1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned long xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags; 100 }; 101 102 struct ata_force_ent { 103 int port; 104 int device; 105 struct ata_force_param param; 106 }; 107 108 static struct ata_force_ent *ata_force_tbl; 109 static int ata_force_tbl_size; 110 111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 112 /* param_buf is thrown away after initialization, disallow read */ 113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 115 #endif 116 117 static int atapi_enabled = 1; 118 module_param(atapi_enabled, int, 0444); 119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 120 121 static int atapi_dmadir = 0; 122 module_param(atapi_dmadir, int, 0444); 123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 124 125 int atapi_passthru16 = 1; 126 module_param(atapi_passthru16, int, 0444); 127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 128 129 int libata_fua = 0; 130 module_param_named(fua, libata_fua, int, 0444); 131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 132 133 static int ata_ignore_hpa; 134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 136 137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 138 module_param_named(dma, libata_dma_mask, int, 0444); 139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 140 141 static int ata_probe_timeout; 142 module_param(ata_probe_timeout, int, 0444); 143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 144 145 int libata_noacpi = 0; 146 module_param_named(noacpi, libata_noacpi, int, 0444); 147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 148 149 int libata_allow_tpm = 0; 150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 152 153 static int atapi_an; 154 module_param(atapi_an, int, 0444); 155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 156 157 MODULE_AUTHOR("Jeff Garzik"); 158 MODULE_DESCRIPTION("Library module for ATA devices"); 159 MODULE_LICENSE("GPL"); 160 MODULE_VERSION(DRV_VERSION); 161 162 static inline bool ata_dev_print_info(struct ata_device *dev) 163 { 164 struct ata_eh_context *ehc = &dev->link->eh_context; 165 166 return ehc->i.flags & ATA_EHI_PRINTINFO; 167 } 168 169 static bool ata_sstatus_online(u32 sstatus) 170 { 171 return (sstatus & 0xf) == 0x3; 172 } 173 174 /** 175 * ata_link_next - link iteration helper 176 * @link: the previous link, NULL to start 177 * @ap: ATA port containing links to iterate 178 * @mode: iteration mode, one of ATA_LITER_* 179 * 180 * LOCKING: 181 * Host lock or EH context. 182 * 183 * RETURNS: 184 * Pointer to the next link. 185 */ 186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 187 enum ata_link_iter_mode mode) 188 { 189 BUG_ON(mode != ATA_LITER_EDGE && 190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 191 192 /* NULL link indicates start of iteration */ 193 if (!link) 194 switch (mode) { 195 case ATA_LITER_EDGE: 196 case ATA_LITER_PMP_FIRST: 197 if (sata_pmp_attached(ap)) 198 return ap->pmp_link; 199 fallthrough; 200 case ATA_LITER_HOST_FIRST: 201 return &ap->link; 202 } 203 204 /* we just iterated over the host link, what's next? */ 205 if (link == &ap->link) 206 switch (mode) { 207 case ATA_LITER_HOST_FIRST: 208 if (sata_pmp_attached(ap)) 209 return ap->pmp_link; 210 fallthrough; 211 case ATA_LITER_PMP_FIRST: 212 if (unlikely(ap->slave_link)) 213 return ap->slave_link; 214 fallthrough; 215 case ATA_LITER_EDGE: 216 return NULL; 217 } 218 219 /* slave_link excludes PMP */ 220 if (unlikely(link == ap->slave_link)) 221 return NULL; 222 223 /* we were over a PMP link */ 224 if (++link < ap->pmp_link + ap->nr_pmp_links) 225 return link; 226 227 if (mode == ATA_LITER_PMP_FIRST) 228 return &ap->link; 229 230 return NULL; 231 } 232 EXPORT_SYMBOL_GPL(ata_link_next); 233 234 /** 235 * ata_dev_next - device iteration helper 236 * @dev: the previous device, NULL to start 237 * @link: ATA link containing devices to iterate 238 * @mode: iteration mode, one of ATA_DITER_* 239 * 240 * LOCKING: 241 * Host lock or EH context. 242 * 243 * RETURNS: 244 * Pointer to the next device. 245 */ 246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 247 enum ata_dev_iter_mode mode) 248 { 249 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 250 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 251 252 /* NULL dev indicates start of iteration */ 253 if (!dev) 254 switch (mode) { 255 case ATA_DITER_ENABLED: 256 case ATA_DITER_ALL: 257 dev = link->device; 258 goto check; 259 case ATA_DITER_ENABLED_REVERSE: 260 case ATA_DITER_ALL_REVERSE: 261 dev = link->device + ata_link_max_devices(link) - 1; 262 goto check; 263 } 264 265 next: 266 /* move to the next one */ 267 switch (mode) { 268 case ATA_DITER_ENABLED: 269 case ATA_DITER_ALL: 270 if (++dev < link->device + ata_link_max_devices(link)) 271 goto check; 272 return NULL; 273 case ATA_DITER_ENABLED_REVERSE: 274 case ATA_DITER_ALL_REVERSE: 275 if (--dev >= link->device) 276 goto check; 277 return NULL; 278 } 279 280 check: 281 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 282 !ata_dev_enabled(dev)) 283 goto next; 284 return dev; 285 } 286 EXPORT_SYMBOL_GPL(ata_dev_next); 287 288 /** 289 * ata_dev_phys_link - find physical link for a device 290 * @dev: ATA device to look up physical link for 291 * 292 * Look up physical link which @dev is attached to. Note that 293 * this is different from @dev->link only when @dev is on slave 294 * link. For all other cases, it's the same as @dev->link. 295 * 296 * LOCKING: 297 * Don't care. 298 * 299 * RETURNS: 300 * Pointer to the found physical link. 301 */ 302 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 303 { 304 struct ata_port *ap = dev->link->ap; 305 306 if (!ap->slave_link) 307 return dev->link; 308 if (!dev->devno) 309 return &ap->link; 310 return ap->slave_link; 311 } 312 313 #ifdef CONFIG_ATA_FORCE 314 /** 315 * ata_force_cbl - force cable type according to libata.force 316 * @ap: ATA port of interest 317 * 318 * Force cable type according to libata.force and whine about it. 319 * The last entry which has matching port number is used, so it 320 * can be specified as part of device force parameters. For 321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 322 * same effect. 323 * 324 * LOCKING: 325 * EH context. 326 */ 327 void ata_force_cbl(struct ata_port *ap) 328 { 329 int i; 330 331 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 332 const struct ata_force_ent *fe = &ata_force_tbl[i]; 333 334 if (fe->port != -1 && fe->port != ap->print_id) 335 continue; 336 337 if (fe->param.cbl == ATA_CBL_NONE) 338 continue; 339 340 ap->cbl = fe->param.cbl; 341 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 342 return; 343 } 344 } 345 346 /** 347 * ata_force_link_limits - force link limits according to libata.force 348 * @link: ATA link of interest 349 * 350 * Force link flags and SATA spd limit according to libata.force 351 * and whine about it. When only the port part is specified 352 * (e.g. 1:), the limit applies to all links connected to both 353 * the host link and all fan-out ports connected via PMP. If the 354 * device part is specified as 0 (e.g. 1.00:), it specifies the 355 * first fan-out link not the host link. Device number 15 always 356 * points to the host link whether PMP is attached or not. If the 357 * controller has slave link, device number 16 points to it. 358 * 359 * LOCKING: 360 * EH context. 361 */ 362 static void ata_force_link_limits(struct ata_link *link) 363 { 364 bool did_spd = false; 365 int linkno = link->pmp; 366 int i; 367 368 if (ata_is_host_link(link)) 369 linkno += 15; 370 371 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 372 const struct ata_force_ent *fe = &ata_force_tbl[i]; 373 374 if (fe->port != -1 && fe->port != link->ap->print_id) 375 continue; 376 377 if (fe->device != -1 && fe->device != linkno) 378 continue; 379 380 /* only honor the first spd limit */ 381 if (!did_spd && fe->param.spd_limit) { 382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 383 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 384 fe->param.name); 385 did_spd = true; 386 } 387 388 /* let lflags stack */ 389 if (fe->param.lflags) { 390 link->flags |= fe->param.lflags; 391 ata_link_notice(link, 392 "FORCE: link flag 0x%x forced -> 0x%x\n", 393 fe->param.lflags, link->flags); 394 } 395 } 396 } 397 398 /** 399 * ata_force_xfermask - force xfermask according to libata.force 400 * @dev: ATA device of interest 401 * 402 * Force xfer_mask according to libata.force and whine about it. 403 * For consistency with link selection, device number 15 selects 404 * the first device connected to the host link. 405 * 406 * LOCKING: 407 * EH context. 408 */ 409 static void ata_force_xfermask(struct ata_device *dev) 410 { 411 int devno = dev->link->pmp + dev->devno; 412 int alt_devno = devno; 413 int i; 414 415 /* allow n.15/16 for devices attached to host port */ 416 if (ata_is_host_link(dev->link)) 417 alt_devno += 15; 418 419 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 420 const struct ata_force_ent *fe = &ata_force_tbl[i]; 421 unsigned long pio_mask, mwdma_mask, udma_mask; 422 423 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 424 continue; 425 426 if (fe->device != -1 && fe->device != devno && 427 fe->device != alt_devno) 428 continue; 429 430 if (!fe->param.xfer_mask) 431 continue; 432 433 ata_unpack_xfermask(fe->param.xfer_mask, 434 &pio_mask, &mwdma_mask, &udma_mask); 435 if (udma_mask) 436 dev->udma_mask = udma_mask; 437 else if (mwdma_mask) { 438 dev->udma_mask = 0; 439 dev->mwdma_mask = mwdma_mask; 440 } else { 441 dev->udma_mask = 0; 442 dev->mwdma_mask = 0; 443 dev->pio_mask = pio_mask; 444 } 445 446 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 447 fe->param.name); 448 return; 449 } 450 } 451 452 /** 453 * ata_force_horkage - force horkage according to libata.force 454 * @dev: ATA device of interest 455 * 456 * Force horkage according to libata.force and whine about it. 457 * For consistency with link selection, device number 15 selects 458 * the first device connected to the host link. 459 * 460 * LOCKING: 461 * EH context. 462 */ 463 static void ata_force_horkage(struct ata_device *dev) 464 { 465 int devno = dev->link->pmp + dev->devno; 466 int alt_devno = devno; 467 int i; 468 469 /* allow n.15/16 for devices attached to host port */ 470 if (ata_is_host_link(dev->link)) 471 alt_devno += 15; 472 473 for (i = 0; i < ata_force_tbl_size; i++) { 474 const struct ata_force_ent *fe = &ata_force_tbl[i]; 475 476 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 477 continue; 478 479 if (fe->device != -1 && fe->device != devno && 480 fe->device != alt_devno) 481 continue; 482 483 if (!(~dev->horkage & fe->param.horkage_on) && 484 !(dev->horkage & fe->param.horkage_off)) 485 continue; 486 487 dev->horkage |= fe->param.horkage_on; 488 dev->horkage &= ~fe->param.horkage_off; 489 490 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 491 fe->param.name); 492 } 493 } 494 #else 495 static inline void ata_force_link_limits(struct ata_link *link) { } 496 static inline void ata_force_xfermask(struct ata_device *dev) { } 497 static inline void ata_force_horkage(struct ata_device *dev) { } 498 #endif 499 500 /** 501 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 502 * @opcode: SCSI opcode 503 * 504 * Determine ATAPI command type from @opcode. 505 * 506 * LOCKING: 507 * None. 508 * 509 * RETURNS: 510 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 511 */ 512 int atapi_cmd_type(u8 opcode) 513 { 514 switch (opcode) { 515 case GPCMD_READ_10: 516 case GPCMD_READ_12: 517 return ATAPI_READ; 518 519 case GPCMD_WRITE_10: 520 case GPCMD_WRITE_12: 521 case GPCMD_WRITE_AND_VERIFY_10: 522 return ATAPI_WRITE; 523 524 case GPCMD_READ_CD: 525 case GPCMD_READ_CD_MSF: 526 return ATAPI_READ_CD; 527 528 case ATA_16: 529 case ATA_12: 530 if (atapi_passthru16) 531 return ATAPI_PASS_THRU; 532 fallthrough; 533 default: 534 return ATAPI_MISC; 535 } 536 } 537 EXPORT_SYMBOL_GPL(atapi_cmd_type); 538 539 static const u8 ata_rw_cmds[] = { 540 /* pio multi */ 541 ATA_CMD_READ_MULTI, 542 ATA_CMD_WRITE_MULTI, 543 ATA_CMD_READ_MULTI_EXT, 544 ATA_CMD_WRITE_MULTI_EXT, 545 0, 546 0, 547 0, 548 ATA_CMD_WRITE_MULTI_FUA_EXT, 549 /* pio */ 550 ATA_CMD_PIO_READ, 551 ATA_CMD_PIO_WRITE, 552 ATA_CMD_PIO_READ_EXT, 553 ATA_CMD_PIO_WRITE_EXT, 554 0, 555 0, 556 0, 557 0, 558 /* dma */ 559 ATA_CMD_READ, 560 ATA_CMD_WRITE, 561 ATA_CMD_READ_EXT, 562 ATA_CMD_WRITE_EXT, 563 0, 564 0, 565 0, 566 ATA_CMD_WRITE_FUA_EXT 567 }; 568 569 /** 570 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 571 * @tf: command to examine and configure 572 * @dev: device tf belongs to 573 * 574 * Examine the device configuration and tf->flags to calculate 575 * the proper read/write commands and protocol to use. 576 * 577 * LOCKING: 578 * caller. 579 */ 580 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 581 { 582 u8 cmd; 583 584 int index, fua, lba48, write; 585 586 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 587 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 588 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 589 590 if (dev->flags & ATA_DFLAG_PIO) { 591 tf->protocol = ATA_PROT_PIO; 592 index = dev->multi_count ? 0 : 8; 593 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 594 /* Unable to use DMA due to host limitation */ 595 tf->protocol = ATA_PROT_PIO; 596 index = dev->multi_count ? 0 : 8; 597 } else { 598 tf->protocol = ATA_PROT_DMA; 599 index = 16; 600 } 601 602 cmd = ata_rw_cmds[index + fua + lba48 + write]; 603 if (cmd) { 604 tf->command = cmd; 605 return 0; 606 } 607 return -1; 608 } 609 610 /** 611 * ata_tf_read_block - Read block address from ATA taskfile 612 * @tf: ATA taskfile of interest 613 * @dev: ATA device @tf belongs to 614 * 615 * LOCKING: 616 * None. 617 * 618 * Read block address from @tf. This function can handle all 619 * three address formats - LBA, LBA48 and CHS. tf->protocol and 620 * flags select the address format to use. 621 * 622 * RETURNS: 623 * Block address read from @tf. 624 */ 625 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 626 { 627 u64 block = 0; 628 629 if (tf->flags & ATA_TFLAG_LBA) { 630 if (tf->flags & ATA_TFLAG_LBA48) { 631 block |= (u64)tf->hob_lbah << 40; 632 block |= (u64)tf->hob_lbam << 32; 633 block |= (u64)tf->hob_lbal << 24; 634 } else 635 block |= (tf->device & 0xf) << 24; 636 637 block |= tf->lbah << 16; 638 block |= tf->lbam << 8; 639 block |= tf->lbal; 640 } else { 641 u32 cyl, head, sect; 642 643 cyl = tf->lbam | (tf->lbah << 8); 644 head = tf->device & 0xf; 645 sect = tf->lbal; 646 647 if (!sect) { 648 ata_dev_warn(dev, 649 "device reported invalid CHS sector 0\n"); 650 return U64_MAX; 651 } 652 653 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 654 } 655 656 return block; 657 } 658 659 /** 660 * ata_build_rw_tf - Build ATA taskfile for given read/write request 661 * @tf: Target ATA taskfile 662 * @dev: ATA device @tf belongs to 663 * @block: Block address 664 * @n_block: Number of blocks 665 * @tf_flags: RW/FUA etc... 666 * @tag: tag 667 * @class: IO priority class 668 * 669 * LOCKING: 670 * None. 671 * 672 * Build ATA taskfile @tf for read/write request described by 673 * @block, @n_block, @tf_flags and @tag on @dev. 674 * 675 * RETURNS: 676 * 677 * 0 on success, -ERANGE if the request is too large for @dev, 678 * -EINVAL if the request is invalid. 679 */ 680 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 681 u64 block, u32 n_block, unsigned int tf_flags, 682 unsigned int tag, int class) 683 { 684 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 685 tf->flags |= tf_flags; 686 687 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) { 688 /* yay, NCQ */ 689 if (!lba_48_ok(block, n_block)) 690 return -ERANGE; 691 692 tf->protocol = ATA_PROT_NCQ; 693 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 694 695 if (tf->flags & ATA_TFLAG_WRITE) 696 tf->command = ATA_CMD_FPDMA_WRITE; 697 else 698 tf->command = ATA_CMD_FPDMA_READ; 699 700 tf->nsect = tag << 3; 701 tf->hob_feature = (n_block >> 8) & 0xff; 702 tf->feature = n_block & 0xff; 703 704 tf->hob_lbah = (block >> 40) & 0xff; 705 tf->hob_lbam = (block >> 32) & 0xff; 706 tf->hob_lbal = (block >> 24) & 0xff; 707 tf->lbah = (block >> 16) & 0xff; 708 tf->lbam = (block >> 8) & 0xff; 709 tf->lbal = block & 0xff; 710 711 tf->device = ATA_LBA; 712 if (tf->flags & ATA_TFLAG_FUA) 713 tf->device |= 1 << 7; 714 715 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE && 716 class == IOPRIO_CLASS_RT) 717 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 718 } else if (dev->flags & ATA_DFLAG_LBA) { 719 tf->flags |= ATA_TFLAG_LBA; 720 721 if (lba_28_ok(block, n_block)) { 722 /* use LBA28 */ 723 tf->device |= (block >> 24) & 0xf; 724 } else if (lba_48_ok(block, n_block)) { 725 if (!(dev->flags & ATA_DFLAG_LBA48)) 726 return -ERANGE; 727 728 /* use LBA48 */ 729 tf->flags |= ATA_TFLAG_LBA48; 730 731 tf->hob_nsect = (n_block >> 8) & 0xff; 732 733 tf->hob_lbah = (block >> 40) & 0xff; 734 tf->hob_lbam = (block >> 32) & 0xff; 735 tf->hob_lbal = (block >> 24) & 0xff; 736 } else 737 /* request too large even for LBA48 */ 738 return -ERANGE; 739 740 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 741 return -EINVAL; 742 743 tf->nsect = n_block & 0xff; 744 745 tf->lbah = (block >> 16) & 0xff; 746 tf->lbam = (block >> 8) & 0xff; 747 tf->lbal = block & 0xff; 748 749 tf->device |= ATA_LBA; 750 } else { 751 /* CHS */ 752 u32 sect, head, cyl, track; 753 754 /* The request -may- be too large for CHS addressing. */ 755 if (!lba_28_ok(block, n_block)) 756 return -ERANGE; 757 758 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 759 return -EINVAL; 760 761 /* Convert LBA to CHS */ 762 track = (u32)block / dev->sectors; 763 cyl = track / dev->heads; 764 head = track % dev->heads; 765 sect = (u32)block % dev->sectors + 1; 766 767 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 768 (u32)block, track, cyl, head, sect); 769 770 /* Check whether the converted CHS can fit. 771 Cylinder: 0-65535 772 Head: 0-15 773 Sector: 1-255*/ 774 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 775 return -ERANGE; 776 777 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 778 tf->lbal = sect; 779 tf->lbam = cyl; 780 tf->lbah = cyl >> 8; 781 tf->device |= head; 782 } 783 784 return 0; 785 } 786 787 /** 788 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 789 * @pio_mask: pio_mask 790 * @mwdma_mask: mwdma_mask 791 * @udma_mask: udma_mask 792 * 793 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 794 * unsigned int xfer_mask. 795 * 796 * LOCKING: 797 * None. 798 * 799 * RETURNS: 800 * Packed xfer_mask. 801 */ 802 unsigned long ata_pack_xfermask(unsigned long pio_mask, 803 unsigned long mwdma_mask, 804 unsigned long udma_mask) 805 { 806 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 807 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 808 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 809 } 810 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 811 812 /** 813 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 814 * @xfer_mask: xfer_mask to unpack 815 * @pio_mask: resulting pio_mask 816 * @mwdma_mask: resulting mwdma_mask 817 * @udma_mask: resulting udma_mask 818 * 819 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 820 * Any NULL destination masks will be ignored. 821 */ 822 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 823 unsigned long *mwdma_mask, unsigned long *udma_mask) 824 { 825 if (pio_mask) 826 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 827 if (mwdma_mask) 828 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 829 if (udma_mask) 830 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 831 } 832 833 static const struct ata_xfer_ent { 834 int shift, bits; 835 u8 base; 836 } ata_xfer_tbl[] = { 837 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 838 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 839 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 840 { -1, }, 841 }; 842 843 /** 844 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 845 * @xfer_mask: xfer_mask of interest 846 * 847 * Return matching XFER_* value for @xfer_mask. Only the highest 848 * bit of @xfer_mask is considered. 849 * 850 * LOCKING: 851 * None. 852 * 853 * RETURNS: 854 * Matching XFER_* value, 0xff if no match found. 855 */ 856 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 857 { 858 int highbit = fls(xfer_mask) - 1; 859 const struct ata_xfer_ent *ent; 860 861 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 862 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 863 return ent->base + highbit - ent->shift; 864 return 0xff; 865 } 866 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 867 868 /** 869 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 870 * @xfer_mode: XFER_* of interest 871 * 872 * Return matching xfer_mask for @xfer_mode. 873 * 874 * LOCKING: 875 * None. 876 * 877 * RETURNS: 878 * Matching xfer_mask, 0 if no match found. 879 */ 880 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 881 { 882 const struct ata_xfer_ent *ent; 883 884 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 885 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 886 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 887 & ~((1 << ent->shift) - 1); 888 return 0; 889 } 890 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 891 892 /** 893 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 894 * @xfer_mode: XFER_* of interest 895 * 896 * Return matching xfer_shift for @xfer_mode. 897 * 898 * LOCKING: 899 * None. 900 * 901 * RETURNS: 902 * Matching xfer_shift, -1 if no match found. 903 */ 904 int ata_xfer_mode2shift(unsigned long xfer_mode) 905 { 906 const struct ata_xfer_ent *ent; 907 908 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 909 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 910 return ent->shift; 911 return -1; 912 } 913 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 914 915 /** 916 * ata_mode_string - convert xfer_mask to string 917 * @xfer_mask: mask of bits supported; only highest bit counts. 918 * 919 * Determine string which represents the highest speed 920 * (highest bit in @modemask). 921 * 922 * LOCKING: 923 * None. 924 * 925 * RETURNS: 926 * Constant C string representing highest speed listed in 927 * @mode_mask, or the constant C string "<n/a>". 928 */ 929 const char *ata_mode_string(unsigned long xfer_mask) 930 { 931 static const char * const xfer_mode_str[] = { 932 "PIO0", 933 "PIO1", 934 "PIO2", 935 "PIO3", 936 "PIO4", 937 "PIO5", 938 "PIO6", 939 "MWDMA0", 940 "MWDMA1", 941 "MWDMA2", 942 "MWDMA3", 943 "MWDMA4", 944 "UDMA/16", 945 "UDMA/25", 946 "UDMA/33", 947 "UDMA/44", 948 "UDMA/66", 949 "UDMA/100", 950 "UDMA/133", 951 "UDMA7", 952 }; 953 int highbit; 954 955 highbit = fls(xfer_mask) - 1; 956 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 957 return xfer_mode_str[highbit]; 958 return "<n/a>"; 959 } 960 EXPORT_SYMBOL_GPL(ata_mode_string); 961 962 const char *sata_spd_string(unsigned int spd) 963 { 964 static const char * const spd_str[] = { 965 "1.5 Gbps", 966 "3.0 Gbps", 967 "6.0 Gbps", 968 }; 969 970 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 971 return "<unknown>"; 972 return spd_str[spd - 1]; 973 } 974 975 /** 976 * ata_dev_classify - determine device type based on ATA-spec signature 977 * @tf: ATA taskfile register set for device to be identified 978 * 979 * Determine from taskfile register contents whether a device is 980 * ATA or ATAPI, as per "Signature and persistence" section 981 * of ATA/PI spec (volume 1, sect 5.14). 