xref: /openbmc/linux/drivers/ata/libata-core.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/driver-api/libata.rst
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
78 
79 #include "libata.h"
80 #include "libata-transport.h"
81 
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
84 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
85 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
86 
87 const struct ata_port_operations ata_base_port_ops = {
88 	.prereset		= ata_std_prereset,
89 	.postreset		= ata_std_postreset,
90 	.error_handler		= ata_std_error_handler,
91 	.sched_eh		= ata_std_sched_eh,
92 	.end_eh			= ata_std_end_eh,
93 };
94 
95 const struct ata_port_operations sata_port_ops = {
96 	.inherits		= &ata_base_port_ops,
97 
98 	.qc_defer		= ata_std_qc_defer,
99 	.hardreset		= sata_std_hardreset,
100 };
101 
102 static unsigned int ata_dev_init_params(struct ata_device *dev,
103 					u16 heads, u16 sectors);
104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105 static void ata_dev_xfermask(struct ata_device *dev);
106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107 
108 atomic_t ata_print_id = ATOMIC_INIT(0);
109 
110 struct ata_force_param {
111 	const char	*name;
112 	unsigned int	cbl;
113 	int		spd_limit;
114 	unsigned long	xfer_mask;
115 	unsigned int	horkage_on;
116 	unsigned int	horkage_off;
117 	unsigned int	lflags;
118 };
119 
120 struct ata_force_ent {
121 	int			port;
122 	int			device;
123 	struct ata_force_param	param;
124 };
125 
126 static struct ata_force_ent *ata_force_tbl;
127 static int ata_force_tbl_size;
128 
129 static char ata_force_param_buf[PAGE_SIZE] __initdata;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
133 
134 static int atapi_enabled = 1;
135 module_param(atapi_enabled, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137 
138 static int atapi_dmadir = 0;
139 module_param(atapi_dmadir, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141 
142 int atapi_passthru16 = 1;
143 module_param(atapi_passthru16, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145 
146 int libata_fua = 0;
147 module_param_named(fua, libata_fua, int, 0444);
148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149 
150 static int ata_ignore_hpa;
151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153 
154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155 module_param_named(dma, libata_dma_mask, int, 0444);
156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157 
158 static int ata_probe_timeout;
159 module_param(ata_probe_timeout, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161 
162 int libata_noacpi = 0;
163 module_param_named(noacpi, libata_noacpi, int, 0444);
164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165 
166 int libata_allow_tpm = 0;
167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169 
170 static int atapi_an;
171 module_param(atapi_an, int, 0444);
172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173 
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178 
179 
180 static bool ata_sstatus_online(u32 sstatus)
181 {
182 	return (sstatus & 0xf) == 0x3;
183 }
184 
185 /**
186  *	ata_link_next - link iteration helper
187  *	@link: the previous link, NULL to start
188  *	@ap: ATA port containing links to iterate
189  *	@mode: iteration mode, one of ATA_LITER_*
190  *
191  *	LOCKING:
192  *	Host lock or EH context.
193  *
194  *	RETURNS:
195  *	Pointer to the next link.
196  */
197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 			       enum ata_link_iter_mode mode)
199 {
200 	BUG_ON(mode != ATA_LITER_EDGE &&
201 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202 
203 	/* NULL link indicates start of iteration */
204 	if (!link)
205 		switch (mode) {
206 		case ATA_LITER_EDGE:
207 		case ATA_LITER_PMP_FIRST:
208 			if (sata_pmp_attached(ap))
209 				return ap->pmp_link;
210 			/* fall through */
211 		case ATA_LITER_HOST_FIRST:
212 			return &ap->link;
213 		}
214 
215 	/* we just iterated over the host link, what's next? */
216 	if (link == &ap->link)
217 		switch (mode) {
218 		case ATA_LITER_HOST_FIRST:
219 			if (sata_pmp_attached(ap))
220 				return ap->pmp_link;
221 			/* fall through */
222 		case ATA_LITER_PMP_FIRST:
223 			if (unlikely(ap->slave_link))
224 				return ap->slave_link;
225 			/* fall through */
226 		case ATA_LITER_EDGE:
227 			return NULL;
228 		}
229 
230 	/* slave_link excludes PMP */
231 	if (unlikely(link == ap->slave_link))
232 		return NULL;
233 
234 	/* we were over a PMP link */
235 	if (++link < ap->pmp_link + ap->nr_pmp_links)
236 		return link;
237 
238 	if (mode == ATA_LITER_PMP_FIRST)
239 		return &ap->link;
240 
241 	return NULL;
242 }
243 
244 /**
245  *	ata_dev_next - device iteration helper
246  *	@dev: the previous device, NULL to start
247  *	@link: ATA link containing devices to iterate
248  *	@mode: iteration mode, one of ATA_DITER_*
249  *
250  *	LOCKING:
251  *	Host lock or EH context.
252  *
253  *	RETURNS:
254  *	Pointer to the next device.
255  */
256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 				enum ata_dev_iter_mode mode)
258 {
259 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261 
262 	/* NULL dev indicates start of iteration */
263 	if (!dev)
264 		switch (mode) {
265 		case ATA_DITER_ENABLED:
266 		case ATA_DITER_ALL:
267 			dev = link->device;
268 			goto check;
269 		case ATA_DITER_ENABLED_REVERSE:
270 		case ATA_DITER_ALL_REVERSE:
271 			dev = link->device + ata_link_max_devices(link) - 1;
272 			goto check;
273 		}
274 
275  next:
276 	/* move to the next one */
277 	switch (mode) {
278 	case ATA_DITER_ENABLED:
279 	case ATA_DITER_ALL:
280 		if (++dev < link->device + ata_link_max_devices(link))
281 			goto check;
282 		return NULL;
283 	case ATA_DITER_ENABLED_REVERSE:
284 	case ATA_DITER_ALL_REVERSE:
285 		if (--dev >= link->device)
286 			goto check;
287 		return NULL;
288 	}
289 
290  check:
291 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 	    !ata_dev_enabled(dev))
293 		goto next;
294 	return dev;
295 }
296 
297 /**
298  *	ata_dev_phys_link - find physical link for a device
299  *	@dev: ATA device to look up physical link for
300  *
301  *	Look up physical link which @dev is attached to.  Note that
302  *	this is different from @dev->link only when @dev is on slave
303  *	link.  For all other cases, it's the same as @dev->link.
304  *
305  *	LOCKING:
306  *	Don't care.
307  *
308  *	RETURNS:
309  *	Pointer to the found physical link.
310  */
311 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312 {
313 	struct ata_port *ap = dev->link->ap;
314 
315 	if (!ap->slave_link)
316 		return dev->link;
317 	if (!dev->devno)
318 		return &ap->link;
319 	return ap->slave_link;
320 }
321 
322 /**
323  *	ata_force_cbl - force cable type according to libata.force
324  *	@ap: ATA port of interest
325  *
326  *	Force cable type according to libata.force and whine about it.
327  *	The last entry which has matching port number is used, so it
328  *	can be specified as part of device force parameters.  For
329  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330  *	same effect.
331  *
332  *	LOCKING:
333  *	EH context.
334  */
335 void ata_force_cbl(struct ata_port *ap)
336 {
337 	int i;
338 
339 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 		const struct ata_force_ent *fe = &ata_force_tbl[i];
341 
342 		if (fe->port != -1 && fe->port != ap->print_id)
343 			continue;
344 
345 		if (fe->param.cbl == ATA_CBL_NONE)
346 			continue;
347 
348 		ap->cbl = fe->param.cbl;
349 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 		return;
351 	}
352 }
353 
354 /**
355  *	ata_force_link_limits - force link limits according to libata.force
356  *	@link: ATA link of interest
357  *
358  *	Force link flags and SATA spd limit according to libata.force
359  *	and whine about it.  When only the port part is specified
360  *	(e.g. 1:), the limit applies to all links connected to both
361  *	the host link and all fan-out ports connected via PMP.  If the
362  *	device part is specified as 0 (e.g. 1.00:), it specifies the
363  *	first fan-out link not the host link.  Device number 15 always
364  *	points to the host link whether PMP is attached or not.  If the
365  *	controller has slave link, device number 16 points to it.
366  *
367  *	LOCKING:
368  *	EH context.
369  */
370 static void ata_force_link_limits(struct ata_link *link)
371 {
372 	bool did_spd = false;
373 	int linkno = link->pmp;
374 	int i;
375 
376 	if (ata_is_host_link(link))
377 		linkno += 15;
378 
379 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 		const struct ata_force_ent *fe = &ata_force_tbl[i];
381 
382 		if (fe->port != -1 && fe->port != link->ap->print_id)
383 			continue;
384 
385 		if (fe->device != -1 && fe->device != linkno)
386 			continue;
387 
388 		/* only honor the first spd limit */
389 		if (!did_spd && fe->param.spd_limit) {
390 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 					fe->param.name);
393 			did_spd = true;
394 		}
395 
396 		/* let lflags stack */
397 		if (fe->param.lflags) {
398 			link->flags |= fe->param.lflags;
399 			ata_link_notice(link,
400 					"FORCE: link flag 0x%x forced -> 0x%x\n",
401 					fe->param.lflags, link->flags);
402 		}
403 	}
404 }
405 
406 /**
407  *	ata_force_xfermask - force xfermask according to libata.force
408  *	@dev: ATA device of interest
409  *
410  *	Force xfer_mask according to libata.force and whine about it.
411  *	For consistency with link selection, device number 15 selects
412  *	the first device connected to the host link.
413  *
414  *	LOCKING:
415  *	EH context.
416  */
417 static void ata_force_xfermask(struct ata_device *dev)
418 {
419 	int devno = dev->link->pmp + dev->devno;
420 	int alt_devno = devno;
421 	int i;
422 
423 	/* allow n.15/16 for devices attached to host port */
424 	if (ata_is_host_link(dev->link))
425 		alt_devno += 15;
426 
427 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 		const struct ata_force_ent *fe = &ata_force_tbl[i];
429 		unsigned long pio_mask, mwdma_mask, udma_mask;
430 
431 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 			continue;
433 
434 		if (fe->device != -1 && fe->device != devno &&
435 		    fe->device != alt_devno)
436 			continue;
437 
438 		if (!fe->param.xfer_mask)
439 			continue;
440 
441 		ata_unpack_xfermask(fe->param.xfer_mask,
442 				    &pio_mask, &mwdma_mask, &udma_mask);
443 		if (udma_mask)
444 			dev->udma_mask = udma_mask;
445 		else if (mwdma_mask) {
446 			dev->udma_mask = 0;
447 			dev->mwdma_mask = mwdma_mask;
448 		} else {
449 			dev->udma_mask = 0;
450 			dev->mwdma_mask = 0;
451 			dev->pio_mask = pio_mask;
452 		}
453 
454 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 			       fe->param.name);
456 		return;
457 	}
458 }
459 
460 /**
461  *	ata_force_horkage - force horkage according to libata.force
462  *	@dev: ATA device of interest
463  *
464  *	Force horkage according to libata.force and whine about it.
465  *	For consistency with link selection, device number 15 selects
466  *	the first device connected to the host link.
467  *
468  *	LOCKING:
469  *	EH context.
470  */
471 static void ata_force_horkage(struct ata_device *dev)
472 {
473 	int devno = dev->link->pmp + dev->devno;
474 	int alt_devno = devno;
475 	int i;
476 
477 	/* allow n.15/16 for devices attached to host port */
478 	if (ata_is_host_link(dev->link))
479 		alt_devno += 15;
480 
481 	for (i = 0; i < ata_force_tbl_size; i++) {
482 		const struct ata_force_ent *fe = &ata_force_tbl[i];
483 
484 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 			continue;
486 
487 		if (fe->device != -1 && fe->device != devno &&
488 		    fe->device != alt_devno)
489 			continue;
490 
491 		if (!(~dev->horkage & fe->param.horkage_on) &&
492 		    !(dev->horkage & fe->param.horkage_off))
493 			continue;
494 
495 		dev->horkage |= fe->param.horkage_on;
496 		dev->horkage &= ~fe->param.horkage_off;
497 
498 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 			       fe->param.name);
500 	}
501 }
502 
503 /**
504  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505  *	@opcode: SCSI opcode
506  *
507  *	Determine ATAPI command type from @opcode.
508  *
509  *	LOCKING:
510  *	None.
511  *
512  *	RETURNS:
513  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514  */
515 int atapi_cmd_type(u8 opcode)
516 {
517 	switch (opcode) {
518 	case GPCMD_READ_10:
519 	case GPCMD_READ_12:
520 		return ATAPI_READ;
521 
522 	case GPCMD_WRITE_10:
523 	case GPCMD_WRITE_12:
524 	case GPCMD_WRITE_AND_VERIFY_10:
525 		return ATAPI_WRITE;
526 
527 	case GPCMD_READ_CD:
528 	case GPCMD_READ_CD_MSF:
529 		return ATAPI_READ_CD;
530 
531 	case ATA_16:
532 	case ATA_12:
533 		if (atapi_passthru16)
534 			return ATAPI_PASS_THRU;
535 		/* fall thru */
536 	default:
537 		return ATAPI_MISC;
538 	}
539 }
540 
541 /**
542  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543  *	@tf: Taskfile to convert
544  *	@pmp: Port multiplier port
545  *	@is_cmd: This FIS is for command
546  *	@fis: Buffer into which data will output
547  *
548  *	Converts a standard ATA taskfile to a Serial ATA
549  *	FIS structure (Register - Host to Device).
550  *
551  *	LOCKING:
552  *	Inherited from caller.
553  */
554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555 {
556 	fis[0] = 0x27;			/* Register - Host to Device FIS */
557 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
558 	if (is_cmd)
559 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
560 
561 	fis[2] = tf->command;
562 	fis[3] = tf->feature;
563 
564 	fis[4] = tf->lbal;
565 	fis[5] = tf->lbam;
566 	fis[6] = tf->lbah;
567 	fis[7] = tf->device;
568 
569 	fis[8] = tf->hob_lbal;
570 	fis[9] = tf->hob_lbam;
571 	fis[10] = tf->hob_lbah;
572 	fis[11] = tf->hob_feature;
573 
574 	fis[12] = tf->nsect;
575 	fis[13] = tf->hob_nsect;
576 	fis[14] = 0;
577 	fis[15] = tf->ctl;
578 
579 	fis[16] = tf->auxiliary & 0xff;
580 	fis[17] = (tf->auxiliary >> 8) & 0xff;
581 	fis[18] = (tf->auxiliary >> 16) & 0xff;
582 	fis[19] = (tf->auxiliary >> 24) & 0xff;
583 }
584 
585 /**
586  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587  *	@fis: Buffer from which data will be input
588  *	@tf: Taskfile to output
589  *
590  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
591  *
592  *	LOCKING:
593  *	Inherited from caller.
594  */
595 
596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597 {
598 	tf->command	= fis[2];	/* status */
599 	tf->feature	= fis[3];	/* error */
600 
601 	tf->lbal	= fis[4];
602 	tf->lbam	= fis[5];
603 	tf->lbah	= fis[6];
604 	tf->device	= fis[7];
605 
606 	tf->hob_lbal	= fis[8];
607 	tf->hob_lbam	= fis[9];
608 	tf->hob_lbah	= fis[10];
609 
610 	tf->nsect	= fis[12];
611 	tf->hob_nsect	= fis[13];
612 }
613 
614 static const u8 ata_rw_cmds[] = {
615 	/* pio multi */
616 	ATA_CMD_READ_MULTI,
617 	ATA_CMD_WRITE_MULTI,
618 	ATA_CMD_READ_MULTI_EXT,
619 	ATA_CMD_WRITE_MULTI_EXT,
620 	0,
621 	0,
622 	0,
623 	ATA_CMD_WRITE_MULTI_FUA_EXT,
624 	/* pio */
625 	ATA_CMD_PIO_READ,
626 	ATA_CMD_PIO_WRITE,
627 	ATA_CMD_PIO_READ_EXT,
628 	ATA_CMD_PIO_WRITE_EXT,
629 	0,
630 	0,
631 	0,
632 	0,
633 	/* dma */
634 	ATA_CMD_READ,
635 	ATA_CMD_WRITE,
636 	ATA_CMD_READ_EXT,
637 	ATA_CMD_WRITE_EXT,
638 	0,
639 	0,
640 	0,
641 	ATA_CMD_WRITE_FUA_EXT
642 };
643 
644 /**
645  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
646  *	@tf: command to examine and configure
647  *	@dev: device tf belongs to
648  *
649  *	Examine the device configuration and tf->flags to calculate
650  *	the proper read/write commands and protocol to use.
651  *
652  *	LOCKING:
653  *	caller.
654  */
655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656 {
657 	u8 cmd;
658 
659 	int index, fua, lba48, write;
660 
661 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664 
665 	if (dev->flags & ATA_DFLAG_PIO) {
666 		tf->protocol = ATA_PROT_PIO;
667 		index = dev->multi_count ? 0 : 8;
668 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 		/* Unable to use DMA due to host limitation */
670 		tf->protocol = ATA_PROT_PIO;
671 		index = dev->multi_count ? 0 : 8;
672 	} else {
673 		tf->protocol = ATA_PROT_DMA;
674 		index = 16;
675 	}
676 
677 	cmd = ata_rw_cmds[index + fua + lba48 + write];
678 	if (cmd) {
679 		tf->command = cmd;
680 		return 0;
681 	}
682 	return -1;
683 }
684 
685 /**
686  *	ata_tf_read_block - Read block address from ATA taskfile
687  *	@tf: ATA taskfile of interest
688  *	@dev: ATA device @tf belongs to
689  *
690  *	LOCKING:
691  *	None.
692  *
693  *	Read block address from @tf.  This function can handle all
694  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
695  *	flags select the address format to use.
696  *
697  *	RETURNS:
698  *	Block address read from @tf.
699  */
700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701 {
702 	u64 block = 0;
703 
704 	if (tf->flags & ATA_TFLAG_LBA) {
705 		if (tf->flags & ATA_TFLAG_LBA48) {
706 			block |= (u64)tf->hob_lbah << 40;
707 			block |= (u64)tf->hob_lbam << 32;
708 			block |= (u64)tf->hob_lbal << 24;
709 		} else
710 			block |= (tf->device & 0xf) << 24;
711 
712 		block |= tf->lbah << 16;
713 		block |= tf->lbam << 8;
714 		block |= tf->lbal;
715 	} else {
716 		u32 cyl, head, sect;
717 
718 		cyl = tf->lbam | (tf->lbah << 8);
719 		head = tf->device & 0xf;
720 		sect = tf->lbal;
721 
722 		if (!sect) {
723 			ata_dev_warn(dev,
724 				     "device reported invalid CHS sector 0\n");
725 			return U64_MAX;
726 		}
727 
728 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 	}
730 
731 	return block;
732 }
733 
734 /**
735  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
736  *	@tf: Target ATA taskfile
737  *	@dev: ATA device @tf belongs to
738  *	@block: Block address
739  *	@n_block: Number of blocks
740  *	@tf_flags: RW/FUA etc...
741  *	@tag: tag
742  *	@class: IO priority class
743  *
744  *	LOCKING:
745  *	None.
746  *
747  *	Build ATA taskfile @tf for read/write request described by
748  *	@block, @n_block, @tf_flags and @tag on @dev.
749  *
750  *	RETURNS:
751  *
752  *	0 on success, -ERANGE if the request is too large for @dev,
753  *	-EINVAL if the request is invalid.
754  */
755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 		    u64 block, u32 n_block, unsigned int tf_flags,
757 		    unsigned int tag, int class)
758 {
759 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 	tf->flags |= tf_flags;
761 
762 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
763 		/* yay, NCQ */
764 		if (!lba_48_ok(block, n_block))
765 			return -ERANGE;
766 
767 		tf->protocol = ATA_PROT_NCQ;
768 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769 
770 		if (tf->flags & ATA_TFLAG_WRITE)
771 			tf->command = ATA_CMD_FPDMA_WRITE;
772 		else
773 			tf->command = ATA_CMD_FPDMA_READ;
774 
775 		tf->nsect = tag << 3;
776 		tf->hob_feature = (n_block >> 8) & 0xff;
777 		tf->feature = n_block & 0xff;
778 
779 		tf->hob_lbah = (block >> 40) & 0xff;
780 		tf->hob_lbam = (block >> 32) & 0xff;
781 		tf->hob_lbal = (block >> 24) & 0xff;
782 		tf->lbah = (block >> 16) & 0xff;
783 		tf->lbam = (block >> 8) & 0xff;
784 		tf->lbal = block & 0xff;
785 
786 		tf->device = ATA_LBA;
787 		if (tf->flags & ATA_TFLAG_FUA)
788 			tf->device |= 1 << 7;
789 
790 		if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
791 			if (class == IOPRIO_CLASS_RT)
792 				tf->hob_nsect |= ATA_PRIO_HIGH <<
793 						 ATA_SHIFT_PRIO;
794 		}
795 	} else if (dev->flags & ATA_DFLAG_LBA) {
796 		tf->flags |= ATA_TFLAG_LBA;
797 
798 		if (lba_28_ok(block, n_block)) {
799 			/* use LBA28 */
800 			tf->device |= (block >> 24) & 0xf;
801 		} else if (lba_48_ok(block, n_block)) {
802 			if (!(dev->flags & ATA_DFLAG_LBA48))
803 				return -ERANGE;
804 
805 			/* use LBA48 */
806 			tf->flags |= ATA_TFLAG_LBA48;
807 
808 			tf->hob_nsect = (n_block >> 8) & 0xff;
809 
810 			tf->hob_lbah = (block >> 40) & 0xff;
811 			tf->hob_lbam = (block >> 32) & 0xff;
812 			tf->hob_lbal = (block >> 24) & 0xff;
813 		} else
814 			/* request too large even for LBA48 */
815 			return -ERANGE;
816 
817 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 			return -EINVAL;
819 
820 		tf->nsect = n_block & 0xff;
821 
822 		tf->lbah = (block >> 16) & 0xff;
823 		tf->lbam = (block >> 8) & 0xff;
824 		tf->lbal = block & 0xff;
825 
826 		tf->device |= ATA_LBA;
827 	} else {
828 		/* CHS */
829 		u32 sect, head, cyl, track;
830 
831 		/* The request -may- be too large for CHS addressing. */
832 		if (!lba_28_ok(block, n_block))
833 			return -ERANGE;
834 
835 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 			return -EINVAL;
837 
838 		/* Convert LBA to CHS */
839 		track = (u32)block / dev->sectors;
840 		cyl   = track / dev->heads;
841 		head  = track % dev->heads;
842 		sect  = (u32)block % dev->sectors + 1;
843 
844 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 			(u32)block, track, cyl, head, sect);
846 
847 		/* Check whether the converted CHS can fit.
848 		   Cylinder: 0-65535
849 		   Head: 0-15
850 		   Sector: 1-255*/
851 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 			return -ERANGE;
853 
854 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 		tf->lbal = sect;
856 		tf->lbam = cyl;
857 		tf->lbah = cyl >> 8;
858 		tf->device |= head;
859 	}
860 
861 	return 0;
862 }
863 
864 /**
865  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866  *	@pio_mask: pio_mask
867  *	@mwdma_mask: mwdma_mask
868  *	@udma_mask: udma_mask
869  *
870  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871  *	unsigned int xfer_mask.
872  *
873  *	LOCKING:
874  *	None.
875  *
876  *	RETURNS:
877  *	Packed xfer_mask.
878  */
879 unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 				unsigned long mwdma_mask,
881 				unsigned long udma_mask)
882 {
883 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886 }
887 
888 /**
889  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890  *	@xfer_mask: xfer_mask to unpack
891  *	@pio_mask: resulting pio_mask
892  *	@mwdma_mask: resulting mwdma_mask
893  *	@udma_mask: resulting udma_mask
894  *
895  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896  *	Any NULL destination masks will be ignored.
897  */
898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
900 {
901 	if (pio_mask)
902 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 	if (mwdma_mask)
904 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 	if (udma_mask)
906 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907 }
908 
909 static const struct ata_xfer_ent {
910 	int shift, bits;
911 	u8 base;
912 } ata_xfer_tbl[] = {
913 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
916 	{ -1, },
917 };
918 
919 /**
920  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921  *	@xfer_mask: xfer_mask of interest
922  *
923  *	Return matching XFER_* value for @xfer_mask.  Only the highest
924  *	bit of @xfer_mask is considered.
925  *
926  *	LOCKING:
927  *	None.
928  *
929  *	RETURNS:
930  *	Matching XFER_* value, 0xff if no match found.
931  */
932 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
933 {
934 	int highbit = fls(xfer_mask) - 1;
935 	const struct ata_xfer_ent *ent;
936 
937 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 			return ent->base + highbit - ent->shift;
940 	return 0xff;
941 }
942 
943 /**
944  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945  *	@xfer_mode: XFER_* of interest
946  *
947  *	Return matching xfer_mask for @xfer_mode.
948  *
949  *	LOCKING:
950  *	None.
951  *
952  *	RETURNS:
953  *	Matching xfer_mask, 0 if no match found.
954  */
955 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
956 {
957 	const struct ata_xfer_ent *ent;
958 
959 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 				& ~((1 << ent->shift) - 1);
963 	return 0;
964 }
965 
966 /**
967  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968  *	@xfer_mode: XFER_* of interest
969  *
970  *	Return matching xfer_shift for @xfer_mode.
971  *
972  *	LOCKING:
973  *	None.
974  *
975  *	RETURNS:
976  *	Matching xfer_shift, -1 if no match found.
977  */
978 int ata_xfer_mode2shift(unsigned long xfer_mode)
979 {
980 	const struct ata_xfer_ent *ent;
981 
982 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 			return ent->shift;
985 	return -1;
986 }
987 
988 /**
989  *	ata_mode_string - convert xfer_mask to string
990  *	@xfer_mask: mask of bits supported; only highest bit counts.
991  *
992  *	Determine string which represents the highest speed
993  *	(highest bit in @modemask).
994  *
995  *	LOCKING:
996  *	None.
997  *
998  *	RETURNS:
999  *	Constant C string representing highest speed listed in
1000  *	@mode_mask, or the constant C string "<n/a>".
1001  */
1002 const char *ata_mode_string(unsigned long xfer_mask)
1003 {
1004 	static const char * const xfer_mode_str[] = {
1005 		"PIO0",
1006 		"PIO1",
1007 		"PIO2",
1008 		"PIO3",
1009 		"PIO4",
1010 		"PIO5",
1011 		"PIO6",
1012 		"MWDMA0",
1013 		"MWDMA1",
1014 		"MWDMA2",
1015 		"MWDMA3",
1016 		"MWDMA4",
1017 		"UDMA/16",
1018 		"UDMA/25",
1019 		"UDMA/33",
1020 		"UDMA/44",
1021 		"UDMA/66",
1022 		"UDMA/100",
1023 		"UDMA/133",
1024 		"UDMA7",
1025 	};
1026 	int highbit;
1027 
1028 	highbit = fls(xfer_mask) - 1;
1029 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 		return xfer_mode_str[highbit];
1031 	return "<n/a>";
1032 }
1033 
1034 const char *sata_spd_string(unsigned int spd)
1035 {
1036 	static const char * const spd_str[] = {
1037 		"1.5 Gbps",
1038 		"3.0 Gbps",
1039 		"6.0 Gbps",
1040 	};
1041 
1042 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 		return "<unknown>";
1044 	return spd_str[spd - 1];
1045 }
1046 
1047 /**
1048  *	ata_dev_classify - determine device type based on ATA-spec signature
1049  *	@tf: ATA taskfile register set for device to be identified
1050  *
1051  *	Determine from taskfile register contents whether a device is
1052  *	ATA or ATAPI, as per "Signature and persistence" section
1053  *	of ATA/PI spec (volume 1, sect 5.14).
