2732 "ATAPI: %s, %s, max %s%s%s%s\n", 2733 modelbuf, fwrevbuf, 2734 ata_mode_string(xfer_mask), 2735 cdb_intr_string, atapi_an_string, 2736 dma_dir_string); 2737 } 2738 2739 /* determine max_sectors */ 2740 dev->max_sectors = ATA_MAX_SECTORS; 2741 if (dev->flags & ATA_DFLAG_LBA48) 2742 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2743 2744 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2745 200 sectors */ 2746 if (ata_dev_knobble(dev)) { 2747 if (print_info) 2748 ata_dev_info(dev, "applying bridge limits\n"); 2749 dev->udma_mask &= ATA_UDMA5; 2750 dev->max_sectors = ATA_MAX_SECTORS; 2751 } 2752 2753 if ((dev->class == ATA_DEV_ATAPI) && 2754 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2755 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2756 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2757 } 2758 2759 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2760 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2761 dev->max_sectors); 2762 2763 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2764 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2765 dev->max_sectors); 2766 2767 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2768 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2769 2770 if (ap->ops->dev_config) 2771 ap->ops->dev_config(dev); 2772 2773 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2774 /* Let the user know. We don't want to disallow opens for 2775 rescue purposes, or in case the vendor is just a blithering 2776 idiot. Do this after the dev_config call as some controllers 2777 with buggy firmware may want to avoid reporting false device 2778 bugs */ 2779 2780 if (print_info) { 2781 ata_dev_warn(dev, 2782 "Drive reports diagnostics failure. This may indicate a drive\n"); 2783 ata_dev_warn(dev, 2784 "fault or invalid emulation. Contact drive vendor for information.\n"); 2785 } 2786 } 2787 2788 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2789 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2790 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2791 } 2792 2793 return 0; 2794 2795 err_out_nosup: 2796 return rc; 2797 } 2798 2799 /** 2800 * ata_cable_40wire - return 40 wire cable type 2801 * @ap: port 2802 * 2803 * Helper method for drivers which want to hardwire 40 wire cable 2804 * detection. 2805 */ 2806 2807 int ata_cable_40wire(struct ata_port *ap) 2808 { 2809 return ATA_CBL_PATA40; 2810 } 2811 EXPORT_SYMBOL_GPL(ata_cable_40wire); 2812 2813 /** 2814 * ata_cable_80wire - return 80 wire cable type 2815 * @ap: port 2816 * 2817 * Helper method for drivers which want to hardwire 80 wire cable 2818 * detection. 2819 */ 2820 2821 int ata_cable_80wire(struct ata_port *ap) 2822 { 2823 return ATA_CBL_PATA80; 2824 } 2825 EXPORT_SYMBOL_GPL(ata_cable_80wire); 2826 2827 /** 2828 * ata_cable_unknown - return unknown PATA cable. 2829 * @ap: port 2830 * 2831 * Helper method for drivers which have no PATA cable detection. 2832 */ 2833 2834 int ata_cable_unknown(struct ata_port *ap) 2835 { 2836 return ATA_CBL_PATA_UNK; 2837 } 2838 EXPORT_SYMBOL_GPL(ata_cable_unknown); 2839 2840 /** 2841 * ata_cable_ignore - return ignored PATA cable. 2842 * @ap: port 2843 * 2844 * Helper method for drivers which don't use cable type to limit 2845 * transfer mode. 2846 */ 2847 int ata_cable_ignore(struct ata_port *ap) 2848 { 2849 return ATA_CBL_PATA_IGN; 2850 } 2851 EXPORT_SYMBOL_GPL(ata_cable_ignore); 2852 2853 /** 2854 * ata_cable_sata - return SATA cable type 2855 * @ap: port 2856 * 2857 * Helper method for drivers which have SATA cables 2858 */ 2859 2860 int ata_cable_sata(struct ata_port *ap) 2861 { 2862 return ATA_CBL_SATA; 2863 } 2864 EXPORT_SYMBOL_GPL(ata_cable_sata); 2865 2866 /** 2867 * ata_bus_probe - Reset and probe ATA bus 2868 * @ap: Bus to probe 2869 * 2870 * Master ATA bus probing function. Initiates a hardware-dependent 2871 * bus reset, then attempts to identify any devices found on 2872 * the bus. 2873 * 2874 * LOCKING: 2875 * PCI/etc. bus probe sem. 2876 * 2877 * RETURNS: 2878 * Zero on success, negative errno otherwise. 2879 */ 2880 2881 int ata_bus_probe(struct ata_port *ap) 2882 { 2883 unsigned int classes[ATA_MAX_DEVICES]; 2884 int tries[ATA_MAX_DEVICES]; 2885 int rc; 2886 struct ata_device *dev; 2887 2888 ata_for_each_dev(dev, &ap->link, ALL) 2889 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2890 2891 retry: 2892 ata_for_each_dev(dev, &ap->link, ALL) { 2893 /* If we issue an SRST then an ATA drive (not ATAPI) 2894 * may change configuration and be in PIO0 timing. If 2895 * we do a hard reset (or are coming from power on) 2896 * this is true for ATA or ATAPI. Until we've set a 2897 * suitable controller mode we should not touch the 2898 * bus as we may be talking too fast. 2899 */ 2900 dev->pio_mode = XFER_PIO_0; 2901 dev->dma_mode = 0xff; 2902 2903 /* If the controller has a pio mode setup function 2904 * then use it to set the chipset to rights. Don't 2905 * touch the DMA setup as that will be dealt with when 2906 * configuring devices. 2907 */ 2908 if (ap->ops->set_piomode) 2909 ap->ops->set_piomode(ap, dev); 2910 } 2911 2912 /* reset and determine device classes */ 2913 ap->ops->phy_reset(ap); 2914 2915 ata_for_each_dev(dev, &ap->link, ALL) { 2916 if (dev->class != ATA_DEV_UNKNOWN) 2917 classes[dev->devno] = dev->class; 2918 else 2919 classes[dev->devno] = ATA_DEV_NONE; 2920 2921 dev->class = ATA_DEV_UNKNOWN; 2922 } 2923 2924 /* read IDENTIFY page and configure devices. We have to do the identify 2925 specific sequence bass-ackwards so that PDIAG- is released by 2926 the slave device */ 2927 2928 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2929 if (tries[dev->devno]) 2930 dev->class = classes[dev->devno]; 2931 2932 if (!ata_dev_enabled(dev)) 2933 continue; 2934 2935 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2936 dev->id); 2937 if (rc) 2938 goto fail; 2939 } 2940 2941 /* Now ask for the cable type as PDIAG- should have been released */ 2942 if (ap->ops->cable_detect) 2943 ap->cbl = ap->ops->cable_detect(ap); 2944 2945 /* We may have SATA bridge glue hiding here irrespective of 2946 * the reported cable types and sensed types. When SATA 2947 * drives indicate we have a bridge, we don't know which end 2948 * of the link the bridge is which is a problem. 2949 */ 2950 ata_for_each_dev(dev, &ap->link, ENABLED) 2951 if (ata_id_is_sata(dev->id)) 2952 ap->cbl = ATA_CBL_SATA; 2953 2954 /* After the identify sequence we can now set up the devices. We do 2955 this in the normal order so that the user doesn't get confused */ 2956 2957 ata_for_each_dev(dev, &ap->link, ENABLED) { 2958 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2959 rc = ata_dev_configure(dev); 2960 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2961 if (rc) 2962 goto fail; 2963 } 2964 2965 /* configure transfer mode */ 2966 rc = ata_set_mode(&ap->link, &dev); 2967 if (rc) 2968 goto fail; 2969 2970 ata_for_each_dev(dev, &ap->link, ENABLED) 2971 return 0; 2972 2973 return -ENODEV; 2974 2975 fail: 2976 tries[dev->devno]--; 2977 2978 switch (rc) { 2979 case -EINVAL: 2980 /* eeek, something went very wrong, give up */ 2981 tries[dev->devno] = 0; 2982 break; 2983 2984 case -ENODEV: 2985 /* give it just one more chance */ 2986 tries[dev->devno] = min(tries[dev->devno], 1); 2987 fallthrough; 2988 case -EIO: 2989 if (tries[dev->devno] == 1) { 2990 /* This is the last chance, better to slow 2991 * down than lose it. 2992 */ 2993 sata_down_spd_limit(&ap->link, 0); 2994 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2995 } 2996 } 2997 2998 if (!tries[dev->devno]) 2999 ata_dev_disable(dev); 3000 3001 goto retry; 3002 } 3003 3004 /** 3005 * sata_print_link_status - Print SATA link status 3006 * @link: SATA link to printk link status about 3007 * 3008 * This function prints link speed and status of a SATA link. 3009 * 3010 * LOCKING: 3011 * None. 3012 */ 3013 static void sata_print_link_status(struct ata_link *link) 3014 { 3015 u32 sstatus, scontrol, tmp; 3016 3017 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3018 return; 3019 sata_scr_read(link, SCR_CONTROL, &scontrol); 3020 3021 if (ata_phys_link_online(link)) { 3022 tmp = (sstatus >> 4) & 0xf; 3023 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3024 sata_spd_string(tmp), sstatus, scontrol); 3025 } else { 3026 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3027 sstatus, scontrol); 3028 } 3029 } 3030 3031 /** 3032 * ata_dev_pair - return other device on cable 3033 * @adev: device 3034 * 3035 * Obtain the other device on the same cable, or if none is 3036 * present NULL is returned 3037 */ 3038 3039 struct ata_device *ata_dev_pair(struct ata_device *adev) 3040 { 3041 struct ata_link *link = adev->link; 3042 struct ata_device *pair = &link->device[1 - adev->devno]; 3043 if (!ata_dev_enabled(pair)) 3044 return NULL; 3045 return pair; 3046 } 3047 EXPORT_SYMBOL_GPL(ata_dev_pair); 3048 3049 /** 3050 * sata_down_spd_limit - adjust SATA spd limit downward 3051 * @link: Link to adjust SATA spd limit for 3052 * @spd_limit: Additional limit 3053 * 3054 * Adjust SATA spd limit of @link downward. Note that this 3055 * function only adjusts the limit. The change must be applied 3056 * using sata_set_spd(). 3057 * 3058 * If @spd_limit is non-zero, the speed is limited to equal to or 3059 * lower than @spd_limit if such speed is supported. If 3060 * @spd_limit is slower than any supported speed, only the lowest 3061 * supported speed is allowed. 3062 * 3063 * LOCKING: 3064 * Inherited from caller. 3065 * 3066 * RETURNS: 3067 * 0 on success, negative errno on failure 3068 */ 3069 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3070 { 3071 u32 sstatus, spd, mask; 3072 int rc, bit; 3073 3074 if (!sata_scr_valid(link)) 3075 return -EOPNOTSUPP; 3076 3077 /* If SCR can be read, use it to determine the current SPD. 3078 * If not, use cached value in link->sata_spd. 3079 */ 3080 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3081 if (rc == 0 && ata_sstatus_online(sstatus)) 3082 spd = (sstatus >> 4) & 0xf; 3083 else 3084 spd = link->sata_spd; 3085 3086 mask = link->sata_spd_limit; 3087 if (mask <= 1) 3088 return -EINVAL; 3089 3090 /* unconditionally mask off the highest bit */ 3091 bit = fls(mask) - 1; 3092 mask &= ~(1 << bit); 3093 3094 /* 3095 * Mask off all speeds higher than or equal to the current one. At 3096 * this point, if current SPD is not available and we previously 3097 * recorded the link speed from SStatus, the driver has already 3098 * masked off the highest bit so mask should already be 1 or 0. 3099 * Otherwise, we should not force 1.5Gbps on a link where we have 3100 * not previously recorded speed from SStatus. Just return in this 3101 * case. 3102 */ 3103 if (spd > 1) 3104 mask &= (1 << (spd - 1)) - 1; 3105 else 3106 return -EINVAL; 3107 3108 /* were we already at the bottom? */ 3109 if (!mask) 3110 return -EINVAL; 3111 3112 if (spd_limit) { 3113 if (mask & ((1 << spd_limit) - 1)) 3114 mask &= (1 << spd_limit) - 1; 3115 else { 3116 bit = ffs(mask) - 1; 3117 mask = 1 << bit; 3118 } 3119 } 3120 3121 link->sata_spd_limit = mask; 3122 3123 ata_link_warn(link, "limiting SATA link speed to %s\n", 3124 sata_spd_string(fls(mask))); 3125 3126 return 0; 3127 } 3128 3129 #ifdef CONFIG_ATA_ACPI 3130 /** 3131 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3132 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3133 * @cycle: cycle duration in ns 3134 * 3135 * Return matching xfer mode for @cycle. The returned mode is of 3136 * the transfer type specified by @xfer_shift. If @cycle is too 3137 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3138 * than the fastest known mode, the fasted mode is returned. 3139 * 3140 * LOCKING: 3141 * None. 3142 * 3143 * RETURNS: 3144 * Matching xfer_mode, 0xff if no match found. 3145 */ 3146 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3147 { 3148 u8 base_mode = 0xff, last_mode = 0xff; 3149 const struct ata_xfer_ent *ent; 3150 const struct ata_timing *t; 3151 3152 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3153 if (ent->shift == xfer_shift) 3154 base_mode = ent->base; 3155 3156 for (t = ata_timing_find_mode(base_mode); 3157 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3158 unsigned short this_cycle; 3159 3160 switch (xfer_shift) { 3161 case ATA_SHIFT_PIO: 3162 case ATA_SHIFT_MWDMA: 3163 this_cycle = t->cycle; 3164 break; 3165 case ATA_SHIFT_UDMA: 3166 this_cycle = t->udma; 3167 break; 3168 default: 3169 return 0xff; 3170 } 3171 3172 if (cycle > this_cycle) 3173 break; 3174 3175 last_mode = t->mode; 3176 } 3177 3178 return last_mode; 3179 } 3180 #endif 3181 3182 /** 3183 * ata_down_xfermask_limit - adjust dev xfer masks downward 3184 * @dev: Device to adjust xfer masks 3185 * @sel: ATA_DNXFER_* selector 3186 * 3187 * Adjust xfer masks of @dev downward. Note that this function 3188 * does not apply the change. Invoking ata_set_mode() afterwards 3189 * will apply the limit. 3190 * 3191 * LOCKING: 3192 * Inherited from caller. 3193 * 3194 * RETURNS: 3195 * 0 on success, negative errno on failure 3196 */ 3197 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3198 { 3199 char buf[32]; 3200 unsigned long orig_mask, xfer_mask; 3201 unsigned long pio_mask, mwdma_mask, udma_mask; 3202 int quiet, highbit; 3203 3204 quiet = !!