1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned int xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags_on; 100 u16 lflags_off; 101 }; 102 103 struct ata_force_ent { 104 int port; 105 int device; 106 struct ata_force_param param; 107 }; 108 109 static struct ata_force_ent *ata_force_tbl; 110 static int ata_force_tbl_size; 111 112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 113 /* param_buf is thrown away after initialization, disallow read */ 114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 116 #endif 117 118 static int atapi_enabled = 1; 119 module_param(atapi_enabled, int, 0444); 120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 121 122 static int atapi_dmadir = 0; 123 module_param(atapi_dmadir, int, 0444); 124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 125 126 int atapi_passthru16 = 1; 127 module_param(atapi_passthru16, int, 0444); 128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 129 130 int libata_fua = 0; 131 module_param_named(fua, libata_fua, int, 0444); 132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 133 134 static int ata_ignore_hpa; 135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 137 138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 139 module_param_named(dma, libata_dma_mask, int, 0444); 140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 141 142 static int ata_probe_timeout; 143 module_param(ata_probe_timeout, int, 0444); 144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 145 146 int libata_noacpi = 0; 147 module_param_named(noacpi, libata_noacpi, int, 0444); 148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 149 150 int libata_allow_tpm = 0; 151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 153 154 static int atapi_an; 155 module_param(atapi_an, int, 0444); 156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 157 158 MODULE_AUTHOR("Jeff Garzik"); 159 MODULE_DESCRIPTION("Library module for ATA devices"); 160 MODULE_LICENSE("GPL"); 161 MODULE_VERSION(DRV_VERSION); 162 163 static inline bool ata_dev_print_info(struct ata_device *dev) 164 { 165 struct ata_eh_context *ehc = &dev->link->eh_context; 166 167 return ehc->i.flags & ATA_EHI_PRINTINFO; 168 } 169 170 static bool ata_sstatus_online(u32 sstatus) 171 { 172 return (sstatus & 0xf) == 0x3; 173 } 174 175 /** 176 * ata_link_next - link iteration helper 177 * @link: the previous link, NULL to start 178 * @ap: ATA port containing links to iterate 179 * @mode: iteration mode, one of ATA_LITER_* 180 * 181 * LOCKING: 182 * Host lock or EH context. 183 * 184 * RETURNS: 185 * Pointer to the next link. 186 */ 187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 188 enum ata_link_iter_mode mode) 189 { 190 BUG_ON(mode != ATA_LITER_EDGE && 191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 192 193 /* NULL link indicates start of iteration */ 194 if (!link) 195 switch (mode) { 196 case ATA_LITER_EDGE: 197 case ATA_LITER_PMP_FIRST: 198 if (sata_pmp_attached(ap)) 199 return ap->pmp_link; 200 fallthrough; 201 case ATA_LITER_HOST_FIRST: 202 return &ap->link; 203 } 204 205 /* we just iterated over the host link, what's next? */ 206 if (link == &ap->link) 207 switch (mode) { 208 case ATA_LITER_HOST_FIRST: 209 if (sata_pmp_attached(ap)) 210 return ap->pmp_link; 211 fallthrough; 212 case ATA_LITER_PMP_FIRST: 213 if (unlikely(ap->slave_link)) 214 return ap->slave_link; 215 fallthrough; 216 case ATA_LITER_EDGE: 217 return NULL; 218 } 219 220 /* slave_link excludes PMP */ 221 if (unlikely(link == ap->slave_link)) 222 return NULL; 223 224 /* we were over a PMP link */ 225 if (++link < ap->pmp_link + ap->nr_pmp_links) 226 return link; 227 228 if (mode == ATA_LITER_PMP_FIRST) 229 return &ap->link; 230 231 return NULL; 232 } 233 EXPORT_SYMBOL_GPL(ata_link_next); 234 235 /** 236 * ata_dev_next - device iteration helper 237 * @dev: the previous device, NULL to start 238 * @link: ATA link containing devices to iterate 239 * @mode: iteration mode, one of ATA_DITER_* 240 * 241 * LOCKING: 242 * Host lock or EH context. 243 * 244 * RETURNS: 245 * Pointer to the next device. 246 */ 247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 248 enum ata_dev_iter_mode mode) 249 { 250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 252 253 /* NULL dev indicates start of iteration */ 254 if (!dev) 255 switch (mode) { 256 case ATA_DITER_ENABLED: 257 case ATA_DITER_ALL: 258 dev = link->device; 259 goto check; 260 case ATA_DITER_ENABLED_REVERSE: 261 case ATA_DITER_ALL_REVERSE: 262 dev = link->device + ata_link_max_devices(link) - 1; 263 goto check; 264 } 265 266 next: 267 /* move to the next one */ 268 switch (mode) { 269 case ATA_DITER_ENABLED: 270 case ATA_DITER_ALL: 271 if (++dev < link->device + ata_link_max_devices(link)) 272 goto check; 273 return NULL; 274 case ATA_DITER_ENABLED_REVERSE: 275 case ATA_DITER_ALL_REVERSE: 276 if (--dev >= link->device) 277 goto check; 278 return NULL; 279 } 280 281 check: 282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 283 !ata_dev_enabled(dev)) 284 goto next; 285 return dev; 286 } 287 EXPORT_SYMBOL_GPL(ata_dev_next); 288 289 /** 290 * ata_dev_phys_link - find physical link for a device 291 * @dev: ATA device to look up physical link for 292 * 293 * Look up physical link which @dev is attached to. Note that 294 * this is different from @dev->link only when @dev is on slave 295 * link. For all other cases, it's the same as @dev->link. 296 * 297 * LOCKING: 298 * Don't care. 299 * 300 * RETURNS: 301 * Pointer to the found physical link. 302 */ 303 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 304 { 305 struct ata_port *ap = dev->link->ap; 306 307 if (!ap->slave_link) 308 return dev->link; 309 if (!dev->devno) 310 return &ap->link; 311 return ap->slave_link; 312 } 313 314 #ifdef CONFIG_ATA_FORCE 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags_on) { 391 link->flags |= fe->param.lflags_on; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags_on, link->flags); 395 } 396 if (fe->param.lflags_off) { 397 link->flags &= ~fe->param.lflags_off; 398 ata_link_notice(link, 399 "FORCE: link flag 0x%x cleared -> 0x%x\n", 400 fe->param.lflags_off, link->flags); 401 } 402 } 403 } 404 405 /** 406 * ata_force_xfermask - force xfermask according to libata.force 407 * @dev: ATA device of interest 408 * 409 * Force xfer_mask according to libata.force and whine about it. 410 * For consistency with link selection, device number 15 selects 411 * the first device connected to the host link. 412 * 413 * LOCKING: 414 * EH context. 415 */ 416 static void ata_force_xfermask(struct ata_device *dev) 417 { 418 int devno = dev->link->pmp + dev->devno; 419 int alt_devno = devno; 420 int i; 421 422 /* allow n.15/16 for devices attached to host port */ 423 if (ata_is_host_link(dev->link)) 424 alt_devno += 15; 425 426 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 427 const struct ata_force_ent *fe = &ata_force_tbl[i]; 428 unsigned int pio_mask, mwdma_mask, udma_mask; 429 430 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 431 continue; 432 433 if (fe->device != -1 && fe->device != devno && 434 fe->device != alt_devno) 435 continue; 436 437 if (!fe->param.xfer_mask) 438 continue; 439 440 ata_unpack_xfermask(fe->param.xfer_mask, 441 &pio_mask, &mwdma_mask, &udma_mask); 442 if (udma_mask) 443 dev->udma_mask = udma_mask; 444 else if (mwdma_mask) { 445 dev->udma_mask = 0; 446 dev->mwdma_mask = mwdma_mask; 447 } else { 448 dev->udma_mask = 0; 449 dev->mwdma_mask = 0; 450 dev->pio_mask = pio_mask; 451 } 452 453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 454 fe->param.name); 455 return; 456 } 457 } 458 459 /** 460 * ata_force_horkage - force horkage according to libata.force 461 * @dev: ATA device of interest 462 * 463 * Force horkage according to libata.force and whine about it. 464 * For consistency with link selection, device number 15 selects 465 * the first device connected to the host link. 466 * 467 * LOCKING: 468 * EH context. 469 */ 470 static void ata_force_horkage(struct ata_device *dev) 471 { 472 int devno = dev->link->pmp + dev->devno; 473 int alt_devno = devno; 474 int i; 475 476 /* allow n.15/16 for devices attached to host port */ 477 if (ata_is_host_link(dev->link)) 478 alt_devno += 15; 479 480 for (i = 0; i < ata_force_tbl_size; i++) { 481 const struct ata_force_ent *fe = &ata_force_tbl[i]; 482 483 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 484 continue; 485 486 if (fe->device != -1 && fe->device != devno && 487 fe->device != alt_devno) 488 continue; 489 490 if (!(~dev->horkage & fe->param.horkage_on) && 491 !(dev->horkage & fe->param.horkage_off)) 492 continue; 493 494 dev->horkage |= fe->param.horkage_on; 495 dev->horkage &= ~fe->param.horkage_off; 496 497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 498 fe->param.name); 499 } 500 } 501 #else 502 static inline void ata_force_link_limits(struct ata_link *link) { } 503 static inline void ata_force_xfermask(struct ata_device *dev) { } 504 static inline void ata_force_horkage(struct ata_device *dev) { } 505 #endif 506 507 /** 508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 509 * @opcode: SCSI opcode 510 * 511 * Determine ATAPI command type from @opcode. 512 * 513 * LOCKING: 514 * None. 515 * 516 * RETURNS: 517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 518 */ 519 int atapi_cmd_type(u8 opcode) 520 { 521 switch (opcode) { 522 case GPCMD_READ_10: 523 case GPCMD_READ_12: 524 return ATAPI_READ; 525 526 case GPCMD_WRITE_10: 527 case GPCMD_WRITE_12: 528 case GPCMD_WRITE_AND_VERIFY_10: 529 return ATAPI_WRITE; 530 531 case GPCMD_READ_CD: 532 case GPCMD_READ_CD_MSF: 533 return ATAPI_READ_CD; 534 535 case ATA_16: 536 case ATA_12: 537 if (atapi_passthru16) 538 return ATAPI_PASS_THRU; 539 fallthrough; 540 default: 541 return ATAPI_MISC; 542 } 543 } 544 EXPORT_SYMBOL_GPL(atapi_cmd_type); 545 546 static const u8 ata_rw_cmds[] = { 547 /* pio multi */ 548 ATA_CMD_READ_MULTI, 549 ATA_CMD_WRITE_MULTI, 550 ATA_CMD_READ_MULTI_EXT, 551 ATA_CMD_WRITE_MULTI_EXT, 552 0, 553 0, 554 0, 555 0, 556 /* pio */ 557 ATA_CMD_PIO_READ, 558 ATA_CMD_PIO_WRITE, 559 ATA_CMD_PIO_READ_EXT, 560 ATA_CMD_PIO_WRITE_EXT, 561 0, 562 0, 563 0, 564 0, 565 /* dma */ 566 ATA_CMD_READ, 567 ATA_CMD_WRITE, 568 ATA_CMD_READ_EXT, 569 ATA_CMD_WRITE_EXT, 570 0, 571 0, 572 0, 573 ATA_CMD_WRITE_FUA_EXT 574 }; 575 576 /** 577 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol 578 * @dev: target device for the taskfile 579 * @tf: taskfile to examine and configure 580 * 581 * Examine the device configuration and tf->flags to determine 582 * the proper read/write command and protocol to use for @tf. 583 * 584 * LOCKING: 585 * caller. 586 */ 587 static bool ata_set_rwcmd_protocol(struct ata_device *dev, 588 struct ata_taskfile *tf) 589 { 590 u8 cmd; 591 592 int index, fua, lba48, write; 593 594 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 595 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 596 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 597 598 if (dev->flags & ATA_DFLAG_PIO) { 599 tf->protocol = ATA_PROT_PIO; 600 index = dev->multi_count ? 0 : 8; 601 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 602 /* Unable to use DMA due to host limitation */ 603 tf->protocol = ATA_PROT_PIO; 604 index = dev->multi_count ? 0 : 8; 605 } else { 606 tf->protocol = ATA_PROT_DMA; 607 index = 16; 608 } 609 610 cmd = ata_rw_cmds[index + fua + lba48 + write]; 611 if (!cmd) 612 return false; 613 614 tf->command = cmd; 615 616 return true; 617 } 618 619 /** 620 * ata_tf_read_block - Read block address from ATA taskfile 621 * @tf: ATA taskfile of interest 622 * @dev: ATA device @tf belongs to 623 * 624 * LOCKING: 625 * None. 626 * 627 * Read block address from @tf. This function can handle all 628 * three address formats - LBA, LBA48 and CHS. tf->protocol and 629 * flags select the address format to use. 630 * 631 * RETURNS: 632 * Block address read from @tf. 633 */ 634 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 635 { 636 u64 block = 0; 637 638 if (tf->flags & ATA_TFLAG_LBA) { 639 if (tf->flags & ATA_TFLAG_LBA48) { 640 block |= (u64)tf->hob_lbah << 40; 641 block |= (u64)tf->hob_lbam << 32; 642 block |= (u64)tf->hob_lbal << 24; 643 } else 644 block |= (tf->device & 0xf) << 24; 645 646 block |= tf->lbah << 16; 647 block |= tf->lbam << 8; 648 block |= tf->lbal; 649 } else { 650 u32 cyl, head, sect; 651 652 cyl = tf->lbam | (tf->lbah << 8); 653 head = tf->device & 0xf; 654 sect = tf->lbal; 655 656 if (!sect) { 657 ata_dev_warn(dev, 658 "device reported invalid CHS sector 0\n"); 659 return U64_MAX; 660 } 661 662 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 663 } 664 665 return block; 666 } 667 668 /** 669 * ata_build_rw_tf - Build ATA taskfile for given read/write request 670 * @qc: Metadata associated with the taskfile to build 671 * @block: Block address 672 * @n_block: Number of blocks 673 * @tf_flags: RW/FUA etc... 674 * @class: IO priority class 675 * 676 * LOCKING: 677 * None. 678 * 679 * Build ATA taskfile for the command @qc for read/write request described 680 * by @block, @n_block, @tf_flags and @class. 681 * 682 * RETURNS: 683 * 684 * 0 on success, -ERANGE if the request is too large for @dev, 685 * -EINVAL if the request is invalid. 686 */ 687 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block, 688 unsigned int tf_flags, int class) 689 { 690 struct ata_taskfile *tf = &qc->tf; 691 struct ata_device *dev = qc->dev; 692 693 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 694 tf->flags |= tf_flags; 695 696 if (ata_ncq_enabled(dev)) { 697 /* yay, NCQ */ 698 if (!lba_48_ok(block, n_block)) 699 return -ERANGE; 700 701 tf->protocol = ATA_PROT_NCQ; 702 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 703 704 if (tf->flags & ATA_TFLAG_WRITE) 705 tf->command = ATA_CMD_FPDMA_WRITE; 706 else 707 tf->command = ATA_CMD_FPDMA_READ; 708 709 tf->nsect = qc->hw_tag << 3; 710 tf->hob_feature = (n_block >> 8) & 0xff; 711 tf->feature = n_block & 0xff; 712 713 tf->hob_lbah = (block >> 40) & 0xff; 714 tf->hob_lbam = (block >> 32) & 0xff; 715 tf->hob_lbal = (block >> 24) & 0xff; 716 tf->lbah = (block >> 16) & 0xff; 717 tf->lbam = (block >> 8) & 0xff; 718 tf->lbal = block & 0xff; 719 720 tf->device = ATA_LBA; 721 if (tf->flags & ATA_TFLAG_FUA) 722 tf->device |= 1 << 7; 723 724 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED && 725 class == IOPRIO_CLASS_RT) 726 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 727 } else if (dev->flags & ATA_DFLAG_LBA) { 728 tf->flags |= ATA_TFLAG_LBA; 729 730 /* We need LBA48 for FUA writes */ 731 if (!(tf->flags & ATA_TFLAG_FUA) && lba_28_ok(block, n_block)) { 732 /* use LBA28 */ 733 tf->device |= (block >> 24) & 0xf; 734 } else if (lba_48_ok(block, n_block)) { 735 if (!(dev->flags & ATA_DFLAG_LBA48)) 736 return -ERANGE; 737 738 /* use LBA48 */ 739 tf->flags |= ATA_TFLAG_LBA48; 740 741 tf->hob_nsect = (n_block >> 8) & 0xff; 742 743 tf->hob_lbah = (block >> 40) & 0xff; 744 tf->hob_lbam = (block >> 32) & 0xff; 745 tf->hob_lbal = (block >> 24) & 0xff; 746 } else { 747 /* request too large even for LBA48 */ 748 return -ERANGE; 749 } 750 751 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 752 return -EINVAL; 753 754 tf->nsect = n_block & 0xff; 755 756 tf->lbah = (block >> 16) & 0xff; 757 tf->lbam = (block >> 8) & 0xff; 758 tf->lbal = block & 0xff; 759 760 tf->device |= ATA_LBA; 761 } else { 762 /* CHS */ 763 u32 sect, head, cyl, track; 764 765 /* The request -may- be too large for CHS addressing. */ 766 if (!lba_28_ok(block, n_block)) 767 return -ERANGE; 768 769 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 770 return -EINVAL; 771 772 /* Convert LBA to CHS */ 773 track = (u32)block / dev->sectors; 774 cyl = track / dev->heads; 775 head = track % dev->heads; 776 sect = (u32)block % dev->sectors + 1; 777 778 /* Check whether the converted CHS can fit. 779 Cylinder: 0-65535 780 Head: 0-15 781 Sector: 1-255*/ 782 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 783 return -ERANGE; 784 785 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 786 tf->lbal = sect; 787 tf->lbam = cyl; 788 tf->lbah = cyl >> 8; 789 tf->device |= head; 790 } 791 792 return 0; 793 } 794 795 /** 796 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 797 * @pio_mask: pio_mask 798 * @mwdma_mask: mwdma_mask 799 * @udma_mask: udma_mask 800 * 801 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 802 * unsigned int xfer_mask. 803 * 804 * LOCKING: 805 * None. 806 * 807 * RETURNS: 808 * Packed xfer_mask. 809 */ 810 unsigned int ata_pack_xfermask(unsigned int pio_mask, 811 unsigned int mwdma_mask, 812 unsigned int udma_mask) 813 { 814 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 815 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 816 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 817 } 818 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 819 820 /** 821 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 822 * @xfer_mask: xfer_mask to unpack 823 * @pio_mask: resulting pio_mask 824 * @mwdma_mask: resulting mwdma_mask 825 * @udma_mask: resulting udma_mask 826 * 827 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 828 * Any NULL destination masks will be ignored. 829 */ 830 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, 831 unsigned int *mwdma_mask, unsigned int *udma_mask) 832 { 833 if (pio_mask) 834 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 835 if (mwdma_mask) 836 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 837 if (udma_mask) 838 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 839 } 840 841 static const struct ata_xfer_ent { 842 int shift, bits; 843 u8 base; 844 } ata_xfer_tbl[] = { 845 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 846 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 847 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 848 { -1, }, 849 }; 850 851 /** 852 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 853 * @xfer_mask: xfer_mask of interest 854 * 855 * Return matching XFER_* value for @xfer_mask. Only the highest 856 * bit of @xfer_mask is considered. 857 * 858 * LOCKING: 859 * None. 860 * 861 * RETURNS: 862 * Matching XFER_* value, 0xff if no match found. 863 */ 864 u8 ata_xfer_mask2mode(unsigned int xfer_mask) 865 { 866 int highbit = fls(xfer_mask) - 1; 867 const struct ata_xfer_ent *ent; 868 869 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 870 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 871 return ent->base + highbit - ent->shift; 872 return 0xff; 873 } 874 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 875 876 /** 877 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 878 * @xfer_mode: XFER_* of interest 879 * 880 * Return matching xfer_mask for @xfer_mode. 881 * 882 * LOCKING: 883 * None. 884 * 885 * RETURNS: 886 * Matching xfer_mask, 0 if no match found. 887 */ 888 unsigned int ata_xfer_mode2mask(u8 xfer_mode) 889 { 890 const struct ata_xfer_ent *ent; 891 892 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 893 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 894 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 895 & ~((1 << ent->shift) - 1); 896 return 0; 897 } 898 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 899 900 /** 901 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 902 * @xfer_mode: XFER_* of interest 903 * 904 * Return matching xfer_shift for @xfer_mode. 905 * 906 * LOCKING: 907 * None. 908 * 909 * RETURNS: 910 * Matching xfer_shift, -1 if no match found. 911 */ 912 int ata_xfer_mode2shift(u8 xfer_mode) 913 { 914 const struct ata_xfer_ent *ent; 915 916 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 917 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 918 return ent->shift; 919 return -1; 920 } 921 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 922 923 /** 924 * ata_mode_string - convert xfer_mask to string 925 * @xfer_mask: mask of bits supported; only highest bit counts. 926 * 927 * Determine string which represents the highest speed 928 * (highest bit in @modemask). 929 * 930 * LOCKING: 931 * None. 932 * 933 * RETURNS: 934 * Constant C string representing highest speed listed in 935 * @mode_mask, or the constant C string "<n/a>". 936 */ 937 const char *ata_mode_string(unsigned int xfer_mask) 938 { 939 static const char * const xfer_mode_str[] = { 940 "PIO0", 941 "PIO1", 942 "PIO2", 943 "PIO3", 944 "PIO4", 945 "PIO5", 946 "PIO6", 947 "MWDMA0", 948 "MWDMA1", 949 "MWDMA2", 950 "MWDMA3", 951 "MWDMA4", 952 "UDMA/16", 953 "UDMA/25", 954 "UDMA/33", 955 "UDMA/44", 956 "UDMA/66", 957 "UDMA/100", 958 "UDMA/133", 959 "UDMA7", 960 }; 961 int highbit; 962 963 highbit = fls(xfer_mask) - 1; 964 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 965 return xfer_mode_str[highbit]; 966 return "<n/a>"; 967 } 968 EXPORT_SYMBOL_GPL(ata_mode_string); 969 970 const char *sata_spd_string(unsigned int spd) 971 { 972 static const char * const spd_str[] = { 973 "1.5 Gbps", 974 "3.0 Gbps", 975 "6.0 Gbps", 976 }; 977 978 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 979 return "<unknown>"; 980 return spd_str[spd - 1]; 981 } 982 983 /** 984 * ata_dev_classify - determine device type based on ATA-spec signature 985 * @tf: ATA taskfile register set for device to be identified 986 * 987 * Determine from taskfile register contents whether a device is 988 * ATA or ATAPI, as per "Signature and persistence" section 989 * of ATA/PI spec (volume 1, sect 5.14). 990 * 991 * LOCKING: 992 * None. 993 * 994 * RETURNS: 995 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 996 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 997 */ 998 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 999 { 1000 /* Apple's open source Darwin code hints that some devices only 1001 * put a proper signature into the LBA mid/high registers, 1002 * So, we only check those. It's sufficient for uniqueness. 1003 * 1004 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1005 * signatures for ATA and ATAPI devices attached on SerialATA, 1006 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1007 * spec has never mentioned about using different signatures 1008 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1009 * Multiplier specification began to use 0x69/0x96 to identify 1010 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1011 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1012 * 0x69/0x96 shortly and described them as reserved for 1013 * SerialATA. 1014 * 1015 * We follow the current spec and consider that 0x69/0x96 1016 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1017 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1018 * SEMB signature. This is worked around in 1019 * ata_dev_read_id(). 1020 */ 1021 if (tf->lbam == 0 && tf->lbah == 0) 1022 return ATA_DEV_ATA; 1023 1024 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1025 return ATA_DEV_ATAPI; 1026 1027 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1028 return ATA_DEV_PMP; 1029 1030 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1031 return ATA_DEV_SEMB; 1032 1033 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1034 return ATA_DEV_ZAC; 1035 1036 return ATA_DEV_UNKNOWN; 1037 } 1038 EXPORT_SYMBOL_GPL(ata_dev_classify); 1039 1040 /** 1041 * ata_id_string - Convert IDENTIFY DEVICE page into string 1042 * @id: IDENTIFY DEVICE results we will examine 1043 * @s: string into which data is output 1044 * @ofs: offset into identify device page 1045 * @len: length of string to return. must be an even number. 