1054  *
1055  *	LOCKING:
1056  *	None.
1057  *
1058  *	RETURNS:
1059  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061  */
1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063 {
1064 	/* Apple's open source Darwin code hints that some devices only
1065 	 * put a proper signature into the LBA mid/high registers,
1066 	 * So, we only check those.  It's sufficient for uniqueness.
1067 	 *
1068 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1071 	 * spec has never mentioned about using different signatures
1072 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1073 	 * Multiplier specification began to use 0x69/0x96 to identify
1074 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 	 * 0x69/0x96 shortly and described them as reserved for
1077 	 * SerialATA.
1078 	 *
1079 	 * We follow the current spec and consider that 0x69/0x96
1080 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 	 * SEMB signature.  This is worked around in
1083 	 * ata_dev_read_id().
1084 	 */
1085 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086 		DPRINTK("found ATA device by sig\n");
1087 		return ATA_DEV_ATA;
1088 	}
1089 
1090 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091 		DPRINTK("found ATAPI device by sig\n");
1092 		return ATA_DEV_ATAPI;
1093 	}
1094 
1095 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 		DPRINTK("found PMP device by sig\n");
1097 		return ATA_DEV_PMP;
1098 	}
1099 
1100 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 		return ATA_DEV_SEMB;
1103 	}
1104 
1105 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 		DPRINTK("found ZAC device by sig\n");
1107 		return ATA_DEV_ZAC;
1108 	}
1109 
1110 	DPRINTK("unknown device\n");
1111 	return ATA_DEV_UNKNOWN;
1112 }
1113 
1114 /**
1115  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1116  *	@id: IDENTIFY DEVICE results we will examine
1117  *	@s: string into which data is output
1118  *	@ofs: offset into identify device page
1119  *	@len: length of string to return. must be an even number.
1120  *
1121  *	The strings in the IDENTIFY DEVICE page are broken up into
1122  *	16-bit chunks.  Run through the string, and output each
1123  *	8-bit chunk linearly, regardless of platform.
1124  *
1125  *	LOCKING:
1126  *	caller.
1127  */
1128 
1129 void ata_id_string(const u16 *id, unsigned char *s,
1130 		   unsigned int ofs, unsigned int len)
1131 {
1132 	unsigned int c;
1133 
1134 	BUG_ON(len & 1);
1135 
1136 	while (len > 0) {
1137 		c = id[ofs] >> 8;
1138 		*s = c;
1139 		s++;
1140 
1141 		c = id[ofs] & 0xff;
1142 		*s = c;
1143 		s++;
1144 
1145 		ofs++;
1146 		len -= 2;
1147 	}
1148 }
1149 
1150 /**
1151  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152  *	@id: IDENTIFY DEVICE results we will examine
1153  *	@s: string into which data is output
1154  *	@ofs: offset into identify device page
1155  *	@len: length of string to return. must be an odd number.
1156  *
1157  *	This function is identical to ata_id_string except that it
1158  *	trims trailing spaces and terminates the resulting string with
1159  *	null.  @len must be actual maximum length (even number) + 1.
1160  *
1161  *	LOCKING:
1162  *	caller.
1163  */
1164 void ata_id_c_string(const u16 *id, unsigned char *s,
1165 		     unsigned int ofs, unsigned int len)
1166 {
1167 	unsigned char *p;
1168 
1169 	ata_id_string(id, s, ofs, len - 1);
1170 
1171 	p = s + strnlen(s, len - 1);
1172 	while (p > s && p[-1] == ' ')
1173 		p--;
1174 	*p = '\0';
1175 }
1176 
1177 static u64 ata_id_n_sectors(const u16 *id)
1178 {
1179 	if (ata_id_has_lba(id)) {
1180 		if (ata_id_has_lba48(id))
1181 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182 		else
1183 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184 	} else {
1185 		if (ata_id_current_chs_valid(id))
1186 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 			       id[ATA_ID_CUR_SECTORS];
1188 		else
1189 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 			       id[ATA_ID_SECTORS];
1191 	}
1192 }
1193 
1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195 {
1196 	u64 sectors = 0;
1197 
1198 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201 	sectors |= (tf->lbah & 0xff) << 16;
1202 	sectors |= (tf->lbam & 0xff) << 8;
1203 	sectors |= (tf->lbal & 0xff);
1204 
1205 	return sectors;
1206 }
1207 
1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209 {
1210 	u64 sectors = 0;
1211 
1212 	sectors |= (tf->device & 0x0f) << 24;
1213 	sectors |= (tf->lbah & 0xff) << 16;
1214 	sectors |= (tf->lbam & 0xff) << 8;
1215 	sectors |= (tf->lbal & 0xff);
1216 
1217 	return sectors;
1218 }
1219 
1220 /**
1221  *	ata_read_native_max_address - Read native max address
1222  *	@dev: target device
1223  *	@max_sectors: out parameter for the result native max address
1224  *
1225  *	Perform an LBA48 or LBA28 native size query upon the device in
1226  *	question.
1227  *
1228  *	RETURNS:
1229  *	0 on success, -EACCES if command is aborted by the drive.
1230  *	-EIO on other errors.
1231  */
1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233 {
1234 	unsigned int err_mask;
1235 	struct ata_taskfile tf;
1236 	int lba48 = ata_id_has_lba48(dev->id);
1237 
1238 	ata_tf_init(dev, &tf);
1239 
1240 	/* always clear all address registers */
1241 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242 
1243 	if (lba48) {
1244 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 		tf.flags |= ATA_TFLAG_LBA48;
1246 	} else
1247 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1248 
1249 	tf.protocol = ATA_PROT_NODATA;
1250 	tf.device |= ATA_LBA;
1251 
1252 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 	if (err_mask) {
1254 		ata_dev_warn(dev,
1255 			     "failed to read native max address (err_mask=0x%x)\n",
1256 			     err_mask);
1257 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 			return -EACCES;
1259 		return -EIO;
1260 	}
1261 
1262 	if (lba48)
1263 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1264 	else
1265 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1266 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267 		(*max_sectors)--;
1268 	return 0;
1269 }
1270 
1271 /**
1272  *	ata_set_max_sectors - Set max sectors
1273  *	@dev: target device
1274  *	@new_sectors: new max sectors value to set for the device
1275  *
1276  *	Set max sectors of @dev to @new_sectors.
1277  *
1278  *	RETURNS:
1279  *	0 on success, -EACCES if command is aborted or denied (due to
1280  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1281  *	errors.
1282  */
1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284 {
1285 	unsigned int err_mask;
1286 	struct ata_taskfile tf;
1287 	int lba48 = ata_id_has_lba48(dev->id);
1288 
1289 	new_sectors--;
1290 
1291 	ata_tf_init(dev, &tf);
1292 
1293 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294 
1295 	if (lba48) {
1296 		tf.command = ATA_CMD_SET_MAX_EXT;
1297 		tf.flags |= ATA_TFLAG_LBA48;
1298 
1299 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302 	} else {
1303 		tf.command = ATA_CMD_SET_MAX;
1304 
1305 		tf.device |= (new_sectors >> 24) & 0xf;
1306 	}
1307 
1308 	tf.protocol = ATA_PROT_NODATA;
1309 	tf.device |= ATA_LBA;
1310 
1311 	tf.lbal = (new_sectors >> 0) & 0xff;
1312 	tf.lbam = (new_sectors >> 8) & 0xff;
1313 	tf.lbah = (new_sectors >> 16) & 0xff;
1314 
1315 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 	if (err_mask) {
1317 		ata_dev_warn(dev,
1318 			     "failed to set max address (err_mask=0x%x)\n",
1319 			     err_mask);
1320 		if (err_mask == AC_ERR_DEV &&
1321 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 			return -EACCES;
1323 		return -EIO;
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  *	ata_hpa_resize		-	Resize a device with an HPA set
1331  *	@dev: Device to resize
1332  *
1333  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334  *	it if required to the full size of the media. The caller must check
1335  *	the drive has the HPA feature set enabled.
1336  *
1337  *	RETURNS:
1338  *	0 on success, -errno on failure.
1339  */
1340 static int ata_hpa_resize(struct ata_device *dev)
1341 {
1342 	struct ata_eh_context *ehc = &dev->link->eh_context;
1343 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345 	u64 sectors = ata_id_n_sectors(dev->id);
1346 	u64 native_sectors;
1347 	int rc;
1348 
1349 	/* do we need to do it? */
1350 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353 		return 0;
1354 
1355 	/* read native max address */
1356 	rc = ata_read_native_max_address(dev, &native_sectors);
1357 	if (rc) {
1358 		/* If device aborted the command or HPA isn't going to
1359 		 * be unlocked, skip HPA resizing.
1360 		 */
1361 		if (rc == -EACCES || !unlock_hpa) {
1362 			ata_dev_warn(dev,
1363 				     "HPA support seems broken, skipping HPA handling\n");
1364 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365 
1366 			/* we can continue if device aborted the command */
1367 			if (rc == -EACCES)
1368 				rc = 0;
1369 		}
1370 
1371 		return rc;
1372 	}
1373 	dev->n_native_sectors = native_sectors;
1374 
1375 	/* nothing to do? */
1376 	if (native_sectors <= sectors || !unlock_hpa) {
1377 		if (!print_info || native_sectors == sectors)
1378 			return 0;
1379 
1380 		if (native_sectors > sectors)
1381 			ata_dev_info(dev,
1382 				"HPA detected: current %llu, native %llu\n",
1383 				(unsigned long long)sectors,
1384 				(unsigned long long)native_sectors);
1385 		else if (native_sectors < sectors)
1386 			ata_dev_warn(dev,
1387 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1388 				(unsigned long long)native_sectors,
1389 				(unsigned long long)sectors);
1390 		return 0;
1391 	}
1392 
1393 	/* let's unlock HPA */
1394 	rc = ata_set_max_sectors(dev, native_sectors);
1395 	if (rc == -EACCES) {
1396 		/* if device aborted the command, skip HPA resizing */
1397 		ata_dev_warn(dev,
1398 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 			     (unsigned long long)sectors,
1400 			     (unsigned long long)native_sectors);
1401 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 		return 0;
1403 	} else if (rc)
1404 		return rc;
1405 
1406 	/* re-read IDENTIFY data */
1407 	rc = ata_dev_reread_id(dev, 0);
1408 	if (rc) {
1409 		ata_dev_err(dev,
1410 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1411 		return rc;
1412 	}
1413 
1414 	if (print_info) {
1415 		u64 new_sectors = ata_id_n_sectors(dev->id);
1416 		ata_dev_info(dev,
1417 			"HPA unlocked: %llu -> %llu, native %llu\n",
1418 			(unsigned long long)sectors,
1419 			(unsigned long long)new_sectors,
1420 			(unsigned long long)native_sectors);
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 /**
1427  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1428  *	@id: IDENTIFY DEVICE page to dump
1429  *
1430  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1431  *	page.
1432  *
1433  *	LOCKING:
1434  *	caller.
1435  */
1436 
1437 static inline void ata_dump_id(const u16 *id)
1438 {
1439 	DPRINTK("49==0x%04x  "
1440 		"53==0x%04x  "
1441 		"63==0x%04x  "
1442 		"64==0x%04x  "
1443 		"75==0x%04x  \n",
1444 		id[49],
1445 		id[53],
1446 		id[63],
1447 		id[64],
1448 		id[75]);
1449 	DPRINTK("80==0x%04x  "
1450 		"81==0x%04x  "
1451 		"82==0x%04x  "
1452 		"83==0x%04x  "
1453 		"84==0x%04x  \n",
1454 		id[80],
1455 		id[81],
1456 		id[82],
1457 		id[83],
1458 		id[84]);
1459 	DPRINTK("88==0x%04x  "
1460 		"93==0x%04x\n",
1461 		id[88],
1462 		id[93]);
1463 }
1464 
1465 /**
1466  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467  *	@id: IDENTIFY data to compute xfer mask from
1468  *
1469  *	Compute the xfermask for this device. This is not as trivial
1470  *	as it seems if we must consider early devices correctly.
1471  *
1472  *	FIXME: pre IDE drive timing (do we care ?).
1473  *
1474  *	LOCKING:
1475  *	None.
1476  *
1477  *	RETURNS:
1478  *	Computed xfermask
1479  */
1480 unsigned long ata_id_xfermask(const u16 *id)
1481 {
1482 	unsigned long pio_mask, mwdma_mask, udma_mask;
1483 
1484 	/* Usual case. Word 53 indicates word 64 is valid */
1485 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 		pio_mask <<= 3;
1488 		pio_mask |= 0x7;
1489 	} else {
1490 		/* If word 64 isn't valid then Word 51 high byte holds
1491 		 * the PIO timing number for the maximum. Turn it into
1492 		 * a mask.
1493 		 */
1494 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495 		if (mode < 5)	/* Valid PIO range */
1496 			pio_mask = (2 << mode) - 1;
1497 		else
1498 			pio_mask = 1;
1499 
1500 		/* But wait.. there's more. Design your standards by
1501 		 * committee and you too can get a free iordy field to
1502 		 * process. However its the speeds not the modes that
1503 		 * are supported... Note drivers using the timing API
1504 		 * will get this right anyway
1505 		 */
1506 	}
1507 
1508 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509 
1510 	if (ata_id_is_cfa(id)) {
1511 		/*
1512 		 *	Process compact flash extended modes
1513 		 */
1514 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516 
1517 		if (pio)
1518 			pio_mask |= (1 << 5);
1519 		if (pio > 1)
1520 			pio_mask |= (1 << 6);
1521 		if (dma)
1522 			mwdma_mask |= (1 << 3);
1523 		if (dma > 1)
1524 			mwdma_mask |= (1 << 4);
1525 	}
1526 
1527 	udma_mask = 0;
1528 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530 
1531 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532 }
1533 
1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535 {
1536 	struct completion *waiting = qc->private_data;
1537 
1538 	complete(waiting);
1539 }
1540 
1541 /**
1542  *	ata_exec_internal_sg - execute libata internal command
1543  *	@dev: Device to which the command is sent
1544  *	@tf: Taskfile registers for the command and the result
1545  *	@cdb: CDB for packet command
1546  *	@dma_dir: Data transfer direction of the command
1547  *	@sgl: sg list for the data buffer of the command
1548  *	@n_elem: Number of sg entries
1549  *	@timeout: Timeout in msecs (0 for default)
1550  *
1551  *	Executes libata internal command with timeout.  @tf contains
1552  *	command on entry and result on return.  Timeout and error
1553  *	conditions are reported via return value.  No recovery action
1554  *	is taken after a command times out.  It's caller's duty to
1555  *	clean up after timeout.
1556  *
1557  *	LOCKING:
1558  *	None.  Should be called with kernel context, might sleep.
1559  *
1560  *	RETURNS:
1561  *	Zero on success, AC_ERR_* mask on failure
1562  */
1563 unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 			      struct ata_taskfile *tf, const u8 *cdb,
1565 			      int dma_dir, struct scatterlist *sgl,
1566 			      unsigned int n_elem, unsigned long timeout)
1567 {
1568 	struct ata_link *link = dev->link;
1569 	struct ata_port *ap = link->ap;
1570 	u8 command = tf->command;
1571 	int auto_timeout = 0;
1572 	struct ata_queued_cmd *qc;
1573 	unsigned int tag, preempted_tag;
1574 	u32 preempted_sactive, preempted_qc_active;
1575 	int preempted_nr_active_links;
1576 	DECLARE_COMPLETION_ONSTACK(wait);
1577 	unsigned long flags;
1578 	unsigned int err_mask;
1579 	int rc;
1580 
1581 	spin_lock_irqsave(ap->lock, flags);
1582 
1583 	/* no internal command while frozen */
1584 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1585 		spin_unlock_irqrestore(ap->lock, flags);
1586 		return AC_ERR_SYSTEM;
1587 	}
1588 
1589 	/* initialize internal qc */
1590 
1591 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1592 	 * drivers choke if any other tag is given.  This breaks
1593 	 * ata_tag_internal() test for those drivers.  Don't use new
1594 	 * EH stuff without converting to it.
1595 	 */
1596 	if (ap->ops->error_handler)
1597 		tag = ATA_TAG_INTERNAL;
1598 	else
1599 		tag = 0;
1600 
1601 	qc = __ata_qc_from_tag(ap, tag);
1602 
1603 	qc->tag = tag;
1604 	qc->scsicmd = NULL;
1605 	qc->ap = ap;
1606 	qc->dev = dev;
1607 	ata_qc_reinit(qc);
1608 
1609 	preempted_tag = link->active_tag;
1610 	preempted_sactive = link->sactive;
1611 	preempted_qc_active = ap->qc_active;
1612 	preempted_nr_active_links = ap->nr_active_links;
1613 	link->active_tag = ATA_TAG_POISON;
1614 	link->sactive = 0;
1615 	ap->qc_active = 0;
1616 	ap->nr_active_links = 0;
1617 
1618 	/* prepare & issue qc */
1619 	qc->tf = *tf;
1620 	if (cdb)
1621 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1622 
1623 	/* some SATA bridges need us to indicate data xfer direction */
1624 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 	    dma_dir == DMA_FROM_DEVICE)
1626 		qc->tf.feature |= ATAPI_DMADIR;
1627 
1628 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1629 	qc->dma_dir = dma_dir;
1630 	if (dma_dir != DMA_NONE) {
1631 		unsigned int i, buflen = 0;
1632 		struct scatterlist *sg;
1633 
1634 		for_each_sg(sgl, sg, n_elem, i)
1635 			buflen += sg->length;
1636 
1637 		ata_sg_init(qc, sgl, n_elem);
1638 		qc->nbytes = buflen;
1639 	}
1640 
1641 	qc->private_data = &wait;
1642 	qc->complete_fn = ata_qc_complete_internal;
1643 
1644 	ata_qc_issue(qc);
1645 
1646 	spin_unlock_irqrestore(ap->lock, flags);
1647 
1648 	if (!timeout) {
1649 		if (ata_probe_timeout)
1650 			timeout = ata_probe_timeout * 1000;
1651 		else {
1652 			timeout = ata_internal_cmd_timeout(dev, command);
1653 			auto_timeout = 1;
1654 		}
1655 	}
1656 
1657 	if (ap->ops->error_handler)
1658 		ata_eh_release(ap);
1659 
1660 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1661 
1662 	if (ap->ops->error_handler)
1663 		ata_eh_acquire(ap);
1664 
1665 	ata_sff_flush_pio_task(ap);
1666 
1667 	if (!rc) {
1668 		spin_lock_irqsave(ap->lock, flags);
1669 
1670 		/* We're racing with irq here.  If we lose, the
1671 		 * following test prevents us from completing the qc
1672 		 * twice.  If we win, the port is frozen and will be
1673 		 * cleaned up by ->post_internal_cmd().
1674 		 */
1675 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676 			qc->err_mask |= AC_ERR_TIMEOUT;
1677 
1678 			if (ap->ops->error_handler)
1679 				ata_port_freeze(ap);
1680 			else
1681 				ata_qc_complete(qc);
1682 
1683 			if (ata_msg_warn(ap))
1684 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 					     command);
1686 		}
1687 
1688 		spin_unlock_irqrestore(ap->lock, flags);
1689 	}
1690 
1691 	/* do post_internal_cmd */
1692 	if (ap->ops->post_internal_cmd)
1693 		ap->ops->post_internal_cmd(qc);
1694 
1695 	/* perform minimal error analysis */
1696 	if (qc->flags & ATA_QCFLAG_FAILED) {
1697 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 			qc->err_mask |= AC_ERR_DEV;
1699 
1700 		if (!qc->err_mask)
1701 			qc->err_mask |= AC_ERR_OTHER;
1702 
1703 		if (qc->err_mask & ~AC_ERR_OTHER)
1704 			qc->err_mask &= ~AC_ERR_OTHER;
1705 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706 		qc->result_tf.command |= ATA_SENSE;
1707 	}
1708 
1709 	/* finish up */
1710 	spin_lock_irqsave(ap->lock, flags);
1711 
1712 	*tf = qc->result_tf;
1713 	err_mask = qc->err_mask;
1714 
1715 	ata_qc_free(qc);
1716 	link->active_tag = preempted_tag;
1717 	link->sactive = preempted_sactive;
1718 	ap->qc_active = preempted_qc_active;
1719 	ap->nr_active_links = preempted_nr_active_links;
1720 
1721 	spin_unlock_irqrestore(ap->lock, flags);
1722 
1723 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724 		ata_internal_cmd_timed_out(dev, command);
1725 
1726 	return err_mask;
1727 }
1728 
1729 /**
1730  *	ata_exec_internal - execute libata internal command
1731  *	@dev: Device to which the command is sent
1732  *	@tf: Taskfile registers for the command and the result
1733  *	@cdb: CDB for packet command
1734  *	@dma_dir: Data transfer direction of the command
1735  *	@buf: Data buffer of the command
1736  *	@buflen: Length of data buffer
1737  *	@timeout: Timeout in msecs (0 for default)
1738  *
1739  *	Wrapper around ata_exec_internal_sg() which takes simple
1740  *	buffer instead of sg list.
1741  *
1742  *	LOCKING:
1743  *	None.  Should be called with kernel context, might sleep.
1744  *
1745  *	RETURNS:
1746  *	Zero on success, AC_ERR_* mask on failure
1747  */
1748 unsigned ata_exec_internal(struct ata_device *dev,
1749 			   struct ata_taskfile *tf, const u8 *cdb,
1750 			   int dma_dir, void *buf, unsigned int buflen,
1751 			   unsigned long timeout)
1752 {
1753 	struct scatterlist *psg = NULL, sg;
1754 	unsigned int n_elem = 0;
1755 
1756 	if (dma_dir != DMA_NONE) {
1757 		WARN_ON(!buf);
1758 		sg_init_one(&sg, buf, buflen);
1759 		psg = &sg;
1760 		n_elem++;
1761 	}
1762 
1763 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764 				    timeout);
1765 }
1766 
1767 /**
1768  *	ata_pio_need_iordy	-	check if iordy needed
1769  *	@adev: ATA device
1770  *
1771  *	Check if the current speed of the device requires IORDY. Used
1772  *	by various controllers for chip configuration.
1773  */
1774 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775 {
1776 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1777 	 * lead to controller lock up on certain controllers if the
1778 	 * port is not occupied.  See bko#11703 for details.
1779 	 */
1780 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781 		return 0;
1782 	/* Controller doesn't support IORDY.  Probably a pointless
1783 	 * check as the caller should know this.
1784 	 */
1785 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1786 		return 0;
1787 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1788 	if (ata_id_is_cfa(adev->id)
1789 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790 		return 0;
1791 	/* PIO3 and higher it is mandatory */
1792 	if (adev->pio_mode > XFER_PIO_2)
1793 		return 1;
1794 	/* We turn it on when possible */
1795 	if (ata_id_has_iordy(adev->id))
1796 		return 1;
1797 	return 0;
1798 }
1799 
1800 /**
1801  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1802  *	@adev: ATA device
1803  *
1804  *	Compute the highest mode possible if we are not using iordy. Return
1805  *	-1 if no iordy mode is available.
1806  */
1807 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808 {
1809 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1810 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1811 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1812 		/* Is the speed faster than the drive allows non IORDY ? */
1813 		if (pio) {
1814 			/* This is cycle times not frequency - watch the logic! */
1815 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1816 				return 3 << ATA_SHIFT_PIO;
1817 			return 7 << ATA_SHIFT_PIO;
1818 		}
1819 	}
1820 	return 3 << ATA_SHIFT_PIO;
1821 }
1822 
1823 /**
1824  *	ata_do_dev_read_id		-	default ID read method
1825  *	@dev: device
1826  *	@tf: proposed taskfile
1827  *	@id: data buffer
1828  *
1829  *	Issue the identify taskfile and hand back the buffer containing
1830  *	identify data. For some RAID controllers and for pre ATA devices
1831  *	this function is wrapped or replaced by the driver
1832  */
1833 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834 					struct ata_taskfile *tf, u16 *id)
1835 {
1836 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838 }
1839 
1840 /**
1841  *	ata_dev_read_id - Read ID data from the specified device
1842  *	@dev: target device
1843  *	@p_class: pointer to class of the target device (may be changed)
1844  *	@flags: ATA_READID_* flags
1845  *	@id: buffer to read IDENTIFY data into
1846  *
1847  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1848  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1849  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1850  *	for pre-ATA4 drives.
1851  *
1852  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1853  *	now we abort if we hit that case.
1854  *
1855  *	LOCKING:
1856  *	Kernel thread context (may sleep)
1857  *
1858  *	RETURNS:
1859  *	0 on success, -errno otherwise.
1860  */
1861 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1862 		    unsigned int flags, u16 *id)
1863 {
1864 	struct ata_port *ap = dev->link->ap;
1865 	unsigned int class = *p_class;
1866 	struct ata_taskfile tf;
1867 	unsigned int err_mask = 0;
1868 	const char *reason;
1869 	bool is_semb = class == ATA_DEV_SEMB;
1870 	int may_fallback = 1, tried_spinup = 0;
1871 	int rc;
1872 
1873 	if (ata_msg_ctl(ap))
1874 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1875 
1876 retry:
1877 	ata_tf_init(dev, &tf);
1878 
1879 	switch (class) {
1880 	case ATA_DEV_SEMB:
1881 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1882 		/* fall through */
1883 	case ATA_DEV_ATA:
1884 	case ATA_DEV_ZAC:
1885 		tf.command = ATA_CMD_ID_ATA;
1886 		break;
1887 	case ATA_DEV_ATAPI:
1888 		tf.command = ATA_CMD_ID_ATAPI;
1889 		break;
1890 	default:
1891 		rc = -ENODEV;
1892 		reason = "unsupported class";
1893 		goto err_out;
1894 	}
1895 
1896 	tf.protocol = ATA_PROT_PIO;
1897 
1898 	/* Some devices choke if TF registers contain garbage.  Make
1899 	 * sure those are properly initialized.
1900 	 */
1901 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1902 
1903 	/* Device presence detection is unreliable on some
1904 	 * controllers.  Always poll IDENTIFY if available.
1905 	 */
1906 	tf.flags |= ATA_TFLAG_POLLING;
1907 
1908 	if (ap->ops->read_id)
1909 		err_mask = ap->ops->read_id(dev, &tf, id);
1910 	else
1911 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1912 
1913 	if (err_mask) {
1914 		if (err_mask & AC_ERR_NODEV_HINT) {
1915 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1916 			return -ENOENT;
1917 		}
1918 
1919 		if (is_semb) {
1920 			ata_dev_info(dev,
1921 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1922 			/* SEMB is not supported yet */
1923 			*p_class = ATA_DEV_SEMB_UNSUP;
1924 			return 0;
1925 		}
1926 
1927 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1928 			/* Device or controller might have reported
1929 			 * the wrong device class.  Give a shot at the
1930 			 * other IDENTIFY if the current one is
1931 			 * aborted by the device.