(sel & ATA_DNXFER_QUIET); 3205 sel &= ~ATA_DNXFER_QUIET; 3206 3207 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3208 dev->mwdma_mask, 3209 dev->udma_mask); 3210 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3211 3212 switch (sel) { 3213 case ATA_DNXFER_PIO: 3214 highbit = fls(pio_mask) - 1; 3215 pio_mask &= ~(1 << highbit); 3216 break; 3217 3218 case ATA_DNXFER_DMA: 3219 if (udma_mask) { 3220 highbit = fls(udma_mask) - 1; 3221 udma_mask &= ~(1 << highbit); 3222 if (!udma_mask) 3223 return -ENOENT; 3224 } else if (mwdma_mask) { 3225 highbit = fls(mwdma_mask) - 1; 3226 mwdma_mask &= ~(1 << highbit); 3227 if (!mwdma_mask) 3228 return -ENOENT; 3229 } 3230 break; 3231 3232 case ATA_DNXFER_40C: 3233 udma_mask &= ATA_UDMA_MASK_40C; 3234 break; 3235 3236 case ATA_DNXFER_FORCE_PIO0: 3237 pio_mask &= 1; 3238 fallthrough; 3239 case ATA_DNXFER_FORCE_PIO: 3240 mwdma_mask = 0; 3241 udma_mask = 0; 3242 break; 3243 3244 default: 3245 BUG(); 3246 } 3247 3248 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3249 3250 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3251 return -ENOENT; 3252 3253 if (!quiet) { 3254 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3255 snprintf(buf, sizeof(buf), "%s:%s", 3256 ata_mode_string(xfer_mask), 3257 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3258 else 3259 snprintf(buf, sizeof(buf), "%s", 3260 ata_mode_string(xfer_mask)); 3261 3262 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3263 } 3264 3265 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3266 &dev->udma_mask); 3267 3268 return 0; 3269 } 3270 3271 static int ata_dev_set_mode(struct ata_device *dev) 3272 { 3273 struct ata_port *ap = dev->link->ap; 3274 struct ata_eh_context *ehc = &dev->link->eh_context; 3275 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3276 const char *dev_err_whine = ""; 3277 int ign_dev_err = 0; 3278 unsigned int err_mask = 0; 3279 int rc; 3280 3281 dev->flags &= ~ATA_DFLAG_PIO; 3282 if (dev->xfer_shift == ATA_SHIFT_PIO) 3283 dev->flags |= ATA_DFLAG_PIO; 3284 3285 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3286 dev_err_whine = " (SET_XFERMODE skipped)"; 3287 else { 3288 if (nosetxfer) 3289 ata_dev_warn(dev, 3290 "NOSETXFER but PATA detected - can't " 3291 "skip SETXFER, might malfunction\n"); 3292 err_mask = ata_dev_set_xfermode(dev); 3293 } 3294 3295 if (err_mask & ~AC_ERR_DEV) 3296 goto fail; 3297 3298 /* revalidate */ 3299 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3300 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3301 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3302 if (rc) 3303 return rc; 3304 3305 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3306 /* Old CFA may refuse this command, which is just fine */ 3307 if (ata_id_is_cfa(dev->id)) 3308 ign_dev_err = 1; 3309 /* Catch several broken garbage emulations plus some pre 3310 ATA devices */ 3311 if (ata_id_major_version(dev->id) == 0 && 3312 dev->pio_mode <= XFER_PIO_2) 3313 ign_dev_err = 1; 3314 /* Some very old devices and some bad newer ones fail 3315 any kind of SET_XFERMODE request but support PIO0-2 3316 timings and no IORDY */ 3317 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3318 ign_dev_err = 1; 3319 } 3320 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3321 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3322 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3323 dev->dma_mode == XFER_MW_DMA_0 && 3324 (dev->id[63] >> 8) & 1) 3325 ign_dev_err = 1; 3326 3327 /* if the device is actually configured correctly, ignore dev err */ 3328 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3329 ign_dev_err = 1; 3330 3331 if (err_mask & AC_ERR_DEV) { 3332 if (!ign_dev_err) 3333 goto fail; 3334 else 3335 dev_err_whine = " (device error ignored)"; 3336 } 3337 3338 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3339 dev->xfer_shift, (int)dev->xfer_mode); 3340 3341 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3342 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3343 ata_dev_info(dev, "configured for %s%s\n", 3344 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3345 dev_err_whine); 3346 3347 return 0; 3348 3349 fail: 3350 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3351 return -EIO; 3352 } 3353 3354 /** 3355 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3356 * @link: link on which timings will be programmed 3357 * @r_failed_dev: out parameter for failed device 3358 * 3359 * Standard implementation of the function used to tune and set 3360 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3361 * ata_dev_set_mode() fails, pointer to the failing device is 3362 * returned in @r_failed_dev. 3363 * 3364 * LOCKING: 3365 * PCI/etc. bus probe sem. 3366 * 3367 * RETURNS: 3368 * 0 on success, negative errno otherwise 3369 */ 3370 3371 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3372 { 3373 struct ata_port *ap = link->ap; 3374 struct ata_device *dev; 3375 int rc = 0, used_dma = 0, found = 0; 3376 3377 /* step 1: calculate xfer_mask */ 3378 ata_for_each_dev(dev, link, ENABLED) { 3379 unsigned long pio_mask, dma_mask; 3380 unsigned int mode_mask; 3381 3382 mode_mask = ATA_DMA_MASK_ATA; 3383 if (dev->class == ATA_DEV_ATAPI) 3384 mode_mask = ATA_DMA_MASK_ATAPI; 3385 else if (ata_id_is_cfa(dev->id)) 3386 mode_mask = ATA_DMA_MASK_CFA; 3387 3388 ata_dev_xfermask(dev); 3389 ata_force_xfermask(dev); 3390 3391 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3392 3393 if (libata_dma_mask & mode_mask) 3394 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3395 dev->udma_mask); 3396 else 3397 dma_mask = 0; 3398 3399 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3400 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3401 3402 found = 1; 3403 if (ata_dma_enabled(dev)) 3404 used_dma = 1; 3405 } 3406 if (!found) 3407 goto out; 3408 3409 /* step 2: always set host PIO timings */ 3410 ata_for_each_dev(dev, link, ENABLED) { 3411 if (dev->pio_mode == 0xff) { 3412 ata_dev_warn(dev, "no PIO support\n"); 3413 rc = -EINVAL; 3414 goto out; 3415 } 3416 3417 dev->xfer_mode = dev->pio_mode; 3418 dev->xfer_shift = ATA_SHIFT_PIO; 3419 if (ap->ops->set_piomode) 3420 ap->ops->set_piomode(ap, dev); 3421 } 3422 3423 /* step 3: set host DMA timings */ 3424 ata_for_each_dev(dev, link, ENABLED) { 3425 if (!ata_dma_enabled(dev)) 3426 continue; 3427 3428 dev->xfer_mode = dev->dma_mode; 3429 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3430 if (ap->ops->set_dmamode) 3431 ap->ops->set_dmamode(ap, dev); 3432 } 3433 3434 /* step 4: update devices' xfer mode */ 3435 ata_for_each_dev(dev, link, ENABLED) { 3436 rc = ata_dev_set_mode(dev); 3437 if (rc) 3438 goto out; 3439 } 3440 3441 /* Record simplex status. If we selected DMA then the other 3442 * host channels are not permitted to do so. 3443 */ 3444 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3445 ap->host->simplex_claimed = ap; 3446 3447 out: 3448 if (rc) 3449 *r_failed_dev = dev; 3450 return rc; 3451 } 3452 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3453 3454 /** 3455 * ata_wait_ready - wait for link to become ready 3456 * @link: link to be waited on 3457 * @deadline: deadline jiffies for the operation 3458 * @check_ready: callback to check link readiness 3459 * 3460 * Wait for @link to become ready. @check_ready should return 3461 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3462 * link doesn't seem to be occupied, other errno for other error 3463 * conditions. 3464 * 3465 * Transient -ENODEV conditions are allowed for 3466 * ATA_TMOUT_FF_WAIT. 3467 * 3468 * LOCKING: 3469 * EH context. 3470 * 3471 * RETURNS: 3472 * 0 if @link is ready before @deadline; otherwise, -errno. 3473 */ 3474 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3475 int (*check_ready)(struct ata_link *link)) 3476 { 3477 unsigned long start = jiffies; 3478 unsigned long nodev_deadline; 3479 int warned = 0; 3480 3481 /* choose which 0xff timeout to use, read comment in libata.h */ 3482 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3483 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3484 else 3485 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3486 3487 /* Slave readiness can't be tested separately from master. On 3488 * M/S emulation configuration, this function should be called 3489 * only on the master and it will handle both master and slave. 3490 */ 3491 WARN_ON(link == link->ap->slave_link); 3492 3493 if (time_after(nodev_deadline, deadline)) 3494 nodev_deadline = deadline; 3495 3496 while (1) { 3497 unsigned long now = jiffies; 3498 int ready, tmp; 3499 3500 ready = tmp = check_ready(link); 3501 if (ready > 0) 3502 return 0; 3503 3504 /* 3505 * -ENODEV could be transient. Ignore -ENODEV if link 3506 * is online. Also, some SATA devices take a long 3507 * time to clear 0xff after reset. Wait for 3508 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3509 * offline. 3510 * 3511 * Note that some PATA controllers (pata_ali) explode 3512 * if status register is read more than once when 3513 * there's no device attached. 3514 */ 3515 if (ready == -ENODEV) { 3516 if (ata_link_online(link)) 3517 ready = 0; 3518 else if ((link->ap->flags & ATA_FLAG_SATA) && 3519 !ata_link_offline(link) && 3520 time_before(now, nodev_deadline)) 3521 ready = 0; 3522 } 3523 3524 if (ready) 3525 return ready; 3526 if (time_after(now, deadline)) 3527 return -EBUSY; 3528 3529 if (!warned && time_after(now, start + 5 * HZ) && 3530 (deadline - now > 3 * HZ)) { 3531 ata_link_warn(link, 3532 "link is slow to respond, please be patient " 3533 "(ready=%d)\n", tmp); 3534 warned = 1; 3535 } 3536 3537 ata_msleep(link->ap, 50); 3538 } 3539 } 3540 3541 /** 3542 * ata_wait_after_reset - wait for link to become ready after reset 3543 * @link: link to be waited on 3544 * @deadline: deadline jiffies for the operation 3545 * @check_ready: callback to check link readiness 3546 * 3547 * Wait for @link to become ready after reset. 3548 * 3549 * LOCKING: 3550 * EH context. 3551 * 3552 * RETURNS: 3553 * 0 if @link is ready before @deadline; otherwise, -errno. 3554 */ 3555 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3556 int (*check_ready)(struct ata_link *link)) 3557 { 3558 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3559 3560 return ata_wait_ready(link, deadline, check_ready); 3561 } 3562 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3563 3564 /** 3565 * ata_std_prereset - prepare for reset 3566 * @link: ATA link to be reset 3567 * @deadline: deadline jiffies for the operation 3568 * 3569 * @link is about to be reset. Initialize it. Failure from 3570 * prereset makes libata abort whole reset sequence and give up 3571 * that port, so prereset should be best-effort. It does its 3572 * best to prepare for reset sequence but if things go wrong, it 3573 * should just whine, not fail. 3574 * 3575 * LOCKING: 3576 * Kernel thread context (may sleep) 3577 * 3578 * RETURNS: 3579 * Always 0. 3580 */ 3581 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3582 { 3583 struct ata_port *ap = link->ap; 3584 struct ata_eh_context *ehc = &link->eh_context; 3585 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3586 int rc; 3587 3588 /* if we're about to do hardreset, nothing more to do */ 3589 if (ehc->i.action & ATA_EH_HARDRESET) 3590 return 0; 3591 3592 /* if SATA, resume link */ 3593 if (ap->flags & ATA_FLAG_SATA) { 3594 rc = sata_link_resume(link, timing, deadline); 3595 /* whine about phy resume failure but proceed */ 3596 if (rc && rc != -EOPNOTSUPP) 3597 ata_link_warn(link, 3598 "failed to resume link for reset (errno=%d)\n", 3599 rc); 3600 } 3601 3602 /* no point in trying softreset on offline link */ 3603 if (ata_phys_link_offline(link)) 3604 ehc->i.action &= ~ATA_EH_SOFTRESET; 3605 3606 return 0; 3607 } 3608 EXPORT_SYMBOL_GPL(ata_std_prereset); 3609 3610 /** 3611 * sata_std_hardreset - COMRESET w/o waiting or classification 3612 * @link: link to reset 3613 * @class: resulting class of attached device 3614 * @deadline: deadline jiffies for the operation 3615 * 3616 * Standard SATA COMRESET w/o waiting or classification. 3617 * 3618 * LOCKING: 3619 * Kernel thread context (may sleep) 3620 * 3621 * RETURNS: 3622 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3623 */ 3624 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3625 unsigned long deadline) 3626 { 3627 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3628 bool online; 3629 int rc; 3630 3631 /* do hardreset */ 3632 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3633 return online ? -EAGAIN : rc; 3634 } 3635 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3636 3637 /** 3638 * ata_std_postreset - standard postreset callback 3639 * @link: the target ata_link 3640 * @classes: classes of attached devices 3641 * 3642 * This function is invoked after a successful reset. Note that 3643 * the device might have been reset more than once using 3644 * different reset methods before postreset is invoked. 