1046 * 1047 * The strings in the IDENTIFY DEVICE page are broken up into 1048 * 16-bit chunks. Run through the string, and output each 1049 * 8-bit chunk linearly, regardless of platform. 1050 * 1051 * LOCKING: 1052 * caller. 1053 */ 1054 1055 void ata_id_string(const u16 *id, unsigned char *s, 1056 unsigned int ofs, unsigned int len) 1057 { 1058 unsigned int c; 1059 1060 BUG_ON(len & 1); 1061 1062 while (len > 0) { 1063 c = id[ofs] >> 8; 1064 *s = c; 1065 s++; 1066 1067 c = id[ofs] & 0xff; 1068 *s = c; 1069 s++; 1070 1071 ofs++; 1072 len -= 2; 1073 } 1074 } 1075 EXPORT_SYMBOL_GPL(ata_id_string); 1076 1077 /** 1078 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1079 * @id: IDENTIFY DEVICE results we will examine 1080 * @s: string into which data is output 1081 * @ofs: offset into identify device page 1082 * @len: length of string to return. must be an odd number. 1083 * 1084 * This function is identical to ata_id_string except that it 1085 * trims trailing spaces and terminates the resulting string with 1086 * null. @len must be actual maximum length (even number) + 1. 1087 * 1088 * LOCKING: 1089 * caller. 1090 */ 1091 void ata_id_c_string(const u16 *id, unsigned char *s, 1092 unsigned int ofs, unsigned int len) 1093 { 1094 unsigned char *p; 1095 1096 ata_id_string(id, s, ofs, len - 1); 1097 1098 p = s + strnlen(s, len - 1); 1099 while (p > s && p[-1] == ' ') 1100 p--; 1101 *p = '\0'; 1102 } 1103 EXPORT_SYMBOL_GPL(ata_id_c_string); 1104 1105 static u64 ata_id_n_sectors(const u16 *id) 1106 { 1107 if (ata_id_has_lba(id)) { 1108 if (ata_id_has_lba48(id)) 1109 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1110 1111 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1112 } 1113 1114 if (ata_id_current_chs_valid(id)) 1115 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] * 1116 (u32)id[ATA_ID_CUR_SECTORS]; 1117 1118 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] * 1119 (u32)id[ATA_ID_SECTORS]; 1120 } 1121 1122 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1123 { 1124 u64 sectors = 0; 1125 1126 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1127 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1128 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1129 sectors |= (tf->lbah & 0xff) << 16; 1130 sectors |= (tf->lbam & 0xff) << 8; 1131 sectors |= (tf->lbal & 0xff); 1132 1133 return sectors; 1134 } 1135 1136 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1137 { 1138 u64 sectors = 0; 1139 1140 sectors |= (tf->device & 0x0f) << 24; 1141 sectors |= (tf->lbah & 0xff) << 16; 1142 sectors |= (tf->lbam & 0xff) << 8; 1143 sectors |= (tf->lbal & 0xff); 1144 1145 return sectors; 1146 } 1147 1148 /** 1149 * ata_read_native_max_address - Read native max address 1150 * @dev: target device 1151 * @max_sectors: out parameter for the result native max address 1152 * 1153 * Perform an LBA48 or LBA28 native size query upon the device in 1154 * question. 1155 * 1156 * RETURNS: 1157 * 0 on success, -EACCES if command is aborted by the drive. 1158 * -EIO on other errors. 1159 */ 1160 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1161 { 1162 unsigned int err_mask; 1163 struct ata_taskfile tf; 1164 int lba48 = ata_id_has_lba48(dev->id); 1165 1166 ata_tf_init(dev, &tf); 1167 1168 /* always clear all address registers */ 1169 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1170 1171 if (lba48) { 1172 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1173 tf.flags |= ATA_TFLAG_LBA48; 1174 } else 1175 tf.command = ATA_CMD_READ_NATIVE_MAX; 1176 1177 tf.protocol = ATA_PROT_NODATA; 1178 tf.device |= ATA_LBA; 1179 1180 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1181 if (err_mask) { 1182 ata_dev_warn(dev, 1183 "failed to read native max address (err_mask=0x%x)\n", 1184 err_mask); 1185 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 1186 return -EACCES; 1187 return -EIO; 1188 } 1189 1190 if (lba48) 1191 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1192 else 1193 *max_sectors = ata_tf_to_lba(&tf) + 1; 1194 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1195 (*max_sectors)--; 1196 return 0; 1197 } 1198 1199 /** 1200 * ata_set_max_sectors - Set max sectors 1201 * @dev: target device 1202 * @new_sectors: new max sectors value to set for the device 1203 * 1204 * Set max sectors of @dev to @new_sectors. 1205 * 1206 * RETURNS: 1207 * 0 on success, -EACCES if command is aborted or denied (due to 1208 * previous non-volatile SET_MAX) by the drive. -EIO on other 1209 * errors. 1210 */ 1211 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1212 { 1213 unsigned int err_mask; 1214 struct ata_taskfile tf; 1215 int lba48 = ata_id_has_lba48(dev->id); 1216 1217 new_sectors--; 1218 1219 ata_tf_init(dev, &tf); 1220 1221 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1222 1223 if (lba48) { 1224 tf.command = ATA_CMD_SET_MAX_EXT; 1225 tf.flags |= ATA_TFLAG_LBA48; 1226 1227 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1228 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1229 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1230 } else { 1231 tf.command = ATA_CMD_SET_MAX; 1232 1233 tf.device |= (new_sectors >> 24) & 0xf; 1234 } 1235 1236 tf.protocol = ATA_PROT_NODATA; 1237 tf.device |= ATA_LBA; 1238 1239 tf.lbal = (new_sectors >> 0) & 0xff; 1240 tf.lbam = (new_sectors >> 8) & 0xff; 1241 tf.lbah = (new_sectors >> 16) & 0xff; 1242 1243 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1244 if (err_mask) { 1245 ata_dev_warn(dev, 1246 "failed to set max address (err_mask=0x%x)\n", 1247 err_mask); 1248 if (err_mask == AC_ERR_DEV && 1249 (tf.error & (ATA_ABORTED | ATA_IDNF))) 1250 return -EACCES; 1251 return -EIO; 1252 } 1253 1254 return 0; 1255 } 1256 1257 /** 1258 * ata_hpa_resize - Resize a device with an HPA set 1259 * @dev: Device to resize 1260 * 1261 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1262 * it if required to the full size of the media. The caller must check 1263 * the drive has the HPA feature set enabled. 1264 * 1265 * RETURNS: 1266 * 0 on success, -errno on failure. 1267 */ 1268 static int ata_hpa_resize(struct ata_device *dev) 1269 { 1270 bool print_info = ata_dev_print_info(dev); 1271 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1272 u64 sectors = ata_id_n_sectors(dev->id); 1273 u64 native_sectors; 1274 int rc; 1275 1276 /* do we need to do it? */ 1277 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1278 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1279 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1280 return 0; 1281 1282 /* read native max address */ 1283 rc = ata_read_native_max_address(dev, &native_sectors); 1284 if (rc) { 1285 /* If device aborted the command or HPA isn't going to 1286 * be unlocked, skip HPA resizing. 1287 */ 1288 if (rc == -EACCES || !unlock_hpa) { 1289 ata_dev_warn(dev, 1290 "HPA support seems broken, skipping HPA handling\n"); 1291 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1292 1293 /* we can continue if device aborted the command */ 1294 if (rc == -EACCES) 1295 rc = 0; 1296 } 1297 1298 return rc; 1299 } 1300 dev->n_native_sectors = native_sectors; 1301 1302 /* nothing to do? */ 1303 if (native_sectors <= sectors || !unlock_hpa) { 1304 if (!print_info || native_sectors == sectors) 1305 return 0; 1306 1307 if (native_sectors > sectors) 1308 ata_dev_info(dev, 1309 "HPA detected: current %llu, native %llu\n", 1310 (unsigned long long)sectors, 1311 (unsigned long long)native_sectors); 1312 else if (native_sectors < sectors) 1313 ata_dev_warn(dev, 1314 "native sectors (%llu) is smaller than sectors (%llu)\n", 1315 (unsigned long long)native_sectors, 1316 (unsigned long long)sectors); 1317 return 0; 1318 } 1319 1320 /* let's unlock HPA */ 1321 rc = ata_set_max_sectors(dev, native_sectors); 1322 if (rc == -EACCES) { 1323 /* if device aborted the command, skip HPA resizing */ 1324 ata_dev_warn(dev, 1325 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1326 (unsigned long long)sectors, 1327 (unsigned long long)native_sectors); 1328 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1329 return 0; 1330 } else if (rc) 1331 return rc; 1332 1333 /* re-read IDENTIFY data */ 1334 rc = ata_dev_reread_id(dev, 0); 1335 if (rc) { 1336 ata_dev_err(dev, 1337 "failed to re-read IDENTIFY data after HPA resizing\n"); 1338 return rc; 1339 } 1340 1341 if (print_info) { 1342 u64 new_sectors = ata_id_n_sectors(dev->id); 1343 ata_dev_info(dev, 1344 "HPA unlocked: %llu -> %llu, native %llu\n", 1345 (unsigned long long)sectors, 1346 (unsigned long long)new_sectors, 1347 (unsigned long long)native_sectors); 1348 } 1349 1350 return 0; 1351 } 1352 1353 /** 1354 * ata_dump_id - IDENTIFY DEVICE info debugging output 1355 * @dev: device from which the information is fetched 1356 * @id: IDENTIFY DEVICE page to dump 1357 * 1358 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1359 * page. 1360 * 1361 * LOCKING: 1362 * caller. 1363 */ 1364 1365 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1366 { 1367 ata_dev_dbg(dev, 1368 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1369 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1370 "88==0x%04x 93==0x%04x\n", 1371 id[49], id[53], id[63], id[64], id[75], id[80], 1372 id[81], id[82], id[83], id[84], id[88], id[93]); 1373 } 1374 1375 /** 1376 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1377 * @id: IDENTIFY data to compute xfer mask from 1378 * 1379 * Compute the xfermask for this device. This is not as trivial 1380 * as it seems if we must consider early devices correctly. 1381 * 1382 * FIXME: pre IDE drive timing (do we care ?). 1383 * 1384 * LOCKING: 1385 * None. 1386 * 1387 * RETURNS: 1388 * Computed xfermask 1389 */ 1390 unsigned int ata_id_xfermask(const u16 *id) 1391 { 1392 unsigned int pio_mask, mwdma_mask, udma_mask; 1393 1394 /* Usual case. Word 53 indicates word 64 is valid */ 1395 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1396 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1397 pio_mask <<= 3; 1398 pio_mask |= 0x7; 1399 } else { 1400 /* If word 64 isn't valid then Word 51 high byte holds 1401 * the PIO timing number for the maximum. Turn it into 1402 * a mask. 1403 */ 1404 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1405 if (mode < 5) /* Valid PIO range */ 1406 pio_mask = (2 << mode) - 1; 1407 else 1408 pio_mask = 1; 1409 1410 /* But wait.. there's more. Design your standards by 1411 * committee and you too can get a free iordy field to 1412 * process. However it is the speeds not the modes that 1413 * are supported... Note drivers using the timing API 1414 * will get this right anyway 1415 */ 1416 } 1417 1418 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1419 1420 if (ata_id_is_cfa(id)) { 1421 /* 1422 * Process compact flash extended modes 1423 */ 1424 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1425 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1426 1427 if (pio) 1428 pio_mask |= (1 << 5); 1429 if (pio > 1) 1430 pio_mask |= (1 << 6); 1431 if (dma) 1432 mwdma_mask |= (1 << 3); 1433 if (dma > 1) 1434 mwdma_mask |= (1 << 4); 1435 } 1436 1437 udma_mask = 0; 1438 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1439 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1440 1441 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1442 } 1443 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1444 1445 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1446 { 1447 struct completion *waiting = qc->private_data; 1448 1449 complete(waiting); 1450 } 1451 1452 /** 1453 * ata_exec_internal_sg - execute libata internal command 1454 * @dev: Device to which the command is sent 1455 * @tf: Taskfile registers for the command and the result 1456 * @cdb: CDB for packet command 1457 * @dma_dir: Data transfer direction of the command 1458 * @sgl: sg list for the data buffer of the command 1459 * @n_elem: Number of sg entries 1460 * @timeout: Timeout in msecs (0 for default) 1461 * 1462 * Executes libata internal command with timeout. @tf contains 1463 * command on entry and result on return. Timeout and error 1464 * conditions are reported via return value. No recovery action 1465 * is taken after a command times out. It's caller's duty to 1466 * clean up after timeout. 1467 * 1468 * LOCKING: 1469 * None. Should be called with kernel context, might sleep. 1470 * 1471 * RETURNS: 1472 * Zero on success, AC_ERR_* mask on failure 1473 */ 1474 static unsigned ata_exec_internal_sg(struct ata_device *dev, 1475 struct ata_taskfile *tf, const u8 *cdb, 1476 int dma_dir, struct scatterlist *sgl, 1477 unsigned int n_elem, unsigned int timeout) 1478 { 1479 struct ata_link *link = dev->link; 1480 struct ata_port *ap = link->ap; 1481 u8 command = tf->command; 1482 int auto_timeout = 0; 1483 struct ata_queued_cmd *qc; 1484 unsigned int preempted_tag; 1485 u32 preempted_sactive; 1486 u64 preempted_qc_active; 1487 int preempted_nr_active_links; 1488 DECLARE_COMPLETION_ONSTACK(wait); 1489 unsigned long flags; 1490 unsigned int err_mask; 1491 int rc; 1492 1493 spin_lock_irqsave(ap->lock, flags); 1494 1495 /* no internal command while frozen */ 1496 if (ata_port_is_frozen(ap)) { 1497 spin_unlock_irqrestore(ap->lock, flags); 1498 return AC_ERR_SYSTEM; 1499 } 1500 1501 /* initialize internal qc */ 1502 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1503 1504 qc->tag = ATA_TAG_INTERNAL; 1505 qc->hw_tag = 0; 1506 qc->scsicmd = NULL; 1507 qc->ap = ap; 1508 qc->dev = dev; 1509 ata_qc_reinit(qc); 1510 1511 preempted_tag = link->active_tag; 1512 preempted_sactive = link->sactive; 1513 preempted_qc_active = ap->qc_active; 1514 preempted_nr_active_links = ap->nr_active_links; 1515 link->active_tag = ATA_TAG_POISON; 1516 link->sactive = 0; 1517 ap->qc_active = 0; 1518 ap->nr_active_links = 0; 1519 1520 /* prepare & issue qc */ 1521 qc->tf = *tf; 1522 if (cdb) 1523 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1524 1525 /* some SATA bridges need us to indicate data xfer direction */ 1526 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1527 dma_dir == DMA_FROM_DEVICE) 1528 qc->tf.feature |= ATAPI_DMADIR; 1529 1530 qc->flags |= ATA_QCFLAG_RESULT_TF; 1531 qc->dma_dir = dma_dir; 1532 if (dma_dir != DMA_NONE) { 1533 unsigned int i, buflen = 0; 1534 struct scatterlist *sg; 1535 1536 for_each_sg(sgl, sg, n_elem, i) 1537 buflen += sg->length; 1538 1539 ata_sg_init(qc, sgl, n_elem); 1540 qc->nbytes = buflen; 1541 } 1542 1543 qc->private_data = &wait; 1544 qc->complete_fn = ata_qc_complete_internal; 1545 1546 ata_qc_issue(qc); 1547 1548 spin_unlock_irqrestore(ap->lock, flags); 1549 1550 if (!timeout) { 1551 if (ata_probe_timeout) 1552 timeout = ata_probe_timeout * 1000; 1553 else { 1554 timeout = ata_internal_cmd_timeout(dev, command); 1555 auto_timeout = 1; 1556 } 1557 } 1558 1559 if (ap->ops->error_handler) 1560 ata_eh_release(ap); 1561 1562 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1563 1564 if (ap->ops->error_handler) 1565 ata_eh_acquire(ap); 1566 1567 ata_sff_flush_pio_task(ap); 1568 1569 if (!rc) { 1570 spin_lock_irqsave(ap->lock, flags); 1571 1572 /* We're racing with irq here. If we lose, the 1573 * following test prevents us from completing the qc 1574 * twice. If we win, the port is frozen and will be 1575 * cleaned up by ->post_internal_cmd(). 1576 */ 1577 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1578 qc->err_mask |= AC_ERR_TIMEOUT; 1579 1580 if (ap->ops->error_handler) 1581 ata_port_freeze(ap); 1582 else 1583 ata_qc_complete(qc); 1584 1585 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n", 1586 timeout, command); 1587 } 1588 1589 spin_unlock_irqrestore(ap->lock, flags); 1590 } 1591 1592 /* do post_internal_cmd */ 1593 if (ap->ops->post_internal_cmd) 1594 ap->ops->post_internal_cmd(qc); 1595 1596 /* perform minimal error analysis */ 1597 if (qc->flags & ATA_QCFLAG_EH) { 1598 if (qc->result_tf.status & (ATA_ERR | ATA_DF)) 1599 qc->err_mask |= AC_ERR_DEV; 1600 1601 if (!qc->err_mask) 1602 qc->err_mask |= AC_ERR_OTHER; 1603 1604 if (qc->err_mask & ~AC_ERR_OTHER) 1605 qc->err_mask &= ~AC_ERR_OTHER; 1606 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1607 qc->result_tf.status |= ATA_SENSE; 1608 } 1609 1610 /* finish up */ 1611 spin_lock_irqsave(ap->lock, flags); 1612 1613 *tf = qc->result_tf; 1614 err_mask = qc->err_mask; 1615 1616 ata_qc_free(qc); 1617 link->active_tag = preempted_tag; 1618 link->sactive = preempted_sactive; 1619 ap->qc_active = preempted_qc_active; 1620 ap->nr_active_links = preempted_nr_active_links; 1621 1622 spin_unlock_irqrestore(ap->lock, flags); 1623 1624 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1625 ata_internal_cmd_timed_out(dev, command); 1626 1627 return err_mask; 1628 } 1629 1630 /** 1631 * ata_exec_internal - execute libata internal command 1632 * @dev: Device to which the command is sent 1633 * @tf: Taskfile registers for the command and the result 1634 * @cdb: CDB for packet command 1635 * @dma_dir: Data transfer direction of the command 1636 * @buf: Data buffer of the command 1637 * @buflen: Length of data buffer 1638 * @timeout: Timeout in msecs (0 for default) 1639 * 1640 * Wrapper around ata_exec_internal_sg() which takes simple 1641 * buffer instead of sg list. 1642 * 1643 * LOCKING: 1644 * None. Should be called with kernel context, might sleep. 1645 * 1646 * RETURNS: 1647 * Zero on success, AC_ERR_* mask on failure 1648 */ 1649 unsigned ata_exec_internal(struct ata_device *dev, 1650 struct ata_taskfile *tf, const u8 *cdb, 1651 int dma_dir, void *buf, unsigned int buflen, 1652 unsigned int timeout) 1653 { 1654 struct scatterlist *psg = NULL, sg; 1655 unsigned int n_elem = 0; 1656 1657 if (dma_dir != DMA_NONE) { 1658 WARN_ON(!buf); 1659 sg_init_one(&sg, buf, buflen); 1660 psg = &sg; 1661 n_elem++; 1662 } 1663 1664 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1665 timeout); 1666 } 1667 1668 /** 1669 * ata_pio_need_iordy - check if iordy needed 1670 * @adev: ATA device 1671 * 1672 * Check if the current speed of the device requires IORDY. Used 1673 * by various controllers for chip configuration. 1674 */ 1675 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1676 { 1677 /* Don't set IORDY if we're preparing for reset. IORDY may 1678 * lead to controller lock up on certain controllers if the 1679 * port is not occupied. See bko#11703 for details. 1680 */ 1681 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1682 return 0; 1683 /* Controller doesn't support IORDY. Probably a pointless 1684 * check as the caller should know this. 1685 */ 1686 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1687 return 0; 1688 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1689 if (ata_id_is_cfa(adev->id) 1690 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1691 return 0; 1692 /* PIO3 and higher it is mandatory */ 1693 if (adev->pio_mode > XFER_PIO_2) 1694 return 1; 1695 /* We turn it on when possible */ 1696 if (ata_id_has_iordy(adev->id)) 1697 return 1; 1698 return 0; 1699 } 1700 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1701 1702 /** 1703 * ata_pio_mask_no_iordy - Return the non IORDY mask 1704 * @adev: ATA device 1705 * 1706 * Compute the highest mode possible if we are not using iordy. Return 1707 * -1 if no iordy mode is available. 1708 */ 1709 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1710 { 1711 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1712 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1713 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1714 /* Is the speed faster than the drive allows non IORDY ? */ 1715 if (pio) { 1716 /* This is cycle times not frequency - watch the logic! */ 1717 if (pio > 240) /* PIO2 is 240nS per cycle */ 1718 return 3 << ATA_SHIFT_PIO; 1719 return 7 << ATA_SHIFT_PIO; 1720 } 1721 } 1722 return 3 << ATA_SHIFT_PIO; 1723 } 1724 1725 /** 1726 * ata_do_dev_read_id - default ID read method 1727 * @dev: device 1728 * @tf: proposed taskfile 1729 * @id: data buffer 1730 * 1731 * Issue the identify taskfile and hand back the buffer containing 1732 * identify data. For some RAID controllers and for pre ATA devices 1733 * this function is wrapped or replaced by the driver 1734 */ 1735 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1736 struct ata_taskfile *tf, __le16 *id) 1737 { 1738 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1739 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1740 } 1741 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1742 1743 /** 1744 * ata_dev_read_id - Read ID data from the specified device 1745 * @dev: target device 1746 * @p_class: pointer to class of the target device (may be changed) 1747 * @flags: ATA_READID_* flags 1748 * @id: buffer to read IDENTIFY data into 1749 * 1750 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1751 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1752 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1753 * for pre-ATA4 drives. 1754 * 1755 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1756 * now we abort if we hit that case. 1757 * 1758 * LOCKING: 1759 * Kernel thread context (may sleep) 1760 * 1761 * RETURNS: 1762 * 0 on success, -errno otherwise. 1763 */ 1764 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1765 unsigned int flags, u16 *id) 1766 { 1767 struct ata_port *ap = dev->link->ap; 1768 unsigned int class = *p_class; 1769 struct ata_taskfile tf; 1770 unsigned int err_mask = 0; 1771 const char *reason; 1772 bool is_semb = class == ATA_DEV_SEMB; 1773 int may_fallback = 1, tried_spinup = 0; 1774 int rc; 1775 1776 retry: 1777 ata_tf_init(dev, &tf); 1778 1779 switch (class) { 1780 case ATA_DEV_SEMB: 1781 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1782 fallthrough; 1783 case ATA_DEV_ATA: 1784 case ATA_DEV_ZAC: 1785 tf.command = ATA_CMD_ID_ATA; 1786 break; 1787 case ATA_DEV_ATAPI: 1788 tf.command = ATA_CMD_ID_ATAPI; 1789 break; 1790 default: 1791 rc = -ENODEV; 1792 reason = "unsupported class"; 1793 goto err_out; 1794 } 1795 1796 tf.protocol = ATA_PROT_PIO; 1797 1798 /* Some devices choke if TF registers contain garbage. Make 1799 * sure those are properly initialized. 1800 */ 1801 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1802 1803 /* Device presence detection is unreliable on some 1804 * controllers. Always poll IDENTIFY if available. 1805 */ 1806 tf.flags |= ATA_TFLAG_POLLING; 1807 1808 if (ap->ops->read_id) 1809 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1810 else 1811 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1812 1813 if (err_mask) { 1814 if (err_mask & AC_ERR_NODEV_HINT) { 1815 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1816 return -ENOENT; 1817 } 1818 1819 if (is_semb) { 1820 ata_dev_info(dev, 1821 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1822 /* SEMB is not supported yet */ 1823 *p_class = ATA_DEV_SEMB_UNSUP; 1824 return 0; 1825 } 1826 1827 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) { 1828 /* Device or controller might have reported 1829 * the wrong device class. Give a shot at the 1830 * other IDENTIFY if the current one is 1831 * aborted by the device. 