1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 #include <linux/pm_runtime.h> 70 71 #include "libata.h" 72 #include "libata-transport.h" 73 74 /* debounce timing parameters in msecs { interval, duration, timeout } */ 75 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 76 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 77 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 78 79 const struct ata_port_operations ata_base_port_ops = { 80 .prereset = ata_std_prereset, 81 .postreset = ata_std_postreset, 82 .error_handler = ata_std_error_handler, 83 }; 84 85 const struct ata_port_operations sata_port_ops = { 86 .inherits = &ata_base_port_ops, 87 88 .qc_defer = ata_std_qc_defer, 89 .hardreset = sata_std_hardreset, 90 }; 91 92 static unsigned int ata_dev_init_params(struct ata_device *dev, 93 u16 heads, u16 sectors); 94 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 95 static void ata_dev_xfermask(struct ata_device *dev); 96 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 97 98 atomic_t ata_print_id = ATOMIC_INIT(0); 99 100 struct ata_force_param { 101 const char *name; 102 unsigned int cbl; 103 int spd_limit; 104 unsigned long xfer_mask; 105 unsigned int horkage_on; 106 unsigned int horkage_off; 107 unsigned int lflags; 108 }; 109 110 struct ata_force_ent { 111 int port; 112 int device; 113 struct ata_force_param param; 114 }; 115 116 static struct ata_force_ent *ata_force_tbl; 117 static int ata_force_tbl_size; 118 119 static char ata_force_param_buf[PAGE_SIZE] __initdata; 120 /* param_buf is thrown away after initialization, disallow read */ 121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 123 124 static int atapi_enabled = 1; 125 module_param(atapi_enabled, int, 0444); 126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 127 128 static int atapi_dmadir = 0; 129 module_param(atapi_dmadir, int, 0444); 130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 131 132 int atapi_passthru16 = 1; 133 module_param(atapi_passthru16, int, 0444); 134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 135 136 int libata_fua = 0; 137 module_param_named(fua, libata_fua, int, 0444); 138 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 139 140 static int ata_ignore_hpa; 141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 143 144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 145 module_param_named(dma, libata_dma_mask, int, 0444); 146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 147 148 static int ata_probe_timeout; 149 module_param(ata_probe_timeout, int, 0444); 150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 151 152 int libata_noacpi = 0; 153 module_param_named(noacpi, libata_noacpi, int, 0444); 154 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 155 156 int libata_allow_tpm = 0; 157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 159 160 static int atapi_an; 161 module_param(atapi_an, int, 0444); 162 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 163 164 MODULE_AUTHOR("Jeff Garzik"); 165 MODULE_DESCRIPTION("Library module for ATA devices"); 166 MODULE_LICENSE("GPL"); 167 MODULE_VERSION(DRV_VERSION); 168 169 170 static bool ata_sstatus_online(u32 sstatus) 171 { 172 return (sstatus & 0xf) == 0x3; 173 } 174 175 /** 176 * ata_link_next - link iteration helper 177 * @link: the previous link, NULL to start 178 * @ap: ATA port containing links to iterate 179 * @mode: iteration mode, one of ATA_LITER_* 180 * 181 * LOCKING: 182 * Host lock or EH context. 183 * 184 * RETURNS: 185 * Pointer to the next link. 186 */ 187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 188 enum ata_link_iter_mode mode) 189 { 190 BUG_ON(mode != ATA_LITER_EDGE && 191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 192 193 /* NULL link indicates start of iteration */ 194 if (!link) 195 switch (mode) { 196 case ATA_LITER_EDGE: 197 case ATA_LITER_PMP_FIRST: 198 if (sata_pmp_attached(ap)) 199 return ap->pmp_link; 200 /* fall through */ 201 case ATA_LITER_HOST_FIRST: 202 return &ap->link; 203 } 204 205 /* we just iterated over the host link, what's next? */ 206 if (link == &ap->link) 207 switch (mode) { 208 case ATA_LITER_HOST_FIRST: 209 if (sata_pmp_attached(ap)) 210 return ap->pmp_link; 211 /* fall through */ 212 case ATA_LITER_PMP_FIRST: 213 if (unlikely(ap->slave_link)) 214 return ap->slave_link; 215 /* fall through */ 216 case ATA_LITER_EDGE: 217 return NULL; 218 } 219 220 /* slave_link excludes PMP */ 221 if (unlikely(link == ap->slave_link)) 222 return NULL; 223 224 /* we were over a PMP link */ 225 if (++link < ap->pmp_link + ap->nr_pmp_links) 226 return link; 227 228 if (mode == ATA_LITER_PMP_FIRST) 229 return &ap->link; 230 231 return NULL; 232 } 233 234 /** 235 * ata_dev_next - device iteration helper 236 * @dev: the previous device, NULL to start 237 * @link: ATA link containing devices to iterate 238 * @mode: iteration mode, one of ATA_DITER_* 239 * 240 * LOCKING: 241 * Host lock or EH context. 242 * 243 * RETURNS: 244 * Pointer to the next device. 245 */ 246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 247 enum ata_dev_iter_mode mode) 248 { 249 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 250 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 251 252 /* NULL dev indicates start of iteration */ 253 if (!dev) 254 switch (mode) { 255 case ATA_DITER_ENABLED: 256 case ATA_DITER_ALL: 257 dev = link->device; 258 goto check; 259 case ATA_DITER_ENABLED_REVERSE: 260 case ATA_DITER_ALL_REVERSE: 261 dev = link->device + ata_link_max_devices(link) - 1; 262 goto check; 263 } 264 265 next: 266 /* move to the next one */ 267 switch (mode) { 268 case ATA_DITER_ENABLED: 269 case ATA_DITER_ALL: 270 if (++dev < link->device + ata_link_max_devices(link)) 271 goto check; 272 return NULL; 273 case ATA_DITER_ENABLED_REVERSE: 274 case ATA_DITER_ALL_REVERSE: 275 if (--dev >= link->device) 276 goto check; 277 return NULL; 278 } 279 280 check: 281 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 282 !ata_dev_enabled(dev)) 283 goto next; 284 return dev; 285 } 286 287 /** 288 * ata_dev_phys_link - find physical link for a device 289 * @dev: ATA device to look up physical link for 290 * 291 * Look up physical link which @dev is attached to. Note that 292 * this is different from @dev->link only when @dev is on slave 293 * link. For all other cases, it's the same as @dev->link. 294 * 295 * LOCKING: 296 * Don't care. 297 * 298 * RETURNS: 299 * Pointer to the found physical link. 300 */ 301 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 302 { 303 struct ata_port *ap = dev->link->ap; 304 305 if (!ap->slave_link) 306 return dev->link; 307 if (!dev->devno) 308 return &ap->link; 309 return ap->slave_link; 310 } 311 312 /** 313 * ata_force_cbl - force cable type according to libata.force 314 * @ap: ATA port of interest 315 * 316 * Force cable type according to libata.force and whine about it. 317 * The last entry which has matching port number is used, so it 318 * can be specified as part of device force parameters. For 319 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 320 * same effect. 321 * 322 * LOCKING: 323 * EH context. 324 */ 325 void ata_force_cbl(struct ata_port *ap) 326 { 327 int i; 328 329 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 330 const struct ata_force_ent *fe = &ata_force_tbl[i]; 331 332 if (fe->port != -1 && fe->port != ap->print_id) 333 continue; 334 335 if (fe->param.cbl == ATA_CBL_NONE) 336 continue; 337 338 ap->cbl = fe->param.cbl; 339 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 340 return; 341 } 342 } 343 344 /** 345 * ata_force_link_limits - force link limits according to libata.force 346 * @link: ATA link of interest 347 * 348 * Force link flags and SATA spd limit according to libata.force 349 * and whine about it. When only the port part is specified 350 * (e.g. 1:), the limit applies to all links connected to both 351 * the host link and all fan-out ports connected via PMP. If the 352 * device part is specified as 0 (e.g. 1.00:), it specifies the 353 * first fan-out link not the host link. Device number 15 always 354 * points to the host link whether PMP is attached or not. If the 355 * controller has slave link, device number 16 points to it. 356 * 357 * LOCKING: 358 * EH context. 359 */ 360 static void ata_force_link_limits(struct ata_link *link) 361 { 362 bool did_spd = false; 363 int linkno = link->pmp; 364 int i; 365 366 if (ata_is_host_link(link)) 367 linkno += 15; 368 369 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 370 const struct ata_force_ent *fe = &ata_force_tbl[i]; 371 372 if (fe->port != -1 && fe->port != link->ap->print_id) 373 continue; 374 375 if (fe->device != -1 && fe->device != linkno) 376 continue; 377 378 /* only honor the first spd limit */ 379 if (!did_spd && fe->param.spd_limit) { 380 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 381 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 382 fe->param.name); 383 did_spd = true; 384 } 385 386 /* let lflags stack */ 387 if (fe->param.lflags) { 388 link->flags |= fe->param.lflags; 389 ata_link_notice(link, 390 "FORCE: link flag 0x%x forced -> 0x%x\n", 391 fe->param.lflags, link->flags); 392 } 393 } 394 } 395 396 /** 397 * ata_force_xfermask - force xfermask according to libata.force 398 * @dev: ATA device of interest 399 * 400 * Force xfer_mask according to libata.force and whine about it. 401 * For consistency with link selection, device number 15 selects 402 * the first device connected to the host link. 403 * 404 * LOCKING: 405 * EH context. 406 */ 407 static void ata_force_xfermask(struct ata_device *dev) 408 { 409 int devno = dev->link->pmp + dev->devno; 410 int alt_devno = devno; 411 int i; 412 413 /* allow n.15/16 for devices attached to host port */ 414 if (ata_is_host_link(dev->link)) 415 alt_devno += 15; 416 417 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 418 const struct ata_force_ent *fe = &ata_force_tbl[i]; 419 unsigned long pio_mask, mwdma_mask, udma_mask; 420 421 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 422 continue; 423 424 if (fe->device != -1 && fe->device != devno && 425 fe->device != alt_devno) 426 continue; 427 428 if (!fe->param.xfer_mask) 429 continue; 430 431 ata_unpack_xfermask(fe->param.xfer_mask, 432 &pio_mask, &mwdma_mask, &udma_mask); 433 if (udma_mask) 434 dev->udma_mask = udma_mask; 435 else if (mwdma_mask) { 436 dev->udma_mask = 0; 437 dev->mwdma_mask = mwdma_mask; 438 } else { 439 dev->udma_mask = 0; 440 dev->mwdma_mask = 0; 441 dev->pio_mask = pio_mask; 442 } 443 444 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 445 fe->param.name); 446 return; 447 } 448 } 449 450 /** 451 * ata_force_horkage - force horkage according to libata.force 452 * @dev: ATA device of interest 453 * 454 * Force horkage according to libata.force and whine about it. 455 * For consistency with link selection, device number 15 selects 456 * the first device connected to the host link. 457 * 458 * LOCKING: 459 * EH context. 460 */ 461 static void ata_force_horkage(struct ata_device *dev) 462 { 463 int devno = dev->link->pmp + dev->devno; 464 int alt_devno = devno; 465 int i; 466 467 /* allow n.15/16 for devices attached to host port */ 468 if (ata_is_host_link(dev->link)) 469 alt_devno += 15; 470 471 for (i = 0; i < ata_force_tbl_size; i++) { 472 const struct ata_force_ent *fe = &ata_force_tbl[i]; 473 474 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 475 continue; 476 477 if (fe->device != -1 && fe->device != devno && 478 fe->device != alt_devno) 479 continue; 480 481 if (!(~dev->horkage & fe->param.horkage_on) && 482 !