1932 			 */
1933 			if (may_fallback) {
1934 				may_fallback = 0;
1935 
1936 				if (class == ATA_DEV_ATA)
1937 					class = ATA_DEV_ATAPI;
1938 				else
1939 					class = ATA_DEV_ATA;
1940 				goto retry;
1941 			}
1942 
1943 			/* Control reaches here iff the device aborted
1944 			 * both flavors of IDENTIFYs which happens
1945 			 * sometimes with phantom devices.
1946 			 */
1947 			ata_dev_dbg(dev,
1948 				    "both IDENTIFYs aborted, assuming NODEV\n");
1949 			return -ENOENT;
1950 		}
1951 
1952 		rc = -EIO;
1953 		reason = "I/O error";
1954 		goto err_out;
1955 	}
1956 
1957 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1958 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1959 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1960 			    class, may_fallback, tried_spinup);
1961 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1962 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1963 	}
1964 
1965 	/* Falling back doesn't make sense if ID data was read
1966 	 * successfully at least once.
1967 	 */
1968 	may_fallback = 0;
1969 
1970 	swap_buf_le16(id, ATA_ID_WORDS);
1971 
1972 	/* sanity check */
1973 	rc = -EINVAL;
1974 	reason = "device reports invalid type";
1975 
1976 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1977 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1978 			goto err_out;
1979 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1980 							ata_id_is_ata(id)) {
1981 			ata_dev_dbg(dev,
1982 				"host indicates ignore ATA devices, ignored\n");
1983 			return -ENOENT;
1984 		}
1985 	} else {
1986 		if (ata_id_is_ata(id))
1987 			goto err_out;
1988 	}
1989 
1990 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1991 		tried_spinup = 1;
1992 		/*
1993 		 * Drive powered-up in standby mode, and requires a specific
1994 		 * SET_FEATURES spin-up subcommand before it will accept
1995 		 * anything other than the original IDENTIFY command.
1996 		 */
1997 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1998 		if (err_mask && id[2] != 0x738c) {
1999 			rc = -EIO;
2000 			reason = "SPINUP failed";
2001 			goto err_out;
2002 		}
2003 		/*
2004 		 * If the drive initially returned incomplete IDENTIFY info,
2005 		 * we now must reissue the IDENTIFY command.
2006 		 */
2007 		if (id[2] == 0x37c8)
2008 			goto retry;
2009 	}
2010 
2011 	if ((flags & ATA_READID_POSTRESET) &&
2012 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2013 		/*
2014 		 * The exact sequence expected by certain pre-ATA4 drives is:
2015 		 * SRST RESET
2016 		 * IDENTIFY (optional in early ATA)
2017 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2018 		 * anything else..
2019 		 * Some drives were very specific about that exact sequence.
2020 		 *
2021 		 * Note that ATA4 says lba is mandatory so the second check
2022 		 * should never trigger.
2023 		 */
2024 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2025 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2026 			if (err_mask) {
2027 				rc = -EIO;
2028 				reason = "INIT_DEV_PARAMS failed";
2029 				goto err_out;
2030 			}
2031 
2032 			/* current CHS translation info (id[53-58]) might be
2033 			 * changed. reread the identify device info.
2034 			 */
2035 			flags &= ~ATA_READID_POSTRESET;
2036 			goto retry;
2037 		}
2038 	}
2039 
2040 	*p_class = class;
2041 
2042 	return 0;
2043 
2044  err_out:
2045 	if (ata_msg_warn(ap))
2046 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2047 			     reason, err_mask);
2048 	return rc;
2049 }
2050 
2051 /**
2052  *	ata_read_log_page - read a specific log page
2053  *	@dev: target device
2054  *	@log: log to read
2055  *	@page: page to read
2056  *	@buf: buffer to store read page
2057  *	@sectors: number of sectors to read
2058  *
2059  *	Read log page using READ_LOG_EXT command.
2060  *
2061  *	LOCKING:
2062  *	Kernel thread context (may sleep).
2063  *
2064  *	RETURNS:
2065  *	0 on success, AC_ERR_* mask otherwise.
2066  */
2067 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2068 			       u8 page, void *buf, unsigned int sectors)
2069 {
2070 	unsigned long ap_flags = dev->link->ap->flags;
2071 	struct ata_taskfile tf;
2072 	unsigned int err_mask;
2073 	bool dma = false;
2074 
2075 	DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2076 
2077 	/*
2078 	 * Return error without actually issuing the command on controllers
2079 	 * which e.g. lockup on a read log page.
2080 	 */
2081 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2082 		return AC_ERR_DEV;
2083 
2084 retry:
2085 	ata_tf_init(dev, &tf);
2086 	if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2087 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2088 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2089 		tf.protocol = ATA_PROT_DMA;
2090 		dma = true;
2091 	} else {
2092 		tf.command = ATA_CMD_READ_LOG_EXT;
2093 		tf.protocol = ATA_PROT_PIO;
2094 		dma = false;
2095 	}
2096 	tf.lbal = log;
2097 	tf.lbam = page;
2098 	tf.nsect = sectors;
2099 	tf.hob_nsect = sectors >> 8;
2100 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2101 
2102 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2103 				     buf, sectors * ATA_SECT_SIZE, 0);
2104 
2105 	if (err_mask && dma) {
2106 		dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2107 		ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2108 		goto retry;
2109 	}
2110 
2111 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
2112 	return err_mask;
2113 }
2114 
2115 static bool ata_log_supported(struct ata_device *dev, u8 log)
2116 {
2117 	struct ata_port *ap = dev->link->ap;
2118 
2119 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2120 		return false;
2121 	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2122 }
2123 
2124 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2125 {
2126 	struct ata_port *ap = dev->link->ap;
2127 	unsigned int err, i;
2128 
2129 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2130 		ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2131 		return false;
2132 	}
2133 
2134 	/*
2135 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2136 	 * supported.
2137 	 */
2138 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2139 				1);
2140 	if (err) {
2141 		ata_dev_info(dev,
2142 			     "failed to get Device Identify Log Emask 0x%x\n",
2143 			     err);
2144 		return false;
2145 	}
2146 
2147 	for (i = 0; i < ap->sector_buf[8]; i++) {
2148 		if (ap->sector_buf[9 + i] == page)
2149 			return true;
2150 	}
2151 
2152 	return false;
2153 }
2154 
2155 static int ata_do_link_spd_horkage(struct ata_device *dev)
2156 {
2157 	struct ata_link *plink = ata_dev_phys_link(dev);
2158 	u32 target, target_limit;
2159 
2160 	if (!sata_scr_valid(plink))
2161 		return 0;
2162 
2163 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2164 		target = 1;
2165 	else
2166 		return 0;
2167 
2168 	target_limit = (1 << target) - 1;
2169 
2170 	/* if already on stricter limit, no need to push further */
2171 	if (plink->sata_spd_limit <= target_limit)
2172 		return 0;
2173 
2174 	plink->sata_spd_limit = target_limit;
2175 
2176 	/* Request another EH round by returning -EAGAIN if link is
2177 	 * going faster than the target speed.  Forward progress is
2178 	 * guaranteed by setting sata_spd_limit to target_limit above.
2179 	 */
2180 	if (plink->sata_spd > target) {
2181 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2182 			     sata_spd_string(target));
2183 		return -EAGAIN;
2184 	}
2185 	return 0;
2186 }
2187 
2188 static inline u8 ata_dev_knobble(struct ata_device *dev)
2189 {
2190 	struct ata_port *ap = dev->link->ap;
2191 
2192 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2193 		return 0;
2194 
2195 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2196 }
2197 
2198 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2199 {
2200 	struct ata_port *ap = dev->link->ap;
2201 	unsigned int err_mask;
2202 
2203 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2204 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2205 		return;
2206 	}
2207 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2208 				     0, ap->sector_buf, 1);
2209 	if (err_mask) {
2210 		ata_dev_dbg(dev,
2211 			    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2212 			    err_mask);
2213 	} else {
2214 		u8 *cmds = dev->ncq_send_recv_cmds;
2215 
2216 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2217 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2218 
2219 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2220 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2221 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2222 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2223 		}
2224 	}
2225 }
2226 
2227 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2228 {
2229 	struct ata_port *ap = dev->link->ap;
2230 	unsigned int err_mask;
2231 
2232 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2233 		ata_dev_warn(dev,
2234 			     "NCQ Send/Recv Log not supported\n");
2235 		return;
2236 	}
2237 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2238 				     0, ap->sector_buf, 1);
2239 	if (err_mask) {
2240 		ata_dev_dbg(dev,
2241 			    "failed to get NCQ Non-Data Log Emask 0x%x\n",
2242 			    err_mask);
2243 	} else {
2244 		u8 *cmds = dev->ncq_non_data_cmds;
2245 
2246 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2247 	}
2248 }
2249 
2250 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2251 {
2252 	struct ata_port *ap = dev->link->ap;
2253 	unsigned int err_mask;
2254 
2255 	if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2256 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2257 		return;
2258 	}
2259 
2260 	err_mask = ata_read_log_page(dev,
2261 				     ATA_LOG_IDENTIFY_DEVICE,
2262 				     ATA_LOG_SATA_SETTINGS,
2263 				     ap->sector_buf,
2264 				     1);
2265 	if (err_mask) {
2266 		ata_dev_dbg(dev,
2267 			    "failed to get Identify Device data, Emask 0x%x\n",
2268 			    err_mask);
2269 		return;
2270 	}
2271 
2272 	if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2273 		dev->flags |= ATA_DFLAG_NCQ_PRIO;
2274 	} else {
2275 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2276 		ata_dev_dbg(dev, "SATA page does not support priority\n");
2277 	}
2278 
2279 }
2280 
2281 static int ata_dev_config_ncq(struct ata_device *dev,
2282 			       char *desc, size_t desc_sz)
2283 {
2284 	struct ata_port *ap = dev->link->ap;
2285 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2286 	unsigned int err_mask;
2287 	char *aa_desc = "";
2288 
2289 	if (!ata_id_has_ncq(dev->id)) {
2290 		desc[0] = '\0';
2291 		return 0;
2292 	}
2293 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2294 		snprintf(desc, desc_sz, "NCQ (not used)");
2295 		return 0;
2296 	}
2297 	if (ap->flags & ATA_FLAG_NCQ) {
2298 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2299 		dev->flags |= ATA_DFLAG_NCQ;
2300 	}
2301 
2302 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2303 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2304 		ata_id_has_fpdma_aa(dev->id)) {
2305 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2306 			SATA_FPDMA_AA);
2307 		if (err_mask) {
2308 			ata_dev_err(dev,
2309 				    "failed to enable AA (error_mask=0x%x)\n",
2310 				    err_mask);
2311 			if (err_mask != AC_ERR_DEV) {
2312 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2313 				return -EIO;
2314 			}
2315 		} else
2316 			aa_desc = ", AA";
2317 	}
2318 
2319 	if (hdepth >= ddepth)
2320 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2321 	else
2322 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2323 			ddepth, aa_desc);
2324 
2325 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2326 		if (ata_id_has_ncq_send_and_recv(dev->id))
2327 			ata_dev_config_ncq_send_recv(dev);
2328 		if (ata_id_has_ncq_non_data(dev->id))
2329 			ata_dev_config_ncq_non_data(dev);
2330 		if (ata_id_has_ncq_prio(dev->id))
2331 			ata_dev_config_ncq_prio(dev);
2332 	}
2333 
2334 	return 0;
2335 }
2336 
2337 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2338 {
2339 	unsigned int err_mask;
2340 
2341 	if (!ata_id_has_sense_reporting(dev->id))
2342 		return;
2343 
2344 	if (ata_id_sense_reporting_enabled(dev->id))
2345 		return;
2346 
2347 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2348 	if (err_mask) {
2349 		ata_dev_dbg(dev,
2350 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2351 			    err_mask);
2352 	}
2353 }
2354 
2355 static void ata_dev_config_zac(struct ata_device *dev)
2356 {
2357 	struct ata_port *ap = dev->link->ap;
2358 	unsigned int err_mask;
2359 	u8 *identify_buf = ap->sector_buf;
2360 
2361 	dev->zac_zones_optimal_open = U32_MAX;
2362 	dev->zac_zones_optimal_nonseq = U32_MAX;
2363 	dev->zac_zones_max_open = U32_MAX;
2364 
2365 	/*
2366 	 * Always set the 'ZAC' flag for Host-managed devices.
2367 	 */
2368 	if (dev->class == ATA_DEV_ZAC)
2369 		dev->flags |= ATA_DFLAG_ZAC;
2370 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2371 		/*
2372 		 * Check for host-aware devices.
2373 		 */
2374 		dev->flags |= ATA_DFLAG_ZAC;
2375 
2376 	if (!(dev->flags & ATA_DFLAG_ZAC))
2377 		return;
2378 
2379 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2380 		ata_dev_warn(dev,
2381 			     "ATA Zoned Information Log not supported\n");
2382 		return;
2383 	}
2384 
2385 	/*
2386 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2387 	 */
2388 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2389 				     ATA_LOG_ZONED_INFORMATION,
2390 				     identify_buf, 1);
2391 	if (!err_mask) {
2392 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2393 
2394 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2395 		if ((zoned_cap >> 63))
2396 			dev->zac_zoned_cap = (zoned_cap & 1);
2397 		opt_open = get_unaligned_le64(&identify_buf[24]);
2398 		if ((opt_open >> 63))
2399 			dev->zac_zones_optimal_open = (u32)opt_open;
2400 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2401 		if ((opt_nonseq >> 63))
2402 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2403 		max_open = get_unaligned_le64(&identify_buf[40]);
2404 		if ((max_open >> 63))
2405 			dev->zac_zones_max_open = (u32)max_open;
2406 	}
2407 }
2408 
2409 static void ata_dev_config_trusted(struct ata_device *dev)
2410 {
2411 	struct ata_port *ap = dev->link->ap;
2412 	u64 trusted_cap;
2413 	unsigned int err;
2414 
2415 	if (!ata_id_has_trusted(dev->id))
2416 		return;
2417 
2418 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2419 		ata_dev_warn(dev,
2420 			     "Security Log not supported\n");
2421 		return;
2422 	}
2423 
2424 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2425 			ap->sector_buf, 1);
2426 	if (err) {
2427 		ata_dev_dbg(dev,
2428 			    "failed to read Security Log, Emask 0x%x\n", err);
2429 		return;
2430 	}
2431 
2432 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2433 	if (!(trusted_cap & (1ULL << 63))) {
2434 		ata_dev_dbg(dev,
2435 			    "Trusted Computing capability qword not valid!\n");
2436 		return;
2437 	}
2438 
2439 	if (trusted_cap & (1 << 0))
2440 		dev->flags |= ATA_DFLAG_TRUSTED;
2441 }
2442 
2443 /**
2444  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2445  *	@dev: Target device to configure
2446  *
2447  *	Configure @dev according to @dev->id.  Generic and low-level
2448  *	driver specific fixups are also applied.
2449  *
2450  *	LOCKING:
2451  *	Kernel thread context (may sleep)
2452  *
2453  *	RETURNS:
2454  *	0 on success, -errno otherwise
2455  */
2456 int ata_dev_configure(struct ata_device *dev)
2457 {
2458 	struct ata_port *ap = dev->link->ap;
2459 	struct ata_eh_context *ehc = &dev->link->eh_context;
2460 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2461 	const u16 *id = dev->id;
2462 	unsigned long xfer_mask;
2463 	unsigned int err_mask;
2464 	char revbuf[7];		/* XYZ-99\0 */
2465 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2466 	char modelbuf[ATA_ID_PROD_LEN+1];
2467 	int rc;
2468 
2469 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2470 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2471 		return 0;
2472 	}
2473 
2474 	if (ata_msg_probe(ap))
2475 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2476 
2477 	/* set horkage */
2478 	dev->horkage |= ata_dev_blacklisted(dev);
2479 	ata_force_horkage(dev);
2480 
2481 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2482 		ata_dev_info(dev, "unsupported device, disabling\n");
2483 		ata_dev_disable(dev);
2484 		return 0;
2485 	}
2486 
2487 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2488 	    dev->class == ATA_DEV_ATAPI) {
2489 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2490 			     atapi_enabled ? "not supported with this driver"
2491 			     : "disabled");
2492 		ata_dev_disable(dev);
2493 		return 0;
2494 	}
2495 
2496 	rc = ata_do_link_spd_horkage(dev);
2497 	if (rc)
2498 		return rc;
2499 
2500 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2501 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2502 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2503 		dev->horkage |= ATA_HORKAGE_NOLPM;
2504 
2505 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2506 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2507 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2508 	}
2509 
2510 	/* let ACPI work its magic */
2511 	rc = ata_acpi_on_devcfg(dev);
2512 	if (rc)
2513 		return rc;
2514 
2515 	/* massage HPA, do it early as it might change IDENTIFY data */
2516 	rc = ata_hpa_resize(dev);
2517 	if (rc)
2518 		return rc;
2519 
2520 	/* print device capabilities */
2521 	if (ata_msg_probe(ap))
2522 		ata_dev_dbg(dev,
2523 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2524 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2525 			    __func__,
2526 			    id[49], id[82], id[83], id[84],
2527 			    id[85], id[86], id[87], id[88]);
2528 
2529 	/* initialize to-be-configured parameters */
2530 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2531 	dev->max_sectors = 0;
2532 	dev->cdb_len = 0;
2533 	dev->n_sectors = 0;
2534 	dev->cylinders = 0;
2535 	dev->heads = 0;
2536 	dev->sectors = 0;
2537 	dev->multi_count = 0;
2538 
2539 	/*
2540 	 * common ATA, ATAPI feature tests
2541 	 */
2542 
2543 	/* find max transfer mode; for printk only */
2544 	xfer_mask = ata_id_xfermask(id);
2545 
2546 	if (ata_msg_probe(ap))
2547 		ata_dump_id(id);
2548 
2549 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2550 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2551 			sizeof(fwrevbuf));
2552 
2553 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2554 			sizeof(modelbuf));
2555 
2556 	/* ATA-specific feature tests */
2557 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2558 		if (ata_id_is_cfa(id)) {
2559 			/* CPRM may make this media unusable */
2560 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2561 				ata_dev_warn(dev,
2562 	"supports DRM functions and may not be fully accessible\n");
2563 			snprintf(revbuf, 7, "CFA");
2564 		} else {
2565 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2566 			/* Warn the user if the device has TPM extensions */
2567 			if (ata_id_has_tpm(id))
2568 				ata_dev_warn(dev,
2569 	"supports DRM functions and may not be fully accessible\n");
2570 		}
2571 
2572 		dev->n_sectors = ata_id_n_sectors(id);
2573 
2574 		/* get current R/W Multiple count setting */
2575 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2576 			unsigned int max = dev->id[47] & 0xff;
2577 			unsigned int cnt = dev->id[59] & 0xff;
2578 			/* only recognize/allow powers of two here */
2579 			if (is_power_of_2(max) && is_power_of_2(cnt))
2580 				if (cnt <= max)
2581 					dev->multi_count = cnt;
2582 		}
2583 
2584 		if (ata_id_has_lba(id)) {
2585 			const char *lba_desc;
2586 			char ncq_desc[24];
2587 
2588 			lba_desc = "LBA";
2589 			dev->flags |= ATA_DFLAG_LBA;
2590 			if (ata_id_has_lba48(id)) {
2591 				dev->flags |= ATA_DFLAG_LBA48;
2592 				lba_desc = "LBA48";
2593 
2594 				if (dev->n_sectors >= (1UL << 28) &&
2595 				    ata_id_has_flush_ext(id))
2596 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2597 			}
2598 
2599 			/* config NCQ */
2600 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2601 			if (rc)
2602 				return rc;
2603 
2604 			/* print device info to dmesg */
2605 			if (ata_msg_drv(ap) && print_info) {
2606 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2607 					     revbuf, modelbuf, fwrevbuf,
2608 					     ata_mode_string(xfer_mask));
2609 				ata_dev_info(dev,
2610 					     "%llu sectors, multi %u: %s %s\n",
2611 					(unsigned long long)dev->n_sectors,
2612 					dev->multi_count, lba_desc, ncq_desc);
2613 			}
2614 		} else {
2615 			/* CHS */
2616 
2617 			/* Default translation */
2618 			dev->cylinders	= id[1];
2619 			dev->heads	= id[3];
2620 			dev->sectors	= id[6];
2621 
2622 			if (ata_id_current_chs_valid(id)) {
2623 				/* Current CHS translation is valid. */
2624 				dev->cylinders = id[54];
2625 				dev->heads     = id[55];
2626 				dev->sectors   = id[56];
2627 			}
2628 
2629 			/* print device info to dmesg */
2630 			if (ata_msg_drv(ap) && print_info) {
2631 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2632 					     revbuf,	modelbuf, fwrevbuf,
2633 					     ata_mode_string(xfer_mask));
2634 				ata_dev_info(dev,
2635 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2636 					     (unsigned long long)dev->n_sectors,
2637 					     dev->multi_count, dev->cylinders,
2638 					     dev->heads, dev->sectors);
2639 			}
2640 		}
2641 
2642 		/* Check and mark DevSlp capability. Get DevSlp timing variables
2643 		 * from SATA Settings page of Identify Device Data Log.
2644 		 */
2645 		if (ata_id_has_devslp(dev->id)) {
2646 			u8 *sata_setting = ap->sector_buf;
2647 			int i, j;
2648 
2649 			dev->flags |= ATA_DFLAG_DEVSLP;
2650 			err_mask = ata_read_log_page(dev,
2651 						     ATA_LOG_IDENTIFY_DEVICE,
2652 						     ATA_LOG_SATA_SETTINGS,
2653 						     sata_setting,
2654 						     1);
2655 			if (err_mask)
2656 				ata_dev_dbg(dev,
2657 					    "failed to get Identify Device Data, Emask 0x%x\n",
2658 					    err_mask);
2659 			else
2660 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2661 					j = ATA_LOG_DEVSLP_OFFSET + i;
2662 					dev->devslp_timing[i] = sata_setting[j];
2663 				}
2664 		}
2665 		ata_dev_config_sense_reporting(dev);
2666 		ata_dev_config_zac(dev);
2667 		ata_dev_config_trusted(dev);
2668 		dev->cdb_len = 32;
2669 	}
2670 
2671 	/* ATAPI-specific feature tests */
2672 	else if (dev->class == ATA_DEV_ATAPI) {
2673 		const char *cdb_intr_string = "";
2674 		const char *atapi_an_string = "";
2675 		const char *dma_dir_string = "";
2676 		u32 sntf;
2677 
2678 		rc = atapi_cdb_len(id);
2679 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2680 			if (ata_msg_warn(ap))
2681 				ata_dev_warn(dev, "unsupported CDB len\n");
2682 			rc = -EINVAL;
2683 			goto err_out_nosup;
2684 		}
2685 		dev->cdb_len = (unsigned int) rc;
2686 
2687 		/* Enable ATAPI AN if both the host and device have
2688 		 * the support.  If PMP is attached, SNTF is required
2689 		 * to enable ATAPI AN to discern between PHY status
2690 		 * changed notifications and ATAPI ANs.
2691 		 */
2692 		if (atapi_an &&
2693 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2694 		    (!sata_pmp_attached(ap) ||
2695 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2696 			/* issue SET feature command to turn this on */
2697 			err_mask = ata_dev_set_feature(dev,
2698 					SETFEATURES_SATA_ENABLE, SATA_AN);
2699 			if (err_mask)
2700 				ata_dev_err(dev,
2701 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2702 					    err_mask);
2703 			else {
2704 				dev->flags |= ATA_DFLAG_AN;
2705 				atapi_an_string = ", ATAPI AN";
2706 			}
2707 		}
2708 
2709 		if (ata_id_cdb_intr(dev->id)) {
2710 			dev->flags |= ATA_DFLAG_CDB_INTR;
2711 			cdb_intr_string = ", CDB intr";
2712 		}
2713 
2714 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2715 			dev->flags |= ATA_DFLAG_DMADIR;
2716 			dma_dir_string = ", DMADIR";
2717 		}
2718 
2719 		if (ata_id_has_da(dev->id)) {
2720 			dev->flags |= ATA_DFLAG_DA;
2721 			zpodd_init(dev);
2722 		}
2723 
2724 		/* print device info to dmesg */
2725 		if (ata_msg_drv(ap) && print_info)
2726 			ata_dev_info(dev,
2727 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2728 				     modelbuf, fwrevbuf,
2729 				     ata_mode_string(xfer_mask),
2730 				     cdb_intr_string, atapi_an_string,
2731 				     dma_dir_string);
2732 	}
2733 
2734 	/* determine max_sectors */
2735 	dev->max_sectors = ATA_MAX_SECTORS;
2736 	if (dev->flags & ATA_DFLAG_LBA48)
2737 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2738 
2739 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2740 	   200 sectors */
2741 	if (ata_dev_knobble(dev)) {
2742 		if (ata_msg_drv(ap) && print_info)
2743 			ata_dev_info(dev, "applying bridge limits\n");
2744 		dev->udma_mask &= ATA_UDMA5;
2745 		dev->max_sectors = ATA_MAX_SECTORS;
2746 	}
2747 
2748 	if ((dev->class == ATA_DEV_ATAPI) &&
2749 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2750 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2751 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2752 	}
2753 
2754 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2755 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2756 					 dev->max_sectors);
2757 
2758 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2759 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2760 					 dev->max_sectors);
2761 
2762 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2763 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2764 
2765 	if (ap->ops->dev_config)
2766 		ap->ops->dev_config(dev);
2767 
2768 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2769 		/* Let the user know. We don't want to disallow opens for
2770 		   rescue purposes, or in case the vendor is just a blithering
2771 		   idiot. Do this after the dev_config call as some controllers
2772 		   with buggy firmware may want to avoid reporting false device
2773 		   bugs */
2774 
2775 		if (print_info) {
2776 			ata_dev_warn(dev,
2777 "Drive reports diagnostics failure. This may indicate a drive\n");
2778 			ata_dev_warn(dev,
2779 "fault or invalid emulation. Contact drive vendor for information.\n");
2780 		}
2781 	}
2782 
2783 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2784 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2785 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2786 	}
2787 
2788 	return 0;
2789 
2790 err_out_nosup:
2791 	if (ata_msg_probe(ap))
2792 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2793 	return rc;
2794 }
2795 
2796 /**
2797  *	ata_cable_40wire	-	return 40 wire cable type
2798  *	@ap: port
2799  *
2800  *	Helper method for drivers which want to hardwire 40 wire cable
2801  *	detection.
2802  */
2803 
2804 int ata_cable_40wire(struct ata_port *ap)
2805 {
2806 	return ATA_CBL_PATA40;
2807 }
2808 
2809 /**
2810  *	ata_cable_80wire	-	return 80 wire cable type
2811  *	@ap: port
2812  *
2813  *	Helper method for drivers which want to hardwire 80 wire cable
2814  *	detection.
2815  */
2816 
2817 int ata_cable_80wire(struct ata_port *ap)
2818 {
2819 	return ATA_CBL_PATA80;
2820 }
2821 
2822 /**
2823  *	ata_cable_unknown	-	return unknown PATA cable.
2824  *	@ap: port
2825  *
2826  *	Helper method for drivers which have no PATA cable detection.
2827  */
2828 
2829 int ata_cable_unknown(struct ata_port *ap)
2830 {
2831 	return ATA_CBL_PATA_UNK;
2832 }
2833 
2834 /**
2835  *	ata_cable_ignore	-	return ignored PATA cable.
2836  *	@ap: port
2837  *
2838  *	Helper method for drivers which don't use cable type to limit
2839  *	transfer mode.