1832 */ 1833 if (may_fallback) { 1834 may_fallback = 0; 1835 1836 if (class == ATA_DEV_ATA) 1837 class = ATA_DEV_ATAPI; 1838 else 1839 class = ATA_DEV_ATA; 1840 goto retry; 1841 } 1842 1843 /* Control reaches here iff the device aborted 1844 * both flavors of IDENTIFYs which happens 1845 * sometimes with phantom devices. 1846 */ 1847 ata_dev_dbg(dev, 1848 "both IDENTIFYs aborted, assuming NODEV\n"); 1849 return -ENOENT; 1850 } 1851 1852 rc = -EIO; 1853 reason = "I/O error"; 1854 goto err_out; 1855 } 1856 1857 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1858 ata_dev_info(dev, "dumping IDENTIFY data, " 1859 "class=%d may_fallback=%d tried_spinup=%d\n", 1860 class, may_fallback, tried_spinup); 1861 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1862 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1863 } 1864 1865 /* Falling back doesn't make sense if ID data was read 1866 * successfully at least once. 1867 */ 1868 may_fallback = 0; 1869 1870 swap_buf_le16(id, ATA_ID_WORDS); 1871 1872 /* sanity check */ 1873 rc = -EINVAL; 1874 reason = "device reports invalid type"; 1875 1876 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1877 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1878 goto err_out; 1879 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1880 ata_id_is_ata(id)) { 1881 ata_dev_dbg(dev, 1882 "host indicates ignore ATA devices, ignored\n"); 1883 return -ENOENT; 1884 } 1885 } else { 1886 if (ata_id_is_ata(id)) 1887 goto err_out; 1888 } 1889 1890 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1891 tried_spinup = 1; 1892 /* 1893 * Drive powered-up in standby mode, and requires a specific 1894 * SET_FEATURES spin-up subcommand before it will accept 1895 * anything other than the original IDENTIFY command. 1896 */ 1897 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1898 if (err_mask && id[2] != 0x738c) { 1899 rc = -EIO; 1900 reason = "SPINUP failed"; 1901 goto err_out; 1902 } 1903 /* 1904 * If the drive initially returned incomplete IDENTIFY info, 1905 * we now must reissue the IDENTIFY command. 1906 */ 1907 if (id[2] == 0x37c8) 1908 goto retry; 1909 } 1910 1911 if ((flags & ATA_READID_POSTRESET) && 1912 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1913 /* 1914 * The exact sequence expected by certain pre-ATA4 drives is: 1915 * SRST RESET 1916 * IDENTIFY (optional in early ATA) 1917 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1918 * anything else.. 1919 * Some drives were very specific about that exact sequence. 1920 * 1921 * Note that ATA4 says lba is mandatory so the second check 1922 * should never trigger. 1923 */ 1924 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1925 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1926 if (err_mask) { 1927 rc = -EIO; 1928 reason = "INIT_DEV_PARAMS failed"; 1929 goto err_out; 1930 } 1931 1932 /* current CHS translation info (id[53-58]) might be 1933 * changed. reread the identify device info. 1934 */ 1935 flags &= ~ATA_READID_POSTRESET; 1936 goto retry; 1937 } 1938 } 1939 1940 *p_class = class; 1941 1942 return 0; 1943 1944 err_out: 1945 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1946 reason, err_mask); 1947 return rc; 1948 } 1949 1950 /** 1951 * ata_read_log_page - read a specific log page 1952 * @dev: target device 1953 * @log: log to read 1954 * @page: page to read 1955 * @buf: buffer to store read page 1956 * @sectors: number of sectors to read 1957 * 1958 * Read log page using READ_LOG_EXT command. 1959 * 1960 * LOCKING: 1961 * Kernel thread context (may sleep). 1962 * 1963 * RETURNS: 1964 * 0 on success, AC_ERR_* mask otherwise. 1965 */ 1966 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 1967 u8 page, void *buf, unsigned int sectors) 1968 { 1969 unsigned long ap_flags = dev->link->ap->flags; 1970 struct ata_taskfile tf; 1971 unsigned int err_mask; 1972 bool dma = false; 1973 1974 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 1975 1976 /* 1977 * Return error without actually issuing the command on controllers 1978 * which e.g. lockup on a read log page. 1979 */ 1980 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 1981 return AC_ERR_DEV; 1982 1983 retry: 1984 ata_tf_init(dev, &tf); 1985 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 1986 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 1987 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 1988 tf.protocol = ATA_PROT_DMA; 1989 dma = true; 1990 } else { 1991 tf.command = ATA_CMD_READ_LOG_EXT; 1992 tf.protocol = ATA_PROT_PIO; 1993 dma = false; 1994 } 1995 tf.lbal = log; 1996 tf.lbam = page; 1997 tf.nsect = sectors; 1998 tf.hob_nsect = sectors >> 8; 1999 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2000 2001 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2002 buf, sectors * ATA_SECT_SIZE, 0); 2003 2004 if (err_mask) { 2005 if (dma) { 2006 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2007 if (!ata_port_is_frozen(dev->link->ap)) 2008 goto retry; 2009 } 2010 ata_dev_err(dev, 2011 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2012 (unsigned int)log, (unsigned int)page, err_mask); 2013 } 2014 2015 return err_mask; 2016 } 2017 2018 static int ata_log_supported(struct ata_device *dev, u8 log) 2019 { 2020 struct ata_port *ap = dev->link->ap; 2021 2022 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR) 2023 return 0; 2024 2025 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2026 return 0; 2027 return get_unaligned_le16(&ap->sector_buf[log * 2]); 2028 } 2029 2030 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2031 { 2032 struct ata_port *ap = dev->link->ap; 2033 unsigned int err, i; 2034 2035 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG) 2036 return false; 2037 2038 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2039 /* 2040 * IDENTIFY DEVICE data log is defined as mandatory starting 2041 * with ACS-3 (ATA version 10). Warn about the missing log 2042 * for drives which implement this ATA level or above. 2043 */ 2044 if (ata_id_major_version(dev->id) >= 10) 2045 ata_dev_warn(dev, 2046 "ATA Identify Device Log not supported\n"); 2047 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG; 2048 return false; 2049 } 2050 2051 /* 2052 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2053 * supported. 2054 */ 2055 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2056 1); 2057 if (err) 2058 return false; 2059 2060 for (i = 0; i < ap->sector_buf[8]; i++) { 2061 if (ap->sector_buf[9 + i] == page) 2062 return true; 2063 } 2064 2065 return false; 2066 } 2067 2068 static int ata_do_link_spd_horkage(struct ata_device *dev) 2069 { 2070 struct ata_link *plink = ata_dev_phys_link(dev); 2071 u32 target, target_limit; 2072 2073 if (!sata_scr_valid(plink)) 2074 return 0; 2075 2076 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2077 target = 1; 2078 else 2079 return 0; 2080 2081 target_limit = (1 << target) - 1; 2082 2083 /* if already on stricter limit, no need to push further */ 2084 if (plink->sata_spd_limit <= target_limit) 2085 return 0; 2086 2087 plink->sata_spd_limit = target_limit; 2088 2089 /* Request another EH round by returning -EAGAIN if link is 2090 * going faster than the target speed. Forward progress is 2091 * guaranteed by setting sata_spd_limit to target_limit above. 2092 */ 2093 if (plink->sata_spd > target) { 2094 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2095 sata_spd_string(target)); 2096 return -EAGAIN; 2097 } 2098 return 0; 2099 } 2100 2101 static inline u8 ata_dev_knobble(struct ata_device *dev) 2102 { 2103 struct ata_port *ap = dev->link->ap; 2104 2105 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2106 return 0; 2107 2108 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2109 } 2110 2111 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2112 { 2113 struct ata_port *ap = dev->link->ap; 2114 unsigned int err_mask; 2115 2116 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2117 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2118 return; 2119 } 2120 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2121 0, ap->sector_buf, 1); 2122 if (!err_mask) { 2123 u8 *cmds = dev->ncq_send_recv_cmds; 2124 2125 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2126 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2127 2128 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2129 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2130 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2131 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2132 } 2133 } 2134 } 2135 2136 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2137 { 2138 struct ata_port *ap = dev->link->ap; 2139 unsigned int err_mask; 2140 2141 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2142 ata_dev_warn(dev, 2143 "NCQ Send/Recv Log not supported\n"); 2144 return; 2145 } 2146 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2147 0, ap->sector_buf, 1); 2148 if (!err_mask) { 2149 u8 *cmds = dev->ncq_non_data_cmds; 2150 2151 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2152 } 2153 } 2154 2155 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2156 { 2157 struct ata_port *ap = dev->link->ap; 2158 unsigned int err_mask; 2159 2160 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2161 return; 2162 2163 err_mask = ata_read_log_page(dev, 2164 ATA_LOG_IDENTIFY_DEVICE, 2165 ATA_LOG_SATA_SETTINGS, 2166 ap->sector_buf, 2167 1); 2168 if (err_mask) 2169 goto not_supported; 2170 2171 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2172 goto not_supported; 2173 2174 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2175 2176 return; 2177 2178 not_supported: 2179 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED; 2180 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2181 } 2182 2183 static bool ata_dev_check_adapter(struct ata_device *dev, 2184 unsigned short vendor_id) 2185 { 2186 struct pci_dev *pcidev = NULL; 2187 struct device *parent_dev = NULL; 2188 2189 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2190 parent_dev = parent_dev->parent) { 2191 if (dev_is_pci(parent_dev)) { 2192 pcidev = to_pci_dev(parent_dev); 2193 if (pcidev->vendor == vendor_id) 2194 return true; 2195 break; 2196 } 2197 } 2198 2199 return false; 2200 } 2201 2202 static int ata_dev_config_ncq(struct ata_device *dev, 2203 char *desc, size_t desc_sz) 2204 { 2205 struct ata_port *ap = dev->link->ap; 2206 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2207 unsigned int err_mask; 2208 char *aa_desc = ""; 2209 2210 if (!ata_id_has_ncq(dev->id)) { 2211 desc[0] = '\0'; 2212 return 0; 2213 } 2214 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2215 return 0; 2216 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2217 snprintf(desc, desc_sz, "NCQ (not used)"); 2218 return 0; 2219 } 2220 2221 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2222 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2223 snprintf(desc, desc_sz, "NCQ (not used)"); 2224 return 0; 2225 } 2226 2227 if (ap->flags & ATA_FLAG_NCQ) { 2228 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2229 dev->flags |= ATA_DFLAG_NCQ; 2230 } 2231 2232 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2233 (ap->flags & ATA_FLAG_FPDMA_AA) && 2234 ata_id_has_fpdma_aa(dev->id)) { 2235 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2236 SATA_FPDMA_AA); 2237 if (err_mask) { 2238 ata_dev_err(dev, 2239 "failed to enable AA (error_mask=0x%x)\n", 2240 err_mask); 2241 if (err_mask != AC_ERR_DEV) { 2242 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2243 return -EIO; 2244 } 2245 } else 2246 aa_desc = ", AA"; 2247 } 2248 2249 if (hdepth >= ddepth) 2250 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2251 else 2252 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2253 ddepth, aa_desc); 2254 2255 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2256 if (ata_id_has_ncq_send_and_recv(dev->id)) 2257 ata_dev_config_ncq_send_recv(dev); 2258 if (ata_id_has_ncq_non_data(dev->id)) 2259 ata_dev_config_ncq_non_data(dev); 2260 if (ata_id_has_ncq_prio(dev->id)) 2261 ata_dev_config_ncq_prio(dev); 2262 } 2263 2264 return 0; 2265 } 2266 2267 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2268 { 2269 unsigned int err_mask; 2270 2271 if (!ata_id_has_sense_reporting(dev->id)) 2272 return; 2273 2274 if (ata_id_sense_reporting_enabled(dev->id)) 2275 return; 2276 2277 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2278 if (err_mask) { 2279 ata_dev_dbg(dev, 2280 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2281 err_mask); 2282 } 2283 } 2284 2285 static void ata_dev_config_zac(struct ata_device *dev) 2286 { 2287 struct ata_port *ap = dev->link->ap; 2288 unsigned int err_mask; 2289 u8 *identify_buf = ap->sector_buf; 2290 2291 dev->zac_zones_optimal_open = U32_MAX; 2292 dev->zac_zones_optimal_nonseq = U32_MAX; 2293 dev->zac_zones_max_open = U32_MAX; 2294 2295 /* 2296 * Always set the 'ZAC' flag for Host-managed devices. 2297 */ 2298 if (dev->class == ATA_DEV_ZAC) 2299 dev->flags |= ATA_DFLAG_ZAC; 2300 else if (ata_id_zoned_cap(dev->id) == 0x01) 2301 /* 2302 * Check for host-aware devices. 2303 */ 2304 dev->flags |= ATA_DFLAG_ZAC; 2305 2306 if (!(dev->flags & ATA_DFLAG_ZAC)) 2307 return; 2308 2309 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2310 ata_dev_warn(dev, 2311 "ATA Zoned Information Log not supported\n"); 2312 return; 2313 } 2314 2315 /* 2316 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2317 */ 2318 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2319 ATA_LOG_ZONED_INFORMATION, 2320 identify_buf, 1); 2321 if (!err_mask) { 2322 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2323 2324 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2325 if ((zoned_cap >> 63)) 2326 dev->zac_zoned_cap = (zoned_cap & 1); 2327 opt_open = get_unaligned_le64(&identify_buf[24]); 2328 if ((opt_open >> 63)) 2329 dev->zac_zones_optimal_open = (u32)opt_open; 2330 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2331 if ((opt_nonseq >> 63)) 2332 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2333 max_open = get_unaligned_le64(&identify_buf[40]); 2334 if ((max_open >> 63)) 2335 dev->zac_zones_max_open = (u32)max_open; 2336 } 2337 } 2338 2339 static void ata_dev_config_trusted(struct ata_device *dev) 2340 { 2341 struct ata_port *ap = dev->link->ap; 2342 u64 trusted_cap; 2343 unsigned int err; 2344 2345 if (!ata_id_has_trusted(dev->id)) 2346 return; 2347 2348 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2349 ata_dev_warn(dev, 2350 "Security Log not supported\n"); 2351 return; 2352 } 2353 2354 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2355 ap->sector_buf, 1); 2356 if (err) 2357 return; 2358 2359 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2360 if (!(trusted_cap & (1ULL << 63))) { 2361 ata_dev_dbg(dev, 2362 "Trusted Computing capability qword not valid!\n"); 2363 return; 2364 } 2365 2366 if (trusted_cap & (1 << 0)) 2367 dev->flags |= ATA_DFLAG_TRUSTED; 2368 } 2369 2370 static int ata_dev_config_lba(struct ata_device *dev) 2371 { 2372 const u16 *id = dev->id; 2373 const char *lba_desc; 2374 char ncq_desc[24]; 2375 int ret; 2376 2377 dev->flags |= ATA_DFLAG_LBA; 2378 2379 if (ata_id_has_lba48(id)) { 2380 lba_desc = "LBA48"; 2381 dev->flags |= ATA_DFLAG_LBA48; 2382 if (dev->n_sectors >= (1UL << 28) && 2383 ata_id_has_flush_ext(id)) 2384 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2385 } else { 2386 lba_desc = "LBA"; 2387 } 2388 2389 /* config NCQ */ 2390 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2391 2392 /* print device info to dmesg */ 2393 if (ata_dev_print_info(dev)) 2394 ata_dev_info(dev, 2395 "%llu sectors, multi %u: %s %s\n", 2396 (unsigned long long)dev->n_sectors, 2397 dev->multi_count, lba_desc, ncq_desc); 2398 2399 return ret; 2400 } 2401 2402 static void ata_dev_config_chs(struct ata_device *dev) 2403 { 2404 const u16 *id = dev->id; 2405 2406 if (ata_id_current_chs_valid(id)) { 2407 /* Current CHS translation is valid. */ 2408 dev->cylinders = id[54]; 2409 dev->heads = id[55]; 2410 dev->sectors = id[56]; 2411 } else { 2412 /* Default translation */ 2413 dev->cylinders = id[1]; 2414 dev->heads = id[3]; 2415 dev->sectors = id[6]; 2416 } 2417 2418 /* print device info to dmesg */ 2419 if (ata_dev_print_info(dev)) 2420 ata_dev_info(dev, 2421 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2422 (unsigned long long)dev->n_sectors, 2423 dev->multi_count, dev->cylinders, 2424 dev->heads, dev->sectors); 2425 } 2426 2427 static void ata_dev_config_fua(struct ata_device *dev) 2428 { 2429 /* Ignore FUA support if its use is disabled globally */ 2430 if (!libata_fua) 2431 goto nofua; 2432 2433 /* Ignore devices without support for WRITE DMA FUA EXT */ 2434 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id)) 2435 goto nofua; 2436 2437 /* Ignore known bad devices and devices that lack NCQ support */ 2438 if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA)) 2439 goto nofua; 2440 2441 dev->flags |= ATA_DFLAG_FUA; 2442 2443 return; 2444 2445 nofua: 2446 dev->flags &= ~ATA_DFLAG_FUA; 2447 } 2448 2449 static void ata_dev_config_devslp(struct ata_device *dev) 2450 { 2451 u8 *sata_setting = dev->link->ap->sector_buf; 2452 unsigned int err_mask; 2453 int i, j; 2454 2455 /* 2456 * Check device sleep capability. Get DevSlp timing variables 2457 * from SATA Settings page of Identify Device Data Log. 2458 */ 2459 if (!ata_id_has_devslp(dev->id) || 2460 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2461 return; 2462 2463 err_mask = ata_read_log_page(dev, 2464 ATA_LOG_IDENTIFY_DEVICE, 2465 ATA_LOG_SATA_SETTINGS, 2466 sata_setting, 1); 2467 if (err_mask) 2468 return; 2469 2470 dev->flags |= ATA_DFLAG_DEVSLP; 2471 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2472 j = ATA_LOG_DEVSLP_OFFSET + i; 2473 dev->devslp_timing[i] = sata_setting[j]; 2474 } 2475 } 2476 2477 static void ata_dev_config_cpr(struct ata_device *dev) 2478 { 2479 unsigned int err_mask; 2480 size_t buf_len; 2481 int i, nr_cpr = 0; 2482 struct ata_cpr_log *cpr_log = NULL; 2483 u8 *desc, *buf = NULL; 2484 2485 if (ata_id_major_version(dev->id) < 11) 2486 goto out; 2487 2488 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES); 2489 if (buf_len == 0) 2490 goto out; 2491 2492 /* 2493 * Read the concurrent positioning ranges log (0x47). We can have at 2494 * most 255 32B range descriptors plus a 64B header. This log varies in 2495 * size, so use the size reported in the GPL directory. Reading beyond 2496 * the supported length will result in an error. 2497 */ 2498 buf_len <<= 9; 2499 buf = kzalloc(buf_len, GFP_KERNEL); 2500 if (!buf) 2501 goto out; 2502 2503 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2504 0, buf, buf_len >> 9); 2505 if (err_mask) 2506 goto out; 2507 2508 nr_cpr = buf[0]; 2509 if (!nr_cpr) 2510 goto out; 2511 2512 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2513 if (!cpr_log) 2514 goto out; 2515 2516 cpr_log->nr_cpr = nr_cpr; 2517 desc = &buf[64]; 2518 for (i = 0; i < nr_cpr; i++, desc += 32) { 2519 cpr_log->cpr[i].num = desc[0]; 2520 cpr_log->cpr[i].num_storage_elements = desc[1]; 2521 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2522 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2523 } 2524 2525 out: 2526 swap(dev->cpr_log, cpr_log); 2527 kfree(cpr_log); 2528 kfree(buf); 2529 } 2530 2531 static void ata_dev_print_features(struct ata_device *dev) 2532 { 2533 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2534 return; 2535 2536 ata_dev_info(dev, 2537 "Features:%s%s%s%s%s%s%s\n", 2538 dev->flags & ATA_DFLAG_FUA ? " FUA" : "", 2539 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2540 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2541 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2542 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2543 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2544 dev->cpr_log ? " CPR" : ""); 2545 } 2546 2547 /** 2548 * ata_dev_configure - Configure the specified ATA/ATAPI device 2549 * @dev: Target device to configure 2550 * 2551 * Configure @dev according to @dev->id. Generic and low-level 2552 * driver specific fixups are also applied. 