982 * 983 * LOCKING: 984 * None. 985 * 986 * RETURNS: 987 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 988 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 989 */ 990 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 991 { 992 /* Apple's open source Darwin code hints that some devices only 993 * put a proper signature into the LBA mid/high registers, 994 * So, we only check those. It's sufficient for uniqueness. 995 * 996 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 997 * signatures for ATA and ATAPI devices attached on SerialATA, 998 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 999 * spec has never mentioned about using different signatures 1000 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1001 * Multiplier specification began to use 0x69/0x96 to identify 1002 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1003 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1004 * 0x69/0x96 shortly and described them as reserved for 1005 * SerialATA. 1006 * 1007 * We follow the current spec and consider that 0x69/0x96 1008 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1009 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1010 * SEMB signature. This is worked around in 1011 * ata_dev_read_id(). 1012 */ 1013 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1014 DPRINTK("found ATA device by sig\n"); 1015 return ATA_DEV_ATA; 1016 } 1017 1018 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1019 DPRINTK("found ATAPI device by sig\n"); 1020 return ATA_DEV_ATAPI; 1021 } 1022 1023 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1024 DPRINTK("found PMP device by sig\n"); 1025 return ATA_DEV_PMP; 1026 } 1027 1028 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1029 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1030 return ATA_DEV_SEMB; 1031 } 1032 1033 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { 1034 DPRINTK("found ZAC device by sig\n"); 1035 return ATA_DEV_ZAC; 1036 } 1037 1038 DPRINTK("unknown device\n"); 1039 return ATA_DEV_UNKNOWN; 1040 } 1041 EXPORT_SYMBOL_GPL(ata_dev_classify); 1042 1043 /** 1044 * ata_id_string - Convert IDENTIFY DEVICE page into string 1045 * @id: IDENTIFY DEVICE results we will examine 1046 * @s: string into which data is output 1047 * @ofs: offset into identify device page 1048 * @len: length of string to return. must be an even number. 1049 * 1050 * The strings in the IDENTIFY DEVICE page are broken up into 1051 * 16-bit chunks. Run through the string, and output each 1052 * 8-bit chunk linearly, regardless of platform. 1053 * 1054 * LOCKING: 1055 * caller. 1056 */ 1057 1058 void ata_id_string(const u16 *id, unsigned char *s, 1059 unsigned int ofs, unsigned int len) 1060 { 1061 unsigned int c; 1062 1063 BUG_ON(len & 1); 1064 1065 while (len > 0) { 1066 c = id[ofs] >> 8; 1067 *s = c; 1068 s++; 1069 1070 c = id[ofs] & 0xff; 1071 *s = c; 1072 s++; 1073 1074 ofs++; 1075 len -= 2; 1076 } 1077 } 1078 EXPORT_SYMBOL_GPL(ata_id_string); 1079 1080 /** 1081 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1082 * @id: IDENTIFY DEVICE results we will examine 1083 * @s: string into which data is output 1084 * @ofs: offset into identify device page 1085 * @len: length of string to return. must be an odd number. 1086 * 1087 * This function is identical to ata_id_string except that it 1088 * trims trailing spaces and terminates the resulting string with 1089 * null. @len must be actual maximum length (even number) + 1. 1090 * 1091 * LOCKING: 1092 * caller. 1093 */ 1094 void ata_id_c_string(const u16 *id, unsigned char *s, 1095 unsigned int ofs, unsigned int len) 1096 { 1097 unsigned char *p; 1098 1099 ata_id_string(id, s, ofs, len - 1); 1100 1101 p = s + strnlen(s, len - 1); 1102 while (p > s && p[-1] == ' ') 1103 p--; 1104 *p = '\0'; 1105 } 1106 EXPORT_SYMBOL_GPL(ata_id_c_string); 1107 1108 static u64 ata_id_n_sectors(const u16 *id) 1109 { 1110 if (ata_id_has_lba(id)) { 1111 if (ata_id_has_lba48(id)) 1112 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1113 else 1114 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1115 } else { 1116 if (ata_id_current_chs_valid(id)) 1117 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1118 id[ATA_ID_CUR_SECTORS]; 1119 else 1120 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1121 id[ATA_ID_SECTORS]; 1122 } 1123 } 1124 1125 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1126 { 1127 u64 sectors = 0; 1128 1129 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1130 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1131 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1132 sectors |= (tf->lbah & 0xff) << 16; 1133 sectors |= (tf->lbam & 0xff) << 8; 1134 sectors |= (tf->lbal & 0xff); 1135 1136 return sectors; 1137 } 1138 1139 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1140 { 1141 u64 sectors = 0; 1142 1143 sectors |= (tf->device & 0x0f) << 24; 1144 sectors |= (tf->lbah & 0xff) << 16; 1145 sectors |= (tf->lbam & 0xff) << 8; 1146 sectors |= (tf->lbal & 0xff); 1147 1148 return sectors; 1149 } 1150 1151 /** 1152 * ata_read_native_max_address - Read native max address 1153 * @dev: target device 1154 * @max_sectors: out parameter for the result native max address 1155 * 1156 * Perform an LBA48 or LBA28 native size query upon the device in 1157 * question. 1158 * 1159 * RETURNS: 1160 * 0 on success, -EACCES if command is aborted by the drive. 1161 * -EIO on other errors. 1162 */ 1163 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1164 { 1165 unsigned int err_mask; 1166 struct ata_taskfile tf; 1167 int lba48 = ata_id_has_lba48(dev->id); 1168 1169 ata_tf_init(dev, &tf); 1170 1171 /* always clear all address registers */ 1172 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1173 1174 if (lba48) { 1175 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1176 tf.flags |= ATA_TFLAG_LBA48; 1177 } else 1178 tf.command = ATA_CMD_READ_NATIVE_MAX; 1179 1180 tf.protocol = ATA_PROT_NODATA; 1181 tf.device |= ATA_LBA; 1182 1183 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1184 if (err_mask) { 1185 ata_dev_warn(dev, 1186 "failed to read native max address (err_mask=0x%x)\n", 1187 err_mask); 1188 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1189 return -EACCES; 1190 return -EIO; 1191 } 1192 1193 if (lba48) 1194 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1195 else 1196 *max_sectors = ata_tf_to_lba(&tf) + 1; 1197 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1198 (*max_sectors)--; 1199 return 0; 1200 } 1201 1202 /** 1203 * ata_set_max_sectors - Set max sectors 1204 * @dev: target device 1205 * @new_sectors: new max sectors value to set for the device 1206 * 1207 * Set max sectors of @dev to @new_sectors. 1208 * 1209 * RETURNS: 1210 * 0 on success, -EACCES if command is aborted or denied (due to 1211 * previous non-volatile SET_MAX) by the drive. -EIO on other 1212 * errors. 1213 */ 1214 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1215 { 1216 unsigned int err_mask; 1217 struct ata_taskfile tf; 1218 int lba48 = ata_id_has_lba48(dev->id); 1219 1220 new_sectors--; 1221 1222 ata_tf_init(dev, &tf); 1223 1224 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1225 1226 if (lba48) { 1227 tf.command = ATA_CMD_SET_MAX_EXT; 1228 tf.flags |= ATA_TFLAG_LBA48; 1229 1230 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1231 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1232 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1233 } else { 1234 tf.command = ATA_CMD_SET_MAX; 1235 1236 tf.device |= (new_sectors >> 24) & 0xf; 1237 } 1238 1239 tf.protocol = ATA_PROT_NODATA; 1240 tf.device |= ATA_LBA; 1241 1242 tf.lbal = (new_sectors >> 0) & 0xff; 1243 tf.lbam = (new_sectors >> 8) & 0xff; 1244 tf.lbah = (new_sectors >> 16) & 0xff; 1245 1246 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1247 if (err_mask) { 1248 ata_dev_warn(dev, 1249 "failed to set max address (err_mask=0x%x)\n", 1250 err_mask); 1251 if (err_mask == AC_ERR_DEV && 1252 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1253 return -EACCES; 1254 return -EIO; 1255 } 1256 1257 return 0; 1258 } 1259 1260 /** 1261 * ata_hpa_resize - Resize a device with an HPA set 1262 * @dev: Device to resize 1263 * 1264 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1265 * it if required to the full size of the media. The caller must check 1266 * the drive has the HPA feature set enabled. 1267 * 1268 * RETURNS: 1269 * 0 on success, -errno on failure. 1270 */ 1271 static int ata_hpa_resize(struct ata_device *dev) 1272 { 1273 bool print_info = ata_dev_print_info(dev); 1274 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1275 u64 sectors = ata_id_n_sectors(dev->id); 1276 u64 native_sectors; 1277 int rc; 1278 1279 /* do we need to do it? */ 1280 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1281 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1282 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1283 return 0; 1284 1285 /* read native max address */ 1286 rc = ata_read_native_max_address(dev, &native_sectors); 1287 if (rc) { 1288 /* If device aborted the command or HPA isn't going to 1289 * be unlocked, skip HPA resizing. 1290 */ 1291 if (rc == -EACCES || !unlock_hpa) { 1292 ata_dev_warn(dev, 1293 "HPA support seems broken, skipping HPA handling\n"); 1294 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1295 1296 /* we can continue if device aborted the command */ 1297 if (rc == -EACCES) 1298 rc = 0; 1299 } 1300 1301 return rc; 1302 } 1303 dev->n_native_sectors = native_sectors; 1304 1305 /* nothing to do? */ 1306 if (native_sectors <= sectors || !unlock_hpa) { 1307 if (!print_info || native_sectors == sectors) 1308 return 0; 1309 1310 if (native_sectors > sectors) 1311 ata_dev_info(dev, 1312 "HPA detected: current %llu, native %llu\n", 1313 (unsigned long long)sectors, 1314 (unsigned long long)native_sectors); 1315 else if (native_sectors < sectors) 1316 ata_dev_warn(dev, 1317 "native sectors (%llu) is smaller than sectors (%llu)\n", 1318 (unsigned long long)native_sectors, 1319 (unsigned long long)sectors); 1320 return 0; 1321 } 1322 1323 /* let's unlock HPA */ 1324 rc = ata_set_max_sectors(dev, native_sectors); 1325 if (rc == -EACCES) { 1326 /* if device aborted the command, skip HPA resizing */ 1327 ata_dev_warn(dev, 1328 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1329 (unsigned long long)sectors, 1330 (unsigned long long)native_sectors); 1331 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1332 return 0; 1333 } else if (rc) 1334 return rc; 1335 1336 /* re-read IDENTIFY data */ 1337 rc = ata_dev_reread_id(dev, 0); 1338 if (rc) { 1339 ata_dev_err(dev, 1340 "failed to re-read IDENTIFY data after HPA resizing\n"); 1341 return rc; 1342 } 1343 1344 if (print_info) { 1345 u64 new_sectors = ata_id_n_sectors(dev->id); 1346 ata_dev_info(dev, 1347 "HPA unlocked: %llu -> %llu, native %llu\n", 1348 (unsigned long long)sectors, 1349 (unsigned long long)new_sectors, 1350 (unsigned long long)native_sectors); 1351 } 1352 1353 return 0; 1354 } 1355 1356 /** 1357 * ata_dump_id - IDENTIFY DEVICE info debugging output 1358 * @id: IDENTIFY DEVICE page to dump 1359 * 1360 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1361 * page. 1362 * 1363 * LOCKING: 1364 * caller. 1365 */ 1366 1367 static inline void ata_dump_id(const u16 *id) 1368 { 1369 DPRINTK("49==0x%04x " 1370 "53==0x%04x " 1371 "63==0x%04x " 1372 "64==0x%04x " 1373 "75==0x%04x \n", 1374 id[49], 1375 id[53], 1376 id[63], 1377 id[64], 1378 id[75]); 1379 DPRINTK("80==0x%04x " 1380 "81==0x%04x " 1381 "82==0x%04x " 1382 "83==0x%04x " 1383 "84==0x%04x \n", 1384 id[80], 1385 id[81], 1386 id[82], 1387 id[83], 1388 id[84]); 1389 DPRINTK("88==0x%04x " 1390 "93==0x%04x\n", 1391 id[88], 1392 id[93]); 1393 } 1394 1395 /** 1396 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1397 * @id: IDENTIFY data to compute xfer mask from 1398 * 1399 * Compute the xfermask for this device. This is not as trivial 1400 * as it seems if we must consider early devices correctly. 1401 * 1402 * FIXME: pre IDE drive timing (do we care ?). 1403 * 1404 * LOCKING: 1405 * None. 1406 * 1407 * RETURNS: 1408 * Computed xfermask 1409 */ 1410 unsigned long ata_id_xfermask(const u16 *id) 1411 { 1412 unsigned long pio_mask, mwdma_mask, udma_mask; 1413 1414 /* Usual case. Word 53 indicates word 64 is valid */ 1415 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1416 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1417 pio_mask <<= 3; 1418 pio_mask |= 0x7; 1419 } else { 1420 /* If word 64 isn't valid then Word 51 high byte holds 1421 * the PIO timing number for the maximum. Turn it into 1422 * a mask. 1423 */ 1424 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1425 if (mode < 5) /* Valid PIO range */ 1426 pio_mask = (2 << mode) - 1; 1427 else 1428 pio_mask = 1; 1429 1430 /* But wait.. there's more. Design your standards by 1431 * committee and you too can get a free iordy field to 1432 * process. However its the speeds not the modes that 1433 * are supported... Note drivers using the timing API 1434 * will get this right anyway 1435 */ 1436 } 1437 1438 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1439 1440 if (ata_id_is_cfa(id)) { 1441 /* 1442 * Process compact flash extended modes 1443 */ 1444 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1445 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1446 1447 if (pio) 1448 pio_mask |= (1 << 5); 1449 if (pio > 1) 1450 pio_mask |= (1 << 6); 1451 if (dma) 1452 mwdma_mask |= (1 << 3); 1453 if (dma > 1) 1454 mwdma_mask |= (1 << 4); 1455 } 1456 1457 udma_mask = 0; 1458 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1459 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1460 1461 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1462 } 1463 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1464 1465 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1466 { 1467 struct completion *waiting = qc->private_data; 1468 1469 complete(waiting); 1470 } 1471 1472 /** 1473 * ata_exec_internal_sg - execute libata internal command 1474 * @dev: Device to which the command is sent 1475 * @tf: Taskfile registers for the command and the result 1476 * @cdb: CDB for packet command 1477 * @dma_dir: Data transfer direction of the command 1478 * @sgl: sg list for the data buffer of the command 1479 * @n_elem: Number of sg entries 1480 * @timeout: Timeout in msecs (0 for default) 1481 * 1482 * Executes libata internal command with timeout. @tf contains 1483 * command on entry and result on return. Timeout and error 1484 * conditions are reported via return value. No recovery action 1485 * is taken after a command times out. It's caller's duty to 1486 * clean up after timeout. 1487 * 1488 * LOCKING: 1489 * None. Should be called with kernel context, might sleep. 1490 * 1491 * RETURNS: 1492 * Zero on success, AC_ERR_* mask on failure 1493 */ 1494 unsigned ata_exec_internal_sg(struct ata_device *dev, 1495 struct ata_taskfile *tf, const u8 *cdb, 1496 int dma_dir, struct scatterlist *sgl, 1497 unsigned int n_elem, unsigned long timeout) 1498 { 1499 struct ata_link *link = dev->link; 1500 struct ata_port *ap = link->ap; 1501 u8 command = tf->command; 1502 int auto_timeout = 0; 1503 struct ata_queued_cmd *qc; 1504 unsigned int preempted_tag; 1505 u32 preempted_sactive; 1506 u64 preempted_qc_active; 1507 int preempted_nr_active_links; 1508 DECLARE_COMPLETION_ONSTACK(wait); 1509 unsigned long flags; 1510 unsigned int err_mask; 1511 int rc; 1512 1513 spin_lock_irqsave(ap->lock, flags); 1514 1515 /* no internal command while frozen */ 1516 if (ap->pflags & ATA_PFLAG_FROZEN) { 1517 spin_unlock_irqrestore(ap->lock, flags); 1518 return AC_ERR_SYSTEM; 1519 } 1520 1521 /* initialize internal qc */ 1522 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1523 1524 qc->tag = ATA_TAG_INTERNAL; 1525 qc->hw_tag = 0; 1526 qc->scsicmd = NULL; 1527 qc->ap = ap; 1528 qc->dev = dev; 1529 ata_qc_reinit(qc); 1530 1531 preempted_tag = link->active_tag; 1532 preempted_sactive = link->sactive; 1533 preempted_qc_active = ap->qc_active; 1534 preempted_nr_active_links = ap->nr_active_links; 1535 link->active_tag = ATA_TAG_POISON; 1536 link->sactive = 0; 1537 ap->qc_active = 0; 1538 ap->nr_active_links = 0; 1539 1540 /* prepare & issue qc */ 1541 qc->tf = *tf; 1542 if (cdb) 1543 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1544 1545 /* some SATA bridges need us to indicate data xfer direction */ 1546 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1547 dma_dir == DMA_FROM_DEVICE) 1548 qc->tf.feature |= ATAPI_DMADIR; 1549 1550 qc->flags |= ATA_QCFLAG_RESULT_TF; 1551 qc->dma_dir = dma_dir; 1552 if (dma_dir != DMA_NONE) { 1553 unsigned int i, buflen = 0; 1554 struct scatterlist *sg; 1555 1556 for_each_sg(sgl, sg, n_elem, i) 1557 buflen += sg->length; 1558 1559 ata_sg_init(qc, sgl, n_elem); 1560 qc->nbytes = buflen; 1561 } 1562 1563 qc->private_data = &wait; 1564 qc->complete_fn = ata_qc_complete_internal; 1565 1566 ata_qc_issue(qc); 1567 1568 spin_unlock_irqrestore(ap->lock, flags); 1569 1570 if (!timeout) { 1571 if (ata_probe_timeout) 1572 timeout = ata_probe_timeout * 1000; 1573 else { 1574 timeout = ata_internal_cmd_timeout(dev, command); 1575 auto_timeout = 1; 1576 } 1577 } 1578 1579 if (ap->ops->error_handler) 1580 ata_eh_release(ap); 1581 1582 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1583 1584 if (ap->ops->error_handler) 1585 ata_eh_acquire(ap); 1586 1587 ata_sff_flush_pio_task(ap); 1588 1589 if (!rc) { 1590 spin_lock_irqsave(ap->lock, flags); 1591 1592 /* We're racing with irq here. If we lose, the 1593 * following test prevents us from completing the qc 1594 * twice. If we win, the port is frozen and will be 1595 * cleaned up by ->post_internal_cmd(). 1596 */ 1597 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1598 qc->err_mask |= AC_ERR_TIMEOUT; 1599 1600 if (ap->ops->error_handler) 1601 ata_port_freeze(ap); 1602 else 1603 ata_qc_complete(qc); 1604 1605 if (ata_msg_warn(ap)) 1606 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1607 command); 1608 } 1609 1610 spin_unlock_irqrestore(ap->lock, flags); 1611 } 1612 1613 /* do post_internal_cmd */ 1614 if (ap->ops->post_internal_cmd) 1615 ap->ops->post_internal_cmd(qc); 1616 1617 /* perform minimal error analysis */ 1618 if (qc->flags & ATA_QCFLAG_FAILED) { 1619 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1620 qc->err_mask |= AC_ERR_DEV; 1621 1622 if (!qc->err_mask) 1623 qc->err_mask |= AC_ERR_OTHER; 1624 1625 if (qc->err_mask & ~AC_ERR_OTHER) 1626 qc->err_mask &= ~AC_ERR_OTHER; 1627 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1628 qc->result_tf.command |= ATA_SENSE; 1629 } 1630 1631 /* finish up */ 1632 spin_lock_irqsave(ap->lock, flags); 1633 1634 *tf = qc->result_tf; 1635 err_mask = qc->err_mask; 1636 1637 ata_qc_free(qc); 1638 link->active_tag = preempted_tag; 1639 link->sactive = preempted_sactive; 1640 ap->qc_active = preempted_qc_active; 1641 ap->nr_active_links = preempted_nr_active_links; 1642 1643 spin_unlock_irqrestore(ap->lock, flags); 1644 1645 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1646 ata_internal_cmd_timed_out(dev, command); 1647 1648 return err_mask; 1649 } 1650 1651 /** 1652 * ata_exec_internal - execute libata internal command 1653 * @dev: Device to which the command is sent 1654 * @tf: Taskfile registers for the command and the result 1655 * @cdb: CDB for packet command 1656 * @dma_dir: Data transfer direction of the command 1657 * @buf: Data buffer of the command 1658 * @buflen: Length of data buffer 1659 * @timeout: Timeout in msecs (0 for default) 1660 * 1661 * Wrapper around ata_exec_internal_sg() which takes simple 1662 * buffer instead of sg list. 1663 * 1664 * LOCKING: 1665 * None. Should be called with kernel context, might sleep. 1666 * 1667 * RETURNS: 1668 * Zero on success, AC_ERR_* mask on failure 1669 */ 1670 unsigned ata_exec_internal(struct ata_device *dev, 1671 struct ata_taskfile *tf, const u8 *cdb, 1672 int dma_dir, void *buf, unsigned int buflen, 1673 unsigned long timeout) 1674 { 1675 struct scatterlist *psg = NULL, sg; 1676 unsigned int n_elem = 0; 1677 1678 if (dma_dir != DMA_NONE) { 1679 WARN_ON(!buf); 1680 sg_init_one(&sg, buf, buflen); 1681 psg = &sg; 1682 n_elem++; 1683 } 1684 1685 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1686 timeout); 1687 } 1688 1689 /** 1690 * ata_pio_need_iordy - check if iordy needed 1691 * @adev: ATA device 1692 * 1693 * Check if the current speed of the device requires IORDY. Used 1694 * by various controllers for chip configuration. 1695 */ 1696 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1697 { 1698 /* Don't set IORDY if we're preparing for reset. IORDY may 1699 * lead to controller lock up on certain controllers if the 1700 * port is not occupied. See bko#11703 for details. 1701 */ 1702 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1703 return 0; 1704 /* Controller doesn't support IORDY. Probably a pointless 1705 * check as the caller should know this. 1706 */ 1707 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1708 return 0; 1709 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1710 if (ata_id_is_cfa(adev->id) 1711 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1712 return 0; 1713 /* PIO3 and higher it is mandatory */ 1714 if (adev->pio_mode > XFER_PIO_2) 1715 return 1; 1716 /* We turn it on when possible */ 1717 if (ata_id_has_iordy(adev->id)) 1718 return 1; 1719 return 0; 1720 } 1721 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1722 1723 /** 1724 * ata_pio_mask_no_iordy - Return the non IORDY mask 1725 * @adev: ATA device 1726 * 1727 * Compute the highest mode possible if we are not using iordy. Return 1728 * -1 if no iordy mode is available. 1729 */ 1730 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1731 { 1732 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1733 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1734 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1735 /* Is the speed faster than the drive allows non IORDY ? */ 1736 if (pio) { 1737 /* This is cycle times not frequency - watch the logic! */ 1738 if (pio > 240) /* PIO2 is 240nS per cycle */ 1739 return 3 << ATA_SHIFT_PIO; 1740 return 7 << ATA_SHIFT_PIO; 1741 } 1742 } 1743 return 3 << ATA_SHIFT_PIO; 1744 } 1745 1746 /** 1747 * ata_do_dev_read_id - default ID read method 1748 * @dev: device 1749 * @tf: proposed taskfile 1750 * @id: data buffer 1751 * 1752 * Issue the identify taskfile and hand back the buffer containing 1753 * identify data. For some RAID controllers and for pre ATA devices 1754 * this function is wrapped or replaced by the driver 1755 */ 1756 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1757 struct ata_taskfile *tf, u16 *id) 1758 { 1759 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1760 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1761 } 1762 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1763 1764 /** 1765 * ata_dev_read_id - Read ID data from the specified device 1766 * @dev: target device 1767 * @p_class: pointer to class of the target device (may be changed) 1768 * @flags: ATA_READID_* flags 1769 * @id: buffer to read IDENTIFY data into 1770 * 1771 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1772 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1773 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1774 * for pre-ATA4 drives. 1775 * 1776 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1777 * now we abort if we hit that case. 1778 * 1779 * LOCKING: 1780 * Kernel thread context (may sleep) 1781 * 1782 * RETURNS: 1783 * 0 on success, -errno otherwise. 