(dev->horkage & fe->param.horkage_off)) 483 continue; 484 485 dev->horkage |= fe->param.horkage_on; 486 dev->horkage &= ~fe->param.horkage_off; 487 488 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 489 fe->param.name); 490 } 491 } 492 493 /** 494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 495 * @opcode: SCSI opcode 496 * 497 * Determine ATAPI command type from @opcode. 498 * 499 * LOCKING: 500 * None. 501 * 502 * RETURNS: 503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 504 */ 505 int atapi_cmd_type(u8 opcode) 506 { 507 switch (opcode) { 508 case GPCMD_READ_10: 509 case GPCMD_READ_12: 510 return ATAPI_READ; 511 512 case GPCMD_WRITE_10: 513 case GPCMD_WRITE_12: 514 case GPCMD_WRITE_AND_VERIFY_10: 515 return ATAPI_WRITE; 516 517 case GPCMD_READ_CD: 518 case GPCMD_READ_CD_MSF: 519 return ATAPI_READ_CD; 520 521 case ATA_16: 522 case ATA_12: 523 if (atapi_passthru16) 524 return ATAPI_PASS_THRU; 525 /* fall thru */ 526 default: 527 return ATAPI_MISC; 528 } 529 } 530 531 /** 532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 533 * @tf: Taskfile to convert 534 * @pmp: Port multiplier port 535 * @is_cmd: This FIS is for command 536 * @fis: Buffer into which data will output 537 * 538 * Converts a standard ATA taskfile to a Serial ATA 539 * FIS structure (Register - Host to Device). 540 * 541 * LOCKING: 542 * Inherited from caller. 543 */ 544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 545 { 546 fis[0] = 0x27; /* Register - Host to Device FIS */ 547 fis[1] = pmp & 0xf; /* Port multiplier number*/ 548 if (is_cmd) 549 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 550 551 fis[2] = tf->command; 552 fis[3] = tf->feature; 553 554 fis[4] = tf->lbal; 555 fis[5] = tf->lbam; 556 fis[6] = tf->lbah; 557 fis[7] = tf->device; 558 559 fis[8] = tf->hob_lbal; 560 fis[9] = tf->hob_lbam; 561 fis[10] = tf->hob_lbah; 562 fis[11] = tf->hob_feature; 563 564 fis[12] = tf->nsect; 565 fis[13] = tf->hob_nsect; 566 fis[14] = 0; 567 fis[15] = tf->ctl; 568 569 fis[16] = 0; 570 fis[17] = 0; 571 fis[18] = 0; 572 fis[19] = 0; 573 } 574 575 /** 576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 577 * @fis: Buffer from which data will be input 578 * @tf: Taskfile to output 579 * 580 * Converts a serial ATA FIS structure to a standard ATA taskfile. 581 * 582 * LOCKING: 583 * Inherited from caller. 584 */ 585 586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 587 { 588 tf->command = fis[2]; /* status */ 589 tf->feature = fis[3]; /* error */ 590 591 tf->lbal = fis[4]; 592 tf->lbam = fis[5]; 593 tf->lbah = fis[6]; 594 tf->device = fis[7]; 595 596 tf->hob_lbal = fis[8]; 597 tf->hob_lbam = fis[9]; 598 tf->hob_lbah = fis[10]; 599 600 tf->nsect = fis[12]; 601 tf->hob_nsect = fis[13]; 602 } 603 604 static const u8 ata_rw_cmds[] = { 605 /* pio multi */ 606 ATA_CMD_READ_MULTI, 607 ATA_CMD_WRITE_MULTI, 608 ATA_CMD_READ_MULTI_EXT, 609 ATA_CMD_WRITE_MULTI_EXT, 610 0, 611 0, 612 0, 613 ATA_CMD_WRITE_MULTI_FUA_EXT, 614 /* pio */ 615 ATA_CMD_PIO_READ, 616 ATA_CMD_PIO_WRITE, 617 ATA_CMD_PIO_READ_EXT, 618 ATA_CMD_PIO_WRITE_EXT, 619 0, 620 0, 621 0, 622 0, 623 /* dma */ 624 ATA_CMD_READ, 625 ATA_CMD_WRITE, 626 ATA_CMD_READ_EXT, 627 ATA_CMD_WRITE_EXT, 628 0, 629 0, 630 0, 631 ATA_CMD_WRITE_FUA_EXT 632 }; 633 634 /** 635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 636 * @tf: command to examine and configure 637 * @dev: device tf belongs to 638 * 639 * Examine the device configuration and tf->flags to calculate 640 * the proper read/write commands and protocol to use. 641 * 642 * LOCKING: 643 * caller. 644 */ 645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 646 { 647 u8 cmd; 648 649 int index, fua, lba48, write; 650 651 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 652 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 653 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 654 655 if (dev->flags & ATA_DFLAG_PIO) { 656 tf->protocol = ATA_PROT_PIO; 657 index = dev->multi_count ? 0 : 8; 658 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 659 /* Unable to use DMA due to host limitation */ 660 tf->protocol = ATA_PROT_PIO; 661 index = dev->multi_count ? 0 : 8; 662 } else { 663 tf->protocol = ATA_PROT_DMA; 664 index = 16; 665 } 666 667 cmd = ata_rw_cmds[index + fua + lba48 + write]; 668 if (cmd) { 669 tf->command = cmd; 670 return 0; 671 } 672 return -1; 673 } 674 675 /** 676 * ata_tf_read_block - Read block address from ATA taskfile 677 * @tf: ATA taskfile of interest 678 * @dev: ATA device @tf belongs to 679 * 680 * LOCKING: 681 * None. 682 * 683 * Read block address from @tf. This function can handle all 684 * three address formats - LBA, LBA48 and CHS. tf->protocol and 685 * flags select the address format to use. 686 * 687 * RETURNS: 688 * Block address read from @tf. 689 */ 690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 691 { 692 u64 block = 0; 693 694 if (tf->flags & ATA_TFLAG_LBA) { 695 if (tf->flags & ATA_TFLAG_LBA48) { 696 block |= (u64)tf->hob_lbah << 40; 697 block |= (u64)tf->hob_lbam << 32; 698 block |= (u64)tf->hob_lbal << 24; 699 } else 700 block |= (tf->device & 0xf) << 24; 701 702 block |= tf->lbah << 16; 703 block |= tf->lbam << 8; 704 block |= tf->lbal; 705 } else { 706 u32 cyl, head, sect; 707 708 cyl = tf->lbam | (tf->lbah << 8); 709 head = tf->device & 0xf; 710 sect = tf->lbal; 711 712 if (!sect) { 713 ata_dev_warn(dev, 714 "device reported invalid CHS sector 0\n"); 715 sect = 1; /* oh well */ 716 } 717 718 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 719 } 720 721 return block; 722 } 723 724 /** 725 * ata_build_rw_tf - Build ATA taskfile for given read/write request 726 * @tf: Target ATA taskfile 727 * @dev: ATA device @tf belongs to 728 * @block: Block address 729 * @n_block: Number of blocks 730 * @tf_flags: RW/FUA etc... 731 * @tag: tag 732 * 733 * LOCKING: 734 * None. 735 * 736 * Build ATA taskfile @tf for read/write request described by 737 * @block, @n_block, @tf_flags and @tag on @dev. 738 * 739 * RETURNS: 740 * 741 * 0 on success, -ERANGE if the request is too large for @dev, 742 * -EINVAL if the request is invalid. 743 */ 744 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 745 u64 block, u32 n_block, unsigned int tf_flags, 746 unsigned int tag) 747 { 748 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 749 tf->flags |= tf_flags; 750 751 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 752 /* yay, NCQ */ 753 if (!lba_48_ok(block, n_block)) 754 return -ERANGE; 755 756 tf->protocol = ATA_PROT_NCQ; 757 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 758 759 if (tf->flags & ATA_TFLAG_WRITE) 760 tf->command = ATA_CMD_FPDMA_WRITE; 761 else 762 tf->command = ATA_CMD_FPDMA_READ; 763 764 tf->nsect = tag << 3; 765 tf->hob_feature = (n_block >> 8) & 0xff; 766 tf->feature = n_block & 0xff; 767 768 tf->hob_lbah = (block >> 40) & 0xff; 769 tf->hob_lbam = (block >> 32) & 0xff; 770 tf->hob_lbal = (block >> 24) & 0xff; 771 tf->lbah = (block >> 16) & 0xff; 772 tf->lbam = (block >> 8) & 0xff; 773 tf->lbal = block & 0xff; 774 775 tf->device = 1 << 6; 776 if (tf->flags & ATA_TFLAG_FUA) 777 tf->device |= 1 << 7; 778 } else if (dev->flags & ATA_DFLAG_LBA) { 779 tf->flags |= ATA_TFLAG_LBA; 780 781 if (lba_28_ok(block, n_block)) { 782 /* use LBA28 */ 783 tf->device |= (block >> 24) & 0xf; 784 } else if (lba_48_ok(block, n_block)) { 785 if (!(dev->flags & ATA_DFLAG_LBA48)) 786 return -ERANGE; 787 788 /* use LBA48 */ 789 tf->flags |= ATA_TFLAG_LBA48; 790 791 tf->hob_nsect = (n_block >> 8) & 0xff; 792 793 tf->hob_lbah = (block >> 40) & 0xff; 794 tf->hob_lbam = (block >> 32) & 0xff; 795 tf->hob_lbal = (block >> 24) & 0xff; 796 } else 797 /* request too large even for LBA48 */ 798 return -ERANGE; 799 800 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 801 return -EINVAL; 802 803 tf->nsect = n_block & 0xff; 804 805 tf->lbah = (block >> 16) & 0xff; 806 tf->lbam = (block >> 8) & 0xff; 807 tf->lbal = block & 0xff; 808 809 tf->device |= ATA_LBA; 810 } else { 811 /* CHS */ 812 u32 sect, head, cyl, track; 813 814 /* The request -may- be too large for CHS addressing. */ 815 if (!lba_28_ok(block, n_block)) 816 return -ERANGE; 817 818 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 819 return -EINVAL; 820 821 /* Convert LBA to CHS */ 822 track = (u32)block / dev->sectors; 823 cyl = track / dev->heads; 824 head = track % dev->heads; 825 sect = (u32)block % dev->sectors + 1; 826 827 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 828 (u32)block, track, cyl, head, sect); 829 830 /* Check whether the converted CHS can fit. 831 Cylinder: 0-65535 832 Head: 0-15 833 Sector: 1-255*/ 834 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 835 return -ERANGE; 836 837 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 838 tf->lbal = sect; 839 tf->lbam = cyl; 840 tf->lbah = cyl >> 8; 841 tf->device |= head; 842 } 843 844 return 0; 845 } 846 847 /** 848 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 849 * @pio_mask: pio_mask 850 * @mwdma_mask: mwdma_mask 851 * @udma_mask: udma_mask 852 * 853 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 854 * unsigned int xfer_mask. 855 * 856 * LOCKING: 857 * None. 858 * 859 * RETURNS: 860 * Packed xfer_mask. 861 */ 862 unsigned long ata_pack_xfermask(unsigned long pio_mask, 863 unsigned long mwdma_mask, 864 unsigned long udma_mask) 865 { 866 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 867 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 868 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 869 } 870 871 /** 872 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 873 * @xfer_mask: xfer_mask to unpack 874 * @pio_mask: resulting pio_mask 875 * @mwdma_mask: resulting mwdma_mask 876 * @udma_mask: resulting udma_mask 877 * 878 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 879 * Any NULL distination masks will be ignored. 880 */ 881 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 882 unsigned long *mwdma_mask, unsigned long *udma_mask) 883 { 884 if (pio_mask) 885 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 886 if (mwdma_mask) 887 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 888 if (udma_mask) 889 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 890 } 891 892 static const struct ata_xfer_ent { 893 int shift, bits; 894 u8 base; 895 } ata_xfer_tbl[] = { 896 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 897 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 898 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 899 { -1, }, 900 }; 901 902 /** 903 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 904 * @xfer_mask: xfer_mask of interest 905 * 906 * Return matching XFER_* value for @xfer_mask. Only the highest 907 * bit of @xfer_mask is considered. 908 * 909 * LOCKING: 910 * None. 911 * 912 * RETURNS: 913 * Matching XFER_* value, 0xff if no match found. 914 */ 915 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 916 { 917 int highbit = fls(xfer_mask) - 1; 918 const struct ata_xfer_ent *ent; 919 920 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 921 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 922 return ent->base + highbit - ent->shift; 923 return 0xff; 924 } 925 926 /** 927 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 928 * @xfer_mode: XFER_* of interest 929 * 930 * Return matching xfer_mask for @xfer_mode. 931 * 932 * LOCKING: 933 * None. 934 * 935 * RETURNS: 936 * Matching xfer_mask, 0 if no match found. 