2553 * 2554 * LOCKING: 2555 * Kernel thread context (may sleep) 2556 * 2557 * RETURNS: 2558 * 0 on success, -errno otherwise 2559 */ 2560 int ata_dev_configure(struct ata_device *dev) 2561 { 2562 struct ata_port *ap = dev->link->ap; 2563 bool print_info = ata_dev_print_info(dev); 2564 const u16 *id = dev->id; 2565 unsigned int xfer_mask; 2566 unsigned int err_mask; 2567 char revbuf[7]; /* XYZ-99\0 */ 2568 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2569 char modelbuf[ATA_ID_PROD_LEN+1]; 2570 int rc; 2571 2572 if (!ata_dev_enabled(dev)) { 2573 ata_dev_dbg(dev, "no device\n"); 2574 return 0; 2575 } 2576 2577 /* set horkage */ 2578 dev->horkage |= ata_dev_blacklisted(dev); 2579 ata_force_horkage(dev); 2580 2581 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2582 ata_dev_info(dev, "unsupported device, disabling\n"); 2583 ata_dev_disable(dev); 2584 return 0; 2585 } 2586 2587 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2588 dev->class == ATA_DEV_ATAPI) { 2589 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2590 atapi_enabled ? "not supported with this driver" 2591 : "disabled"); 2592 ata_dev_disable(dev); 2593 return 0; 2594 } 2595 2596 rc = ata_do_link_spd_horkage(dev); 2597 if (rc) 2598 return rc; 2599 2600 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2601 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2602 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2603 dev->horkage |= ATA_HORKAGE_NOLPM; 2604 2605 if (ap->flags & ATA_FLAG_NO_LPM) 2606 dev->horkage |= ATA_HORKAGE_NOLPM; 2607 2608 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2609 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2610 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2611 } 2612 2613 /* let ACPI work its magic */ 2614 rc = ata_acpi_on_devcfg(dev); 2615 if (rc) 2616 return rc; 2617 2618 /* massage HPA, do it early as it might change IDENTIFY data */ 2619 rc = ata_hpa_resize(dev); 2620 if (rc) 2621 return rc; 2622 2623 /* print device capabilities */ 2624 ata_dev_dbg(dev, 2625 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2626 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2627 __func__, 2628 id[49], id[82], id[83], id[84], 2629 id[85], id[86], id[87], id[88]); 2630 2631 /* initialize to-be-configured parameters */ 2632 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2633 dev->max_sectors = 0; 2634 dev->cdb_len = 0; 2635 dev->n_sectors = 0; 2636 dev->cylinders = 0; 2637 dev->heads = 0; 2638 dev->sectors = 0; 2639 dev->multi_count = 0; 2640 2641 /* 2642 * common ATA, ATAPI feature tests 2643 */ 2644 2645 /* find max transfer mode; for printk only */ 2646 xfer_mask = ata_id_xfermask(id); 2647 2648 ata_dump_id(dev, id); 2649 2650 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2651 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2652 sizeof(fwrevbuf)); 2653 2654 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2655 sizeof(modelbuf)); 2656 2657 /* ATA-specific feature tests */ 2658 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2659 if (ata_id_is_cfa(id)) { 2660 /* CPRM may make this media unusable */ 2661 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2662 ata_dev_warn(dev, 2663 "supports DRM functions and may not be fully accessible\n"); 2664 snprintf(revbuf, 7, "CFA"); 2665 } else { 2666 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2667 /* Warn the user if the device has TPM extensions */ 2668 if (ata_id_has_tpm(id)) 2669 ata_dev_warn(dev, 2670 "supports DRM functions and may not be fully accessible\n"); 2671 } 2672 2673 dev->n_sectors = ata_id_n_sectors(id); 2674 2675 /* get current R/W Multiple count setting */ 2676 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2677 unsigned int max = dev->id[47] & 0xff; 2678 unsigned int cnt = dev->id[59] & 0xff; 2679 /* only recognize/allow powers of two here */ 2680 if (is_power_of_2(max) && is_power_of_2(cnt)) 2681 if (cnt <= max) 2682 dev->multi_count = cnt; 2683 } 2684 2685 /* print device info to dmesg */ 2686 if (print_info) 2687 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2688 revbuf, modelbuf, fwrevbuf, 2689 ata_mode_string(xfer_mask)); 2690 2691 if (ata_id_has_lba(id)) { 2692 rc = ata_dev_config_lba(dev); 2693 if (rc) 2694 return rc; 2695 } else { 2696 ata_dev_config_chs(dev); 2697 } 2698 2699 ata_dev_config_fua(dev); 2700 ata_dev_config_devslp(dev); 2701 ata_dev_config_sense_reporting(dev); 2702 ata_dev_config_zac(dev); 2703 ata_dev_config_trusted(dev); 2704 ata_dev_config_cpr(dev); 2705 dev->cdb_len = 32; 2706 2707 if (print_info) 2708 ata_dev_print_features(dev); 2709 } 2710 2711 /* ATAPI-specific feature tests */ 2712 else if (dev->class == ATA_DEV_ATAPI) { 2713 const char *cdb_intr_string = ""; 2714 const char *atapi_an_string = ""; 2715 const char *dma_dir_string = ""; 2716 u32 sntf; 2717 2718 rc = atapi_cdb_len(id); 2719 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2720 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 2721 rc = -EINVAL; 2722 goto err_out_nosup; 2723 } 2724 dev->cdb_len = (unsigned int) rc; 2725 2726 /* Enable ATAPI AN if both the host and device have 2727 * the support. If PMP is attached, SNTF is required 2728 * to enable ATAPI AN to discern between PHY status 2729 * changed notifications and ATAPI ANs. 2730 */ 2731 if (atapi_an && 2732 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2733 (!sata_pmp_attached(ap) || 2734 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2735 /* issue SET feature command to turn this on */ 2736 err_mask = ata_dev_set_feature(dev, 2737 SETFEATURES_SATA_ENABLE, SATA_AN); 2738 if (err_mask) 2739 ata_dev_err(dev, 2740 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2741 err_mask); 2742 else { 2743 dev->flags |= ATA_DFLAG_AN; 2744 atapi_an_string = ", ATAPI AN"; 2745 } 2746 } 2747 2748 if (ata_id_cdb_intr(dev->id)) { 2749 dev->flags |= ATA_DFLAG_CDB_INTR; 2750 cdb_intr_string = ", CDB intr"; 2751 } 2752 2753 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2754 dev->flags |= ATA_DFLAG_DMADIR; 2755 dma_dir_string = ", DMADIR"; 2756 } 2757 2758 if (ata_id_has_da(dev->id)) { 2759 dev->flags |= ATA_DFLAG_DA; 2760 zpodd_init(dev); 2761 } 2762 2763 /* print device info to dmesg */ 2764 if (print_info) 2765 ata_dev_info(dev, 2766 "ATAPI: %s, %s, max %s%s%s%s\n", 2767 modelbuf, fwrevbuf, 2768 ata_mode_string(xfer_mask), 2769 cdb_intr_string, atapi_an_string, 2770 dma_dir_string); 2771 } 2772 2773 /* determine max_sectors */ 2774 dev->max_sectors = ATA_MAX_SECTORS; 2775 if (dev->flags & ATA_DFLAG_LBA48) 2776 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2777 2778 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2779 200 sectors */ 2780 if (ata_dev_knobble(dev)) { 2781 if (print_info) 2782 ata_dev_info(dev, "applying bridge limits\n"); 2783 dev->udma_mask &= ATA_UDMA5; 2784 dev->max_sectors = ATA_MAX_SECTORS; 2785 } 2786 2787 if ((dev->class == ATA_DEV_ATAPI) && 2788 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2789 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2790 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2791 } 2792 2793 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2794 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2795 dev->max_sectors); 2796 2797 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2798 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2799 dev->max_sectors); 2800 2801 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2802 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2803 2804 if (ap->ops->dev_config) 2805 ap->ops->dev_config(dev); 2806 2807 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2808 /* Let the user know. We don't want to disallow opens for 2809 rescue purposes, or in case the vendor is just a blithering 2810 idiot. Do this after the dev_config call as some controllers 2811 with buggy firmware may want to avoid reporting false device 2812 bugs */ 2813 2814 if (print_info) { 2815 ata_dev_warn(dev, 2816 "Drive reports diagnostics failure. This may indicate a drive\n"); 2817 ata_dev_warn(dev, 2818 "fault or invalid emulation. Contact drive vendor for information.\n"); 2819 } 2820 } 2821 2822 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2823 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2824 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2825 } 2826 2827 return 0; 2828 2829 err_out_nosup: 2830 return rc; 2831 } 2832 2833 /** 2834 * ata_cable_40wire - return 40 wire cable type 2835 * @ap: port 2836 * 2837 * Helper method for drivers which want to hardwire 40 wire cable 2838 * detection. 2839 */ 2840 2841 int ata_cable_40wire(struct ata_port *ap) 2842 { 2843 return ATA_CBL_PATA40; 2844 } 2845 EXPORT_SYMBOL_GPL(ata_cable_40wire); 2846 2847 /** 2848 * ata_cable_80wire - return 80 wire cable type 2849 * @ap: port 2850 * 2851 * Helper method for drivers which want to hardwire 80 wire cable 2852 * detection. 2853 */ 2854 2855 int ata_cable_80wire(struct ata_port *ap) 2856 { 2857 return ATA_CBL_PATA80; 2858 } 2859 EXPORT_SYMBOL_GPL(ata_cable_80wire); 2860 2861 /** 2862 * ata_cable_unknown - return unknown PATA cable. 2863 * @ap: port 2864 * 2865 * Helper method for drivers which have no PATA cable detection. 2866 */ 2867 2868 int ata_cable_unknown(struct ata_port *ap) 2869 { 2870 return ATA_CBL_PATA_UNK; 2871 } 2872 EXPORT_SYMBOL_GPL(ata_cable_unknown); 2873 2874 /** 2875 * ata_cable_ignore - return ignored PATA cable. 2876 * @ap: port 2877 * 2878 * Helper method for drivers which don't use cable type to limit 2879 * transfer mode. 2880 */ 2881 int ata_cable_ignore(struct ata_port *ap) 2882 { 2883 return ATA_CBL_PATA_IGN; 2884 } 2885 EXPORT_SYMBOL_GPL(ata_cable_ignore); 2886 2887 /** 2888 * ata_cable_sata - return SATA cable type 2889 * @ap: port 2890 * 2891 * Helper method for drivers which have SATA cables 2892 */ 2893 2894 int ata_cable_sata(struct ata_port *ap) 2895 { 2896 return ATA_CBL_SATA; 2897 } 2898 EXPORT_SYMBOL_GPL(ata_cable_sata); 2899 2900 /** 2901 * ata_bus_probe - Reset and probe ATA bus 2902 * @ap: Bus to probe 2903 * 2904 * Master ATA bus probing function. Initiates a hardware-dependent 2905 * bus reset, then attempts to identify any devices found on 2906 * the bus. 2907 * 2908 * LOCKING: 2909 * PCI/etc. bus probe sem. 2910 * 2911 * RETURNS: 2912 * Zero on success, negative errno otherwise. 2913 */ 2914 2915 int ata_bus_probe(struct ata_port *ap) 2916 { 2917 unsigned int classes[ATA_MAX_DEVICES]; 2918 int tries[ATA_MAX_DEVICES]; 2919 int rc; 2920 struct ata_device *dev; 2921 2922 ata_for_each_dev(dev, &ap->link, ALL) 2923 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2924 2925 retry: 2926 ata_for_each_dev(dev, &ap->link, ALL) { 2927 /* If we issue an SRST then an ATA drive (not ATAPI) 2928 * may change configuration and be in PIO0 timing. If 2929 * we do a hard reset (or are coming from power on) 2930 * this is true for ATA or ATAPI. Until we've set a 2931 * suitable controller mode we should not touch the 2932 * bus as we may be talking too fast. 2933 */ 2934 dev->pio_mode = XFER_PIO_0; 2935 dev->dma_mode = 0xff; 2936 2937 /* If the controller has a pio mode setup function 2938 * then use it to set the chipset to rights. Don't 2939 * touch the DMA setup as that will be dealt with when 2940 * configuring devices. 2941 */ 2942 if (ap->ops->set_piomode) 2943 ap->ops->set_piomode(ap, dev); 2944 } 2945 2946 /* reset and determine device classes */ 2947 ap->ops->phy_reset(ap); 2948 2949 ata_for_each_dev(dev, &ap->link, ALL) { 2950 if (dev->class != ATA_DEV_UNKNOWN) 2951 classes[dev->devno] = dev->class; 2952 else 2953 classes[dev->devno] = ATA_DEV_NONE; 2954 2955 dev->class = ATA_DEV_UNKNOWN; 2956 } 2957 2958 /* read IDENTIFY page and configure devices. We have to do the identify 2959 specific sequence bass-ackwards so that PDIAG- is released by 2960 the slave device */ 2961 2962 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2963 if (tries[dev->devno]) 2964 dev->class = classes[dev->devno]; 2965 2966 if (!ata_dev_enabled(dev)) 2967 continue; 2968 2969 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2970 dev->id); 2971 if (rc) 2972 goto fail; 2973 } 2974 2975 /* Now ask for the cable type as PDIAG- should have been released */ 2976 if (ap->ops->cable_detect) 2977 ap->cbl = ap->ops->cable_detect(ap); 2978 2979 /* We may have SATA bridge glue hiding here irrespective of 2980 * the reported cable types and sensed types. When SATA 2981 * drives indicate we have a bridge, we don't know which end 2982 * of the link the bridge is which is a problem. 2983 */ 2984 ata_for_each_dev(dev, &ap->link, ENABLED) 2985 if (ata_id_is_sata(dev->id)) 2986 ap->cbl = ATA_CBL_SATA; 2987 2988 /* After the identify sequence we can now set up the devices. We do 2989 this in the normal order so that the user doesn't get confused */ 2990 2991 ata_for_each_dev(dev, &ap->link, ENABLED) { 2992 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2993 rc = ata_dev_configure(dev); 2994 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2995 if (rc) 2996 goto fail; 2997 } 2998 2999 /* configure transfer mode */ 3000 rc = ata_set_mode(&ap->link, &dev); 3001 if (rc) 3002 goto fail; 3003 3004 ata_for_each_dev(dev, &ap->link, ENABLED) 3005 return 0; 3006 3007 return -ENODEV; 3008 3009 fail: 3010 tries[dev->devno]--; 3011 3012 switch (rc) { 3013 case -EINVAL: 3014 /* eeek, something went very wrong, give up */ 3015 tries[dev->devno] = 0; 3016 break; 3017 3018 case -ENODEV: 3019 /* give it just one more chance */ 3020 tries[dev->devno] = min(tries[dev->devno], 1); 3021 fallthrough; 3022 case -EIO: 3023 if (tries[dev->devno] == 1) { 3024 /* This is the last chance, better to slow 3025 * down than lose it. 3026 */ 3027 sata_down_spd_limit(&ap->link, 0); 3028 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 3029 } 3030 } 3031 3032 if (!tries[dev->devno]) 3033 ata_dev_disable(dev); 3034 3035 goto retry; 3036 } 3037 3038 /** 3039 * sata_print_link_status - Print SATA link status 3040 * @link: SATA link to printk link status about 3041 * 3042 * This function prints link speed and status of a SATA link. 3043 * 3044 * LOCKING: 3045 * None. 3046 */ 3047 static void sata_print_link_status(struct ata_link *link) 3048 { 3049 u32 sstatus, scontrol, tmp; 3050 3051 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3052 return; 3053 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3054 return; 3055 3056 if (ata_phys_link_online(link)) { 3057 tmp = (sstatus >> 4) & 0xf; 3058 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3059 sata_spd_string(tmp), sstatus, scontrol); 3060 } else { 3061 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3062 sstatus, scontrol); 3063 } 3064 } 3065 3066 /** 3067 * ata_dev_pair - return other device on cable 3068 * @adev: device 3069 * 3070 * Obtain the other device on the same cable, or if none is 3071 * present NULL is returned 3072 */ 3073 3074 struct ata_device *ata_dev_pair(struct ata_device *adev) 3075 { 3076 struct ata_link *link = adev->link; 3077 struct ata_device *pair = &link->device[1 - adev->devno]; 3078 if (!ata_dev_enabled(pair)) 3079 return NULL; 3080 return pair; 3081 } 3082 EXPORT_SYMBOL_GPL(ata_dev_pair); 3083 3084 /** 3085 * sata_down_spd_limit - adjust SATA spd limit downward 3086 * @link: Link to adjust SATA spd limit for 3087 * @spd_limit: Additional limit 3088 * 3089 * Adjust SATA spd limit of @link downward. Note that this 3090 * function only adjusts the limit. The change must be applied 3091 * using sata_set_spd(). 3092 * 3093 * If @spd_limit is non-zero, the speed is limited to equal to or 3094 * lower than @spd_limit if such speed is supported. If 3095 * @spd_limit is slower than any supported speed, only the lowest 3096 * supported speed is allowed. 3097 * 3098 * LOCKING: 3099 * Inherited from caller. 3100 * 3101 * RETURNS: 3102 * 0 on success, negative errno on failure 3103 */ 3104 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3105 { 3106 u32 sstatus, spd, mask; 3107 int rc, bit; 3108 3109 if (!sata_scr_valid(link)) 3110 return -EOPNOTSUPP; 3111 3112 /* If SCR can be read, use it to determine the current SPD. 3113 * If not, use cached value in link->sata_spd. 3114 */ 3115 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3116 if (rc == 0 && ata_sstatus_online(sstatus)) 3117 spd = (sstatus >> 4) & 0xf; 3118 else 3119 spd = link->sata_spd; 3120 3121 mask = link->sata_spd_limit; 3122 if (mask <= 1) 3123 return -EINVAL; 3124 3125 /* unconditionally mask off the highest bit */ 3126 bit = fls(mask) - 1; 3127 mask &= ~(1 << bit); 3128 3129 /* 3130 * Mask off all speeds higher than or equal to the current one. At 3131 * this point, if current SPD is not available and we previously 3132 * recorded the link speed from SStatus, the driver has already 3133 * masked off the highest bit so mask should already be 1 or 0. 3134 * Otherwise, we should not force 1.5Gbps on a link where we have 3135 * not previously recorded speed from SStatus. Just return in this 3136 * case. 3137 */ 3138 if (spd > 1) 3139 mask &= (1 << (spd - 1)) - 1; 3140 else if (link->sata_spd) 3141 return -EINVAL; 3142 3143 /* were we already at the bottom? */ 3144 if (!mask) 3145 return -EINVAL; 3146 3147 if (spd_limit) { 3148 if (mask & ((1 << spd_limit) - 1)) 3149 mask &= (1 << spd_limit) - 1; 3150 else { 3151 bit = ffs(mask) - 1; 3152 mask = 1 << bit; 3153 } 3154 } 3155 3156 link->sata_spd_limit = mask; 3157 3158 ata_link_warn(link, "limiting SATA link speed to %s\n", 3159 sata_spd_string(fls(mask))); 3160 3161 return 0; 3162 } 3163 3164 #ifdef CONFIG_ATA_ACPI 3165 /** 3166 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3167 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3168 * @cycle: cycle duration in ns 3169 * 3170 * Return matching xfer mode for @cycle. The returned mode is of 3171 * the transfer type specified by @xfer_shift. If @cycle is too 3172 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3173 * than the fastest known mode, the fasted mode is returned. 3174 * 3175 * LOCKING: 3176 * None. 3177 * 3178 * RETURNS: 3179 * Matching xfer_mode, 0xff if no match found. 3180 */ 3181 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3182 { 3183 u8 base_mode = 0xff, last_mode = 0xff; 3184 const struct ata_xfer_ent *ent; 3185 const struct ata_timing *t; 3186 3187 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3188 if (ent->shift == xfer_shift) 3189 base_mode = ent->base; 3190 3191 for (t = ata_timing_find_mode(base_mode); 3192 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3193 unsigned short this_cycle; 3194 3195 switch (xfer_shift) { 3196 case ATA_SHIFT_PIO: 3197 case ATA_SHIFT_MWDMA: 3198 this_cycle = t->cycle; 3199 break; 3200 case ATA_SHIFT_UDMA: 3201 this_cycle = t->udma; 3202 break; 3203 default: 3204 return 0xff; 3205 } 3206 3207 if (cycle > this_cycle) 3208 break; 3209 3210 last_mode = t->mode; 3211 } 3212 3213 return last_mode; 3214 } 3215 #endif 3216 3217 /** 3218 * ata_down_xfermask_limit - adjust dev xfer masks downward 3219 * @dev: Device to adjust xfer masks 3220 * @sel: ATA_DNXFER_* selector 3221 * 3222 * Adjust xfer masks of @dev downward. Note that this function 3223 * does not apply the change. Invoking ata_set_mode() afterwards 3224 * will apply the limit. 3225 * 3226 * LOCKING: 3227 * Inherited from caller. 3228 * 3229 * RETURNS: 3230 * 0 on success, negative errno on failure 3231 */ 3232 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3233 { 3234 char buf[32]; 3235 unsigned int orig_mask, xfer_mask; 3236 unsigned int pio_mask, mwdma_mask, udma_mask; 3237 int quiet, highbit; 3238 3239 quiet = !!(sel & ATA_DNXFER_QUIET); 3240 sel &= ~ATA_DNXFER_QUIET; 3241 3242 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3243 dev->mwdma_mask, 3244 dev->udma_mask); 3245 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3246 3247 switch (sel) { 3248 case ATA_DNXFER_PIO: 3249 highbit = fls(pio_mask) - 1; 3250 pio_mask &= ~(1 << highbit); 3251 break; 3252 3253 case ATA_DNXFER_DMA: 3254 if (udma_mask) { 3255 highbit = fls(udma_mask) - 1; 3256 udma_mask &= ~(1 << highbit); 3257 if (!udma_mask) 3258 return -ENOENT; 3259 } else if (mwdma_mask) { 3260 highbit = fls(mwdma_mask) - 1; 3261 mwdma_mask &= ~(1 << highbit); 3262 if (!mwdma_mask) 3263 return -ENOENT; 3264 } 3265 break; 3266 3267 case ATA_DNXFER_40C: 3268 udma_mask &= ATA_UDMA_MASK_40C; 3269 break; 3270 3271 case ATA_DNXFER_FORCE_PIO0: 3272 pio_mask &= 1; 3273 fallthrough; 3274 case ATA_DNXFER_FORCE_PIO: 3275 mwdma_mask = 0; 3276 udma_mask = 0; 3277 break; 3278 3279 default: 3280 BUG(); 3281 } 3282 3283 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3284 3285 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3286 return -ENOENT; 3287 3288 if (!quiet) { 3289 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3290 snprintf(buf, sizeof(buf), "%s:%s", 3291 ata_mode_string(xfer_mask), 3292 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3293 else 3294 snprintf(buf, sizeof(buf), "%s", 3295 ata_mode_string(xfer_mask)); 3296 3297 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3298 } 3299 3300 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3301 &dev->udma_mask); 3302 3303 return 0; 3304 } 3305 3306 static int ata_dev_set_mode(struct ata_device *dev) 3307 { 3308 struct ata_port *ap = dev->link->ap; 3309 struct ata_eh_context *ehc = &dev->link->eh_context; 3310 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3311 const char *dev_err_whine = ""; 3312 int ign_dev_err = 0; 3313 unsigned int err_mask = 0; 3314 int rc; 3315 3316 dev->flags &= ~ATA_DFLAG_PIO; 3317 if (dev->xfer_shift == ATA_SHIFT_PIO) 3318 dev->flags |= ATA_DFLAG_PIO; 3319 3320 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3321 dev_err_whine = " (SET_XFERMODE skipped)"; 3322 else { 3323 if (nosetxfer) 3324 ata_dev_warn(dev, 3325 "NOSETXFER but PATA detected - can't " 3326 "skip SETXFER, might malfunction\n"); 3327 err_mask = ata_dev_set_xfermode(dev); 3328 } 3329 3330 if (err_mask & ~AC_ERR_DEV) 3331 goto fail; 3332 3333 /* revalidate */ 3334 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3335 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3336 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3337 if (rc) 3338 return rc; 3339 3340 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3341 /* Old CFA may refuse this command, which is just fine */ 3342 if (ata_id_is_cfa(dev->id)) 3343 ign_dev_err = 1; 3344 /* Catch several broken garbage emulations plus some pre 3345 ATA devices */ 3346 if (ata_id_major_version(dev->id) == 0 && 3347 dev->pio_mode <= XFER_PIO_2) 3348 ign_dev_err = 1; 3349 /* Some very old devices and some bad newer ones fail 3350 any kind of SET_XFERMODE request but support PIO0-2 3351 timings and no IORDY */ 3352 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3353 ign_dev_err = 1; 3354 } 3355 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3356 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3357 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3358 dev->dma_mode == XFER_MW_DMA_0 && 3359 (dev->id[63] >> 8) & 1) 3360 ign_dev_err = 1; 3361 3362 /* if the device is actually configured correctly, ignore dev err */ 3363 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3364 ign_dev_err = 1; 3365 3366 if (err_mask & AC_ERR_DEV) { 3367 if (!ign_dev_err) 3368 goto fail; 3369 else 3370 dev_err_whine = " (device error ignored)"; 3371 } 3372 3373 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3374 dev->xfer_shift, (int)dev->xfer_mode); 3375 3376 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3377 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3378 ata_dev_info(dev, "configured for %s%s\n", 3379 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3380 dev_err_whine); 3381 3382 return 0; 3383 3384 fail: 3385 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3386 return -EIO; 3387 } 3388 3389 /** 3390 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3391 * @link: link on which timings will be programmed 3392 * @r_failed_dev: out parameter for failed device 3393 * 3394 * Standard implementation of the function used to tune and set 3395 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3396 * ata_dev_set_mode() fails, pointer to the failing device is 3397 * returned in @r_failed_dev. 3398 * 3399 * LOCKING: 3400 * PCI/etc. bus probe sem. 3401 * 3402 * RETURNS: 3403 * 0 on success, negative errno otherwise 3404 */ 3405 3406 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3407 { 3408 struct ata_port *ap = link->ap; 3409 struct ata_device *dev; 3410 int rc = 0, used_dma = 0, found = 0; 3411 3412 /* step 1: calculate xfer_mask */ 3413 ata_for_each_dev(dev, link, ENABLED) { 3414 unsigned int pio_mask, dma_mask; 3415 unsigned int mode_mask; 3416 3417 mode_mask = ATA_DMA_MASK_ATA; 3418 if (dev->class == ATA_DEV_ATAPI) 3419 mode_mask = ATA_DMA_MASK_ATAPI; 3420 else if (ata_id_is_cfa(dev->id)) 3421 mode_mask = ATA_DMA_MASK_CFA; 3422 3423 ata_dev_xfermask(dev); 3424 ata_force_xfermask(dev); 3425 3426 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3427 3428 if (libata_dma_mask & mode_mask) 3429 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3430 dev->udma_mask); 3431 else 3432 dma_mask = 0; 3433 3434 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3435 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3436 3437 found = 1; 3438 if (ata_dma_enabled(dev)) 3439 used_dma = 1; 3440 } 3441 if (!found) 3442 goto out; 3443 3444 /* step 2: always set host PIO timings */ 3445 ata_for_each_dev(dev, link, ENABLED) { 3446 if (dev->pio_mode == 0xff) { 3447 ata_dev_warn(dev, "no PIO support\n"); 3448 rc = -EINVAL; 3449 goto out; 3450 } 3451 3452 dev->xfer_mode = dev->pio_mode; 3453 dev->xfer_shift = ATA_SHIFT_PIO; 3454 if (ap->ops->set_piomode) 3455 ap->ops->set_piomode(ap, dev); 3456 } 3457 3458 /* step 3: set host DMA timings */ 3459 ata_for_each_dev(dev, link, ENABLED) { 3460 if (!ata_dma_enabled(dev)) 3461 continue; 3462 3463 dev->xfer_mode = dev->dma_mode; 3464 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3465 if (ap->ops->set_dmamode) 3466 ap->ops->set_dmamode(ap, dev); 3467 } 3468 3469 /* step 4: update devices' xfer mode */ 3470 ata_for_each_dev(dev, link, ENABLED) { 3471 rc = ata_dev_set_mode(dev); 3472 if (rc) 3473 goto out; 3474 } 3475 3476 /* Record simplex status. If we selected DMA then the other 3477 * host channels are not permitted to do so. 3478 */ 3479 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3480 ap->host->simplex_claimed = ap; 3481 3482 out: 3483 if (rc) 3484 *r_failed_dev = dev; 3485 return rc; 3486 } 3487 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3488 3489 /** 3490 * ata_wait_ready - wait for link to become ready 3491 * @link: link to be waited on 3492 * @deadline: deadline jiffies for the operation 3493 * @check_ready: callback to check link readiness 3494 * 3495 * Wait for @link to become ready. @check_ready should return 3496 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3497 * link doesn't seem to be occupied, other errno for other error 3498 * conditions. 