1784 */ 1785 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1786 unsigned int flags, u16 *id) 1787 { 1788 struct ata_port *ap = dev->link->ap; 1789 unsigned int class = *p_class; 1790 struct ata_taskfile tf; 1791 unsigned int err_mask = 0; 1792 const char *reason; 1793 bool is_semb = class == ATA_DEV_SEMB; 1794 int may_fallback = 1, tried_spinup = 0; 1795 int rc; 1796 1797 if (ata_msg_ctl(ap)) 1798 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1799 1800 retry: 1801 ata_tf_init(dev, &tf); 1802 1803 switch (class) { 1804 case ATA_DEV_SEMB: 1805 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1806 fallthrough; 1807 case ATA_DEV_ATA: 1808 case ATA_DEV_ZAC: 1809 tf.command = ATA_CMD_ID_ATA; 1810 break; 1811 case ATA_DEV_ATAPI: 1812 tf.command = ATA_CMD_ID_ATAPI; 1813 break; 1814 default: 1815 rc = -ENODEV; 1816 reason = "unsupported class"; 1817 goto err_out; 1818 } 1819 1820 tf.protocol = ATA_PROT_PIO; 1821 1822 /* Some devices choke if TF registers contain garbage. Make 1823 * sure those are properly initialized. 1824 */ 1825 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1826 1827 /* Device presence detection is unreliable on some 1828 * controllers. Always poll IDENTIFY if available. 1829 */ 1830 tf.flags |= ATA_TFLAG_POLLING; 1831 1832 if (ap->ops->read_id) 1833 err_mask = ap->ops->read_id(dev, &tf, id); 1834 else 1835 err_mask = ata_do_dev_read_id(dev, &tf, id); 1836 1837 if (err_mask) { 1838 if (err_mask & AC_ERR_NODEV_HINT) { 1839 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1840 return -ENOENT; 1841 } 1842 1843 if (is_semb) { 1844 ata_dev_info(dev, 1845 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1846 /* SEMB is not supported yet */ 1847 *p_class = ATA_DEV_SEMB_UNSUP; 1848 return 0; 1849 } 1850 1851 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1852 /* Device or controller might have reported 1853 * the wrong device class. Give a shot at the 1854 * other IDENTIFY if the current one is 1855 * aborted by the device. 1856 */ 1857 if (may_fallback) { 1858 may_fallback = 0; 1859 1860 if (class == ATA_DEV_ATA) 1861 class = ATA_DEV_ATAPI; 1862 else 1863 class = ATA_DEV_ATA; 1864 goto retry; 1865 } 1866 1867 /* Control reaches here iff the device aborted 1868 * both flavors of IDENTIFYs which happens 1869 * sometimes with phantom devices. 1870 */ 1871 ata_dev_dbg(dev, 1872 "both IDENTIFYs aborted, assuming NODEV\n"); 1873 return -ENOENT; 1874 } 1875 1876 rc = -EIO; 1877 reason = "I/O error"; 1878 goto err_out; 1879 } 1880 1881 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1882 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1883 "class=%d may_fallback=%d tried_spinup=%d\n", 1884 class, may_fallback, tried_spinup); 1885 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1886 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1887 } 1888 1889 /* Falling back doesn't make sense if ID data was read 1890 * successfully at least once. 1891 */ 1892 may_fallback = 0; 1893 1894 swap_buf_le16(id, ATA_ID_WORDS); 1895 1896 /* sanity check */ 1897 rc = -EINVAL; 1898 reason = "device reports invalid type"; 1899 1900 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1901 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1902 goto err_out; 1903 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1904 ata_id_is_ata(id)) { 1905 ata_dev_dbg(dev, 1906 "host indicates ignore ATA devices, ignored\n"); 1907 return -ENOENT; 1908 } 1909 } else { 1910 if (ata_id_is_ata(id)) 1911 goto err_out; 1912 } 1913 1914 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1915 tried_spinup = 1; 1916 /* 1917 * Drive powered-up in standby mode, and requires a specific 1918 * SET_FEATURES spin-up subcommand before it will accept 1919 * anything other than the original IDENTIFY command. 1920 */ 1921 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1922 if (err_mask && id[2] != 0x738c) { 1923 rc = -EIO; 1924 reason = "SPINUP failed"; 1925 goto err_out; 1926 } 1927 /* 1928 * If the drive initially returned incomplete IDENTIFY info, 1929 * we now must reissue the IDENTIFY command. 1930 */ 1931 if (id[2] == 0x37c8) 1932 goto retry; 1933 } 1934 1935 if ((flags & ATA_READID_POSTRESET) && 1936 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1937 /* 1938 * The exact sequence expected by certain pre-ATA4 drives is: 1939 * SRST RESET 1940 * IDENTIFY (optional in early ATA) 1941 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1942 * anything else.. 1943 * Some drives were very specific about that exact sequence. 1944 * 1945 * Note that ATA4 says lba is mandatory so the second check 1946 * should never trigger. 1947 */ 1948 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1949 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1950 if (err_mask) { 1951 rc = -EIO; 1952 reason = "INIT_DEV_PARAMS failed"; 1953 goto err_out; 1954 } 1955 1956 /* current CHS translation info (id[53-58]) might be 1957 * changed. reread the identify device info. 1958 */ 1959 flags &= ~ATA_READID_POSTRESET; 1960 goto retry; 1961 } 1962 } 1963 1964 *p_class = class; 1965 1966 return 0; 1967 1968 err_out: 1969 if (ata_msg_warn(ap)) 1970 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1971 reason, err_mask); 1972 return rc; 1973 } 1974 1975 /** 1976 * ata_read_log_page - read a specific log page 1977 * @dev: target device 1978 * @log: log to read 1979 * @page: page to read 1980 * @buf: buffer to store read page 1981 * @sectors: number of sectors to read 1982 * 1983 * Read log page using READ_LOG_EXT command. 1984 * 1985 * LOCKING: 1986 * Kernel thread context (may sleep). 1987 * 1988 * RETURNS: 1989 * 0 on success, AC_ERR_* mask otherwise. 1990 */ 1991 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 1992 u8 page, void *buf, unsigned int sectors) 1993 { 1994 unsigned long ap_flags = dev->link->ap->flags; 1995 struct ata_taskfile tf; 1996 unsigned int err_mask; 1997 bool dma = false; 1998 1999 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page); 2000 2001 /* 2002 * Return error without actually issuing the command on controllers 2003 * which e.g. lockup on a read log page. 2004 */ 2005 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2006 return AC_ERR_DEV; 2007 2008 retry: 2009 ata_tf_init(dev, &tf); 2010 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 2011 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2012 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2013 tf.protocol = ATA_PROT_DMA; 2014 dma = true; 2015 } else { 2016 tf.command = ATA_CMD_READ_LOG_EXT; 2017 tf.protocol = ATA_PROT_PIO; 2018 dma = false; 2019 } 2020 tf.lbal = log; 2021 tf.lbam = page; 2022 tf.nsect = sectors; 2023 tf.hob_nsect = sectors >> 8; 2024 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2025 2026 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2027 buf, sectors * ATA_SECT_SIZE, 0); 2028 2029 if (err_mask) { 2030 if (dma) { 2031 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2032 goto retry; 2033 } 2034 ata_dev_err(dev, 2035 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2036 (unsigned int)log, (unsigned int)page, err_mask); 2037 } 2038 2039 return err_mask; 2040 } 2041 2042 static bool ata_log_supported(struct ata_device *dev, u8 log) 2043 { 2044 struct ata_port *ap = dev->link->ap; 2045 2046 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2047 return false; 2048 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false; 2049 } 2050 2051 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2052 { 2053 struct ata_port *ap = dev->link->ap; 2054 unsigned int err, i; 2055 2056 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG) 2057 return false; 2058 2059 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2060 /* 2061 * IDENTIFY DEVICE data log is defined as mandatory starting 2062 * with ACS-3 (ATA version 10). Warn about the missing log 2063 * for drives which implement this ATA level or above. 2064 */ 2065 if (ata_id_major_version(dev->id) >= 10) 2066 ata_dev_warn(dev, 2067 "ATA Identify Device Log not supported\n"); 2068 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG; 2069 return false; 2070 } 2071 2072 /* 2073 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2074 * supported. 2075 */ 2076 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2077 1); 2078 if (err) 2079 return false; 2080 2081 for (i = 0; i < ap->sector_buf[8]; i++) { 2082 if (ap->sector_buf[9 + i] == page) 2083 return true; 2084 } 2085 2086 return false; 2087 } 2088 2089 static int ata_do_link_spd_horkage(struct ata_device *dev) 2090 { 2091 struct ata_link *plink = ata_dev_phys_link(dev); 2092 u32 target, target_limit; 2093 2094 if (!sata_scr_valid(plink)) 2095 return 0; 2096 2097 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2098 target = 1; 2099 else 2100 return 0; 2101 2102 target_limit = (1 << target) - 1; 2103 2104 /* if already on stricter limit, no need to push further */ 2105 if (plink->sata_spd_limit <= target_limit) 2106 return 0; 2107 2108 plink->sata_spd_limit = target_limit; 2109 2110 /* Request another EH round by returning -EAGAIN if link is 2111 * going faster than the target speed. Forward progress is 2112 * guaranteed by setting sata_spd_limit to target_limit above. 2113 */ 2114 if (plink->sata_spd > target) { 2115 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2116 sata_spd_string(target)); 2117 return -EAGAIN; 2118 } 2119 return 0; 2120 } 2121 2122 static inline u8 ata_dev_knobble(struct ata_device *dev) 2123 { 2124 struct ata_port *ap = dev->link->ap; 2125 2126 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2127 return 0; 2128 2129 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2130 } 2131 2132 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2133 { 2134 struct ata_port *ap = dev->link->ap; 2135 unsigned int err_mask; 2136 2137 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2138 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2139 return; 2140 } 2141 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2142 0, ap->sector_buf, 1); 2143 if (!err_mask) { 2144 u8 *cmds = dev->ncq_send_recv_cmds; 2145 2146 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2147 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2148 2149 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2150 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2151 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2152 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2153 } 2154 } 2155 } 2156 2157 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2158 { 2159 struct ata_port *ap = dev->link->ap; 2160 unsigned int err_mask; 2161 2162 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2163 ata_dev_warn(dev, 2164 "NCQ Send/Recv Log not supported\n"); 2165 return; 2166 } 2167 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2168 0, ap->sector_buf, 1); 2169 if (!err_mask) { 2170 u8 *cmds = dev->ncq_non_data_cmds; 2171 2172 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2173 } 2174 } 2175 2176 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2177 { 2178 struct ata_port *ap = dev->link->ap; 2179 unsigned int err_mask; 2180 2181 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2182 return; 2183 2184 err_mask = ata_read_log_page(dev, 2185 ATA_LOG_IDENTIFY_DEVICE, 2186 ATA_LOG_SATA_SETTINGS, 2187 ap->sector_buf, 2188 1); 2189 if (err_mask) 2190 goto not_supported; 2191 2192 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2193 goto not_supported; 2194 2195 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2196 2197 return; 2198 2199 not_supported: 2200 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE; 2201 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2202 } 2203 2204 static bool ata_dev_check_adapter(struct ata_device *dev, 2205 unsigned short vendor_id) 2206 { 2207 struct pci_dev *pcidev = NULL; 2208 struct device *parent_dev = NULL; 2209 2210 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2211 parent_dev = parent_dev->parent) { 2212 if (dev_is_pci(parent_dev)) { 2213 pcidev = to_pci_dev(parent_dev); 2214 if (pcidev->vendor == vendor_id) 2215 return true; 2216 break; 2217 } 2218 } 2219 2220 return false; 2221 } 2222 2223 static int ata_dev_config_ncq(struct ata_device *dev, 2224 char *desc, size_t desc_sz) 2225 { 2226 struct ata_port *ap = dev->link->ap; 2227 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2228 unsigned int err_mask; 2229 char *aa_desc = ""; 2230 2231 if (!ata_id_has_ncq(dev->id)) { 2232 desc[0] = '\0'; 2233 return 0; 2234 } 2235 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2236 return 0; 2237 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2238 snprintf(desc, desc_sz, "NCQ (not used)"); 2239 return 0; 2240 } 2241 2242 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2243 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2244 snprintf(desc, desc_sz, "NCQ (not used)"); 2245 return 0; 2246 } 2247 2248 if (ap->flags & ATA_FLAG_NCQ) { 2249 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2250 dev->flags |= ATA_DFLAG_NCQ; 2251 } 2252 2253 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2254 (ap->flags & ATA_FLAG_FPDMA_AA) && 2255 ata_id_has_fpdma_aa(dev->id)) { 2256 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2257 SATA_FPDMA_AA); 2258 if (err_mask) { 2259 ata_dev_err(dev, 2260 "failed to enable AA (error_mask=0x%x)\n", 2261 err_mask); 2262 if (err_mask != AC_ERR_DEV) { 2263 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2264 return -EIO; 2265 } 2266 } else 2267 aa_desc = ", AA"; 2268 } 2269 2270 if (hdepth >= ddepth) 2271 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2272 else 2273 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2274 ddepth, aa_desc); 2275 2276 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2277 if (ata_id_has_ncq_send_and_recv(dev->id)) 2278 ata_dev_config_ncq_send_recv(dev); 2279 if (ata_id_has_ncq_non_data(dev->id)) 2280 ata_dev_config_ncq_non_data(dev); 2281 if (ata_id_has_ncq_prio(dev->id)) 2282 ata_dev_config_ncq_prio(dev); 2283 } 2284 2285 return 0; 2286 } 2287 2288 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2289 { 2290 unsigned int err_mask; 2291 2292 if (!ata_id_has_sense_reporting(dev->id)) 2293 return; 2294 2295 if (ata_id_sense_reporting_enabled(dev->id)) 2296 return; 2297 2298 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2299 if (err_mask) { 2300 ata_dev_dbg(dev, 2301 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2302 err_mask); 2303 } 2304 } 2305 2306 static void ata_dev_config_zac(struct ata_device *dev) 2307 { 2308 struct ata_port *ap = dev->link->ap; 2309 unsigned int err_mask; 2310 u8 *identify_buf = ap->sector_buf; 2311 2312 dev->zac_zones_optimal_open = U32_MAX; 2313 dev->zac_zones_optimal_nonseq = U32_MAX; 2314 dev->zac_zones_max_open = U32_MAX; 2315 2316 /* 2317 * Always set the 'ZAC' flag for Host-managed devices. 2318 */ 2319 if (dev->class == ATA_DEV_ZAC) 2320 dev->flags |= ATA_DFLAG_ZAC; 2321 else if (ata_id_zoned_cap(dev->id) == 0x01) 2322 /* 2323 * Check for host-aware devices. 2324 */ 2325 dev->flags |= ATA_DFLAG_ZAC; 2326 2327 if (!(dev->flags & ATA_DFLAG_ZAC)) 2328 return; 2329 2330 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2331 ata_dev_warn(dev, 2332 "ATA Zoned Information Log not supported\n"); 2333 return; 2334 } 2335 2336 /* 2337 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2338 */ 2339 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2340 ATA_LOG_ZONED_INFORMATION, 2341 identify_buf, 1); 2342 if (!err_mask) { 2343 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2344 2345 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2346 if ((zoned_cap >> 63)) 2347 dev->zac_zoned_cap = (zoned_cap & 1); 2348 opt_open = get_unaligned_le64(&identify_buf[24]); 2349 if ((opt_open >> 63)) 2350 dev->zac_zones_optimal_open = (u32)opt_open; 2351 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2352 if ((opt_nonseq >> 63)) 2353 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2354 max_open = get_unaligned_le64(&identify_buf[40]); 2355 if ((max_open >> 63)) 2356 dev->zac_zones_max_open = (u32)max_open; 2357 } 2358 } 2359 2360 static void ata_dev_config_trusted(struct ata_device *dev) 2361 { 2362 struct ata_port *ap = dev->link->ap; 2363 u64 trusted_cap; 2364 unsigned int err; 2365 2366 if (!ata_id_has_trusted(dev->id)) 2367 return; 2368 2369 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2370 ata_dev_warn(dev, 2371 "Security Log not supported\n"); 2372 return; 2373 } 2374 2375 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2376 ap->sector_buf, 1); 2377 if (err) 2378 return; 2379 2380 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2381 if (!(trusted_cap & (1ULL << 63))) { 2382 ata_dev_dbg(dev, 2383 "Trusted Computing capability qword not valid!\n"); 2384 return; 2385 } 2386 2387 if (trusted_cap & (1 << 0)) 2388 dev->flags |= ATA_DFLAG_TRUSTED; 2389 } 2390 2391 static int ata_dev_config_lba(struct ata_device *dev) 2392 { 2393 struct ata_port *ap = dev->link->ap; 2394 const u16 *id = dev->id; 2395 const char *lba_desc; 2396 char ncq_desc[24]; 2397 int ret; 2398 2399 dev->flags |= ATA_DFLAG_LBA; 2400 2401 if (ata_id_has_lba48(id)) { 2402 lba_desc = "LBA48"; 2403 dev->flags |= ATA_DFLAG_LBA48; 2404 if (dev->n_sectors >= (1UL << 28) && 2405 ata_id_has_flush_ext(id)) 2406 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2407 } else { 2408 lba_desc = "LBA"; 2409 } 2410 2411 /* config NCQ */ 2412 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2413 2414 /* print device info to dmesg */ 2415 if (ata_msg_drv(ap) && ata_dev_print_info(dev)) 2416 ata_dev_info(dev, 2417 "%llu sectors, multi %u: %s %s\n", 2418 (unsigned long long)dev->n_sectors, 2419 dev->multi_count, lba_desc, ncq_desc); 2420 2421 return ret; 2422 } 2423 2424 static void ata_dev_config_chs(struct ata_device *dev) 2425 { 2426 struct ata_port *ap = dev->link->ap; 2427 const u16 *id = dev->id; 2428 2429 if (ata_id_current_chs_valid(id)) { 2430 /* Current CHS translation is valid. */ 2431 dev->cylinders = id[54]; 2432 dev->heads = id[55]; 2433 dev->sectors = id[56]; 2434 } else { 2435 /* Default translation */ 2436 dev->cylinders = id[1]; 2437 dev->heads = id[3]; 2438 dev->sectors = id[6]; 2439 } 2440 2441 /* print device info to dmesg */ 2442 if (ata_msg_drv(ap) && ata_dev_print_info(dev)) 2443 ata_dev_info(dev, 2444 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2445 (unsigned long long)dev->n_sectors, 2446 dev->multi_count, dev->cylinders, 2447 dev->heads, dev->sectors); 2448 } 2449 2450 static void ata_dev_config_devslp(struct ata_device *dev) 2451 { 2452 u8 *sata_setting = dev->link->ap->sector_buf; 2453 unsigned int err_mask; 2454 int i, j; 2455 2456 /* 2457 * Check device sleep capability. Get DevSlp timing variables 2458 * from SATA Settings page of Identify Device Data Log. 2459 */ 2460 if (!ata_id_has_devslp(dev->id) || 2461 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2462 return; 2463 2464 err_mask = ata_read_log_page(dev, 2465 ATA_LOG_IDENTIFY_DEVICE, 2466 ATA_LOG_SATA_SETTINGS, 2467 sata_setting, 1); 2468 if (err_mask) 2469 return; 2470 2471 dev->flags |= ATA_DFLAG_DEVSLP; 2472 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2473 j = ATA_LOG_DEVSLP_OFFSET + i; 2474 dev->devslp_timing[i] = sata_setting[j]; 2475 } 2476 } 2477 2478 static void ata_dev_config_cpr(struct ata_device *dev) 2479 { 2480 unsigned int err_mask; 2481 size_t buf_len; 2482 int i, nr_cpr = 0; 2483 struct ata_cpr_log *cpr_log = NULL; 2484 u8 *desc, *buf = NULL; 2485 2486 if (!ata_identify_page_supported(dev, 2487 ATA_LOG_CONCURRENT_POSITIONING_RANGES)) 2488 goto out; 2489 2490 /* 2491 * Read IDENTIFY DEVICE data log, page 0x47 2492 * (concurrent positioning ranges). We can have at most 255 32B range 2493 * descriptors plus a 64B header. 2494 */ 2495 buf_len = (64 + 255 * 32 + 511) & ~511; 2496 buf = kzalloc(buf_len, GFP_KERNEL); 2497 if (!buf) 2498 goto out; 2499 2500 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2501 ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2502 buf, buf_len >> 9); 2503 if (err_mask) 2504 goto out; 2505 2506 nr_cpr = buf[0]; 2507 if (!nr_cpr) 2508 goto out; 2509 2510 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2511 if (!cpr_log) 2512 goto out; 2513 2514 cpr_log->nr_cpr = nr_cpr; 2515 desc = &buf[64]; 2516 for (i = 0; i < nr_cpr; i++, desc += 32) { 2517 cpr_log->cpr[i].num = desc[0]; 2518 cpr_log->cpr[i].num_storage_elements = desc[1]; 2519 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2520 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2521 } 2522 2523 out: 2524 swap(dev->cpr_log, cpr_log); 2525 kfree(cpr_log); 2526 kfree(buf); 2527 } 2528 2529 static void ata_dev_print_features(struct ata_device *dev) 2530 { 2531 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2532 return; 2533 2534 ata_dev_info(dev, 2535 "Features:%s%s%s%s%s%s\n", 2536 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2537 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2538 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2539 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2540 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2541 dev->cpr_log ? " CPR" : ""); 2542 } 2543 2544 /** 2545 * ata_dev_configure - Configure the specified ATA/ATAPI device 2546 * @dev: Target device to configure 2547 * 2548 * Configure @dev according to @dev->id. Generic and low-level 2549 * driver specific fixups are also applied. 