2840  */
2841 int ata_cable_ignore(struct ata_port *ap)
2842 {
2843 	return ATA_CBL_PATA_IGN;
2844 }
2845 
2846 /**
2847  *	ata_cable_sata	-	return SATA cable type
2848  *	@ap: port
2849  *
2850  *	Helper method for drivers which have SATA cables
2851  */
2852 
2853 int ata_cable_sata(struct ata_port *ap)
2854 {
2855 	return ATA_CBL_SATA;
2856 }
2857 
2858 /**
2859  *	ata_bus_probe - Reset and probe ATA bus
2860  *	@ap: Bus to probe
2861  *
2862  *	Master ATA bus probing function.  Initiates a hardware-dependent
2863  *	bus reset, then attempts to identify any devices found on
2864  *	the bus.
2865  *
2866  *	LOCKING:
2867  *	PCI/etc. bus probe sem.
2868  *
2869  *	RETURNS:
2870  *	Zero on success, negative errno otherwise.
2871  */
2872 
2873 int ata_bus_probe(struct ata_port *ap)
2874 {
2875 	unsigned int classes[ATA_MAX_DEVICES];
2876 	int tries[ATA_MAX_DEVICES];
2877 	int rc;
2878 	struct ata_device *dev;
2879 
2880 	ata_for_each_dev(dev, &ap->link, ALL)
2881 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2882 
2883  retry:
2884 	ata_for_each_dev(dev, &ap->link, ALL) {
2885 		/* If we issue an SRST then an ATA drive (not ATAPI)
2886 		 * may change configuration and be in PIO0 timing. If
2887 		 * we do a hard reset (or are coming from power on)
2888 		 * this is true for ATA or ATAPI. Until we've set a
2889 		 * suitable controller mode we should not touch the
2890 		 * bus as we may be talking too fast.
2891 		 */
2892 		dev->pio_mode = XFER_PIO_0;
2893 		dev->dma_mode = 0xff;
2894 
2895 		/* If the controller has a pio mode setup function
2896 		 * then use it to set the chipset to rights. Don't
2897 		 * touch the DMA setup as that will be dealt with when
2898 		 * configuring devices.
2899 		 */
2900 		if (ap->ops->set_piomode)
2901 			ap->ops->set_piomode(ap, dev);
2902 	}
2903 
2904 	/* reset and determine device classes */
2905 	ap->ops->phy_reset(ap);
2906 
2907 	ata_for_each_dev(dev, &ap->link, ALL) {
2908 		if (dev->class != ATA_DEV_UNKNOWN)
2909 			classes[dev->devno] = dev->class;
2910 		else
2911 			classes[dev->devno] = ATA_DEV_NONE;
2912 
2913 		dev->class = ATA_DEV_UNKNOWN;
2914 	}
2915 
2916 	/* read IDENTIFY page and configure devices. We have to do the identify
2917 	   specific sequence bass-ackwards so that PDIAG- is released by
2918 	   the slave device */
2919 
2920 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2921 		if (tries[dev->devno])
2922 			dev->class = classes[dev->devno];
2923 
2924 		if (!ata_dev_enabled(dev))
2925 			continue;
2926 
2927 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2928 				     dev->id);
2929 		if (rc)
2930 			goto fail;
2931 	}
2932 
2933 	/* Now ask for the cable type as PDIAG- should have been released */
2934 	if (ap->ops->cable_detect)
2935 		ap->cbl = ap->ops->cable_detect(ap);
2936 
2937 	/* We may have SATA bridge glue hiding here irrespective of
2938 	 * the reported cable types and sensed types.  When SATA
2939 	 * drives indicate we have a bridge, we don't know which end
2940 	 * of the link the bridge is which is a problem.
2941 	 */
2942 	ata_for_each_dev(dev, &ap->link, ENABLED)
2943 		if (ata_id_is_sata(dev->id))
2944 			ap->cbl = ATA_CBL_SATA;
2945 
2946 	/* After the identify sequence we can now set up the devices. We do
2947 	   this in the normal order so that the user doesn't get confused */
2948 
2949 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2950 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2951 		rc = ata_dev_configure(dev);
2952 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2953 		if (rc)
2954 			goto fail;
2955 	}
2956 
2957 	/* configure transfer mode */
2958 	rc = ata_set_mode(&ap->link, &dev);
2959 	if (rc)
2960 		goto fail;
2961 
2962 	ata_for_each_dev(dev, &ap->link, ENABLED)
2963 		return 0;
2964 
2965 	return -ENODEV;
2966 
2967  fail:
2968 	tries[dev->devno]--;
2969 
2970 	switch (rc) {
2971 	case -EINVAL:
2972 		/* eeek, something went very wrong, give up */
2973 		tries[dev->devno] = 0;
2974 		break;
2975 
2976 	case -ENODEV:
2977 		/* give it just one more chance */
2978 		tries[dev->devno] = min(tries[dev->devno], 1);
2979 		/* fall through */
2980 	case -EIO:
2981 		if (tries[dev->devno] == 1) {
2982 			/* This is the last chance, better to slow
2983 			 * down than lose it.
2984 			 */
2985 			sata_down_spd_limit(&ap->link, 0);
2986 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2987 		}
2988 	}
2989 
2990 	if (!tries[dev->devno])
2991 		ata_dev_disable(dev);
2992 
2993 	goto retry;
2994 }
2995 
2996 /**
2997  *	sata_print_link_status - Print SATA link status
2998  *	@link: SATA link to printk link status about
2999  *
3000  *	This function prints link speed and status of a SATA link.
3001  *
3002  *	LOCKING:
3003  *	None.
3004  */
3005 static void sata_print_link_status(struct ata_link *link)
3006 {
3007 	u32 sstatus, scontrol, tmp;
3008 
3009 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3010 		return;
3011 	sata_scr_read(link, SCR_CONTROL, &scontrol);
3012 
3013 	if (ata_phys_link_online(link)) {
3014 		tmp = (sstatus >> 4) & 0xf;
3015 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3016 			      sata_spd_string(tmp), sstatus, scontrol);
3017 	} else {
3018 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3019 			      sstatus, scontrol);
3020 	}
3021 }
3022 
3023 /**
3024  *	ata_dev_pair		-	return other device on cable
3025  *	@adev: device
3026  *
3027  *	Obtain the other device on the same cable, or if none is
3028  *	present NULL is returned
3029  */
3030 
3031 struct ata_device *ata_dev_pair(struct ata_device *adev)
3032 {
3033 	struct ata_link *link = adev->link;
3034 	struct ata_device *pair = &link->device[1 - adev->devno];
3035 	if (!ata_dev_enabled(pair))
3036 		return NULL;
3037 	return pair;
3038 }
3039 
3040 /**
3041  *	sata_down_spd_limit - adjust SATA spd limit downward
3042  *	@link: Link to adjust SATA spd limit for
3043  *	@spd_limit: Additional limit
3044  *
3045  *	Adjust SATA spd limit of @link downward.  Note that this
3046  *	function only adjusts the limit.  The change must be applied
3047  *	using sata_set_spd().
3048  *
3049  *	If @spd_limit is non-zero, the speed is limited to equal to or
3050  *	lower than @spd_limit if such speed is supported.  If
3051  *	@spd_limit is slower than any supported speed, only the lowest
3052  *	supported speed is allowed.
3053  *
3054  *	LOCKING:
3055  *	Inherited from caller.
3056  *
3057  *	RETURNS:
3058  *	0 on success, negative errno on failure
3059  */
3060 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3061 {
3062 	u32 sstatus, spd, mask;
3063 	int rc, bit;
3064 
3065 	if (!sata_scr_valid(link))
3066 		return -EOPNOTSUPP;
3067 
3068 	/* If SCR can be read, use it to determine the current SPD.
3069 	 * If not, use cached value in link->sata_spd.
3070 	 */
3071 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3072 	if (rc == 0 && ata_sstatus_online(sstatus))
3073 		spd = (sstatus >> 4) & 0xf;
3074 	else
3075 		spd = link->sata_spd;
3076 
3077 	mask = link->sata_spd_limit;
3078 	if (mask <= 1)
3079 		return -EINVAL;
3080 
3081 	/* unconditionally mask off the highest bit */
3082 	bit = fls(mask) - 1;
3083 	mask &= ~(1 << bit);
3084 
3085 	/*
3086 	 * Mask off all speeds higher than or equal to the current one.  At
3087 	 * this point, if current SPD is not available and we previously
3088 	 * recorded the link speed from SStatus, the driver has already
3089 	 * masked off the highest bit so mask should already be 1 or 0.
3090 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3091 	 * not previously recorded speed from SStatus.  Just return in this
3092 	 * case.
3093 	 */
3094 	if (spd > 1)
3095 		mask &= (1 << (spd - 1)) - 1;
3096 	else
3097 		return -EINVAL;
3098 
3099 	/* were we already at the bottom? */
3100 	if (!mask)
3101 		return -EINVAL;
3102 
3103 	if (spd_limit) {
3104 		if (mask & ((1 << spd_limit) - 1))
3105 			mask &= (1 << spd_limit) - 1;
3106 		else {
3107 			bit = ffs(mask) - 1;
3108 			mask = 1 << bit;
3109 		}
3110 	}
3111 
3112 	link->sata_spd_limit = mask;
3113 
3114 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3115 		      sata_spd_string(fls(mask)));
3116 
3117 	return 0;
3118 }
3119 
3120 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3121 {
3122 	struct ata_link *host_link = &link->ap->link;
3123 	u32 limit, target, spd;
3124 
3125 	limit = link->sata_spd_limit;
3126 
3127 	/* Don't configure downstream link faster than upstream link.
3128 	 * It doesn't speed up anything and some PMPs choke on such
3129 	 * configuration.
3130 	 */
3131 	if (!ata_is_host_link(link) && host_link->sata_spd)
3132 		limit &= (1 << host_link->sata_spd) - 1;
3133 
3134 	if (limit == UINT_MAX)
3135 		target = 0;
3136 	else
3137 		target = fls(limit);
3138 
3139 	spd = (*scontrol >> 4) & 0xf;
3140 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3141 
3142 	return spd != target;
3143 }
3144 
3145 /**
3146  *	sata_set_spd_needed - is SATA spd configuration needed
3147  *	@link: Link in question
3148  *
3149  *	Test whether the spd limit in SControl matches
3150  *	@link->sata_spd_limit.  This function is used to determine
3151  *	whether hardreset is necessary to apply SATA spd
3152  *	configuration.
3153  *
3154  *	LOCKING:
3155  *	Inherited from caller.
3156  *
3157  *	RETURNS:
3158  *	1 if SATA spd configuration is needed, 0 otherwise.
3159  */
3160 static int sata_set_spd_needed(struct ata_link *link)
3161 {
3162 	u32 scontrol;
3163 
3164 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3165 		return 1;
3166 
3167 	return __sata_set_spd_needed(link, &scontrol);
3168 }
3169 
3170 /**
3171  *	sata_set_spd - set SATA spd according to spd limit
3172  *	@link: Link to set SATA spd for
3173  *
3174  *	Set SATA spd of @link according to sata_spd_limit.
3175  *
3176  *	LOCKING:
3177  *	Inherited from caller.
3178  *
3179  *	RETURNS:
3180  *	0 if spd doesn't need to be changed, 1 if spd has been
3181  *	changed.  Negative errno if SCR registers are inaccessible.
3182  */
3183 int sata_set_spd(struct ata_link *link)
3184 {
3185 	u32 scontrol;
3186 	int rc;
3187 
3188 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3189 		return rc;
3190 
3191 	if (!__sata_set_spd_needed(link, &scontrol))
3192 		return 0;
3193 
3194 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3195 		return rc;
3196 
3197 	return 1;
3198 }
3199 
3200 /*
3201  * This mode timing computation functionality is ported over from
3202  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3203  */
3204 /*
3205  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3206  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3207  * for UDMA6, which is currently supported only by Maxtor drives.
3208  *
3209  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3210  */
3211 
3212 static const struct ata_timing ata_timing[] = {
3213 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3214 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3215 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3216 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3217 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3218 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3219 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3220 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3221 
3222 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3223 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3224 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3225 
3226 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3227 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3228 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3229 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3230 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3231 
3232 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3233 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3234 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3235 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3236 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3237 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3238 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3239 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3240 
3241 	{ 0xFF }
3242 };
3243 
3244 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3245 #define EZ(v, unit)		((v)?ENOUGH(((v) * 1000), unit):0)
3246 
3247 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3248 {
3249 	q->setup	= EZ(t->setup,       T);
3250 	q->act8b	= EZ(t->act8b,       T);
3251 	q->rec8b	= EZ(t->rec8b,       T);
3252 	q->cyc8b	= EZ(t->cyc8b,       T);
3253 	q->active	= EZ(t->active,      T);
3254 	q->recover	= EZ(t->recover,     T);
3255 	q->dmack_hold	= EZ(t->dmack_hold,  T);
3256 	q->cycle	= EZ(t->cycle,       T);
3257 	q->udma		= EZ(t->udma,       UT);
3258 }
3259 
3260 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3261 		      struct ata_timing *m, unsigned int what)
3262 {
3263 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3264 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3265 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3266 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3267 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3268 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3269 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3270 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3271 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3272 }
3273 
3274 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3275 {
3276 	const struct ata_timing *t = ata_timing;
3277 
3278 	while (xfer_mode > t->mode)
3279 		t++;
3280 
3281 	if (xfer_mode == t->mode)
3282 		return t;
3283 
3284 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3285 			__func__, xfer_mode);
3286 
3287 	return NULL;
3288 }
3289 
3290 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3291 		       struct ata_timing *t, int T, int UT)
3292 {
3293 	const u16 *id = adev->id;
3294 	const struct ata_timing *s;
3295 	struct ata_timing p;
3296 
3297 	/*
3298 	 * Find the mode.
3299 	 */
3300 
3301 	if (!(s = ata_timing_find_mode(speed)))
3302 		return -EINVAL;
3303 
3304 	memcpy(t, s, sizeof(*s));
3305 
3306 	/*
3307 	 * If the drive is an EIDE drive, it can tell us it needs extended
3308 	 * PIO/MW_DMA cycle timing.
3309 	 */
3310 
3311 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3312 		memset(&p, 0, sizeof(p));
3313 
3314 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3315 			if (speed <= XFER_PIO_2)
3316 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3317 			else if ((speed <= XFER_PIO_4) ||
3318 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3319 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3320 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3321 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3322 
3323 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3324 	}
3325 
3326 	/*
3327 	 * Convert the timing to bus clock counts.
3328 	 */
3329 
3330 	ata_timing_quantize(t, t, T, UT);
3331 
3332 	/*
3333 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3334 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3335 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3336 	 */
3337 
3338 	if (speed > XFER_PIO_6) {
3339 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3340 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3341 	}
3342 
3343 	/*
3344 	 * Lengthen active & recovery time so that cycle time is correct.
3345 	 */
3346 
3347 	if (t->act8b + t->rec8b < t->cyc8b) {
3348 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3349 		t->rec8b = t->cyc8b - t->act8b;
3350 	}
3351 
3352 	if (t->active + t->recover < t->cycle) {
3353 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3354 		t->recover = t->cycle - t->active;
3355 	}
3356 
3357 	/* In a few cases quantisation may produce enough errors to
3358 	   leave t->cycle too low for the sum of active and recovery
3359 	   if so we must correct this */
3360 	if (t->active + t->recover > t->cycle)
3361 		t->cycle = t->active + t->recover;
3362 
3363 	return 0;
3364 }
3365 
3366 /**
3367  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3368  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3369  *	@cycle: cycle duration in ns
3370  *
3371  *	Return matching xfer mode for @cycle.  The returned mode is of
3372  *	the transfer type specified by @xfer_shift.  If @cycle is too
3373  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3374  *	than the fastest known mode, the fasted mode is returned.
3375  *
3376  *	LOCKING:
3377  *	None.
3378  *
3379  *	RETURNS:
3380  *	Matching xfer_mode, 0xff if no match found.
3381  */
3382 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3383 {
3384 	u8 base_mode = 0xff, last_mode = 0xff;
3385 	const struct ata_xfer_ent *ent;
3386 	const struct ata_timing *t;
3387 
3388 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3389 		if (ent->shift == xfer_shift)
3390 			base_mode = ent->base;
3391 
3392 	for (t = ata_timing_find_mode(base_mode);
3393 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3394 		unsigned short this_cycle;
3395 
3396 		switch (xfer_shift) {
3397 		case ATA_SHIFT_PIO:
3398 		case ATA_SHIFT_MWDMA:
3399 			this_cycle = t->cycle;
3400 			break;
3401 		case ATA_SHIFT_UDMA:
3402 			this_cycle = t->udma;
3403 			break;
3404 		default:
3405 			return 0xff;
3406 		}
3407 
3408 		if (cycle > this_cycle)
3409 			break;
3410 
3411 		last_mode = t->mode;
3412 	}
3413 
3414 	return last_mode;
3415 }
3416 
3417 /**
3418  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3419  *	@dev: Device to adjust xfer masks
3420  *	@sel: ATA_DNXFER_* selector
3421  *
3422  *	Adjust xfer masks of @dev downward.  Note that this function
3423  *	does not apply the change.  Invoking ata_set_mode() afterwards
3424  *	will apply the limit.
3425  *
3426  *	LOCKING:
3427  *	Inherited from caller.
3428  *
3429  *	RETURNS:
3430  *	0 on success, negative errno on failure
3431  */
3432 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3433 {
3434 	char buf[32];
3435 	unsigned long orig_mask, xfer_mask;
3436 	unsigned long pio_mask, mwdma_mask, udma_mask;
3437 	int quiet, highbit;
3438 
3439 	quiet = !!(sel & ATA_DNXFER_QUIET);
3440 	sel &= ~ATA_DNXFER_QUIET;
3441 
3442 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3443 						  dev->mwdma_mask,
3444 						  dev->udma_mask);
3445 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3446 
3447 	switch (sel) {
3448 	case ATA_DNXFER_PIO:
3449 		highbit = fls(pio_mask) - 1;
3450 		pio_mask &= ~(1 << highbit);
3451 		break;
3452 
3453 	case ATA_DNXFER_DMA:
3454 		if (udma_mask) {
3455 			highbit = fls(udma_mask) - 1;
3456 			udma_mask &= ~(1 << highbit);
3457 			if (!udma_mask)
3458 				return -ENOENT;
3459 		} else if (mwdma_mask) {
3460 			highbit = fls(mwdma_mask) - 1;
3461 			mwdma_mask &= ~(1 << highbit);
3462 			if (!mwdma_mask)
3463 				return -ENOENT;
3464 		}
3465 		break;
3466 
3467 	case ATA_DNXFER_40C:
3468 		udma_mask &= ATA_UDMA_MASK_40C;
3469 		break;
3470 
3471 	case ATA_DNXFER_FORCE_PIO0:
3472 		pio_mask &= 1;
3473 		/* fall through */
3474 	case ATA_DNXFER_FORCE_PIO:
3475 		mwdma_mask = 0;
3476 		udma_mask = 0;
3477 		break;
3478 
3479 	default:
3480 		BUG();
3481 	}
3482 
3483 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3484 
3485 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3486 		return -ENOENT;
3487 
3488 	if (!quiet) {
3489 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3490 			snprintf(buf, sizeof(buf), "%s:%s",
3491 				 ata_mode_string(xfer_mask),
3492 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3493 		else
3494 			snprintf(buf, sizeof(buf), "%s",
3495 				 ata_mode_string(xfer_mask));
3496 
3497 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3498 	}
3499 
3500 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3501 			    &dev->udma_mask);
3502 
3503 	return 0;
3504 }
3505 
3506 static int ata_dev_set_mode(struct ata_device *dev)
3507 {
3508 	struct ata_port *ap = dev->link->ap;
3509 	struct ata_eh_context *ehc = &dev->link->eh_context;
3510 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3511 	const char *dev_err_whine = "";
3512 	int ign_dev_err = 0;
3513 	unsigned int err_mask = 0;
3514 	int rc;
3515 
3516 	dev->flags &= ~ATA_DFLAG_PIO;
3517 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3518 		dev->flags |= ATA_DFLAG_PIO;
3519 
3520 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3521 		dev_err_whine = " (SET_XFERMODE skipped)";
3522 	else {
3523 		if (nosetxfer)
3524 			ata_dev_warn(dev,
3525 				     "NOSETXFER but PATA detected - can't "
3526 				     "skip SETXFER, might malfunction\n");
3527 		err_mask = ata_dev_set_xfermode(dev);
3528 	}
3529 
3530 	if (err_mask & ~AC_ERR_DEV)
3531 		goto fail;
3532 
3533 	/* revalidate */
3534 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3535 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3536 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3537 	if (rc)
3538 		return rc;
3539 
3540 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3541 		/* Old CFA may refuse this command, which is just fine */
3542 		if (ata_id_is_cfa(dev->id))
3543 			ign_dev_err = 1;
3544 		/* Catch several broken garbage emulations plus some pre
3545 		   ATA devices */
3546 		if (ata_id_major_version(dev->id) == 0 &&
3547 					dev->pio_mode <= XFER_PIO_2)
3548 			ign_dev_err = 1;
3549 		/* Some very old devices and some bad newer ones fail
3550 		   any kind of SET_XFERMODE request but support PIO0-2
3551 		   timings and no IORDY */
3552 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3553 			ign_dev_err = 1;
3554 	}
3555 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3556 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3557 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3558 	    dev->dma_mode == XFER_MW_DMA_0 &&
3559 	    (dev->id[63] >> 8) & 1)
3560 		ign_dev_err = 1;
3561 
3562 	/* if the device is actually configured correctly, ignore dev err */
3563 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3564 		ign_dev_err = 1;
3565 
3566 	if (err_mask & AC_ERR_DEV) {
3567 		if (!ign_dev_err)
3568 			goto fail;
3569 		else
3570 			dev_err_whine = " (device error ignored)";
3571 	}
3572 
3573 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3574 		dev->xfer_shift, (int)dev->xfer_mode);
3575 
3576 	ata_dev_info(dev, "configured for %s%s\n",
3577 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3578 		     dev_err_whine);
3579 
3580 	return 0;
3581 
3582  fail:
3583 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3584 	return -EIO;
3585 }
3586 
3587 /**
3588  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3589  *	@link: link on which timings will be programmed
3590  *	@r_failed_dev: out parameter for failed device
3591  *
3592  *	Standard implementation of the function used to tune and set
3593  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3594  *	ata_dev_set_mode() fails, pointer to the failing device is
3595  *	returned in @r_failed_dev.
3596  *
3597  *	LOCKING:
3598  *	PCI/etc. bus probe sem.
3599  *
3600  *	RETURNS:
3601  *	0 on success, negative errno otherwise
3602  */
3603 
3604 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3605 {
3606 	struct ata_port *ap = link->ap;
3607 	struct ata_device *dev;
3608 	int rc = 0, used_dma = 0, found = 0;
3609 
3610 	/* step 1: calculate xfer_mask */
3611 	ata_for_each_dev(dev, link, ENABLED) {
3612 		unsigned long pio_mask, dma_mask;
3613 		unsigned int mode_mask;
3614 
3615 		mode_mask = ATA_DMA_MASK_ATA;
3616 		if (dev->class == ATA_DEV_ATAPI)
3617 			mode_mask = ATA_DMA_MASK_ATAPI;
3618 		else if (ata_id_is_cfa(dev->id))
3619 			mode_mask = ATA_DMA_MASK_CFA;
3620 
3621 		ata_dev_xfermask(dev);
3622 		ata_force_xfermask(dev);
3623 
3624 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3625 
3626 		if (libata_dma_mask & mode_mask)
3627 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3628 						     dev->udma_mask);
3629 		else
3630 			dma_mask = 0;
3631 
3632 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3633 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3634 
3635 		found = 1;
3636 		if (ata_dma_enabled(dev))
3637 			used_dma = 1;
3638 	}
3639 	if (!found)
3640 		goto out;
3641 
3642 	/* step 2: always set host PIO timings */
3643 	ata_for_each_dev(dev, link, ENABLED) {
3644 		if (dev->pio_mode == 0xff) {
3645 			ata_dev_warn(dev, "no PIO support\n");
3646 			rc = -EINVAL;
3647 			goto out;
3648 		}
3649 
3650 		dev->xfer_mode = dev->pio_mode;
3651 		dev->xfer_shift = ATA_SHIFT_PIO;
3652 		if (ap->ops->set_piomode)
3653 			ap->ops->set_piomode(ap, dev);
3654 	}
3655 
3656 	/* step 3: set host DMA timings */
3657 	ata_for_each_dev(dev, link, ENABLED) {
3658 		if (!ata_dma_enabled(dev))
3659 			continue;
3660 
3661 		dev->xfer_mode = dev->dma_mode;
3662 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3663 		if (ap->ops->set_dmamode)
3664 			ap->ops->set_dmamode(ap, dev);
3665 	}
3666 
3667 	/* step 4: update devices' xfer mode */
3668 	ata_for_each_dev(dev, link, ENABLED) {
3669 		rc = ata_dev_set_mode(dev);
3670 		if (rc)
3671 			goto out;
3672 	}
3673 
3674 	/* Record simplex status. If we selected DMA then the other
3675 	 * host channels are not permitted to do so.
3676 	 */
3677 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3678 		ap->host->simplex_claimed = ap;
3679 
3680  out:
3681 	if (rc)
3682 		*r_failed_dev = dev;
3683 	return rc;
3684 }
3685 
3686 /**
3687  *	ata_wait_ready - wait for link to become ready
3688  *	@link: link to be waited on
3689  *	@deadline: deadline jiffies for the operation
3690  *	@check_ready: callback to check link readiness
3691  *
3692  *	Wait for @link to become ready.  @check_ready should return
3693  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3694  *	link doesn't seem to be occupied, other errno for other error
3695  *	conditions.
3696  *
3697  *	Transient -ENODEV conditions are allowed for
3698  *	ATA_TMOUT_FF_WAIT.
3699  *
3700  *	LOCKING:
3701  *	EH context.
3702  *
3703  *	RETURNS:
3704  *	0 if @link is ready before @deadline; otherwise, -errno.
3705  */
3706 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3707 		   int (*check_ready)(struct ata_link *link))
3708 {
3709 	unsigned long start = jiffies;
3710 	unsigned long nodev_deadline;
3711 	int warned = 0;
3712 
3713 	/* choose which 0xff timeout to use, read comment in libata.h */
3714 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3715 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3716 	else
3717 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3718 
3719 	/* Slave readiness can't be tested separately from master.  On
3720 	 * M/S emulation configuration, this function should be called
3721 	 * only on the master and it will handle both master and slave.
3722 	 */
3723 	WARN_ON(link == link->ap->slave_link);
3724 
3725 	if (time_after(nodev_deadline, deadline))
3726 		nodev_deadline = deadline;
3727 
3728 	while (1) {
3729 		unsigned long now = jiffies;
3730 		int ready, tmp;
3731 
3732 		ready = tmp = check_ready(link);
3733 		if (ready > 0)
3734 			return 0;
3735 
3736 		/*
3737 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3738 		 * is online.  Also, some SATA devices take a long
3739 		 * time to clear 0xff after reset.  Wait for
3740 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3741 		 * offline.
3742 		 *
3743 		 * Note that some PATA controllers (pata_ali) explode
3744 		 * if status register is read more than once when
3745 		 * there's no device attached.