3499 * 3500 * Transient -ENODEV conditions are allowed for 3501 * ATA_TMOUT_FF_WAIT. 3502 * 3503 * LOCKING: 3504 * EH context. 3505 * 3506 * RETURNS: 3507 * 0 if @link is ready before @deadline; otherwise, -errno. 3508 */ 3509 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3510 int (*check_ready)(struct ata_link *link)) 3511 { 3512 unsigned long start = jiffies; 3513 unsigned long nodev_deadline; 3514 int warned = 0; 3515 3516 /* choose which 0xff timeout to use, read comment in libata.h */ 3517 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3518 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3519 else 3520 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3521 3522 /* Slave readiness can't be tested separately from master. On 3523 * M/S emulation configuration, this function should be called 3524 * only on the master and it will handle both master and slave. 3525 */ 3526 WARN_ON(link == link->ap->slave_link); 3527 3528 if (time_after(nodev_deadline, deadline)) 3529 nodev_deadline = deadline; 3530 3531 while (1) { 3532 unsigned long now = jiffies; 3533 int ready, tmp; 3534 3535 ready = tmp = check_ready(link); 3536 if (ready > 0) 3537 return 0; 3538 3539 /* 3540 * -ENODEV could be transient. Ignore -ENODEV if link 3541 * is online. Also, some SATA devices take a long 3542 * time to clear 0xff after reset. Wait for 3543 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3544 * offline. 3545 * 3546 * Note that some PATA controllers (pata_ali) explode 3547 * if status register is read more than once when 3548 * there's no device attached. 3549 */ 3550 if (ready == -ENODEV) { 3551 if (ata_link_online(link)) 3552 ready = 0; 3553 else if ((link->ap->flags & ATA_FLAG_SATA) && 3554 !ata_link_offline(link) && 3555 time_before(now, nodev_deadline)) 3556 ready = 0; 3557 } 3558 3559 if (ready) 3560 return ready; 3561 if (time_after(now, deadline)) 3562 return -EBUSY; 3563 3564 if (!warned && time_after(now, start + 5 * HZ) && 3565 (deadline - now > 3 * HZ)) { 3566 ata_link_warn(link, 3567 "link is slow to respond, please be patient " 3568 "(ready=%d)\n", tmp); 3569 warned = 1; 3570 } 3571 3572 ata_msleep(link->ap, 50); 3573 } 3574 } 3575 3576 /** 3577 * ata_wait_after_reset - wait for link to become ready after reset 3578 * @link: link to be waited on 3579 * @deadline: deadline jiffies for the operation 3580 * @check_ready: callback to check link readiness 3581 * 3582 * Wait for @link to become ready after reset. 3583 * 3584 * LOCKING: 3585 * EH context. 3586 * 3587 * RETURNS: 3588 * 0 if @link is ready before @deadline; otherwise, -errno. 3589 */ 3590 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3591 int (*check_ready)(struct ata_link *link)) 3592 { 3593 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3594 3595 return ata_wait_ready(link, deadline, check_ready); 3596 } 3597 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3598 3599 /** 3600 * ata_std_prereset - prepare for reset 3601 * @link: ATA link to be reset 3602 * @deadline: deadline jiffies for the operation 3603 * 3604 * @link is about to be reset. Initialize it. Failure from 3605 * prereset makes libata abort whole reset sequence and give up 3606 * that port, so prereset should be best-effort. It does its 3607 * best to prepare for reset sequence but if things go wrong, it 3608 * should just whine, not fail. 3609 * 3610 * LOCKING: 3611 * Kernel thread context (may sleep) 3612 * 3613 * RETURNS: 3614 * Always 0. 3615 */ 3616 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3617 { 3618 struct ata_port *ap = link->ap; 3619 struct ata_eh_context *ehc = &link->eh_context; 3620 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3621 int rc; 3622 3623 /* if we're about to do hardreset, nothing more to do */ 3624 if (ehc->i.action & ATA_EH_HARDRESET) 3625 return 0; 3626 3627 /* if SATA, resume link */ 3628 if (ap->flags & ATA_FLAG_SATA) { 3629 rc = sata_link_resume(link, timing, deadline); 3630 /* whine about phy resume failure but proceed */ 3631 if (rc && rc != -EOPNOTSUPP) 3632 ata_link_warn(link, 3633 "failed to resume link for reset (errno=%d)\n", 3634 rc); 3635 } 3636 3637 /* no point in trying softreset on offline link */ 3638 if (ata_phys_link_offline(link)) 3639 ehc->i.action &= ~ATA_EH_SOFTRESET; 3640 3641 return 0; 3642 } 3643 EXPORT_SYMBOL_GPL(ata_std_prereset); 3644 3645 /** 3646 * sata_std_hardreset - COMRESET w/o waiting or classification 3647 * @link: link to reset 3648 * @class: resulting class of attached device 3649 * @deadline: deadline jiffies for the operation 3650 * 3651 * Standard SATA COMRESET w/o waiting or classification. 3652 * 3653 * LOCKING: 3654 * Kernel thread context (may sleep) 3655 * 3656 * RETURNS: 3657 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3658 */ 3659 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3660 unsigned long deadline) 3661 { 3662 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3663 bool online; 3664 int rc; 3665 3666 /* do hardreset */ 3667 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3668 return online ? -EAGAIN : rc; 3669 } 3670 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3671 3672 /** 3673 * ata_std_postreset - standard postreset callback 3674 * @link: the target ata_link 3675 * @classes: classes of attached devices 3676 * 3677 * This function is invoked after a successful reset. Note that 3678 * the device might have been reset more than once using 3679 * different reset methods before postreset is invoked. 3680 * 3681 * LOCKING: 3682 * Kernel thread context (may sleep) 3683 */ 3684 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3685 { 3686 u32 serror; 3687 3688 /* reset complete, clear SError */ 3689 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3690 sata_scr_write(link, SCR_ERROR, serror); 3691 3692 /* print link status */ 3693 sata_print_link_status(link); 3694 } 3695 EXPORT_SYMBOL_GPL(ata_std_postreset); 3696 3697 /** 3698 * ata_dev_same_device - Determine whether new ID matches configured device 3699 * @dev: device to compare against 3700 * @new_class: class of the new device 3701 * @new_id: IDENTIFY page of the new device 3702 * 3703 * Compare @new_class and @new_id against @dev and determine 3704 * whether @dev is the device indicated by @new_class and 3705 * @new_id. 3706 * 3707 * LOCKING: 3708 * None. 3709 * 3710 * RETURNS: 3711 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3712 */ 3713 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3714 const u16 *new_id) 3715 { 3716 const u16 *old_id = dev->id; 3717 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3718 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3719 3720 if (dev->class != new_class) { 3721 ata_dev_info(dev, "class mismatch %d != %d\n", 3722 dev->class, new_class); 3723 return 0; 3724 } 3725 3726 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3727 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3728 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3729 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3730 3731 if (strcmp(model[0], model[1])) { 3732 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3733 model[0], model[1]); 3734 return 0; 3735 } 3736 3737 if (strcmp(serial[0], serial[1])) { 3738 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3739 serial[0], serial[1]); 3740 return 0; 3741 } 3742 3743 return 1; 3744 } 3745 3746 /** 3747 * ata_dev_reread_id - Re-read IDENTIFY data 3748 * @dev: target ATA device 3749 * @readid_flags: read ID flags 3750 * 3751 * Re-read IDENTIFY page and make sure @dev is still attached to 3752 * the port. 3753 * 3754 * LOCKING: 3755 * Kernel thread context (may sleep) 3756 * 3757 * RETURNS: 3758 * 0 on success, negative errno otherwise 3759 */ 3760 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3761 { 3762 unsigned int class = dev->class; 3763 u16 *id = (void *)dev->link->ap->sector_buf; 3764 int rc; 3765 3766 /* read ID data */ 3767 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3768 if (rc) 3769 return rc; 3770 3771 /* is the device still there? */ 3772 if (!ata_dev_same_device(dev, class, id)) 3773 return -ENODEV; 3774 3775 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3776 return 0; 3777 } 3778 3779 /** 3780 * ata_dev_revalidate - Revalidate ATA device 3781 * @dev: device to revalidate 3782 * @new_class: new class code 3783 * @readid_flags: read ID flags 3784 * 3785 * Re-read IDENTIFY page, make sure @dev is still attached to the 3786 * port and reconfigure it according to the new IDENTIFY page. 3787 * 3788 * LOCKING: 3789 * Kernel thread context (may sleep) 3790 * 3791 * RETURNS: 3792 * 0 on success, negative errno otherwise 3793 */ 3794 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3795 unsigned int readid_flags) 3796 { 3797 u64 n_sectors = dev->n_sectors; 3798 u64 n_native_sectors = dev->n_native_sectors; 3799 int rc; 3800 3801 if (!ata_dev_enabled(dev)) 3802 return -ENODEV; 3803 3804 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3805 if (ata_class_enabled(new_class) && 3806 new_class != ATA_DEV_ATA && 3807 new_class != ATA_DEV_ATAPI && 3808 new_class != ATA_DEV_ZAC && 3809 new_class != ATA_DEV_SEMB) { 3810 ata_dev_info(dev, "class mismatch %u != %u\n", 3811 dev->class, new_class); 3812 rc = -ENODEV; 3813 goto fail; 3814 } 3815 3816 /* re-read ID */ 3817 rc = ata_dev_reread_id(dev, readid_flags); 3818 if (rc) 3819 goto fail; 3820 3821 /* configure device according to the new ID */ 3822 rc = ata_dev_configure(dev); 3823 if (rc) 3824 goto fail; 3825 3826 /* verify n_sectors hasn't changed */ 3827 if (dev->class != ATA_DEV_ATA || !n_sectors || 3828 dev->n_sectors == n_sectors) 3829 return 0; 3830 3831 /* n_sectors has changed */ 3832 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3833 (unsigned long long)n_sectors, 3834 (unsigned long long)dev->n_sectors); 3835 3836 /* 3837 * Something could have caused HPA to be unlocked 3838 * involuntarily. If n_native_sectors hasn't changed and the 3839 * new size matches it, keep the device. 3840 */ 3841 if (dev->n_native_sectors == n_native_sectors && 3842 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3843 ata_dev_warn(dev, 3844 "new n_sectors matches native, probably " 3845 "late HPA unlock, n_sectors updated\n"); 3846 /* use the larger n_sectors */ 3847 return 0; 3848 } 3849 3850 /* 3851 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3852 * unlocking HPA in those cases. 3853 * 3854 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3855 */ 3856 if (dev->n_native_sectors == n_native_sectors && 3857 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3858 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 3859 ata_dev_warn(dev, 3860 "old n_sectors matches native, probably " 3861 "late HPA lock, will try to unlock HPA\n"); 3862 /* try unlocking HPA */ 3863 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3864 rc = -EIO; 3865 } else 3866 rc = -ENODEV; 3867 3868 /* restore original n_[native_]sectors and fail */ 3869 dev->n_native_sectors = n_native_sectors; 3870 dev->n_sectors = n_sectors; 3871 fail: 3872 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3873 return rc; 3874 } 3875 3876 struct ata_blacklist_entry { 3877 const char *model_num; 3878 const char *model_rev; 3879 unsigned long horkage; 3880 }; 3881 3882 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3883 /* Devices with DMA related problems under Linux */ 3884 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3885 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3886 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3887 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3888 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3889 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3890 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3891 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3892 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3893 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 3894 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3895 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3896 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3897 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3898 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3899 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 3900 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3901 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3902 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3903 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3904 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3905 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3906 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3907 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3908 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3909 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3910 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3911 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3912 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 3913 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 3914 /* Odd clown on sil3726/4726 PMPs */ 3915 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3916 /* Similar story with ASMedia 1092 */ 3917 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE }, 3918 3919 /* Weird ATAPI devices */ 3920 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3921 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 3922 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3923 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3924 3925 /* 3926 * Causes silent data corruption with higher max sects. 3927 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 3928 */ 3929 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 3930 3931 /* 3932 * These devices time out with higher max sects. 3933 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 3934 */ 3935 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3936 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3937 3938 /* Devices we expect to fail diagnostics */ 3939 3940 /* Devices where NCQ should be avoided */ 3941 /* NCQ is slow */ 3942 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3943 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ }, 3944 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3945 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3946 /* NCQ is broken */ 3947 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3948 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3949 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3950 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3951 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 3952 3953 /* Seagate NCQ + FLUSH CACHE firmware bug */ 3954 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3955 ATA_HORKAGE_FIRMWARE_WARN }, 3956 3957 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3958 ATA_HORKAGE_FIRMWARE_WARN }, 3959 3960 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3961 ATA_HORKAGE_FIRMWARE_WARN }, 3962 3963 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3964 ATA_HORKAGE_FIRMWARE_WARN }, 3965 3966 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 3967 the ST disks also have LPM issues */ 3968 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 3969 ATA_HORKAGE_NOLPM }, 3970 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 3971 3972 /* Blacklist entries taken from Silicon Image 3124/3132 3973 Windows driver .inf file - also several Linux problem reports */ 3974 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ }, 3975 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ }, 3976 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ }, 3977 3978 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 3979 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ }, 3980 3981 /* Sandisk SD7/8/9s lock up hard on large trims */ 3982 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M }, 3983 3984 /* devices which puke on READ_NATIVE_MAX */ 3985 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA }, 3986 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3987 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3988 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3989 3990 /* this one allows HPA unlocking but fails IOs on the area */ 3991 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 3992 3993 /* Devices which report 1 sector over size HPA */ 3994 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE }, 3995 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE }, 3996 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE }, 3997 3998 /* Devices which get the IVB wrong */ 3999 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB }, 4000 /* Maybe we should just blacklist TSSTcorp... */ 4001 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB }, 4002 4003 /* Devices that do not need bridging limits applied */ 4004 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK }, 4005 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK }, 4006 4007 /* Devices which aren't very happy with higher link speeds */ 4008 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS }, 4009 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS }, 4010 4011 /* 4012 * Devices which choke on SETXFER. Applies only if both the 4013 * device and controller are SATA. 4014 */ 4015 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4016 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4017 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4018 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4019 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4020 4021 /* These specific Pioneer models have LPM issues */ 4022 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM }, 4023 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM }, 4024 4025 /* Crucial BX100 SSD 500GB has broken LPM support */ 4026 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 4027 4028 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4029 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4030 ATA_HORKAGE_ZERO_AFTER_TRIM | 4031 ATA_HORKAGE_NOLPM }, 4032 /* 512GB MX100 with newer firmware has only LPM issues */ 4033 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 4034 ATA_HORKAGE_NOLPM }, 4035 4036 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4037 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4038 ATA_HORKAGE_ZERO_AFTER_TRIM | 4039 ATA_HORKAGE_NOLPM }, 4040 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4041 ATA_HORKAGE_ZERO_AFTER_TRIM | 4042 ATA_HORKAGE_NOLPM }, 4043 4044 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4045 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM }, 4046 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM }, 4047 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM }, 4048 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM }, 4049 4050 /* devices that don't properly handle queued TRIM commands */ 4051 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4052 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4053 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4054 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4055 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4056 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4057 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4058 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4059 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4060 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4061 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4062 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4063 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4064 ATA_HORKAGE_NO_DMA_LOG | 4065 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4066 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4067 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4068 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4069 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4070 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4071 ATA_HORKAGE_ZERO_AFTER_TRIM | 4072 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4073 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4074 ATA_HORKAGE_ZERO_AFTER_TRIM | 4075 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4076 { "SAMSUNG*MZ7LH*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4077 ATA_HORKAGE_ZERO_AFTER_TRIM | 4078 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4079 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4080 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4081 4082 /* devices that don't properly handle TRIM commands */ 4083 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM }, 4084 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM }, 4085 4086 /* 4087 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4088 * (Return Zero After Trim) flags in the ATA Command Set are 4089 * unreliable in the sense that they only define what happens if 4090 * the device successfully executed the DSM TRIM command. TRIM 4091 * is only advisory, however, and the device is free to silently 4092 * ignore all or parts of the request. 4093 * 4094 * Whitelist drives that are known to reliably return zeroes 4095 * after TRIM. 4096 */ 4097 4098 /* 4099 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4100 * that model before whitelisting all other intel SSDs. 4101 */ 4102 { "INTEL*SSDSC2MH*", NULL, 0 }, 4103 4104 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4105 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4106 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4107 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4108 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4109 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4110 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4111 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4112 4113 /* 4114 * Some WD SATA-I drives spin up and down erratically when the link 4115 * is put into the slumber mode. We don't have full list of the 4116 * affected devices. Disable LPM if the device matches one of the 4117 * known prefixes and is SATA-1. As a side effect LPM partial is 4118 * lost too. 4119 * 4120 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4121 */ 4122 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4123 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4124 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4125 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4126 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4127 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4128 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4129 4130 /* 4131 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4132 * log page is accessed. Ensure we never ask for this log page with 4133 * these devices. 