2550 * 2551 * LOCKING: 2552 * Kernel thread context (may sleep) 2553 * 2554 * RETURNS: 2555 * 0 on success, -errno otherwise 2556 */ 2557 int ata_dev_configure(struct ata_device *dev) 2558 { 2559 struct ata_port *ap = dev->link->ap; 2560 bool print_info = ata_dev_print_info(dev); 2561 const u16 *id = dev->id; 2562 unsigned long xfer_mask; 2563 unsigned int err_mask; 2564 char revbuf[7]; /* XYZ-99\0 */ 2565 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2566 char modelbuf[ATA_ID_PROD_LEN+1]; 2567 int rc; 2568 2569 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2570 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2571 return 0; 2572 } 2573 2574 if (ata_msg_probe(ap)) 2575 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2576 2577 /* set horkage */ 2578 dev->horkage |= ata_dev_blacklisted(dev); 2579 ata_force_horkage(dev); 2580 2581 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2582 ata_dev_info(dev, "unsupported device, disabling\n"); 2583 ata_dev_disable(dev); 2584 return 0; 2585 } 2586 2587 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2588 dev->class == ATA_DEV_ATAPI) { 2589 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2590 atapi_enabled ? "not supported with this driver" 2591 : "disabled"); 2592 ata_dev_disable(dev); 2593 return 0; 2594 } 2595 2596 rc = ata_do_link_spd_horkage(dev); 2597 if (rc) 2598 return rc; 2599 2600 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2601 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2602 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2603 dev->horkage |= ATA_HORKAGE_NOLPM; 2604 2605 if (ap->flags & ATA_FLAG_NO_LPM) 2606 dev->horkage |= ATA_HORKAGE_NOLPM; 2607 2608 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2609 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2610 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2611 } 2612 2613 /* let ACPI work its magic */ 2614 rc = ata_acpi_on_devcfg(dev); 2615 if (rc) 2616 return rc; 2617 2618 /* massage HPA, do it early as it might change IDENTIFY data */ 2619 rc = ata_hpa_resize(dev); 2620 if (rc) 2621 return rc; 2622 2623 /* print device capabilities */ 2624 if (ata_msg_probe(ap)) 2625 ata_dev_dbg(dev, 2626 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2627 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2628 __func__, 2629 id[49], id[82], id[83], id[84], 2630 id[85], id[86], id[87], id[88]); 2631 2632 /* initialize to-be-configured parameters */ 2633 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2634 dev->max_sectors = 0; 2635 dev->cdb_len = 0; 2636 dev->n_sectors = 0; 2637 dev->cylinders = 0; 2638 dev->heads = 0; 2639 dev->sectors = 0; 2640 dev->multi_count = 0; 2641 2642 /* 2643 * common ATA, ATAPI feature tests 2644 */ 2645 2646 /* find max transfer mode; for printk only */ 2647 xfer_mask = ata_id_xfermask(id); 2648 2649 if (ata_msg_probe(ap)) 2650 ata_dump_id(id); 2651 2652 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2653 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2654 sizeof(fwrevbuf)); 2655 2656 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2657 sizeof(modelbuf)); 2658 2659 /* ATA-specific feature tests */ 2660 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2661 if (ata_id_is_cfa(id)) { 2662 /* CPRM may make this media unusable */ 2663 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2664 ata_dev_warn(dev, 2665 "supports DRM functions and may not be fully accessible\n"); 2666 snprintf(revbuf, 7, "CFA"); 2667 } else { 2668 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2669 /* Warn the user if the device has TPM extensions */ 2670 if (ata_id_has_tpm(id)) 2671 ata_dev_warn(dev, 2672 "supports DRM functions and may not be fully accessible\n"); 2673 } 2674 2675 dev->n_sectors = ata_id_n_sectors(id); 2676 2677 /* get current R/W Multiple count setting */ 2678 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2679 unsigned int max = dev->id[47] & 0xff; 2680 unsigned int cnt = dev->id[59] & 0xff; 2681 /* only recognize/allow powers of two here */ 2682 if (is_power_of_2(max) && is_power_of_2(cnt)) 2683 if (cnt <= max) 2684 dev->multi_count = cnt; 2685 } 2686 2687 /* print device info to dmesg */ 2688 if (ata_msg_drv(ap) && print_info) 2689 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2690 revbuf, modelbuf, fwrevbuf, 2691 ata_mode_string(xfer_mask)); 2692 2693 if (ata_id_has_lba(id)) { 2694 rc = ata_dev_config_lba(dev); 2695 if (rc) 2696 return rc; 2697 } else { 2698 ata_dev_config_chs(dev); 2699 } 2700 2701 ata_dev_config_devslp(dev); 2702 ata_dev_config_sense_reporting(dev); 2703 ata_dev_config_zac(dev); 2704 ata_dev_config_trusted(dev); 2705 ata_dev_config_cpr(dev); 2706 dev->cdb_len = 32; 2707 2708 if (ata_msg_drv(ap) && print_info) 2709 ata_dev_print_features(dev); 2710 } 2711 2712 /* ATAPI-specific feature tests */ 2713 else if (dev->class == ATA_DEV_ATAPI) { 2714 const char *cdb_intr_string = ""; 2715 const char *atapi_an_string = ""; 2716 const char *dma_dir_string = ""; 2717 u32 sntf; 2718 2719 rc = atapi_cdb_len(id); 2720 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2721 if (ata_msg_warn(ap)) 2722 ata_dev_warn(dev, "unsupported CDB len\n"); 2723 rc = -EINVAL; 2724 goto err_out_nosup; 2725 } 2726 dev->cdb_len = (unsigned int) rc; 2727 2728 /* Enable ATAPI AN if both the host and device have 2729 * the support. If PMP is attached, SNTF is required 2730 * to enable ATAPI AN to discern between PHY status 2731 * changed notifications and ATAPI ANs. 2732 */ 2733 if (atapi_an && 2734 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2735 (!sata_pmp_attached(ap) || 2736 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2737 /* issue SET feature command to turn this on */ 2738 err_mask = ata_dev_set_feature(dev, 2739 SETFEATURES_SATA_ENABLE, SATA_AN); 2740 if (err_mask) 2741 ata_dev_err(dev, 2742 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2743 err_mask); 2744 else { 2745 dev->flags |= ATA_DFLAG_AN; 2746 atapi_an_string = ", ATAPI AN"; 2747 } 2748 } 2749 2750 if (ata_id_cdb_intr(dev->id)) { 2751 dev->flags |= ATA_DFLAG_CDB_INTR; 2752 cdb_intr_string = ", CDB intr"; 2753 } 2754 2755 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2756 dev->flags |= ATA_DFLAG_DMADIR; 2757 dma_dir_string = ", DMADIR"; 2758 } 2759 2760 if (ata_id_has_da(dev->id)) { 2761 dev->flags |= ATA_DFLAG_DA; 2762 zpodd_init(dev); 2763 } 2764 2765 /* print device info to dmesg */ 2766 if (ata_msg_drv(ap) && print_info) 2767 ata_dev_info(dev, 2768 "ATAPI: %s, %s, max %s%s%s%s\n", 2769 modelbuf, fwrevbuf, 2770 ata_mode_string(xfer_mask), 2771 cdb_intr_string, atapi_an_string, 2772 dma_dir_string); 2773 } 2774 2775 /* determine max_sectors */ 2776 dev->max_sectors = ATA_MAX_SECTORS; 2777 if (dev->flags & ATA_DFLAG_LBA48) 2778 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2779 2780 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2781 200 sectors */ 2782 if (ata_dev_knobble(dev)) { 2783 if (ata_msg_drv(ap) && print_info) 2784 ata_dev_info(dev, "applying bridge limits\n"); 2785 dev->udma_mask &= ATA_UDMA5; 2786 dev->max_sectors = ATA_MAX_SECTORS; 2787 } 2788 2789 if ((dev->class == ATA_DEV_ATAPI) && 2790 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2791 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2792 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2793 } 2794 2795 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2796 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2797 dev->max_sectors); 2798 2799 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2800 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2801 dev->max_sectors); 2802 2803 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2804 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2805 2806 if (ap->ops->dev_config) 2807 ap->ops->dev_config(dev); 2808 2809 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2810 /* Let the user know. We don't want to disallow opens for 2811 rescue purposes, or in case the vendor is just a blithering 2812 idiot. Do this after the dev_config call as some controllers 2813 with buggy firmware may want to avoid reporting false device 2814 bugs */ 2815 2816 if (print_info) { 2817 ata_dev_warn(dev, 2818 "Drive reports diagnostics failure. This may indicate a drive\n"); 2819 ata_dev_warn(dev, 2820 "fault or invalid emulation. Contact drive vendor for information.\n"); 2821 } 2822 } 2823 2824 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2825 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2826 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2827 } 2828 2829 return 0; 2830 2831 err_out_nosup: 2832 if (ata_msg_probe(ap)) 2833 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2834 return rc; 2835 } 2836 2837 /** 2838 * ata_cable_40wire - return 40 wire cable type 2839 * @ap: port 2840 * 2841 * Helper method for drivers which want to hardwire 40 wire cable 2842 * detection. 2843 */ 2844 2845 int ata_cable_40wire(struct ata_port *ap) 2846 { 2847 return ATA_CBL_PATA40; 2848 } 2849 EXPORT_SYMBOL_GPL(ata_cable_40wire); 2850 2851 /** 2852 * ata_cable_80wire - return 80 wire cable type 2853 * @ap: port 2854 * 2855 * Helper method for drivers which want to hardwire 80 wire cable 2856 * detection. 2857 */ 2858 2859 int ata_cable_80wire(struct ata_port *ap) 2860 { 2861 return ATA_CBL_PATA80; 2862 } 2863 EXPORT_SYMBOL_GPL(ata_cable_80wire); 2864 2865 /** 2866 * ata_cable_unknown - return unknown PATA cable. 2867 * @ap: port 2868 * 2869 * Helper method for drivers which have no PATA cable detection. 2870 */ 2871 2872 int ata_cable_unknown(struct ata_port *ap) 2873 { 2874 return ATA_CBL_PATA_UNK; 2875 } 2876 EXPORT_SYMBOL_GPL(ata_cable_unknown); 2877 2878 /** 2879 * ata_cable_ignore - return ignored PATA cable. 2880 * @ap: port 2881 * 2882 * Helper method for drivers which don't use cable type to limit 2883 * transfer mode. 2884 */ 2885 int ata_cable_ignore(struct ata_port *ap) 2886 { 2887 return ATA_CBL_PATA_IGN; 2888 } 2889 EXPORT_SYMBOL_GPL(ata_cable_ignore); 2890 2891 /** 2892 * ata_cable_sata - return SATA cable type 2893 * @ap: port 2894 * 2895 * Helper method for drivers which have SATA cables 2896 */ 2897 2898 int ata_cable_sata(struct ata_port *ap) 2899 { 2900 return ATA_CBL_SATA; 2901 } 2902 EXPORT_SYMBOL_GPL(ata_cable_sata); 2903 2904 /** 2905 * ata_bus_probe - Reset and probe ATA bus 2906 * @ap: Bus to probe 2907 * 2908 * Master ATA bus probing function. Initiates a hardware-dependent 2909 * bus reset, then attempts to identify any devices found on 2910 * the bus. 2911 * 2912 * LOCKING: 2913 * PCI/etc. bus probe sem. 2914 * 2915 * RETURNS: 2916 * Zero on success, negative errno otherwise. 2917 */ 2918 2919 int ata_bus_probe(struct ata_port *ap) 2920 { 2921 unsigned int classes[ATA_MAX_DEVICES]; 2922 int tries[ATA_MAX_DEVICES]; 2923 int rc; 2924 struct ata_device *dev; 2925 2926 ata_for_each_dev(dev, &ap->link, ALL) 2927 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2928 2929 retry: 2930 ata_for_each_dev(dev, &ap->link, ALL) { 2931 /* If we issue an SRST then an ATA drive (not ATAPI) 2932 * may change configuration and be in PIO0 timing. If 2933 * we do a hard reset (or are coming from power on) 2934 * this is true for ATA or ATAPI. Until we've set a 2935 * suitable controller mode we should not touch the 2936 * bus as we may be talking too fast. 2937 */ 2938 dev->pio_mode = XFER_PIO_0; 2939 dev->dma_mode = 0xff; 2940 2941 /* If the controller has a pio mode setup function 2942 * then use it to set the chipset to rights. Don't 2943 * touch the DMA setup as that will be dealt with when 2944 * configuring devices. 2945 */ 2946 if (ap->ops->set_piomode) 2947 ap->ops->set_piomode(ap, dev); 2948 } 2949 2950 /* reset and determine device classes */ 2951 ap->ops->phy_reset(ap); 2952 2953 ata_for_each_dev(dev, &ap->link, ALL) { 2954 if (dev->class != ATA_DEV_UNKNOWN) 2955 classes[dev->devno] = dev->class; 2956 else 2957 classes[dev->devno] = ATA_DEV_NONE; 2958 2959 dev->class = ATA_DEV_UNKNOWN; 2960 } 2961 2962 /* read IDENTIFY page and configure devices. We have to do the identify 2963 specific sequence bass-ackwards so that PDIAG- is released by 2964 the slave device */ 2965 2966 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2967 if (tries[dev->devno]) 2968 dev->class = classes[dev->devno]; 2969 2970 if (!ata_dev_enabled(dev)) 2971 continue; 2972 2973 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2974 dev->id); 2975 if (rc) 2976 goto fail; 2977 } 2978 2979 /* Now ask for the cable type as PDIAG- should have been released */ 2980 if (ap->ops->cable_detect) 2981 ap->cbl = ap->ops->cable_detect(ap); 2982 2983 /* We may have SATA bridge glue hiding here irrespective of 2984 * the reported cable types and sensed types. When SATA 2985 * drives indicate we have a bridge, we don't know which end 2986 * of the link the bridge is which is a problem. 2987 */ 2988 ata_for_each_dev(dev, &ap->link, ENABLED) 2989 if (ata_id_is_sata(dev->id)) 2990 ap->cbl = ATA_CBL_SATA; 2991 2992 /* After the identify sequence we can now set up the devices. We do 2993 this in the normal order so that the user doesn't get confused */ 2994 2995 ata_for_each_dev(dev, &ap->link, ENABLED) { 2996 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2997 rc = ata_dev_configure(dev); 2998 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2999 if (rc) 3000 goto fail; 3001 } 3002 3003 /* configure transfer mode */ 3004 rc = ata_set_mode(&ap->link, &dev); 3005 if (rc) 3006 goto fail; 3007 3008 ata_for_each_dev(dev, &ap->link, ENABLED) 3009 return 0; 3010 3011 return -ENODEV; 3012 3013 fail: 3014 tries[dev->devno]--; 3015 3016 switch (rc) { 3017 case -EINVAL: 3018 /* eeek, something went very wrong, give up */ 3019 tries[dev->devno] = 0; 3020 break; 3021 3022 case -ENODEV: 3023 /* give it just one more chance */ 3024 tries[dev->devno] = min(tries[dev->devno], 1); 3025 fallthrough; 3026 case -EIO: 3027 if (tries[dev->devno] == 1) { 3028 /* This is the last chance, better to slow 3029 * down than lose it. 3030 */ 3031 sata_down_spd_limit(&ap->link, 0); 3032 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 3033 } 3034 } 3035 3036 if (!tries[dev->devno]) 3037 ata_dev_disable(dev); 3038 3039 goto retry; 3040 } 3041 3042 /** 3043 * sata_print_link_status - Print SATA link status 3044 * @link: SATA link to printk link status about 3045 * 3046 * This function prints link speed and status of a SATA link. 3047 * 3048 * LOCKING: 3049 * None. 3050 */ 3051 static void sata_print_link_status(struct ata_link *link) 3052 { 3053 u32 sstatus, scontrol, tmp; 3054 3055 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3056 return; 3057 sata_scr_read(link, SCR_CONTROL, &scontrol); 3058 3059 if (ata_phys_link_online(link)) { 3060 tmp = (sstatus >> 4) & 0xf; 3061 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3062 sata_spd_string(tmp), sstatus, scontrol); 3063 } else { 3064 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3065 sstatus, scontrol); 3066 } 3067 } 3068 3069 /** 3070 * ata_dev_pair - return other device on cable 3071 * @adev: device 3072 * 3073 * Obtain the other device on the same cable, or if none is 3074 * present NULL is returned 3075 */ 3076 3077 struct ata_device *ata_dev_pair(struct ata_device *adev) 3078 { 3079 struct ata_link *link = adev->link; 3080 struct ata_device *pair = &link->device[1 - adev->devno]; 3081 if (!ata_dev_enabled(pair)) 3082 return NULL; 3083 return pair; 3084 } 3085 EXPORT_SYMBOL_GPL(ata_dev_pair); 3086 3087 /** 3088 * sata_down_spd_limit - adjust SATA spd limit downward 3089 * @link: Link to adjust SATA spd limit for 3090 * @spd_limit: Additional limit 3091 * 3092 * Adjust SATA spd limit of @link downward. Note that this 3093 * function only adjusts the limit. The change must be applied 3094 * using sata_set_spd(). 3095 * 3096 * If @spd_limit is non-zero, the speed is limited to equal to or 3097 * lower than @spd_limit if such speed is supported. If 3098 * @spd_limit is slower than any supported speed, only the lowest 3099 * supported speed is allowed. 3100 * 3101 * LOCKING: 3102 * Inherited from caller. 3103 * 3104 * RETURNS: 3105 * 0 on success, negative errno on failure 3106 */ 3107 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3108 { 3109 u32 sstatus, spd, mask; 3110 int rc, bit; 3111 3112 if (!sata_scr_valid(link)) 3113 return -EOPNOTSUPP; 3114 3115 /* If SCR can be read, use it to determine the current SPD. 3116 * If not, use cached value in link->sata_spd. 3117 */ 3118 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3119 if (rc == 0 && ata_sstatus_online(sstatus)) 3120 spd = (sstatus >> 4) & 0xf; 3121 else 3122 spd = link->sata_spd; 3123 3124 mask = link->sata_spd_limit; 3125 if (mask <= 1) 3126 return -EINVAL; 3127 3128 /* unconditionally mask off the highest bit */ 3129 bit = fls(mask) - 1; 3130 mask &= ~(1 << bit); 3131 3132 /* 3133 * Mask off all speeds higher than or equal to the current one. At 3134 * this point, if current SPD is not available and we previously 3135 * recorded the link speed from SStatus, the driver has already 3136 * masked off the highest bit so mask should already be 1 or 0. 3137 * Otherwise, we should not force 1.5Gbps on a link where we have 3138 * not previously recorded speed from SStatus. Just return in this 3139 * case. 3140 */ 3141 if (spd > 1) 3142 mask &= (1 << (spd - 1)) - 1; 3143 else 3144 return -EINVAL; 3145 3146 /* were we already at the bottom? */ 3147 if (!mask) 3148 return -EINVAL; 3149 3150 if (spd_limit) { 3151 if (mask & ((1 << spd_limit) - 1)) 3152 mask &= (1 << spd_limit) - 1; 3153 else { 3154 bit = ffs(mask) - 1; 3155 mask = 1 << bit; 3156 } 3157 } 3158 3159 link->sata_spd_limit = mask; 3160 3161 ata_link_warn(link, "limiting SATA link speed to %s\n", 3162 sata_spd_string(fls(mask))); 3163 3164 return 0; 3165 } 3166 3167 #ifdef CONFIG_ATA_ACPI 3168 /** 3169 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3170 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3171 * @cycle: cycle duration in ns 3172 * 3173 * Return matching xfer mode for @cycle. The returned mode is of 3174 * the transfer type specified by @xfer_shift. If @cycle is too 3175 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3176 * than the fastest known mode, the fasted mode is returned. 3177 * 3178 * LOCKING: 3179 * None. 3180 * 3181 * RETURNS: 3182 * Matching xfer_mode, 0xff if no match found. 3183 */ 3184 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3185 { 3186 u8 base_mode = 0xff, last_mode = 0xff; 3187 const struct ata_xfer_ent *ent; 3188 const struct ata_timing *t; 3189 3190 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3191 if (ent->shift == xfer_shift) 3192 base_mode = ent->base; 3193 3194 for (t = ata_timing_find_mode(base_mode); 3195 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3196 unsigned short this_cycle; 3197 3198 switch (xfer_shift) { 3199 case ATA_SHIFT_PIO: 3200 case ATA_SHIFT_MWDMA: 3201 this_cycle = t->cycle; 3202 break; 3203 case ATA_SHIFT_UDMA: 3204 this_cycle = t->udma; 3205 break; 3206 default: 3207 return 0xff; 3208 } 3209 3210 if (cycle > this_cycle) 3211 break; 3212 3213 last_mode = t->mode; 3214 } 3215 3216 return last_mode; 3217 } 3218 #endif 3219 3220 /** 3221 * ata_down_xfermask_limit - adjust dev xfer masks downward 3222 * @dev: Device to adjust xfer masks 3223 * @sel: ATA_DNXFER_* selector 3224 * 3225 * Adjust xfer masks of @dev downward. Note that this function 3226 * does not apply the change. Invoking ata_set_mode() afterwards 3227 * will apply the limit. 3228 * 3229 * LOCKING: 3230 * Inherited from caller. 3231 * 3232 * RETURNS: 3233 * 0 on success, negative errno on failure 3234 */ 3235 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3236 { 3237 char buf[32]; 3238 unsigned long orig_mask, xfer_mask; 3239 unsigned long pio_mask, mwdma_mask, udma_mask; 3240 int quiet, highbit; 3241 3242 quiet = !!(sel & ATA_DNXFER_QUIET); 3243 sel &= ~ATA_DNXFER_QUIET; 3244 3245 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3246 dev->mwdma_mask, 3247 dev->udma_mask); 3248 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3249 3250 switch (sel) { 3251 case ATA_DNXFER_PIO: 3252 highbit = fls(pio_mask) - 1; 3253 pio_mask &= ~(1 << highbit); 3254 break; 3255 3256 case ATA_DNXFER_DMA: 3257 if (udma_mask) { 3258 highbit = fls(udma_mask) - 1; 3259 udma_mask &= ~(1 << highbit); 3260 if (!udma_mask) 3261 return -ENOENT; 3262 } else if (mwdma_mask) { 3263 highbit = fls(mwdma_mask) - 1; 3264 mwdma_mask &= ~(1 << highbit); 3265 if (!mwdma_mask) 3266 return -ENOENT; 3267 } 3268 break; 3269 3270 case ATA_DNXFER_40C: 3271 udma_mask &= ATA_UDMA_MASK_40C; 3272 break; 3273 3274 case ATA_DNXFER_FORCE_PIO0: 3275 pio_mask &= 1; 3276 fallthrough; 3277 case ATA_DNXFER_FORCE_PIO: 3278 mwdma_mask = 0; 3279 udma_mask = 0; 3280 break; 3281 3282 default: 3283 BUG(); 3284 } 3285 3286 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3287 3288 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3289 return -ENOENT; 3290 3291 if (!quiet) { 3292 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3293 snprintf(buf, sizeof(buf), "%s:%s", 3294 ata_mode_string(xfer_mask), 3295 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3296 else 3297 snprintf(buf, sizeof(buf), "%s", 3298 ata_mode_string(xfer_mask)); 3299 3300 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3301 } 3302 3303 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3304 &dev->udma_mask); 3305 3306 return 0; 3307 } 3308 3309 static int ata_dev_set_mode(struct ata_device *dev) 3310 { 3311 struct ata_port *ap = dev->link->ap; 3312 struct ata_eh_context *ehc = &dev->link->eh_context; 3313 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3314 const char *dev_err_whine = ""; 3315 int ign_dev_err = 0; 3316 unsigned int err_mask = 0; 3317 int rc; 3318 3319 dev->flags &= ~ATA_DFLAG_PIO; 3320 if (dev->xfer_shift == ATA_SHIFT_PIO) 3321 dev->flags |= ATA_DFLAG_PIO; 3322 3323 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3324 dev_err_whine = " (SET_XFERMODE skipped)"; 3325 else { 3326 if (nosetxfer) 3327 ata_dev_warn(dev, 3328 "NOSETXFER but PATA detected - can't " 3329 "skip SETXFER, might malfunction\n"); 3330 err_mask = ata_dev_set_xfermode(dev); 3331 } 3332 3333 if (err_mask & ~AC_ERR_DEV) 3334 goto fail; 3335 3336 /* revalidate */ 3337 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3338 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3339 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3340 if (rc) 3341 return rc; 3342 3343 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3344 /* Old CFA may refuse this command, which is just fine */ 3345 if (ata_id_is_cfa(dev->id)) 3346 ign_dev_err = 1; 3347 /* Catch several broken garbage emulations plus some pre 3348 ATA devices */ 3349 if (ata_id_major_version(dev->id) == 0 && 3350 dev->pio_mode <= XFER_PIO_2) 3351 ign_dev_err = 1; 3352 /* Some very old devices and some bad newer ones fail 3353 any kind of SET_XFERMODE request but support PIO0-2 3354 timings and no IORDY */ 3355 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3356 ign_dev_err = 1; 3357 } 3358 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3359 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3360 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3361 dev->dma_mode == XFER_MW_DMA_0 && 3362 (dev->id[63] >> 8) & 1) 3363 ign_dev_err = 1; 3364 3365 /* if the device is actually configured correctly, ignore dev err */ 3366 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3367 ign_dev_err = 1; 3368 3369 if (err_mask & AC_ERR_DEV) { 3370 if (!ign_dev_err) 3371 goto fail; 3372 else 3373 dev_err_whine = " (device error ignored)"; 3374 } 3375 3376 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3377 dev->xfer_shift, (int)dev->xfer_mode); 3378 3379 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3380 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3381 ata_dev_info(dev, "configured for %s%s\n", 3382 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3383 dev_err_whine); 3384 3385 return 0; 3386 3387 fail: 3388 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3389 return -EIO; 3390 } 3391 3392 /** 3393 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3394 * @link: link on which timings will be programmed 3395 * @r_failed_dev: out parameter for failed device 3396 * 3397 * Standard implementation of the function used to tune and set 3398 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3399 * ata_dev_set_mode() fails, pointer to the failing device is 3400 * returned in @r_failed_dev. 3401 * 3402 * LOCKING: 3403 * PCI/etc. bus probe sem. 3404 * 3405 * RETURNS: 3406 * 0 on success, negative errno otherwise 3407 */ 3408 3409 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3410 { 3411 struct ata_port *ap = link->ap; 3412 struct ata_device *dev; 3413 int rc = 0, used_dma = 0, found = 0; 3414 3415 /* step 1: calculate xfer_mask */ 3416 ata_for_each_dev(dev, link, ENABLED) { 3417 unsigned long pio_mask, dma_mask; 3418 unsigned int mode_mask; 3419 3420 mode_mask = ATA_DMA_MASK_ATA; 3421 if (dev->class == ATA_DEV_ATAPI) 3422 mode_mask = ATA_DMA_MASK_ATAPI; 3423 else if (ata_id_is_cfa(dev->id)) 3424 mode_mask = ATA_DMA_MASK_CFA; 3425 3426 ata_dev_xfermask(dev); 3427 ata_force_xfermask(dev); 3428 3429 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3430 3431 if (libata_dma_mask & mode_mask) 3432 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3433 dev->udma_mask); 3434 else 3435 dma_mask = 0; 3436 3437 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3438 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3439 3440 found = 1; 3441 if (ata_dma_enabled(dev)) 3442 used_dma = 1; 3443 } 3444 if (!found) 3445 goto out; 3446 3447 /* step 2: always set host PIO timings */ 3448 ata_for_each_dev(dev, link, ENABLED) { 3449 if (dev->pio_mode == 0xff) { 3450 ata_dev_warn(dev, "no PIO support\n"); 3451 rc = -EINVAL; 3452 goto out; 3453 } 3454 3455 dev->xfer_mode = dev->pio_mode; 3456 dev->xfer_shift = ATA_SHIFT_PIO; 3457 if (ap->ops->set_piomode) 3458 ap->ops->set_piomode(ap, dev); 3459 } 3460 3461 /* step 3: set host DMA timings */ 3462 ata_for_each_dev(dev, link, ENABLED) { 3463 if (!ata_dma_enabled(dev)) 3464 continue; 3465 3466 dev->xfer_mode = dev->dma_mode; 3467 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3468 if (ap->ops->set_dmamode) 3469 ap->ops->set_dmamode(ap, dev); 3470 } 3471 3472 /* step 4: update devices' xfer mode */ 3473 ata_for_each_dev(dev, link, ENABLED) { 3474 rc = ata_dev_set_mode(dev); 3475 if (rc) 3476 goto out; 3477 } 3478 3479 /* Record simplex status. If we selected DMA then the other 3480 * host channels are not permitted to do so. 3481 */ 3482 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3483 ap->host->simplex_claimed = ap; 3484 3485 out: 3486 if (rc) 3487 *r_failed_dev = dev; 3488 return rc; 3489 } 3490 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3491 3492 /** 3493 * ata_wait_ready - wait for link to become ready 3494 * @link: link to be waited on 3495 * @deadline: deadline jiffies for the operation 3496 * @check_ready: callback to check link readiness 3497 * 3498 * Wait for @link to become ready. @check_ready should return 3499 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3500 * link doesn't seem to be occupied, other errno for other error 3501 * conditions. 