937 */ 938 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 939 { 940 const struct ata_xfer_ent *ent; 941 942 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 943 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 944 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 945 & ~((1 << ent->shift) - 1); 946 return 0; 947 } 948 949 /** 950 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 951 * @xfer_mode: XFER_* of interest 952 * 953 * Return matching xfer_shift for @xfer_mode. 954 * 955 * LOCKING: 956 * None. 957 * 958 * RETURNS: 959 * Matching xfer_shift, -1 if no match found. 960 */ 961 int ata_xfer_mode2shift(unsigned long xfer_mode) 962 { 963 const struct ata_xfer_ent *ent; 964 965 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 966 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 967 return ent->shift; 968 return -1; 969 } 970 971 /** 972 * ata_mode_string - convert xfer_mask to string 973 * @xfer_mask: mask of bits supported; only highest bit counts. 974 * 975 * Determine string which represents the highest speed 976 * (highest bit in @modemask). 977 * 978 * LOCKING: 979 * None. 980 * 981 * RETURNS: 982 * Constant C string representing highest speed listed in 983 * @mode_mask, or the constant C string "<n/a>". 984 */ 985 const char *ata_mode_string(unsigned long xfer_mask) 986 { 987 static const char * const xfer_mode_str[] = { 988 "PIO0", 989 "PIO1", 990 "PIO2", 991 "PIO3", 992 "PIO4", 993 "PIO5", 994 "PIO6", 995 "MWDMA0", 996 "MWDMA1", 997 "MWDMA2", 998 "MWDMA3", 999 "MWDMA4", 1000 "UDMA/16", 1001 "UDMA/25", 1002 "UDMA/33", 1003 "UDMA/44", 1004 "UDMA/66", 1005 "UDMA/100", 1006 "UDMA/133", 1007 "UDMA7", 1008 }; 1009 int highbit; 1010 1011 highbit = fls(xfer_mask) - 1; 1012 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1013 return xfer_mode_str[highbit]; 1014 return "<n/a>"; 1015 } 1016 1017 const char *sata_spd_string(unsigned int spd) 1018 { 1019 static const char * const spd_str[] = { 1020 "1.5 Gbps", 1021 "3.0 Gbps", 1022 "6.0 Gbps", 1023 }; 1024 1025 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1026 return "<unknown>"; 1027 return spd_str[spd - 1]; 1028 } 1029 1030 /** 1031 * ata_dev_classify - determine device type based on ATA-spec signature 1032 * @tf: ATA taskfile register set for device to be identified 1033 * 1034 * Determine from taskfile register contents whether a device is 1035 * ATA or ATAPI, as per "Signature and persistence" section 1036 * of ATA/PI spec (volume 1, sect 5.14). 1037 * 1038 * LOCKING: 1039 * None. 1040 * 1041 * RETURNS: 1042 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1043 * %ATA_DEV_UNKNOWN the event of failure. 1044 */ 1045 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1046 { 1047 /* Apple's open source Darwin code hints that some devices only 1048 * put a proper signature into the LBA mid/high registers, 1049 * So, we only check those. It's sufficient for uniqueness. 1050 * 1051 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1052 * signatures for ATA and ATAPI devices attached on SerialATA, 1053 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1054 * spec has never mentioned about using different signatures 1055 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1056 * Multiplier specification began to use 0x69/0x96 to identify 1057 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1058 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1059 * 0x69/0x96 shortly and described them as reserved for 1060 * SerialATA. 1061 * 1062 * We follow the current spec and consider that 0x69/0x96 1063 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1064 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1065 * SEMB signature. This is worked around in 1066 * ata_dev_read_id(). 1067 */ 1068 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1069 DPRINTK("found ATA device by sig\n"); 1070 return ATA_DEV_ATA; 1071 } 1072 1073 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1074 DPRINTK("found ATAPI device by sig\n"); 1075 return ATA_DEV_ATAPI; 1076 } 1077 1078 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1079 DPRINTK("found PMP device by sig\n"); 1080 return ATA_DEV_PMP; 1081 } 1082 1083 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1084 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1085 return ATA_DEV_SEMB; 1086 } 1087 1088 DPRINTK("unknown device\n"); 1089 return ATA_DEV_UNKNOWN; 1090 } 1091 1092 /** 1093 * ata_id_string - Convert IDENTIFY DEVICE page into string 1094 * @id: IDENTIFY DEVICE results we will examine 1095 * @s: string into which data is output 1096 * @ofs: offset into identify device page 1097 * @len: length of string to return. must be an even number. 1098 * 1099 * The strings in the IDENTIFY DEVICE page are broken up into 1100 * 16-bit chunks. Run through the string, and output each 1101 * 8-bit chunk linearly, regardless of platform. 1102 * 1103 * LOCKING: 1104 * caller. 1105 */ 1106 1107 void ata_id_string(const u16 *id, unsigned char *s, 1108 unsigned int ofs, unsigned int len) 1109 { 1110 unsigned int c; 1111 1112 BUG_ON(len & 1); 1113 1114 while (len > 0) { 1115 c = id[ofs] >> 8; 1116 *s = c; 1117 s++; 1118 1119 c = id[ofs] & 0xff; 1120 *s = c; 1121 s++; 1122 1123 ofs++; 1124 len -= 2; 1125 } 1126 } 1127 1128 /** 1129 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1130 * @id: IDENTIFY DEVICE results we will examine 1131 * @s: string into which data is output 1132 * @ofs: offset into identify device page 1133 * @len: length of string to return. must be an odd number. 1134 * 1135 * This function is identical to ata_id_string except that it 1136 * trims trailing spaces and terminates the resulting string with 1137 * null. @len must be actual maximum length (even number) + 1. 1138 * 1139 * LOCKING: 1140 * caller. 1141 */ 1142 void ata_id_c_string(const u16 *id, unsigned char *s, 1143 unsigned int ofs, unsigned int len) 1144 { 1145 unsigned char *p; 1146 1147 ata_id_string(id, s, ofs, len - 1); 1148 1149 p = s + strnlen(s, len - 1); 1150 while (p > s && p[-1] == ' ') 1151 p--; 1152 *p = '\0'; 1153 } 1154 1155 static u64 ata_id_n_sectors(const u16 *id) 1156 { 1157 if (ata_id_has_lba(id)) { 1158 if (ata_id_has_lba48(id)) 1159 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1160 else 1161 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1162 } else { 1163 if (ata_id_current_chs_valid(id)) 1164 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1165 id[ATA_ID_CUR_SECTORS]; 1166 else 1167 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1168 id[ATA_ID_SECTORS]; 1169 } 1170 } 1171 1172 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1173 { 1174 u64 sectors = 0; 1175 1176 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1177 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1178 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1179 sectors |= (tf->lbah & 0xff) << 16; 1180 sectors |= (tf->lbam & 0xff) << 8; 1181 sectors |= (tf->lbal & 0xff); 1182 1183 return sectors; 1184 } 1185 1186 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1187 { 1188 u64 sectors = 0; 1189 1190 sectors |= (tf->device & 0x0f) << 24; 1191 sectors |= (tf->lbah & 0xff) << 16; 1192 sectors |= (tf->lbam & 0xff) << 8; 1193 sectors |= (tf->lbal & 0xff); 1194 1195 return sectors; 1196 } 1197 1198 /** 1199 * ata_read_native_max_address - Read native max address 1200 * @dev: target device 1201 * @max_sectors: out parameter for the result native max address 1202 * 1203 * Perform an LBA48 or LBA28 native size query upon the device in 1204 * question. 1205 * 1206 * RETURNS: 1207 * 0 on success, -EACCES if command is aborted by the drive. 1208 * -EIO on other errors. 1209 */ 1210 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1211 { 1212 unsigned int err_mask; 1213 struct ata_taskfile tf; 1214 int lba48 = ata_id_has_lba48(dev->id); 1215 1216 ata_tf_init(dev, &tf); 1217 1218 /* always clear all address registers */ 1219 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1220 1221 if (lba48) { 1222 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1223 tf.flags |= ATA_TFLAG_LBA48; 1224 } else 1225 tf.command = ATA_CMD_READ_NATIVE_MAX; 1226 1227 tf.protocol |= ATA_PROT_NODATA; 1228 tf.device |= ATA_LBA; 1229 1230 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1231 if (err_mask) { 1232 ata_dev_warn(dev, 1233 "failed to read native max address (err_mask=0x%x)\n", 1234 err_mask); 1235 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1236 return -EACCES; 1237 return -EIO; 1238 } 1239 1240 if (lba48) 1241 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1242 else 1243 *max_sectors = ata_tf_to_lba(&tf) + 1; 1244 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1245 (*max_sectors)--; 1246 return 0; 1247 } 1248 1249 /** 1250 * ata_set_max_sectors - Set max sectors 1251 * @dev: target device 1252 * @new_sectors: new max sectors value to set for the device 1253 * 1254 * Set max sectors of @dev to @new_sectors. 1255 * 1256 * RETURNS: 1257 * 0 on success, -EACCES if command is aborted or denied (due to 1258 * previous non-volatile SET_MAX) by the drive. -EIO on other 1259 * errors. 1260 */ 1261 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1262 { 1263 unsigned int err_mask; 1264 struct ata_taskfile tf; 1265 int lba48 = ata_id_has_lba48(dev->id); 1266 1267 new_sectors--; 1268 1269 ata_tf_init(dev, &tf); 1270 1271 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1272 1273 if (lba48) { 1274 tf.command = ATA_CMD_SET_MAX_EXT; 1275 tf.flags |= ATA_TFLAG_LBA48; 1276 1277 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1278 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1279 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1280 } else { 1281 tf.command = ATA_CMD_SET_MAX; 1282 1283 tf.device |= (new_sectors >> 24) & 0xf; 1284 } 1285 1286 tf.protocol |= ATA_PROT_NODATA; 1287 tf.device |= ATA_LBA; 1288 1289 tf.lbal = (new_sectors >> 0) & 0xff; 1290 tf.lbam = (new_sectors >> 8) & 0xff; 1291 tf.lbah = (new_sectors >> 16) & 0xff; 1292 1293 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1294 if (err_mask) { 1295 ata_dev_warn(dev, 1296 "failed to set max address (err_mask=0x%x)\n", 1297 err_mask); 1298 if (err_mask == AC_ERR_DEV && 1299 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1300 return -EACCES; 1301 return -EIO; 1302 } 1303 1304 return 0; 1305 } 1306 1307 /** 1308 * ata_hpa_resize - Resize a device with an HPA set 1309 * @dev: Device to resize 1310 * 1311 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1312 * it if required to the full size of the media. The caller must check 1313 * the drive has the HPA feature set enabled. 1314 * 1315 * RETURNS: 1316 * 0 on success, -errno on failure. 1317 */ 1318 static int ata_hpa_resize(struct ata_device *dev) 1319 { 1320 struct ata_eh_context *ehc = &dev->link->eh_context; 1321 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1322 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1323 u64 sectors = ata_id_n_sectors(dev->id); 1324 u64 native_sectors; 1325 int rc; 1326 1327 /* do we need to do it? */ 1328 if (dev->class != ATA_DEV_ATA || 1329 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1330 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1331 return 0; 1332 1333 /* read native max address */ 1334 rc = ata_read_native_max_address(dev, &native_sectors); 1335 if (rc) { 1336 /* If device aborted the command or HPA isn't going to 1337 * be unlocked, skip HPA resizing. 