4134 */ 4135 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR }, 4136 4137 /* Buggy FUA */ 4138 { "Maxtor", "BANC1G10", ATA_HORKAGE_NO_FUA }, 4139 { "WDC*WD2500J*", NULL, ATA_HORKAGE_NO_FUA }, 4140 { "OCZ-VERTEX*", NULL, ATA_HORKAGE_NO_FUA }, 4141 { "INTEL*SSDSC2CT*", NULL, ATA_HORKAGE_NO_FUA }, 4142 4143 /* End Marker */ 4144 { } 4145 }; 4146 4147 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4148 { 4149 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4150 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4151 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4152 4153 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4154 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4155 4156 while (ad->model_num) { 4157 if (glob_match(ad->model_num, model_num)) { 4158 if (ad->model_rev == NULL) 4159 return ad->horkage; 4160 if (glob_match(ad->model_rev, model_rev)) 4161 return ad->horkage; 4162 } 4163 ad++; 4164 } 4165 return 0; 4166 } 4167 4168 static int ata_dma_blacklisted(const struct ata_device *dev) 4169 { 4170 /* We don't support polling DMA. 4171 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4172 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4173 */ 4174 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4175 (dev->flags & ATA_DFLAG_CDB_INTR)) 4176 return 1; 4177 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4178 } 4179 4180 /** 4181 * ata_is_40wire - check drive side detection 4182 * @dev: device 4183 * 4184 * Perform drive side detection decoding, allowing for device vendors 4185 * who can't follow the documentation. 4186 */ 4187 4188 static int ata_is_40wire(struct ata_device *dev) 4189 { 4190 if (dev->horkage & ATA_HORKAGE_IVB) 4191 return ata_drive_40wire_relaxed(dev->id); 4192 return ata_drive_40wire(dev->id); 4193 } 4194 4195 /** 4196 * cable_is_40wire - 40/80/SATA decider 4197 * @ap: port to consider 4198 * 4199 * This function encapsulates the policy for speed management 4200 * in one place. At the moment we don't cache the result but 4201 * there is a good case for setting ap->cbl to the result when 4202 * we are called with unknown cables (and figuring out if it 4203 * impacts hotplug at all). 4204 * 4205 * Return 1 if the cable appears to be 40 wire. 4206 */ 4207 4208 static int cable_is_40wire(struct ata_port *ap) 4209 { 4210 struct ata_link *link; 4211 struct ata_device *dev; 4212 4213 /* If the controller thinks we are 40 wire, we are. */ 4214 if (ap->cbl == ATA_CBL_PATA40) 4215 return 1; 4216 4217 /* If the controller thinks we are 80 wire, we are. */ 4218 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4219 return 0; 4220 4221 /* If the system is known to be 40 wire short cable (eg 4222 * laptop), then we allow 80 wire modes even if the drive 4223 * isn't sure. 4224 */ 4225 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4226 return 0; 4227 4228 /* If the controller doesn't know, we scan. 4229 * 4230 * Note: We look for all 40 wire detects at this point. Any 4231 * 80 wire detect is taken to be 80 wire cable because 4232 * - in many setups only the one drive (slave if present) will 4233 * give a valid detect 4234 * - if you have a non detect capable drive you don't want it 4235 * to colour the choice 4236 */ 4237 ata_for_each_link(link, ap, EDGE) { 4238 ata_for_each_dev(dev, link, ENABLED) { 4239 if (!ata_is_40wire(dev)) 4240 return 0; 4241 } 4242 } 4243 return 1; 4244 } 4245 4246 /** 4247 * ata_dev_xfermask - Compute supported xfermask of the given device 4248 * @dev: Device to compute xfermask for 4249 * 4250 * Compute supported xfermask of @dev and store it in 4251 * dev->*_mask. This function is responsible for applying all 4252 * known limits including host controller limits, device 4253 * blacklist, etc... 4254 * 4255 * LOCKING: 4256 * None. 4257 */ 4258 static void ata_dev_xfermask(struct ata_device *dev) 4259 { 4260 struct ata_link *link = dev->link; 4261 struct ata_port *ap = link->ap; 4262 struct ata_host *host = ap->host; 4263 unsigned int xfer_mask; 4264 4265 /* controller modes available */ 4266 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4267 ap->mwdma_mask, ap->udma_mask); 4268 4269 /* drive modes available */ 4270 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4271 dev->mwdma_mask, dev->udma_mask); 4272 xfer_mask &= ata_id_xfermask(dev->id); 4273 4274 /* 4275 * CFA Advanced TrueIDE timings are not allowed on a shared 4276 * cable 4277 */ 4278 if (ata_dev_pair(dev)) { 4279 /* No PIO5 or PIO6 */ 4280 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4281 /* No MWDMA3 or MWDMA 4 */ 4282 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4283 } 4284 4285 if (ata_dma_blacklisted(dev)) { 4286 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4287 ata_dev_warn(dev, 4288 "device is on DMA blacklist, disabling DMA\n"); 4289 } 4290 4291 if ((host->flags & ATA_HOST_SIMPLEX) && 4292 host->simplex_claimed && host->simplex_claimed != ap) { 4293 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4294 ata_dev_warn(dev, 4295 "simplex DMA is claimed by other device, disabling DMA\n"); 4296 } 4297 4298 if (ap->flags & ATA_FLAG_NO_IORDY) 4299 xfer_mask &= ata_pio_mask_no_iordy(dev); 4300 4301 if (ap->ops->mode_filter) 4302 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4303 4304 /* Apply cable rule here. Don't apply it early because when 4305 * we handle hot plug the cable type can itself change. 4306 * Check this last so that we know if the transfer rate was 4307 * solely limited by the cable. 4308 * Unknown or 80 wire cables reported host side are checked 4309 * drive side as well. Cases where we know a 40wire cable 4310 * is used safely for 80 are not checked here. 4311 */ 4312 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4313 /* UDMA/44 or higher would be available */ 4314 if (cable_is_40wire(ap)) { 4315 ata_dev_warn(dev, 4316 "limited to UDMA/33 due to 40-wire cable\n"); 4317 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4318 } 4319 4320 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4321 &dev->mwdma_mask, &dev->udma_mask); 4322 } 4323 4324 /** 4325 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4326 * @dev: Device to which command will be sent 4327 * 4328 * Issue SET FEATURES - XFER MODE command to device @dev 4329 * on port @ap. 4330 * 4331 * LOCKING: 4332 * PCI/etc. bus probe sem. 4333 * 4334 * RETURNS: 4335 * 0 on success, AC_ERR_* mask otherwise. 4336 */ 4337 4338 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4339 { 4340 struct ata_taskfile tf; 4341 4342 /* set up set-features taskfile */ 4343 ata_dev_dbg(dev, "set features - xfer mode\n"); 4344 4345 /* Some controllers and ATAPI devices show flaky interrupt 4346 * behavior after setting xfer mode. Use polling instead. 4347 */ 4348 ata_tf_init(dev, &tf); 4349 tf.command = ATA_CMD_SET_FEATURES; 4350 tf.feature = SETFEATURES_XFER; 4351 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4352 tf.protocol = ATA_PROT_NODATA; 4353 /* If we are using IORDY we must send the mode setting command */ 4354 if (ata_pio_need_iordy(dev)) 4355 tf.nsect = dev->xfer_mode; 4356 /* If the device has IORDY and the controller does not - turn it off */ 4357 else if (ata_id_has_iordy(dev->id)) 4358 tf.nsect = 0x01; 4359 else /* In the ancient relic department - skip all of this */ 4360 return 0; 4361 4362 /* 4363 * On some disks, this command causes spin-up, so we need longer 4364 * timeout. 4365 */ 4366 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4367 } 4368 4369 /** 4370 * ata_dev_set_feature - Issue SET FEATURES 4371 * @dev: Device to which command will be sent 4372 * @subcmd: The SET FEATURES subcommand to be sent 4373 * @action: The sector count represents a subcommand specific action 4374 * 4375 * Issue SET FEATURES command to device @dev on port @ap with sector count 4376 * 4377 * LOCKING: 4378 * PCI/etc. bus probe sem. 4379 * 4380 * RETURNS: 4381 * 0 on success, AC_ERR_* mask otherwise. 4382 */ 4383 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action) 4384 { 4385 struct ata_taskfile tf; 4386 unsigned int timeout = 0; 4387 4388 /* set up set-features taskfile */ 4389 ata_dev_dbg(dev, "set features\n"); 4390 4391 ata_tf_init(dev, &tf); 4392 tf.command = ATA_CMD_SET_FEATURES; 4393 tf.feature = subcmd; 4394 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4395 tf.protocol = ATA_PROT_NODATA; 4396 tf.nsect = action; 4397 4398 if (subcmd == SETFEATURES_SPINUP) 4399 timeout = ata_probe_timeout ? 4400 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4401 4402 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4403 } 4404 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4405 4406 /** 4407 * ata_dev_init_params - Issue INIT DEV PARAMS command 4408 * @dev: Device to which command will be sent 4409 * @heads: Number of heads (taskfile parameter) 4410 * @sectors: Number of sectors (taskfile parameter) 4411 * 4412 * LOCKING: 4413 * Kernel thread context (may sleep) 4414 * 4415 * RETURNS: 4416 * 0 on success, AC_ERR_* mask otherwise. 4417 */ 4418 static unsigned int ata_dev_init_params(struct ata_device *dev, 4419 u16 heads, u16 sectors) 4420 { 4421 struct ata_taskfile tf; 4422 unsigned int err_mask; 4423 4424 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4425 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4426 return AC_ERR_INVALID; 4427 4428 /* set up init dev params taskfile */ 4429 ata_dev_dbg(dev, "init dev params \n"); 4430 4431 ata_tf_init(dev, &tf); 4432 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4433 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4434 tf.protocol = ATA_PROT_NODATA; 4435 tf.nsect = sectors; 4436 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4437 4438 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4439 /* A clean abort indicates an original or just out of spec drive 4440 and we should continue as we issue the setup based on the 4441 drive reported working geometry */ 4442 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 4443 err_mask = 0; 4444 4445 return err_mask; 4446 } 4447 4448 /** 4449 * atapi_check_dma - Check whether ATAPI DMA can be supported 4450 * @qc: Metadata associated with taskfile to check 4451 * 4452 * Allow low-level driver to filter ATA PACKET commands, returning 4453 * a status indicating whether or not it is OK to use DMA for the 4454 * supplied PACKET command. 4455 * 4456 * LOCKING: 4457 * spin_lock_irqsave(host lock) 4458 * 4459 * RETURNS: 0 when ATAPI DMA can be used 4460 * nonzero otherwise 4461 */ 4462 int atapi_check_dma(struct ata_queued_cmd *qc) 4463 { 4464 struct ata_port *ap = qc->ap; 4465 4466 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4467 * few ATAPI devices choke on such DMA requests. 4468 */ 4469 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4470 unlikely(qc->nbytes & 15)) 4471 return 1; 4472 4473 if (ap->ops->check_atapi_dma) 4474 return ap->ops->check_atapi_dma(qc); 4475 4476 return 0; 4477 } 4478 4479 /** 4480 * ata_std_qc_defer - Check whether a qc needs to be deferred 4481 * @qc: ATA command in question 4482 * 4483 * Non-NCQ commands cannot run with any other command, NCQ or 4484 * not. As upper layer only knows the queue depth, we are 4485 * responsible for maintaining exclusion. This function checks 4486 * whether a new command @qc can be issued. 4487 * 4488 * LOCKING: 4489 * spin_lock_irqsave(host lock) 4490 * 4491 * RETURNS: 4492 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4493 */ 4494 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4495 { 4496 struct ata_link *link = qc->dev->link; 4497 4498 if (ata_is_ncq(qc->tf.protocol)) { 4499 if (!ata_tag_valid(link->active_tag)) 4500 return 0; 4501 } else { 4502 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4503 return 0; 4504 } 4505 4506 return ATA_DEFER_LINK; 4507 } 4508 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4509 4510 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4511 { 4512 return AC_ERR_OK; 4513 } 4514 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4515 4516 /** 4517 * ata_sg_init - Associate command with scatter-gather table. 4518 * @qc: Command to be associated 4519 * @sg: Scatter-gather table. 4520 * @n_elem: Number of elements in s/g table. 4521 * 4522 * Initialize the data-related elements of queued_cmd @qc 4523 * to point to a scatter-gather table @sg, containing @n_elem 4524 * elements. 4525 * 4526 * LOCKING: 4527 * spin_lock_irqsave(host lock) 4528 */ 4529 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4530 unsigned int n_elem) 4531 { 4532 qc->sg = sg; 4533 qc->n_elem = n_elem; 4534 qc->cursg = qc->sg; 4535 } 4536 4537 #ifdef CONFIG_HAS_DMA 4538 4539 /** 4540 * ata_sg_clean - Unmap DMA memory associated with command 4541 * @qc: Command containing DMA memory to be released 4542 * 4543 * Unmap all mapped DMA memory associated with this command. 4544 * 4545 * LOCKING: 4546 * spin_lock_irqsave(host lock) 4547 */ 4548 static void ata_sg_clean(struct ata_queued_cmd *qc) 4549 { 4550 struct ata_port *ap = qc->ap; 4551 struct scatterlist *sg = qc->sg; 4552 int dir = qc->dma_dir; 4553 4554 WARN_ON_ONCE(sg == NULL); 4555 4556 if (qc->n_elem) 4557 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4558 4559 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4560 qc->sg = NULL; 4561 } 4562 4563 /** 4564 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4565 * @qc: Command with scatter-gather table to be mapped. 4566 * 4567 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4568 * 4569 * LOCKING: 4570 * spin_lock_irqsave(host lock) 4571 * 4572 * RETURNS: 4573 * Zero on success, negative on error. 4574 * 4575 */ 4576 static int ata_sg_setup(struct ata_queued_cmd *qc) 4577 { 4578 struct ata_port *ap = qc->ap; 4579 unsigned int n_elem; 4580 4581 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4582 if (n_elem < 1) 4583 return -1; 4584 4585 qc->orig_n_elem = qc->n_elem; 4586 qc->n_elem = n_elem; 4587 qc->flags |= ATA_QCFLAG_DMAMAP; 4588 4589 return 0; 4590 } 4591 4592 #else /* !CONFIG_HAS_DMA */ 4593 4594 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4595 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4596 4597 #endif /* !CONFIG_HAS_DMA */ 4598 4599 /** 4600 * swap_buf_le16 - swap halves of 16-bit words in place 4601 * @buf: Buffer to swap 4602 * @buf_words: Number of 16-bit words in buffer. 4603 * 4604 * Swap halves of 16-bit words if needed to convert from 4605 * little-endian byte order to native cpu byte order, or 4606 * vice-versa. 4607 * 4608 * LOCKING: 4609 * Inherited from caller. 4610 */ 4611 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4612 { 4613 #ifdef __BIG_ENDIAN 4614 unsigned int i; 4615 4616 for (i = 0; i < buf_words; i++) 4617 buf[i] = le16_to_cpu(buf[i]); 4618 #endif /* __BIG_ENDIAN */ 4619 } 4620 4621 /** 4622 * ata_qc_free - free unused ata_queued_cmd 4623 * @qc: Command to complete 4624 * 4625 * Designed to free unused ata_queued_cmd object 4626 * in case something prevents using it. 4627 * 4628 * LOCKING: 4629 * spin_lock_irqsave(host lock) 4630 */ 4631 void ata_qc_free(struct ata_queued_cmd *qc) 4632 { 4633 qc->flags = 0; 4634 if (ata_tag_valid(qc->tag)) 4635 qc->tag = ATA_TAG_POISON; 4636 } 4637 4638 void __ata_qc_complete(struct ata_queued_cmd *qc) 4639 { 4640 struct ata_port *ap; 4641 struct ata_link *link; 4642 4643 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4644 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4645 ap = qc->ap; 4646 link = qc->dev->link; 4647 4648 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4649 ata_sg_clean(qc); 4650 4651 /* command should be marked inactive atomically with qc completion */ 4652 if (ata_is_ncq(qc->tf.protocol)) { 4653 link->sactive &= ~(1 << qc->hw_tag); 4654 if (!link->sactive) 4655 ap->nr_active_links--; 4656 } else { 4657 link->active_tag = ATA_TAG_POISON; 4658 ap->nr_active_links--; 4659 } 4660 4661 /* clear exclusive status */ 4662 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4663 ap->excl_link == link)) 4664 ap->excl_link = NULL; 4665 4666 /* atapi: mark qc as inactive to prevent the interrupt handler 4667 * from completing the command twice later, before the error handler 4668 * is called. (when rc != 0 and atapi request sense is needed) 4669 */ 4670 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4671 ap->qc_active &= ~(1ULL << qc->tag); 4672 4673 /* call completion callback */ 4674 qc->complete_fn(qc); 4675 } 4676 4677 static void fill_result_tf(struct ata_queued_cmd *qc) 4678 { 4679 struct ata_port *ap = qc->ap; 4680 4681 qc->result_tf.flags = qc->tf.flags; 4682 ap->ops->qc_fill_rtf(qc); 4683 } 4684 4685 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4686 { 4687 struct ata_device *dev = qc->dev; 4688 4689 if (!ata_is_data(qc->tf.protocol)) 4690 return; 4691 4692 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4693 return; 4694 4695 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4696 } 4697 4698 /** 4699 * ata_qc_complete - Complete an active ATA command 4700 * @qc: Command to complete 4701 * 4702 * Indicate to the mid and upper layers that an ATA command has 4703 * completed, with either an ok or not-ok status. 4704 * 4705 * Refrain from calling this function multiple times when 4706 * successfully completing multiple NCQ commands. 4707 * ata_qc_complete_multiple() should be used instead, which will 4708 * properly update IRQ expect state. 4709 * 4710 * LOCKING: 4711 * spin_lock_irqsave(host lock) 4712 */ 4713 void ata_qc_complete(struct ata_queued_cmd *qc) 4714 { 4715 struct ata_port *ap = qc->ap; 4716 4717 /* Trigger the LED (if available) */ 4718 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4719 4720 /* XXX: New EH and old EH use different mechanisms to 4721 * synchronize EH with regular execution path. 4722 * 4723 * In new EH, a qc owned by EH is marked with ATA_QCFLAG_EH. 4724 * Normal execution path is responsible for not accessing a 4725 * qc owned by EH. libata core enforces the rule by returning NULL 4726 * from ata_qc_from_tag() for qcs owned by EH. 4727 * 4728 * Old EH depends on ata_qc_complete() nullifying completion 4729 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4730 * not synchronize with interrupt handler. Only PIO task is 4731 * taken care of. 4732 */ 4733 if (ap->ops->error_handler) { 4734 struct ata_device *dev = qc->dev; 4735 struct ata_eh_info *ehi = &dev->link->eh_info; 4736 4737 if (unlikely(qc->err_mask)) 4738 qc->flags |= ATA_QCFLAG_EH; 4739 4740 /* 4741 * Finish internal commands without any further processing 4742 * and always with the result TF filled. 4743 */ 4744 if (unlikely(ata_tag_internal(qc->tag))) { 4745 fill_result_tf(qc); 4746 trace_ata_qc_complete_internal(qc); 4747 __ata_qc_complete(qc); 4748 return; 4749 } 4750 4751 /* 4752 * Non-internal qc has failed. Fill the result TF and 4753 * summon EH. 4754 */ 4755 if (unlikely(qc->flags & ATA_QCFLAG_EH)) { 4756 fill_result_tf(qc); 4757 trace_ata_qc_complete_failed(qc); 4758 ata_qc_schedule_eh(qc); 4759 return; 4760 } 4761 4762 WARN_ON_ONCE(ata_port_is_frozen(ap)); 4763 4764 /* read result TF if requested */ 4765 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4766 fill_result_tf(qc); 4767 4768 trace_ata_qc_complete_done(qc); 4769 /* Some commands need post-processing after successful 4770 * completion. 4771 */ 4772 switch (qc->tf.command) { 4773 case ATA_CMD_SET_FEATURES: 4774 if (qc->tf.feature != SETFEATURES_WC_ON && 4775 qc->tf.feature != SETFEATURES_WC_OFF && 4776 qc->tf.feature != SETFEATURES_RA_ON && 4777 qc->tf.feature != SETFEATURES_RA_OFF) 4778 break; 4779 fallthrough; 4780 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4781 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4782 /* revalidate device */ 4783 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4784 ata_port_schedule_eh(ap); 4785 break; 4786 4787 case ATA_CMD_SLEEP: 4788 dev->flags |= ATA_DFLAG_SLEEPING; 4789 break; 4790 } 4791 4792 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4793 ata_verify_xfer(qc); 4794 4795 __ata_qc_complete(qc); 4796 } else { 4797 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4798 return; 4799 4800 /* read result TF if failed or requested */ 4801 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4802 fill_result_tf(qc); 4803 4804 __ata_qc_complete(qc); 4805 } 4806 } 4807 EXPORT_SYMBOL_GPL(ata_qc_complete); 4808 4809 /** 4810 * ata_qc_get_active - get bitmask of active qcs 4811 * @ap: port in question 4812 * 4813 * LOCKING: 4814 * spin_lock_irqsave(host lock) 4815 * 4816 * RETURNS: 4817 * Bitmask of active qcs 4818 */ 4819 u64 ata_qc_get_active(struct ata_port *ap) 4820 { 4821 u64 qc_active = ap->qc_active; 4822 4823 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4824 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4825 qc_active |= (1 << 0); 4826 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4827 } 4828 4829 return qc_active; 4830 } 4831 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4832 4833 /** 4834 * ata_qc_issue - issue taskfile to device 4835 * @qc: command to issue to device 4836 * 4837 * Prepare an ATA command to submission to device. 4838 * This includes mapping the data into a DMA-able 4839 * area, filling in the S/G table, and finally 4840 * writing the taskfile to hardware, starting the command. 4841 * 4842 * LOCKING: 4843 * spin_lock_irqsave(host lock) 4844 */ 4845 void ata_qc_issue(struct ata_queued_cmd *qc) 4846 { 4847 struct ata_port *ap = qc->ap; 4848 struct ata_link *link = qc->dev->link; 4849 u8 prot = qc->tf.protocol; 4850 4851 /* Make sure only one non-NCQ command is outstanding. The 4852 * check is skipped for old EH because it reuses active qc to 4853 * request ATAPI sense. 4854 */ 4855 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4856 4857 if (ata_is_ncq(prot)) { 4858 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4859 4860 if (!link->sactive) 4861 ap->nr_active_links++; 4862 link->sactive |= 1 << qc->hw_tag; 4863 } else { 4864 WARN_ON_ONCE(link->sactive); 4865 4866 ap->nr_active_links++; 4867 link->active_tag = qc->tag; 4868 } 4869 4870 qc->flags |= ATA_QCFLAG_ACTIVE; 4871 ap->qc_active |= 1ULL << qc->tag; 4872 4873 /* 4874 * We guarantee to LLDs that they will have at least one 4875 * non-zero sg if the command is a data command. 4876 */ 4877 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4878 goto sys_err; 4879 4880 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4881 (ap->flags & ATA_FLAG_PIO_DMA))) 4882 if (ata_sg_setup(qc)) 4883 goto sys_err; 4884 4885 /* if device is sleeping, schedule reset and abort the link */ 4886 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4887 link->eh_info.action |= ATA_EH_RESET; 4888 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4889 ata_link_abort(link); 4890 return; 4891 } 4892 4893 trace_ata_qc_prep(qc); 4894 qc->err_mask |= ap->ops->qc_prep(qc); 4895 if (unlikely(qc->err_mask)) 4896 goto err; 4897 trace_ata_qc_issue(qc); 4898 qc->err_mask |= ap->ops->qc_issue(qc); 4899 if (unlikely(qc->err_mask)) 4900 goto err; 4901 return; 4902 4903 sys_err: 4904 qc->err_mask |= AC_ERR_SYSTEM; 4905 err: 4906 ata_qc_complete(qc); 4907 } 4908 4909 /** 4910 * ata_phys_link_online - test whether the given link is online 4911 * @link: ATA link to test 4912 * 4913 * Test whether @link is online. Note that this function returns 4914 * 0 if online status of @link cannot be obtained, so 4915 * ata_link_online(link) != !ata_link_offline(link). 