3645 * 3646 * LOCKING: 3647 * Kernel thread context (may sleep) 3648 */ 3649 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3650 { 3651 u32 serror; 3652 3653 /* reset complete, clear SError */ 3654 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3655 sata_scr_write(link, SCR_ERROR, serror); 3656 3657 /* print link status */ 3658 sata_print_link_status(link); 3659 } 3660 EXPORT_SYMBOL_GPL(ata_std_postreset); 3661 3662 /** 3663 * ata_dev_same_device - Determine whether new ID matches configured device 3664 * @dev: device to compare against 3665 * @new_class: class of the new device 3666 * @new_id: IDENTIFY page of the new device 3667 * 3668 * Compare @new_class and @new_id against @dev and determine 3669 * whether @dev is the device indicated by @new_class and 3670 * @new_id. 3671 * 3672 * LOCKING: 3673 * None. 3674 * 3675 * RETURNS: 3676 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3677 */ 3678 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3679 const u16 *new_id) 3680 { 3681 const u16 *old_id = dev->id; 3682 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3683 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3684 3685 if (dev->class != new_class) { 3686 ata_dev_info(dev, "class mismatch %d != %d\n", 3687 dev->class, new_class); 3688 return 0; 3689 } 3690 3691 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3692 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3693 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3694 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3695 3696 if (strcmp(model[0], model[1])) { 3697 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3698 model[0], model[1]); 3699 return 0; 3700 } 3701 3702 if (strcmp(serial[0], serial[1])) { 3703 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3704 serial[0], serial[1]); 3705 return 0; 3706 } 3707 3708 return 1; 3709 } 3710 3711 /** 3712 * ata_dev_reread_id - Re-read IDENTIFY data 3713 * @dev: target ATA device 3714 * @readid_flags: read ID flags 3715 * 3716 * Re-read IDENTIFY page and make sure @dev is still attached to 3717 * the port. 3718 * 3719 * LOCKING: 3720 * Kernel thread context (may sleep) 3721 * 3722 * RETURNS: 3723 * 0 on success, negative errno otherwise 3724 */ 3725 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3726 { 3727 unsigned int class = dev->class; 3728 u16 *id = (void *)dev->link->ap->sector_buf; 3729 int rc; 3730 3731 /* read ID data */ 3732 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3733 if (rc) 3734 return rc; 3735 3736 /* is the device still there? */ 3737 if (!ata_dev_same_device(dev, class, id)) 3738 return -ENODEV; 3739 3740 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3741 return 0; 3742 } 3743 3744 /** 3745 * ata_dev_revalidate - Revalidate ATA device 3746 * @dev: device to revalidate 3747 * @new_class: new class code 3748 * @readid_flags: read ID flags 3749 * 3750 * Re-read IDENTIFY page, make sure @dev is still attached to the 3751 * port and reconfigure it according to the new IDENTIFY page. 3752 * 3753 * LOCKING: 3754 * Kernel thread context (may sleep) 3755 * 3756 * RETURNS: 3757 * 0 on success, negative errno otherwise 3758 */ 3759 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3760 unsigned int readid_flags) 3761 { 3762 u64 n_sectors = dev->n_sectors; 3763 u64 n_native_sectors = dev->n_native_sectors; 3764 int rc; 3765 3766 if (!ata_dev_enabled(dev)) 3767 return -ENODEV; 3768 3769 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3770 if (ata_class_enabled(new_class) && 3771 new_class != ATA_DEV_ATA && 3772 new_class != ATA_DEV_ATAPI && 3773 new_class != ATA_DEV_ZAC && 3774 new_class != ATA_DEV_SEMB) { 3775 ata_dev_info(dev, "class mismatch %u != %u\n", 3776 dev->class, new_class); 3777 rc = -ENODEV; 3778 goto fail; 3779 } 3780 3781 /* re-read ID */ 3782 rc = ata_dev_reread_id(dev, readid_flags); 3783 if (rc) 3784 goto fail; 3785 3786 /* configure device according to the new ID */ 3787 rc = ata_dev_configure(dev); 3788 if (rc) 3789 goto fail; 3790 3791 /* verify n_sectors hasn't changed */ 3792 if (dev->class != ATA_DEV_ATA || !n_sectors || 3793 dev->n_sectors == n_sectors) 3794 return 0; 3795 3796 /* n_sectors has changed */ 3797 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3798 (unsigned long long)n_sectors, 3799 (unsigned long long)dev->n_sectors); 3800 3801 /* 3802 * Something could have caused HPA to be unlocked 3803 * involuntarily. If n_native_sectors hasn't changed and the 3804 * new size matches it, keep the device. 3805 */ 3806 if (dev->n_native_sectors == n_native_sectors && 3807 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3808 ata_dev_warn(dev, 3809 "new n_sectors matches native, probably " 3810 "late HPA unlock, n_sectors updated\n"); 3811 /* use the larger n_sectors */ 3812 return 0; 3813 } 3814 3815 /* 3816 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3817 * unlocking HPA in those cases. 3818 * 3819 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3820 */ 3821 if (dev->n_native_sectors == n_native_sectors && 3822 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3823 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 3824 ata_dev_warn(dev, 3825 "old n_sectors matches native, probably " 3826 "late HPA lock, will try to unlock HPA\n"); 3827 /* try unlocking HPA */ 3828 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3829 rc = -EIO; 3830 } else 3831 rc = -ENODEV; 3832 3833 /* restore original n_[native_]sectors and fail */ 3834 dev->n_native_sectors = n_native_sectors; 3835 dev->n_sectors = n_sectors; 3836 fail: 3837 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3838 return rc; 3839 } 3840 3841 struct ata_blacklist_entry { 3842 const char *model_num; 3843 const char *model_rev; 3844 unsigned long horkage; 3845 }; 3846 3847 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3848 /* Devices with DMA related problems under Linux */ 3849 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3850 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3851 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3852 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3853 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3854 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3855 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3856 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3857 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3858 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 3859 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3860 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3861 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3862 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3863 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3864 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 3865 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3866 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3867 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3868 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3869 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3870 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3871 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3872 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3873 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3874 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3875 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3876 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3877 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 3878 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 3879 /* Odd clown on sil3726/4726 PMPs */ 3880 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3881 /* Similar story with ASMedia 1092 */ 3882 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE }, 3883 3884 /* Weird ATAPI devices */ 3885 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3886 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 3887 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3888 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3889 3890 /* 3891 * Causes silent data corruption with higher max sects. 3892 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 3893 */ 3894 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 3895 3896 /* 3897 * These devices time out with higher max sects. 3898 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 3899 */ 3900 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3901 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3902 3903 /* Devices we expect to fail diagnostics */ 3904 3905 /* Devices where NCQ should be avoided */ 3906 /* NCQ is slow */ 3907 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3908 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ }, 3909 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3910 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3911 /* NCQ is broken */ 3912 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3913 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3914 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3915 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3916 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 3917 3918 /* Seagate NCQ + FLUSH CACHE firmware bug */ 3919 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3920 ATA_HORKAGE_FIRMWARE_WARN }, 3921 3922 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3923 ATA_HORKAGE_FIRMWARE_WARN }, 3924 3925 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3926 ATA_HORKAGE_FIRMWARE_WARN }, 3927 3928 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3929 ATA_HORKAGE_FIRMWARE_WARN }, 3930 3931 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 3932 the ST disks also have LPM issues */ 3933 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 3934 ATA_HORKAGE_NOLPM }, 3935 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 3936 3937 /* Blacklist entries taken from Silicon Image 3124/3132 3938 Windows driver .inf file - also several Linux problem reports */ 3939 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ }, 3940 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ }, 3941 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ }, 3942 3943 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 3944 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ }, 3945 3946 /* Sandisk SD7/8/9s lock up hard on large trims */ 3947 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M }, 3948 3949 /* devices which puke on READ_NATIVE_MAX */ 3950 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA }, 3951 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3952 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3953 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3954 3955 /* this one allows HPA unlocking but fails IOs on the area */ 3956 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 3957 3958 /* Devices which report 1 sector over size HPA */ 3959 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE }, 3960 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE }, 3961 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE }, 3962 3963 /* Devices which get the IVB wrong */ 3964 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB }, 3965 /* Maybe we should just blacklist TSSTcorp... */ 3966 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB }, 3967 3968 /* Devices that do not need bridging limits applied */ 3969 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK }, 3970 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK }, 3971 3972 /* Devices which aren't very happy with higher link speeds */ 3973 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS }, 3974 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS }, 3975 3976 /* 3977 * Devices which choke on SETXFER. Applies only if both the 3978 * device and controller are SATA. 3979 */ 3980 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 3981 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 3982 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 3983 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 3984 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 3985 3986 /* Crucial BX100 SSD 500GB has broken LPM support */ 3987 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 3988 3989 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 3990 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3991 ATA_HORKAGE_ZERO_AFTER_TRIM | 3992 ATA_HORKAGE_NOLPM }, 3993 /* 512GB MX100 with newer firmware has only LPM issues */ 3994 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 3995 ATA_HORKAGE_NOLPM }, 3996 3997 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 3998 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 3999 ATA_HORKAGE_ZERO_AFTER_TRIM | 4000 ATA_HORKAGE_NOLPM }, 4001 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4002 ATA_HORKAGE_ZERO_AFTER_TRIM | 4003 ATA_HORKAGE_NOLPM }, 4004 4005 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4006 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM }, 4007 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM }, 4008 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM }, 4009 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM }, 4010 4011 /* devices that don't properly handle queued TRIM commands */ 4012 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4013 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4014 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4015 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4016 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4017 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4018 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4019 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4020 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4021 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4022 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4023 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4024 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4025 ATA_HORKAGE_NO_DMA_LOG | 4026 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4027 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4028 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4029 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4030 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4031 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4032 ATA_HORKAGE_ZERO_AFTER_TRIM | 4033 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4034 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4035 ATA_HORKAGE_ZERO_AFTER_TRIM | 4036 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4037 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4038 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4039 4040 /* devices that don't properly handle TRIM commands */ 4041 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM }, 4042 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM }, 4043 4044 /* 4045 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4046 * (Return Zero After Trim) flags in the ATA Command Set are 4047 * unreliable in the sense that they only define what happens if 4048 * the device successfully executed the DSM TRIM command. TRIM 4049 * is only advisory, however, and the device is free to silently 4050 * ignore all or parts of the request. 