3502 * 3503 * Transient -ENODEV conditions are allowed for 3504 * ATA_TMOUT_FF_WAIT. 3505 * 3506 * LOCKING: 3507 * EH context. 3508 * 3509 * RETURNS: 3510 * 0 if @link is ready before @deadline; otherwise, -errno. 3511 */ 3512 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3513 int (*check_ready)(struct ata_link *link)) 3514 { 3515 unsigned long start = jiffies; 3516 unsigned long nodev_deadline; 3517 int warned = 0; 3518 3519 /* choose which 0xff timeout to use, read comment in libata.h */ 3520 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3521 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3522 else 3523 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3524 3525 /* Slave readiness can't be tested separately from master. On 3526 * M/S emulation configuration, this function should be called 3527 * only on the master and it will handle both master and slave. 3528 */ 3529 WARN_ON(link == link->ap->slave_link); 3530 3531 if (time_after(nodev_deadline, deadline)) 3532 nodev_deadline = deadline; 3533 3534 while (1) { 3535 unsigned long now = jiffies; 3536 int ready, tmp; 3537 3538 ready = tmp = check_ready(link); 3539 if (ready > 0) 3540 return 0; 3541 3542 /* 3543 * -ENODEV could be transient. Ignore -ENODEV if link 3544 * is online. Also, some SATA devices take a long 3545 * time to clear 0xff after reset. Wait for 3546 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3547 * offline. 3548 * 3549 * Note that some PATA controllers (pata_ali) explode 3550 * if status register is read more than once when 3551 * there's no device attached. 3552 */ 3553 if (ready == -ENODEV) { 3554 if (ata_link_online(link)) 3555 ready = 0; 3556 else if ((link->ap->flags & ATA_FLAG_SATA) && 3557 !ata_link_offline(link) && 3558 time_before(now, nodev_deadline)) 3559 ready = 0; 3560 } 3561 3562 if (ready) 3563 return ready; 3564 if (time_after(now, deadline)) 3565 return -EBUSY; 3566 3567 if (!warned && time_after(now, start + 5 * HZ) && 3568 (deadline - now > 3 * HZ)) { 3569 ata_link_warn(link, 3570 "link is slow to respond, please be patient " 3571 "(ready=%d)\n", tmp); 3572 warned = 1; 3573 } 3574 3575 ata_msleep(link->ap, 50); 3576 } 3577 } 3578 3579 /** 3580 * ata_wait_after_reset - wait for link to become ready after reset 3581 * @link: link to be waited on 3582 * @deadline: deadline jiffies for the operation 3583 * @check_ready: callback to check link readiness 3584 * 3585 * Wait for @link to become ready after reset. 3586 * 3587 * LOCKING: 3588 * EH context. 3589 * 3590 * RETURNS: 3591 * 0 if @link is ready before @deadline; otherwise, -errno. 3592 */ 3593 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3594 int (*check_ready)(struct ata_link *link)) 3595 { 3596 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3597 3598 return ata_wait_ready(link, deadline, check_ready); 3599 } 3600 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3601 3602 /** 3603 * ata_std_prereset - prepare for reset 3604 * @link: ATA link to be reset 3605 * @deadline: deadline jiffies for the operation 3606 * 3607 * @link is about to be reset. Initialize it. Failure from 3608 * prereset makes libata abort whole reset sequence and give up 3609 * that port, so prereset should be best-effort. It does its 3610 * best to prepare for reset sequence but if things go wrong, it 3611 * should just whine, not fail. 3612 * 3613 * LOCKING: 3614 * Kernel thread context (may sleep) 3615 * 3616 * RETURNS: 3617 * 0 on success, -errno otherwise. 3618 */ 3619 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3620 { 3621 struct ata_port *ap = link->ap; 3622 struct ata_eh_context *ehc = &link->eh_context; 3623 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3624 int rc; 3625 3626 /* if we're about to do hardreset, nothing more to do */ 3627 if (ehc->i.action & ATA_EH_HARDRESET) 3628 return 0; 3629 3630 /* if SATA, resume link */ 3631 if (ap->flags & ATA_FLAG_SATA) { 3632 rc = sata_link_resume(link, timing, deadline); 3633 /* whine about phy resume failure but proceed */ 3634 if (rc && rc != -EOPNOTSUPP) 3635 ata_link_warn(link, 3636 "failed to resume link for reset (errno=%d)\n", 3637 rc); 3638 } 3639 3640 /* no point in trying softreset on offline link */ 3641 if (ata_phys_link_offline(link)) 3642 ehc->i.action &= ~ATA_EH_SOFTRESET; 3643 3644 return 0; 3645 } 3646 EXPORT_SYMBOL_GPL(ata_std_prereset); 3647 3648 /** 3649 * sata_std_hardreset - COMRESET w/o waiting or classification 3650 * @link: link to reset 3651 * @class: resulting class of attached device 3652 * @deadline: deadline jiffies for the operation 3653 * 3654 * Standard SATA COMRESET w/o waiting or classification. 3655 * 3656 * LOCKING: 3657 * Kernel thread context (may sleep) 3658 * 3659 * RETURNS: 3660 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3661 */ 3662 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3663 unsigned long deadline) 3664 { 3665 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3666 bool online; 3667 int rc; 3668 3669 /* do hardreset */ 3670 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3671 return online ? -EAGAIN : rc; 3672 } 3673 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3674 3675 /** 3676 * ata_std_postreset - standard postreset callback 3677 * @link: the target ata_link 3678 * @classes: classes of attached devices 3679 * 3680 * This function is invoked after a successful reset. Note that 3681 * the device might have been reset more than once using 3682 * different reset methods before postreset is invoked. 3683 * 3684 * LOCKING: 3685 * Kernel thread context (may sleep) 3686 */ 3687 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3688 { 3689 u32 serror; 3690 3691 DPRINTK("ENTER\n"); 3692 3693 /* reset complete, clear SError */ 3694 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3695 sata_scr_write(link, SCR_ERROR, serror); 3696 3697 /* print link status */ 3698 sata_print_link_status(link); 3699 3700 DPRINTK("EXIT\n"); 3701 } 3702 EXPORT_SYMBOL_GPL(ata_std_postreset); 3703 3704 /** 3705 * ata_dev_same_device - Determine whether new ID matches configured device 3706 * @dev: device to compare against 3707 * @new_class: class of the new device 3708 * @new_id: IDENTIFY page of the new device 3709 * 3710 * Compare @new_class and @new_id against @dev and determine 3711 * whether @dev is the device indicated by @new_class and 3712 * @new_id. 3713 * 3714 * LOCKING: 3715 * None. 3716 * 3717 * RETURNS: 3718 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3719 */ 3720 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3721 const u16 *new_id) 3722 { 3723 const u16 *old_id = dev->id; 3724 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3725 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3726 3727 if (dev->class != new_class) { 3728 ata_dev_info(dev, "class mismatch %d != %d\n", 3729 dev->class, new_class); 3730 return 0; 3731 } 3732 3733 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3734 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3735 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3736 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3737 3738 if (strcmp(model[0], model[1])) { 3739 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3740 model[0], model[1]); 3741 return 0; 3742 } 3743 3744 if (strcmp(serial[0], serial[1])) { 3745 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3746 serial[0], serial[1]); 3747 return 0; 3748 } 3749 3750 return 1; 3751 } 3752 3753 /** 3754 * ata_dev_reread_id - Re-read IDENTIFY data 3755 * @dev: target ATA device 3756 * @readid_flags: read ID flags 3757 * 3758 * Re-read IDENTIFY page and make sure @dev is still attached to 3759 * the port. 3760 * 3761 * LOCKING: 3762 * Kernel thread context (may sleep) 3763 * 3764 * RETURNS: 3765 * 0 on success, negative errno otherwise 3766 */ 3767 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3768 { 3769 unsigned int class = dev->class; 3770 u16 *id = (void *)dev->link->ap->sector_buf; 3771 int rc; 3772 3773 /* read ID data */ 3774 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3775 if (rc) 3776 return rc; 3777 3778 /* is the device still there? */ 3779 if (!ata_dev_same_device(dev, class, id)) 3780 return -ENODEV; 3781 3782 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3783 return 0; 3784 } 3785 3786 /** 3787 * ata_dev_revalidate - Revalidate ATA device 3788 * @dev: device to revalidate 3789 * @new_class: new class code 3790 * @readid_flags: read ID flags 3791 * 3792 * Re-read IDENTIFY page, make sure @dev is still attached to the 3793 * port and reconfigure it according to the new IDENTIFY page. 3794 * 3795 * LOCKING: 3796 * Kernel thread context (may sleep) 3797 * 3798 * RETURNS: 3799 * 0 on success, negative errno otherwise 3800 */ 3801 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3802 unsigned int readid_flags) 3803 { 3804 u64 n_sectors = dev->n_sectors; 3805 u64 n_native_sectors = dev->n_native_sectors; 3806 int rc; 3807 3808 if (!ata_dev_enabled(dev)) 3809 return -ENODEV; 3810 3811 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3812 if (ata_class_enabled(new_class) && 3813 new_class != ATA_DEV_ATA && 3814 new_class != ATA_DEV_ATAPI && 3815 new_class != ATA_DEV_ZAC && 3816 new_class != ATA_DEV_SEMB) { 3817 ata_dev_info(dev, "class mismatch %u != %u\n", 3818 dev->class, new_class); 3819 rc = -ENODEV; 3820 goto fail; 3821 } 3822 3823 /* re-read ID */ 3824 rc = ata_dev_reread_id(dev, readid_flags); 3825 if (rc) 3826 goto fail; 3827 3828 /* configure device according to the new ID */ 3829 rc = ata_dev_configure(dev); 3830 if (rc) 3831 goto fail; 3832 3833 /* verify n_sectors hasn't changed */ 3834 if (dev->class != ATA_DEV_ATA || !n_sectors || 3835 dev->n_sectors == n_sectors) 3836 return 0; 3837 3838 /* n_sectors has changed */ 3839 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3840 (unsigned long long)n_sectors, 3841 (unsigned long long)dev->n_sectors); 3842 3843 /* 3844 * Something could have caused HPA to be unlocked 3845 * involuntarily. If n_native_sectors hasn't changed and the 3846 * new size matches it, keep the device. 3847 */ 3848 if (dev->n_native_sectors == n_native_sectors && 3849 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3850 ata_dev_warn(dev, 3851 "new n_sectors matches native, probably " 3852 "late HPA unlock, n_sectors updated\n"); 3853 /* use the larger n_sectors */ 3854 return 0; 3855 } 3856 3857 /* 3858 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3859 * unlocking HPA in those cases. 3860 * 3861 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3862 */ 3863 if (dev->n_native_sectors == n_native_sectors && 3864 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3865 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 3866 ata_dev_warn(dev, 3867 "old n_sectors matches native, probably " 3868 "late HPA lock, will try to unlock HPA\n"); 3869 /* try unlocking HPA */ 3870 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3871 rc = -EIO; 3872 } else 3873 rc = -ENODEV; 3874 3875 /* restore original n_[native_]sectors and fail */ 3876 dev->n_native_sectors = n_native_sectors; 3877 dev->n_sectors = n_sectors; 3878 fail: 3879 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3880 return rc; 3881 } 3882 3883 struct ata_blacklist_entry { 3884 const char *model_num; 3885 const char *model_rev; 3886 unsigned long horkage; 3887 }; 3888 3889 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3890 /* Devices with DMA related problems under Linux */ 3891 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3892 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3893 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3894 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3895 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3896 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3897 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3898 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3899 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3900 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 3901 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3902 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3903 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3904 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3905 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3906 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 3907 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3908 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3909 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3910 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3911 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3912 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3913 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3914 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3915 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3916 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3917 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3918 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3919 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 3920 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 3921 /* Odd clown on sil3726/4726 PMPs */ 3922 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3923 /* Similar story with ASMedia 1092 */ 3924 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE }, 3925 3926 /* Weird ATAPI devices */ 3927 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3928 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 3929 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3930 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3931 3932 /* 3933 * Causes silent data corruption with higher max sects. 3934 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 3935 */ 3936 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 3937 3938 /* 3939 * These devices time out with higher max sects. 3940 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 3941 */ 3942 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3943 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3944 3945 /* Devices we expect to fail diagnostics */ 3946 3947 /* Devices where NCQ should be avoided */ 3948 /* NCQ is slow */ 3949 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3950 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3951 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3952 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3953 /* NCQ is broken */ 3954 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3955 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3956 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3957 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3958 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 3959 3960 /* Seagate NCQ + FLUSH CACHE firmware bug */ 3961 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3962 ATA_HORKAGE_FIRMWARE_WARN }, 3963 3964 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3965 ATA_HORKAGE_FIRMWARE_WARN }, 3966 3967 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3968 ATA_HORKAGE_FIRMWARE_WARN }, 3969 3970 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3971 ATA_HORKAGE_FIRMWARE_WARN }, 3972 3973 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 3974 the ST disks also have LPM issues */ 3975 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 3976 ATA_HORKAGE_NOLPM, }, 3977 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 3978 3979 /* Blacklist entries taken from Silicon Image 3124/3132 3980 Windows driver .inf file - also several Linux problem reports */ 3981 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3982 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3983 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3984 3985 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 3986 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 3987 3988 /* Sandisk SD7/8/9s lock up hard on large trims */ 3989 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M, }, 3990 3991 /* devices which puke on READ_NATIVE_MAX */ 3992 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 3993 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3994 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3995 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3996 3997 /* this one allows HPA unlocking but fails IOs on the area */ 3998 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 3999 4000 /* Devices which report 1 sector over size HPA */ 4001 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4002 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4003 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4004 4005 /* Devices which get the IVB wrong */ 4006 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4007 /* Maybe we should just blacklist TSSTcorp... */ 4008 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4009 4010 /* Devices that do not need bridging limits applied */ 4011 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4012 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4013 4014 /* Devices which aren't very happy with higher link speeds */ 4015 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4016 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4017 4018 /* 4019 * Devices which choke on SETXFER. Applies only if both the 4020 * device and controller are SATA. 4021 */ 4022 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4023 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4024 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4025 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4026 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4027 4028 /* Crucial BX100 SSD 500GB has broken LPM support */ 4029 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 4030 4031 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4032 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4033 ATA_HORKAGE_ZERO_AFTER_TRIM | 4034 ATA_HORKAGE_NOLPM, }, 4035 /* 512GB MX100 with newer firmware has only LPM issues */ 4036 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 4037 ATA_HORKAGE_NOLPM, }, 4038 4039 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4040 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4041 ATA_HORKAGE_ZERO_AFTER_TRIM | 4042 ATA_HORKAGE_NOLPM, }, 4043 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4044 ATA_HORKAGE_ZERO_AFTER_TRIM | 4045 ATA_HORKAGE_NOLPM, }, 4046 4047 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4048 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, }, 4049 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, }, 4050 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, }, 4051 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, }, 4052 4053 /* devices that don't properly handle queued TRIM commands */ 4054 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4055 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4056 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4057 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4058 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4059 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4060 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4061 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4062 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4063 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4064 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4065 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4066 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4067 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4068 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4069 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4070 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4071 ATA_HORKAGE_ZERO_AFTER_TRIM | 4072 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4073 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4074 ATA_HORKAGE_ZERO_AFTER_TRIM | 4075 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4076 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4077 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4078 4079 /* devices that don't properly handle TRIM commands */ 4080 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, 4081 4082 /* 4083 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4084 * (Return Zero After Trim) flags in the ATA Command Set are 4085 * unreliable in the sense that they only define what happens if 4086 * the device successfully executed the DSM TRIM command. TRIM 4087 * is only advisory, however, and the device is free to silently 4088 * ignore all or parts of the request. 4089 * 4090 * Whitelist drives that are known to reliably return zeroes 4091 * after TRIM. 4092 */ 4093 4094 /* 4095 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4096 * that model before whitelisting all other intel SSDs. 4097 */ 4098 { "INTEL*SSDSC2MH*", NULL, 0, }, 4099 4100 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4101 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4102 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4103 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4104 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4105 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4106 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4107 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4108 4109 /* 4110 * Some WD SATA-I drives spin up and down erratically when the link 4111 * is put into the slumber mode. We don't have full list of the 4112 * affected devices. Disable LPM if the device matches one of the 4113 * known prefixes and is SATA-1. As a side effect LPM partial is 4114 * lost too. 4115 * 4116 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4117 */ 4118 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4119 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4120 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4121 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4122 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4123 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4124 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4125 4126 /* End Marker */ 4127 { } 4128 }; 4129 4130 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4131 { 4132 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4133 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4134 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4135 4136 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4137 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4138 4139 while (ad->model_num) { 4140 if (glob_match(ad->model_num, model_num)) { 4141 if (ad->model_rev == NULL) 4142 return ad->horkage; 4143 if (glob_match(ad->model_rev, model_rev)) 4144 return ad->horkage; 4145 } 4146 ad++; 4147 } 4148 return 0; 4149 } 4150 4151 static int ata_dma_blacklisted(const struct ata_device *dev) 4152 { 4153 /* We don't support polling DMA. 4154 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4155 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4156 */ 4157 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4158 (dev->flags & ATA_DFLAG_CDB_INTR)) 4159 return 1; 4160 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4161 } 4162 4163 /** 4164 * ata_is_40wire - check drive side detection 4165 * @dev: device 4166 * 4167 * Perform drive side detection decoding, allowing for device vendors 4168 * who can't follow the documentation. 