4916 * 4917 * LOCKING: 4918 * None. 4919 * 4920 * RETURNS: 4921 * True if the port online status is available and online. 4922 */ 4923 bool ata_phys_link_online(struct ata_link *link) 4924 { 4925 u32 sstatus; 4926 4927 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4928 ata_sstatus_online(sstatus)) 4929 return true; 4930 return false; 4931 } 4932 4933 /** 4934 * ata_phys_link_offline - test whether the given link is offline 4935 * @link: ATA link to test 4936 * 4937 * Test whether @link is offline. Note that this function 4938 * returns 0 if offline status of @link cannot be obtained, so 4939 * ata_link_online(link) != !ata_link_offline(link). 4940 * 4941 * LOCKING: 4942 * None. 4943 * 4944 * RETURNS: 4945 * True if the port offline status is available and offline. 4946 */ 4947 bool ata_phys_link_offline(struct ata_link *link) 4948 { 4949 u32 sstatus; 4950 4951 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4952 !ata_sstatus_online(sstatus)) 4953 return true; 4954 return false; 4955 } 4956 4957 /** 4958 * ata_link_online - test whether the given link is online 4959 * @link: ATA link to test 4960 * 4961 * Test whether @link is online. This is identical to 4962 * ata_phys_link_online() when there's no slave link. When 4963 * there's a slave link, this function should only be called on 4964 * the master link and will return true if any of M/S links is 4965 * online. 4966 * 4967 * LOCKING: 4968 * None. 4969 * 4970 * RETURNS: 4971 * True if the port online status is available and online. 4972 */ 4973 bool ata_link_online(struct ata_link *link) 4974 { 4975 struct ata_link *slave = link->ap->slave_link; 4976 4977 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4978 4979 return ata_phys_link_online(link) || 4980 (slave && ata_phys_link_online(slave)); 4981 } 4982 EXPORT_SYMBOL_GPL(ata_link_online); 4983 4984 /** 4985 * ata_link_offline - test whether the given link is offline 4986 * @link: ATA link to test 4987 * 4988 * Test whether @link is offline. This is identical to 4989 * ata_phys_link_offline() when there's no slave link. When 4990 * there's a slave link, this function should only be called on 4991 * the master link and will return true if both M/S links are 4992 * offline. 4993 * 4994 * LOCKING: 4995 * None. 4996 * 4997 * RETURNS: 4998 * True if the port offline status is available and offline. 4999 */ 5000 bool ata_link_offline(struct ata_link *link) 5001 { 5002 struct ata_link *slave = link->ap->slave_link; 5003 5004 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5005 5006 return ata_phys_link_offline(link) && 5007 (!slave || ata_phys_link_offline(slave)); 5008 } 5009 EXPORT_SYMBOL_GPL(ata_link_offline); 5010 5011 #ifdef CONFIG_PM 5012 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5013 unsigned int action, unsigned int ehi_flags, 5014 bool async) 5015 { 5016 struct ata_link *link; 5017 unsigned long flags; 5018 5019 /* Previous resume operation might still be in 5020 * progress. Wait for PM_PENDING to clear. 5021 */ 5022 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5023 ata_port_wait_eh(ap); 5024 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5025 } 5026 5027 /* request PM ops to EH */ 5028 spin_lock_irqsave(ap->lock, flags); 5029 5030 ap->pm_mesg = mesg; 5031 ap->pflags |= ATA_PFLAG_PM_PENDING; 5032 ata_for_each_link(link, ap, HOST_FIRST) { 5033 link->eh_info.action |= action; 5034 link->eh_info.flags |= ehi_flags; 5035 } 5036 5037 ata_port_schedule_eh(ap); 5038 5039 spin_unlock_irqrestore(ap->lock, flags); 5040 5041 if (!async) { 5042 ata_port_wait_eh(ap); 5043 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5044 } 5045 } 5046 5047 /* 5048 * On some hardware, device fails to respond after spun down for suspend. As 5049 * the device won't be used before being resumed, we don't need to touch the 5050 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5051 * 5052 * http://thread.gmane.org/gmane.linux.ide/46764 5053 */ 5054 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5055 | ATA_EHI_NO_AUTOPSY 5056 | ATA_EHI_NO_RECOVERY; 5057 5058 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5059 { 5060 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5061 } 5062 5063 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5064 { 5065 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5066 } 5067 5068 static int ata_port_pm_suspend(struct device *dev) 5069 { 5070 struct ata_port *ap = to_ata_port(dev); 5071 5072 if (pm_runtime_suspended(dev)) 5073 return 0; 5074 5075 ata_port_suspend(ap, PMSG_SUSPEND); 5076 return 0; 5077 } 5078 5079 static int ata_port_pm_freeze(struct device *dev) 5080 { 5081 struct ata_port *ap = to_ata_port(dev); 5082 5083 if (pm_runtime_suspended(dev)) 5084 return 0; 5085 5086 ata_port_suspend(ap, PMSG_FREEZE); 5087 return 0; 5088 } 5089 5090 static int ata_port_pm_poweroff(struct device *dev) 5091 { 5092 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5093 return 0; 5094 } 5095 5096 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5097 | ATA_EHI_QUIET; 5098 5099 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5100 { 5101 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5102 } 5103 5104 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5105 { 5106 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5107 } 5108 5109 static int ata_port_pm_resume(struct device *dev) 5110 { 5111 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5112 pm_runtime_disable(dev); 5113 pm_runtime_set_active(dev); 5114 pm_runtime_enable(dev); 5115 return 0; 5116 } 5117 5118 /* 5119 * For ODDs, the upper layer will poll for media change every few seconds, 5120 * which will make it enter and leave suspend state every few seconds. And 5121 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5122 * is very little and the ODD may malfunction after constantly being reset. 5123 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5124 * ODD is attached to the port. 5125 */ 5126 static int ata_port_runtime_idle(struct device *dev) 5127 { 5128 struct ata_port *ap = to_ata_port(dev); 5129 struct ata_link *link; 5130 struct ata_device *adev; 5131 5132 ata_for_each_link(link, ap, HOST_FIRST) { 5133 ata_for_each_dev(adev, link, ENABLED) 5134 if (adev->class == ATA_DEV_ATAPI && 5135 !zpodd_dev_enabled(adev)) 5136 return -EBUSY; 5137 } 5138 5139 return 0; 5140 } 5141 5142 static int ata_port_runtime_suspend(struct device *dev) 5143 { 5144 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5145 return 0; 5146 } 5147 5148 static int ata_port_runtime_resume(struct device *dev) 5149 { 5150 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5151 return 0; 5152 } 5153 5154 static const struct dev_pm_ops ata_port_pm_ops = { 5155 .suspend = ata_port_pm_suspend, 5156 .resume = ata_port_pm_resume, 5157 .freeze = ata_port_pm_freeze, 5158 .thaw = ata_port_pm_resume, 5159 .poweroff = ata_port_pm_poweroff, 5160 .restore = ata_port_pm_resume, 5161 5162 .runtime_suspend = ata_port_runtime_suspend, 5163 .runtime_resume = ata_port_runtime_resume, 5164 .runtime_idle = ata_port_runtime_idle, 5165 }; 5166 5167 /* sas ports don't participate in pm runtime management of ata_ports, 5168 * and need to resume ata devices at the domain level, not the per-port 5169 * level. sas suspend/resume is async to allow parallel port recovery 5170 * since sas has multiple ata_port instances per Scsi_Host. 5171 */ 5172 void ata_sas_port_suspend(struct ata_port *ap) 5173 { 5174 ata_port_suspend_async(ap, PMSG_SUSPEND); 5175 } 5176 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5177 5178 void ata_sas_port_resume(struct ata_port *ap) 5179 { 5180 ata_port_resume_async(ap, PMSG_RESUME); 5181 } 5182 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5183 5184 /** 5185 * ata_host_suspend - suspend host 5186 * @host: host to suspend 5187 * @mesg: PM message 5188 * 5189 * Suspend @host. Actual operation is performed by port suspend. 5190 */ 5191 void ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5192 { 5193 host->dev->power.power_state = mesg; 5194 } 5195 EXPORT_SYMBOL_GPL(ata_host_suspend); 5196 5197 /** 5198 * ata_host_resume - resume host 5199 * @host: host to resume 5200 * 5201 * Resume @host. Actual operation is performed by port resume. 5202 */ 5203 void ata_host_resume(struct ata_host *host) 5204 { 5205 host->dev->power.power_state = PMSG_ON; 5206 } 5207 EXPORT_SYMBOL_GPL(ata_host_resume); 5208 #endif 5209 5210 const struct device_type ata_port_type = { 5211 .name = "ata_port", 5212 #ifdef CONFIG_PM 5213 .pm = &ata_port_pm_ops, 5214 #endif 5215 }; 5216 5217 /** 5218 * ata_dev_init - Initialize an ata_device structure 5219 * @dev: Device structure to initialize 5220 * 5221 * Initialize @dev in preparation for probing. 5222 * 5223 * LOCKING: 5224 * Inherited from caller. 5225 */ 5226 void ata_dev_init(struct ata_device *dev) 5227 { 5228 struct ata_link *link = ata_dev_phys_link(dev); 5229 struct ata_port *ap = link->ap; 5230 unsigned long flags; 5231 5232 /* SATA spd limit is bound to the attached device, reset together */ 5233 link->sata_spd_limit = link->hw_sata_spd_limit; 5234 link->sata_spd = 0; 5235 5236 /* High bits of dev->flags are used to record warm plug 5237 * requests which occur asynchronously. Synchronize using 5238 * host lock. 5239 */ 5240 spin_lock_irqsave(ap->lock, flags); 5241 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5242 dev->horkage = 0; 5243 spin_unlock_irqrestore(ap->lock, flags); 5244 5245 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5246 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5247 dev->pio_mask = UINT_MAX; 5248 dev->mwdma_mask = UINT_MAX; 5249 dev->udma_mask = UINT_MAX; 5250 } 5251 5252 /** 5253 * ata_link_init - Initialize an ata_link structure 5254 * @ap: ATA port link is attached to 5255 * @link: Link structure to initialize 5256 * @pmp: Port multiplier port number 5257 * 5258 * Initialize @link. 5259 * 5260 * LOCKING: 5261 * Kernel thread context (may sleep) 5262 */ 5263 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5264 { 5265 int i; 5266 5267 /* clear everything except for devices */ 5268 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5269 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5270 5271 link->ap = ap; 5272 link->pmp = pmp; 5273 link->active_tag = ATA_TAG_POISON; 5274 link->hw_sata_spd_limit = UINT_MAX; 5275 5276 /* can't use iterator, ap isn't initialized yet */ 5277 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5278 struct ata_device *dev = &link->device[i]; 5279 5280 dev->link = link; 5281 dev->devno = dev - link->device; 5282 #ifdef CONFIG_ATA_ACPI 5283 dev->gtf_filter = ata_acpi_gtf_filter; 5284 #endif 5285 ata_dev_init(dev); 5286 } 5287 } 5288 5289 /** 5290 * sata_link_init_spd - Initialize link->sata_spd_limit 5291 * @link: Link to configure sata_spd_limit for 5292 * 5293 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5294 * configured value. 5295 * 5296 * LOCKING: 5297 * Kernel thread context (may sleep). 5298 * 5299 * RETURNS: 5300 * 0 on success, -errno on failure. 5301 */ 5302 int sata_link_init_spd(struct ata_link *link) 5303 { 5304 u8 spd; 5305 int rc; 5306 5307 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5308 if (rc) 5309 return rc; 5310 5311 spd = (link->saved_scontrol >> 4) & 0xf; 5312 if (spd) 5313 link->hw_sata_spd_limit &= (1 << spd) - 1; 5314 5315 ata_force_link_limits(link); 5316 5317 link->sata_spd_limit = link->hw_sata_spd_limit; 5318 5319 return 0; 5320 } 5321 5322 /** 5323 * ata_port_alloc - allocate and initialize basic ATA port resources 5324 * @host: ATA host this allocated port belongs to 5325 * 5326 * Allocate and initialize basic ATA port resources. 5327 * 5328 * RETURNS: 5329 * Allocate ATA port on success, NULL on failure. 5330 * 5331 * LOCKING: 5332 * Inherited from calling layer (may sleep). 5333 */ 5334 struct ata_port *ata_port_alloc(struct ata_host *host) 5335 { 5336 struct ata_port *ap; 5337 5338 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5339 if (!ap) 5340 return NULL; 5341 5342 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5343 ap->lock = &host->lock; 5344 ap->print_id = -1; 5345 ap->local_port_no = -1; 5346 ap->host = host; 5347 ap->dev = host->dev; 5348 5349 mutex_init(&ap->scsi_scan_mutex); 5350 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5351 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5352 INIT_LIST_HEAD(&ap->eh_done_q); 5353 init_waitqueue_head(&ap->eh_wait_q); 5354 init_completion(&ap->park_req_pending); 5355 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5356 TIMER_DEFERRABLE); 5357 5358 ap->cbl = ATA_CBL_NONE; 5359 5360 ata_link_init(ap, &ap->link, 0); 5361 5362 #ifdef ATA_IRQ_TRAP 5363 ap->stats.unhandled_irq = 1; 5364 ap->stats.idle_irq = 1; 5365 #endif 5366 ata_sff_port_init(ap); 5367 5368 return ap; 5369 } 5370 5371 static void ata_devres_release(struct device *gendev, void *res) 5372 { 5373 struct ata_host *host = dev_get_drvdata(gendev); 5374 int i; 5375 5376 for (i = 0; i < host->n_ports; i++) { 5377 struct ata_port *ap = host->ports[i]; 5378 5379 if (!ap) 5380 continue; 5381 5382 if (ap->scsi_host) 5383 scsi_host_put(ap->scsi_host); 5384 5385 } 5386 5387 dev_set_drvdata(gendev, NULL); 5388 ata_host_put(host); 5389 } 5390 5391 static void ata_host_release(struct kref *kref) 5392 { 5393 struct ata_host *host = container_of(kref, struct ata_host, kref); 5394 int i; 5395 5396 for (i = 0; i < host->n_ports; i++) { 5397 struct ata_port *ap = host->ports[i]; 5398 5399 kfree(ap->pmp_link); 5400 kfree(ap->slave_link); 5401 kfree(ap); 5402 host->ports[i] = NULL; 5403 } 5404 kfree(host); 5405 } 5406 5407 void ata_host_get(struct ata_host *host) 5408 { 5409 kref_get(&host->kref); 5410 } 5411 5412 void ata_host_put(struct ata_host *host) 5413 { 5414 kref_put(&host->kref, ata_host_release); 5415 } 5416 EXPORT_SYMBOL_GPL(ata_host_put); 5417 5418 /** 5419 * ata_host_alloc - allocate and init basic ATA host resources 5420 * @dev: generic device this host is associated with 5421 * @max_ports: maximum number of ATA ports associated with this host 5422 * 5423 * Allocate and initialize basic ATA host resources. LLD calls 5424 * this function to allocate a host, initializes it fully and 5425 * attaches it using ata_host_register(). 5426 * 5427 * @max_ports ports are allocated and host->n_ports is 5428 * initialized to @max_ports. The caller is allowed to decrease 5429 * host->n_ports before calling ata_host_register(). The unused 5430 * ports will be automatically freed on registration. 5431 * 5432 * RETURNS: 5433 * Allocate ATA host on success, NULL on failure. 5434 * 5435 * LOCKING: 5436 * Inherited from calling layer (may sleep). 5437 */ 5438 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5439 { 5440 struct ata_host *host; 5441 size_t sz; 5442 int i; 5443 void *dr; 5444 5445 /* alloc a container for our list of ATA ports (buses) */ 5446 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5447 host = kzalloc(sz, GFP_KERNEL); 5448 if (!host) 5449 return NULL; 5450 5451 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5452 goto err_free; 5453 5454 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5455 if (!dr) 5456 goto err_out; 5457 5458 devres_add(dev, dr); 5459 dev_set_drvdata(dev, host); 5460 5461 spin_lock_init(&host->lock); 5462 mutex_init(&host->eh_mutex); 5463 host->dev = dev; 5464 host->n_ports = max_ports; 5465 kref_init(&host->kref); 5466 5467 /* allocate ports bound to this host */ 5468 for (i = 0; i < max_ports; i++) { 5469 struct ata_port *ap; 5470 5471 ap = ata_port_alloc(host); 5472 if (!ap) 5473 goto err_out; 5474 5475 ap->port_no = i; 5476 host->ports[i] = ap; 5477 } 5478 5479 devres_remove_group(dev, NULL); 5480 return host; 5481 5482 err_out: 5483 devres_release_group(dev, NULL); 5484 err_free: 5485 kfree(host); 5486 return NULL; 5487 } 5488 EXPORT_SYMBOL_GPL(ata_host_alloc); 5489 5490 /** 5491 * ata_host_alloc_pinfo - alloc host and init with port_info array 5492 * @dev: generic device this host is associated with 5493 * @ppi: array of ATA port_info to initialize host with 5494 * @n_ports: number of ATA ports attached to this host 5495 * 5496 * Allocate ATA host and initialize with info from @ppi. If NULL 5497 * terminated, @ppi may contain fewer entries than @n_ports. The 5498 * last entry will be used for the remaining ports. 5499 * 5500 * RETURNS: 5501 * Allocate ATA host on success, NULL on failure. 5502 * 5503 * LOCKING: 5504 * Inherited from calling layer (may sleep). 5505 */ 5506 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5507 const struct ata_port_info * const * ppi, 5508 int n_ports) 5509 { 5510 const struct ata_port_info *pi = &ata_dummy_port_info; 5511 struct ata_host *host; 5512 int i, j; 5513 5514 host = ata_host_alloc(dev, n_ports); 5515 if (!host) 5516 return NULL; 5517 5518 for (i = 0, j = 0; i < host->n_ports; i++) { 5519 struct ata_port *ap = host->ports[i]; 5520 5521 if (ppi[j]) 5522 pi = ppi[j++]; 5523 5524 ap->pio_mask = pi->pio_mask; 5525 ap->mwdma_mask = pi->mwdma_mask; 5526 ap->udma_mask = pi->udma_mask; 5527 ap->flags |= pi->flags; 5528 ap->link.flags |= pi->link_flags; 5529 ap->ops = pi->port_ops; 5530 5531 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5532 host->ops = pi->port_ops; 5533 } 5534 5535 return host; 5536 } 5537 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5538 5539 static void ata_host_stop(struct device *gendev, void *res) 5540 { 5541 struct ata_host *host = dev_get_drvdata(gendev); 5542 int i; 5543 5544 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5545 5546 for (i = 0; i < host->n_ports; i++) { 5547 struct ata_port *ap = host->ports[i]; 5548 5549 if (ap->ops->port_stop) 5550 ap->ops->port_stop(ap); 5551 } 5552 5553 if (host->ops->host_stop) 5554 host->ops->host_stop(host); 5555 } 5556 5557 /** 5558 * ata_finalize_port_ops - finalize ata_port_operations 5559 * @ops: ata_port_operations to finalize 5560 * 5561 * An ata_port_operations can inherit from another ops and that 5562 * ops can again inherit from another. This can go on as many 5563 * times as necessary as long as there is no loop in the 5564 * inheritance chain. 5565 * 5566 * Ops tables are finalized when the host is started. NULL or 5567 * unspecified entries are inherited from the closet ancestor 5568 * which has the method and the entry is populated with it. 5569 * After finalization, the ops table directly points to all the 5570 * methods and ->inherits is no longer necessary and cleared. 5571 * 5572 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5573 * 5574 * LOCKING: 5575 * None. 5576 */ 5577 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5578 { 5579 static DEFINE_SPINLOCK(lock); 5580 const struct ata_port_operations *cur; 5581 void **begin = (void **)ops; 5582 void **end = (void **)&ops->inherits; 5583 void **pp; 5584 5585 if (!ops || !ops->inherits) 5586 return; 5587 5588 spin_lock(&lock); 5589 5590 for (cur = ops->inherits; cur; cur = cur->inherits) { 5591 void **inherit = (void **)cur; 5592 5593 for (pp = begin; pp < end; pp++, inherit++) 5594 if (!*pp) 5595 *pp = *inherit; 5596 } 5597 5598 for (pp = begin; pp < end; pp++) 5599 if (IS_ERR(*pp)) 5600 *pp = NULL; 5601 5602 ops->inherits = NULL; 5603 5604 spin_unlock(&lock); 5605 } 5606 5607 /** 5608 * ata_host_start - start and freeze ports of an ATA host 5609 * @host: ATA host to start ports for 5610 * 5611 * Start and then freeze ports of @host. Started status is 5612 * recorded in host->flags, so this function can be called 5613 * multiple times. Ports are guaranteed to get started only 5614 * once. If host->ops is not initialized yet, it is set to the 5615 * first non-dummy port ops. 5616 * 5617 * LOCKING: 5618 * Inherited from calling layer (may sleep). 5619 * 5620 * RETURNS: 5621 * 0 if all ports are started successfully, -errno otherwise. 5622 */ 5623 int ata_host_start(struct ata_host *host) 5624 { 5625 int have_stop = 0; 5626 void *start_dr = NULL; 5627 int i, rc; 5628 5629 if (host->flags & ATA_HOST_STARTED) 5630 return 0; 5631 5632 ata_finalize_port_ops(host->ops); 5633 5634 for (i = 0; i < host->n_ports; i++) { 5635 struct ata_port *ap = host->ports[i]; 5636 5637 ata_finalize_port_ops(ap->ops); 5638 5639 if (!host->ops && !ata_port_is_dummy(ap)) 5640 host->ops = ap->ops; 5641 5642 if (ap->ops->port_stop) 5643 have_stop = 1; 5644 } 5645 5646 if (host->ops && host->ops->host_stop) 5647 have_stop = 1; 5648 5649 if (have_stop) { 5650 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5651 if (!start_dr) 5652 return -ENOMEM; 5653 } 5654 5655 for (i = 0; i < host->n_ports; i++) { 5656 struct ata_port *ap = host->ports[i]; 5657 5658 if (ap->ops->port_start) { 5659 rc = ap->ops->port_start(ap); 5660 if (rc) { 5661 if (rc != -ENODEV) 5662 dev_err(host->dev, 5663 "failed to start port %d (errno=%d)\n", 5664 i, rc); 5665 goto err_out; 5666 } 5667 } 5668 ata_eh_freeze_port(ap); 5669 } 5670 5671 if (start_dr) 5672 devres_add(host->dev, start_dr); 5673 host->flags |= ATA_HOST_STARTED; 5674 return 0; 5675 5676 err_out: 5677 while (--i >= 0) { 5678 struct ata_port *ap = host->ports[i]; 5679 5680 if (ap->ops->port_stop) 5681 ap->ops->port_stop(ap); 5682 } 5683 devres_free(start_dr); 5684 return rc; 5685 } 5686 EXPORT_SYMBOL_GPL(ata_host_start); 5687 5688 /** 5689 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5690 * @host: host to initialize 5691 * @dev: device host is attached to 5692 * @ops: port_ops 5693 * 5694 */ 5695 void ata_host_init(struct ata_host *host, struct device *dev, 5696 struct ata_port_operations *ops) 5697 { 5698 spin_lock_init(&host->lock); 5699 mutex_init(&host->eh_mutex); 5700 host->n_tags = ATA_MAX_QUEUE; 5701 host->dev = dev; 5702 host->ops = ops; 5703 kref_init(&host->kref); 5704 } 5705 EXPORT_SYMBOL_GPL(ata_host_init); 5706 5707 void __ata_port_probe(struct ata_port *ap) 5708 { 5709 struct ata_eh_info *ehi = &ap->link.eh_info; 5710 unsigned long flags; 5711 5712 /* kick EH for boot probing */ 5713 spin_lock_irqsave(ap->lock, flags); 5714 5715 ehi->probe_mask |= ATA_ALL_DEVICES; 5716 ehi->action |= ATA_EH_RESET; 5717 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5718 5719 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5720 ap->pflags |= ATA_PFLAG_LOADING; 5721 ata_port_schedule_eh(ap); 5722 5723 spin_unlock_irqrestore(ap->lock, flags); 5724 } 5725 5726 int ata_port_probe(struct ata_port *ap) 5727 { 5728 int rc = 0; 5729 5730 if (ap->ops->error_handler) { 5731 __ata_port_probe(ap); 5732 ata_port_wait_eh(ap); 5733 } else { 5734 rc = ata_bus_probe(ap); 5735 } 5736 return rc; 5737 } 5738 5739 5740 static void async_port_probe(void *data, async_cookie_t cookie) 5741 { 5742 struct ata_port *ap = data; 5743 5744 /* 5745 * If we're not allowed to scan this host in parallel, 5746 * we need to wait until all previous scans have completed 5747 * before going further. 