4051 * 4052 * Whitelist drives that are known to reliably return zeroes 4053 * after TRIM. 4054 */ 4055 4056 /* 4057 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4058 * that model before whitelisting all other intel SSDs. 4059 */ 4060 { "INTEL*SSDSC2MH*", NULL, 0 }, 4061 4062 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4063 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4064 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4065 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4066 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4067 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4068 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4069 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4070 4071 /* 4072 * Some WD SATA-I drives spin up and down erratically when the link 4073 * is put into the slumber mode. We don't have full list of the 4074 * affected devices. Disable LPM if the device matches one of the 4075 * known prefixes and is SATA-1. As a side effect LPM partial is 4076 * lost too. 4077 * 4078 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4079 */ 4080 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4081 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4082 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4083 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4084 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4085 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4086 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4087 4088 /* 4089 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4090 * log page is accessed. Ensure we never ask for this log page with 4091 * these devices. 4092 */ 4093 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR }, 4094 4095 /* End Marker */ 4096 { } 4097 }; 4098 4099 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4100 { 4101 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4102 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4103 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4104 4105 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4106 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4107 4108 while (ad->model_num) { 4109 if (glob_match(ad->model_num, model_num)) { 4110 if (ad->model_rev == NULL) 4111 return ad->horkage; 4112 if (glob_match(ad->model_rev, model_rev)) 4113 return ad->horkage; 4114 } 4115 ad++; 4116 } 4117 return 0; 4118 } 4119 4120 static int ata_dma_blacklisted(const struct ata_device *dev) 4121 { 4122 /* We don't support polling DMA. 4123 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4124 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4125 */ 4126 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4127 (dev->flags & ATA_DFLAG_CDB_INTR)) 4128 return 1; 4129 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4130 } 4131 4132 /** 4133 * ata_is_40wire - check drive side detection 4134 * @dev: device 4135 * 4136 * Perform drive side detection decoding, allowing for device vendors 4137 * who can't follow the documentation. 4138 */ 4139 4140 static int ata_is_40wire(struct ata_device *dev) 4141 { 4142 if (dev->horkage & ATA_HORKAGE_IVB) 4143 return ata_drive_40wire_relaxed(dev->id); 4144 return ata_drive_40wire(dev->id); 4145 } 4146 4147 /** 4148 * cable_is_40wire - 40/80/SATA decider 4149 * @ap: port to consider 4150 * 4151 * This function encapsulates the policy for speed management 4152 * in one place. At the moment we don't cache the result but 4153 * there is a good case for setting ap->cbl to the result when 4154 * we are called with unknown cables (and figuring out if it 4155 * impacts hotplug at all). 4156 * 4157 * Return 1 if the cable appears to be 40 wire. 4158 */ 4159 4160 static int cable_is_40wire(struct ata_port *ap) 4161 { 4162 struct ata_link *link; 4163 struct ata_device *dev; 4164 4165 /* If the controller thinks we are 40 wire, we are. */ 4166 if (ap->cbl == ATA_CBL_PATA40) 4167 return 1; 4168 4169 /* If the controller thinks we are 80 wire, we are. */ 4170 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4171 return 0; 4172 4173 /* If the system is known to be 40 wire short cable (eg 4174 * laptop), then we allow 80 wire modes even if the drive 4175 * isn't sure. 4176 */ 4177 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4178 return 0; 4179 4180 /* If the controller doesn't know, we scan. 4181 * 4182 * Note: We look for all 40 wire detects at this point. Any 4183 * 80 wire detect is taken to be 80 wire cable because 4184 * - in many setups only the one drive (slave if present) will 4185 * give a valid detect 4186 * - if you have a non detect capable drive you don't want it 4187 * to colour the choice 4188 */ 4189 ata_for_each_link(link, ap, EDGE) { 4190 ata_for_each_dev(dev, link, ENABLED) { 4191 if (!ata_is_40wire(dev)) 4192 return 0; 4193 } 4194 } 4195 return 1; 4196 } 4197 4198 /** 4199 * ata_dev_xfermask - Compute supported xfermask of the given device 4200 * @dev: Device to compute xfermask for 4201 * 4202 * Compute supported xfermask of @dev and store it in 4203 * dev->*_mask. This function is responsible for applying all 4204 * known limits including host controller limits, device 4205 * blacklist, etc... 4206 * 4207 * LOCKING: 4208 * None. 4209 */ 4210 static void ata_dev_xfermask(struct ata_device *dev) 4211 { 4212 struct ata_link *link = dev->link; 4213 struct ata_port *ap = link->ap; 4214 struct ata_host *host = ap->host; 4215 unsigned long xfer_mask; 4216 4217 /* controller modes available */ 4218 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4219 ap->mwdma_mask, ap->udma_mask); 4220 4221 /* drive modes available */ 4222 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4223 dev->mwdma_mask, dev->udma_mask); 4224 xfer_mask &= ata_id_xfermask(dev->id); 4225 4226 /* 4227 * CFA Advanced TrueIDE timings are not allowed on a shared 4228 * cable 4229 */ 4230 if (ata_dev_pair(dev)) { 4231 /* No PIO5 or PIO6 */ 4232 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4233 /* No MWDMA3 or MWDMA 4 */ 4234 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4235 } 4236 4237 if (ata_dma_blacklisted(dev)) { 4238 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4239 ata_dev_warn(dev, 4240 "device is on DMA blacklist, disabling DMA\n"); 4241 } 4242 4243 if ((host->flags & ATA_HOST_SIMPLEX) && 4244 host->simplex_claimed && host->simplex_claimed != ap) { 4245 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4246 ata_dev_warn(dev, 4247 "simplex DMA is claimed by other device, disabling DMA\n"); 4248 } 4249 4250 if (ap->flags & ATA_FLAG_NO_IORDY) 4251 xfer_mask &= ata_pio_mask_no_iordy(dev); 4252 4253 if (ap->ops->mode_filter) 4254 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4255 4256 /* Apply cable rule here. Don't apply it early because when 4257 * we handle hot plug the cable type can itself change. 4258 * Check this last so that we know if the transfer rate was 4259 * solely limited by the cable. 4260 * Unknown or 80 wire cables reported host side are checked 4261 * drive side as well. Cases where we know a 40wire cable 4262 * is used safely for 80 are not checked here. 4263 */ 4264 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4265 /* UDMA/44 or higher would be available */ 4266 if (cable_is_40wire(ap)) { 4267 ata_dev_warn(dev, 4268 "limited to UDMA/33 due to 40-wire cable\n"); 4269 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4270 } 4271 4272 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4273 &dev->mwdma_mask, &dev->udma_mask); 4274 } 4275 4276 /** 4277 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4278 * @dev: Device to which command will be sent 4279 * 4280 * Issue SET FEATURES - XFER MODE command to device @dev 4281 * on port @ap. 4282 * 4283 * LOCKING: 4284 * PCI/etc. bus probe sem. 4285 * 4286 * RETURNS: 4287 * 0 on success, AC_ERR_* mask otherwise. 4288 */ 4289 4290 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4291 { 4292 struct ata_taskfile tf; 4293 unsigned int err_mask; 4294 4295 /* set up set-features taskfile */ 4296 ata_dev_dbg(dev, "set features - xfer mode\n"); 4297 4298 /* Some controllers and ATAPI devices show flaky interrupt 4299 * behavior after setting xfer mode. Use polling instead. 4300 */ 4301 ata_tf_init(dev, &tf); 4302 tf.command = ATA_CMD_SET_FEATURES; 4303 tf.feature = SETFEATURES_XFER; 4304 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4305 tf.protocol = ATA_PROT_NODATA; 4306 /* If we are using IORDY we must send the mode setting command */ 4307 if (ata_pio_need_iordy(dev)) 4308 tf.nsect = dev->xfer_mode; 4309 /* If the device has IORDY and the controller does not - turn it off */ 4310 else if (ata_id_has_iordy(dev->id)) 4311 tf.nsect = 0x01; 4312 else /* In the ancient relic department - skip all of this */ 4313 return 0; 4314 4315 /* On some disks, this command causes spin-up, so we need longer timeout */ 4316 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4317 4318 return err_mask; 4319 } 4320 4321 /** 4322 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4323 * @dev: Device to which command will be sent 4324 * @enable: Whether to enable or disable the feature 4325 * @feature: The sector count represents the feature to set 4326 * 4327 * Issue SET FEATURES - SATA FEATURES command to device @dev 4328 * on port @ap with sector count 4329 * 4330 * LOCKING: 4331 * PCI/etc. bus probe sem. 4332 * 4333 * RETURNS: 4334 * 0 on success, AC_ERR_* mask otherwise. 4335 */ 4336 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4337 { 4338 struct ata_taskfile tf; 4339 unsigned int err_mask; 4340 unsigned long timeout = 0; 4341 4342 /* set up set-features taskfile */ 4343 ata_dev_dbg(dev, "set features - SATA features\n"); 4344 4345 ata_tf_init(dev, &tf); 4346 tf.command = ATA_CMD_SET_FEATURES; 4347 tf.feature = enable; 4348 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4349 tf.protocol = ATA_PROT_NODATA; 4350 tf.nsect = feature; 4351 4352 if (enable == SETFEATURES_SPINUP) 4353 timeout = ata_probe_timeout ? 4354 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4355 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4356 4357 return err_mask; 4358 } 4359 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4360 4361 /** 4362 * ata_dev_init_params - Issue INIT DEV PARAMS command 4363 * @dev: Device to which command will be sent 4364 * @heads: Number of heads (taskfile parameter) 4365 * @sectors: Number of sectors (taskfile parameter) 4366 * 4367 * LOCKING: 4368 * Kernel thread context (may sleep) 4369 * 4370 * RETURNS: 4371 * 0 on success, AC_ERR_* mask otherwise. 4372 */ 4373 static unsigned int ata_dev_init_params(struct ata_device *dev, 4374 u16 heads, u16 sectors) 4375 { 4376 struct ata_taskfile tf; 4377 unsigned int err_mask; 4378 4379 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4380 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4381 return AC_ERR_INVALID; 4382 4383 /* set up init dev params taskfile */ 4384 ata_dev_dbg(dev, "init dev params \n"); 4385 4386 ata_tf_init(dev, &tf); 4387 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4388 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4389 tf.protocol = ATA_PROT_NODATA; 4390 tf.nsect = sectors; 4391 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4392 4393 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4394 /* A clean abort indicates an original or just out of spec drive 4395 and we should continue as we issue the setup based on the 4396 drive reported working geometry */ 4397 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 4398 err_mask = 0; 4399 4400 return err_mask; 4401 } 4402 4403 /** 4404 * atapi_check_dma - Check whether ATAPI DMA can be supported 4405 * @qc: Metadata associated with taskfile to check 4406 * 4407 * Allow low-level driver to filter ATA PACKET commands, returning 4408 * a status indicating whether or not it is OK to use DMA for the 4409 * supplied PACKET command. 4410 * 4411 * LOCKING: 4412 * spin_lock_irqsave(host lock) 4413 * 4414 * RETURNS: 0 when ATAPI DMA can be used 4415 * nonzero otherwise 4416 */ 4417 int atapi_check_dma(struct ata_queued_cmd *qc) 4418 { 4419 struct ata_port *ap = qc->ap; 4420 4421 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4422 * few ATAPI devices choke on such DMA requests. 4423 */ 4424 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4425 unlikely(qc->nbytes & 15)) 4426 return 1; 4427 4428 if (ap->ops->check_atapi_dma) 4429 return ap->ops->check_atapi_dma(qc); 4430 4431 return 0; 4432 } 4433 4434 /** 4435 * ata_std_qc_defer - Check whether a qc needs to be deferred 4436 * @qc: ATA command in question 4437 * 4438 * Non-NCQ commands cannot run with any other command, NCQ or 4439 * not. As upper layer only knows the queue depth, we are 4440 * responsible for maintaining exclusion. This function checks 4441 * whether a new command @qc can be issued. 4442 * 4443 * LOCKING: 4444 * spin_lock_irqsave(host lock) 4445 * 4446 * RETURNS: 4447 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4448 */ 4449 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4450 { 4451 struct ata_link *link = qc->dev->link; 4452 4453 if (ata_is_ncq(qc->tf.protocol)) { 4454 if (!ata_tag_valid(link->active_tag)) 4455 return 0; 4456 } else { 4457 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4458 return 0; 4459 } 4460 4461 return ATA_DEFER_LINK; 4462 } 4463 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4464 4465 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4466 { 4467 return AC_ERR_OK; 4468 } 4469 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4470 4471 /** 4472 * ata_sg_init - Associate command with scatter-gather table. 4473 * @qc: Command to be associated 4474 * @sg: Scatter-gather table. 4475 * @n_elem: Number of elements in s/g table. 4476 * 4477 * Initialize the data-related elements of queued_cmd @qc 4478 * to point to a scatter-gather table @sg, containing @n_elem 4479 * elements. 4480 * 4481 * LOCKING: 4482 * spin_lock_irqsave(host lock) 4483 */ 4484 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4485 unsigned int n_elem) 4486 { 4487 qc->sg = sg; 4488 qc->n_elem = n_elem; 4489 qc->cursg = qc->sg; 4490 } 4491 4492 #ifdef CONFIG_HAS_DMA 4493 4494 /** 4495 * ata_sg_clean - Unmap DMA memory associated with command 4496 * @qc: Command containing DMA memory to be released 4497 * 4498 * Unmap all mapped DMA memory associated with this command. 