4169 */ 4170 4171 static int ata_is_40wire(struct ata_device *dev) 4172 { 4173 if (dev->horkage & ATA_HORKAGE_IVB) 4174 return ata_drive_40wire_relaxed(dev->id); 4175 return ata_drive_40wire(dev->id); 4176 } 4177 4178 /** 4179 * cable_is_40wire - 40/80/SATA decider 4180 * @ap: port to consider 4181 * 4182 * This function encapsulates the policy for speed management 4183 * in one place. At the moment we don't cache the result but 4184 * there is a good case for setting ap->cbl to the result when 4185 * we are called with unknown cables (and figuring out if it 4186 * impacts hotplug at all). 4187 * 4188 * Return 1 if the cable appears to be 40 wire. 4189 */ 4190 4191 static int cable_is_40wire(struct ata_port *ap) 4192 { 4193 struct ata_link *link; 4194 struct ata_device *dev; 4195 4196 /* If the controller thinks we are 40 wire, we are. */ 4197 if (ap->cbl == ATA_CBL_PATA40) 4198 return 1; 4199 4200 /* If the controller thinks we are 80 wire, we are. */ 4201 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4202 return 0; 4203 4204 /* If the system is known to be 40 wire short cable (eg 4205 * laptop), then we allow 80 wire modes even if the drive 4206 * isn't sure. 4207 */ 4208 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4209 return 0; 4210 4211 /* If the controller doesn't know, we scan. 4212 * 4213 * Note: We look for all 40 wire detects at this point. Any 4214 * 80 wire detect is taken to be 80 wire cable because 4215 * - in many setups only the one drive (slave if present) will 4216 * give a valid detect 4217 * - if you have a non detect capable drive you don't want it 4218 * to colour the choice 4219 */ 4220 ata_for_each_link(link, ap, EDGE) { 4221 ata_for_each_dev(dev, link, ENABLED) { 4222 if (!ata_is_40wire(dev)) 4223 return 0; 4224 } 4225 } 4226 return 1; 4227 } 4228 4229 /** 4230 * ata_dev_xfermask - Compute supported xfermask of the given device 4231 * @dev: Device to compute xfermask for 4232 * 4233 * Compute supported xfermask of @dev and store it in 4234 * dev->*_mask. This function is responsible for applying all 4235 * known limits including host controller limits, device 4236 * blacklist, etc... 4237 * 4238 * LOCKING: 4239 * None. 4240 */ 4241 static void ata_dev_xfermask(struct ata_device *dev) 4242 { 4243 struct ata_link *link = dev->link; 4244 struct ata_port *ap = link->ap; 4245 struct ata_host *host = ap->host; 4246 unsigned long xfer_mask; 4247 4248 /* controller modes available */ 4249 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4250 ap->mwdma_mask, ap->udma_mask); 4251 4252 /* drive modes available */ 4253 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4254 dev->mwdma_mask, dev->udma_mask); 4255 xfer_mask &= ata_id_xfermask(dev->id); 4256 4257 /* 4258 * CFA Advanced TrueIDE timings are not allowed on a shared 4259 * cable 4260 */ 4261 if (ata_dev_pair(dev)) { 4262 /* No PIO5 or PIO6 */ 4263 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4264 /* No MWDMA3 or MWDMA 4 */ 4265 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4266 } 4267 4268 if (ata_dma_blacklisted(dev)) { 4269 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4270 ata_dev_warn(dev, 4271 "device is on DMA blacklist, disabling DMA\n"); 4272 } 4273 4274 if ((host->flags & ATA_HOST_SIMPLEX) && 4275 host->simplex_claimed && host->simplex_claimed != ap) { 4276 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4277 ata_dev_warn(dev, 4278 "simplex DMA is claimed by other device, disabling DMA\n"); 4279 } 4280 4281 if (ap->flags & ATA_FLAG_NO_IORDY) 4282 xfer_mask &= ata_pio_mask_no_iordy(dev); 4283 4284 if (ap->ops->mode_filter) 4285 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4286 4287 /* Apply cable rule here. Don't apply it early because when 4288 * we handle hot plug the cable type can itself change. 4289 * Check this last so that we know if the transfer rate was 4290 * solely limited by the cable. 4291 * Unknown or 80 wire cables reported host side are checked 4292 * drive side as well. Cases where we know a 40wire cable 4293 * is used safely for 80 are not checked here. 4294 */ 4295 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4296 /* UDMA/44 or higher would be available */ 4297 if (cable_is_40wire(ap)) { 4298 ata_dev_warn(dev, 4299 "limited to UDMA/33 due to 40-wire cable\n"); 4300 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4301 } 4302 4303 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4304 &dev->mwdma_mask, &dev->udma_mask); 4305 } 4306 4307 /** 4308 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4309 * @dev: Device to which command will be sent 4310 * 4311 * Issue SET FEATURES - XFER MODE command to device @dev 4312 * on port @ap. 4313 * 4314 * LOCKING: 4315 * PCI/etc. bus probe sem. 4316 * 4317 * RETURNS: 4318 * 0 on success, AC_ERR_* mask otherwise. 4319 */ 4320 4321 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4322 { 4323 struct ata_taskfile tf; 4324 unsigned int err_mask; 4325 4326 /* set up set-features taskfile */ 4327 DPRINTK("set features - xfer mode\n"); 4328 4329 /* Some controllers and ATAPI devices show flaky interrupt 4330 * behavior after setting xfer mode. Use polling instead. 4331 */ 4332 ata_tf_init(dev, &tf); 4333 tf.command = ATA_CMD_SET_FEATURES; 4334 tf.feature = SETFEATURES_XFER; 4335 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4336 tf.protocol = ATA_PROT_NODATA; 4337 /* If we are using IORDY we must send the mode setting command */ 4338 if (ata_pio_need_iordy(dev)) 4339 tf.nsect = dev->xfer_mode; 4340 /* If the device has IORDY and the controller does not - turn it off */ 4341 else if (ata_id_has_iordy(dev->id)) 4342 tf.nsect = 0x01; 4343 else /* In the ancient relic department - skip all of this */ 4344 return 0; 4345 4346 /* On some disks, this command causes spin-up, so we need longer timeout */ 4347 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4348 4349 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4350 return err_mask; 4351 } 4352 4353 /** 4354 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4355 * @dev: Device to which command will be sent 4356 * @enable: Whether to enable or disable the feature 4357 * @feature: The sector count represents the feature to set 4358 * 4359 * Issue SET FEATURES - SATA FEATURES command to device @dev 4360 * on port @ap with sector count 4361 * 4362 * LOCKING: 4363 * PCI/etc. bus probe sem. 4364 * 4365 * RETURNS: 4366 * 0 on success, AC_ERR_* mask otherwise. 4367 */ 4368 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4369 { 4370 struct ata_taskfile tf; 4371 unsigned int err_mask; 4372 unsigned long timeout = 0; 4373 4374 /* set up set-features taskfile */ 4375 DPRINTK("set features - SATA features\n"); 4376 4377 ata_tf_init(dev, &tf); 4378 tf.command = ATA_CMD_SET_FEATURES; 4379 tf.feature = enable; 4380 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4381 tf.protocol = ATA_PROT_NODATA; 4382 tf.nsect = feature; 4383 4384 if (enable == SETFEATURES_SPINUP) 4385 timeout = ata_probe_timeout ? 4386 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4387 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4388 4389 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4390 return err_mask; 4391 } 4392 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4393 4394 /** 4395 * ata_dev_init_params - Issue INIT DEV PARAMS command 4396 * @dev: Device to which command will be sent 4397 * @heads: Number of heads (taskfile parameter) 4398 * @sectors: Number of sectors (taskfile parameter) 4399 * 4400 * LOCKING: 4401 * Kernel thread context (may sleep) 4402 * 4403 * RETURNS: 4404 * 0 on success, AC_ERR_* mask otherwise. 4405 */ 4406 static unsigned int ata_dev_init_params(struct ata_device *dev, 4407 u16 heads, u16 sectors) 4408 { 4409 struct ata_taskfile tf; 4410 unsigned int err_mask; 4411 4412 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4413 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4414 return AC_ERR_INVALID; 4415 4416 /* set up init dev params taskfile */ 4417 DPRINTK("init dev params \n"); 4418 4419 ata_tf_init(dev, &tf); 4420 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4421 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4422 tf.protocol = ATA_PROT_NODATA; 4423 tf.nsect = sectors; 4424 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4425 4426 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4427 /* A clean abort indicates an original or just out of spec drive 4428 and we should continue as we issue the setup based on the 4429 drive reported working geometry */ 4430 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4431 err_mask = 0; 4432 4433 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4434 return err_mask; 4435 } 4436 4437 /** 4438 * atapi_check_dma - Check whether ATAPI DMA can be supported 4439 * @qc: Metadata associated with taskfile to check 4440 * 4441 * Allow low-level driver to filter ATA PACKET commands, returning 4442 * a status indicating whether or not it is OK to use DMA for the 4443 * supplied PACKET command. 4444 * 4445 * LOCKING: 4446 * spin_lock_irqsave(host lock) 4447 * 4448 * RETURNS: 0 when ATAPI DMA can be used 4449 * nonzero otherwise 4450 */ 4451 int atapi_check_dma(struct ata_queued_cmd *qc) 4452 { 4453 struct ata_port *ap = qc->ap; 4454 4455 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4456 * few ATAPI devices choke on such DMA requests. 4457 */ 4458 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4459 unlikely(qc->nbytes & 15)) 4460 return 1; 4461 4462 if (ap->ops->check_atapi_dma) 4463 return ap->ops->check_atapi_dma(qc); 4464 4465 return 0; 4466 } 4467 4468 /** 4469 * ata_std_qc_defer - Check whether a qc needs to be deferred 4470 * @qc: ATA command in question 4471 * 4472 * Non-NCQ commands cannot run with any other command, NCQ or 4473 * not. As upper layer only knows the queue depth, we are 4474 * responsible for maintaining exclusion. This function checks 4475 * whether a new command @qc can be issued. 4476 * 4477 * LOCKING: 4478 * spin_lock_irqsave(host lock) 4479 * 4480 * RETURNS: 4481 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4482 */ 4483 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4484 { 4485 struct ata_link *link = qc->dev->link; 4486 4487 if (ata_is_ncq(qc->tf.protocol)) { 4488 if (!ata_tag_valid(link->active_tag)) 4489 return 0; 4490 } else { 4491 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4492 return 0; 4493 } 4494 4495 return ATA_DEFER_LINK; 4496 } 4497 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4498 4499 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4500 { 4501 return AC_ERR_OK; 4502 } 4503 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4504 4505 /** 4506 * ata_sg_init - Associate command with scatter-gather table. 4507 * @qc: Command to be associated 4508 * @sg: Scatter-gather table. 4509 * @n_elem: Number of elements in s/g table. 4510 * 4511 * Initialize the data-related elements of queued_cmd @qc 4512 * to point to a scatter-gather table @sg, containing @n_elem 4513 * elements. 4514 * 4515 * LOCKING: 4516 * spin_lock_irqsave(host lock) 4517 */ 4518 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4519 unsigned int n_elem) 4520 { 4521 qc->sg = sg; 4522 qc->n_elem = n_elem; 4523 qc->cursg = qc->sg; 4524 } 4525 4526 #ifdef CONFIG_HAS_DMA 4527 4528 /** 4529 * ata_sg_clean - Unmap DMA memory associated with command 4530 * @qc: Command containing DMA memory to be released 4531 * 4532 * Unmap all mapped DMA memory associated with this command. 4533 * 4534 * LOCKING: 4535 * spin_lock_irqsave(host lock) 4536 */ 4537 static void ata_sg_clean(struct ata_queued_cmd *qc) 4538 { 4539 struct ata_port *ap = qc->ap; 4540 struct scatterlist *sg = qc->sg; 4541 int dir = qc->dma_dir; 4542 4543 WARN_ON_ONCE(sg == NULL); 4544 4545 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4546 4547 if (qc->n_elem) 4548 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4549 4550 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4551 qc->sg = NULL; 4552 } 4553 4554 /** 4555 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4556 * @qc: Command with scatter-gather table to be mapped. 4557 * 4558 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4559 * 4560 * LOCKING: 4561 * spin_lock_irqsave(host lock) 4562 * 4563 * RETURNS: 4564 * Zero on success, negative on error. 4565 * 4566 */ 4567 static int ata_sg_setup(struct ata_queued_cmd *qc) 4568 { 4569 struct ata_port *ap = qc->ap; 4570 unsigned int n_elem; 4571 4572 VPRINTK("ENTER, ata%u\n", ap->print_id); 4573 4574 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4575 if (n_elem < 1) 4576 return -1; 4577 4578 VPRINTK("%d sg elements mapped\n", n_elem); 4579 qc->orig_n_elem = qc->n_elem; 4580 qc->n_elem = n_elem; 4581 qc->flags |= ATA_QCFLAG_DMAMAP; 4582 4583 return 0; 4584 } 4585 4586 #else /* !CONFIG_HAS_DMA */ 4587 4588 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4589 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4590 4591 #endif /* !CONFIG_HAS_DMA */ 4592 4593 /** 4594 * swap_buf_le16 - swap halves of 16-bit words in place 4595 * @buf: Buffer to swap 4596 * @buf_words: Number of 16-bit words in buffer. 4597 * 4598 * Swap halves of 16-bit words if needed to convert from 4599 * little-endian byte order to native cpu byte order, or 4600 * vice-versa. 4601 * 4602 * LOCKING: 4603 * Inherited from caller. 4604 */ 4605 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4606 { 4607 #ifdef __BIG_ENDIAN 4608 unsigned int i; 4609 4610 for (i = 0; i < buf_words; i++) 4611 buf[i] = le16_to_cpu(buf[i]); 4612 #endif /* __BIG_ENDIAN */ 4613 } 4614 4615 /** 4616 * ata_qc_new_init - Request an available ATA command, and initialize it 4617 * @dev: Device from whom we request an available command structure 4618 * @tag: tag 4619 * 4620 * LOCKING: 4621 * None. 4622 */ 4623 4624 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 4625 { 4626 struct ata_port *ap = dev->link->ap; 4627 struct ata_queued_cmd *qc; 4628 4629 /* no command while frozen */ 4630 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4631 return NULL; 4632 4633 /* libsas case */ 4634 if (ap->flags & ATA_FLAG_SAS_HOST) { 4635 tag = ata_sas_allocate_tag(ap); 4636 if (tag < 0) 4637 return NULL; 4638 } 4639 4640 qc = __ata_qc_from_tag(ap, tag); 4641 qc->tag = qc->hw_tag = tag; 4642 qc->scsicmd = NULL; 4643 qc->ap = ap; 4644 qc->dev = dev; 4645 4646 ata_qc_reinit(qc); 4647 4648 return qc; 4649 } 4650 4651 /** 4652 * ata_qc_free - free unused ata_queued_cmd 4653 * @qc: Command to complete 4654 * 4655 * Designed to free unused ata_queued_cmd object 4656 * in case something prevents using it. 4657 * 4658 * LOCKING: 4659 * spin_lock_irqsave(host lock) 4660 */ 4661 void ata_qc_free(struct ata_queued_cmd *qc) 4662 { 4663 struct ata_port *ap; 4664 unsigned int tag; 4665 4666 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4667 ap = qc->ap; 4668 4669 qc->flags = 0; 4670 tag = qc->tag; 4671 if (ata_tag_valid(tag)) { 4672 qc->tag = ATA_TAG_POISON; 4673 if (ap->flags & ATA_FLAG_SAS_HOST) 4674 ata_sas_free_tag(tag, ap); 4675 } 4676 } 4677 4678 void __ata_qc_complete(struct ata_queued_cmd *qc) 4679 { 4680 struct ata_port *ap; 4681 struct ata_link *link; 4682 4683 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4684 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4685 ap = qc->ap; 4686 link = qc->dev->link; 4687 4688 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4689 ata_sg_clean(qc); 4690 4691 /* command should be marked inactive atomically with qc completion */ 4692 if (ata_is_ncq(qc->tf.protocol)) { 4693 link->sactive &= ~(1 << qc->hw_tag); 4694 if (!link->sactive) 4695 ap->nr_active_links--; 4696 } else { 4697 link->active_tag = ATA_TAG_POISON; 4698 ap->nr_active_links--; 4699 } 4700 4701 /* clear exclusive status */ 4702 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4703 ap->excl_link == link)) 4704 ap->excl_link = NULL; 4705 4706 /* atapi: mark qc as inactive to prevent the interrupt handler 4707 * from completing the command twice later, before the error handler 4708 * is called. (when rc != 0 and atapi request sense is needed) 4709 */ 4710 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4711 ap->qc_active &= ~(1ULL << qc->tag); 4712 4713 /* call completion callback */ 4714 qc->complete_fn(qc); 4715 } 4716 4717 static void fill_result_tf(struct ata_queued_cmd *qc) 4718 { 4719 struct ata_port *ap = qc->ap; 4720 4721 qc->result_tf.flags = qc->tf.flags; 4722 ap->ops->qc_fill_rtf(qc); 4723 } 4724 4725 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4726 { 4727 struct ata_device *dev = qc->dev; 4728 4729 if (!ata_is_data(qc->tf.protocol)) 4730 return; 4731 4732 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4733 return; 4734 4735 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4736 } 4737 4738 /** 4739 * ata_qc_complete - Complete an active ATA command 4740 * @qc: Command to complete 4741 * 4742 * Indicate to the mid and upper layers that an ATA command has 4743 * completed, with either an ok or not-ok status. 4744 * 4745 * Refrain from calling this function multiple times when 4746 * successfully completing multiple NCQ commands. 4747 * ata_qc_complete_multiple() should be used instead, which will 4748 * properly update IRQ expect state. 4749 * 4750 * LOCKING: 4751 * spin_lock_irqsave(host lock) 4752 */ 4753 void ata_qc_complete(struct ata_queued_cmd *qc) 4754 { 4755 struct ata_port *ap = qc->ap; 4756 4757 /* Trigger the LED (if available) */ 4758 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4759 4760 /* XXX: New EH and old EH use different mechanisms to 4761 * synchronize EH with regular execution path. 4762 * 4763 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4764 * Normal execution path is responsible for not accessing a 4765 * failed qc. libata core enforces the rule by returning NULL 4766 * from ata_qc_from_tag() for failed qcs. 4767 * 4768 * Old EH depends on ata_qc_complete() nullifying completion 4769 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4770 * not synchronize with interrupt handler. Only PIO task is 4771 * taken care of. 4772 */ 4773 if (ap->ops->error_handler) { 4774 struct ata_device *dev = qc->dev; 4775 struct ata_eh_info *ehi = &dev->link->eh_info; 4776 4777 if (unlikely(qc->err_mask)) 4778 qc->flags |= ATA_QCFLAG_FAILED; 4779 4780 /* 4781 * Finish internal commands without any further processing 4782 * and always with the result TF filled. 4783 */ 4784 if (unlikely(ata_tag_internal(qc->tag))) { 4785 fill_result_tf(qc); 4786 trace_ata_qc_complete_internal(qc); 4787 __ata_qc_complete(qc); 4788 return; 4789 } 4790 4791 /* 4792 * Non-internal qc has failed. Fill the result TF and 4793 * summon EH. 4794 */ 4795 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4796 fill_result_tf(qc); 4797 trace_ata_qc_complete_failed(qc); 4798 ata_qc_schedule_eh(qc); 4799 return; 4800 } 4801 4802 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4803 4804 /* read result TF if requested */ 4805 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4806 fill_result_tf(qc); 4807 4808 trace_ata_qc_complete_done(qc); 4809 /* Some commands need post-processing after successful 4810 * completion. 4811 */ 4812 switch (qc->tf.command) { 4813 case ATA_CMD_SET_FEATURES: 4814 if (qc->tf.feature != SETFEATURES_WC_ON && 4815 qc->tf.feature != SETFEATURES_WC_OFF && 4816 qc->tf.feature != SETFEATURES_RA_ON && 4817 qc->tf.feature != SETFEATURES_RA_OFF) 4818 break; 4819 fallthrough; 4820 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4821 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4822 /* revalidate device */ 4823 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4824 ata_port_schedule_eh(ap); 4825 break; 4826 4827 case ATA_CMD_SLEEP: 4828 dev->flags |= ATA_DFLAG_SLEEPING; 4829 break; 4830 } 4831 4832 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4833 ata_verify_xfer(qc); 4834 4835 __ata_qc_complete(qc); 4836 } else { 4837 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4838 return; 4839 4840 /* read result TF if failed or requested */ 4841 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4842 fill_result_tf(qc); 4843 4844 __ata_qc_complete(qc); 4845 } 4846 } 4847 EXPORT_SYMBOL_GPL(ata_qc_complete); 4848 4849 /** 4850 * ata_qc_get_active - get bitmask of active qcs 4851 * @ap: port in question 4852 * 4853 * LOCKING: 4854 * spin_lock_irqsave(host lock) 4855 * 4856 * RETURNS: 4857 * Bitmask of active qcs 4858 */ 4859 u64 ata_qc_get_active(struct ata_port *ap) 4860 { 4861 u64 qc_active = ap->qc_active; 4862 4863 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4864 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4865 qc_active |= (1 << 0); 4866 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4867 } 4868 4869 return qc_active; 4870 } 4871 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4872 4873 /** 4874 * ata_qc_issue - issue taskfile to device 4875 * @qc: command to issue to device 4876 * 4877 * Prepare an ATA command to submission to device. 4878 * This includes mapping the data into a DMA-able 4879 * area, filling in the S/G table, and finally 4880 * writing the taskfile to hardware, starting the command. 4881 * 4882 * LOCKING: 4883 * spin_lock_irqsave(host lock) 4884 */ 4885 void ata_qc_issue(struct ata_queued_cmd *qc) 4886 { 4887 struct ata_port *ap = qc->ap; 4888 struct ata_link *link = qc->dev->link; 4889 u8 prot = qc->tf.protocol; 4890 4891 /* Make sure only one non-NCQ command is outstanding. The 4892 * check is skipped for old EH because it reuses active qc to 4893 * request ATAPI sense. 4894 */ 4895 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4896 4897 if (ata_is_ncq(prot)) { 4898 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4899 4900 if (!link->sactive) 4901 ap->nr_active_links++; 4902 link->sactive |= 1 << qc->hw_tag; 4903 } else { 4904 WARN_ON_ONCE(link->sactive); 4905 4906 ap->nr_active_links++; 4907 link->active_tag = qc->tag; 4908 } 4909 4910 qc->flags |= ATA_QCFLAG_ACTIVE; 4911 ap->qc_active |= 1ULL << qc->tag; 4912 4913 /* 4914 * We guarantee to LLDs that they will have at least one 4915 * non-zero sg if the command is a data command. 