3746 		 */
3747 		if (ready == -ENODEV) {
3748 			if (ata_link_online(link))
3749 				ready = 0;
3750 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3751 				 !ata_link_offline(link) &&
3752 				 time_before(now, nodev_deadline))
3753 				ready = 0;
3754 		}
3755 
3756 		if (ready)
3757 			return ready;
3758 		if (time_after(now, deadline))
3759 			return -EBUSY;
3760 
3761 		if (!warned && time_after(now, start + 5 * HZ) &&
3762 		    (deadline - now > 3 * HZ)) {
3763 			ata_link_warn(link,
3764 				"link is slow to respond, please be patient "
3765 				"(ready=%d)\n", tmp);
3766 			warned = 1;
3767 		}
3768 
3769 		ata_msleep(link->ap, 50);
3770 	}
3771 }
3772 
3773 /**
3774  *	ata_wait_after_reset - wait for link to become ready after reset
3775  *	@link: link to be waited on
3776  *	@deadline: deadline jiffies for the operation
3777  *	@check_ready: callback to check link readiness
3778  *
3779  *	Wait for @link to become ready after reset.
3780  *
3781  *	LOCKING:
3782  *	EH context.
3783  *
3784  *	RETURNS:
3785  *	0 if @link is ready before @deadline; otherwise, -errno.
3786  */
3787 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3788 				int (*check_ready)(struct ata_link *link))
3789 {
3790 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3791 
3792 	return ata_wait_ready(link, deadline, check_ready);
3793 }
3794 
3795 /**
3796  *	sata_link_debounce - debounce SATA phy status
3797  *	@link: ATA link to debounce SATA phy status for
3798  *	@params: timing parameters { interval, duration, timeout } in msec
3799  *	@deadline: deadline jiffies for the operation
3800  *
3801  *	Make sure SStatus of @link reaches stable state, determined by
3802  *	holding the same value where DET is not 1 for @duration polled
3803  *	every @interval, before @timeout.  Timeout constraints the
3804  *	beginning of the stable state.  Because DET gets stuck at 1 on
3805  *	some controllers after hot unplugging, this functions waits
3806  *	until timeout then returns 0 if DET is stable at 1.
3807  *
3808  *	@timeout is further limited by @deadline.  The sooner of the
3809  *	two is used.
3810  *
3811  *	LOCKING:
3812  *	Kernel thread context (may sleep)
3813  *
3814  *	RETURNS:
3815  *	0 on success, -errno on failure.
3816  */
3817 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3818 		       unsigned long deadline)
3819 {
3820 	unsigned long interval = params[0];
3821 	unsigned long duration = params[1];
3822 	unsigned long last_jiffies, t;
3823 	u32 last, cur;
3824 	int rc;
3825 
3826 	t = ata_deadline(jiffies, params[2]);
3827 	if (time_before(t, deadline))
3828 		deadline = t;
3829 
3830 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3831 		return rc;
3832 	cur &= 0xf;
3833 
3834 	last = cur;
3835 	last_jiffies = jiffies;
3836 
3837 	while (1) {
3838 		ata_msleep(link->ap, interval);
3839 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3840 			return rc;
3841 		cur &= 0xf;
3842 
3843 		/* DET stable? */
3844 		if (cur == last) {
3845 			if (cur == 1 && time_before(jiffies, deadline))
3846 				continue;
3847 			if (time_after(jiffies,
3848 				       ata_deadline(last_jiffies, duration)))
3849 				return 0;
3850 			continue;
3851 		}
3852 
3853 		/* unstable, start over */
3854 		last = cur;
3855 		last_jiffies = jiffies;
3856 
3857 		/* Check deadline.  If debouncing failed, return
3858 		 * -EPIPE to tell upper layer to lower link speed.
3859 		 */
3860 		if (time_after(jiffies, deadline))
3861 			return -EPIPE;
3862 	}
3863 }
3864 
3865 /**
3866  *	sata_link_resume - resume SATA link
3867  *	@link: ATA link to resume SATA
3868  *	@params: timing parameters { interval, duration, timeout } in msec
3869  *	@deadline: deadline jiffies for the operation
3870  *
3871  *	Resume SATA phy @link and debounce it.
3872  *
3873  *	LOCKING:
3874  *	Kernel thread context (may sleep)
3875  *
3876  *	RETURNS:
3877  *	0 on success, -errno on failure.
3878  */
3879 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3880 		     unsigned long deadline)
3881 {
3882 	int tries = ATA_LINK_RESUME_TRIES;
3883 	u32 scontrol, serror;
3884 	int rc;
3885 
3886 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3887 		return rc;
3888 
3889 	/*
3890 	 * Writes to SControl sometimes get ignored under certain
3891 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3892 	 * cleared.
3893 	 */
3894 	do {
3895 		scontrol = (scontrol & 0x0f0) | 0x300;
3896 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3897 			return rc;
3898 		/*
3899 		 * Some PHYs react badly if SStatus is pounded
3900 		 * immediately after resuming.  Delay 200ms before
3901 		 * debouncing.
3902 		 */
3903 		if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3904 			ata_msleep(link->ap, 200);
3905 
3906 		/* is SControl restored correctly? */
3907 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3908 			return rc;
3909 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3910 
3911 	if ((scontrol & 0xf0f) != 0x300) {
3912 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3913 			     scontrol);
3914 		return 0;
3915 	}
3916 
3917 	if (tries < ATA_LINK_RESUME_TRIES)
3918 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3919 			      ATA_LINK_RESUME_TRIES - tries);
3920 
3921 	if ((rc = sata_link_debounce(link, params, deadline)))
3922 		return rc;
3923 
3924 	/* clear SError, some PHYs require this even for SRST to work */
3925 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3926 		rc = sata_scr_write(link, SCR_ERROR, serror);
3927 
3928 	return rc != -EINVAL ? rc : 0;
3929 }
3930 
3931 /**
3932  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3933  *	@link: ATA link to manipulate SControl for
3934  *	@policy: LPM policy to configure
3935  *	@spm_wakeup: initiate LPM transition to active state
3936  *
3937  *	Manipulate the IPM field of the SControl register of @link
3938  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3939  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3940  *	the link.  This function also clears PHYRDY_CHG before
3941  *	returning.
3942  *
3943  *	LOCKING:
3944  *	EH context.
3945  *
3946  *	RETURNS:
3947  *	0 on success, -errno otherwise.
3948  */
3949 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3950 		      bool spm_wakeup)
3951 {
3952 	struct ata_eh_context *ehc = &link->eh_context;
3953 	bool woken_up = false;
3954 	u32 scontrol;
3955 	int rc;
3956 
3957 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3958 	if (rc)
3959 		return rc;
3960 
3961 	switch (policy) {
3962 	case ATA_LPM_MAX_POWER:
3963 		/* disable all LPM transitions */
3964 		scontrol |= (0x7 << 8);
3965 		/* initiate transition to active state */
3966 		if (spm_wakeup) {
3967 			scontrol |= (0x4 << 12);
3968 			woken_up = true;
3969 		}
3970 		break;
3971 	case ATA_LPM_MED_POWER:
3972 		/* allow LPM to PARTIAL */
3973 		scontrol &= ~(0x1 << 8);
3974 		scontrol |= (0x6 << 8);
3975 		break;
3976 	case ATA_LPM_MED_POWER_WITH_DIPM:
3977 	case ATA_LPM_MIN_POWER:
3978 		if (ata_link_nr_enabled(link) > 0)
3979 			/* no restrictions on LPM transitions */
3980 			scontrol &= ~(0x7 << 8);
3981 		else {
3982 			/* empty port, power off */
3983 			scontrol &= ~0xf;
3984 			scontrol |= (0x1 << 2);
3985 		}
3986 		break;
3987 	default:
3988 		WARN_ON(1);
3989 	}
3990 
3991 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3992 	if (rc)
3993 		return rc;
3994 
3995 	/* give the link time to transit out of LPM state */
3996 	if (woken_up)
3997 		msleep(10);
3998 
3999 	/* clear PHYRDY_CHG from SError */
4000 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
4001 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
4002 }
4003 
4004 /**
4005  *	ata_std_prereset - prepare for reset
4006  *	@link: ATA link to be reset
4007  *	@deadline: deadline jiffies for the operation
4008  *
4009  *	@link is about to be reset.  Initialize it.  Failure from
4010  *	prereset makes libata abort whole reset sequence and give up
4011  *	that port, so prereset should be best-effort.  It does its
4012  *	best to prepare for reset sequence but if things go wrong, it
4013  *	should just whine, not fail.
4014  *
4015  *	LOCKING:
4016  *	Kernel thread context (may sleep)
4017  *
4018  *	RETURNS:
4019  *	0 on success, -errno otherwise.
4020  */
4021 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4022 {
4023 	struct ata_port *ap = link->ap;
4024 	struct ata_eh_context *ehc = &link->eh_context;
4025 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
4026 	int rc;
4027 
4028 	/* if we're about to do hardreset, nothing more to do */
4029 	if (ehc->i.action & ATA_EH_HARDRESET)
4030 		return 0;
4031 
4032 	/* if SATA, resume link */
4033 	if (ap->flags & ATA_FLAG_SATA) {
4034 		rc = sata_link_resume(link, timing, deadline);
4035 		/* whine about phy resume failure but proceed */
4036 		if (rc && rc != -EOPNOTSUPP)
4037 			ata_link_warn(link,
4038 				      "failed to resume link for reset (errno=%d)\n",
4039 				      rc);
4040 	}
4041 
4042 	/* no point in trying softreset on offline link */
4043 	if (ata_phys_link_offline(link))
4044 		ehc->i.action &= ~ATA_EH_SOFTRESET;
4045 
4046 	return 0;
4047 }
4048 
4049 /**
4050  *	sata_link_hardreset - reset link via SATA phy reset
4051  *	@link: link to reset
4052  *	@timing: timing parameters { interval, duration, timeout } in msec
4053  *	@deadline: deadline jiffies for the operation
4054  *	@online: optional out parameter indicating link onlineness
4055  *	@check_ready: optional callback to check link readiness
4056  *
4057  *	SATA phy-reset @link using DET bits of SControl register.
4058  *	After hardreset, link readiness is waited upon using
4059  *	ata_wait_ready() if @check_ready is specified.  LLDs are
4060  *	allowed to not specify @check_ready and wait itself after this
4061  *	function returns.  Device classification is LLD's
4062  *	responsibility.
4063  *
4064  *	*@online is set to one iff reset succeeded and @link is online
4065  *	after reset.
4066  *
4067  *	LOCKING:
4068  *	Kernel thread context (may sleep)
4069  *
4070  *	RETURNS:
4071  *	0 on success, -errno otherwise.
4072  */
4073 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4074 			unsigned long deadline,
4075 			bool *online, int (*check_ready)(struct ata_link *))
4076 {
4077 	u32 scontrol;
4078 	int rc;
4079 
4080 	DPRINTK("ENTER\n");
4081 
4082 	if (online)
4083 		*online = false;
4084 
4085 	if (sata_set_spd_needed(link)) {
4086 		/* SATA spec says nothing about how to reconfigure
4087 		 * spd.  To be on the safe side, turn off phy during
4088 		 * reconfiguration.  This works for at least ICH7 AHCI
4089 		 * and Sil3124.
4090 		 */
4091 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4092 			goto out;
4093 
4094 		scontrol = (scontrol & 0x0f0) | 0x304;
4095 
4096 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4097 			goto out;
4098 
4099 		sata_set_spd(link);
4100 	}
4101 
4102 	/* issue phy wake/reset */
4103 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4104 		goto out;
4105 
4106 	scontrol = (scontrol & 0x0f0) | 0x301;
4107 
4108 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4109 		goto out;
4110 
4111 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4112 	 * 10.4.2 says at least 1 ms.
4113 	 */
4114 	ata_msleep(link->ap, 1);
4115 
4116 	/* bring link back */
4117 	rc = sata_link_resume(link, timing, deadline);
4118 	if (rc)
4119 		goto out;
4120 	/* if link is offline nothing more to do */
4121 	if (ata_phys_link_offline(link))
4122 		goto out;
4123 
4124 	/* Link is online.  From this point, -ENODEV too is an error. */
4125 	if (online)
4126 		*online = true;
4127 
4128 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4129 		/* If PMP is supported, we have to do follow-up SRST.
4130 		 * Some PMPs don't send D2H Reg FIS after hardreset if
4131 		 * the first port is empty.  Wait only for
4132 		 * ATA_TMOUT_PMP_SRST_WAIT.
4133 		 */
4134 		if (check_ready) {
4135 			unsigned long pmp_deadline;
4136 
4137 			pmp_deadline = ata_deadline(jiffies,
4138 						    ATA_TMOUT_PMP_SRST_WAIT);
4139 			if (time_after(pmp_deadline, deadline))
4140 				pmp_deadline = deadline;
4141 			ata_wait_ready(link, pmp_deadline, check_ready);
4142 		}
4143 		rc = -EAGAIN;
4144 		goto out;
4145 	}
4146 
4147 	rc = 0;
4148 	if (check_ready)
4149 		rc = ata_wait_ready(link, deadline, check_ready);
4150  out:
4151 	if (rc && rc != -EAGAIN) {
4152 		/* online is set iff link is online && reset succeeded */
4153 		if (online)
4154 			*online = false;
4155 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4156 	}
4157 	DPRINTK("EXIT, rc=%d\n", rc);
4158 	return rc;
4159 }
4160 
4161 /**
4162  *	sata_std_hardreset - COMRESET w/o waiting or classification
4163  *	@link: link to reset
4164  *	@class: resulting class of attached device
4165  *	@deadline: deadline jiffies for the operation
4166  *
4167  *	Standard SATA COMRESET w/o waiting or classification.
4168  *
4169  *	LOCKING:
4170  *	Kernel thread context (may sleep)
4171  *
4172  *	RETURNS:
4173  *	0 if link offline, -EAGAIN if link online, -errno on errors.
4174  */
4175 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4176 		       unsigned long deadline)
4177 {
4178 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4179 	bool online;
4180 	int rc;
4181 
4182 	/* do hardreset */
4183 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4184 	return online ? -EAGAIN : rc;
4185 }
4186 
4187 /**
4188  *	ata_std_postreset - standard postreset callback
4189  *	@link: the target ata_link
4190  *	@classes: classes of attached devices
4191  *
4192  *	This function is invoked after a successful reset.  Note that
4193  *	the device might have been reset more than once using
4194  *	different reset methods before postreset is invoked.
4195  *
4196  *	LOCKING:
4197  *	Kernel thread context (may sleep)
4198  */
4199 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4200 {
4201 	u32 serror;
4202 
4203 	DPRINTK("ENTER\n");
4204 
4205 	/* reset complete, clear SError */
4206 	if (!sata_scr_read(link, SCR_ERROR, &serror))
4207 		sata_scr_write(link, SCR_ERROR, serror);
4208 
4209 	/* print link status */
4210 	sata_print_link_status(link);
4211 
4212 	DPRINTK("EXIT\n");
4213 }
4214 
4215 /**
4216  *	ata_dev_same_device - Determine whether new ID matches configured device
4217  *	@dev: device to compare against
4218  *	@new_class: class of the new device
4219  *	@new_id: IDENTIFY page of the new device
4220  *
4221  *	Compare @new_class and @new_id against @dev and determine
4222  *	whether @dev is the device indicated by @new_class and
4223  *	@new_id.
4224  *
4225  *	LOCKING:
4226  *	None.
4227  *
4228  *	RETURNS:
4229  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
4230  */
4231 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4232 			       const u16 *new_id)
4233 {
4234 	const u16 *old_id = dev->id;
4235 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
4236 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4237 
4238 	if (dev->class != new_class) {
4239 		ata_dev_info(dev, "class mismatch %d != %d\n",
4240 			     dev->class, new_class);
4241 		return 0;
4242 	}
4243 
4244 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4245 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4246 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4247 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4248 
4249 	if (strcmp(model[0], model[1])) {
4250 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4251 			     model[0], model[1]);
4252 		return 0;
4253 	}
4254 
4255 	if (strcmp(serial[0], serial[1])) {
4256 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4257 			     serial[0], serial[1]);
4258 		return 0;
4259 	}
4260 
4261 	return 1;
4262 }
4263 
4264 /**
4265  *	ata_dev_reread_id - Re-read IDENTIFY data
4266  *	@dev: target ATA device
4267  *	@readid_flags: read ID flags
4268  *
4269  *	Re-read IDENTIFY page and make sure @dev is still attached to
4270  *	the port.
4271  *
4272  *	LOCKING:
4273  *	Kernel thread context (may sleep)
4274  *
4275  *	RETURNS:
4276  *	0 on success, negative errno otherwise
4277  */
4278 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4279 {
4280 	unsigned int class = dev->class;
4281 	u16 *id = (void *)dev->link->ap->sector_buf;
4282 	int rc;
4283 
4284 	/* read ID data */
4285 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4286 	if (rc)
4287 		return rc;
4288 
4289 	/* is the device still there? */
4290 	if (!ata_dev_same_device(dev, class, id))
4291 		return -ENODEV;
4292 
4293 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4294 	return 0;
4295 }
4296 
4297 /**
4298  *	ata_dev_revalidate - Revalidate ATA device
4299  *	@dev: device to revalidate
4300  *	@new_class: new class code
4301  *	@readid_flags: read ID flags
4302  *
4303  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4304  *	port and reconfigure it according to the new IDENTIFY page.
4305  *
4306  *	LOCKING:
4307  *	Kernel thread context (may sleep)
4308  *
4309  *	RETURNS:
4310  *	0 on success, negative errno otherwise
4311  */
4312 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4313 		       unsigned int readid_flags)
4314 {
4315 	u64 n_sectors = dev->n_sectors;
4316 	u64 n_native_sectors = dev->n_native_sectors;
4317 	int rc;
4318 
4319 	if (!ata_dev_enabled(dev))
4320 		return -ENODEV;
4321 
4322 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4323 	if (ata_class_enabled(new_class) &&
4324 	    new_class != ATA_DEV_ATA &&
4325 	    new_class != ATA_DEV_ATAPI &&
4326 	    new_class != ATA_DEV_ZAC &&
4327 	    new_class != ATA_DEV_SEMB) {
4328 		ata_dev_info(dev, "class mismatch %u != %u\n",
4329 			     dev->class, new_class);
4330 		rc = -ENODEV;
4331 		goto fail;
4332 	}
4333 
4334 	/* re-read ID */
4335 	rc = ata_dev_reread_id(dev, readid_flags);
4336 	if (rc)
4337 		goto fail;
4338 
4339 	/* configure device according to the new ID */
4340 	rc = ata_dev_configure(dev);
4341 	if (rc)
4342 		goto fail;
4343 
4344 	/* verify n_sectors hasn't changed */
4345 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4346 	    dev->n_sectors == n_sectors)
4347 		return 0;
4348 
4349 	/* n_sectors has changed */
4350 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4351 		     (unsigned long long)n_sectors,
4352 		     (unsigned long long)dev->n_sectors);
4353 
4354 	/*
4355 	 * Something could have caused HPA to be unlocked
4356 	 * involuntarily.  If n_native_sectors hasn't changed and the
4357 	 * new size matches it, keep the device.
4358 	 */
4359 	if (dev->n_native_sectors == n_native_sectors &&
4360 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4361 		ata_dev_warn(dev,
4362 			     "new n_sectors matches native, probably "
4363 			     "late HPA unlock, n_sectors updated\n");
4364 		/* use the larger n_sectors */
4365 		return 0;
4366 	}
4367 
4368 	/*
4369 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4370 	 * unlocking HPA in those cases.
4371 	 *
4372 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4373 	 */
4374 	if (dev->n_native_sectors == n_native_sectors &&
4375 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4376 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4377 		ata_dev_warn(dev,
4378 			     "old n_sectors matches native, probably "
4379 			     "late HPA lock, will try to unlock HPA\n");
4380 		/* try unlocking HPA */
4381 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4382 		rc = -EIO;
4383 	} else
4384 		rc = -ENODEV;
4385 
4386 	/* restore original n_[native_]sectors and fail */
4387 	dev->n_native_sectors = n_native_sectors;
4388 	dev->n_sectors = n_sectors;
4389  fail:
4390 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4391 	return rc;
4392 }
4393 
4394 struct ata_blacklist_entry {
4395 	const char *model_num;
4396 	const char *model_rev;
4397 	unsigned long horkage;
4398 };
4399 
4400 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4401 	/* Devices with DMA related problems under Linux */
4402 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4403 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4404 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4405 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4406 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4407 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4408 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4409 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4410 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4411 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4412 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4413 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4414 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4415 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4416 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4417 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4418 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4419 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4420 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4421 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4422 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4423 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4424 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4425 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4426 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4427 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4428 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4429 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4430 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4431 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4432 	/* Odd clown on sil3726/4726 PMPs */
4433 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4434 
4435 	/* Weird ATAPI devices */
4436 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4437 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4438 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4439 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4440 
4441 	/*
4442 	 * Causes silent data corruption with higher max sects.
4443 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4444 	 */
4445 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4446 
4447 	/*
4448 	 * These devices time out with higher max sects.
4449 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4450 	 */
4451 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4452 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4453 
4454 	/* Devices we expect to fail diagnostics */
4455 
4456 	/* Devices where NCQ should be avoided */
4457 	/* NCQ is slow */
4458 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4459 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4460 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4461 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4462 	/* NCQ is broken */
4463 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4464 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4465 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4466 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4467 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4468 
4469 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4470 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4471 						ATA_HORKAGE_FIRMWARE_WARN },
4472 
4473 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4474 						ATA_HORKAGE_FIRMWARE_WARN },
4475 
4476 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4477 						ATA_HORKAGE_FIRMWARE_WARN },
4478 
4479 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4480 						ATA_HORKAGE_FIRMWARE_WARN },
4481 
4482 	/* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4483 	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4484 	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4485 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4486 
4487 	/* Blacklist entries taken from Silicon Image 3124/3132
4488 	   Windows driver .inf file - also several Linux problem reports */
4489 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4490 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4491 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4492 
4493 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4494 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4495 
4496 	/* devices which puke on READ_NATIVE_MAX */
4497 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4498 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4499 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4500 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4501 
4502 	/* this one allows HPA unlocking but fails IOs on the area */
4503 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4504 
4505 	/* Devices which report 1 sector over size HPA */
4506 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4507 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4508 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4509 
4510 	/* Devices which get the IVB wrong */
4511 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4512 	/* Maybe we should just blacklist TSSTcorp... */
4513 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4514 
4515 	/* Devices that do not need bridging limits applied */
4516 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4517 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4518 
4519 	/* Devices which aren't very happy with higher link speeds */
4520 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4521 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4522 
4523 	/*
4524 	 * Devices which choke on SETXFER.  Applies only if both the
4525 	 * device and controller are SATA.
4526 	 */
4527 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4528 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4529 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4530 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4531 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4532 
4533 	/* devices that don't properly handle queued TRIM commands */
4534 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4535 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4536 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4537 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4538 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4539 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4540 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4541 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4542 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4543 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4544 	{ "Samsung SSD 8*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4545 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4546 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4547 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4548 
4549 	/* devices that don't properly handle TRIM commands */
4550 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4551 
4552 	/*
4553 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4554 	 * (Return Zero After Trim) flags in the ATA Command Set are
4555 	 * unreliable in the sense that they only define what happens if
4556 	 * the device successfully executed the DSM TRIM command. TRIM
4557 	 * is only advisory, however, and the device is free to silently
4558 	 * ignore all or parts of the request.
4559 	 *
4560 	 * Whitelist drives that are known to reliably return zeroes
4561 	 * after TRIM.
4562 	 */
4563 
4564 	/*
4565 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4566 	 * that model before whitelisting all other intel SSDs.
4567 	 */
4568 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4569 
4570 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4571 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4572 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4573 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4574 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4575 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4576 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4577 
4578 	/*
4579 	 * Some WD SATA-I drives spin up and down erratically when the link
4580 	 * is put into the slumber mode.  We don't have full list of the
4581 	 * affected devices.  Disable LPM if the device matches one of the
4582 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4583 	 * lost too.
4584 	 *
4585 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4586 	 */
4587 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4588 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4589 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4590 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4591 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4592 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4593 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4594 
4595 	/* End Marker */
4596 	{ }
4597 };
4598 
4599 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4600 {
4601 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4602 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4603 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4604 
4605 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4606 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4607 
4608 	while (ad->model_num) {
4609 		if (glob_match(ad->model_num, model_num)) {
4610 			if (ad->model_rev == NULL)
4611 				return ad->horkage;
4612 			if (glob_match(ad->model_rev, model_rev))
4613 				return ad->horkage;
4614 		}
4615 		ad++;
4616 	}
4617 	return 0;
4618 }
4619 
4620 static int ata_dma_blacklisted(const struct ata_device *dev)
4621 {
4622 	/* We don't support polling DMA.
4623 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4624 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4625 	 */
4626 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4627 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4628 		return 1;
4629 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4630 }
4631 
4632 /**
4633  *	ata_is_40wire		-	check drive side detection
4634  *	@dev: device
4635  *
4636  *	Perform drive side detection decoding, allowing for device vendors
4637  *	who can't follow the documentation.
4638  */
4639 
4640 static int ata_is_40wire(struct ata_device *dev)
4641 {
4642 	if (dev->horkage & ATA_HORKAGE_IVB)
4643 		return ata_drive_40wire_relaxed(dev->id);
4644 	return ata_drive_40wire(dev->id);
4645 }
4646 
4647 /**
4648  *	cable_is_40wire		-	40/80/SATA decider
4649  *	@ap: port to consider
4650  *
4651  *	This function encapsulates the policy for speed management
4652  *	in one place. At the moment we don't cache the result but
4653  *	there is a good case for setting ap->cbl to the result when
4654  *	we are called with unknown cables (and figuring out if it
4655  *	impacts hotplug at all).
4656  *
4657  *	Return 1 if the cable appears to be 40 wire.
4658  */
4659 
4660 static int cable_is_40wire(struct ata_port *ap)
4661 {
4662 	struct ata_link *link;
4663 	struct ata_device *dev;
4664 
4665 	/* If the controller thinks we are 40 wire, we are. */
4666 	if (ap->cbl == ATA_CBL_PATA40)
4667 		return 1;
4668 
4669 	/* If the controller thinks we are 80 wire, we are. */
4670 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4671 		return 0;
4672 
4673 	/* If the system is known to be 40 wire short cable (eg
4674 	 * laptop), then we allow 80 wire modes even if the drive
4675 	 * isn't sure.
4676 	 */
4677 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4678 		return 0;
4679 
4680 	/* If the controller doesn't know, we scan.
4681 	 *
4682 	 * Note: We look for all 40 wire detects at this point.  Any
4683 	 *       80 wire detect is taken to be 80 wire cable because
4684 	 * - in many setups only the one drive (slave if present) will
4685 	 *   give a valid detect
4686 	 * - if you have a non detect capable drive you don't want it
4687 	 *   to colour the choice
4688 	 */
4689 	ata_for_each_link(link, ap, EDGE) {
4690 		ata_for_each_dev(dev, link, ENABLED) {
4691 			if (!ata_is_40wire(dev))
4692 				return 0;
4693 		}
4694 	}
4695 	return 1;
4696 }
4697 
4698 /**
4699  *	ata_dev_xfermask - Compute supported xfermask of the given device
4700  *	@dev: Device to compute xfermask for
4701  *
4702  *	Compute supported xfermask of @dev and store it in
4703  *	dev->*_mask.  This function is responsible for applying all
4704  *	known limits including host controller limits, device
4705  *	blacklist, etc...