4499 * 4500 * LOCKING: 4501 * spin_lock_irqsave(host lock) 4502 */ 4503 static void ata_sg_clean(struct ata_queued_cmd *qc) 4504 { 4505 struct ata_port *ap = qc->ap; 4506 struct scatterlist *sg = qc->sg; 4507 int dir = qc->dma_dir; 4508 4509 WARN_ON_ONCE(sg == NULL); 4510 4511 if (qc->n_elem) 4512 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4513 4514 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4515 qc->sg = NULL; 4516 } 4517 4518 /** 4519 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4520 * @qc: Command with scatter-gather table to be mapped. 4521 * 4522 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4523 * 4524 * LOCKING: 4525 * spin_lock_irqsave(host lock) 4526 * 4527 * RETURNS: 4528 * Zero on success, negative on error. 4529 * 4530 */ 4531 static int ata_sg_setup(struct ata_queued_cmd *qc) 4532 { 4533 struct ata_port *ap = qc->ap; 4534 unsigned int n_elem; 4535 4536 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4537 if (n_elem < 1) 4538 return -1; 4539 4540 qc->orig_n_elem = qc->n_elem; 4541 qc->n_elem = n_elem; 4542 qc->flags |= ATA_QCFLAG_DMAMAP; 4543 4544 return 0; 4545 } 4546 4547 #else /* !CONFIG_HAS_DMA */ 4548 4549 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4550 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4551 4552 #endif /* !CONFIG_HAS_DMA */ 4553 4554 /** 4555 * swap_buf_le16 - swap halves of 16-bit words in place 4556 * @buf: Buffer to swap 4557 * @buf_words: Number of 16-bit words in buffer. 4558 * 4559 * Swap halves of 16-bit words if needed to convert from 4560 * little-endian byte order to native cpu byte order, or 4561 * vice-versa. 4562 * 4563 * LOCKING: 4564 * Inherited from caller. 4565 */ 4566 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4567 { 4568 #ifdef __BIG_ENDIAN 4569 unsigned int i; 4570 4571 for (i = 0; i < buf_words; i++) 4572 buf[i] = le16_to_cpu(buf[i]); 4573 #endif /* __BIG_ENDIAN */ 4574 } 4575 4576 /** 4577 * ata_qc_free - free unused ata_queued_cmd 4578 * @qc: Command to complete 4579 * 4580 * Designed to free unused ata_queued_cmd object 4581 * in case something prevents using it. 4582 * 4583 * LOCKING: 4584 * spin_lock_irqsave(host lock) 4585 */ 4586 void ata_qc_free(struct ata_queued_cmd *qc) 4587 { 4588 qc->flags = 0; 4589 if (ata_tag_valid(qc->tag)) 4590 qc->tag = ATA_TAG_POISON; 4591 } 4592 4593 void __ata_qc_complete(struct ata_queued_cmd *qc) 4594 { 4595 struct ata_port *ap; 4596 struct ata_link *link; 4597 4598 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4599 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4600 ap = qc->ap; 4601 link = qc->dev->link; 4602 4603 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4604 ata_sg_clean(qc); 4605 4606 /* command should be marked inactive atomically with qc completion */ 4607 if (ata_is_ncq(qc->tf.protocol)) { 4608 link->sactive &= ~(1 << qc->hw_tag); 4609 if (!link->sactive) 4610 ap->nr_active_links--; 4611 } else { 4612 link->active_tag = ATA_TAG_POISON; 4613 ap->nr_active_links--; 4614 } 4615 4616 /* clear exclusive status */ 4617 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4618 ap->excl_link == link)) 4619 ap->excl_link = NULL; 4620 4621 /* atapi: mark qc as inactive to prevent the interrupt handler 4622 * from completing the command twice later, before the error handler 4623 * is called. (when rc != 0 and atapi request sense is needed) 4624 */ 4625 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4626 ap->qc_active &= ~(1ULL << qc->tag); 4627 4628 /* call completion callback */ 4629 qc->complete_fn(qc); 4630 } 4631 4632 static void fill_result_tf(struct ata_queued_cmd *qc) 4633 { 4634 struct ata_port *ap = qc->ap; 4635 4636 qc->result_tf.flags = qc->tf.flags; 4637 ap->ops->qc_fill_rtf(qc); 4638 } 4639 4640 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4641 { 4642 struct ata_device *dev = qc->dev; 4643 4644 if (!ata_is_data(qc->tf.protocol)) 4645 return; 4646 4647 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4648 return; 4649 4650 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4651 } 4652 4653 /** 4654 * ata_qc_complete - Complete an active ATA command 4655 * @qc: Command to complete 4656 * 4657 * Indicate to the mid and upper layers that an ATA command has 4658 * completed, with either an ok or not-ok status. 4659 * 4660 * Refrain from calling this function multiple times when 4661 * successfully completing multiple NCQ commands. 4662 * ata_qc_complete_multiple() should be used instead, which will 4663 * properly update IRQ expect state. 4664 * 4665 * LOCKING: 4666 * spin_lock_irqsave(host lock) 4667 */ 4668 void ata_qc_complete(struct ata_queued_cmd *qc) 4669 { 4670 struct ata_port *ap = qc->ap; 4671 4672 /* Trigger the LED (if available) */ 4673 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4674 4675 /* XXX: New EH and old EH use different mechanisms to 4676 * synchronize EH with regular execution path. 4677 * 4678 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4679 * Normal execution path is responsible for not accessing a 4680 * failed qc. libata core enforces the rule by returning NULL 4681 * from ata_qc_from_tag() for failed qcs. 4682 * 4683 * Old EH depends on ata_qc_complete() nullifying completion 4684 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4685 * not synchronize with interrupt handler. Only PIO task is 4686 * taken care of. 4687 */ 4688 if (ap->ops->error_handler) { 4689 struct ata_device *dev = qc->dev; 4690 struct ata_eh_info *ehi = &dev->link->eh_info; 4691 4692 if (unlikely(qc->err_mask)) 4693 qc->flags |= ATA_QCFLAG_FAILED; 4694 4695 /* 4696 * Finish internal commands without any further processing 4697 * and always with the result TF filled. 4698 */ 4699 if (unlikely(ata_tag_internal(qc->tag))) { 4700 fill_result_tf(qc); 4701 trace_ata_qc_complete_internal(qc); 4702 __ata_qc_complete(qc); 4703 return; 4704 } 4705 4706 /* 4707 * Non-internal qc has failed. Fill the result TF and 4708 * summon EH. 4709 */ 4710 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4711 fill_result_tf(qc); 4712 trace_ata_qc_complete_failed(qc); 4713 ata_qc_schedule_eh(qc); 4714 return; 4715 } 4716 4717 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4718 4719 /* read result TF if requested */ 4720 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4721 fill_result_tf(qc); 4722 4723 trace_ata_qc_complete_done(qc); 4724 /* Some commands need post-processing after successful 4725 * completion. 4726 */ 4727 switch (qc->tf.command) { 4728 case ATA_CMD_SET_FEATURES: 4729 if (qc->tf.feature != SETFEATURES_WC_ON && 4730 qc->tf.feature != SETFEATURES_WC_OFF && 4731 qc->tf.feature != SETFEATURES_RA_ON && 4732 qc->tf.feature != SETFEATURES_RA_OFF) 4733 break; 4734 fallthrough; 4735 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4736 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4737 /* revalidate device */ 4738 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4739 ata_port_schedule_eh(ap); 4740 break; 4741 4742 case ATA_CMD_SLEEP: 4743 dev->flags |= ATA_DFLAG_SLEEPING; 4744 break; 4745 } 4746 4747 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4748 ata_verify_xfer(qc); 4749 4750 __ata_qc_complete(qc); 4751 } else { 4752 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4753 return; 4754 4755 /* read result TF if failed or requested */ 4756 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4757 fill_result_tf(qc); 4758 4759 __ata_qc_complete(qc); 4760 } 4761 } 4762 EXPORT_SYMBOL_GPL(ata_qc_complete); 4763 4764 /** 4765 * ata_qc_get_active - get bitmask of active qcs 4766 * @ap: port in question 4767 * 4768 * LOCKING: 4769 * spin_lock_irqsave(host lock) 4770 * 4771 * RETURNS: 4772 * Bitmask of active qcs 4773 */ 4774 u64 ata_qc_get_active(struct ata_port *ap) 4775 { 4776 u64 qc_active = ap->qc_active; 4777 4778 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4779 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4780 qc_active |= (1 << 0); 4781 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4782 } 4783 4784 return qc_active; 4785 } 4786 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4787 4788 /** 4789 * ata_qc_issue - issue taskfile to device 4790 * @qc: command to issue to device 4791 * 4792 * Prepare an ATA command to submission to device. 4793 * This includes mapping the data into a DMA-able 4794 * area, filling in the S/G table, and finally 4795 * writing the taskfile to hardware, starting the command. 4796 * 4797 * LOCKING: 4798 * spin_lock_irqsave(host lock) 4799 */ 4800 void ata_qc_issue(struct ata_queued_cmd *qc) 4801 { 4802 struct ata_port *ap = qc->ap; 4803 struct ata_link *link = qc->dev->link; 4804 u8 prot = qc->tf.protocol; 4805 4806 /* Make sure only one non-NCQ command is outstanding. The 4807 * check is skipped for old EH because it reuses active qc to 4808 * request ATAPI sense. 4809 */ 4810 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4811 4812 if (ata_is_ncq(prot)) { 4813 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4814 4815 if (!link->sactive) 4816 ap->nr_active_links++; 4817 link->sactive |= 1 << qc->hw_tag; 4818 } else { 4819 WARN_ON_ONCE(link->sactive); 4820 4821 ap->nr_active_links++; 4822 link->active_tag = qc->tag; 4823 } 4824 4825 qc->flags |= ATA_QCFLAG_ACTIVE; 4826 ap->qc_active |= 1ULL << qc->tag; 4827 4828 /* 4829 * We guarantee to LLDs that they will have at least one 4830 * non-zero sg if the command is a data command. 4831 */ 4832 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4833 goto sys_err; 4834 4835 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4836 (ap->flags & ATA_FLAG_PIO_DMA))) 4837 if (ata_sg_setup(qc)) 4838 goto sys_err; 4839 4840 /* if device is sleeping, schedule reset and abort the link */ 4841 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4842 link->eh_info.action |= ATA_EH_RESET; 4843 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4844 ata_link_abort(link); 4845 return; 4846 } 4847 4848 trace_ata_qc_prep(qc); 4849 qc->err_mask |= ap->ops->qc_prep(qc); 4850 if (unlikely(qc->err_mask)) 4851 goto err; 4852 trace_ata_qc_issue(qc); 4853 qc->err_mask |= ap->ops->qc_issue(qc); 4854 if (unlikely(qc->err_mask)) 4855 goto err; 4856 return; 4857 4858 sys_err: 4859 qc->err_mask |= AC_ERR_SYSTEM; 4860 err: 4861 ata_qc_complete(qc); 4862 } 4863 4864 /** 4865 * ata_phys_link_online - test whether the given link is online 4866 * @link: ATA link to test 4867 * 4868 * Test whether @link is online. Note that this function returns 4869 * 0 if online status of @link cannot be obtained, so 4870 * ata_link_online(link) != !ata_link_offline(link). 4871 * 4872 * LOCKING: 4873 * None. 4874 * 4875 * RETURNS: 4876 * True if the port online status is available and online. 4877 */ 4878 bool ata_phys_link_online(struct ata_link *link) 4879 { 4880 u32 sstatus; 4881 4882 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4883 ata_sstatus_online(sstatus)) 4884 return true; 4885 return false; 4886 } 4887 4888 /** 4889 * ata_phys_link_offline - test whether the given link is offline 4890 * @link: ATA link to test 4891 * 4892 * Test whether @link is offline. Note that this function 4893 * returns 0 if offline status of @link cannot be obtained, so 4894 * ata_link_online(link) != !ata_link_offline(link). 4895 * 4896 * LOCKING: 4897 * None. 4898 * 4899 * RETURNS: 4900 * True if the port offline status is available and offline. 4901 */ 4902 bool ata_phys_link_offline(struct ata_link *link) 4903 { 4904 u32 sstatus; 4905 4906 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4907 !ata_sstatus_online(sstatus)) 4908 return true; 4909 return false; 4910 } 4911 4912 /** 4913 * ata_link_online - test whether the given link is online 4914 * @link: ATA link to test 4915 * 4916 * Test whether @link is online. This is identical to 4917 * ata_phys_link_online() when there's no slave link. When 4918 * there's a slave link, this function should only be called on 4919 * the master link and will return true if any of M/S links is 4920 * online. 4921 * 4922 * LOCKING: 4923 * None. 4924 * 4925 * RETURNS: 4926 * True if the port online status is available and online. 4927 */ 4928 bool ata_link_online(struct ata_link *link) 4929 { 4930 struct ata_link *slave = link->ap->slave_link; 4931 4932 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4933 4934 return ata_phys_link_online(link) || 4935 (slave && ata_phys_link_online(slave)); 4936 } 4937 EXPORT_SYMBOL_GPL(ata_link_online); 4938 4939 /** 4940 * ata_link_offline - test whether the given link is offline 4941 * @link: ATA link to test 4942 * 4943 * Test whether @link is offline. This is identical to 4944 * ata_phys_link_offline() when there's no slave link. When 4945 * there's a slave link, this function should only be called on 4946 * the master link and will return true if both M/S links are 4947 * offline. 4948 * 4949 * LOCKING: 4950 * None. 4951 * 4952 * RETURNS: 4953 * True if the port offline status is available and offline. 4954 */ 4955 bool ata_link_offline(struct ata_link *link) 4956 { 4957 struct ata_link *slave = link->ap->slave_link; 4958 4959 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4960 4961 return ata_phys_link_offline(link) && 4962 (!slave || ata_phys_link_offline(slave)); 4963 } 4964 EXPORT_SYMBOL_GPL(ata_link_offline); 4965 4966 #ifdef CONFIG_PM 4967 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 4968 unsigned int action, unsigned int ehi_flags, 4969 bool async) 4970 { 4971 struct ata_link *link; 4972 unsigned long flags; 4973 4974 /* Previous resume operation might still be in 4975 * progress. Wait for PM_PENDING to clear. 