4916 */ 4917 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4918 goto sys_err; 4919 4920 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4921 (ap->flags & ATA_FLAG_PIO_DMA))) 4922 if (ata_sg_setup(qc)) 4923 goto sys_err; 4924 4925 /* if device is sleeping, schedule reset and abort the link */ 4926 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4927 link->eh_info.action |= ATA_EH_RESET; 4928 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4929 ata_link_abort(link); 4930 return; 4931 } 4932 4933 qc->err_mask |= ap->ops->qc_prep(qc); 4934 if (unlikely(qc->err_mask)) 4935 goto err; 4936 trace_ata_qc_issue(qc); 4937 qc->err_mask |= ap->ops->qc_issue(qc); 4938 if (unlikely(qc->err_mask)) 4939 goto err; 4940 return; 4941 4942 sys_err: 4943 qc->err_mask |= AC_ERR_SYSTEM; 4944 err: 4945 ata_qc_complete(qc); 4946 } 4947 4948 /** 4949 * ata_phys_link_online - test whether the given link is online 4950 * @link: ATA link to test 4951 * 4952 * Test whether @link is online. Note that this function returns 4953 * 0 if online status of @link cannot be obtained, so 4954 * ata_link_online(link) != !ata_link_offline(link). 4955 * 4956 * LOCKING: 4957 * None. 4958 * 4959 * RETURNS: 4960 * True if the port online status is available and online. 4961 */ 4962 bool ata_phys_link_online(struct ata_link *link) 4963 { 4964 u32 sstatus; 4965 4966 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4967 ata_sstatus_online(sstatus)) 4968 return true; 4969 return false; 4970 } 4971 4972 /** 4973 * ata_phys_link_offline - test whether the given link is offline 4974 * @link: ATA link to test 4975 * 4976 * Test whether @link is offline. Note that this function 4977 * returns 0 if offline status of @link cannot be obtained, so 4978 * ata_link_online(link) != !ata_link_offline(link). 4979 * 4980 * LOCKING: 4981 * None. 4982 * 4983 * RETURNS: 4984 * True if the port offline status is available and offline. 4985 */ 4986 bool ata_phys_link_offline(struct ata_link *link) 4987 { 4988 u32 sstatus; 4989 4990 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4991 !ata_sstatus_online(sstatus)) 4992 return true; 4993 return false; 4994 } 4995 4996 /** 4997 * ata_link_online - test whether the given link is online 4998 * @link: ATA link to test 4999 * 5000 * Test whether @link is online. This is identical to 5001 * ata_phys_link_online() when there's no slave link. When 5002 * there's a slave link, this function should only be called on 5003 * the master link and will return true if any of M/S links is 5004 * online. 5005 * 5006 * LOCKING: 5007 * None. 5008 * 5009 * RETURNS: 5010 * True if the port online status is available and online. 5011 */ 5012 bool ata_link_online(struct ata_link *link) 5013 { 5014 struct ata_link *slave = link->ap->slave_link; 5015 5016 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5017 5018 return ata_phys_link_online(link) || 5019 (slave && ata_phys_link_online(slave)); 5020 } 5021 EXPORT_SYMBOL_GPL(ata_link_online); 5022 5023 /** 5024 * ata_link_offline - test whether the given link is offline 5025 * @link: ATA link to test 5026 * 5027 * Test whether @link is offline. This is identical to 5028 * ata_phys_link_offline() when there's no slave link. When 5029 * there's a slave link, this function should only be called on 5030 * the master link and will return true if both M/S links are 5031 * offline. 5032 * 5033 * LOCKING: 5034 * None. 5035 * 5036 * RETURNS: 5037 * True if the port offline status is available and offline. 5038 */ 5039 bool ata_link_offline(struct ata_link *link) 5040 { 5041 struct ata_link *slave = link->ap->slave_link; 5042 5043 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5044 5045 return ata_phys_link_offline(link) && 5046 (!slave || ata_phys_link_offline(slave)); 5047 } 5048 EXPORT_SYMBOL_GPL(ata_link_offline); 5049 5050 #ifdef CONFIG_PM 5051 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5052 unsigned int action, unsigned int ehi_flags, 5053 bool async) 5054 { 5055 struct ata_link *link; 5056 unsigned long flags; 5057 5058 /* Previous resume operation might still be in 5059 * progress. Wait for PM_PENDING to clear. 5060 */ 5061 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5062 ata_port_wait_eh(ap); 5063 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5064 } 5065 5066 /* request PM ops to EH */ 5067 spin_lock_irqsave(ap->lock, flags); 5068 5069 ap->pm_mesg = mesg; 5070 ap->pflags |= ATA_PFLAG_PM_PENDING; 5071 ata_for_each_link(link, ap, HOST_FIRST) { 5072 link->eh_info.action |= action; 5073 link->eh_info.flags |= ehi_flags; 5074 } 5075 5076 ata_port_schedule_eh(ap); 5077 5078 spin_unlock_irqrestore(ap->lock, flags); 5079 5080 if (!async) { 5081 ata_port_wait_eh(ap); 5082 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5083 } 5084 } 5085 5086 /* 5087 * On some hardware, device fails to respond after spun down for suspend. As 5088 * the device won't be used before being resumed, we don't need to touch the 5089 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5090 * 5091 * http://thread.gmane.org/gmane.linux.ide/46764 5092 */ 5093 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5094 | ATA_EHI_NO_AUTOPSY 5095 | ATA_EHI_NO_RECOVERY; 5096 5097 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5098 { 5099 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5100 } 5101 5102 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5103 { 5104 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5105 } 5106 5107 static int ata_port_pm_suspend(struct device *dev) 5108 { 5109 struct ata_port *ap = to_ata_port(dev); 5110 5111 if (pm_runtime_suspended(dev)) 5112 return 0; 5113 5114 ata_port_suspend(ap, PMSG_SUSPEND); 5115 return 0; 5116 } 5117 5118 static int ata_port_pm_freeze(struct device *dev) 5119 { 5120 struct ata_port *ap = to_ata_port(dev); 5121 5122 if (pm_runtime_suspended(dev)) 5123 return 0; 5124 5125 ata_port_suspend(ap, PMSG_FREEZE); 5126 return 0; 5127 } 5128 5129 static int ata_port_pm_poweroff(struct device *dev) 5130 { 5131 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5132 return 0; 5133 } 5134 5135 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5136 | ATA_EHI_QUIET; 5137 5138 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5139 { 5140 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5141 } 5142 5143 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5144 { 5145 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5146 } 5147 5148 static int ata_port_pm_resume(struct device *dev) 5149 { 5150 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5151 pm_runtime_disable(dev); 5152 pm_runtime_set_active(dev); 5153 pm_runtime_enable(dev); 5154 return 0; 5155 } 5156 5157 /* 5158 * For ODDs, the upper layer will poll for media change every few seconds, 5159 * which will make it enter and leave suspend state every few seconds. And 5160 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5161 * is very little and the ODD may malfunction after constantly being reset. 5162 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5163 * ODD is attached to the port. 5164 */ 5165 static int ata_port_runtime_idle(struct device *dev) 5166 { 5167 struct ata_port *ap = to_ata_port(dev); 5168 struct ata_link *link; 5169 struct ata_device *adev; 5170 5171 ata_for_each_link(link, ap, HOST_FIRST) { 5172 ata_for_each_dev(adev, link, ENABLED) 5173 if (adev->class == ATA_DEV_ATAPI && 5174 !zpodd_dev_enabled(adev)) 5175 return -EBUSY; 5176 } 5177 5178 return 0; 5179 } 5180 5181 static int ata_port_runtime_suspend(struct device *dev) 5182 { 5183 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5184 return 0; 5185 } 5186 5187 static int ata_port_runtime_resume(struct device *dev) 5188 { 5189 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5190 return 0; 5191 } 5192 5193 static const struct dev_pm_ops ata_port_pm_ops = { 5194 .suspend = ata_port_pm_suspend, 5195 .resume = ata_port_pm_resume, 5196 .freeze = ata_port_pm_freeze, 5197 .thaw = ata_port_pm_resume, 5198 .poweroff = ata_port_pm_poweroff, 5199 .restore = ata_port_pm_resume, 5200 5201 .runtime_suspend = ata_port_runtime_suspend, 5202 .runtime_resume = ata_port_runtime_resume, 5203 .runtime_idle = ata_port_runtime_idle, 5204 }; 5205 5206 /* sas ports don't participate in pm runtime management of ata_ports, 5207 * and need to resume ata devices at the domain level, not the per-port 5208 * level. sas suspend/resume is async to allow parallel port recovery 5209 * since sas has multiple ata_port instances per Scsi_Host. 5210 */ 5211 void ata_sas_port_suspend(struct ata_port *ap) 5212 { 5213 ata_port_suspend_async(ap, PMSG_SUSPEND); 5214 } 5215 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5216 5217 void ata_sas_port_resume(struct ata_port *ap) 5218 { 5219 ata_port_resume_async(ap, PMSG_RESUME); 5220 } 5221 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5222 5223 /** 5224 * ata_host_suspend - suspend host 5225 * @host: host to suspend 5226 * @mesg: PM message 5227 * 5228 * Suspend @host. Actual operation is performed by port suspend. 5229 */ 5230 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5231 { 5232 host->dev->power.power_state = mesg; 5233 return 0; 5234 } 5235 EXPORT_SYMBOL_GPL(ata_host_suspend); 5236 5237 /** 5238 * ata_host_resume - resume host 5239 * @host: host to resume 5240 * 5241 * Resume @host. Actual operation is performed by port resume. 5242 */ 5243 void ata_host_resume(struct ata_host *host) 5244 { 5245 host->dev->power.power_state = PMSG_ON; 5246 } 5247 EXPORT_SYMBOL_GPL(ata_host_resume); 5248 #endif 5249 5250 const struct device_type ata_port_type = { 5251 .name = "ata_port", 5252 #ifdef CONFIG_PM 5253 .pm = &ata_port_pm_ops, 5254 #endif 5255 }; 5256 5257 /** 5258 * ata_dev_init - Initialize an ata_device structure 5259 * @dev: Device structure to initialize 5260 * 5261 * Initialize @dev in preparation for probing. 5262 * 5263 * LOCKING: 5264 * Inherited from caller. 5265 */ 5266 void ata_dev_init(struct ata_device *dev) 5267 { 5268 struct ata_link *link = ata_dev_phys_link(dev); 5269 struct ata_port *ap = link->ap; 5270 unsigned long flags; 5271 5272 /* SATA spd limit is bound to the attached device, reset together */ 5273 link->sata_spd_limit = link->hw_sata_spd_limit; 5274 link->sata_spd = 0; 5275 5276 /* High bits of dev->flags are used to record warm plug 5277 * requests which occur asynchronously. Synchronize using 5278 * host lock. 5279 */ 5280 spin_lock_irqsave(ap->lock, flags); 5281 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5282 dev->horkage = 0; 5283 spin_unlock_irqrestore(ap->lock, flags); 5284 5285 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5286 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5287 dev->pio_mask = UINT_MAX; 5288 dev->mwdma_mask = UINT_MAX; 5289 dev->udma_mask = UINT_MAX; 5290 } 5291 5292 /** 5293 * ata_link_init - Initialize an ata_link structure 5294 * @ap: ATA port link is attached to 5295 * @link: Link structure to initialize 5296 * @pmp: Port multiplier port number 5297 * 5298 * Initialize @link. 5299 * 5300 * LOCKING: 5301 * Kernel thread context (may sleep) 5302 */ 5303 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5304 { 5305 int i; 5306 5307 /* clear everything except for devices */ 5308 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5309 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5310 5311 link->ap = ap; 5312 link->pmp = pmp; 5313 link->active_tag = ATA_TAG_POISON; 5314 link->hw_sata_spd_limit = UINT_MAX; 5315 5316 /* can't use iterator, ap isn't initialized yet */ 5317 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5318 struct ata_device *dev = &link->device[i]; 5319 5320 dev->link = link; 5321 dev->devno = dev - link->device; 5322 #ifdef CONFIG_ATA_ACPI 5323 dev->gtf_filter = ata_acpi_gtf_filter; 5324 #endif 5325 ata_dev_init(dev); 5326 } 5327 } 5328 5329 /** 5330 * sata_link_init_spd - Initialize link->sata_spd_limit 5331 * @link: Link to configure sata_spd_limit for 5332 * 5333 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5334 * configured value. 5335 * 5336 * LOCKING: 5337 * Kernel thread context (may sleep). 5338 * 5339 * RETURNS: 5340 * 0 on success, -errno on failure. 5341 */ 5342 int sata_link_init_spd(struct ata_link *link) 5343 { 5344 u8 spd; 5345 int rc; 5346 5347 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5348 if (rc) 5349 return rc; 5350 5351 spd = (link->saved_scontrol >> 4) & 0xf; 5352 if (spd) 5353 link->hw_sata_spd_limit &= (1 << spd) - 1; 5354 5355 ata_force_link_limits(link); 5356 5357 link->sata_spd_limit = link->hw_sata_spd_limit; 5358 5359 return 0; 5360 } 5361 5362 /** 5363 * ata_port_alloc - allocate and initialize basic ATA port resources 5364 * @host: ATA host this allocated port belongs to 5365 * 5366 * Allocate and initialize basic ATA port resources. 5367 * 5368 * RETURNS: 5369 * Allocate ATA port on success, NULL on failure. 5370 * 5371 * LOCKING: 5372 * Inherited from calling layer (may sleep). 5373 */ 5374 struct ata_port *ata_port_alloc(struct ata_host *host) 5375 { 5376 struct ata_port *ap; 5377 5378 DPRINTK("ENTER\n"); 5379 5380 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5381 if (!ap) 5382 return NULL; 5383 5384 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5385 ap->lock = &host->lock; 5386 ap->print_id = -1; 5387 ap->local_port_no = -1; 5388 ap->host = host; 5389 ap->dev = host->dev; 5390 5391 #if defined(ATA_VERBOSE_DEBUG) 5392 /* turn on all debugging levels */ 5393 ap->msg_enable = 0x00FF; 5394 #elif defined(ATA_DEBUG) 5395 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5396 #else 5397 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5398 #endif 5399 5400 mutex_init(&ap->scsi_scan_mutex); 5401 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5402 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5403 INIT_LIST_HEAD(&ap->eh_done_q); 5404 init_waitqueue_head(&ap->eh_wait_q); 5405 init_completion(&ap->park_req_pending); 5406 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5407 TIMER_DEFERRABLE); 5408 5409 ap->cbl = ATA_CBL_NONE; 5410 5411 ata_link_init(ap, &ap->link, 0); 5412 5413 #ifdef ATA_IRQ_TRAP 5414 ap->stats.unhandled_irq = 1; 5415 ap->stats.idle_irq = 1; 5416 #endif 5417 ata_sff_port_init(ap); 5418 5419 return ap; 5420 } 5421 5422 static void ata_devres_release(struct device *gendev, void *res) 5423 { 5424 struct ata_host *host = dev_get_drvdata(gendev); 5425 int i; 5426 5427 for (i = 0; i < host->n_ports; i++) { 5428 struct ata_port *ap = host->ports[i]; 5429 5430 if (!ap) 5431 continue; 5432 5433 if (ap->scsi_host) 5434 scsi_host_put(ap->scsi_host); 5435 5436 } 5437 5438 dev_set_drvdata(gendev, NULL); 5439 ata_host_put(host); 5440 } 5441 5442 static void ata_host_release(struct kref *kref) 5443 { 5444 struct ata_host *host = container_of(kref, struct ata_host, kref); 5445 int i; 5446 5447 for (i = 0; i < host->n_ports; i++) { 5448 struct ata_port *ap = host->ports[i]; 5449 5450 kfree(ap->pmp_link); 5451 kfree(ap->slave_link); 5452 kfree(ap); 5453 host->ports[i] = NULL; 5454 } 5455 kfree(host); 5456 } 5457 5458 void ata_host_get(struct ata_host *host) 5459 { 5460 kref_get(&host->kref); 5461 } 5462 5463 void ata_host_put(struct ata_host *host) 5464 { 5465 kref_put(&host->kref, ata_host_release); 5466 } 5467 EXPORT_SYMBOL_GPL(ata_host_put); 5468 5469 /** 5470 * ata_host_alloc - allocate and init basic ATA host resources 5471 * @dev: generic device this host is associated with 5472 * @max_ports: maximum number of ATA ports associated with this host 5473 * 5474 * Allocate and initialize basic ATA host resources. LLD calls 5475 * this function to allocate a host, initializes it fully and 5476 * attaches it using ata_host_register(). 5477 * 5478 * @max_ports ports are allocated and host->n_ports is 5479 * initialized to @max_ports. The caller is allowed to decrease 5480 * host->n_ports before calling ata_host_register(). The unused 5481 * ports will be automatically freed on registration. 5482 * 5483 * RETURNS: 5484 * Allocate ATA host on success, NULL on failure. 5485 * 5486 * LOCKING: 5487 * Inherited from calling layer (may sleep). 5488 */ 5489 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5490 { 5491 struct ata_host *host; 5492 size_t sz; 5493 int i; 5494 void *dr; 5495 5496 DPRINTK("ENTER\n"); 5497 5498 /* alloc a container for our list of ATA ports (buses) */ 5499 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5500 host = kzalloc(sz, GFP_KERNEL); 5501 if (!host) 5502 return NULL; 5503 5504 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5505 goto err_free; 5506 5507 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5508 if (!dr) 5509 goto err_out; 5510 5511 devres_add(dev, dr); 5512 dev_set_drvdata(dev, host); 5513 5514 spin_lock_init(&host->lock); 5515 mutex_init(&host->eh_mutex); 5516 host->dev = dev; 5517 host->n_ports = max_ports; 5518 kref_init(&host->kref); 5519 5520 /* allocate ports bound to this host */ 5521 for (i = 0; i < max_ports; i++) { 5522 struct ata_port *ap; 5523 5524 ap = ata_port_alloc(host); 5525 if (!ap) 5526 goto err_out; 5527 5528 ap->port_no = i; 5529 host->ports[i] = ap; 5530 } 5531 5532 devres_remove_group(dev, NULL); 5533 return host; 5534 5535 err_out: 5536 devres_release_group(dev, NULL); 5537 err_free: 5538 kfree(host); 5539 return NULL; 5540 } 5541 EXPORT_SYMBOL_GPL(ata_host_alloc); 5542 5543 /** 5544 * ata_host_alloc_pinfo - alloc host and init with port_info array 5545 * @dev: generic device this host is associated with 5546 * @ppi: array of ATA port_info to initialize host with 5547 * @n_ports: number of ATA ports attached to this host 5548 * 5549 * Allocate ATA host and initialize with info from @ppi. If NULL 5550 * terminated, @ppi may contain fewer entries than @n_ports. The 5551 * last entry will be used for the remaining ports. 5552 * 5553 * RETURNS: 5554 * Allocate ATA host on success, NULL on failure. 5555 * 5556 * LOCKING: 5557 * Inherited from calling layer (may sleep). 5558 */ 5559 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5560 const struct ata_port_info * const * ppi, 5561 int n_ports) 5562 { 5563 const struct ata_port_info *pi; 5564 struct ata_host *host; 5565 int i, j; 5566 5567 host = ata_host_alloc(dev, n_ports); 5568 if (!host) 5569 return NULL; 5570 5571 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5572 struct ata_port *ap = host->ports[i]; 5573 5574 if (ppi[j]) 5575 pi = ppi[j++]; 5576 5577 ap->pio_mask = pi->pio_mask; 5578 ap->mwdma_mask = pi->mwdma_mask; 5579 ap->udma_mask = pi->udma_mask; 5580 ap->flags |= pi->flags; 5581 ap->link.flags |= pi->link_flags; 5582 ap->ops = pi->port_ops; 5583 5584 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5585 host->ops = pi->port_ops; 5586 } 5587 5588 return host; 5589 } 5590 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5591 5592 static void ata_host_stop(struct device *gendev, void *res) 5593 { 5594 struct ata_host *host = dev_get_drvdata(gendev); 5595 int i; 5596 5597 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5598 5599 for (i = 0; i < host->n_ports; i++) { 5600 struct ata_port *ap = host->ports[i]; 5601 5602 if (ap->ops->port_stop) 5603 ap->ops->port_stop(ap); 5604 } 5605 5606 if (host->ops->host_stop) 5607 host->ops->host_stop(host); 5608 } 5609 5610 /** 5611 * ata_finalize_port_ops - finalize ata_port_operations 5612 * @ops: ata_port_operations to finalize 5613 * 5614 * An ata_port_operations can inherit from another ops and that 5615 * ops can again inherit from another. This can go on as many 5616 * times as necessary as long as there is no loop in the 5617 * inheritance chain. 5618 * 5619 * Ops tables are finalized when the host is started. NULL or 5620 * unspecified entries are inherited from the closet ancestor 5621 * which has the method and the entry is populated with it. 5622 * After finalization, the ops table directly points to all the 5623 * methods and ->inherits is no longer necessary and cleared. 5624 * 5625 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5626 * 5627 * LOCKING: 5628 * None. 5629 */ 5630 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5631 { 5632 static DEFINE_SPINLOCK(lock); 5633 const struct ata_port_operations *cur; 5634 void **begin = (void **)ops; 5635 void **end = (void **)&ops->inherits; 5636 void **pp; 5637 5638 if (!ops || !ops->inherits) 5639 return; 5640 5641 spin_lock(&lock); 5642 5643 for (cur = ops->inherits; cur; cur = cur->inherits) { 5644 void **inherit = (void **)cur; 5645 5646 for (pp = begin; pp < end; pp++, inherit++) 5647 if (!*pp) 5648 *pp = *inherit; 5649 } 5650 5651 for (pp = begin; pp < end; pp++) 5652 if (IS_ERR(*pp)) 5653 *pp = NULL; 5654 5655 ops->inherits = NULL; 5656 5657 spin_unlock(&lock); 5658 } 5659 5660 /** 5661 * ata_host_start - start and freeze ports of an ATA host 5662 * @host: ATA host to start ports for 5663 * 5664 * Start and then freeze ports of @host. Started status is 5665 * recorded in host->flags, so this function can be called 5666 * multiple times. Ports are guaranteed to get started only 5667 * once. If host->ops isn't initialized yet, its set to the 5668 * first non-dummy port ops. 5669 * 5670 * LOCKING: 5671 * Inherited from calling layer (may sleep). 5672 * 5673 * RETURNS: 5674 * 0 if all ports are started successfully, -errno otherwise. 5675 */ 5676 int ata_host_start(struct ata_host *host) 5677 { 5678 int have_stop = 0; 5679 void *start_dr = NULL; 5680 int i, rc; 5681 5682 if (host->flags & ATA_HOST_STARTED) 5683 return 0; 5684 5685 ata_finalize_port_ops(host->ops); 5686 5687 for (i = 0; i < host->n_ports; i++) { 5688 struct ata_port *ap = host->ports[i]; 5689 5690 ata_finalize_port_ops(ap->ops); 5691 5692 if (!host->ops && !ata_port_is_dummy(ap)) 5693 host->ops = ap->ops; 5694 5695 if (ap->ops->port_stop) 5696 have_stop = 1; 5697 } 5698 5699 if (host->ops && host->ops->host_stop) 5700 have_stop = 1; 5701 5702 if (have_stop) { 5703 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5704 if (!start_dr) 5705 return -ENOMEM; 5706 } 5707 5708 for (i = 0; i < host->n_ports; i++) { 5709 struct ata_port *ap = host->ports[i]; 5710 5711 if (ap->ops->port_start) { 5712 rc = ap->ops->port_start(ap); 5713 if (rc) { 5714 if (rc != -ENODEV) 5715 dev_err(host->dev, 5716 "failed to start port %d (errno=%d)\n", 5717 i, rc); 5718 goto err_out; 5719 } 5720 } 5721 ata_eh_freeze_port(ap); 5722 } 5723 5724 if (start_dr) 5725 devres_add(host->dev, start_dr); 5726 host->flags |= ATA_HOST_STARTED; 5727 return 0; 5728 5729 err_out: 5730 while (--i >= 0) { 5731 struct ata_port *ap = host->ports[i]; 5732 5733 if (ap->ops->port_stop) 5734 ap->ops->port_stop(ap); 5735 } 5736 devres_free(start_dr); 5737 return rc; 5738 } 5739 EXPORT_SYMBOL_GPL(ata_host_start); 5740 5741 /** 5742 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5743 * @host: host to initialize 5744 * @dev: device host is attached to 5745 * @ops: port_ops 5746 * 5747 */ 5748 void ata_host_init(struct ata_host *host, struct device *dev, 5749 struct ata_port_operations *ops) 5750 { 5751 spin_lock_init(&host->lock); 5752 mutex_init(&host->eh_mutex); 5753 host->n_tags = ATA_MAX_QUEUE; 5754 host->dev = dev; 5755 host->ops = ops; 5756 kref_init(&host->kref); 5757 } 5758 EXPORT_SYMBOL_GPL(ata_host_init); 5759 5760 void __ata_port_probe(struct ata_port *ap) 5761 { 5762 struct ata_eh_info *ehi = &ap->link.eh_info; 5763 unsigned long flags; 5764 5765 /* kick EH for boot probing */ 5766 spin_lock_irqsave(ap->lock, flags); 5767 5768 ehi->probe_mask |= ATA_ALL_DEVICES; 5769 ehi->action |= ATA_EH_RESET; 5770 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5771 5772 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5773 ap->pflags |= ATA_PFLAG_LOADING; 5774 ata_port_schedule_eh(ap); 5775 5776 spin_unlock_irqrestore(ap->lock, flags); 5777 } 5778 5779 int ata_port_probe(struct ata_port *ap) 5780 { 5781 int rc = 0; 5782 5783 if (ap->ops->error_handler) { 5784 __ata_port_probe(ap); 5785 ata_port_wait_eh(ap); 5786 } else { 5787 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5788 rc = ata_bus_probe(ap); 5789 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5790 } 5791 return rc; 5792 } 5793 5794 5795 static void async_port_probe(void *data, async_cookie_t cookie) 5796 { 5797 struct ata_port *ap = data; 5798 5799 /* 5800 * If we're not allowed to scan this host in parallel, 5801 * we need to wait until all previous scans have completed 5802 * before going further. 