4706  *
4707  *	LOCKING:
4708  *	None.
4709  */
4710 static void ata_dev_xfermask(struct ata_device *dev)
4711 {
4712 	struct ata_link *link = dev->link;
4713 	struct ata_port *ap = link->ap;
4714 	struct ata_host *host = ap->host;
4715 	unsigned long xfer_mask;
4716 
4717 	/* controller modes available */
4718 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4719 				      ap->mwdma_mask, ap->udma_mask);
4720 
4721 	/* drive modes available */
4722 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4723 				       dev->mwdma_mask, dev->udma_mask);
4724 	xfer_mask &= ata_id_xfermask(dev->id);
4725 
4726 	/*
4727 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4728 	 *	cable
4729 	 */
4730 	if (ata_dev_pair(dev)) {
4731 		/* No PIO5 or PIO6 */
4732 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4733 		/* No MWDMA3 or MWDMA 4 */
4734 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4735 	}
4736 
4737 	if (ata_dma_blacklisted(dev)) {
4738 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4739 		ata_dev_warn(dev,
4740 			     "device is on DMA blacklist, disabling DMA\n");
4741 	}
4742 
4743 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4744 	    host->simplex_claimed && host->simplex_claimed != ap) {
4745 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4746 		ata_dev_warn(dev,
4747 			     "simplex DMA is claimed by other device, disabling DMA\n");
4748 	}
4749 
4750 	if (ap->flags & ATA_FLAG_NO_IORDY)
4751 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4752 
4753 	if (ap->ops->mode_filter)
4754 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4755 
4756 	/* Apply cable rule here.  Don't apply it early because when
4757 	 * we handle hot plug the cable type can itself change.
4758 	 * Check this last so that we know if the transfer rate was
4759 	 * solely limited by the cable.
4760 	 * Unknown or 80 wire cables reported host side are checked
4761 	 * drive side as well. Cases where we know a 40wire cable
4762 	 * is used safely for 80 are not checked here.
4763 	 */
4764 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4765 		/* UDMA/44 or higher would be available */
4766 		if (cable_is_40wire(ap)) {
4767 			ata_dev_warn(dev,
4768 				     "limited to UDMA/33 due to 40-wire cable\n");
4769 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4770 		}
4771 
4772 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4773 			    &dev->mwdma_mask, &dev->udma_mask);
4774 }
4775 
4776 /**
4777  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4778  *	@dev: Device to which command will be sent
4779  *
4780  *	Issue SET FEATURES - XFER MODE command to device @dev
4781  *	on port @ap.
4782  *
4783  *	LOCKING:
4784  *	PCI/etc. bus probe sem.
4785  *
4786  *	RETURNS:
4787  *	0 on success, AC_ERR_* mask otherwise.
4788  */
4789 
4790 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4791 {
4792 	struct ata_taskfile tf;
4793 	unsigned int err_mask;
4794 
4795 	/* set up set-features taskfile */
4796 	DPRINTK("set features - xfer mode\n");
4797 
4798 	/* Some controllers and ATAPI devices show flaky interrupt
4799 	 * behavior after setting xfer mode.  Use polling instead.
4800 	 */
4801 	ata_tf_init(dev, &tf);
4802 	tf.command = ATA_CMD_SET_FEATURES;
4803 	tf.feature = SETFEATURES_XFER;
4804 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4805 	tf.protocol = ATA_PROT_NODATA;
4806 	/* If we are using IORDY we must send the mode setting command */
4807 	if (ata_pio_need_iordy(dev))
4808 		tf.nsect = dev->xfer_mode;
4809 	/* If the device has IORDY and the controller does not - turn it off */
4810  	else if (ata_id_has_iordy(dev->id))
4811 		tf.nsect = 0x01;
4812 	else /* In the ancient relic department - skip all of this */
4813 		return 0;
4814 
4815 	/* On some disks, this command causes spin-up, so we need longer timeout */
4816 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4817 
4818 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4819 	return err_mask;
4820 }
4821 
4822 /**
4823  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4824  *	@dev: Device to which command will be sent
4825  *	@enable: Whether to enable or disable the feature
4826  *	@feature: The sector count represents the feature to set
4827  *
4828  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4829  *	on port @ap with sector count
4830  *
4831  *	LOCKING:
4832  *	PCI/etc. bus probe sem.
4833  *
4834  *	RETURNS:
4835  *	0 on success, AC_ERR_* mask otherwise.
4836  */
4837 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4838 {
4839 	struct ata_taskfile tf;
4840 	unsigned int err_mask;
4841 	unsigned long timeout = 0;
4842 
4843 	/* set up set-features taskfile */
4844 	DPRINTK("set features - SATA features\n");
4845 
4846 	ata_tf_init(dev, &tf);
4847 	tf.command = ATA_CMD_SET_FEATURES;
4848 	tf.feature = enable;
4849 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4850 	tf.protocol = ATA_PROT_NODATA;
4851 	tf.nsect = feature;
4852 
4853 	if (enable == SETFEATURES_SPINUP)
4854 		timeout = ata_probe_timeout ?
4855 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4856 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4857 
4858 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4859 	return err_mask;
4860 }
4861 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4862 
4863 /**
4864  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4865  *	@dev: Device to which command will be sent
4866  *	@heads: Number of heads (taskfile parameter)
4867  *	@sectors: Number of sectors (taskfile parameter)
4868  *
4869  *	LOCKING:
4870  *	Kernel thread context (may sleep)
4871  *
4872  *	RETURNS:
4873  *	0 on success, AC_ERR_* mask otherwise.
4874  */
4875 static unsigned int ata_dev_init_params(struct ata_device *dev,
4876 					u16 heads, u16 sectors)
4877 {
4878 	struct ata_taskfile tf;
4879 	unsigned int err_mask;
4880 
4881 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4882 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4883 		return AC_ERR_INVALID;
4884 
4885 	/* set up init dev params taskfile */
4886 	DPRINTK("init dev params \n");
4887 
4888 	ata_tf_init(dev, &tf);
4889 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4890 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4891 	tf.protocol = ATA_PROT_NODATA;
4892 	tf.nsect = sectors;
4893 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4894 
4895 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4896 	/* A clean abort indicates an original or just out of spec drive
4897 	   and we should continue as we issue the setup based on the
4898 	   drive reported working geometry */
4899 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4900 		err_mask = 0;
4901 
4902 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4903 	return err_mask;
4904 }
4905 
4906 /**
4907  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4908  *	@qc: Metadata associated with taskfile to check
4909  *
4910  *	Allow low-level driver to filter ATA PACKET commands, returning
4911  *	a status indicating whether or not it is OK to use DMA for the
4912  *	supplied PACKET command.
4913  *
4914  *	LOCKING:
4915  *	spin_lock_irqsave(host lock)
4916  *
4917  *	RETURNS: 0 when ATAPI DMA can be used
4918  *               nonzero otherwise
4919  */
4920 int atapi_check_dma(struct ata_queued_cmd *qc)
4921 {
4922 	struct ata_port *ap = qc->ap;
4923 
4924 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4925 	 * few ATAPI devices choke on such DMA requests.
4926 	 */
4927 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4928 	    unlikely(qc->nbytes & 15))
4929 		return 1;
4930 
4931 	if (ap->ops->check_atapi_dma)
4932 		return ap->ops->check_atapi_dma(qc);
4933 
4934 	return 0;
4935 }
4936 
4937 /**
4938  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4939  *	@qc: ATA command in question
4940  *
4941  *	Non-NCQ commands cannot run with any other command, NCQ or
4942  *	not.  As upper layer only knows the queue depth, we are
4943  *	responsible for maintaining exclusion.  This function checks
4944  *	whether a new command @qc can be issued.
4945  *
4946  *	LOCKING:
4947  *	spin_lock_irqsave(host lock)
4948  *
4949  *	RETURNS:
4950  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4951  */
4952 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4953 {
4954 	struct ata_link *link = qc->dev->link;
4955 
4956 	if (ata_is_ncq(qc->tf.protocol)) {
4957 		if (!ata_tag_valid(link->active_tag))
4958 			return 0;
4959 	} else {
4960 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4961 			return 0;
4962 	}
4963 
4964 	return ATA_DEFER_LINK;
4965 }
4966 
4967 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4968 
4969 /**
4970  *	ata_sg_init - Associate command with scatter-gather table.
4971  *	@qc: Command to be associated
4972  *	@sg: Scatter-gather table.
4973  *	@n_elem: Number of elements in s/g table.
4974  *
4975  *	Initialize the data-related elements of queued_cmd @qc
4976  *	to point to a scatter-gather table @sg, containing @n_elem
4977  *	elements.
4978  *
4979  *	LOCKING:
4980  *	spin_lock_irqsave(host lock)
4981  */
4982 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4983 		 unsigned int n_elem)
4984 {
4985 	qc->sg = sg;
4986 	qc->n_elem = n_elem;
4987 	qc->cursg = qc->sg;
4988 }
4989 
4990 #ifdef CONFIG_HAS_DMA
4991 
4992 /**
4993  *	ata_sg_clean - Unmap DMA memory associated with command
4994  *	@qc: Command containing DMA memory to be released
4995  *
4996  *	Unmap all mapped DMA memory associated with this command.
4997  *
4998  *	LOCKING:
4999  *	spin_lock_irqsave(host lock)
5000  */
5001 static void ata_sg_clean(struct ata_queued_cmd *qc)
5002 {
5003 	struct ata_port *ap = qc->ap;
5004 	struct scatterlist *sg = qc->sg;
5005 	int dir = qc->dma_dir;
5006 
5007 	WARN_ON_ONCE(sg == NULL);
5008 
5009 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5010 
5011 	if (qc->n_elem)
5012 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5013 
5014 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
5015 	qc->sg = NULL;
5016 }
5017 
5018 /**
5019  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5020  *	@qc: Command with scatter-gather table to be mapped.
5021  *
5022  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
5023  *
5024  *	LOCKING:
5025  *	spin_lock_irqsave(host lock)
5026  *
5027  *	RETURNS:
5028  *	Zero on success, negative on error.
5029  *
5030  */
5031 static int ata_sg_setup(struct ata_queued_cmd *qc)
5032 {
5033 	struct ata_port *ap = qc->ap;
5034 	unsigned int n_elem;
5035 
5036 	VPRINTK("ENTER, ata%u\n", ap->print_id);
5037 
5038 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5039 	if (n_elem < 1)
5040 		return -1;
5041 
5042 	DPRINTK("%d sg elements mapped\n", n_elem);
5043 	qc->orig_n_elem = qc->n_elem;
5044 	qc->n_elem = n_elem;
5045 	qc->flags |= ATA_QCFLAG_DMAMAP;
5046 
5047 	return 0;
5048 }
5049 
5050 #else /* !CONFIG_HAS_DMA */
5051 
5052 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5053 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5054 
5055 #endif /* !CONFIG_HAS_DMA */
5056 
5057 /**
5058  *	swap_buf_le16 - swap halves of 16-bit words in place
5059  *	@buf:  Buffer to swap
5060  *	@buf_words:  Number of 16-bit words in buffer.
5061  *
5062  *	Swap halves of 16-bit words if needed to convert from
5063  *	little-endian byte order to native cpu byte order, or
5064  *	vice-versa.
5065  *
5066  *	LOCKING:
5067  *	Inherited from caller.
5068  */
5069 void swap_buf_le16(u16 *buf, unsigned int buf_words)
5070 {
5071 #ifdef __BIG_ENDIAN
5072 	unsigned int i;
5073 
5074 	for (i = 0; i < buf_words; i++)
5075 		buf[i] = le16_to_cpu(buf[i]);
5076 #endif /* __BIG_ENDIAN */
5077 }
5078 
5079 /**
5080  *	ata_qc_new_init - Request an available ATA command, and initialize it
5081  *	@dev: Device from whom we request an available command structure
5082  *	@tag: tag
5083  *
5084  *	LOCKING:
5085  *	None.
5086  */
5087 
5088 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5089 {
5090 	struct ata_port *ap = dev->link->ap;
5091 	struct ata_queued_cmd *qc;
5092 
5093 	/* no command while frozen */
5094 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5095 		return NULL;
5096 
5097 	/* libsas case */
5098 	if (ap->flags & ATA_FLAG_SAS_HOST) {
5099 		tag = ata_sas_allocate_tag(ap);
5100 		if (tag < 0)
5101 			return NULL;
5102 	}
5103 
5104 	qc = __ata_qc_from_tag(ap, tag);
5105 	qc->tag = tag;
5106 	qc->scsicmd = NULL;
5107 	qc->ap = ap;
5108 	qc->dev = dev;
5109 
5110 	ata_qc_reinit(qc);
5111 
5112 	return qc;
5113 }
5114 
5115 /**
5116  *	ata_qc_free - free unused ata_queued_cmd
5117  *	@qc: Command to complete
5118  *
5119  *	Designed to free unused ata_queued_cmd object
5120  *	in case something prevents using it.
5121  *
5122  *	LOCKING:
5123  *	spin_lock_irqsave(host lock)
5124  */
5125 void ata_qc_free(struct ata_queued_cmd *qc)
5126 {
5127 	struct ata_port *ap;
5128 	unsigned int tag;
5129 
5130 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5131 	ap = qc->ap;
5132 
5133 	qc->flags = 0;
5134 	tag = qc->tag;
5135 	if (likely(ata_tag_valid(tag))) {
5136 		qc->tag = ATA_TAG_POISON;
5137 		if (ap->flags & ATA_FLAG_SAS_HOST)
5138 			ata_sas_free_tag(tag, ap);
5139 	}
5140 }
5141 
5142 void __ata_qc_complete(struct ata_queued_cmd *qc)
5143 {
5144 	struct ata_port *ap;
5145 	struct ata_link *link;
5146 
5147 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5148 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5149 	ap = qc->ap;
5150 	link = qc->dev->link;
5151 
5152 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5153 		ata_sg_clean(qc);
5154 
5155 	/* command should be marked inactive atomically with qc completion */
5156 	if (ata_is_ncq(qc->tf.protocol)) {
5157 		link->sactive &= ~(1 << qc->tag);
5158 		if (!link->sactive)
5159 			ap->nr_active_links--;
5160 	} else {
5161 		link->active_tag = ATA_TAG_POISON;
5162 		ap->nr_active_links--;
5163 	}
5164 
5165 	/* clear exclusive status */
5166 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5167 		     ap->excl_link == link))
5168 		ap->excl_link = NULL;
5169 
5170 	/* atapi: mark qc as inactive to prevent the interrupt handler
5171 	 * from completing the command twice later, before the error handler
5172 	 * is called. (when rc != 0 and atapi request sense is needed)
5173 	 */
5174 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
5175 	ap->qc_active &= ~(1 << qc->tag);
5176 
5177 	/* call completion callback */
5178 	qc->complete_fn(qc);
5179 }
5180 
5181 static void fill_result_tf(struct ata_queued_cmd *qc)
5182 {
5183 	struct ata_port *ap = qc->ap;
5184 
5185 	qc->result_tf.flags = qc->tf.flags;
5186 	ap->ops->qc_fill_rtf(qc);
5187 }
5188 
5189 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5190 {
5191 	struct ata_device *dev = qc->dev;
5192 
5193 	if (!ata_is_data(qc->tf.protocol))
5194 		return;
5195 
5196 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5197 		return;
5198 
5199 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5200 }
5201 
5202 /**
5203  *	ata_qc_complete - Complete an active ATA command
5204  *	@qc: Command to complete
5205  *
5206  *	Indicate to the mid and upper layers that an ATA command has
5207  *	completed, with either an ok or not-ok status.
5208  *
5209  *	Refrain from calling this function multiple times when
5210  *	successfully completing multiple NCQ commands.
5211  *	ata_qc_complete_multiple() should be used instead, which will
5212  *	properly update IRQ expect state.
5213  *
5214  *	LOCKING:
5215  *	spin_lock_irqsave(host lock)
5216  */
5217 void ata_qc_complete(struct ata_queued_cmd *qc)
5218 {
5219 	struct ata_port *ap = qc->ap;
5220 
5221 	/* Trigger the LED (if available) */
5222 	ledtrig_disk_activity();
5223 
5224 	/* XXX: New EH and old EH use different mechanisms to
5225 	 * synchronize EH with regular execution path.
5226 	 *
5227 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5228 	 * Normal execution path is responsible for not accessing a
5229 	 * failed qc.  libata core enforces the rule by returning NULL
5230 	 * from ata_qc_from_tag() for failed qcs.
5231 	 *
5232 	 * Old EH depends on ata_qc_complete() nullifying completion
5233 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5234 	 * not synchronize with interrupt handler.  Only PIO task is
5235 	 * taken care of.
5236 	 */
5237 	if (ap->ops->error_handler) {
5238 		struct ata_device *dev = qc->dev;
5239 		struct ata_eh_info *ehi = &dev->link->eh_info;
5240 
5241 		if (unlikely(qc->err_mask))
5242 			qc->flags |= ATA_QCFLAG_FAILED;
5243 
5244 		/*
5245 		 * Finish internal commands without any further processing
5246 		 * and always with the result TF filled.
5247 		 */
5248 		if (unlikely(ata_tag_internal(qc->tag))) {
5249 			fill_result_tf(qc);
5250 			trace_ata_qc_complete_internal(qc);
5251 			__ata_qc_complete(qc);
5252 			return;
5253 		}
5254 
5255 		/*
5256 		 * Non-internal qc has failed.  Fill the result TF and
5257 		 * summon EH.
5258 		 */
5259 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5260 			fill_result_tf(qc);
5261 			trace_ata_qc_complete_failed(qc);
5262 			ata_qc_schedule_eh(qc);
5263 			return;
5264 		}
5265 
5266 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5267 
5268 		/* read result TF if requested */
5269 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5270 			fill_result_tf(qc);
5271 
5272 		trace_ata_qc_complete_done(qc);
5273 		/* Some commands need post-processing after successful
5274 		 * completion.
5275 		 */
5276 		switch (qc->tf.command) {
5277 		case ATA_CMD_SET_FEATURES:
5278 			if (qc->tf.feature != SETFEATURES_WC_ON &&
5279 			    qc->tf.feature != SETFEATURES_WC_OFF &&
5280 			    qc->tf.feature != SETFEATURES_RA_ON &&
5281 			    qc->tf.feature != SETFEATURES_RA_OFF)
5282 				break;
5283 			/* fall through */
5284 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5285 		case ATA_CMD_SET_MULTI: /* multi_count changed */
5286 			/* revalidate device */
5287 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5288 			ata_port_schedule_eh(ap);
5289 			break;
5290 
5291 		case ATA_CMD_SLEEP:
5292 			dev->flags |= ATA_DFLAG_SLEEPING;
5293 			break;
5294 		}
5295 
5296 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5297 			ata_verify_xfer(qc);
5298 
5299 		__ata_qc_complete(qc);
5300 	} else {
5301 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5302 			return;
5303 
5304 		/* read result TF if failed or requested */
5305 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5306 			fill_result_tf(qc);
5307 
5308 		__ata_qc_complete(qc);
5309 	}
5310 }
5311 
5312 /**
5313  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5314  *	@ap: port in question
5315  *	@qc_active: new qc_active mask
5316  *
5317  *	Complete in-flight commands.  This functions is meant to be
5318  *	called from low-level driver's interrupt routine to complete
5319  *	requests normally.  ap->qc_active and @qc_active is compared
5320  *	and commands are completed accordingly.
5321  *
5322  *	Always use this function when completing multiple NCQ commands
5323  *	from IRQ handlers instead of calling ata_qc_complete()
5324  *	multiple times to keep IRQ expect status properly in sync.
5325  *
5326  *	LOCKING:
5327  *	spin_lock_irqsave(host lock)
5328  *
5329  *	RETURNS:
5330  *	Number of completed commands on success, -errno otherwise.
5331  */
5332 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5333 {
5334 	int nr_done = 0;
5335 	u32 done_mask;
5336 
5337 	done_mask = ap->qc_active ^ qc_active;
5338 
5339 	if (unlikely(done_mask & qc_active)) {
5340 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5341 			     ap->qc_active, qc_active);
5342 		return -EINVAL;
5343 	}
5344 
5345 	while (done_mask) {
5346 		struct ata_queued_cmd *qc;
5347 		unsigned int tag = __ffs(done_mask);
5348 
5349 		qc = ata_qc_from_tag(ap, tag);
5350 		if (qc) {
5351 			ata_qc_complete(qc);
5352 			nr_done++;
5353 		}
5354 		done_mask &= ~(1 << tag);
5355 	}
5356 
5357 	return nr_done;
5358 }
5359 
5360 /**
5361  *	ata_qc_issue - issue taskfile to device
5362  *	@qc: command to issue to device
5363  *
5364  *	Prepare an ATA command to submission to device.
5365  *	This includes mapping the data into a DMA-able
5366  *	area, filling in the S/G table, and finally
5367  *	writing the taskfile to hardware, starting the command.
5368  *
5369  *	LOCKING:
5370  *	spin_lock_irqsave(host lock)
5371  */
5372 void ata_qc_issue(struct ata_queued_cmd *qc)
5373 {
5374 	struct ata_port *ap = qc->ap;
5375 	struct ata_link *link = qc->dev->link;
5376 	u8 prot = qc->tf.protocol;
5377 
5378 	/* Make sure only one non-NCQ command is outstanding.  The
5379 	 * check is skipped for old EH because it reuses active qc to
5380 	 * request ATAPI sense.
5381 	 */
5382 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5383 
5384 	if (ata_is_ncq(prot)) {
5385 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5386 
5387 		if (!link->sactive)
5388 			ap->nr_active_links++;
5389 		link->sactive |= 1 << qc->tag;
5390 	} else {
5391 		WARN_ON_ONCE(link->sactive);
5392 
5393 		ap->nr_active_links++;
5394 		link->active_tag = qc->tag;
5395 	}
5396 
5397 	qc->flags |= ATA_QCFLAG_ACTIVE;
5398 	ap->qc_active |= 1 << qc->tag;
5399 
5400 	/*
5401 	 * We guarantee to LLDs that they will have at least one
5402 	 * non-zero sg if the command is a data command.
5403 	 */
5404 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5405 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5406 		goto sys_err;
5407 
5408 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5409 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5410 		if (ata_sg_setup(qc))
5411 			goto sys_err;
5412 
5413 	/* if device is sleeping, schedule reset and abort the link */
5414 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5415 		link->eh_info.action |= ATA_EH_RESET;
5416 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5417 		ata_link_abort(link);
5418 		return;
5419 	}
5420 
5421 	ap->ops->qc_prep(qc);
5422 	trace_ata_qc_issue(qc);
5423 	qc->err_mask |= ap->ops->qc_issue(qc);
5424 	if (unlikely(qc->err_mask))
5425 		goto err;
5426 	return;
5427 
5428 sys_err:
5429 	qc->err_mask |= AC_ERR_SYSTEM;
5430 err:
5431 	ata_qc_complete(qc);
5432 }
5433 
5434 /**
5435  *	sata_scr_valid - test whether SCRs are accessible
5436  *	@link: ATA link to test SCR accessibility for
5437  *
5438  *	Test whether SCRs are accessible for @link.
5439  *
5440  *	LOCKING:
5441  *	None.
5442  *
5443  *	RETURNS:
5444  *	1 if SCRs are accessible, 0 otherwise.
5445  */
5446 int sata_scr_valid(struct ata_link *link)
5447 {
5448 	struct ata_port *ap = link->ap;
5449 
5450 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5451 }
5452 
5453 /**
5454  *	sata_scr_read - read SCR register of the specified port
5455  *	@link: ATA link to read SCR for
5456  *	@reg: SCR to read
5457  *	@val: Place to store read value
5458  *
5459  *	Read SCR register @reg of @link into *@val.  This function is
5460  *	guaranteed to succeed if @link is ap->link, the cable type of
5461  *	the port is SATA and the port implements ->scr_read.
5462  *
5463  *	LOCKING:
5464  *	None if @link is ap->link.  Kernel thread context otherwise.
5465  *
5466  *	RETURNS:
5467  *	0 on success, negative errno on failure.
5468  */
5469 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5470 {
5471 	if (ata_is_host_link(link)) {
5472 		if (sata_scr_valid(link))
5473 			return link->ap->ops->scr_read(link, reg, val);
5474 		return -EOPNOTSUPP;
5475 	}
5476 
5477 	return sata_pmp_scr_read(link, reg, val);
5478 }
5479 
5480 /**
5481  *	sata_scr_write - write SCR register of the specified port
5482  *	@link: ATA link to write SCR for
5483  *	@reg: SCR to write
5484  *	@val: value to write
5485  *
5486  *	Write @val to SCR register @reg of @link.  This function is
5487  *	guaranteed to succeed if @link is ap->link, the cable type of
5488  *	the port is SATA and the port implements ->scr_read.
5489  *
5490  *	LOCKING:
5491  *	None if @link is ap->link.  Kernel thread context otherwise.
5492  *
5493  *	RETURNS:
5494  *	0 on success, negative errno on failure.
5495  */
5496 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5497 {
5498 	if (ata_is_host_link(link)) {
5499 		if (sata_scr_valid(link))
5500 			return link->ap->ops->scr_write(link, reg, val);
5501 		return -EOPNOTSUPP;
5502 	}
5503 
5504 	return sata_pmp_scr_write(link, reg, val);
5505 }
5506 
5507 /**
5508  *	sata_scr_write_flush - write SCR register of the specified port and flush
5509  *	@link: ATA link to write SCR for
5510  *	@reg: SCR to write
5511  *	@val: value to write
5512  *
5513  *	This function is identical to sata_scr_write() except that this
5514  *	function performs flush after writing to the register.
5515  *
5516  *	LOCKING:
5517  *	None if @link is ap->link.  Kernel thread context otherwise.
5518  *
5519  *	RETURNS:
5520  *	0 on success, negative errno on failure.
5521  */
5522 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5523 {
5524 	if (ata_is_host_link(link)) {
5525 		int rc;
5526 
5527 		if (sata_scr_valid(link)) {
5528 			rc = link->ap->ops->scr_write(link, reg, val);
5529 			if (rc == 0)
5530 				rc = link->ap->ops->scr_read(link, reg, &val);
5531 			return rc;
5532 		}
5533 		return -EOPNOTSUPP;
5534 	}
5535 
5536 	return sata_pmp_scr_write(link, reg, val);
5537 }
5538 
5539 /**
5540  *	ata_phys_link_online - test whether the given link is online
5541  *	@link: ATA link to test
5542  *
5543  *	Test whether @link is online.  Note that this function returns
5544  *	0 if online status of @link cannot be obtained, so
5545  *	ata_link_online(link) != !ata_link_offline(link).
5546  *
5547  *	LOCKING:
5548  *	None.
5549  *
5550  *	RETURNS:
5551  *	True if the port online status is available and online.
5552  */
5553 bool ata_phys_link_online(struct ata_link *link)
5554 {
5555 	u32 sstatus;
5556 
5557 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5558 	    ata_sstatus_online(sstatus))
5559 		return true;
5560 	return false;
5561 }
5562 
5563 /**
5564  *	ata_phys_link_offline - test whether the given link is offline
5565  *	@link: ATA link to test
5566  *
5567  *	Test whether @link is offline.  Note that this function
5568  *	returns 0 if offline status of @link cannot be obtained, so
5569  *	ata_link_online(link) != !ata_link_offline(link).