4976 */ 4977 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 4978 ata_port_wait_eh(ap); 4979 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 4980 } 4981 4982 /* request PM ops to EH */ 4983 spin_lock_irqsave(ap->lock, flags); 4984 4985 ap->pm_mesg = mesg; 4986 ap->pflags |= ATA_PFLAG_PM_PENDING; 4987 ata_for_each_link(link, ap, HOST_FIRST) { 4988 link->eh_info.action |= action; 4989 link->eh_info.flags |= ehi_flags; 4990 } 4991 4992 ata_port_schedule_eh(ap); 4993 4994 spin_unlock_irqrestore(ap->lock, flags); 4995 4996 if (!async) { 4997 ata_port_wait_eh(ap); 4998 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 4999 } 5000 } 5001 5002 /* 5003 * On some hardware, device fails to respond after spun down for suspend. As 5004 * the device won't be used before being resumed, we don't need to touch the 5005 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5006 * 5007 * http://thread.gmane.org/gmane.linux.ide/46764 5008 */ 5009 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5010 | ATA_EHI_NO_AUTOPSY 5011 | ATA_EHI_NO_RECOVERY; 5012 5013 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5014 { 5015 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5016 } 5017 5018 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5019 { 5020 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5021 } 5022 5023 static int ata_port_pm_suspend(struct device *dev) 5024 { 5025 struct ata_port *ap = to_ata_port(dev); 5026 5027 if (pm_runtime_suspended(dev)) 5028 return 0; 5029 5030 ata_port_suspend(ap, PMSG_SUSPEND); 5031 return 0; 5032 } 5033 5034 static int ata_port_pm_freeze(struct device *dev) 5035 { 5036 struct ata_port *ap = to_ata_port(dev); 5037 5038 if (pm_runtime_suspended(dev)) 5039 return 0; 5040 5041 ata_port_suspend(ap, PMSG_FREEZE); 5042 return 0; 5043 } 5044 5045 static int ata_port_pm_poweroff(struct device *dev) 5046 { 5047 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5048 return 0; 5049 } 5050 5051 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5052 | ATA_EHI_QUIET; 5053 5054 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5055 { 5056 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5057 } 5058 5059 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5060 { 5061 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5062 } 5063 5064 static int ata_port_pm_resume(struct device *dev) 5065 { 5066 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5067 pm_runtime_disable(dev); 5068 pm_runtime_set_active(dev); 5069 pm_runtime_enable(dev); 5070 return 0; 5071 } 5072 5073 /* 5074 * For ODDs, the upper layer will poll for media change every few seconds, 5075 * which will make it enter and leave suspend state every few seconds. And 5076 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5077 * is very little and the ODD may malfunction after constantly being reset. 5078 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5079 * ODD is attached to the port. 5080 */ 5081 static int ata_port_runtime_idle(struct device *dev) 5082 { 5083 struct ata_port *ap = to_ata_port(dev); 5084 struct ata_link *link; 5085 struct ata_device *adev; 5086 5087 ata_for_each_link(link, ap, HOST_FIRST) { 5088 ata_for_each_dev(adev, link, ENABLED) 5089 if (adev->class == ATA_DEV_ATAPI && 5090 !zpodd_dev_enabled(adev)) 5091 return -EBUSY; 5092 } 5093 5094 return 0; 5095 } 5096 5097 static int ata_port_runtime_suspend(struct device *dev) 5098 { 5099 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5100 return 0; 5101 } 5102 5103 static int ata_port_runtime_resume(struct device *dev) 5104 { 5105 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5106 return 0; 5107 } 5108 5109 static const struct dev_pm_ops ata_port_pm_ops = { 5110 .suspend = ata_port_pm_suspend, 5111 .resume = ata_port_pm_resume, 5112 .freeze = ata_port_pm_freeze, 5113 .thaw = ata_port_pm_resume, 5114 .poweroff = ata_port_pm_poweroff, 5115 .restore = ata_port_pm_resume, 5116 5117 .runtime_suspend = ata_port_runtime_suspend, 5118 .runtime_resume = ata_port_runtime_resume, 5119 .runtime_idle = ata_port_runtime_idle, 5120 }; 5121 5122 /* sas ports don't participate in pm runtime management of ata_ports, 5123 * and need to resume ata devices at the domain level, not the per-port 5124 * level. sas suspend/resume is async to allow parallel port recovery 5125 * since sas has multiple ata_port instances per Scsi_Host. 5126 */ 5127 void ata_sas_port_suspend(struct ata_port *ap) 5128 { 5129 ata_port_suspend_async(ap, PMSG_SUSPEND); 5130 } 5131 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5132 5133 void ata_sas_port_resume(struct ata_port *ap) 5134 { 5135 ata_port_resume_async(ap, PMSG_RESUME); 5136 } 5137 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5138 5139 /** 5140 * ata_host_suspend - suspend host 5141 * @host: host to suspend 5142 * @mesg: PM message 5143 * 5144 * Suspend @host. Actual operation is performed by port suspend. 5145 */ 5146 void ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5147 { 5148 host->dev->power.power_state = mesg; 5149 } 5150 EXPORT_SYMBOL_GPL(ata_host_suspend); 5151 5152 /** 5153 * ata_host_resume - resume host 5154 * @host: host to resume 5155 * 5156 * Resume @host. Actual operation is performed by port resume. 5157 */ 5158 void ata_host_resume(struct ata_host *host) 5159 { 5160 host->dev->power.power_state = PMSG_ON; 5161 } 5162 EXPORT_SYMBOL_GPL(ata_host_resume); 5163 #endif 5164 5165 const struct device_type ata_port_type = { 5166 .name = "ata_port", 5167 #ifdef CONFIG_PM 5168 .pm = &ata_port_pm_ops, 5169 #endif 5170 }; 5171 5172 /** 5173 * ata_dev_init - Initialize an ata_device structure 5174 * @dev: Device structure to initialize 5175 * 5176 * Initialize @dev in preparation for probing. 5177 * 5178 * LOCKING: 5179 * Inherited from caller. 5180 */ 5181 void ata_dev_init(struct ata_device *dev) 5182 { 5183 struct ata_link *link = ata_dev_phys_link(dev); 5184 struct ata_port *ap = link->ap; 5185 unsigned long flags; 5186 5187 /* SATA spd limit is bound to the attached device, reset together */ 5188 link->sata_spd_limit = link->hw_sata_spd_limit; 5189 link->sata_spd = 0; 5190 5191 /* High bits of dev->flags are used to record warm plug 5192 * requests which occur asynchronously. Synchronize using 5193 * host lock. 5194 */ 5195 spin_lock_irqsave(ap->lock, flags); 5196 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5197 dev->horkage = 0; 5198 spin_unlock_irqrestore(ap->lock, flags); 5199 5200 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5201 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5202 dev->pio_mask = UINT_MAX; 5203 dev->mwdma_mask = UINT_MAX; 5204 dev->udma_mask = UINT_MAX; 5205 } 5206 5207 /** 5208 * ata_link_init - Initialize an ata_link structure 5209 * @ap: ATA port link is attached to 5210 * @link: Link structure to initialize 5211 * @pmp: Port multiplier port number 5212 * 5213 * Initialize @link. 5214 * 5215 * LOCKING: 5216 * Kernel thread context (may sleep) 5217 */ 5218 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5219 { 5220 int i; 5221 5222 /* clear everything except for devices */ 5223 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5224 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5225 5226 link->ap = ap; 5227 link->pmp = pmp; 5228 link->active_tag = ATA_TAG_POISON; 5229 link->hw_sata_spd_limit = UINT_MAX; 5230 5231 /* can't use iterator, ap isn't initialized yet */ 5232 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5233 struct ata_device *dev = &link->device[i]; 5234 5235 dev->link = link; 5236 dev->devno = dev - link->device; 5237 #ifdef CONFIG_ATA_ACPI 5238 dev->gtf_filter = ata_acpi_gtf_filter; 5239 #endif 5240 ata_dev_init(dev); 5241 } 5242 } 5243 5244 /** 5245 * sata_link_init_spd - Initialize link->sata_spd_limit 5246 * @link: Link to configure sata_spd_limit for 5247 * 5248 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5249 * configured value. 5250 * 5251 * LOCKING: 5252 * Kernel thread context (may sleep). 5253 * 5254 * RETURNS: 5255 * 0 on success, -errno on failure. 5256 */ 5257 int sata_link_init_spd(struct ata_link *link) 5258 { 5259 u8 spd; 5260 int rc; 5261 5262 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5263 if (rc) 5264 return rc; 5265 5266 spd = (link->saved_scontrol >> 4) & 0xf; 5267 if (spd) 5268 link->hw_sata_spd_limit &= (1 << spd) - 1; 5269 5270 ata_force_link_limits(link); 5271 5272 link->sata_spd_limit = link->hw_sata_spd_limit; 5273 5274 return 0; 5275 } 5276 5277 /** 5278 * ata_port_alloc - allocate and initialize basic ATA port resources 5279 * @host: ATA host this allocated port belongs to 5280 * 5281 * Allocate and initialize basic ATA port resources. 5282 * 5283 * RETURNS: 5284 * Allocate ATA port on success, NULL on failure. 5285 * 5286 * LOCKING: 5287 * Inherited from calling layer (may sleep). 5288 */ 5289 struct ata_port *ata_port_alloc(struct ata_host *host) 5290 { 5291 struct ata_port *ap; 5292 5293 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5294 if (!ap) 5295 return NULL; 5296 5297 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5298 ap->lock = &host->lock; 5299 ap->print_id = -1; 5300 ap->local_port_no = -1; 5301 ap->host = host; 5302 ap->dev = host->dev; 5303 5304 mutex_init(&ap->scsi_scan_mutex); 5305 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5306 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5307 INIT_LIST_HEAD(&ap->eh_done_q); 5308 init_waitqueue_head(&ap->eh_wait_q); 5309 init_completion(&ap->park_req_pending); 5310 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5311 TIMER_DEFERRABLE); 5312 5313 ap->cbl = ATA_CBL_NONE; 5314 5315 ata_link_init(ap, &ap->link, 0); 5316 5317 #ifdef ATA_IRQ_TRAP 5318 ap->stats.unhandled_irq = 1; 5319 ap->stats.idle_irq = 1; 5320 #endif 5321 ata_sff_port_init(ap); 5322 5323 return ap; 5324 } 5325 5326 static void ata_devres_release(struct device *gendev, void *res) 5327 { 5328 struct ata_host *host = dev_get_drvdata(gendev); 5329 int i; 5330 5331 for (i = 0; i < host->n_ports; i++) { 5332 struct ata_port *ap = host->ports[i]; 5333 5334 if (!ap) 5335 continue; 5336 5337 if (ap->scsi_host) 5338 scsi_host_put(ap->scsi_host); 5339 5340 } 5341 5342 dev_set_drvdata(gendev, NULL); 5343 ata_host_put(host); 5344 } 5345 5346 static void ata_host_release(struct kref *kref) 5347 { 5348 struct ata_host *host = container_of(kref, struct ata_host, kref); 5349 int i; 5350 5351 for (i = 0; i < host->n_ports; i++) { 5352 struct ata_port *ap = host->ports[i]; 5353 5354 kfree(ap->pmp_link); 5355 kfree(ap->slave_link); 5356 kfree(ap); 5357 host->ports[i] = NULL; 5358 } 5359 kfree(host); 5360 } 5361 5362 void ata_host_get(struct ata_host *host) 5363 { 5364 kref_get(&host->kref); 5365 } 5366 5367 void ata_host_put(struct ata_host *host) 5368 { 5369 kref_put(&host->kref, ata_host_release); 5370 } 5371 EXPORT_SYMBOL_GPL(ata_host_put); 5372 5373 /** 5374 * ata_host_alloc - allocate and init basic ATA host resources 5375 * @dev: generic device this host is associated with 5376 * @max_ports: maximum number of ATA ports associated with this host 5377 * 5378 * Allocate and initialize basic ATA host resources. LLD calls 5379 * this function to allocate a host, initializes it fully and 5380 * attaches it using ata_host_register(). 5381 * 5382 * @max_ports ports are allocated and host->n_ports is 5383 * initialized to @max_ports. The caller is allowed to decrease 5384 * host->n_ports before calling ata_host_register(). The unused 5385 * ports will be automatically freed on registration. 5386 * 5387 * RETURNS: 5388 * Allocate ATA host on success, NULL on failure. 5389 * 5390 * LOCKING: 5391 * Inherited from calling layer (may sleep). 5392 */ 5393 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5394 { 5395 struct ata_host *host; 5396 size_t sz; 5397 int i; 5398 void *dr; 5399 5400 /* alloc a container for our list of ATA ports (buses) */ 5401 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5402 host = kzalloc(sz, GFP_KERNEL); 5403 if (!host) 5404 return NULL; 5405 5406 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5407 goto err_free; 5408 5409 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5410 if (!dr) 5411 goto err_out; 5412 5413 devres_add(dev, dr); 5414 dev_set_drvdata(dev, host); 5415 5416 spin_lock_init(&host->lock); 5417 mutex_init(&host->eh_mutex); 5418 host->dev = dev; 5419 host->n_ports = max_ports; 5420 kref_init(&host->kref); 5421 5422 /* allocate ports bound to this host */ 5423 for (i = 0; i < max_ports; i++) { 5424 struct ata_port *ap; 5425 5426 ap = ata_port_alloc(host); 5427 if (!ap) 5428 goto err_out; 5429 5430 ap->port_no = i; 5431 host->ports[i] = ap; 5432 } 5433 5434 devres_remove_group(dev, NULL); 5435 return host; 5436 5437 err_out: 5438 devres_release_group(dev, NULL); 5439 err_free: 5440 kfree(host); 5441 return NULL; 5442 } 5443 EXPORT_SYMBOL_GPL(ata_host_alloc); 5444 5445 /** 5446 * ata_host_alloc_pinfo - alloc host and init with port_info array 5447 * @dev: generic device this host is associated with 5448 * @ppi: array of ATA port_info to initialize host with 5449 * @n_ports: number of ATA ports attached to this host 5450 * 5451 * Allocate ATA host and initialize with info from @ppi. If NULL 5452 * terminated, @ppi may contain fewer entries than @n_ports. The 5453 * last entry will be used for the remaining ports. 5454 * 5455 * RETURNS: 5456 * Allocate ATA host on success, NULL on failure. 5457 * 5458 * LOCKING: 5459 * Inherited from calling layer (may sleep). 5460 */ 5461 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5462 const struct ata_port_info * const * ppi, 5463 int n_ports) 5464 { 5465 const struct ata_port_info *pi; 5466 struct ata_host *host; 5467 int i, j; 5468 5469 host = ata_host_alloc(dev, n_ports); 5470 if (!host) 5471 return NULL; 5472 5473 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5474 struct ata_port *ap = host->ports[i]; 5475 5476 if (ppi[j]) 5477 pi = ppi[j++]; 5478 5479 ap->pio_mask = pi->pio_mask; 5480 ap->mwdma_mask = pi->mwdma_mask; 5481 ap->udma_mask = pi->udma_mask; 5482 ap->flags |= pi->flags; 5483 ap->link.flags |= pi->link_flags; 5484 ap->ops = pi->port_ops; 5485 5486 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5487 host->ops = pi->port_ops; 5488 } 5489 5490 return host; 5491 } 5492 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5493 5494 static void ata_host_stop(struct device *gendev, void *res) 5495 { 5496 struct ata_host *host = dev_get_drvdata(gendev); 5497 int i; 5498 5499 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5500 5501 for (i = 0; i < host->n_ports; i++) { 5502 struct ata_port *ap = host->ports[i]; 5503 5504 if (ap->ops->port_stop) 5505 ap->ops->port_stop(ap); 5506 } 5507 5508 if (host->ops->host_stop) 5509 host->ops->host_stop(host); 5510 } 5511 5512 /** 5513 * ata_finalize_port_ops - finalize ata_port_operations 5514 * @ops: ata_port_operations to finalize 5515 * 5516 * An ata_port_operations can inherit from another ops and that 5517 * ops can again inherit from another. This can go on as many 5518 * times as necessary as long as there is no loop in the 5519 * inheritance chain. 