1338 */ 1339 if (rc == -EACCES || !unlock_hpa) { 1340 ata_dev_warn(dev, 1341 "HPA support seems broken, skipping HPA handling\n"); 1342 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1343 1344 /* we can continue if device aborted the command */ 1345 if (rc == -EACCES) 1346 rc = 0; 1347 } 1348 1349 return rc; 1350 } 1351 dev->n_native_sectors = native_sectors; 1352 1353 /* nothing to do? */ 1354 if (native_sectors <= sectors || !unlock_hpa) { 1355 if (!print_info || native_sectors == sectors) 1356 return 0; 1357 1358 if (native_sectors > sectors) 1359 ata_dev_info(dev, 1360 "HPA detected: current %llu, native %llu\n", 1361 (unsigned long long)sectors, 1362 (unsigned long long)native_sectors); 1363 else if (native_sectors < sectors) 1364 ata_dev_warn(dev, 1365 "native sectors (%llu) is smaller than sectors (%llu)\n", 1366 (unsigned long long)native_sectors, 1367 (unsigned long long)sectors); 1368 return 0; 1369 } 1370 1371 /* let's unlock HPA */ 1372 rc = ata_set_max_sectors(dev, native_sectors); 1373 if (rc == -EACCES) { 1374 /* if device aborted the command, skip HPA resizing */ 1375 ata_dev_warn(dev, 1376 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1377 (unsigned long long)sectors, 1378 (unsigned long long)native_sectors); 1379 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1380 return 0; 1381 } else if (rc) 1382 return rc; 1383 1384 /* re-read IDENTIFY data */ 1385 rc = ata_dev_reread_id(dev, 0); 1386 if (rc) { 1387 ata_dev_err(dev, 1388 "failed to re-read IDENTIFY data after HPA resizing\n"); 1389 return rc; 1390 } 1391 1392 if (print_info) { 1393 u64 new_sectors = ata_id_n_sectors(dev->id); 1394 ata_dev_info(dev, 1395 "HPA unlocked: %llu -> %llu, native %llu\n", 1396 (unsigned long long)sectors, 1397 (unsigned long long)new_sectors, 1398 (unsigned long long)native_sectors); 1399 } 1400 1401 return 0; 1402 } 1403 1404 /** 1405 * ata_dump_id - IDENTIFY DEVICE info debugging output 1406 * @id: IDENTIFY DEVICE page to dump 1407 * 1408 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1409 * page. 1410 * 1411 * LOCKING: 1412 * caller. 1413 */ 1414 1415 static inline void ata_dump_id(const u16 *id) 1416 { 1417 DPRINTK("49==0x%04x " 1418 "53==0x%04x " 1419 "63==0x%04x " 1420 "64==0x%04x " 1421 "75==0x%04x \n", 1422 id[49], 1423 id[53], 1424 id[63], 1425 id[64], 1426 id[75]); 1427 DPRINTK("80==0x%04x " 1428 "81==0x%04x " 1429 "82==0x%04x " 1430 "83==0x%04x " 1431 "84==0x%04x \n", 1432 id[80], 1433 id[81], 1434 id[82], 1435 id[83], 1436 id[84]); 1437 DPRINTK("88==0x%04x " 1438 "93==0x%04x\n", 1439 id[88], 1440 id[93]); 1441 } 1442 1443 /** 1444 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1445 * @id: IDENTIFY data to compute xfer mask from 1446 * 1447 * Compute the xfermask for this device. This is not as trivial 1448 * as it seems if we must consider early devices correctly. 1449 * 1450 * FIXME: pre IDE drive timing (do we care ?). 1451 * 1452 * LOCKING: 1453 * None. 1454 * 1455 * RETURNS: 1456 * Computed xfermask 1457 */ 1458 unsigned long ata_id_xfermask(const u16 *id) 1459 { 1460 unsigned long pio_mask, mwdma_mask, udma_mask; 1461 1462 /* Usual case. Word 53 indicates word 64 is valid */ 1463 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1464 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1465 pio_mask <<= 3; 1466 pio_mask |= 0x7; 1467 } else { 1468 /* If word 64 isn't valid then Word 51 high byte holds 1469 * the PIO timing number for the maximum. Turn it into 1470 * a mask. 1471 */ 1472 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1473 if (mode < 5) /* Valid PIO range */ 1474 pio_mask = (2 << mode) - 1; 1475 else 1476 pio_mask = 1; 1477 1478 /* But wait.. there's more. Design your standards by 1479 * committee and you too can get a free iordy field to 1480 * process. However its the speeds not the modes that 1481 * are supported... Note drivers using the timing API 1482 * will get this right anyway 1483 */ 1484 } 1485 1486 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1487 1488 if (ata_id_is_cfa(id)) { 1489 /* 1490 * Process compact flash extended modes 1491 */ 1492 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1493 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1494 1495 if (pio) 1496 pio_mask |= (1 << 5); 1497 if (pio > 1) 1498 pio_mask |= (1 << 6); 1499 if (dma) 1500 mwdma_mask |= (1 << 3); 1501 if (dma > 1) 1502 mwdma_mask |= (1 << 4); 1503 } 1504 1505 udma_mask = 0; 1506 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1507 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1508 1509 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1510 } 1511 1512 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1513 { 1514 struct completion *waiting = qc->private_data; 1515 1516 complete(waiting); 1517 } 1518 1519 /** 1520 * ata_exec_internal_sg - execute libata internal command 1521 * @dev: Device to which the command is sent 1522 * @tf: Taskfile registers for the command and the result 1523 * @cdb: CDB for packet command 1524 * @dma_dir: Data tranfer direction of the command 1525 * @sgl: sg list for the data buffer of the command 1526 * @n_elem: Number of sg entries 1527 * @timeout: Timeout in msecs (0 for default) 1528 * 1529 * Executes libata internal command with timeout. @tf contains 1530 * command on entry and result on return. Timeout and error 1531 * conditions are reported via return value. No recovery action 1532 * is taken after a command times out. It's caller's duty to 1533 * clean up after timeout. 1534 * 1535 * LOCKING: 1536 * None. Should be called with kernel context, might sleep. 1537 * 1538 * RETURNS: 1539 * Zero on success, AC_ERR_* mask on failure 1540 */ 1541 unsigned ata_exec_internal_sg(struct ata_device *dev, 1542 struct ata_taskfile *tf, const u8 *cdb, 1543 int dma_dir, struct scatterlist *sgl, 1544 unsigned int n_elem, unsigned long timeout) 1545 { 1546 struct ata_link *link = dev->link; 1547 struct ata_port *ap = link->ap; 1548 u8 command = tf->command; 1549 int auto_timeout = 0; 1550 struct ata_queued_cmd *qc; 1551 unsigned int tag, preempted_tag; 1552 u32 preempted_sactive, preempted_qc_active; 1553 int preempted_nr_active_links; 1554 DECLARE_COMPLETION_ONSTACK(wait); 1555 unsigned long flags; 1556 unsigned int err_mask; 1557 int rc; 1558 1559 spin_lock_irqsave(ap->lock, flags); 1560 1561 /* no internal command while frozen */ 1562 if (ap->pflags & ATA_PFLAG_FROZEN) { 1563 spin_unlock_irqrestore(ap->lock, flags); 1564 return AC_ERR_SYSTEM; 1565 } 1566 1567 /* initialize internal qc */ 1568 1569 /* XXX: Tag 0 is used for drivers with legacy EH as some 1570 * drivers choke if any other tag is given. This breaks 1571 * ata_tag_internal() test for those drivers. Don't use new 1572 * EH stuff without converting to it. 1573 */ 1574 if (ap->ops->error_handler) 1575 tag = ATA_TAG_INTERNAL; 1576 else 1577 tag = 0; 1578 1579 if (test_and_set_bit(tag, &ap->qc_allocated)) 1580 BUG(); 1581 qc = __ata_qc_from_tag(ap, tag); 1582 1583 qc->tag = tag; 1584 qc->scsicmd = NULL; 1585 qc->ap = ap; 1586 qc->dev = dev; 1587 ata_qc_reinit(qc); 1588 1589 preempted_tag = link->active_tag; 1590 preempted_sactive = link->sactive; 1591 preempted_qc_active = ap->qc_active; 1592 preempted_nr_active_links = ap->nr_active_links; 1593 link->active_tag = ATA_TAG_POISON; 1594 link->sactive = 0; 1595 ap->qc_active = 0; 1596 ap->nr_active_links = 0; 1597 1598 /* prepare & issue qc */ 1599 qc->tf = *tf; 1600 if (cdb) 1601 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1602 qc->flags |= ATA_QCFLAG_RESULT_TF; 1603 qc->dma_dir = dma_dir; 1604 if (dma_dir != DMA_NONE) { 1605 unsigned int i, buflen = 0; 1606 struct scatterlist *sg; 1607 1608 for_each_sg(sgl, sg, n_elem, i) 1609 buflen += sg->length; 1610 1611 ata_sg_init(qc, sgl, n_elem); 1612 qc->nbytes = buflen; 1613 } 1614 1615 qc->private_data = &wait; 1616 qc->complete_fn = ata_qc_complete_internal; 1617 1618 ata_qc_issue(qc); 1619 1620 spin_unlock_irqrestore(ap->lock, flags); 1621 1622 if (!timeout) { 1623 if (ata_probe_timeout) 1624 timeout = ata_probe_timeout * 1000; 1625 else { 1626 timeout = ata_internal_cmd_timeout(dev, command); 1627 auto_timeout = 1; 1628 } 1629 } 1630 1631 if (ap->ops->error_handler) 1632 ata_eh_release(ap); 1633 1634 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1635 1636 if (ap->ops->error_handler) 1637 ata_eh_acquire(ap); 1638 1639 ata_sff_flush_pio_task(ap); 1640 1641 if (!rc) { 1642 spin_lock_irqsave(ap->lock, flags); 1643 1644 /* We're racing with irq here. If we lose, the 1645 * following test prevents us from completing the qc 1646 * twice. If we win, the port is frozen and will be 1647 * cleaned up by ->post_internal_cmd(). 1648 */ 1649 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1650 qc->err_mask |= AC_ERR_TIMEOUT; 1651 1652 if (ap->ops->error_handler) 1653 ata_port_freeze(ap); 1654 else 1655 ata_qc_complete(qc); 1656 1657 if (ata_msg_warn(ap)) 1658 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1659 command); 1660 } 1661 1662 spin_unlock_irqrestore(ap->lock, flags); 1663 } 1664 1665 /* do post_internal_cmd */ 1666 if (ap->ops->post_internal_cmd) 1667 ap->ops->post_internal_cmd(qc); 1668 1669 /* perform minimal error analysis */ 1670 if (qc->flags & ATA_QCFLAG_FAILED) { 1671 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1672 qc->err_mask |= AC_ERR_DEV; 1673 1674 if (!qc->err_mask) 1675 qc->err_mask |= AC_ERR_OTHER; 1676 1677 if (qc->err_mask & ~AC_ERR_OTHER) 1678 qc->err_mask &= ~AC_ERR_OTHER; 1679 } 1680 1681 /* finish up */ 1682 spin_lock_irqsave(ap->lock, flags); 1683 1684 *tf = qc->result_tf; 1685 err_mask = qc->err_mask; 1686 1687 ata_qc_free(qc); 1688 link->active_tag = preempted_tag; 1689 link->sactive = preempted_sactive; 1690 ap->qc_active = preempted_qc_active; 1691 ap->nr_active_links = preempted_nr_active_links; 1692 1693 spin_unlock_irqrestore(ap->lock, flags); 1694 1695 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1696 ata_internal_cmd_timed_out(dev, command); 1697 1698 return err_mask; 1699 } 1700 1701 /** 1702 * ata_exec_internal - execute libata internal command 1703 * @dev: Device to which the command is sent 1704 * @tf: Taskfile registers for the command and the result 1705 * @cdb: CDB for packet command 1706 * @dma_dir: Data tranfer direction of the command 1707 * @buf: Data buffer of the command 1708 * @buflen: Length of data buffer 1709 * @timeout: Timeout in msecs (0 for default) 1710 * 1711 * Wrapper around ata_exec_internal_sg() which takes simple 1712 * buffer instead of sg list. 1713 * 1714 * LOCKING: 1715 * None. Should be called with kernel context, might sleep. 1716 * 1717 * RETURNS: 1718 * Zero on success, AC_ERR_* mask on failure 1719 */ 1720 unsigned ata_exec_internal(struct ata_device *dev, 1721 struct ata_taskfile *tf, const u8 *cdb, 1722 int dma_dir, void *buf, unsigned int buflen, 1723 unsigned long timeout) 1724 { 1725 struct scatterlist *psg = NULL, sg; 1726 unsigned int n_elem = 0; 1727 1728 if (dma_dir != DMA_NONE) { 1729 WARN_ON(!buf); 1730 sg_init_one(&sg, buf, buflen); 1731 psg = &sg; 1732 n_elem++; 1733 } 1734 1735 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1736 timeout); 1737 } 1738 1739 /** 1740 * ata_do_simple_cmd - execute simple internal command 1741 * @dev: Device to which the command is sent 1742 * @cmd: Opcode to execute 1743 * 1744 * Execute a 'simple' command, that only consists of the opcode 1745 * 'cmd' itself, without filling any other registers 1746 * 1747 * LOCKING: 1748 * Kernel thread context (may sleep). 1749 * 1750 * RETURNS: 1751 * Zero on success, AC_ERR_* mask on failure 1752 */ 1753 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1754 { 1755 struct ata_taskfile tf; 1756 1757 ata_tf_init(dev, &tf); 1758 1759 tf.command = cmd; 1760 tf.flags |= ATA_TFLAG_DEVICE; 1761 tf.protocol = ATA_PROT_NODATA; 1762 1763 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1764 } 1765 1766 /** 1767 * ata_pio_need_iordy - check if iordy needed 1768 * @adev: ATA device 1769 * 1770 * Check if the current speed of the device requires IORDY. Used 1771 * by various controllers for chip configuration. 