5570  *
5571  *	LOCKING:
5572  *	None.
5573  *
5574  *	RETURNS:
5575  *	True if the port offline status is available and offline.
5576  */
5577 bool ata_phys_link_offline(struct ata_link *link)
5578 {
5579 	u32 sstatus;
5580 
5581 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5582 	    !ata_sstatus_online(sstatus))
5583 		return true;
5584 	return false;
5585 }
5586 
5587 /**
5588  *	ata_link_online - test whether the given link is online
5589  *	@link: ATA link to test
5590  *
5591  *	Test whether @link is online.  This is identical to
5592  *	ata_phys_link_online() when there's no slave link.  When
5593  *	there's a slave link, this function should only be called on
5594  *	the master link and will return true if any of M/S links is
5595  *	online.
5596  *
5597  *	LOCKING:
5598  *	None.
5599  *
5600  *	RETURNS:
5601  *	True if the port online status is available and online.
5602  */
5603 bool ata_link_online(struct ata_link *link)
5604 {
5605 	struct ata_link *slave = link->ap->slave_link;
5606 
5607 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5608 
5609 	return ata_phys_link_online(link) ||
5610 		(slave && ata_phys_link_online(slave));
5611 }
5612 
5613 /**
5614  *	ata_link_offline - test whether the given link is offline
5615  *	@link: ATA link to test
5616  *
5617  *	Test whether @link is offline.  This is identical to
5618  *	ata_phys_link_offline() when there's no slave link.  When
5619  *	there's a slave link, this function should only be called on
5620  *	the master link and will return true if both M/S links are
5621  *	offline.
5622  *
5623  *	LOCKING:
5624  *	None.
5625  *
5626  *	RETURNS:
5627  *	True if the port offline status is available and offline.
5628  */
5629 bool ata_link_offline(struct ata_link *link)
5630 {
5631 	struct ata_link *slave = link->ap->slave_link;
5632 
5633 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5634 
5635 	return ata_phys_link_offline(link) &&
5636 		(!slave || ata_phys_link_offline(slave));
5637 }
5638 
5639 #ifdef CONFIG_PM
5640 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5641 				unsigned int action, unsigned int ehi_flags,
5642 				bool async)
5643 {
5644 	struct ata_link *link;
5645 	unsigned long flags;
5646 
5647 	/* Previous resume operation might still be in
5648 	 * progress.  Wait for PM_PENDING to clear.
5649 	 */
5650 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5651 		ata_port_wait_eh(ap);
5652 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5653 	}
5654 
5655 	/* request PM ops to EH */
5656 	spin_lock_irqsave(ap->lock, flags);
5657 
5658 	ap->pm_mesg = mesg;
5659 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5660 	ata_for_each_link(link, ap, HOST_FIRST) {
5661 		link->eh_info.action |= action;
5662 		link->eh_info.flags |= ehi_flags;
5663 	}
5664 
5665 	ata_port_schedule_eh(ap);
5666 
5667 	spin_unlock_irqrestore(ap->lock, flags);
5668 
5669 	if (!async) {
5670 		ata_port_wait_eh(ap);
5671 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5672 	}
5673 }
5674 
5675 /*
5676  * On some hardware, device fails to respond after spun down for suspend.  As
5677  * the device won't be used before being resumed, we don't need to touch the
5678  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5679  *
5680  * http://thread.gmane.org/gmane.linux.ide/46764
5681  */
5682 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5683 						 | ATA_EHI_NO_AUTOPSY
5684 						 | ATA_EHI_NO_RECOVERY;
5685 
5686 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5687 {
5688 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5689 }
5690 
5691 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5692 {
5693 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5694 }
5695 
5696 static int ata_port_pm_suspend(struct device *dev)
5697 {
5698 	struct ata_port *ap = to_ata_port(dev);
5699 
5700 	if (pm_runtime_suspended(dev))
5701 		return 0;
5702 
5703 	ata_port_suspend(ap, PMSG_SUSPEND);
5704 	return 0;
5705 }
5706 
5707 static int ata_port_pm_freeze(struct device *dev)
5708 {
5709 	struct ata_port *ap = to_ata_port(dev);
5710 
5711 	if (pm_runtime_suspended(dev))
5712 		return 0;
5713 
5714 	ata_port_suspend(ap, PMSG_FREEZE);
5715 	return 0;
5716 }
5717 
5718 static int ata_port_pm_poweroff(struct device *dev)
5719 {
5720 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5721 	return 0;
5722 }
5723 
5724 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5725 						| ATA_EHI_QUIET;
5726 
5727 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5728 {
5729 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5730 }
5731 
5732 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5733 {
5734 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5735 }
5736 
5737 static int ata_port_pm_resume(struct device *dev)
5738 {
5739 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5740 	pm_runtime_disable(dev);
5741 	pm_runtime_set_active(dev);
5742 	pm_runtime_enable(dev);
5743 	return 0;
5744 }
5745 
5746 /*
5747  * For ODDs, the upper layer will poll for media change every few seconds,
5748  * which will make it enter and leave suspend state every few seconds. And
5749  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5750  * is very little and the ODD may malfunction after constantly being reset.
5751  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5752  * ODD is attached to the port.
5753  */
5754 static int ata_port_runtime_idle(struct device *dev)
5755 {
5756 	struct ata_port *ap = to_ata_port(dev);
5757 	struct ata_link *link;
5758 	struct ata_device *adev;
5759 
5760 	ata_for_each_link(link, ap, HOST_FIRST) {
5761 		ata_for_each_dev(adev, link, ENABLED)
5762 			if (adev->class == ATA_DEV_ATAPI &&
5763 			    !zpodd_dev_enabled(adev))
5764 				return -EBUSY;
5765 	}
5766 
5767 	return 0;
5768 }
5769 
5770 static int ata_port_runtime_suspend(struct device *dev)
5771 {
5772 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5773 	return 0;
5774 }
5775 
5776 static int ata_port_runtime_resume(struct device *dev)
5777 {
5778 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5779 	return 0;
5780 }
5781 
5782 static const struct dev_pm_ops ata_port_pm_ops = {
5783 	.suspend = ata_port_pm_suspend,
5784 	.resume = ata_port_pm_resume,
5785 	.freeze = ata_port_pm_freeze,
5786 	.thaw = ata_port_pm_resume,
5787 	.poweroff = ata_port_pm_poweroff,
5788 	.restore = ata_port_pm_resume,
5789 
5790 	.runtime_suspend = ata_port_runtime_suspend,
5791 	.runtime_resume = ata_port_runtime_resume,
5792 	.runtime_idle = ata_port_runtime_idle,
5793 };
5794 
5795 /* sas ports don't participate in pm runtime management of ata_ports,
5796  * and need to resume ata devices at the domain level, not the per-port
5797  * level. sas suspend/resume is async to allow parallel port recovery
5798  * since sas has multiple ata_port instances per Scsi_Host.
5799  */
5800 void ata_sas_port_suspend(struct ata_port *ap)
5801 {
5802 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5803 }
5804 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5805 
5806 void ata_sas_port_resume(struct ata_port *ap)
5807 {
5808 	ata_port_resume_async(ap, PMSG_RESUME);
5809 }
5810 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5811 
5812 /**
5813  *	ata_host_suspend - suspend host
5814  *	@host: host to suspend
5815  *	@mesg: PM message
5816  *
5817  *	Suspend @host.  Actual operation is performed by port suspend.
5818  */
5819 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5820 {
5821 	host->dev->power.power_state = mesg;
5822 	return 0;
5823 }
5824 
5825 /**
5826  *	ata_host_resume - resume host
5827  *	@host: host to resume
5828  *
5829  *	Resume @host.  Actual operation is performed by port resume.
5830  */
5831 void ata_host_resume(struct ata_host *host)
5832 {
5833 	host->dev->power.power_state = PMSG_ON;
5834 }
5835 #endif
5836 
5837 const struct device_type ata_port_type = {
5838 	.name = "ata_port",
5839 #ifdef CONFIG_PM
5840 	.pm = &ata_port_pm_ops,
5841 #endif
5842 };
5843 
5844 /**
5845  *	ata_dev_init - Initialize an ata_device structure
5846  *	@dev: Device structure to initialize
5847  *
5848  *	Initialize @dev in preparation for probing.
5849  *
5850  *	LOCKING:
5851  *	Inherited from caller.
5852  */
5853 void ata_dev_init(struct ata_device *dev)
5854 {
5855 	struct ata_link *link = ata_dev_phys_link(dev);
5856 	struct ata_port *ap = link->ap;
5857 	unsigned long flags;
5858 
5859 	/* SATA spd limit is bound to the attached device, reset together */
5860 	link->sata_spd_limit = link->hw_sata_spd_limit;
5861 	link->sata_spd = 0;
5862 
5863 	/* High bits of dev->flags are used to record warm plug
5864 	 * requests which occur asynchronously.  Synchronize using
5865 	 * host lock.
5866 	 */
5867 	spin_lock_irqsave(ap->lock, flags);
5868 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5869 	dev->horkage = 0;
5870 	spin_unlock_irqrestore(ap->lock, flags);
5871 
5872 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5873 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5874 	dev->pio_mask = UINT_MAX;
5875 	dev->mwdma_mask = UINT_MAX;
5876 	dev->udma_mask = UINT_MAX;
5877 }
5878 
5879 /**
5880  *	ata_link_init - Initialize an ata_link structure
5881  *	@ap: ATA port link is attached to
5882  *	@link: Link structure to initialize
5883  *	@pmp: Port multiplier port number
5884  *
5885  *	Initialize @link.
5886  *
5887  *	LOCKING:
5888  *	Kernel thread context (may sleep)
5889  */
5890 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5891 {
5892 	int i;
5893 
5894 	/* clear everything except for devices */
5895 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5896 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5897 
5898 	link->ap = ap;
5899 	link->pmp = pmp;
5900 	link->active_tag = ATA_TAG_POISON;
5901 	link->hw_sata_spd_limit = UINT_MAX;
5902 
5903 	/* can't use iterator, ap isn't initialized yet */
5904 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5905 		struct ata_device *dev = &link->device[i];
5906 
5907 		dev->link = link;
5908 		dev->devno = dev - link->device;
5909 #ifdef CONFIG_ATA_ACPI
5910 		dev->gtf_filter = ata_acpi_gtf_filter;
5911 #endif
5912 		ata_dev_init(dev);
5913 	}
5914 }
5915 
5916 /**
5917  *	sata_link_init_spd - Initialize link->sata_spd_limit
5918  *	@link: Link to configure sata_spd_limit for
5919  *
5920  *	Initialize @link->[hw_]sata_spd_limit to the currently
5921  *	configured value.
5922  *
5923  *	LOCKING:
5924  *	Kernel thread context (may sleep).
5925  *
5926  *	RETURNS:
5927  *	0 on success, -errno on failure.
5928  */
5929 int sata_link_init_spd(struct ata_link *link)
5930 {
5931 	u8 spd;
5932 	int rc;
5933 
5934 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5935 	if (rc)
5936 		return rc;
5937 
5938 	spd = (link->saved_scontrol >> 4) & 0xf;
5939 	if (spd)
5940 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5941 
5942 	ata_force_link_limits(link);
5943 
5944 	link->sata_spd_limit = link->hw_sata_spd_limit;
5945 
5946 	return 0;
5947 }
5948 
5949 /**
5950  *	ata_port_alloc - allocate and initialize basic ATA port resources
5951  *	@host: ATA host this allocated port belongs to
5952  *
5953  *	Allocate and initialize basic ATA port resources.
5954  *
5955  *	RETURNS:
5956  *	Allocate ATA port on success, NULL on failure.
5957  *
5958  *	LOCKING:
5959  *	Inherited from calling layer (may sleep).
5960  */
5961 struct ata_port *ata_port_alloc(struct ata_host *host)
5962 {
5963 	struct ata_port *ap;
5964 
5965 	DPRINTK("ENTER\n");
5966 
5967 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5968 	if (!ap)
5969 		return NULL;
5970 
5971 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5972 	ap->lock = &host->lock;
5973 	ap->print_id = -1;
5974 	ap->local_port_no = -1;
5975 	ap->host = host;
5976 	ap->dev = host->dev;
5977 
5978 #if defined(ATA_VERBOSE_DEBUG)
5979 	/* turn on all debugging levels */
5980 	ap->msg_enable = 0x00FF;
5981 #elif defined(ATA_DEBUG)
5982 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5983 #else
5984 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5985 #endif
5986 
5987 	mutex_init(&ap->scsi_scan_mutex);
5988 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5989 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5990 	INIT_LIST_HEAD(&ap->eh_done_q);
5991 	init_waitqueue_head(&ap->eh_wait_q);
5992 	init_completion(&ap->park_req_pending);
5993 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5994 		    TIMER_DEFERRABLE);
5995 
5996 	ap->cbl = ATA_CBL_NONE;
5997 
5998 	ata_link_init(ap, &ap->link, 0);
5999 
6000 #ifdef ATA_IRQ_TRAP
6001 	ap->stats.unhandled_irq = 1;
6002 	ap->stats.idle_irq = 1;
6003 #endif
6004 	ata_sff_port_init(ap);
6005 
6006 	return ap;
6007 }
6008 
6009 static void ata_host_release(struct device *gendev, void *res)
6010 {
6011 	struct ata_host *host = dev_get_drvdata(gendev);
6012 	int i;
6013 
6014 	for (i = 0; i < host->n_ports; i++) {
6015 		struct ata_port *ap = host->ports[i];
6016 
6017 		if (!ap)
6018 			continue;
6019 
6020 		if (ap->scsi_host)
6021 			scsi_host_put(ap->scsi_host);
6022 
6023 		kfree(ap->pmp_link);
6024 		kfree(ap->slave_link);
6025 		kfree(ap);
6026 		host->ports[i] = NULL;
6027 	}
6028 
6029 	dev_set_drvdata(gendev, NULL);
6030 }
6031 
6032 /**
6033  *	ata_host_alloc - allocate and init basic ATA host resources
6034  *	@dev: generic device this host is associated with
6035  *	@max_ports: maximum number of ATA ports associated with this host
6036  *
6037  *	Allocate and initialize basic ATA host resources.  LLD calls
6038  *	this function to allocate a host, initializes it fully and
6039  *	attaches it using ata_host_register().
6040  *
6041  *	@max_ports ports are allocated and host->n_ports is
6042  *	initialized to @max_ports.  The caller is allowed to decrease
6043  *	host->n_ports before calling ata_host_register().  The unused
6044  *	ports will be automatically freed on registration.
6045  *
6046  *	RETURNS:
6047  *	Allocate ATA host on success, NULL on failure.
6048  *
6049  *	LOCKING:
6050  *	Inherited from calling layer (may sleep).
6051  */
6052 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6053 {
6054 	struct ata_host *host;
6055 	size_t sz;
6056 	int i;
6057 
6058 	DPRINTK("ENTER\n");
6059 
6060 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
6061 		return NULL;
6062 
6063 	/* alloc a container for our list of ATA ports (buses) */
6064 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6065 	/* alloc a container for our list of ATA ports (buses) */
6066 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6067 	if (!host)
6068 		goto err_out;
6069 
6070 	devres_add(dev, host);
6071 	dev_set_drvdata(dev, host);
6072 
6073 	spin_lock_init(&host->lock);
6074 	mutex_init(&host->eh_mutex);
6075 	host->dev = dev;
6076 	host->n_ports = max_ports;
6077 
6078 	/* allocate ports bound to this host */
6079 	for (i = 0; i < max_ports; i++) {
6080 		struct ata_port *ap;
6081 
6082 		ap = ata_port_alloc(host);
6083 		if (!ap)
6084 			goto err_out;
6085 
6086 		ap->port_no = i;
6087 		host->ports[i] = ap;
6088 	}
6089 
6090 	devres_remove_group(dev, NULL);
6091 	return host;
6092 
6093  err_out:
6094 	devres_release_group(dev, NULL);
6095 	return NULL;
6096 }
6097 
6098 /**
6099  *	ata_host_alloc_pinfo - alloc host and init with port_info array
6100  *	@dev: generic device this host is associated with
6101  *	@ppi: array of ATA port_info to initialize host with
6102  *	@n_ports: number of ATA ports attached to this host
6103  *
6104  *	Allocate ATA host and initialize with info from @ppi.  If NULL
6105  *	terminated, @ppi may contain fewer entries than @n_ports.  The
6106  *	last entry will be used for the remaining ports.
6107  *
6108  *	RETURNS:
6109  *	Allocate ATA host on success, NULL on failure.
6110  *
6111  *	LOCKING:
6112  *	Inherited from calling layer (may sleep).
6113  */
6114 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6115 				      const struct ata_port_info * const * ppi,
6116 				      int n_ports)
6117 {
6118 	const struct ata_port_info *pi;
6119 	struct ata_host *host;
6120 	int i, j;
6121 
6122 	host = ata_host_alloc(dev, n_ports);
6123 	if (!host)
6124 		return NULL;
6125 
6126 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6127 		struct ata_port *ap = host->ports[i];
6128 
6129 		if (ppi[j])
6130 			pi = ppi[j++];
6131 
6132 		ap->pio_mask = pi->pio_mask;
6133 		ap->mwdma_mask = pi->mwdma_mask;
6134 		ap->udma_mask = pi->udma_mask;
6135 		ap->flags |= pi->flags;
6136 		ap->link.flags |= pi->link_flags;
6137 		ap->ops = pi->port_ops;
6138 
6139 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6140 			host->ops = pi->port_ops;
6141 	}
6142 
6143 	return host;
6144 }
6145 
6146 /**
6147  *	ata_slave_link_init - initialize slave link
6148  *	@ap: port to initialize slave link for
6149  *
6150  *	Create and initialize slave link for @ap.  This enables slave
6151  *	link handling on the port.
6152  *
6153  *	In libata, a port contains links and a link contains devices.
6154  *	There is single host link but if a PMP is attached to it,
6155  *	there can be multiple fan-out links.  On SATA, there's usually
6156  *	a single device connected to a link but PATA and SATA
6157  *	controllers emulating TF based interface can have two - master
6158  *	and slave.
6159  *
6160  *	However, there are a few controllers which don't fit into this
6161  *	abstraction too well - SATA controllers which emulate TF
6162  *	interface with both master and slave devices but also have
6163  *	separate SCR register sets for each device.  These controllers
6164  *	need separate links for physical link handling
6165  *	(e.g. onlineness, link speed) but should be treated like a
6166  *	traditional M/S controller for everything else (e.g. command
6167  *	issue, softreset).
6168  *
6169  *	slave_link is libata's way of handling this class of
6170  *	controllers without impacting core layer too much.  For
6171  *	anything other than physical link handling, the default host
6172  *	link is used for both master and slave.  For physical link
6173  *	handling, separate @ap->slave_link is used.  All dirty details
6174  *	are implemented inside libata core layer.  From LLD's POV, the
6175  *	only difference is that prereset, hardreset and postreset are
6176  *	called once more for the slave link, so the reset sequence
6177  *	looks like the following.
6178  *
6179  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6180  *	softreset(M) -> postreset(M) -> postreset(S)
6181  *
6182  *	Note that softreset is called only for the master.  Softreset
6183  *	resets both M/S by definition, so SRST on master should handle
6184  *	both (the standard method will work just fine).
6185  *
6186  *	LOCKING:
6187  *	Should be called before host is registered.
6188  *
6189  *	RETURNS:
6190  *	0 on success, -errno on failure.
6191  */
6192 int ata_slave_link_init(struct ata_port *ap)
6193 {
6194 	struct ata_link *link;
6195 
6196 	WARN_ON(ap->slave_link);
6197 	WARN_ON(ap->flags & ATA_FLAG_PMP);
6198 
6199 	link = kzalloc(sizeof(*link), GFP_KERNEL);
6200 	if (!link)
6201 		return -ENOMEM;
6202 
6203 	ata_link_init(ap, link, 1);
6204 	ap->slave_link = link;
6205 	return 0;
6206 }
6207 
6208 static void ata_host_stop(struct device *gendev, void *res)
6209 {
6210 	struct ata_host *host = dev_get_drvdata(gendev);
6211 	int i;
6212 
6213 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
6214 
6215 	for (i = 0; i < host->n_ports; i++) {
6216 		struct ata_port *ap = host->ports[i];
6217 
6218 		if (ap->ops->port_stop)
6219 			ap->ops->port_stop(ap);
6220 	}
6221 
6222 	if (host->ops->host_stop)
6223 		host->ops->host_stop(host);
6224 }
6225 
6226 /**
6227  *	ata_finalize_port_ops - finalize ata_port_operations
6228  *	@ops: ata_port_operations to finalize
6229  *
6230  *	An ata_port_operations can inherit from another ops and that
6231  *	ops can again inherit from another.  This can go on as many
6232  *	times as necessary as long as there is no loop in the
6233  *	inheritance chain.
6234  *
6235  *	Ops tables are finalized when the host is started.  NULL or
6236  *	unspecified entries are inherited from the closet ancestor
6237  *	which has the method and the entry is populated with it.
6238  *	After finalization, the ops table directly points to all the
6239  *	methods and ->inherits is no longer necessary and cleared.
6240  *
6241  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6242  *
6243  *	LOCKING:
6244  *	None.
6245  */
6246 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6247 {
6248 	static DEFINE_SPINLOCK(lock);
6249 	const struct ata_port_operations *cur;
6250 	void **begin = (void **)ops;
6251 	void **end = (void **)&ops->inherits;
6252 	void **pp;
6253 
6254 	if (!ops || !ops->inherits)
6255 		return;
6256 
6257 	spin_lock(&lock);
6258 
6259 	for (cur = ops->inherits; cur; cur = cur->inherits) {
6260 		void **inherit = (void **)cur;
6261 
6262 		for (pp = begin; pp < end; pp++, inherit++)
6263 			if (!*pp)
6264 				*pp = *inherit;
6265 	}
6266 
6267 	for (pp = begin; pp < end; pp++)
6268 		if (IS_ERR(*pp))
6269 			*pp = NULL;
6270 
6271 	ops->inherits = NULL;
6272 
6273 	spin_unlock(&lock);
6274 }
6275 
6276 /**
6277  *	ata_host_start - start and freeze ports of an ATA host
6278  *	@host: ATA host to start ports for
6279  *
6280  *	Start and then freeze ports of @host.  Started status is
6281  *	recorded in host->flags, so this function can be called
6282  *	multiple times.  Ports are guaranteed to get started only
6283  *	once.  If host->ops isn't initialized yet, its set to the
6284  *	first non-dummy port ops.
6285  *
6286  *	LOCKING:
6287  *	Inherited from calling layer (may sleep).
6288  *
6289  *	RETURNS:
6290  *	0 if all ports are started successfully, -errno otherwise.
6291  */
6292 int ata_host_start(struct ata_host *host)
6293 {
6294 	int have_stop = 0;
6295 	void *start_dr = NULL;
6296 	int i, rc;
6297 
6298 	if (host->flags & ATA_HOST_STARTED)
6299 		return 0;
6300 
6301 	ata_finalize_port_ops(host->ops);
6302 
6303 	for (i = 0; i < host->n_ports; i++) {
6304 		struct ata_port *ap = host->ports[i];
6305 
6306 		ata_finalize_port_ops(ap->ops);
6307 
6308 		if (!host->ops && !ata_port_is_dummy(ap))
6309 			host->ops = ap->ops;
6310 
6311 		if (ap->ops->port_stop)
6312 			have_stop = 1;
6313 	}
6314 
6315 	if (host->ops->host_stop)
6316 		have_stop = 1;
6317 
6318 	if (have_stop) {
6319 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6320 		if (!start_dr)
6321 			return -ENOMEM;
6322 	}
6323 
6324 	for (i = 0; i < host->n_ports; i++) {
6325 		struct ata_port *ap = host->ports[i];
6326 
6327 		if (ap->ops->port_start) {
6328 			rc = ap->ops->port_start(ap);
6329 			if (rc) {
6330 				if (rc != -ENODEV)
6331 					dev_err(host->dev,
6332 						"failed to start port %d (errno=%d)\n",
6333 						i, rc);
6334 				goto err_out;
6335 			}
6336 		}
6337 		ata_eh_freeze_port(ap);
6338 	}
6339 
6340 	if (start_dr)
6341 		devres_add(host->dev, start_dr);
6342 	host->flags |= ATA_HOST_STARTED;
6343 	return 0;
6344 
6345  err_out:
6346 	while (--i >= 0) {
6347 		struct ata_port *ap = host->ports[i];
6348 
6349 		if (ap->ops->port_stop)
6350 			ap->ops->port_stop(ap);
6351 	}
6352 	devres_free(start_dr);
6353 	return rc;
6354 }
6355 
6356 /**
6357  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6358  *	@host:	host to initialize
6359  *	@dev:	device host is attached to
6360  *	@ops:	port_ops
6361  *
6362  */
6363 void ata_host_init(struct ata_host *host, struct device *dev,
6364 		   struct ata_port_operations *ops)
6365 {
6366 	spin_lock_init(&host->lock);
6367 	mutex_init(&host->eh_mutex);
6368 	host->n_tags = ATA_MAX_QUEUE - 1;
6369 	host->dev = dev;
6370 	host->ops = ops;
6371 }
6372 
6373 void __ata_port_probe(struct ata_port *ap)
6374 {
6375 	struct ata_eh_info *ehi = &ap->link.eh_info;
6376 	unsigned long flags;
6377 
6378 	/* kick EH for boot probing */
6379 	spin_lock_irqsave(ap->lock, flags);
6380 
6381 	ehi->probe_mask |= ATA_ALL_DEVICES;
6382 	ehi->action |= ATA_EH_RESET;
6383 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6384 
6385 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6386 	ap->pflags |= ATA_PFLAG_LOADING;
6387 	ata_port_schedule_eh(ap);
6388 
6389 	spin_unlock_irqrestore(ap->lock, flags);
6390 }
6391 
6392 int ata_port_probe(struct ata_port *ap)
6393 {
6394 	int rc = 0;
6395 
6396 	if (ap->ops->error_handler) {
6397 		__ata_port_probe(ap);
6398 		ata_port_wait_eh(ap);
6399 	} else {
6400 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6401 		rc = ata_bus_probe(ap);
6402 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6403 	}
6404 	return rc;
6405 }
6406 
6407 
6408 static void async_port_probe(void *data, async_cookie_t cookie)
6409 {
6410 	struct ata_port *ap = data;
6411 
6412 	/*
6413 	 * If we're not allowed to scan this host in parallel,
6414 	 * we need to wait until all previous scans have completed
6415 	 * before going further.
6416 	 * Jeff Garzik says this is only within a controller, so we
6417 	 * don't need to wait for port 0, only for later ports.
6418 	 */
6419 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6420 		async_synchronize_cookie(cookie);
6421 
6422 	(void)ata_port_probe(ap);
6423 
6424 	/* in order to keep device order, we need to synchronize at this point */
6425 	async_synchronize_cookie(cookie);
6426 
6427 	ata_scsi_scan_host(ap, 1);
6428 }
6429 
6430 /**
6431  *	ata_host_register - register initialized ATA host
6432  *	@host: ATA host to register
6433  *	@sht: template for SCSI host
6434  *
6435  *	Register initialized ATA host.  @host is allocated using
6436  *	ata_host_alloc() and fully initialized by LLD.  This function
6437  *	starts ports, registers @host with ATA and SCSI layers and
6438  *	probe registered devices.