5520 * 5521 * Ops tables are finalized when the host is started. NULL or 5522 * unspecified entries are inherited from the closet ancestor 5523 * which has the method and the entry is populated with it. 5524 * After finalization, the ops table directly points to all the 5525 * methods and ->inherits is no longer necessary and cleared. 5526 * 5527 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5528 * 5529 * LOCKING: 5530 * None. 5531 */ 5532 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5533 { 5534 static DEFINE_SPINLOCK(lock); 5535 const struct ata_port_operations *cur; 5536 void **begin = (void **)ops; 5537 void **end = (void **)&ops->inherits; 5538 void **pp; 5539 5540 if (!ops || !ops->inherits) 5541 return; 5542 5543 spin_lock(&lock); 5544 5545 for (cur = ops->inherits; cur; cur = cur->inherits) { 5546 void **inherit = (void **)cur; 5547 5548 for (pp = begin; pp < end; pp++, inherit++) 5549 if (!*pp) 5550 *pp = *inherit; 5551 } 5552 5553 for (pp = begin; pp < end; pp++) 5554 if (IS_ERR(*pp)) 5555 *pp = NULL; 5556 5557 ops->inherits = NULL; 5558 5559 spin_unlock(&lock); 5560 } 5561 5562 /** 5563 * ata_host_start - start and freeze ports of an ATA host 5564 * @host: ATA host to start ports for 5565 * 5566 * Start and then freeze ports of @host. Started status is 5567 * recorded in host->flags, so this function can be called 5568 * multiple times. Ports are guaranteed to get started only 5569 * once. If host->ops is not initialized yet, it is set to the 5570 * first non-dummy port ops. 5571 * 5572 * LOCKING: 5573 * Inherited from calling layer (may sleep). 5574 * 5575 * RETURNS: 5576 * 0 if all ports are started successfully, -errno otherwise. 5577 */ 5578 int ata_host_start(struct ata_host *host) 5579 { 5580 int have_stop = 0; 5581 void *start_dr = NULL; 5582 int i, rc; 5583 5584 if (host->flags & ATA_HOST_STARTED) 5585 return 0; 5586 5587 ata_finalize_port_ops(host->ops); 5588 5589 for (i = 0; i < host->n_ports; i++) { 5590 struct ata_port *ap = host->ports[i]; 5591 5592 ata_finalize_port_ops(ap->ops); 5593 5594 if (!host->ops && !ata_port_is_dummy(ap)) 5595 host->ops = ap->ops; 5596 5597 if (ap->ops->port_stop) 5598 have_stop = 1; 5599 } 5600 5601 if (host->ops && host->ops->host_stop) 5602 have_stop = 1; 5603 5604 if (have_stop) { 5605 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5606 if (!start_dr) 5607 return -ENOMEM; 5608 } 5609 5610 for (i = 0; i < host->n_ports; i++) { 5611 struct ata_port *ap = host->ports[i]; 5612 5613 if (ap->ops->port_start) { 5614 rc = ap->ops->port_start(ap); 5615 if (rc) { 5616 if (rc != -ENODEV) 5617 dev_err(host->dev, 5618 "failed to start port %d (errno=%d)\n", 5619 i, rc); 5620 goto err_out; 5621 } 5622 } 5623 ata_eh_freeze_port(ap); 5624 } 5625 5626 if (start_dr) 5627 devres_add(host->dev, start_dr); 5628 host->flags |= ATA_HOST_STARTED; 5629 return 0; 5630 5631 err_out: 5632 while (--i >= 0) { 5633 struct ata_port *ap = host->ports[i]; 5634 5635 if (ap->ops->port_stop) 5636 ap->ops->port_stop(ap); 5637 } 5638 devres_free(start_dr); 5639 return rc; 5640 } 5641 EXPORT_SYMBOL_GPL(ata_host_start); 5642 5643 /** 5644 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5645 * @host: host to initialize 5646 * @dev: device host is attached to 5647 * @ops: port_ops 5648 * 5649 */ 5650 void ata_host_init(struct ata_host *host, struct device *dev, 5651 struct ata_port_operations *ops) 5652 { 5653 spin_lock_init(&host->lock); 5654 mutex_init(&host->eh_mutex); 5655 host->n_tags = ATA_MAX_QUEUE; 5656 host->dev = dev; 5657 host->ops = ops; 5658 kref_init(&host->kref); 5659 } 5660 EXPORT_SYMBOL_GPL(ata_host_init); 5661 5662 void __ata_port_probe(struct ata_port *ap) 5663 { 5664 struct ata_eh_info *ehi = &ap->link.eh_info; 5665 unsigned long flags; 5666 5667 /* kick EH for boot probing */ 5668 spin_lock_irqsave(ap->lock, flags); 5669 5670 ehi->probe_mask |= ATA_ALL_DEVICES; 5671 ehi->action |= ATA_EH_RESET; 5672 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5673 5674 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5675 ap->pflags |= ATA_PFLAG_LOADING; 5676 ata_port_schedule_eh(ap); 5677 5678 spin_unlock_irqrestore(ap->lock, flags); 5679 } 5680 5681 int ata_port_probe(struct ata_port *ap) 5682 { 5683 int rc = 0; 5684 5685 if (ap->ops->error_handler) { 5686 __ata_port_probe(ap); 5687 ata_port_wait_eh(ap); 5688 } else { 5689 rc = ata_bus_probe(ap); 5690 } 5691 return rc; 5692 } 5693 5694 5695 static void async_port_probe(void *data, async_cookie_t cookie) 5696 { 5697 struct ata_port *ap = data; 5698 5699 /* 5700 * If we're not allowed to scan this host in parallel, 5701 * we need to wait until all previous scans have completed 5702 * before going further. 5703 * Jeff Garzik says this is only within a controller, so we 5704 * don't need to wait for port 0, only for later ports. 5705 */ 5706 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5707 async_synchronize_cookie(cookie); 5708 5709 (void)ata_port_probe(ap); 5710 5711 /* in order to keep device order, we need to synchronize at this point */ 5712 async_synchronize_cookie(cookie); 5713 5714 ata_scsi_scan_host(ap, 1); 5715 } 5716 5717 /** 5718 * ata_host_register - register initialized ATA host 5719 * @host: ATA host to register 5720 * @sht: template for SCSI host 5721 * 5722 * Register initialized ATA host. @host is allocated using 5723 * ata_host_alloc() and fully initialized by LLD. This function 5724 * starts ports, registers @host with ATA and SCSI layers and 5725 * probe registered devices. 5726 * 5727 * LOCKING: 5728 * Inherited from calling layer (may sleep). 5729 * 5730 * RETURNS: 5731 * 0 on success, -errno otherwise. 5732 */ 5733 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5734 { 5735 int i, rc; 5736 5737 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5738 5739 /* host must have been started */ 5740 if (!(host->flags & ATA_HOST_STARTED)) { 5741 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5742 WARN_ON(1); 5743 return -EINVAL; 5744 } 5745 5746 /* Blow away unused ports. This happens when LLD can't 5747 * determine the exact number of ports to allocate at 5748 * allocation time. 5749 */ 5750 for (i = host->n_ports; host->ports[i]; i++) 5751 kfree(host->ports[i]); 5752 5753 /* give ports names and add SCSI hosts */ 5754 for (i = 0; i < host->n_ports; i++) { 5755 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5756 host->ports[i]->local_port_no = i + 1; 5757 } 5758 5759 /* Create associated sysfs transport objects */ 5760 for (i = 0; i < host->n_ports; i++) { 5761 rc = ata_tport_add(host->dev,host->ports[i]); 5762 if (rc) { 5763 goto err_tadd; 5764 } 5765 } 5766 5767 rc = ata_scsi_add_hosts(host, sht); 5768 if (rc) 5769 goto err_tadd; 5770 5771 /* set cable, sata_spd_limit and report */ 5772 for (i = 0; i < host->n_ports; i++) { 5773 struct ata_port *ap = host->ports[i]; 5774 unsigned long xfer_mask; 5775 5776 /* set SATA cable type if still unset */ 5777 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5778 ap->cbl = ATA_CBL_SATA; 5779 5780 /* init sata_spd_limit to the current value */ 5781 sata_link_init_spd(&ap->link); 5782 if (ap->slave_link) 5783 sata_link_init_spd(ap->slave_link); 5784 5785 /* print per-port info to dmesg */ 5786 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5787 ap->udma_mask); 5788 5789 if (!ata_port_is_dummy(ap)) { 5790 ata_port_info(ap, "%cATA max %s %s\n", 5791 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5792 ata_mode_string(xfer_mask), 5793 ap->link.eh_info.desc); 5794 ata_ehi_clear_desc(&ap->link.eh_info); 5795 } else 5796 ata_port_info(ap, "DUMMY\n"); 5797 } 5798 5799 /* perform each probe asynchronously */ 5800 for (i = 0; i < host->n_ports; i++) { 5801 struct ata_port *ap = host->ports[i]; 5802 ap->cookie = async_schedule(async_port_probe, ap); 5803 } 5804 5805 return 0; 5806 5807 err_tadd: 5808 while (--i >= 0) { 5809 ata_tport_delete(host->ports[i]); 5810 } 5811 return rc; 5812 5813 } 5814 EXPORT_SYMBOL_GPL(ata_host_register); 5815 5816 /** 5817 * ata_host_activate - start host, request IRQ and register it 5818 * @host: target ATA host 5819 * @irq: IRQ to request 5820 * @irq_handler: irq_handler used when requesting IRQ 5821 * @irq_flags: irq_flags used when requesting IRQ 5822 * @sht: scsi_host_template to use when registering the host 5823 * 5824 * After allocating an ATA host and initializing it, most libata 5825 * LLDs perform three steps to activate the host - start host, 5826 * request IRQ and register it. This helper takes necessary 5827 * arguments and performs the three steps in one go. 5828 * 5829 * An invalid IRQ skips the IRQ registration and expects the host to 5830 * have set polling mode on the port. In this case, @irq_handler 5831 * should be NULL. 5832 * 5833 * LOCKING: 5834 * Inherited from calling layer (may sleep). 5835 * 5836 * RETURNS: 5837 * 0 on success, -errno otherwise. 5838 */ 5839 int ata_host_activate(struct ata_host *host, int irq, 5840 irq_handler_t irq_handler, unsigned long irq_flags, 5841 struct scsi_host_template *sht) 5842 { 5843 int i, rc; 5844 char *irq_desc; 5845 5846 rc = ata_host_start(host); 5847 if (rc) 5848 return rc; 5849 5850 /* Special case for polling mode */ 5851 if (!irq) { 5852 WARN_ON(irq_handler); 5853 return ata_host_register(host, sht); 5854 } 5855 5856 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 5857 dev_driver_string(host->dev), 5858 dev_name(host->dev)); 5859 if (!irq_desc) 5860 return -ENOMEM; 5861 5862 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5863 irq_desc, host); 5864 if (rc) 5865 return rc; 5866 5867 for (i = 0; i < host->n_ports; i++) 5868 ata_port_desc(host->ports[i], "irq %d", irq); 5869 5870 rc = ata_host_register(host, sht); 5871 /* if failed, just free the IRQ and leave ports alone */ 5872 if (rc) 5873 devm_free_irq(host->dev, irq, host); 5874 5875 return rc; 5876 } 5877 EXPORT_SYMBOL_GPL(ata_host_activate); 5878 5879 /** 5880 * ata_port_detach - Detach ATA port in preparation of device removal 5881 * @ap: ATA port to be detached 5882 * 5883 * Detach all ATA devices and the associated SCSI devices of @ap; 5884 * then, remove the associated SCSI host. @ap is guaranteed to 5885 * be quiescent on return from this function. 5886 * 5887 * LOCKING: 5888 * Kernel thread context (may sleep). 5889 */ 5890 static void ata_port_detach(struct ata_port *ap) 5891 { 5892 unsigned long flags; 5893 struct ata_link *link; 5894 struct ata_device *dev; 5895 5896 if (!ap->ops->error_handler) 5897 goto skip_eh; 5898 5899 /* tell EH we're leaving & flush EH */ 5900 spin_lock_irqsave(ap->lock, flags); 5901 ap->pflags |= ATA_PFLAG_UNLOADING; 5902 ata_port_schedule_eh(ap); 5903 spin_unlock_irqrestore(ap->lock, flags); 5904 5905 /* wait till EH commits suicide */ 5906 ata_port_wait_eh(ap); 5907 5908 /* it better be dead now */ 5909 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 5910 5911 cancel_delayed_work_sync(&ap->hotplug_task); 5912 5913 skip_eh: 5914 /* clean up zpodd on port removal */ 5915 ata_for_each_link(link, ap, HOST_FIRST) { 5916 ata_for_each_dev(dev, link, ALL) { 5917 if (zpodd_dev_enabled(dev)) 5918 zpodd_exit(dev); 5919 } 5920 } 5921 if (ap->pmp_link) { 5922 int i; 5923 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 5924 ata_tlink_delete(&ap->pmp_link[i]); 5925 } 5926 /* remove the associated SCSI host */ 5927 scsi_remove_host(ap->scsi_host); 5928 ata_tport_delete(ap); 5929 } 5930 5931 /** 5932 * ata_host_detach - Detach all ports of an ATA host 5933 * @host: Host to detach 5934 * 5935 * Detach all ports of @host. 5936 * 5937 * LOCKING: 5938 * Kernel thread context (may sleep). 5939 */ 5940 void ata_host_detach(struct ata_host *host) 5941 { 5942 int i; 5943 5944 for (i = 0; i < host->n_ports; i++) { 5945 /* Ensure ata_port probe has completed */ 5946 async_synchronize_cookie(host->ports[i]->cookie + 1); 5947 ata_port_detach(host->ports[i]); 5948 } 5949 5950 /* the host is dead now, dissociate ACPI */ 5951 ata_acpi_dissociate(host); 5952 } 5953 EXPORT_SYMBOL_GPL(ata_host_detach); 5954 5955 #ifdef CONFIG_PCI 5956 5957 /** 5958 * ata_pci_remove_one - PCI layer callback for device removal 5959 * @pdev: PCI device that was removed 5960 * 5961 * PCI layer indicates to libata via this hook that hot-unplug or 5962 * module unload event has occurred. Detach all ports. Resource 5963 * release is handled via devres. 5964 * 5965 * LOCKING: 5966 * Inherited from PCI layer (may sleep). 5967 */ 5968 void ata_pci_remove_one(struct pci_dev *pdev) 5969 { 5970 struct ata_host *host = pci_get_drvdata(pdev); 5971 5972 ata_host_detach(host); 5973 } 5974 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 5975 5976 void ata_pci_shutdown_one(struct pci_dev *pdev) 5977 { 5978 struct ata_host *host = pci_get_drvdata(pdev); 5979 int i; 5980 5981 for (i = 0; i < host->n_ports; i++) { 5982 struct ata_port *ap = host->ports[i]; 5983 5984 ap->pflags |= ATA_PFLAG_FROZEN; 5985 5986 /* Disable port interrupts */ 5987 if (ap->ops->freeze) 5988 ap->ops->freeze(ap); 5989 5990 /* Stop the port DMA engines */ 5991 if (ap->ops->port_stop) 5992 ap->ops->port_stop(ap); 5993 } 5994 } 5995 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 5996 5997 /* move to PCI subsystem */ 5998 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 5999 { 6000 unsigned long tmp = 0; 6001 6002 switch (bits->width) { 6003 case 1: { 6004 u8 tmp8 = 0; 6005 pci_read_config_byte(pdev, bits->reg, &tmp8); 6006 tmp = tmp8; 6007 break; 6008 } 6009 case 2: { 6010 u16 tmp16 = 0; 6011 pci_read_config_word(pdev, bits->reg, &tmp16); 6012 tmp = tmp16; 6013 break; 6014 } 6015 case 4: { 6016 u32 tmp32 = 0; 6017 pci_read_config_dword(pdev, bits->reg, &tmp32); 6018 tmp = tmp32; 6019 break; 6020 } 6021 6022 default: 6023 return -EINVAL; 6024 } 6025 6026 tmp &= bits->mask; 6027 6028 return (tmp == bits->val) ? 