5748 * Jeff Garzik says this is only within a controller, so we 5749 * don't need to wait for port 0, only for later ports. 5750 */ 5751 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5752 async_synchronize_cookie(cookie); 5753 5754 (void)ata_port_probe(ap); 5755 5756 /* in order to keep device order, we need to synchronize at this point */ 5757 async_synchronize_cookie(cookie); 5758 5759 ata_scsi_scan_host(ap, 1); 5760 } 5761 5762 /** 5763 * ata_host_register - register initialized ATA host 5764 * @host: ATA host to register 5765 * @sht: template for SCSI host 5766 * 5767 * Register initialized ATA host. @host is allocated using 5768 * ata_host_alloc() and fully initialized by LLD. This function 5769 * starts ports, registers @host with ATA and SCSI layers and 5770 * probe registered devices. 5771 * 5772 * LOCKING: 5773 * Inherited from calling layer (may sleep). 5774 * 5775 * RETURNS: 5776 * 0 on success, -errno otherwise. 5777 */ 5778 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht) 5779 { 5780 int i, rc; 5781 5782 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5783 5784 /* host must have been started */ 5785 if (!(host->flags & ATA_HOST_STARTED)) { 5786 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5787 WARN_ON(1); 5788 return -EINVAL; 5789 } 5790 5791 /* Blow away unused ports. This happens when LLD can't 5792 * determine the exact number of ports to allocate at 5793 * allocation time. 5794 */ 5795 for (i = host->n_ports; host->ports[i]; i++) 5796 kfree(host->ports[i]); 5797 5798 /* give ports names and add SCSI hosts */ 5799 for (i = 0; i < host->n_ports; i++) { 5800 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5801 host->ports[i]->local_port_no = i + 1; 5802 } 5803 5804 /* Create associated sysfs transport objects */ 5805 for (i = 0; i < host->n_ports; i++) { 5806 rc = ata_tport_add(host->dev,host->ports[i]); 5807 if (rc) { 5808 goto err_tadd; 5809 } 5810 } 5811 5812 rc = ata_scsi_add_hosts(host, sht); 5813 if (rc) 5814 goto err_tadd; 5815 5816 /* set cable, sata_spd_limit and report */ 5817 for (i = 0; i < host->n_ports; i++) { 5818 struct ata_port *ap = host->ports[i]; 5819 unsigned int xfer_mask; 5820 5821 /* set SATA cable type if still unset */ 5822 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5823 ap->cbl = ATA_CBL_SATA; 5824 5825 /* init sata_spd_limit to the current value */ 5826 sata_link_init_spd(&ap->link); 5827 if (ap->slave_link) 5828 sata_link_init_spd(ap->slave_link); 5829 5830 /* print per-port info to dmesg */ 5831 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5832 ap->udma_mask); 5833 5834 if (!ata_port_is_dummy(ap)) { 5835 ata_port_info(ap, "%cATA max %s %s\n", 5836 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5837 ata_mode_string(xfer_mask), 5838 ap->link.eh_info.desc); 5839 ata_ehi_clear_desc(&ap->link.eh_info); 5840 } else 5841 ata_port_info(ap, "DUMMY\n"); 5842 } 5843 5844 /* perform each probe asynchronously */ 5845 for (i = 0; i < host->n_ports; i++) { 5846 struct ata_port *ap = host->ports[i]; 5847 ap->cookie = async_schedule(async_port_probe, ap); 5848 } 5849 5850 return 0; 5851 5852 err_tadd: 5853 while (--i >= 0) { 5854 ata_tport_delete(host->ports[i]); 5855 } 5856 return rc; 5857 5858 } 5859 EXPORT_SYMBOL_GPL(ata_host_register); 5860 5861 /** 5862 * ata_host_activate - start host, request IRQ and register it 5863 * @host: target ATA host 5864 * @irq: IRQ to request 5865 * @irq_handler: irq_handler used when requesting IRQ 5866 * @irq_flags: irq_flags used when requesting IRQ 5867 * @sht: scsi_host_template to use when registering the host 5868 * 5869 * After allocating an ATA host and initializing it, most libata 5870 * LLDs perform three steps to activate the host - start host, 5871 * request IRQ and register it. This helper takes necessary 5872 * arguments and performs the three steps in one go. 5873 * 5874 * An invalid IRQ skips the IRQ registration and expects the host to 5875 * have set polling mode on the port. In this case, @irq_handler 5876 * should be NULL. 5877 * 5878 * LOCKING: 5879 * Inherited from calling layer (may sleep). 5880 * 5881 * RETURNS: 5882 * 0 on success, -errno otherwise. 5883 */ 5884 int ata_host_activate(struct ata_host *host, int irq, 5885 irq_handler_t irq_handler, unsigned long irq_flags, 5886 const struct scsi_host_template *sht) 5887 { 5888 int i, rc; 5889 char *irq_desc; 5890 5891 rc = ata_host_start(host); 5892 if (rc) 5893 return rc; 5894 5895 /* Special case for polling mode */ 5896 if (!irq) { 5897 WARN_ON(irq_handler); 5898 return ata_host_register(host, sht); 5899 } 5900 5901 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 5902 dev_driver_string(host->dev), 5903 dev_name(host->dev)); 5904 if (!irq_desc) 5905 return -ENOMEM; 5906 5907 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5908 irq_desc, host); 5909 if (rc) 5910 return rc; 5911 5912 for (i = 0; i < host->n_ports; i++) 5913 ata_port_desc(host->ports[i], "irq %d", irq); 5914 5915 rc = ata_host_register(host, sht); 5916 /* if failed, just free the IRQ and leave ports alone */ 5917 if (rc) 5918 devm_free_irq(host->dev, irq, host); 5919 5920 return rc; 5921 } 5922 EXPORT_SYMBOL_GPL(ata_host_activate); 5923 5924 /** 5925 * ata_port_detach - Detach ATA port in preparation of device removal 5926 * @ap: ATA port to be detached 5927 * 5928 * Detach all ATA devices and the associated SCSI devices of @ap; 5929 * then, remove the associated SCSI host. @ap is guaranteed to 5930 * be quiescent on return from this function. 5931 * 5932 * LOCKING: 5933 * Kernel thread context (may sleep). 5934 */ 5935 static void ata_port_detach(struct ata_port *ap) 5936 { 5937 unsigned long flags; 5938 struct ata_link *link; 5939 struct ata_device *dev; 5940 5941 if (!ap->ops->error_handler) 5942 goto skip_eh; 5943 5944 /* tell EH we're leaving & flush EH */ 5945 spin_lock_irqsave(ap->lock, flags); 5946 ap->pflags |= ATA_PFLAG_UNLOADING; 5947 ata_port_schedule_eh(ap); 5948 spin_unlock_irqrestore(ap->lock, flags); 5949 5950 /* wait till EH commits suicide */ 5951 ata_port_wait_eh(ap); 5952 5953 /* it better be dead now */ 5954 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 5955 5956 cancel_delayed_work_sync(&ap->hotplug_task); 5957 cancel_delayed_work_sync(&ap->scsi_rescan_task); 5958 5959 skip_eh: 5960 /* clean up zpodd on port removal */ 5961 ata_for_each_link(link, ap, HOST_FIRST) { 5962 ata_for_each_dev(dev, link, ALL) { 5963 if (zpodd_dev_enabled(dev)) 5964 zpodd_exit(dev); 5965 } 5966 } 5967 if (ap->pmp_link) { 5968 int i; 5969 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 5970 ata_tlink_delete(&ap->pmp_link[i]); 5971 } 5972 /* remove the associated SCSI host */ 5973 scsi_remove_host(ap->scsi_host); 5974 ata_tport_delete(ap); 5975 } 5976 5977 /** 5978 * ata_host_detach - Detach all ports of an ATA host 5979 * @host: Host to detach 5980 * 5981 * Detach all ports of @host. 5982 * 5983 * LOCKING: 5984 * Kernel thread context (may sleep). 5985 */ 5986 void ata_host_detach(struct ata_host *host) 5987 { 5988 int i; 5989 5990 for (i = 0; i < host->n_ports; i++) { 5991 /* Ensure ata_port probe has completed */ 5992 async_synchronize_cookie(host->ports[i]->cookie + 1); 5993 ata_port_detach(host->ports[i]); 5994 } 5995 5996 /* the host is dead now, dissociate ACPI */ 5997 ata_acpi_dissociate(host); 5998 } 5999 EXPORT_SYMBOL_GPL(ata_host_detach); 6000 6001 #ifdef CONFIG_PCI 6002 6003 /** 6004 * ata_pci_remove_one - PCI layer callback for device removal 6005 * @pdev: PCI device that was removed 6006 * 6007 * PCI layer indicates to libata via this hook that hot-unplug or 6008 * module unload event has occurred. Detach all ports. Resource 6009 * release is handled via devres. 6010 * 6011 * LOCKING: 6012 * Inherited from PCI layer (may sleep). 6013 */ 6014 void ata_pci_remove_one(struct pci_dev *pdev) 6015 { 6016 struct ata_host *host = pci_get_drvdata(pdev); 6017 6018 ata_host_detach(host); 6019 } 6020 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6021 6022 void ata_pci_shutdown_one(struct pci_dev *pdev) 6023 { 6024 struct ata_host *host = pci_get_drvdata(pdev); 6025 int i; 6026 6027 for (i = 0; i < host->n_ports; i++) { 6028 struct ata_port *ap = host->ports[i]; 6029 6030 ap->pflags |= ATA_PFLAG_FROZEN; 6031 6032 /* Disable port interrupts */ 6033 if (ap->ops->freeze) 6034 ap->ops->freeze(ap); 6035 6036 /* Stop the port DMA engines */ 6037 if (ap->ops->port_stop) 6038 ap->ops->port_stop(ap); 6039 } 6040 } 6041 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6042 6043 /* move to PCI subsystem */ 6044 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6045 { 6046 unsigned long tmp = 0; 6047 6048 switch (bits->width) { 6049 case 1: { 6050 u8 tmp8 = 0; 6051 pci_read_config_byte(pdev, bits->reg, &tmp8); 6052 tmp = tmp8; 6053 break; 6054 } 6055 case 2: { 6056 u16 tmp16 = 0; 6057 pci_read_config_word(pdev, bits->reg, &tmp16); 6058 tmp = tmp16; 6059 break; 6060 } 6061 case 4: { 6062 u32 tmp32 = 0; 6063 pci_read_config_dword(pdev, bits->reg, &tmp32); 6064 tmp = tmp32; 6065 break; 6066 } 6067 6068 default: 6069 return -EINVAL; 6070 } 6071 6072 tmp &= bits->mask; 6073 6074 return (tmp == bits->val) ? 1 : 0; 6075 } 6076 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6077 6078 #ifdef CONFIG_PM 6079 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6080 { 6081 pci_save_state(pdev); 6082 pci_disable_device(pdev); 6083 6084 if (mesg.event & PM_EVENT_SLEEP) 6085 pci_set_power_state(pdev, PCI_D3hot); 6086 } 6087 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6088 6089 int ata_pci_device_do_resume(struct pci_dev *pdev) 6090 { 6091 int rc; 6092 6093 pci_set_power_state(pdev, PCI_D0); 6094 pci_restore_state(pdev); 6095 6096 rc = pcim_enable_device(pdev); 6097 if (rc) { 6098 dev_err(&pdev->dev, 6099 "failed to enable device after resume (%d)\n", rc); 6100 return rc; 6101 } 6102 6103 pci_set_master(pdev); 6104 return 0; 6105 } 6106 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6107 6108 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6109 { 6110 struct ata_host *host = pci_get_drvdata(pdev); 6111 6112 ata_host_suspend(host, mesg); 6113 6114 ata_pci_device_do_suspend(pdev, mesg); 6115 6116 return 0; 6117 } 6118 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6119 6120 int ata_pci_device_resume(struct pci_dev *pdev) 6121 { 6122 struct ata_host *host = pci_get_drvdata(pdev); 6123 int rc; 6124 6125 rc = ata_pci_device_do_resume(pdev); 6126 if (rc == 0) 6127 ata_host_resume(host); 6128 return rc; 6129 } 6130 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6131 #endif /* CONFIG_PM */ 6132 #endif /* CONFIG_PCI */ 6133 6134 /** 6135 * ata_platform_remove_one - Platform layer callback for device removal 6136 * @pdev: Platform device that was removed 6137 * 6138 * Platform layer indicates to libata via this hook that hot-unplug or 6139 * module unload event has occurred. Detach all ports. Resource 6140 * release is handled via devres. 6141 * 6142 * LOCKING: 6143 * Inherited from platform layer (may sleep). 6144 */ 6145 int ata_platform_remove_one(struct platform_device *pdev) 6146 { 6147 struct ata_host *host = platform_get_drvdata(pdev); 6148 6149 ata_host_detach(host); 6150 6151 return 0; 6152 } 6153 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6154 6155 #ifdef CONFIG_ATA_FORCE 6156 6157 #define force_cbl(name, flag) \ 6158 { #name, .cbl = (flag) } 6159 6160 #define force_spd_limit(spd, val) \ 6161 { #spd, .spd_limit = (val) } 6162 6163 #define force_xfer(mode, shift) \ 6164 { #mode, .xfer_mask = (1UL << (shift)) } 6165 6166 #define force_lflag_on(name, flags) \ 6167 { #name, .lflags_on = (flags) } 6168 6169 #define force_lflag_onoff(name, flags) \ 6170 { "no" #name, .lflags_on = (flags) }, \ 6171 { #name, .lflags_off = (flags) } 6172 6173 #define force_horkage_on(name, flag) \ 6174 { #name, .horkage_on = (flag) } 6175 6176 #define force_horkage_onoff(name, flag) \ 6177 { "no" #name, .horkage_on = (flag) }, \ 6178 { #name, .horkage_off = (flag) } 6179 6180 static const struct ata_force_param force_tbl[] __initconst = { 6181 force_cbl(40c, ATA_CBL_PATA40), 6182 force_cbl(80c, ATA_CBL_PATA80), 6183 force_cbl(short40c, ATA_CBL_PATA40_SHORT), 6184 force_cbl(unk, ATA_CBL_PATA_UNK), 6185 force_cbl(ign, ATA_CBL_PATA_IGN), 6186 force_cbl(sata, ATA_CBL_SATA), 6187 6188 force_spd_limit(1.5Gbps, 1), 6189 force_spd_limit(3.0Gbps, 2), 6190 6191 force_xfer(pio0, ATA_SHIFT_PIO + 0), 6192 force_xfer(pio1, ATA_SHIFT_PIO + 1), 6193 force_xfer(pio2, ATA_SHIFT_PIO + 2), 6194 force_xfer(pio3, ATA_SHIFT_PIO + 3), 6195 force_xfer(pio4, ATA_SHIFT_PIO + 4), 6196 force_xfer(pio5, ATA_SHIFT_PIO + 5), 6197 force_xfer(pio6, ATA_SHIFT_PIO + 6), 6198 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0), 6199 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1), 6200 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2), 6201 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3), 6202 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4), 6203 force_xfer(udma0, ATA_SHIFT_UDMA + 0), 6204 force_xfer(udma16, ATA_SHIFT_UDMA + 0), 6205 force_xfer(udma/16, ATA_SHIFT_UDMA + 0), 6206 force_xfer(udma1, ATA_SHIFT_UDMA + 1), 6207 force_xfer(udma25, ATA_SHIFT_UDMA + 1), 6208 force_xfer(udma/25, ATA_SHIFT_UDMA + 1), 6209 force_xfer(udma2, ATA_SHIFT_UDMA + 2), 6210 force_xfer(udma33, ATA_SHIFT_UDMA + 2), 6211 force_xfer(udma/33, ATA_SHIFT_UDMA + 2), 6212 force_xfer(udma3, ATA_SHIFT_UDMA + 3), 6213 force_xfer(udma44, ATA_SHIFT_UDMA + 3), 6214 force_xfer(udma/44, ATA_SHIFT_UDMA + 3), 6215 force_xfer(udma4, ATA_SHIFT_UDMA + 4), 6216 force_xfer(udma66, ATA_SHIFT_UDMA + 4), 6217 force_xfer(udma/66, ATA_SHIFT_UDMA + 4), 6218 force_xfer(udma5, ATA_SHIFT_UDMA + 5), 6219 force_xfer(udma100, ATA_SHIFT_UDMA + 5), 6220 force_xfer(udma/100, ATA_SHIFT_UDMA + 5), 6221 force_xfer(udma6, ATA_SHIFT_UDMA + 6), 6222 force_xfer(udma133, ATA_SHIFT_UDMA + 6), 6223 force_xfer(udma/133, ATA_SHIFT_UDMA + 6), 6224 force_xfer(udma7, ATA_SHIFT_UDMA + 7), 6225 6226 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST), 6227 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST), 6228 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST), 6229 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE), 6230 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY), 6231 6232 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ), 6233 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM), 6234 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI), 6235 6236 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM), 6237 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM), 6238 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M), 6239 6240 force_horkage_onoff(dma, ATA_HORKAGE_NODMA), 6241 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR), 6242 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA), 6243 6244 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG), 6245 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG), 6246 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR), 6247 6248 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128), 6249 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024), 6250 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48), 6251 6252 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM), 6253 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER), 6254 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID), 6255 force_horkage_onoff(fua, ATA_HORKAGE_NO_FUA), 6256 6257 force_horkage_on(disable, ATA_HORKAGE_DISABLE), 6258 }; 6259 6260 static int __init ata_parse_force_one(char **cur, 6261 struct ata_force_ent *force_ent, 6262 const char **reason) 6263 { 6264 char *start = *cur, *p = *cur; 6265 char *id, *val, *endp; 6266 const struct ata_force_param *match_fp = NULL; 6267 int nr_matches = 0, i; 6268 6269 /* find where this param ends and update *cur */ 6270 while (*p != '\0' && *p != ',') 6271 p++; 6272 6273 if (*p == '\0') 6274 *cur = p; 6275 else 6276 *cur = p + 1; 6277 6278 *p = '\0'; 6279 6280 /* parse */ 6281 p = strchr(start, ':'); 6282 if (!p) { 6283 val = strstrip(start); 6284 goto parse_val; 6285 } 6286 *p = '\0'; 6287 6288 id = strstrip(start); 6289 val = strstrip(p + 1); 6290 6291 /* parse id */ 6292 p = strchr(id, '.'); 6293 if (p) { 6294 *p++ = '\0'; 6295 force_ent->device = simple_strtoul(p, &endp, 10); 6296 if (p == endp || *endp != '\0') { 6297 *reason = "invalid device"; 6298 return -EINVAL; 6299 } 6300 } 6301 6302 force_ent->port = simple_strtoul(id, &endp, 10); 6303 if (id == endp || *endp != '\0') { 6304 *reason = "invalid port/link"; 6305 return -EINVAL; 6306 } 6307 6308 parse_val: 6309 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6310 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6311 const struct ata_force_param *fp = &force_tbl[i]; 6312 6313 if (strncasecmp(val, fp->name, strlen(val))) 6314 continue; 6315 6316 nr_matches++; 6317 match_fp = fp; 6318 6319 if (strcasecmp(val, fp->name) == 0) { 6320 nr_matches = 1; 6321 break; 6322 } 6323 } 6324 6325 if (!nr_matches) { 6326 *reason = "unknown value"; 6327 return -EINVAL; 6328 } 6329 if (nr_matches > 1) { 6330 *reason = "ambiguous value"; 6331 return -EINVAL; 6332 } 6333 6334 force_ent->param = *match_fp; 6335 6336 return 0; 6337 } 6338 6339 static void __init ata_parse_force_param(void) 6340 { 6341 int idx = 0, size = 1; 6342 int last_port = -1, last_device = -1; 6343 char *p, *cur, *next; 6344 6345 /* Calculate maximum number of params and allocate ata_force_tbl */ 6346 for (p = ata_force_param_buf; *p; p++) 6347 if (*p == ',') 6348 size++; 6349 6350 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6351 if (!ata_force_tbl) { 6352 printk(KERN_WARNING "ata: failed to extend force table, " 6353 "libata.force ignored\n"); 6354 return; 6355 } 6356 6357 /* parse and populate the table */ 6358 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6359 const char *reason = ""; 6360 struct ata_force_ent te = { .port = -1, .device = -1 }; 6361 6362 next = cur; 6363 if (ata_parse_force_one(&next, &te, &reason)) { 6364 printk(KERN_WARNING "ata: failed to parse force " 6365 "parameter \"%s\" (%s)\n", 6366 cur, reason); 6367 continue; 6368 } 6369 6370 if (te.port == -1) { 6371 te.port = last_port; 6372 te.device = last_device; 6373 } 6374 6375 ata_force_tbl[idx++] = te; 6376 6377 last_port = te.port; 6378 last_device = te.device; 6379 } 6380 6381 ata_force_tbl_size = idx; 6382 } 6383 6384 static void ata_free_force_param(void) 6385 { 6386 kfree(ata_force_tbl); 6387 } 6388 #else 6389 static inline void ata_parse_force_param(void) { } 6390 static inline void ata_free_force_param(void) { } 6391 #endif 6392 6393 static int __init ata_init(void) 6394 { 6395 int rc; 6396 6397 ata_parse_force_param(); 6398 6399 rc = ata_sff_init(); 6400 if (rc) { 6401 ata_free_force_param(); 6402 return rc; 6403 } 6404 6405 libata_transport_init(); 6406 ata_scsi_transport_template = ata_attach_transport(); 6407 if (!ata_scsi_transport_template) { 6408 ata_sff_exit(); 6409 rc = -ENOMEM; 6410 goto err_out; 6411 } 6412 6413 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6414 return 0; 6415 6416 err_out: 6417 return rc; 6418 } 6419 6420 static void __exit ata_exit(void) 6421 { 6422 ata_release_transport(ata_scsi_transport_template); 6423 libata_transport_exit(); 6424 ata_sff_exit(); 6425 ata_free_force_param(); 6426 } 6427 6428 subsys_initcall(ata_init); 6429 module_exit(ata_exit); 6430 6431 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6432 6433 int ata_ratelimit(void) 6434 { 6435 return __ratelimit(&ratelimit); 6436 } 6437 EXPORT_SYMBOL_GPL(ata_ratelimit); 6438 6439 /** 6440 * ata_msleep - ATA EH owner aware msleep 6441 * @ap: ATA port to attribute the sleep to 6442 * @msecs: duration to sleep in milliseconds 6443 * 6444 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6445 * ownership is released before going to sleep and reacquired 6446 * after the sleep is complete. IOW, other ports sharing the 6447 * @ap->host will be allowed to own the EH while this task is 6448 * sleeping. 6449 * 6450 * LOCKING: 6451 * Might sleep. 6452 */ 6453 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6454 { 6455 bool owns_eh = ap && ap->host->eh_owner == current; 6456 6457 if (owns_eh) 6458 ata_eh_release(ap); 6459 6460 if (msecs < 20) { 6461 unsigned long usecs = msecs * USEC_PER_MSEC; 6462 usleep_range(usecs, usecs + 50); 6463 } else { 6464 msleep(msecs); 6465 } 6466 6467 if (owns_eh) 6468 ata_eh_acquire(ap); 6469 } 6470 EXPORT_SYMBOL_GPL(ata_msleep); 6471 6472 /** 6473 * ata_wait_register - wait until register value changes 6474 * @ap: ATA port to wait register for, can be NULL 6475 * @reg: IO-mapped register 6476 * @mask: Mask to apply to read register value 6477 * @val: Wait condition 6478 * @interval: polling interval in milliseconds 6479 * @timeout: timeout in milliseconds 6480 * 6481 * Waiting for some bits of register to change is a common 6482 * operation for ATA controllers. This function reads 32bit LE 6483 * IO-mapped register @reg and tests for the following condition. 6484 * 6485 * (*@reg & mask) != val 6486 * 6487 * If the condition is met, it returns; otherwise, the process is 6488 * repeated after @interval_msec until timeout. 6489 * 6490 * LOCKING: 6491 * Kernel thread context (may sleep) 6492 * 6493 * RETURNS: 6494 * The final register value. 6495 */ 6496 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6497 unsigned long interval, unsigned long timeout) 6498 { 6499 unsigned long deadline; 6500 u32 tmp; 6501 6502 tmp = ioread32(reg); 6503 6504 /* Calculate timeout _after_ the first read to make sure 6505 * preceding writes reach the controller before starting to 6506 * eat away the timeout. 6507 */ 6508 deadline = ata_deadline(jiffies, timeout); 6509 6510 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6511 ata_msleep(ap, interval); 6512 tmp = ioread32(reg); 6513 } 6514 6515 return tmp; 6516 } 6517 EXPORT_SYMBOL_GPL(ata_wait_register); 6518 6519 /* 6520 * Dummy port_ops 6521 */ 6522 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6523 { 6524 return AC_ERR_SYSTEM; 6525 } 6526 6527 static void ata_dummy_error_handler(struct ata_port *ap) 6528 { 6529 /* truly dummy */ 6530 } 6531 6532 struct ata_port_operations ata_dummy_port_ops = { 6533 .qc_prep = ata_noop_qc_prep, 6534 .qc_issue = ata_dummy_qc_issue, 6535 .error_handler = ata_dummy_error_handler, 6536 .sched_eh = ata_std_sched_eh, 6537 .end_eh = ata_std_end_eh, 6538 }; 6539 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6540 6541 const struct ata_port_info ata_dummy_port_info = { 6542 .port_ops = &ata_dummy_port_ops, 6543 }; 6544 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6545 6546 void ata_print_version(const struct device *dev, const char *version) 6547 { 6548 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6549 } 6550 EXPORT_SYMBOL(ata_print_version); 6551 6552 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6553 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6554 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6555 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6556 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6557