1772 */ 1773 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1774 { 1775 /* Don't set IORDY if we're preparing for reset. IORDY may 1776 * lead to controller lock up on certain controllers if the 1777 * port is not occupied. See bko#11703 for details. 1778 */ 1779 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1780 return 0; 1781 /* Controller doesn't support IORDY. Probably a pointless 1782 * check as the caller should know this. 1783 */ 1784 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1785 return 0; 1786 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1787 if (ata_id_is_cfa(adev->id) 1788 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1789 return 0; 1790 /* PIO3 and higher it is mandatory */ 1791 if (adev->pio_mode > XFER_PIO_2) 1792 return 1; 1793 /* We turn it on when possible */ 1794 if (ata_id_has_iordy(adev->id)) 1795 return 1; 1796 return 0; 1797 } 1798 1799 /** 1800 * ata_pio_mask_no_iordy - Return the non IORDY mask 1801 * @adev: ATA device 1802 * 1803 * Compute the highest mode possible if we are not using iordy. Return 1804 * -1 if no iordy mode is available. 1805 */ 1806 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1807 { 1808 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1809 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1810 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1811 /* Is the speed faster than the drive allows non IORDY ? */ 1812 if (pio) { 1813 /* This is cycle times not frequency - watch the logic! */ 1814 if (pio > 240) /* PIO2 is 240nS per cycle */ 1815 return 3 << ATA_SHIFT_PIO; 1816 return 7 << ATA_SHIFT_PIO; 1817 } 1818 } 1819 return 3 << ATA_SHIFT_PIO; 1820 } 1821 1822 /** 1823 * ata_do_dev_read_id - default ID read method 1824 * @dev: device 1825 * @tf: proposed taskfile 1826 * @id: data buffer 1827 * 1828 * Issue the identify taskfile and hand back the buffer containing 1829 * identify data. For some RAID controllers and for pre ATA devices 1830 * this function is wrapped or replaced by the driver 1831 */ 1832 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1833 struct ata_taskfile *tf, u16 *id) 1834 { 1835 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1836 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1837 } 1838 1839 /** 1840 * ata_dev_read_id - Read ID data from the specified device 1841 * @dev: target device 1842 * @p_class: pointer to class of the target device (may be changed) 1843 * @flags: ATA_READID_* flags 1844 * @id: buffer to read IDENTIFY data into 1845 * 1846 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1847 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1848 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1849 * for pre-ATA4 drives. 1850 * 1851 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1852 * now we abort if we hit that case. 1853 * 1854 * LOCKING: 1855 * Kernel thread context (may sleep) 1856 * 1857 * RETURNS: 1858 * 0 on success, -errno otherwise. 1859 */ 1860 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1861 unsigned int flags, u16 *id) 1862 { 1863 struct ata_port *ap = dev->link->ap; 1864 unsigned int class = *p_class; 1865 struct ata_taskfile tf; 1866 unsigned int err_mask = 0; 1867 const char *reason; 1868 bool is_semb = class == ATA_DEV_SEMB; 1869 int may_fallback = 1, tried_spinup = 0; 1870 int rc; 1871 1872 if (ata_msg_ctl(ap)) 1873 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1874 1875 retry: 1876 ata_tf_init(dev, &tf); 1877 1878 switch (class) { 1879 case ATA_DEV_SEMB: 1880 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1881 case ATA_DEV_ATA: 1882 tf.command = ATA_CMD_ID_ATA; 1883 break; 1884 case ATA_DEV_ATAPI: 1885 tf.command = ATA_CMD_ID_ATAPI; 1886 break; 1887 default: 1888 rc = -ENODEV; 1889 reason = "unsupported class"; 1890 goto err_out; 1891 } 1892 1893 tf.protocol = ATA_PROT_PIO; 1894 1895 /* Some devices choke if TF registers contain garbage. Make 1896 * sure those are properly initialized. 1897 */ 1898 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1899 1900 /* Device presence detection is unreliable on some 1901 * controllers. Always poll IDENTIFY if available. 1902 */ 1903 tf.flags |= ATA_TFLAG_POLLING; 1904 1905 if (ap->ops->read_id) 1906 err_mask = ap->ops->read_id(dev, &tf, id); 1907 else 1908 err_mask = ata_do_dev_read_id(dev, &tf, id); 1909 1910 if (err_mask) { 1911 if (err_mask & AC_ERR_NODEV_HINT) { 1912 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1913 return -ENOENT; 1914 } 1915 1916 if (is_semb) { 1917 ata_dev_info(dev, 1918 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1919 /* SEMB is not supported yet */ 1920 *p_class = ATA_DEV_SEMB_UNSUP; 1921 return 0; 1922 } 1923 1924 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1925 /* Device or controller might have reported 1926 * the wrong device class. Give a shot at the 1927 * other IDENTIFY if the current one is 1928 * aborted by the device. 1929 */ 1930 if (may_fallback) { 1931 may_fallback = 0; 1932 1933 if (class == ATA_DEV_ATA) 1934 class = ATA_DEV_ATAPI; 1935 else 1936 class = ATA_DEV_ATA; 1937 goto retry; 1938 } 1939 1940 /* Control reaches here iff the device aborted 1941 * both flavors of IDENTIFYs which happens 1942 * sometimes with phantom devices. 1943 */ 1944 ata_dev_dbg(dev, 1945 "both IDENTIFYs aborted, assuming NODEV\n"); 1946 return -ENOENT; 1947 } 1948 1949 rc = -EIO; 1950 reason = "I/O error"; 1951 goto err_out; 1952 } 1953 1954 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1955 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1956 "class=%d may_fallback=%d tried_spinup=%d\n", 1957 class, may_fallback, tried_spinup); 1958 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1959 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1960 } 1961 1962 /* Falling back doesn't make sense if ID data was read 1963 * successfully at least once. 1964 */ 1965 may_fallback = 0; 1966 1967 swap_buf_le16(id, ATA_ID_WORDS); 1968 1969 /* sanity check */ 1970 rc = -EINVAL; 1971 reason = "device reports invalid type"; 1972 1973 if (class == ATA_DEV_ATA) { 1974 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1975 goto err_out; 1976 } else { 1977 if (ata_id_is_ata(id)) 1978 goto err_out; 1979 } 1980 1981 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1982 tried_spinup = 1; 1983 /* 1984 * Drive powered-up in standby mode, and requires a specific 1985 * SET_FEATURES spin-up subcommand before it will accept 1986 * anything other than the original IDENTIFY command. 1987 */ 1988 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1989 if (err_mask && id[2] != 0x738c) { 1990 rc = -EIO; 1991 reason = "SPINUP failed"; 1992 goto err_out; 1993 } 1994 /* 1995 * If the drive initially returned incomplete IDENTIFY info, 1996 * we now must reissue the IDENTIFY command. 1997 */ 1998 if (id[2] == 0x37c8) 1999 goto retry; 2000 } 2001 2002 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2003 /* 2004 * The exact sequence expected by certain pre-ATA4 drives is: 2005 * SRST RESET 2006 * IDENTIFY (optional in early ATA) 2007 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2008 * anything else.. 2009 * Some drives were very specific about that exact sequence. 2010 * 2011 * Note that ATA4 says lba is mandatory so the second check 2012 * should never trigger. 2013 */ 2014 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2015 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2016 if (err_mask) { 2017 rc = -EIO; 2018 reason = "INIT_DEV_PARAMS failed"; 2019 goto err_out; 2020 } 2021 2022 /* current CHS translation info (id[53-58]) might be 2023 * changed. reread the identify device info. 2024 */ 2025 flags &= ~ATA_READID_POSTRESET; 2026 goto retry; 2027 } 2028 } 2029 2030 *p_class = class; 2031 2032 return 0; 2033 2034 err_out: 2035 if (ata_msg_warn(ap)) 2036 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2037 reason, err_mask); 2038 return rc; 2039 } 2040 2041 static int ata_do_link_spd_horkage(struct ata_device *dev) 2042 { 2043 struct ata_link *plink = ata_dev_phys_link(dev); 2044 u32 target, target_limit; 2045 2046 if (!sata_scr_valid(plink)) 2047 return 0; 2048 2049 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2050 target = 1; 2051 else 2052 return 0; 2053 2054 target_limit = (1 << target) - 1; 2055 2056 /* if already on stricter limit, no need to push further */ 2057 if (plink->sata_spd_limit <= target_limit) 2058 return 0; 2059 2060 plink->sata_spd_limit = target_limit; 2061 2062 /* Request another EH round by returning -EAGAIN if link is 2063 * going faster than the target speed. Forward progress is 2064 * guaranteed by setting sata_spd_limit to target_limit above. 2065 */ 2066 if (plink->sata_spd > target) { 2067 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2068 sata_spd_string(target)); 2069 return -EAGAIN; 2070 } 2071 return 0; 2072 } 2073 2074 static inline u8 ata_dev_knobble(struct ata_device *dev) 2075 { 2076 struct ata_port *ap = dev->link->ap; 2077 2078 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2079 return 0; 2080 2081 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2082 } 2083 2084 static int ata_dev_config_ncq(struct ata_device *dev, 2085 char *desc, size_t desc_sz) 2086 { 2087 struct ata_port *ap = dev->link->ap; 2088 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2089 unsigned int err_mask; 2090 char *aa_desc = ""; 2091 2092 if (!ata_id_has_ncq(dev->id)) { 2093 desc[0] = '\0'; 2094 return 0; 2095 } 2096 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2097 snprintf(desc, desc_sz, "NCQ (not used)"); 2098 return 0; 2099 } 2100 if (ap->flags & ATA_FLAG_NCQ) { 2101 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2102 dev->flags |= ATA_DFLAG_NCQ; 2103 } 2104 2105 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2106 (ap->flags & ATA_FLAG_FPDMA_AA) && 2107 ata_id_has_fpdma_aa(dev->id)) { 2108 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2109 SATA_FPDMA_AA); 2110 if (err_mask) { 2111 ata_dev_err(dev, 2112 "failed to enable AA (error_mask=0x%x)\n", 2113 err_mask); 2114 if (err_mask != AC_ERR_DEV) { 2115 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2116 return -EIO; 2117 } 2118 } else 2119 aa_desc = ", AA"; 2120 } 2121 2122 if (hdepth >= ddepth) 2123 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2124 else 2125 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2126 ddepth, aa_desc); 2127 return 0; 2128 } 2129 2130 /** 2131 * ata_dev_configure - Configure the specified ATA/ATAPI device 2132 * @dev: Target device to configure 2133 * 2134 * Configure @dev according to @dev->id. Generic and low-level 2135 * driver specific fixups are also applied. 