1 : 0; 6029 } 6030 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6031 6032 #ifdef CONFIG_PM 6033 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6034 { 6035 pci_save_state(pdev); 6036 pci_disable_device(pdev); 6037 6038 if (mesg.event & PM_EVENT_SLEEP) 6039 pci_set_power_state(pdev, PCI_D3hot); 6040 } 6041 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6042 6043 int ata_pci_device_do_resume(struct pci_dev *pdev) 6044 { 6045 int rc; 6046 6047 pci_set_power_state(pdev, PCI_D0); 6048 pci_restore_state(pdev); 6049 6050 rc = pcim_enable_device(pdev); 6051 if (rc) { 6052 dev_err(&pdev->dev, 6053 "failed to enable device after resume (%d)\n", rc); 6054 return rc; 6055 } 6056 6057 pci_set_master(pdev); 6058 return 0; 6059 } 6060 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6061 6062 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6063 { 6064 struct ata_host *host = pci_get_drvdata(pdev); 6065 6066 ata_host_suspend(host, mesg); 6067 6068 ata_pci_device_do_suspend(pdev, mesg); 6069 6070 return 0; 6071 } 6072 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6073 6074 int ata_pci_device_resume(struct pci_dev *pdev) 6075 { 6076 struct ata_host *host = pci_get_drvdata(pdev); 6077 int rc; 6078 6079 rc = ata_pci_device_do_resume(pdev); 6080 if (rc == 0) 6081 ata_host_resume(host); 6082 return rc; 6083 } 6084 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6085 #endif /* CONFIG_PM */ 6086 #endif /* CONFIG_PCI */ 6087 6088 /** 6089 * ata_platform_remove_one - Platform layer callback for device removal 6090 * @pdev: Platform device that was removed 6091 * 6092 * Platform layer indicates to libata via this hook that hot-unplug or 6093 * module unload event has occurred. Detach all ports. Resource 6094 * release is handled via devres. 6095 * 6096 * LOCKING: 6097 * Inherited from platform layer (may sleep). 6098 */ 6099 int ata_platform_remove_one(struct platform_device *pdev) 6100 { 6101 struct ata_host *host = platform_get_drvdata(pdev); 6102 6103 ata_host_detach(host); 6104 6105 return 0; 6106 } 6107 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6108 6109 #ifdef CONFIG_ATA_FORCE 6110 6111 #define force_cbl(name, flag) \ 6112 { #name, .cbl = (flag) } 6113 6114 #define force_spd_limit(spd, val) \ 6115 { #spd, .spd_limit = (val) } 6116 6117 #define force_xfer(mode, shift) \ 6118 { #mode, .xfer_mask = (1UL << (shift)) } 6119 6120 #define force_lflag_on(name, flags) \ 6121 { #name, .lflags_on = (flags) } 6122 6123 #define force_lflag_onoff(name, flags) \ 6124 { "no" #name, .lflags_on = (flags) }, \ 6125 { #name, .lflags_off = (flags) } 6126 6127 #define force_horkage_on(name, flag) \ 6128 { #name, .horkage_on = (flag) } 6129 6130 #define force_horkage_onoff(name, flag) \ 6131 { "no" #name, .horkage_on = (flag) }, \ 6132 { #name, .horkage_off = (flag) } 6133 6134 static const struct ata_force_param force_tbl[] __initconst = { 6135 force_cbl(40c, ATA_CBL_PATA40), 6136 force_cbl(80c, ATA_CBL_PATA80), 6137 force_cbl(short40c, ATA_CBL_PATA40_SHORT), 6138 force_cbl(unk, ATA_CBL_PATA_UNK), 6139 force_cbl(ign, ATA_CBL_PATA_IGN), 6140 force_cbl(sata, ATA_CBL_SATA), 6141 6142 force_spd_limit(1.5Gbps, 1), 6143 force_spd_limit(3.0Gbps, 2), 6144 6145 force_xfer(pio0, ATA_SHIFT_PIO + 0), 6146 force_xfer(pio1, ATA_SHIFT_PIO + 1), 6147 force_xfer(pio2, ATA_SHIFT_PIO + 2), 6148 force_xfer(pio3, ATA_SHIFT_PIO + 3), 6149 force_xfer(pio4, ATA_SHIFT_PIO + 4), 6150 force_xfer(pio5, ATA_SHIFT_PIO + 5), 6151 force_xfer(pio6, ATA_SHIFT_PIO + 6), 6152 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0), 6153 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1), 6154 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2), 6155 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3), 6156 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4), 6157 force_xfer(udma0, ATA_SHIFT_UDMA + 0), 6158 force_xfer(udma16, ATA_SHIFT_UDMA + 0), 6159 force_xfer(udma/16, ATA_SHIFT_UDMA + 0), 6160 force_xfer(udma1, ATA_SHIFT_UDMA + 1), 6161 force_xfer(udma25, ATA_SHIFT_UDMA + 1), 6162 force_xfer(udma/25, ATA_SHIFT_UDMA + 1), 6163 force_xfer(udma2, ATA_SHIFT_UDMA + 2), 6164 force_xfer(udma33, ATA_SHIFT_UDMA + 2), 6165 force_xfer(udma/33, ATA_SHIFT_UDMA + 2), 6166 force_xfer(udma3, ATA_SHIFT_UDMA + 3), 6167 force_xfer(udma44, ATA_SHIFT_UDMA + 3), 6168 force_xfer(udma/44, ATA_SHIFT_UDMA + 3), 6169 force_xfer(udma4, ATA_SHIFT_UDMA + 4), 6170 force_xfer(udma66, ATA_SHIFT_UDMA + 4), 6171 force_xfer(udma/66, ATA_SHIFT_UDMA + 4), 6172 force_xfer(udma5, ATA_SHIFT_UDMA + 5), 6173 force_xfer(udma100, ATA_SHIFT_UDMA + 5), 6174 force_xfer(udma/100, ATA_SHIFT_UDMA + 5), 6175 force_xfer(udma6, ATA_SHIFT_UDMA + 6), 6176 force_xfer(udma133, ATA_SHIFT_UDMA + 6), 6177 force_xfer(udma/133, ATA_SHIFT_UDMA + 6), 6178 force_xfer(udma7, ATA_SHIFT_UDMA + 7), 6179 6180 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST), 6181 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST), 6182 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST), 6183 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE), 6184 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY), 6185 6186 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ), 6187 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM), 6188 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI), 6189 6190 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM), 6191 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM), 6192 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M), 6193 6194 force_horkage_onoff(dma, ATA_HORKAGE_NODMA), 6195 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR), 6196 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA), 6197 6198 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG), 6199 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG), 6200 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR), 6201 6202 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128), 6203 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024), 6204 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48), 6205 6206 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM), 6207 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER), 6208 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID), 6209 6210 force_horkage_on(disable, ATA_HORKAGE_DISABLE), 6211 }; 6212 6213 static int __init ata_parse_force_one(char **cur, 6214 struct ata_force_ent *force_ent, 6215 const char **reason) 6216 { 6217 char *start = *cur, *p = *cur; 6218 char *id, *val, *endp; 6219 const struct ata_force_param *match_fp = NULL; 6220 int nr_matches = 0, i; 6221 6222 /* find where this param ends and update *cur */ 6223 while (*p != '\0' && *p != ',') 6224 p++; 6225 6226 if (*p == '\0') 6227 *cur = p; 6228 else 6229 *cur = p + 1; 6230 6231 *p = '\0'; 6232 6233 /* parse */ 6234 p = strchr(start, ':'); 6235 if (!p) { 6236 val = strstrip(start); 6237 goto parse_val; 6238 } 6239 *p = '\0'; 6240 6241 id = strstrip(start); 6242 val = strstrip(p + 1); 6243 6244 /* parse id */ 6245 p = strchr(id, '.'); 6246 if (p) { 6247 *p++ = '\0'; 6248 force_ent->device = simple_strtoul(p, &endp, 10); 6249 if (p == endp || *endp != '\0') { 6250 *reason = "invalid device"; 6251 return -EINVAL; 6252 } 6253 } 6254 6255 force_ent->port = simple_strtoul(id, &endp, 10); 6256 if (id == endp || *endp != '\0') { 6257 *reason = "invalid port/link"; 6258 return -EINVAL; 6259 } 6260 6261 parse_val: 6262 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6263 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6264 const struct ata_force_param *fp = &force_tbl[i]; 6265 6266 if (strncasecmp(val, fp->name, strlen(val))) 6267 continue; 6268 6269 nr_matches++; 6270 match_fp = fp; 6271 6272 if (strcasecmp(val, fp->name) == 0) { 6273 nr_matches = 1; 6274 break; 6275 } 6276 } 6277 6278 if (!nr_matches) { 6279 *reason = "unknown value"; 6280 return -EINVAL; 6281 } 6282 if (nr_matches > 1) { 6283 *reason = "ambiguous value"; 6284 return -EINVAL; 6285 } 6286 6287 force_ent->param = *match_fp; 6288 6289 return 0; 6290 } 6291 6292 static void __init ata_parse_force_param(void) 6293 { 6294 int idx = 0, size = 1; 6295 int last_port = -1, last_device = -1; 6296 char *p, *cur, *next; 6297 6298 /* Calculate maximum number of params and allocate ata_force_tbl */ 6299 for (p = ata_force_param_buf; *p; p++) 6300 if (*p == ',') 6301 size++; 6302 6303 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6304 if (!ata_force_tbl) { 6305 printk(KERN_WARNING "ata: failed to extend force table, " 6306 "libata.force ignored\n"); 6307 return; 6308 } 6309 6310 /* parse and populate the table */ 6311 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6312 const char *reason = ""; 6313 struct ata_force_ent te = { .port = -1, .device = -1 }; 6314 6315 next = cur; 6316 if (ata_parse_force_one(&next, &te, &reason)) { 6317 printk(KERN_WARNING "ata: failed to parse force " 6318 "parameter \"%s\" (%s)\n", 6319 cur, reason); 6320 continue; 6321 } 6322 6323 if (te.port == -1) { 6324 te.port = last_port; 6325 te.device = last_device; 6326 } 6327 6328 ata_force_tbl[idx++] = te; 6329 6330 last_port = te.port; 6331 last_device = te.device; 6332 } 6333 6334 ata_force_tbl_size = idx; 6335 } 6336 6337 static void ata_free_force_param(void) 6338 { 6339 kfree(ata_force_tbl); 6340 } 6341 #else 6342 static inline void ata_parse_force_param(void) { } 6343 static inline void ata_free_force_param(void) { } 6344 #endif 6345 6346 static int __init ata_init(void) 6347 { 6348 int rc; 6349 6350 ata_parse_force_param(); 6351 6352 rc = ata_sff_init(); 6353 if (rc) { 6354 ata_free_force_param(); 6355 return rc; 6356 } 6357 6358 libata_transport_init(); 6359 ata_scsi_transport_template = ata_attach_transport(); 6360 if (!ata_scsi_transport_template) { 6361 ata_sff_exit(); 6362 rc = -ENOMEM; 6363 goto err_out; 6364 } 6365 6366 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6367 return 0; 6368 6369 err_out: 6370 return rc; 6371 } 6372 6373 static void __exit ata_exit(void) 6374 { 6375 ata_release_transport(ata_scsi_transport_template); 6376 libata_transport_exit(); 6377 ata_sff_exit(); 6378 ata_free_force_param(); 6379 } 6380 6381 subsys_initcall(ata_init); 6382 module_exit(ata_exit); 6383 6384 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6385 6386 int ata_ratelimit(void) 6387 { 6388 return __ratelimit(&ratelimit); 6389 } 6390 EXPORT_SYMBOL_GPL(ata_ratelimit); 6391 6392 /** 6393 * ata_msleep - ATA EH owner aware msleep 6394 * @ap: ATA port to attribute the sleep to 6395 * @msecs: duration to sleep in milliseconds 6396 * 6397 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6398 * ownership is released before going to sleep and reacquired 6399 * after the sleep is complete. IOW, other ports sharing the 6400 * @ap->host will be allowed to own the EH while this task is 6401 * sleeping. 6402 * 6403 * LOCKING: 6404 * Might sleep. 6405 */ 6406 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6407 { 6408 bool owns_eh = ap && ap->host->eh_owner == current; 6409 6410 if (owns_eh) 6411 ata_eh_release(ap); 6412 6413 if (msecs < 20) { 6414 unsigned long usecs = msecs * USEC_PER_MSEC; 6415 usleep_range(usecs, usecs + 50); 6416 } else { 6417 msleep(msecs); 6418 } 6419 6420 if (owns_eh) 6421 ata_eh_acquire(ap); 6422 } 6423 EXPORT_SYMBOL_GPL(ata_msleep); 6424 6425 /** 6426 * ata_wait_register - wait until register value changes 6427 * @ap: ATA port to wait register for, can be NULL 6428 * @reg: IO-mapped register 6429 * @mask: Mask to apply to read register value 6430 * @val: Wait condition 6431 * @interval: polling interval in milliseconds 6432 * @timeout: timeout in milliseconds 6433 * 6434 * Waiting for some bits of register to change is a common 6435 * operation for ATA controllers. This function reads 32bit LE 6436 * IO-mapped register @reg and tests for the following condition. 6437 * 6438 * (*@reg & mask) != val 6439 * 6440 * If the condition is met, it returns; otherwise, the process is 6441 * repeated after @interval_msec until timeout. 6442 * 6443 * LOCKING: 6444 * Kernel thread context (may sleep) 6445 * 6446 * RETURNS: 6447 * The final register value. 6448 */ 6449 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6450 unsigned long interval, unsigned long timeout) 6451 { 6452 unsigned long deadline; 6453 u32 tmp; 6454 6455 tmp = ioread32(reg); 6456 6457 /* Calculate timeout _after_ the first read to make sure 6458 * preceding writes reach the controller before starting to 6459 * eat away the timeout. 6460 */ 6461 deadline = ata_deadline(jiffies, timeout); 6462 6463 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6464 ata_msleep(ap, interval); 6465 tmp = ioread32(reg); 6466 } 6467 6468 return tmp; 6469 } 6470 EXPORT_SYMBOL_GPL(ata_wait_register); 6471 6472 /* 6473 * Dummy port_ops 6474 */ 6475 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6476 { 6477 return AC_ERR_SYSTEM; 6478 } 6479 6480 static void ata_dummy_error_handler(struct ata_port *ap) 6481 { 6482 /* truly dummy */ 6483 } 6484 6485 struct ata_port_operations ata_dummy_port_ops = { 6486 .qc_prep = ata_noop_qc_prep, 6487 .qc_issue = ata_dummy_qc_issue, 6488 .error_handler = ata_dummy_error_handler, 6489 .sched_eh = ata_std_sched_eh, 6490 .end_eh = ata_std_end_eh, 6491 }; 6492 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6493 6494 const struct ata_port_info ata_dummy_port_info = { 6495 .port_ops = &ata_dummy_port_ops, 6496 }; 6497 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6498 6499 void ata_print_version(const struct device *dev, const char *version) 6500 { 6501 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6502 } 6503 EXPORT_SYMBOL(ata_print_version); 6504 6505 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6506 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6507 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6508 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6509 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6510