6439  *
6440  *	LOCKING:
6441  *	Inherited from calling layer (may sleep).
6442  *
6443  *	RETURNS:
6444  *	0 on success, -errno otherwise.
6445  */
6446 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6447 {
6448 	int i, rc;
6449 
6450 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6451 
6452 	/* host must have been started */
6453 	if (!(host->flags & ATA_HOST_STARTED)) {
6454 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6455 		WARN_ON(1);
6456 		return -EINVAL;
6457 	}
6458 
6459 	/* Blow away unused ports.  This happens when LLD can't
6460 	 * determine the exact number of ports to allocate at
6461 	 * allocation time.
6462 	 */
6463 	for (i = host->n_ports; host->ports[i]; i++)
6464 		kfree(host->ports[i]);
6465 
6466 	/* give ports names and add SCSI hosts */
6467 	for (i = 0; i < host->n_ports; i++) {
6468 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6469 		host->ports[i]->local_port_no = i + 1;
6470 	}
6471 
6472 	/* Create associated sysfs transport objects  */
6473 	for (i = 0; i < host->n_ports; i++) {
6474 		rc = ata_tport_add(host->dev,host->ports[i]);
6475 		if (rc) {
6476 			goto err_tadd;
6477 		}
6478 	}
6479 
6480 	rc = ata_scsi_add_hosts(host, sht);
6481 	if (rc)
6482 		goto err_tadd;
6483 
6484 	/* set cable, sata_spd_limit and report */
6485 	for (i = 0; i < host->n_ports; i++) {
6486 		struct ata_port *ap = host->ports[i];
6487 		unsigned long xfer_mask;
6488 
6489 		/* set SATA cable type if still unset */
6490 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6491 			ap->cbl = ATA_CBL_SATA;
6492 
6493 		/* init sata_spd_limit to the current value */
6494 		sata_link_init_spd(&ap->link);
6495 		if (ap->slave_link)
6496 			sata_link_init_spd(ap->slave_link);
6497 
6498 		/* print per-port info to dmesg */
6499 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6500 					      ap->udma_mask);
6501 
6502 		if (!ata_port_is_dummy(ap)) {
6503 			ata_port_info(ap, "%cATA max %s %s\n",
6504 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6505 				      ata_mode_string(xfer_mask),
6506 				      ap->link.eh_info.desc);
6507 			ata_ehi_clear_desc(&ap->link.eh_info);
6508 		} else
6509 			ata_port_info(ap, "DUMMY\n");
6510 	}
6511 
6512 	/* perform each probe asynchronously */
6513 	for (i = 0; i < host->n_ports; i++) {
6514 		struct ata_port *ap = host->ports[i];
6515 		async_schedule(async_port_probe, ap);
6516 	}
6517 
6518 	return 0;
6519 
6520  err_tadd:
6521 	while (--i >= 0) {
6522 		ata_tport_delete(host->ports[i]);
6523 	}
6524 	return rc;
6525 
6526 }
6527 
6528 /**
6529  *	ata_host_activate - start host, request IRQ and register it
6530  *	@host: target ATA host
6531  *	@irq: IRQ to request
6532  *	@irq_handler: irq_handler used when requesting IRQ
6533  *	@irq_flags: irq_flags used when requesting IRQ
6534  *	@sht: scsi_host_template to use when registering the host
6535  *
6536  *	After allocating an ATA host and initializing it, most libata
6537  *	LLDs perform three steps to activate the host - start host,
6538  *	request IRQ and register it.  This helper takes necessary
6539  *	arguments and performs the three steps in one go.
6540  *
6541  *	An invalid IRQ skips the IRQ registration and expects the host to
6542  *	have set polling mode on the port. In this case, @irq_handler
6543  *	should be NULL.
6544  *
6545  *	LOCKING:
6546  *	Inherited from calling layer (may sleep).
6547  *
6548  *	RETURNS:
6549  *	0 on success, -errno otherwise.
6550  */
6551 int ata_host_activate(struct ata_host *host, int irq,
6552 		      irq_handler_t irq_handler, unsigned long irq_flags,
6553 		      struct scsi_host_template *sht)
6554 {
6555 	int i, rc;
6556 	char *irq_desc;
6557 
6558 	rc = ata_host_start(host);
6559 	if (rc)
6560 		return rc;
6561 
6562 	/* Special case for polling mode */
6563 	if (!irq) {
6564 		WARN_ON(irq_handler);
6565 		return ata_host_register(host, sht);
6566 	}
6567 
6568 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6569 				  dev_driver_string(host->dev),
6570 				  dev_name(host->dev));
6571 	if (!irq_desc)
6572 		return -ENOMEM;
6573 
6574 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6575 			      irq_desc, host);
6576 	if (rc)
6577 		return rc;
6578 
6579 	for (i = 0; i < host->n_ports; i++)
6580 		ata_port_desc(host->ports[i], "irq %d", irq);
6581 
6582 	rc = ata_host_register(host, sht);
6583 	/* if failed, just free the IRQ and leave ports alone */
6584 	if (rc)
6585 		devm_free_irq(host->dev, irq, host);
6586 
6587 	return rc;
6588 }
6589 
6590 /**
6591  *	ata_port_detach - Detach ATA port in preparation of device removal
6592  *	@ap: ATA port to be detached
6593  *
6594  *	Detach all ATA devices and the associated SCSI devices of @ap;
6595  *	then, remove the associated SCSI host.  @ap is guaranteed to
6596  *	be quiescent on return from this function.
6597  *
6598  *	LOCKING:
6599  *	Kernel thread context (may sleep).
6600  */
6601 static void ata_port_detach(struct ata_port *ap)
6602 {
6603 	unsigned long flags;
6604 	struct ata_link *link;
6605 	struct ata_device *dev;
6606 
6607 	if (!ap->ops->error_handler)
6608 		goto skip_eh;
6609 
6610 	/* tell EH we're leaving & flush EH */
6611 	spin_lock_irqsave(ap->lock, flags);
6612 	ap->pflags |= ATA_PFLAG_UNLOADING;
6613 	ata_port_schedule_eh(ap);
6614 	spin_unlock_irqrestore(ap->lock, flags);
6615 
6616 	/* wait till EH commits suicide */
6617 	ata_port_wait_eh(ap);
6618 
6619 	/* it better be dead now */
6620 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6621 
6622 	cancel_delayed_work_sync(&ap->hotplug_task);
6623 
6624  skip_eh:
6625 	/* clean up zpodd on port removal */
6626 	ata_for_each_link(link, ap, HOST_FIRST) {
6627 		ata_for_each_dev(dev, link, ALL) {
6628 			if (zpodd_dev_enabled(dev))
6629 				zpodd_exit(dev);
6630 		}
6631 	}
6632 	if (ap->pmp_link) {
6633 		int i;
6634 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6635 			ata_tlink_delete(&ap->pmp_link[i]);
6636 	}
6637 	/* remove the associated SCSI host */
6638 	scsi_remove_host(ap->scsi_host);
6639 	ata_tport_delete(ap);
6640 }
6641 
6642 /**
6643  *	ata_host_detach - Detach all ports of an ATA host
6644  *	@host: Host to detach
6645  *
6646  *	Detach all ports of @host.
6647  *
6648  *	LOCKING:
6649  *	Kernel thread context (may sleep).
6650  */
6651 void ata_host_detach(struct ata_host *host)
6652 {
6653 	int i;
6654 
6655 	for (i = 0; i < host->n_ports; i++)
6656 		ata_port_detach(host->ports[i]);
6657 
6658 	/* the host is dead now, dissociate ACPI */
6659 	ata_acpi_dissociate(host);
6660 }
6661 
6662 #ifdef CONFIG_PCI
6663 
6664 /**
6665  *	ata_pci_remove_one - PCI layer callback for device removal
6666  *	@pdev: PCI device that was removed
6667  *
6668  *	PCI layer indicates to libata via this hook that hot-unplug or
6669  *	module unload event has occurred.  Detach all ports.  Resource
6670  *	release is handled via devres.
6671  *
6672  *	LOCKING:
6673  *	Inherited from PCI layer (may sleep).
6674  */
6675 void ata_pci_remove_one(struct pci_dev *pdev)
6676 {
6677 	struct ata_host *host = pci_get_drvdata(pdev);
6678 
6679 	ata_host_detach(host);
6680 }
6681 
6682 /* move to PCI subsystem */
6683 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6684 {
6685 	unsigned long tmp = 0;
6686 
6687 	switch (bits->width) {
6688 	case 1: {
6689 		u8 tmp8 = 0;
6690 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6691 		tmp = tmp8;
6692 		break;
6693 	}
6694 	case 2: {
6695 		u16 tmp16 = 0;
6696 		pci_read_config_word(pdev, bits->reg, &tmp16);
6697 		tmp = tmp16;
6698 		break;
6699 	}
6700 	case 4: {
6701 		u32 tmp32 = 0;
6702 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6703 		tmp = tmp32;
6704 		break;
6705 	}
6706 
6707 	default:
6708 		return -EINVAL;
6709 	}
6710 
6711 	tmp &= bits->mask;
6712 
6713 	return (tmp == bits->val) ? 1 : 0;
6714 }
6715 
6716 #ifdef CONFIG_PM
6717 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6718 {
6719 	pci_save_state(pdev);
6720 	pci_disable_device(pdev);
6721 
6722 	if (mesg.event & PM_EVENT_SLEEP)
6723 		pci_set_power_state(pdev, PCI_D3hot);
6724 }
6725 
6726 int ata_pci_device_do_resume(struct pci_dev *pdev)
6727 {
6728 	int rc;
6729 
6730 	pci_set_power_state(pdev, PCI_D0);
6731 	pci_restore_state(pdev);
6732 
6733 	rc = pcim_enable_device(pdev);
6734 	if (rc) {
6735 		dev_err(&pdev->dev,
6736 			"failed to enable device after resume (%d)\n", rc);
6737 		return rc;
6738 	}
6739 
6740 	pci_set_master(pdev);
6741 	return 0;
6742 }
6743 
6744 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6745 {
6746 	struct ata_host *host = pci_get_drvdata(pdev);
6747 	int rc = 0;
6748 
6749 	rc = ata_host_suspend(host, mesg);
6750 	if (rc)
6751 		return rc;
6752 
6753 	ata_pci_device_do_suspend(pdev, mesg);
6754 
6755 	return 0;
6756 }
6757 
6758 int ata_pci_device_resume(struct pci_dev *pdev)
6759 {
6760 	struct ata_host *host = pci_get_drvdata(pdev);
6761 	int rc;
6762 
6763 	rc = ata_pci_device_do_resume(pdev);
6764 	if (rc == 0)
6765 		ata_host_resume(host);
6766 	return rc;
6767 }
6768 #endif /* CONFIG_PM */
6769 
6770 #endif /* CONFIG_PCI */
6771 
6772 /**
6773  *	ata_platform_remove_one - Platform layer callback for device removal
6774  *	@pdev: Platform device that was removed
6775  *
6776  *	Platform layer indicates to libata via this hook that hot-unplug or
6777  *	module unload event has occurred.  Detach all ports.  Resource
6778  *	release is handled via devres.
6779  *
6780  *	LOCKING:
6781  *	Inherited from platform layer (may sleep).
6782  */
6783 int ata_platform_remove_one(struct platform_device *pdev)
6784 {
6785 	struct ata_host *host = platform_get_drvdata(pdev);
6786 
6787 	ata_host_detach(host);
6788 
6789 	return 0;
6790 }
6791 
6792 static int __init ata_parse_force_one(char **cur,
6793 				      struct ata_force_ent *force_ent,
6794 				      const char **reason)
6795 {
6796 	static const struct ata_force_param force_tbl[] __initconst = {
6797 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6798 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6799 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6800 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6801 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6802 		{ "sata",	.cbl		= ATA_CBL_SATA },
6803 		{ "1.5Gbps",	.spd_limit	= 1 },
6804 		{ "3.0Gbps",	.spd_limit	= 2 },
6805 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6806 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6807 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6808 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6809 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6810 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6811 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6812 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6813 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6814 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6815 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6816 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6817 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6818 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6819 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6820 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6821 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6822 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6823 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6824 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6825 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6826 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6827 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6828 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6829 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6830 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6831 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6832 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6833 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6834 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6835 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6836 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6837 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6838 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6839 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6840 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6841 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6842 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6843 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6844 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6845 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6846 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6847 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6848 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6849 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6850 	};
6851 	char *start = *cur, *p = *cur;
6852 	char *id, *val, *endp;
6853 	const struct ata_force_param *match_fp = NULL;
6854 	int nr_matches = 0, i;
6855 
6856 	/* find where this param ends and update *cur */
6857 	while (*p != '\0' && *p != ',')
6858 		p++;
6859 
6860 	if (*p == '\0')
6861 		*cur = p;
6862 	else
6863 		*cur = p + 1;
6864 
6865 	*p = '\0';
6866 
6867 	/* parse */
6868 	p = strchr(start, ':');
6869 	if (!p) {
6870 		val = strstrip(start);
6871 		goto parse_val;
6872 	}
6873 	*p = '\0';
6874 
6875 	id = strstrip(start);
6876 	val = strstrip(p + 1);
6877 
6878 	/* parse id */
6879 	p = strchr(id, '.');
6880 	if (p) {
6881 		*p++ = '\0';
6882 		force_ent->device = simple_strtoul(p, &endp, 10);
6883 		if (p == endp || *endp != '\0') {
6884 			*reason = "invalid device";
6885 			return -EINVAL;
6886 		}
6887 	}
6888 
6889 	force_ent->port = simple_strtoul(id, &endp, 10);
6890 	if (id == endp || *endp != '\0') {
6891 		*reason = "invalid port/link";
6892 		return -EINVAL;
6893 	}
6894 
6895  parse_val:
6896 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6897 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6898 		const struct ata_force_param *fp = &force_tbl[i];
6899 
6900 		if (strncasecmp(val, fp->name, strlen(val)))
6901 			continue;
6902 
6903 		nr_matches++;
6904 		match_fp = fp;
6905 
6906 		if (strcasecmp(val, fp->name) == 0) {
6907 			nr_matches = 1;
6908 			break;
6909 		}
6910 	}
6911 
6912 	if (!nr_matches) {
6913 		*reason = "unknown value";
6914 		return -EINVAL;
6915 	}
6916 	if (nr_matches > 1) {
6917 		*reason = "ambiguous value";
6918 		return -EINVAL;
6919 	}
6920 
6921 	force_ent->param = *match_fp;
6922 
6923 	return 0;
6924 }
6925 
6926 static void __init ata_parse_force_param(void)
6927 {
6928 	int idx = 0, size = 1;
6929 	int last_port = -1, last_device = -1;
6930 	char *p, *cur, *next;
6931 
6932 	/* calculate maximum number of params and allocate force_tbl */
6933 	for (p = ata_force_param_buf; *p; p++)
6934 		if (*p == ',')
6935 			size++;
6936 
6937 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6938 	if (!ata_force_tbl) {
6939 		printk(KERN_WARNING "ata: failed to extend force table, "
6940 		       "libata.force ignored\n");
6941 		return;
6942 	}
6943 
6944 	/* parse and populate the table */
6945 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6946 		const char *reason = "";
6947 		struct ata_force_ent te = { .port = -1, .device = -1 };
6948 
6949 		next = cur;
6950 		if (ata_parse_force_one(&next, &te, &reason)) {
6951 			printk(KERN_WARNING "ata: failed to parse force "
6952 			       "parameter \"%s\" (%s)\n",
6953 			       cur, reason);
6954 			continue;
6955 		}
6956 
6957 		if (te.port == -1) {
6958 			te.port = last_port;
6959 			te.device = last_device;
6960 		}
6961 
6962 		ata_force_tbl[idx++] = te;
6963 
6964 		last_port = te.port;
6965 		last_device = te.device;
6966 	}
6967 
6968 	ata_force_tbl_size = idx;
6969 }
6970 
6971 static int __init ata_init(void)
6972 {
6973 	int rc;
6974 
6975 	ata_parse_force_param();
6976 
6977 	rc = ata_sff_init();
6978 	if (rc) {
6979 		kfree(ata_force_tbl);
6980 		return rc;
6981 	}
6982 
6983 	libata_transport_init();
6984 	ata_scsi_transport_template = ata_attach_transport();
6985 	if (!ata_scsi_transport_template) {
6986 		ata_sff_exit();
6987 		rc = -ENOMEM;
6988 		goto err_out;
6989 	}
6990 
6991 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6992 	return 0;
6993 
6994 err_out:
6995 	return rc;
6996 }
6997 
6998 static void __exit ata_exit(void)
6999 {
7000 	ata_release_transport(ata_scsi_transport_template);
7001 	libata_transport_exit();
7002 	ata_sff_exit();
7003 	kfree(ata_force_tbl);
7004 }
7005 
7006 subsys_initcall(ata_init);
7007 module_exit(ata_exit);
7008 
7009 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7010 
7011 int ata_ratelimit(void)
7012 {
7013 	return __ratelimit(&ratelimit);
7014 }
7015 
7016 /**
7017  *	ata_msleep - ATA EH owner aware msleep
7018  *	@ap: ATA port to attribute the sleep to
7019  *	@msecs: duration to sleep in milliseconds
7020  *
7021  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
7022  *	ownership is released before going to sleep and reacquired
7023  *	after the sleep is complete.  IOW, other ports sharing the
7024  *	@ap->host will be allowed to own the EH while this task is
7025  *	sleeping.
7026  *
7027  *	LOCKING:
7028  *	Might sleep.
7029  */
7030 void ata_msleep(struct ata_port *ap, unsigned int msecs)
7031 {
7032 	bool owns_eh = ap && ap->host->eh_owner == current;
7033 
7034 	if (owns_eh)
7035 		ata_eh_release(ap);
7036 
7037 	if (msecs < 20) {
7038 		unsigned long usecs = msecs * USEC_PER_MSEC;
7039 		usleep_range(usecs, usecs + 50);
7040 	} else {
7041 		msleep(msecs);
7042 	}
7043 
7044 	if (owns_eh)
7045 		ata_eh_acquire(ap);
7046 }
7047 
7048 /**
7049  *	ata_wait_register - wait until register value changes
7050  *	@ap: ATA port to wait register for, can be NULL
7051  *	@reg: IO-mapped register
7052  *	@mask: Mask to apply to read register value
7053  *	@val: Wait condition
7054  *	@interval: polling interval in milliseconds
7055  *	@timeout: timeout in milliseconds
7056  *
7057  *	Waiting for some bits of register to change is a common
7058  *	operation for ATA controllers.  This function reads 32bit LE
7059  *	IO-mapped register @reg and tests for the following condition.
7060  *
7061  *	(*@reg & mask) != val
7062  *
7063  *	If the condition is met, it returns; otherwise, the process is
7064  *	repeated after @interval_msec until timeout.
7065  *
7066  *	LOCKING:
7067  *	Kernel thread context (may sleep)
7068  *
7069  *	RETURNS:
7070  *	The final register value.
7071  */
7072 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7073 		      unsigned long interval, unsigned long timeout)
7074 {
7075 	unsigned long deadline;
7076 	u32 tmp;
7077 
7078 	tmp = ioread32(reg);
7079 
7080 	/* Calculate timeout _after_ the first read to make sure
7081 	 * preceding writes reach the controller before starting to
7082 	 * eat away the timeout.
7083 	 */
7084 	deadline = ata_deadline(jiffies, timeout);
7085 
7086 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7087 		ata_msleep(ap, interval);
7088 		tmp = ioread32(reg);
7089 	}
7090 
7091 	return tmp;
7092 }
7093 
7094 /**
7095  *	sata_lpm_ignore_phy_events - test if PHY event should be ignored
7096  *	@link: Link receiving the event
7097  *
7098  *	Test whether the received PHY event has to be ignored or not.
7099  *
7100  *	LOCKING:
7101  *	None:
7102  *
7103  *	RETURNS:
7104  *	True if the event has to be ignored.
7105  */
7106 bool sata_lpm_ignore_phy_events(struct ata_link *link)
7107 {
7108 	unsigned long lpm_timeout = link->last_lpm_change +
7109 				    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7110 
7111 	/* if LPM is enabled, PHYRDY doesn't mean anything */
7112 	if (link->lpm_policy > ATA_LPM_MAX_POWER)
7113 		return true;
7114 
7115 	/* ignore the first PHY event after the LPM policy changed
7116 	 * as it is might be spurious
7117 	 */
7118 	if ((link->flags & ATA_LFLAG_CHANGED) &&
7119 	    time_before(jiffies, lpm_timeout))
7120 		return true;
7121 
7122 	return false;
7123 }
7124 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7125 
7126 /*
7127  * Dummy port_ops
7128  */
7129 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7130 {
7131 	return AC_ERR_SYSTEM;
7132 }
7133 
7134 static void ata_dummy_error_handler(struct ata_port *ap)
7135 {
7136 	/* truly dummy */
7137 }
7138 
7139 struct ata_port_operations ata_dummy_port_ops = {
7140 	.qc_prep		= ata_noop_qc_prep,
7141 	.qc_issue		= ata_dummy_qc_issue,
7142 	.error_handler		= ata_dummy_error_handler,
7143 	.sched_eh		= ata_std_sched_eh,
7144 	.end_eh			= ata_std_end_eh,
7145 };
7146 
7147 const struct ata_port_info ata_dummy_port_info = {
7148 	.port_ops		= &ata_dummy_port_ops,
7149 };
7150 
7151 /*
7152  * Utility print functions
7153  */
7154 void ata_port_printk(const struct ata_port *ap, const char *level,
7155 		     const char *fmt, ...)
7156 {
7157 	struct va_format vaf;
7158 	va_list args;
7159 
7160 	va_start(args, fmt);
7161 
7162 	vaf.fmt = fmt;
7163 	vaf.va = &args;
7164 
7165 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
7166 
7167 	va_end(args);
7168 }
7169 EXPORT_SYMBOL(ata_port_printk);
7170 
7171 void ata_link_printk(const struct ata_link *link, const char *level,
7172 		     const char *fmt, ...)
7173 {
7174 	struct va_format vaf;
7175 	va_list args;
7176 
7177 	va_start(args, fmt);
7178 
7179 	vaf.fmt = fmt;
7180 	vaf.va = &args;
7181 
7182 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7183 		printk("%sata%u.%02u: %pV",
7184 		       level, link->ap->print_id, link->pmp, &vaf);
7185 	else
7186 		printk("%sata%u: %pV",
7187 		       level, link->ap->print_id, &vaf);
7188 
7189 	va_end(args);
7190 }
7191 EXPORT_SYMBOL(ata_link_printk);
7192 
7193 void ata_dev_printk(const struct ata_device *dev, const char *level,
7194 		    const char *fmt, ...)
7195 {
7196 	struct va_format vaf;
7197 	va_list args;
7198 
7199 	va_start(args, fmt);
7200 
7201 	vaf.fmt = fmt;
7202 	vaf.va = &args;
7203 
7204 	printk("%sata%u.%02u: %pV",
7205 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7206 	       &vaf);
7207 
7208 	va_end(args);
7209 }
7210 EXPORT_SYMBOL(ata_dev_printk);
7211 
7212 void ata_print_version(const struct device *dev, const char *version)
7213 {
7214 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7215 }
7216 EXPORT_SYMBOL(ata_print_version);
7217 
7218 /*
7219  * libata is essentially a library of internal helper functions for
7220  * low-level ATA host controller drivers.  As such, the API/ABI is
7221  * likely to change as new drivers are added and updated.
7222  * Do not depend on ABI/API stability.
7223  */
7224 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7225 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7226 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7227 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7228 EXPORT_SYMBOL_GPL(sata_port_ops);
7229 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7230 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7231 EXPORT_SYMBOL_GPL(ata_link_next);
7232 EXPORT_SYMBOL_GPL(ata_dev_next);
7233 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7234 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7235 EXPORT_SYMBOL_GPL(ata_host_init);
7236 EXPORT_SYMBOL_GPL(ata_host_alloc);
7237 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7238 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7239 EXPORT_SYMBOL_GPL(ata_host_start);
7240 EXPORT_SYMBOL_GPL(ata_host_register);
7241 EXPORT_SYMBOL_GPL(ata_host_activate);
7242 EXPORT_SYMBOL_GPL(ata_host_detach);
7243 EXPORT_SYMBOL_GPL(ata_sg_init);
7244 EXPORT_SYMBOL_GPL(ata_qc_complete);
7245 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7246 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7247 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7248 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7249 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7250 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7251 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7252 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7253 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7254 EXPORT_SYMBOL_GPL(ata_mode_string);
7255 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7256 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7257 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7258 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7259 EXPORT_SYMBOL_GPL(ata_dev_disable);
7260 EXPORT_SYMBOL_GPL(sata_set_spd);
7261 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7262 EXPORT_SYMBOL_GPL(sata_link_debounce);
7263 EXPORT_SYMBOL_GPL(sata_link_resume);
7264 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7265 EXPORT_SYMBOL_GPL(ata_std_prereset);
7266 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7267 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7268 EXPORT_SYMBOL_GPL(ata_std_postreset);
7269 EXPORT_SYMBOL_GPL(ata_dev_classify);
7270 EXPORT_SYMBOL_GPL(ata_dev_pair);
7271 EXPORT_SYMBOL_GPL(ata_ratelimit);
7272 EXPORT_SYMBOL_GPL(ata_msleep);
7273 EXPORT_SYMBOL_GPL(ata_wait_register);
7274 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7275 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7276 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7277 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7278 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7279 EXPORT_SYMBOL_GPL(sata_scr_valid);
7280 EXPORT_SYMBOL_GPL(sata_scr_read);
7281 EXPORT_SYMBOL_GPL(sata_scr_write);
7282 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7283 EXPORT_SYMBOL_GPL(ata_link_online);
7284 EXPORT_SYMBOL_GPL(ata_link_offline);
7285 #ifdef CONFIG_PM
7286 EXPORT_SYMBOL_GPL(ata_host_suspend);
7287 EXPORT_SYMBOL_GPL(ata_host_resume);
7288 #endif /* CONFIG_PM */
7289 EXPORT_SYMBOL_GPL(ata_id_string);
7290 EXPORT_SYMBOL_GPL(ata_id_c_string);
7291 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7292 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7293 
7294 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7295 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7296 EXPORT_SYMBOL_GPL(ata_timing_compute);
7297 EXPORT_SYMBOL_GPL(ata_timing_merge);
7298 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7299 
7300 #ifdef CONFIG_PCI
7301 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7302 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7303 #ifdef CONFIG_PM
7304 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7305 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7306 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7307 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7308 #endif /* CONFIG_PM */
7309 #endif /* CONFIG_PCI */
7310 
7311 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7312 
7313 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7314 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7315 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7316 EXPORT_SYMBOL_GPL(ata_port_desc);
7317 #ifdef CONFIG_PCI
7318 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7319 #endif /* CONFIG_PCI */
7320 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7321 EXPORT_SYMBOL_GPL(ata_link_abort);
7322 EXPORT_SYMBOL_GPL(ata_port_abort);
7323 EXPORT_SYMBOL_GPL(ata_port_freeze);
7324 EXPORT_SYMBOL_GPL(sata_async_notification);
7325 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7326 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7327 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7328 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7329 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7330 EXPORT_SYMBOL_GPL(ata_do_eh);
7331 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7332 
7333 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7334 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7335 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7336 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7337 EXPORT_SYMBOL_GPL(ata_cable_sata);
7338