2136 * 2137 * LOCKING: 2138 * Kernel thread context (may sleep) 2139 * 2140 * RETURNS: 2141 * 0 on success, -errno otherwise 2142 */ 2143 int ata_dev_configure(struct ata_device *dev) 2144 { 2145 struct ata_port *ap = dev->link->ap; 2146 struct ata_eh_context *ehc = &dev->link->eh_context; 2147 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2148 const u16 *id = dev->id; 2149 unsigned long xfer_mask; 2150 char revbuf[7]; /* XYZ-99\0 */ 2151 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2152 char modelbuf[ATA_ID_PROD_LEN+1]; 2153 int rc; 2154 2155 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2156 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2157 return 0; 2158 } 2159 2160 if (ata_msg_probe(ap)) 2161 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2162 2163 /* set horkage */ 2164 dev->horkage |= ata_dev_blacklisted(dev); 2165 ata_force_horkage(dev); 2166 2167 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2168 ata_dev_info(dev, "unsupported device, disabling\n"); 2169 ata_dev_disable(dev); 2170 return 0; 2171 } 2172 2173 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2174 dev->class == ATA_DEV_ATAPI) { 2175 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2176 atapi_enabled ? "not supported with this driver" 2177 : "disabled"); 2178 ata_dev_disable(dev); 2179 return 0; 2180 } 2181 2182 rc = ata_do_link_spd_horkage(dev); 2183 if (rc) 2184 return rc; 2185 2186 /* let ACPI work its magic */ 2187 rc = ata_acpi_on_devcfg(dev); 2188 if (rc) 2189 return rc; 2190 2191 /* massage HPA, do it early as it might change IDENTIFY data */ 2192 rc = ata_hpa_resize(dev); 2193 if (rc) 2194 return rc; 2195 2196 /* print device capabilities */ 2197 if (ata_msg_probe(ap)) 2198 ata_dev_dbg(dev, 2199 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2200 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2201 __func__, 2202 id[49], id[82], id[83], id[84], 2203 id[85], id[86], id[87], id[88]); 2204 2205 /* initialize to-be-configured parameters */ 2206 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2207 dev->max_sectors = 0; 2208 dev->cdb_len = 0; 2209 dev->n_sectors = 0; 2210 dev->cylinders = 0; 2211 dev->heads = 0; 2212 dev->sectors = 0; 2213 dev->multi_count = 0; 2214 2215 /* 2216 * common ATA, ATAPI feature tests 2217 */ 2218 2219 /* find max transfer mode; for printk only */ 2220 xfer_mask = ata_id_xfermask(id); 2221 2222 if (ata_msg_probe(ap)) 2223 ata_dump_id(id); 2224 2225 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2226 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2227 sizeof(fwrevbuf)); 2228 2229 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2230 sizeof(modelbuf)); 2231 2232 /* ATA-specific feature tests */ 2233 if (dev->class == ATA_DEV_ATA) { 2234 if (ata_id_is_cfa(id)) { 2235 /* CPRM may make this media unusable */ 2236 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2237 ata_dev_warn(dev, 2238 "supports DRM functions and may not be fully accessible\n"); 2239 snprintf(revbuf, 7, "CFA"); 2240 } else { 2241 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2242 /* Warn the user if the device has TPM extensions */ 2243 if (ata_id_has_tpm(id)) 2244 ata_dev_warn(dev, 2245 "supports DRM functions and may not be fully accessible\n"); 2246 } 2247 2248 dev->n_sectors = ata_id_n_sectors(id); 2249 2250 /* get current R/W Multiple count setting */ 2251 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2252 unsigned int max = dev->id[47] & 0xff; 2253 unsigned int cnt = dev->id[59] & 0xff; 2254 /* only recognize/allow powers of two here */ 2255 if (is_power_of_2(max) && is_power_of_2(cnt)) 2256 if (cnt <= max) 2257 dev->multi_count = cnt; 2258 } 2259 2260 if (ata_id_has_lba(id)) { 2261 const char *lba_desc; 2262 char ncq_desc[24]; 2263 2264 lba_desc = "LBA"; 2265 dev->flags |= ATA_DFLAG_LBA; 2266 if (ata_id_has_lba48(id)) { 2267 dev->flags |= ATA_DFLAG_LBA48; 2268 lba_desc = "LBA48"; 2269 2270 if (dev->n_sectors >= (1UL << 28) && 2271 ata_id_has_flush_ext(id)) 2272 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2273 } 2274 2275 /* config NCQ */ 2276 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2277 if (rc) 2278 return rc; 2279 2280 /* print device info to dmesg */ 2281 if (ata_msg_drv(ap) && print_info) { 2282 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2283 revbuf, modelbuf, fwrevbuf, 2284 ata_mode_string(xfer_mask)); 2285 ata_dev_info(dev, 2286 "%llu sectors, multi %u: %s %s\n", 2287 (unsigned long long)dev->n_sectors, 2288 dev->multi_count, lba_desc, ncq_desc); 2289 } 2290 } else { 2291 /* CHS */ 2292 2293 /* Default translation */ 2294 dev->cylinders = id[1]; 2295 dev->heads = id[3]; 2296 dev->sectors = id[6]; 2297 2298 if (ata_id_current_chs_valid(id)) { 2299 /* Current CHS translation is valid. */ 2300 dev->cylinders = id[54]; 2301 dev->heads = id[55]; 2302 dev->sectors = id[56]; 2303 } 2304 2305 /* print device info to dmesg */ 2306 if (ata_msg_drv(ap) && print_info) { 2307 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2308 revbuf, modelbuf, fwrevbuf, 2309 ata_mode_string(xfer_mask)); 2310 ata_dev_info(dev, 2311 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2312 (unsigned long long)dev->n_sectors, 2313 dev->multi_count, dev->cylinders, 2314 dev->heads, dev->sectors); 2315 } 2316 } 2317 2318 dev->cdb_len = 16; 2319 } 2320 2321 /* ATAPI-specific feature tests */ 2322 else if (dev->class == ATA_DEV_ATAPI) { 2323 const char *cdb_intr_string = ""; 2324 const char *atapi_an_string = ""; 2325 const char *dma_dir_string = ""; 2326 u32 sntf; 2327 2328 rc = atapi_cdb_len(id); 2329 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2330 if (ata_msg_warn(ap)) 2331 ata_dev_warn(dev, "unsupported CDB len\n"); 2332 rc = -EINVAL; 2333 goto err_out_nosup; 2334 } 2335 dev->cdb_len = (unsigned int) rc; 2336 2337 /* Enable ATAPI AN if both the host and device have 2338 * the support. If PMP is attached, SNTF is required 2339 * to enable ATAPI AN to discern between PHY status 2340 * changed notifications and ATAPI ANs. 2341 */ 2342 if (atapi_an && 2343 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2344 (!sata_pmp_attached(ap) || 2345 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2346 unsigned int err_mask; 2347 2348 /* issue SET feature command to turn this on */ 2349 err_mask = ata_dev_set_feature(dev, 2350 SETFEATURES_SATA_ENABLE, SATA_AN); 2351 if (err_mask) 2352 ata_dev_err(dev, 2353 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2354 err_mask); 2355 else { 2356 dev->flags |= ATA_DFLAG_AN; 2357 atapi_an_string = ", ATAPI AN"; 2358 } 2359 } 2360 2361 if (ata_id_cdb_intr(dev->id)) { 2362 dev->flags |= ATA_DFLAG_CDB_INTR; 2363 cdb_intr_string = ", CDB intr"; 2364 } 2365 2366 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2367 dev->flags |= ATA_DFLAG_DMADIR; 2368 dma_dir_string = ", DMADIR"; 2369 } 2370 2371 /* print device info to dmesg */ 2372 if (ata_msg_drv(ap) && print_info) 2373 ata_dev_info(dev, 2374 "ATAPI: %s, %s, max %s%s%s%s\n", 2375 modelbuf, fwrevbuf, 2376 ata_mode_string(xfer_mask), 2377 cdb_intr_string, atapi_an_string, 2378 dma_dir_string); 2379 } 2380 2381 /* determine max_sectors */ 2382 dev->max_sectors = ATA_MAX_SECTORS; 2383 if (dev->flags & ATA_DFLAG_LBA48) 2384 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2385 2386 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2387 200 sectors */ 2388 if (ata_dev_knobble(dev)) { 2389 if (ata_msg_drv(ap) && print_info) 2390 ata_dev_info(dev, "applying bridge limits\n"); 2391 dev->udma_mask &= ATA_UDMA5; 2392 dev->max_sectors = ATA_MAX_SECTORS; 2393 } 2394 2395 if ((dev->class == ATA_DEV_ATAPI) && 2396 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2397 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2398 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2399 } 2400 2401 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2402 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2403 dev->max_sectors); 2404 2405 if (ap->ops->dev_config) 2406 ap->ops->dev_config(dev); 2407 2408 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2409 /* Let the user know. We don't want to disallow opens for 2410 rescue purposes, or in case the vendor is just a blithering 2411 idiot. Do this after the dev_config call as some controllers 2412 with buggy firmware may want to avoid reporting false device 2413 bugs */ 2414 2415 if (print_info) { 2416 ata_dev_warn(dev, 2417 "Drive reports diagnostics failure. This may indicate a drive\n"); 2418 ata_dev_warn(dev, 2419 "fault or invalid emulation. Contact drive vendor for information.\n"); 2420 } 2421 } 2422 2423 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2424 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2425 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2426 } 2427 2428 return 0; 2429 2430 err_out_nosup: 2431 if (ata_msg_probe(ap)) 2432 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2433 return rc; 2434 } 2435 2436 /** 2437 * ata_cable_40wire - return 40 wire cable type 2438 * @ap: port 2439 * 2440 * Helper method for drivers which want to hardwire 40 wire cable 2441 * detection. 2442 */ 2443 2444 int ata_cable_40wire(struct ata_port *ap) 2445 { 2446 return ATA_CBL_PATA40; 2447 } 2448 2449 /** 2450 * ata_cable_80wire - return 80 wire cable type 2451 * @ap: port 2452 * 2453 * Helper method for drivers which want to hardwire 80 wire cable 2454 * detection. 2455 */ 2456 2457 int ata_cable_80wire(struct ata_port *ap) 2458 { 2459 return ATA_CBL_PATA80; 2460 } 2461 2462 /** 2463 * ata_cable_unknown - return unknown PATA cable. 2464 * @ap: port 2465 * 2466 * Helper method for drivers which have no PATA cable detection. 2467 */ 2468 2469 int ata_cable_unknown(struct ata_port *ap) 2470 { 2471 return ATA_CBL_PATA_UNK; 2472 } 2473 2474 /** 2475 * ata_cable_ignore - return ignored PATA cable. 2476 * @ap: port 2477 * 2478 * Helper method for drivers which don't use cable type to limit 2479 * transfer mode. 2480 */ 2481 int ata_cable_ignore(struct ata_port *ap) 2482 { 2483 return ATA_CBL_PATA_IGN; 2484 } 2485 2486 /** 2487 * ata_cable_sata - return SATA cable type 2488 * @ap: port 2489 * 2490 * Helper method for drivers which have SATA cables 2491 */ 2492 2493 int ata_cable_sata(struct ata_port *ap) 2494 { 2495 return ATA_CBL_SATA; 2496 } 2497 2498 /** 2499 * ata_bus_probe - Reset and probe ATA bus 2500 * @ap: Bus to probe 2501 * 2502 * Master ATA bus probing function. Initiates a hardware-dependent 2503 * bus reset, then attempts to identify any devices found on 2504 * the bus. 2505 * 2506 * LOCKING: 2507 * PCI/etc. bus probe sem. 2508 * 2509 * RETURNS: 2510 * Zero on success, negative errno otherwise. 2511 */ 2512 2513 int ata_bus_probe(struct ata_port *ap) 2514 { 2515 unsigned int classes[ATA_MAX_DEVICES]; 2516 int tries[ATA_MAX_DEVICES]; 2517 int rc; 2518 struct ata_device *dev; 2519 2520 ata_for_each_dev(dev, &ap->link, ALL) 2521 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2522 2523 retry: 2524 ata_for_each_dev(dev, &ap->link, ALL) { 2525 /* If we issue an SRST then an ATA drive (not ATAPI) 2526 * may change configuration and be in PIO0 timing. If 2527 * we do a hard reset (or are coming from power on) 2528 * this is true for ATA or ATAPI. Until we've set a 2529 * suitable controller mode we should not touch the 2530 * bus as we may be talking too fast. 2531 */ 2532 dev->pio_mode = XFER_PIO_0; 2533 2534 /* If the controller has a pio mode setup function 2535 * then use it to set the chipset to rights. Don't 2536 * touch the DMA setup as that will be dealt with when 2537 * configuring devices. 2538 */ 2539 if (ap->ops->set_piomode) 2540 ap->ops->set_piomode(ap, dev); 2541 } 2542 2543 /* reset and determine device classes */ 2544 ap->ops->phy_reset(ap); 2545 2546 ata_for_each_dev(dev, &ap->link, ALL) { 2547 if (dev->class != ATA_DEV_UNKNOWN) 2548 classes[dev->devno] = dev->class; 2549 else 2550 classes[dev->devno] = ATA_DEV_NONE; 2551 2552 dev->class = ATA_DEV_UNKNOWN; 2553 } 2554 2555 /* read IDENTIFY page and configure devices. We have to do the identify 2556 specific sequence bass-ackwards so that PDIAG- is released by 2557 the slave device */ 2558 2559 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2560 if (tries[dev->devno]) 2561 dev->class = classes[dev->devno]; 2562 2563 if (!ata_dev_enabled(dev)) 2564 continue; 2565 2566 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2567 dev->id); 2568 if (rc) 2569 goto fail; 2570 } 2571 2572 /* Now ask for the cable type as PDIAG- should have been released */ 2573 if (ap->ops->cable_detect) 2574 ap->cbl = ap->ops->cable_detect(ap); 2575 2576 /* We may have SATA bridge glue hiding here irrespective of 2577 * the reported cable types and sensed types. When SATA 2578 * drives indicate we have a bridge, we don't know which end 2579 * of the link the bridge is which is a problem. 