5803 * Jeff Garzik says this is only within a controller, so we 5804 * don't need to wait for port 0, only for later ports. 5805 */ 5806 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5807 async_synchronize_cookie(cookie); 5808 5809 (void)ata_port_probe(ap); 5810 5811 /* in order to keep device order, we need to synchronize at this point */ 5812 async_synchronize_cookie(cookie); 5813 5814 ata_scsi_scan_host(ap, 1); 5815 } 5816 5817 /** 5818 * ata_host_register - register initialized ATA host 5819 * @host: ATA host to register 5820 * @sht: template for SCSI host 5821 * 5822 * Register initialized ATA host. @host is allocated using 5823 * ata_host_alloc() and fully initialized by LLD. This function 5824 * starts ports, registers @host with ATA and SCSI layers and 5825 * probe registered devices. 5826 * 5827 * LOCKING: 5828 * Inherited from calling layer (may sleep). 5829 * 5830 * RETURNS: 5831 * 0 on success, -errno otherwise. 5832 */ 5833 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5834 { 5835 int i, rc; 5836 5837 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5838 5839 /* host must have been started */ 5840 if (!(host->flags & ATA_HOST_STARTED)) { 5841 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5842 WARN_ON(1); 5843 return -EINVAL; 5844 } 5845 5846 /* Blow away unused ports. This happens when LLD can't 5847 * determine the exact number of ports to allocate at 5848 * allocation time. 5849 */ 5850 for (i = host->n_ports; host->ports[i]; i++) 5851 kfree(host->ports[i]); 5852 5853 /* give ports names and add SCSI hosts */ 5854 for (i = 0; i < host->n_ports; i++) { 5855 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5856 host->ports[i]->local_port_no = i + 1; 5857 } 5858 5859 /* Create associated sysfs transport objects */ 5860 for (i = 0; i < host->n_ports; i++) { 5861 rc = ata_tport_add(host->dev,host->ports[i]); 5862 if (rc) { 5863 goto err_tadd; 5864 } 5865 } 5866 5867 rc = ata_scsi_add_hosts(host, sht); 5868 if (rc) 5869 goto err_tadd; 5870 5871 /* set cable, sata_spd_limit and report */ 5872 for (i = 0; i < host->n_ports; i++) { 5873 struct ata_port *ap = host->ports[i]; 5874 unsigned long xfer_mask; 5875 5876 /* set SATA cable type if still unset */ 5877 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5878 ap->cbl = ATA_CBL_SATA; 5879 5880 /* init sata_spd_limit to the current value */ 5881 sata_link_init_spd(&ap->link); 5882 if (ap->slave_link) 5883 sata_link_init_spd(ap->slave_link); 5884 5885 /* print per-port info to dmesg */ 5886 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5887 ap->udma_mask); 5888 5889 if (!ata_port_is_dummy(ap)) { 5890 ata_port_info(ap, "%cATA max %s %s\n", 5891 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5892 ata_mode_string(xfer_mask), 5893 ap->link.eh_info.desc); 5894 ata_ehi_clear_desc(&ap->link.eh_info); 5895 } else 5896 ata_port_info(ap, "DUMMY\n"); 5897 } 5898 5899 /* perform each probe asynchronously */ 5900 for (i = 0; i < host->n_ports; i++) { 5901 struct ata_port *ap = host->ports[i]; 5902 ap->cookie = async_schedule(async_port_probe, ap); 5903 } 5904 5905 return 0; 5906 5907 err_tadd: 5908 while (--i >= 0) { 5909 ata_tport_delete(host->ports[i]); 5910 } 5911 return rc; 5912 5913 } 5914 EXPORT_SYMBOL_GPL(ata_host_register); 5915 5916 /** 5917 * ata_host_activate - start host, request IRQ and register it 5918 * @host: target ATA host 5919 * @irq: IRQ to request 5920 * @irq_handler: irq_handler used when requesting IRQ 5921 * @irq_flags: irq_flags used when requesting IRQ 5922 * @sht: scsi_host_template to use when registering the host 5923 * 5924 * After allocating an ATA host and initializing it, most libata 5925 * LLDs perform three steps to activate the host - start host, 5926 * request IRQ and register it. This helper takes necessary 5927 * arguments and performs the three steps in one go. 5928 * 5929 * An invalid IRQ skips the IRQ registration and expects the host to 5930 * have set polling mode on the port. In this case, @irq_handler 5931 * should be NULL. 5932 * 5933 * LOCKING: 5934 * Inherited from calling layer (may sleep). 5935 * 5936 * RETURNS: 5937 * 0 on success, -errno otherwise. 5938 */ 5939 int ata_host_activate(struct ata_host *host, int irq, 5940 irq_handler_t irq_handler, unsigned long irq_flags, 5941 struct scsi_host_template *sht) 5942 { 5943 int i, rc; 5944 char *irq_desc; 5945 5946 rc = ata_host_start(host); 5947 if (rc) 5948 return rc; 5949 5950 /* Special case for polling mode */ 5951 if (!irq) { 5952 WARN_ON(irq_handler); 5953 return ata_host_register(host, sht); 5954 } 5955 5956 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 5957 dev_driver_string(host->dev), 5958 dev_name(host->dev)); 5959 if (!irq_desc) 5960 return -ENOMEM; 5961 5962 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5963 irq_desc, host); 5964 if (rc) 5965 return rc; 5966 5967 for (i = 0; i < host->n_ports; i++) 5968 ata_port_desc(host->ports[i], "irq %d", irq); 5969 5970 rc = ata_host_register(host, sht); 5971 /* if failed, just free the IRQ and leave ports alone */ 5972 if (rc) 5973 devm_free_irq(host->dev, irq, host); 5974 5975 return rc; 5976 } 5977 EXPORT_SYMBOL_GPL(ata_host_activate); 5978 5979 /** 5980 * ata_port_detach - Detach ATA port in preparation of device removal 5981 * @ap: ATA port to be detached 5982 * 5983 * Detach all ATA devices and the associated SCSI devices of @ap; 5984 * then, remove the associated SCSI host. @ap is guaranteed to 5985 * be quiescent on return from this function. 5986 * 5987 * LOCKING: 5988 * Kernel thread context (may sleep). 5989 */ 5990 static void ata_port_detach(struct ata_port *ap) 5991 { 5992 unsigned long flags; 5993 struct ata_link *link; 5994 struct ata_device *dev; 5995 5996 if (!ap->ops->error_handler) 5997 goto skip_eh; 5998 5999 /* tell EH we're leaving & flush EH */ 6000 spin_lock_irqsave(ap->lock, flags); 6001 ap->pflags |= ATA_PFLAG_UNLOADING; 6002 ata_port_schedule_eh(ap); 6003 spin_unlock_irqrestore(ap->lock, flags); 6004 6005 /* wait till EH commits suicide */ 6006 ata_port_wait_eh(ap); 6007 6008 /* it better be dead now */ 6009 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6010 6011 cancel_delayed_work_sync(&ap->hotplug_task); 6012 6013 skip_eh: 6014 /* clean up zpodd on port removal */ 6015 ata_for_each_link(link, ap, HOST_FIRST) { 6016 ata_for_each_dev(dev, link, ALL) { 6017 if (zpodd_dev_enabled(dev)) 6018 zpodd_exit(dev); 6019 } 6020 } 6021 if (ap->pmp_link) { 6022 int i; 6023 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6024 ata_tlink_delete(&ap->pmp_link[i]); 6025 } 6026 /* remove the associated SCSI host */ 6027 scsi_remove_host(ap->scsi_host); 6028 ata_tport_delete(ap); 6029 } 6030 6031 /** 6032 * ata_host_detach - Detach all ports of an ATA host 6033 * @host: Host to detach 6034 * 6035 * Detach all ports of @host. 6036 * 6037 * LOCKING: 6038 * Kernel thread context (may sleep). 6039 */ 6040 void ata_host_detach(struct ata_host *host) 6041 { 6042 int i; 6043 6044 for (i = 0; i < host->n_ports; i++) { 6045 /* Ensure ata_port probe has completed */ 6046 async_synchronize_cookie(host->ports[i]->cookie + 1); 6047 ata_port_detach(host->ports[i]); 6048 } 6049 6050 /* the host is dead now, dissociate ACPI */ 6051 ata_acpi_dissociate(host); 6052 } 6053 EXPORT_SYMBOL_GPL(ata_host_detach); 6054 6055 #ifdef CONFIG_PCI 6056 6057 /** 6058 * ata_pci_remove_one - PCI layer callback for device removal 6059 * @pdev: PCI device that was removed 6060 * 6061 * PCI layer indicates to libata via this hook that hot-unplug or 6062 * module unload event has occurred. Detach all ports. Resource 6063 * release is handled via devres. 6064 * 6065 * LOCKING: 6066 * Inherited from PCI layer (may sleep). 6067 */ 6068 void ata_pci_remove_one(struct pci_dev *pdev) 6069 { 6070 struct ata_host *host = pci_get_drvdata(pdev); 6071 6072 ata_host_detach(host); 6073 } 6074 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6075 6076 void ata_pci_shutdown_one(struct pci_dev *pdev) 6077 { 6078 struct ata_host *host = pci_get_drvdata(pdev); 6079 int i; 6080 6081 for (i = 0; i < host->n_ports; i++) { 6082 struct ata_port *ap = host->ports[i]; 6083 6084 ap->pflags |= ATA_PFLAG_FROZEN; 6085 6086 /* Disable port interrupts */ 6087 if (ap->ops->freeze) 6088 ap->ops->freeze(ap); 6089 6090 /* Stop the port DMA engines */ 6091 if (ap->ops->port_stop) 6092 ap->ops->port_stop(ap); 6093 } 6094 } 6095 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6096 6097 /* move to PCI subsystem */ 6098 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6099 { 6100 unsigned long tmp = 0; 6101 6102 switch (bits->width) { 6103 case 1: { 6104 u8 tmp8 = 0; 6105 pci_read_config_byte(pdev, bits->reg, &tmp8); 6106 tmp = tmp8; 6107 break; 6108 } 6109 case 2: { 6110 u16 tmp16 = 0; 6111 pci_read_config_word(pdev, bits->reg, &tmp16); 6112 tmp = tmp16; 6113 break; 6114 } 6115 case 4: { 6116 u32 tmp32 = 0; 6117 pci_read_config_dword(pdev, bits->reg, &tmp32); 6118 tmp = tmp32; 6119 break; 6120 } 6121 6122 default: 6123 return -EINVAL; 6124 } 6125 6126 tmp &= bits->mask; 6127 6128 return (tmp == bits->val) ? 1 : 0; 6129 } 6130 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6131 6132 #ifdef CONFIG_PM 6133 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6134 { 6135 pci_save_state(pdev); 6136 pci_disable_device(pdev); 6137 6138 if (mesg.event & PM_EVENT_SLEEP) 6139 pci_set_power_state(pdev, PCI_D3hot); 6140 } 6141 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6142 6143 int ata_pci_device_do_resume(struct pci_dev *pdev) 6144 { 6145 int rc; 6146 6147 pci_set_power_state(pdev, PCI_D0); 6148 pci_restore_state(pdev); 6149 6150 rc = pcim_enable_device(pdev); 6151 if (rc) { 6152 dev_err(&pdev->dev, 6153 "failed to enable device after resume (%d)\n", rc); 6154 return rc; 6155 } 6156 6157 pci_set_master(pdev); 6158 return 0; 6159 } 6160 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6161 6162 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6163 { 6164 struct ata_host *host = pci_get_drvdata(pdev); 6165 int rc = 0; 6166 6167 rc = ata_host_suspend(host, mesg); 6168 if (rc) 6169 return rc; 6170 6171 ata_pci_device_do_suspend(pdev, mesg); 6172 6173 return 0; 6174 } 6175 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6176 6177 int ata_pci_device_resume(struct pci_dev *pdev) 6178 { 6179 struct ata_host *host = pci_get_drvdata(pdev); 6180 int rc; 6181 6182 rc = ata_pci_device_do_resume(pdev); 6183 if (rc == 0) 6184 ata_host_resume(host); 6185 return rc; 6186 } 6187 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6188 #endif /* CONFIG_PM */ 6189 #endif /* CONFIG_PCI */ 6190 6191 /** 6192 * ata_platform_remove_one - Platform layer callback for device removal 6193 * @pdev: Platform device that was removed 6194 * 6195 * Platform layer indicates to libata via this hook that hot-unplug or 6196 * module unload event has occurred. Detach all ports. Resource 6197 * release is handled via devres. 6198 * 6199 * LOCKING: 6200 * Inherited from platform layer (may sleep). 6201 */ 6202 int ata_platform_remove_one(struct platform_device *pdev) 6203 { 6204 struct ata_host *host = platform_get_drvdata(pdev); 6205 6206 ata_host_detach(host); 6207 6208 return 0; 6209 } 6210 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6211 6212 #ifdef CONFIG_ATA_FORCE 6213 static int __init ata_parse_force_one(char **cur, 6214 struct ata_force_ent *force_ent, 6215 const char **reason) 6216 { 6217 static const struct ata_force_param force_tbl[] __initconst = { 6218 { "40c", .cbl = ATA_CBL_PATA40 }, 6219 { "80c", .cbl = ATA_CBL_PATA80 }, 6220 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6221 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6222 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6223 { "sata", .cbl = ATA_CBL_SATA }, 6224 { "1.5Gbps", .spd_limit = 1 }, 6225 { "3.0Gbps", .spd_limit = 2 }, 6226 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6227 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6228 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, 6229 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, 6230 { "noncqati", .horkage_on = ATA_HORKAGE_NO_NCQ_ON_ATI }, 6231 { "ncqati", .horkage_off = ATA_HORKAGE_NO_NCQ_ON_ATI }, 6232 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6233 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6234 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6235 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6236 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6237 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6238 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6239 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6240 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6241 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6242 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6243 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6244 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6245 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6246 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6247 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6248 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6249 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6250 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6251 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6252 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6253 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6254 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6255 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6256 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6257 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6258 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6259 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6260 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6261 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6262 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6263 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6264 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6265 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6266 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6267 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6268 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6269 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6270 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6271 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6272 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6273 }; 6274 char *start = *cur, *p = *cur; 6275 char *id, *val, *endp; 6276 const struct ata_force_param *match_fp = NULL; 6277 int nr_matches = 0, i; 6278 6279 /* find where this param ends and update *cur */ 6280 while (*p != '\0' && *p != ',') 6281 p++; 6282 6283 if (*p == '\0') 6284 *cur = p; 6285 else 6286 *cur = p + 1; 6287 6288 *p = '\0'; 6289 6290 /* parse */ 6291 p = strchr(start, ':'); 6292 if (!p) { 6293 val = strstrip(start); 6294 goto parse_val; 6295 } 6296 *p = '\0'; 6297 6298 id = strstrip(start); 6299 val = strstrip(p + 1); 6300 6301 /* parse id */ 6302 p = strchr(id, '.'); 6303 if (p) { 6304 *p++ = '\0'; 6305 force_ent->device = simple_strtoul(p, &endp, 10); 6306 if (p == endp || *endp != '\0') { 6307 *reason = "invalid device"; 6308 return -EINVAL; 6309 } 6310 } 6311 6312 force_ent->port = simple_strtoul(id, &endp, 10); 6313 if (id == endp || *endp != '\0') { 6314 *reason = "invalid port/link"; 6315 return -EINVAL; 6316 } 6317 6318 parse_val: 6319 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6320 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6321 const struct ata_force_param *fp = &force_tbl[i]; 6322 6323 if (strncasecmp(val, fp->name, strlen(val))) 6324 continue; 6325 6326 nr_matches++; 6327 match_fp = fp; 6328 6329 if (strcasecmp(val, fp->name) == 0) { 6330 nr_matches = 1; 6331 break; 6332 } 6333 } 6334 6335 if (!nr_matches) { 6336 *reason = "unknown value"; 6337 return -EINVAL; 6338 } 6339 if (nr_matches > 1) { 6340 *reason = "ambiguous value"; 6341 return -EINVAL; 6342 } 6343 6344 force_ent->param = *match_fp; 6345 6346 return 0; 6347 } 6348 6349 static void __init ata_parse_force_param(void) 6350 { 6351 int idx = 0, size = 1; 6352 int last_port = -1, last_device = -1; 6353 char *p, *cur, *next; 6354 6355 /* calculate maximum number of params and allocate force_tbl */ 6356 for (p = ata_force_param_buf; *p; p++) 6357 if (*p == ',') 6358 size++; 6359 6360 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6361 if (!ata_force_tbl) { 6362 printk(KERN_WARNING "ata: failed to extend force table, " 6363 "libata.force ignored\n"); 6364 return; 6365 } 6366 6367 /* parse and populate the table */ 6368 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6369 const char *reason = ""; 6370 struct ata_force_ent te = { .port = -1, .device = -1 }; 6371 6372 next = cur; 6373 if (ata_parse_force_one(&next, &te, &reason)) { 6374 printk(KERN_WARNING "ata: failed to parse force " 6375 "parameter \"%s\" (%s)\n", 6376 cur, reason); 6377 continue; 6378 } 6379 6380 if (te.port == -1) { 6381 te.port = last_port; 6382 te.device = last_device; 6383 } 6384 6385 ata_force_tbl[idx++] = te; 6386 6387 last_port = te.port; 6388 last_device = te.device; 6389 } 6390 6391 ata_force_tbl_size = idx; 6392 } 6393 6394 static void ata_free_force_param(void) 6395 { 6396 kfree(ata_force_tbl); 6397 } 6398 #else 6399 static inline void ata_parse_force_param(void) { } 6400 static inline void ata_free_force_param(void) { } 6401 #endif 6402 6403 static int __init ata_init(void) 6404 { 6405 int rc; 6406 6407 ata_parse_force_param(); 6408 6409 rc = ata_sff_init(); 6410 if (rc) { 6411 ata_free_force_param(); 6412 return rc; 6413 } 6414 6415 libata_transport_init(); 6416 ata_scsi_transport_template = ata_attach_transport(); 6417 if (!ata_scsi_transport_template) { 6418 ata_sff_exit(); 6419 rc = -ENOMEM; 6420 goto err_out; 6421 } 6422 6423 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6424 return 0; 6425 6426 err_out: 6427 return rc; 6428 } 6429 6430 static void __exit ata_exit(void) 6431 { 6432 ata_release_transport(ata_scsi_transport_template); 6433 libata_transport_exit(); 6434 ata_sff_exit(); 6435 ata_free_force_param(); 6436 } 6437 6438 subsys_initcall(ata_init); 6439 module_exit(ata_exit); 6440 6441 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6442 6443 int ata_ratelimit(void) 6444 { 6445 return __ratelimit(&ratelimit); 6446 } 6447 EXPORT_SYMBOL_GPL(ata_ratelimit); 6448 6449 /** 6450 * ata_msleep - ATA EH owner aware msleep 6451 * @ap: ATA port to attribute the sleep to 6452 * @msecs: duration to sleep in milliseconds 6453 * 6454 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6455 * ownership is released before going to sleep and reacquired 6456 * after the sleep is complete. IOW, other ports sharing the 6457 * @ap->host will be allowed to own the EH while this task is 6458 * sleeping. 6459 * 6460 * LOCKING: 6461 * Might sleep. 6462 */ 6463 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6464 { 6465 bool owns_eh = ap && ap->host->eh_owner == current; 6466 6467 if (owns_eh) 6468 ata_eh_release(ap); 6469 6470 if (msecs < 20) { 6471 unsigned long usecs = msecs * USEC_PER_MSEC; 6472 usleep_range(usecs, usecs + 50); 6473 } else { 6474 msleep(msecs); 6475 } 6476 6477 if (owns_eh) 6478 ata_eh_acquire(ap); 6479 } 6480 EXPORT_SYMBOL_GPL(ata_msleep); 6481 6482 /** 6483 * ata_wait_register - wait until register value changes 6484 * @ap: ATA port to wait register for, can be NULL 6485 * @reg: IO-mapped register 6486 * @mask: Mask to apply to read register value 6487 * @val: Wait condition 6488 * @interval: polling interval in milliseconds 6489 * @timeout: timeout in milliseconds 6490 * 6491 * Waiting for some bits of register to change is a common 6492 * operation for ATA controllers. This function reads 32bit LE 6493 * IO-mapped register @reg and tests for the following condition. 6494 * 6495 * (*@reg & mask) != val 6496 * 6497 * If the condition is met, it returns; otherwise, the process is 6498 * repeated after @interval_msec until timeout. 6499 * 6500 * LOCKING: 6501 * Kernel thread context (may sleep) 6502 * 6503 * RETURNS: 6504 * The final register value. 6505 */ 6506 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6507 unsigned long interval, unsigned long timeout) 6508 { 6509 unsigned long deadline; 6510 u32 tmp; 6511 6512 tmp = ioread32(reg); 6513 6514 /* Calculate timeout _after_ the first read to make sure 6515 * preceding writes reach the controller before starting to 6516 * eat away the timeout. 6517 */ 6518 deadline = ata_deadline(jiffies, timeout); 6519 6520 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6521 ata_msleep(ap, interval); 6522 tmp = ioread32(reg); 6523 } 6524 6525 return tmp; 6526 } 6527 EXPORT_SYMBOL_GPL(ata_wait_register); 6528 6529 /* 6530 * Dummy port_ops 6531 */ 6532 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6533 { 6534 return AC_ERR_SYSTEM; 6535 } 6536 6537 static void ata_dummy_error_handler(struct ata_port *ap) 6538 { 6539 /* truly dummy */ 6540 } 6541 6542 struct ata_port_operations ata_dummy_port_ops = { 6543 .qc_prep = ata_noop_qc_prep, 6544 .qc_issue = ata_dummy_qc_issue, 6545 .error_handler = ata_dummy_error_handler, 6546 .sched_eh = ata_std_sched_eh, 6547 .end_eh = ata_std_end_eh, 6548 }; 6549 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6550 6551 const struct ata_port_info ata_dummy_port_info = { 6552 .port_ops = &ata_dummy_port_ops, 6553 }; 6554 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6555 6556 /* 6557 * Utility print functions 6558 */ 6559 void ata_port_printk(const struct ata_port *ap, const char *level, 6560 const char *fmt, ...) 6561 { 6562 struct va_format vaf; 6563 va_list args; 6564 6565 va_start(args, fmt); 6566 6567 vaf.fmt = fmt; 6568 vaf.va = &args; 6569 6570 printk("%sata%u: %pV", level, ap->print_id, &vaf); 6571 6572 va_end(args); 6573 } 6574 EXPORT_SYMBOL(ata_port_printk); 6575 6576 void ata_link_printk(const struct ata_link *link, const char *level, 6577 const char *fmt, ...) 6578 { 6579 struct va_format vaf; 6580 va_list args; 6581 6582 va_start(args, fmt); 6583 6584 vaf.fmt = fmt; 6585 vaf.va = &args; 6586 6587 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6588 printk("%sata%u.%02u: %pV", 6589 level, link->ap->print_id, link->pmp, &vaf); 6590 else 6591 printk("%sata%u: %pV", 6592 level, link->ap->print_id, &vaf); 6593 6594 va_end(args); 6595 } 6596 EXPORT_SYMBOL(ata_link_printk); 6597 6598 void ata_dev_printk(const struct ata_device *dev, const char *level, 6599 const char *fmt, ...) 6600 { 6601 struct va_format vaf; 6602 va_list args; 6603 6604 va_start(args, fmt); 6605 6606 vaf.fmt = fmt; 6607 vaf.va = &args; 6608 6609 printk("%sata%u.%02u: %pV", 6610 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6611 &vaf); 6612 6613 va_end(args); 6614 } 6615 EXPORT_SYMBOL(ata_dev_printk); 6616 6617 void ata_print_version(const struct device *dev, const char *version) 6618 { 6619 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6620 } 6621 EXPORT_SYMBOL(ata_print_version); 6622