2580 */ 2581 ata_for_each_dev(dev, &ap->link, ENABLED) 2582 if (ata_id_is_sata(dev->id)) 2583 ap->cbl = ATA_CBL_SATA; 2584 2585 /* After the identify sequence we can now set up the devices. We do 2586 this in the normal order so that the user doesn't get confused */ 2587 2588 ata_for_each_dev(dev, &ap->link, ENABLED) { 2589 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2590 rc = ata_dev_configure(dev); 2591 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2592 if (rc) 2593 goto fail; 2594 } 2595 2596 /* configure transfer mode */ 2597 rc = ata_set_mode(&ap->link, &dev); 2598 if (rc) 2599 goto fail; 2600 2601 ata_for_each_dev(dev, &ap->link, ENABLED) 2602 return 0; 2603 2604 return -ENODEV; 2605 2606 fail: 2607 tries[dev->devno]--; 2608 2609 switch (rc) { 2610 case -EINVAL: 2611 /* eeek, something went very wrong, give up */ 2612 tries[dev->devno] = 0; 2613 break; 2614 2615 case -ENODEV: 2616 /* give it just one more chance */ 2617 tries[dev->devno] = min(tries[dev->devno], 1); 2618 case -EIO: 2619 if (tries[dev->devno] == 1) { 2620 /* This is the last chance, better to slow 2621 * down than lose it. 2622 */ 2623 sata_down_spd_limit(&ap->link, 0); 2624 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2625 } 2626 } 2627 2628 if (!tries[dev->devno]) 2629 ata_dev_disable(dev); 2630 2631 goto retry; 2632 } 2633 2634 /** 2635 * sata_print_link_status - Print SATA link status 2636 * @link: SATA link to printk link status about 2637 * 2638 * This function prints link speed and status of a SATA link. 2639 * 2640 * LOCKING: 2641 * None. 2642 */ 2643 static void sata_print_link_status(struct ata_link *link) 2644 { 2645 u32 sstatus, scontrol, tmp; 2646 2647 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2648 return; 2649 sata_scr_read(link, SCR_CONTROL, &scontrol); 2650 2651 if (ata_phys_link_online(link)) { 2652 tmp = (sstatus >> 4) & 0xf; 2653 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2654 sata_spd_string(tmp), sstatus, scontrol); 2655 } else { 2656 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2657 sstatus, scontrol); 2658 } 2659 } 2660 2661 /** 2662 * ata_dev_pair - return other device on cable 2663 * @adev: device 2664 * 2665 * Obtain the other device on the same cable, or if none is 2666 * present NULL is returned 2667 */ 2668 2669 struct ata_device *ata_dev_pair(struct ata_device *adev) 2670 { 2671 struct ata_link *link = adev->link; 2672 struct ata_device *pair = &link->device[1 - adev->devno]; 2673 if (!ata_dev_enabled(pair)) 2674 return NULL; 2675 return pair; 2676 } 2677 2678 /** 2679 * sata_down_spd_limit - adjust SATA spd limit downward 2680 * @link: Link to adjust SATA spd limit for 2681 * @spd_limit: Additional limit 2682 * 2683 * Adjust SATA spd limit of @link downward. Note that this 2684 * function only adjusts the limit. The change must be applied 2685 * using sata_set_spd(). 2686 * 2687 * If @spd_limit is non-zero, the speed is limited to equal to or 2688 * lower than @spd_limit if such speed is supported. If 2689 * @spd_limit is slower than any supported speed, only the lowest 2690 * supported speed is allowed. 2691 * 2692 * LOCKING: 2693 * Inherited from caller. 2694 * 2695 * RETURNS: 2696 * 0 on success, negative errno on failure 2697 */ 2698 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2699 { 2700 u32 sstatus, spd, mask; 2701 int rc, bit; 2702 2703 if (!sata_scr_valid(link)) 2704 return -EOPNOTSUPP; 2705 2706 /* If SCR can be read, use it to determine the current SPD. 2707 * If not, use cached value in link->sata_spd. 2708 */ 2709 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2710 if (rc == 0 && ata_sstatus_online(sstatus)) 2711 spd = (sstatus >> 4) & 0xf; 2712 else 2713 spd = link->sata_spd; 2714 2715 mask = link->sata_spd_limit; 2716 if (mask <= 1) 2717 return -EINVAL; 2718 2719 /* unconditionally mask off the highest bit */ 2720 bit = fls(mask) - 1; 2721 mask &= ~(1 << bit); 2722 2723 /* Mask off all speeds higher than or equal to the current 2724 * one. Force 1.5Gbps if current SPD is not available. 2725 */ 2726 if (spd > 1) 2727 mask &= (1 << (spd - 1)) - 1; 2728 else 2729 mask &= 1; 2730 2731 /* were we already at the bottom? */ 2732 if (!mask) 2733 return -EINVAL; 2734 2735 if (spd_limit) { 2736 if (mask & ((1 << spd_limit) - 1)) 2737 mask &= (1 << spd_limit) - 1; 2738 else { 2739 bit = ffs(mask) - 1; 2740 mask = 1 << bit; 2741 } 2742 } 2743 2744 link->sata_spd_limit = mask; 2745 2746 ata_link_warn(link, "limiting SATA link speed to %s\n", 2747 sata_spd_string(fls(mask))); 2748 2749 return 0; 2750 } 2751 2752 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2753 { 2754 struct ata_link *host_link = &link->ap->link; 2755 u32 limit, target, spd; 2756 2757 limit = link->sata_spd_limit; 2758 2759 /* Don't configure downstream link faster than upstream link. 2760 * It doesn't speed up anything and some PMPs choke on such 2761 * configuration. 2762 */ 2763 if (!ata_is_host_link(link) && host_link->sata_spd) 2764 limit &= (1 << host_link->sata_spd) - 1; 2765 2766 if (limit == UINT_MAX) 2767 target = 0; 2768 else 2769 target = fls(limit); 2770 2771 spd = (*scontrol >> 4) & 0xf; 2772 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2773 2774 return spd != target; 2775 } 2776 2777 /** 2778 * sata_set_spd_needed - is SATA spd configuration needed 2779 * @link: Link in question 2780 * 2781 * Test whether the spd limit in SControl matches 2782 * @link->sata_spd_limit. This function is used to determine 2783 * whether hardreset is necessary to apply SATA spd 2784 * configuration. 2785 * 2786 * LOCKING: 2787 * Inherited from caller. 2788 * 2789 * RETURNS: 2790 * 1 if SATA spd configuration is needed, 0 otherwise. 2791 */ 2792 static int sata_set_spd_needed(struct ata_link *link) 2793 { 2794 u32 scontrol; 2795 2796 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2797 return 1; 2798 2799 return __sata_set_spd_needed(link, &scontrol); 2800 } 2801 2802 /** 2803 * sata_set_spd - set SATA spd according to spd limit 2804 * @link: Link to set SATA spd for 2805 * 2806 * Set SATA spd of @link according to sata_spd_limit. 2807 * 2808 * LOCKING: 2809 * Inherited from caller. 2810 * 2811 * RETURNS: 2812 * 0 if spd doesn't need to be changed, 1 if spd has been 2813 * changed. Negative errno if SCR registers are inaccessible. 2814 */ 2815 int sata_set_spd(struct ata_link *link) 2816 { 2817 u32 scontrol; 2818 int rc; 2819 2820 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2821 return rc; 2822 2823 if (!__sata_set_spd_needed(link, &scontrol)) 2824 return 0; 2825 2826 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2827 return rc; 2828 2829 return 1; 2830 } 2831 2832 /* 2833 * This mode timing computation functionality is ported over from 2834 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2835 */ 2836 /* 2837 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2838 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2839 * for UDMA6, which is currently supported only by Maxtor drives. 2840 * 2841 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2842 */ 2843 2844 static const struct ata_timing ata_timing[] = { 2845 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2846 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2847 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2848 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2849 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2850 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2851 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2852 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2853 2854 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2855 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2856 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2857 2858 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2859 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2860 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2861 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2862 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2863 2864 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2865 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2866 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2867 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2868 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2869 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2870 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2871 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2872 2873 { 0xFF } 2874 }; 2875 2876 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2877 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2878 2879 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2880 { 2881 q->setup = EZ(t->setup * 1000, T); 2882 q->act8b = EZ(t->act8b * 1000, T); 2883 q->rec8b = EZ(t->rec8b * 1000, T); 2884 q->cyc8b = EZ(t->cyc8b * 1000, T); 2885 q->active = EZ(t->active * 1000, T); 2886 q->recover = EZ(t->recover * 1000, T); 2887 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2888 q->cycle = EZ(t->cycle * 1000, T); 2889 q->udma = EZ(t->udma * 1000, UT); 2890 } 2891 2892 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2893 struct ata_timing *m, unsigned int what) 2894 { 2895 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2896 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2897 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2898 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2899 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2900 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2901 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2902 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2903 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2904 } 2905 2906 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2907 { 2908 const struct ata_timing *t = ata_timing; 2909 2910 while (xfer_mode > t->mode) 2911 t++; 2912 2913 if (xfer_mode == t->mode) 2914 return t; 2915 return NULL; 2916 } 2917 2918 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2919 struct ata_timing *t, int T, int UT) 2920 { 2921 const u16 *id = adev->id; 2922 const struct ata_timing *s; 2923 struct ata_timing p; 2924 2925 /* 2926 * Find the mode. 2927 */ 2928 2929 if (!(s = ata_timing_find_mode(speed))) 2930 return -EINVAL; 2931 2932 memcpy(t, s, sizeof(*s)); 2933 2934 /* 2935 * If the drive is an EIDE drive, it can tell us it needs extended 2936 * PIO/MW_DMA cycle timing. 2937 */ 2938 2939 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2940 memset(&p, 0, sizeof(p)); 2941 2942 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 2943 if (speed <= XFER_PIO_2) 2944 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 2945 else if ((speed <= XFER_PIO_4) || 2946 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 2947 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 2948 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 2949 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 2950 2951 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2952 } 2953 2954 /* 2955 * Convert the timing to bus clock counts. 2956 */ 2957 2958 ata_timing_quantize(t, t, T, UT); 2959 2960 /* 2961 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2962 * S.M.A.R.T * and some other commands. We have to ensure that the 2963 * DMA cycle timing is slower/equal than the fastest PIO timing. 2964 */ 2965 2966 if (speed > XFER_PIO_6) { 2967 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2968 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2969 } 2970 2971 /* 2972 * Lengthen active & recovery time so that cycle time is correct. 2973 */ 2974 2975 if (t->act8b + t->rec8b < t->cyc8b) { 2976 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2977 t->rec8b = t->cyc8b - t->act8b; 2978 } 2979 2980 if (t->active + t->recover < t->cycle) { 2981 t->active += (t->cycle - (t->active + t->recover)) / 2; 2982 t->recover = t->cycle - t->active; 2983 } 2984 2985 /* In a few cases quantisation may produce enough errors to 2986 leave t->cycle too low for the sum of active and recovery 2987 if so we must correct this */ 2988 if (t->active + t->recover > t->cycle) 2989 t->cycle = t->active + t->recover; 2990 2991 return 0; 2992 } 2993 2994 /** 2995 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 2996 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 2997 * @cycle: cycle duration in ns 2998 * 2999 * Return matching xfer mode for @cycle. The returned mode is of 3000 * the transfer type specified by @xfer_shift. If @cycle is too 3001 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3002 * than the fastest known mode, the fasted mode is returned. 3003 * 3004 * LOCKING: 3005 * None. 3006 * 3007 * RETURNS: 3008 * Matching xfer_mode, 0xff if no match found. 3009 */ 3010 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3011 { 3012 u8 base_mode = 0xff, last_mode = 0xff; 3013 const struct ata_xfer_ent *ent; 3014 const struct ata_timing *t; 3015 3016 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3017 if (ent->shift == xfer_shift) 3018 base_mode = ent->base; 3019 3020 for (t = ata_timing_find_mode(base_mode); 3021 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3022 unsigned short this_cycle; 3023 3024 switch (xfer_shift) { 3025 case ATA_SHIFT_PIO: 3026 case ATA_SHIFT_MWDMA: 3027 this_cycle = t->cycle; 3028 break; 3029 case ATA_SHIFT_UDMA: 3030 this_cycle = t->udma; 3031 break; 3032 default: 3033 return 0xff; 3034 } 3035 3036 if (cycle > this_cycle) 3037 break; 3038 3039 last_mode = t->mode; 3040 } 3041 3042 return last_mode; 3043 } 3044 3045 /** 3046 * ata_down_xfermask_limit - adjust dev xfer masks downward 3047 * @dev: Device to adjust xfer masks 3048 * @sel: ATA_DNXFER_* selector 3049 * 3050 * Adjust xfer masks of @dev downward. Note that this function 3051 * does not apply the change. Invoking ata_set_mode() afterwards 3052 * will apply the limit. 3053 * 3054 * LOCKING: 3055 * Inherited from caller. 3056 * 3057 * RETURNS: 3058 * 0 on success, negative errno on failure 3059 */ 3060 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3061 { 3062 char buf[32]; 3063 unsigned long orig_mask, xfer_mask; 3064 unsigned long pio_mask, mwdma_mask, udma_mask; 3065 int quiet, highbit; 3066 3067 quiet = !!(sel & ATA_DNXFER_QUIET); 3068 sel &= ~ATA_DNXFER_QUIET; 3069 3070 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3071 dev->mwdma_mask, 3072 dev->udma_mask); 3073 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3074 3075 switch (sel) { 3076 case ATA_DNXFER_PIO: 3077 highbit = fls(pio_mask) - 1; 3078 pio_mask &= ~(1 << highbit); 3079 break; 3080 3081 case ATA_DNXFER_DMA: 3082 if (udma_mask) { 3083 highbit = fls(udma_mask) - 1; 3084 udma_mask &= ~(1 << highbit); 3085 if (!udma_mask) 3086 return -ENOENT; 3087 } else if (mwdma_mask) { 3088 highbit = fls(mwdma_mask) - 1; 3089 mwdma_mask &= ~(1 << highbit); 3090 if (!mwdma_mask) 3091 return -ENOENT; 3092 } 3093 break; 3094 3095 case ATA_DNXFER_40C: 3096 udma_mask &= ATA_UDMA_MASK_40C; 3097 break; 3098 3099 case ATA_DNXFER_FORCE_PIO0: 3100 pio_mask &= 1; 3101 case ATA_DNXFER_FORCE_PIO: 3102 mwdma_mask = 0; 3103 udma_mask = 0; 3104 break; 3105 3106 default: 3107 BUG(); 3108 } 3109 3110 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3111 3112 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3113 return -ENOENT; 3114 3115 if (!quiet) { 3116 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3117 snprintf(buf, sizeof(buf), "%s:%s", 3118 ata_mode_string(xfer_mask), 3119 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3120 else 3121 snprintf(buf, sizeof(buf), "%s", 3122 ata_mode_string(xfer_mask)); 3123 3124 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3125 } 3126 3127 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3128 &dev->udma_mask); 3129 3130 return 0; 3131 } 3132 3133 static int ata_dev_set_mode(struct ata_device *dev) 3134 { 3135 struct ata_port *ap = dev->link->ap; 3136 struct ata_eh_context *ehc = &dev->link->eh_context; 3137 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3138 const char *dev_err_whine = ""; 3139 int ign_dev_err = 0; 3140 unsigned int err_mask = 0; 3141 int rc; 3142 3143 dev->flags &= ~ATA_DFLAG_PIO; 3144 if (dev->xfer_shift == ATA_SHIFT_PIO) 3145 dev->flags |= ATA_DFLAG_PIO; 3146 3147 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3148 dev_err_whine = " (SET_XFERMODE skipped)"; 3149 else { 3150 if (nosetxfer) 3151 ata_dev_warn(dev, 3152 "NOSETXFER but PATA detected - can't " 3153 "skip SETXFER, might malfunction\n"); 3154 err_mask = ata_dev_set_xfermode(dev); 3155 } 3156 3157 if (err_mask & ~AC_ERR_DEV) 3158 goto fail; 3159 3160 /* revalidate */ 3161 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3162 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3163 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3164 if (rc) 3165 return rc; 3166 3167 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3168 /* Old CFA may refuse this command, which is just fine */ 3169 if (ata_id_is_cfa(dev->id)) 3170 ign_dev_err = 1; 3171 /* Catch several broken garbage emulations plus some pre 3172 ATA devices */ 3173 if (ata_id_major_version(dev->id) == 0 && 3174 dev->pio_mode <= XFER_PIO_2) 3175 ign_dev_err = 1; 3176 /* Some very old devices and some bad newer ones fail 3177 any kind of SET_XFERMODE request but support PIO0-2 3178 timings and no IORDY */ 3179 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3180 ign_dev_err = 1; 3181 } 3182 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3183 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3184 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3185 dev->dma_mode == XFER_MW_DMA_0 && 3186 (dev->id[63] >> 8) & 1) 3187 ign_dev_err = 1; 3188 3189 /* if the device is actually configured correctly, ignore dev err */ 3190 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3191 ign_dev_err = 1; 3192 3193 if (err_mask & AC_ERR_DEV) { 3194 if (!ign_dev_err) 3195 goto fail; 3196 else 3197 dev_err_whine = " (device error ignored)"; 3198 } 3199 3200 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3201 dev->xfer_shift, (int)dev->xfer_mode); 3202 3203 ata_dev_info(dev, "configured for %s%s\n", 3204 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3205 dev_err_whine); 3206 3207 return 0; 3208 3209 fail: 3210 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3211 return -EIO; 3212 } 3213 3214 /** 3215 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3216 * @link: link on which timings will be programmed 3217 * @r_failed_dev: out parameter for failed device 3218 * 3219 * Standard implementation of the function used to tune and set 3220 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3221 * ata_dev_set_mode() fails, pointer to the failing device is 3222 * returned in @r_failed_dev. 3223 * 3224 * LOCKING: 3225 * PCI/etc. bus probe sem. 3226 * 3227 * RETURNS: 3228 * 0 on success, negative errno otherwise 3229 */ 3230 3231 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3232 { 3233 struct ata_port *ap = link->ap; 3234 struct ata_device *dev; 3235 int rc = 0, used_dma = 0, found = 0; 3236 3237 /* step 1: calculate xfer_mask */ 3238 ata_for_each_dev(dev, link, ENABLED) { 3239 unsigned long pio_mask, dma_mask; 3240 unsigned int mode_mask; 3241 3242 mode_mask = ATA_DMA_MASK_ATA; 3243 if (dev->class == ATA_DEV_ATAPI) 3244 mode_mask = ATA_DMA_MASK_ATAPI; 3245 else if (ata_id_is_cfa(dev->id)) 3246 mode_mask = ATA_DMA_MASK_CFA; 3247 3248 ata_dev_xfermask(dev); 3249 ata_force_xfermask(dev); 3250 3251 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3252 3253 if (libata_dma_mask & mode_mask) 3254 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3255 dev->udma_mask); 3256 else 3257 dma_mask = 0; 3258 3259 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3260 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3261 3262 found = 1; 3263 if (ata_dma_enabled(dev)) 3264 used_dma = 1; 3265 } 3266 if (!found) 3267 goto out; 3268 3269 /* step 2: always set host PIO timings */ 3270 ata_for_each_dev(dev, link, ENABLED) { 3271 if (dev->pio_mode == 0xff) { 3272 ata_dev_warn(dev, "no PIO support\n"); 3273 rc = -EINVAL; 3274 goto out; 3275 } 3276 3277 dev->xfer_mode = dev->pio_mode; 3278 dev->xfer_shift = ATA_SHIFT_PIO; 3279 if (ap->ops->set_piomode) 3280 ap->ops->set_piomode(ap, dev); 3281 } 3282 3283 /* step 3: set host DMA timings */ 3284 ata_for_each_dev(dev, link, ENABLED) { 3285 if (!ata_dma_enabled(dev)) 3286 continue; 3287 3288 dev->xfer_mode = dev->dma_mode; 3289 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3290 if (ap->ops->set_dmamode) 3291 ap->ops->set_dmamode(ap, dev); 3292 } 3293 3294 /* step 4: update devices' xfer mode */ 3295 ata_for_each_dev(dev, link, ENABLED) { 3296 rc = ata_dev_set_mode(dev); 3297 if (rc) 3298 goto out; 3299 } 3300 3301 /* Record simplex status. If we selected DMA then the other 3302 * host channels are not permitted to do so. 3303 */ 3304 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3305 ap->host->simplex_claimed = ap; 3306 3307 out: 3308 if (rc) 3309 *r_failed_dev = dev; 3310 return rc; 3311 } 3312 3313 /** 3314 * ata_wait_ready - wait for link to become ready 3315 * @link: link to be waited on 3316 * @deadline: deadline jiffies for the operation 3317 * @check_ready: callback to check link readiness 3318 * 3319 * Wait for @link to become ready. @check_ready should return 3320 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3321 * link doesn't seem to be occupied, other errno for other error 3322 * conditions. 3323 * 3324 * Transient -ENODEV conditions are allowed for 3325 * ATA_TMOUT_FF_WAIT. 3326 * 3327 * LOCKING: 3328 * EH context. 3329 * 3330 * RETURNS: 3331 * 0 if @linke is ready before @deadline; otherwise, -errno. 3332 */ 3333 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3334 int (*check_ready)(struct ata_link *link)) 3335 { 3336 unsigned long start = jiffies; 3337 unsigned long nodev_deadline; 3338 int warned = 0; 3339 3340 /* choose which 0xff timeout to use, read comment in libata.h */ 3341 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3342 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3343 else 3344 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3345 3346 /* Slave readiness can't be tested separately from master. On 3347 * M/S emulation configuration, this function should be called 3348 * only on the master and it will handle both master and slave. 3349 */ 3350 WARN_ON(link == link->ap->slave_link); 3351 3352 if (time_after(nodev_deadline, deadline)) 3353 nodev_deadline = deadline; 3354 3355 while (1) { 3356 unsigned long now = jiffies; 3357 int ready, tmp; 3358 3359 ready = tmp = check_ready(link); 3360 if (ready > 0) 3361 return 0; 3362 3363 /* 3364 * -ENODEV could be transient. Ignore -ENODEV if link 3365 * is online. Also, some SATA devices take a long 3366 * time to clear 0xff after reset. Wait for 3367 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3368 * offline. 3369 * 3370 * Note that some PATA controllers (pata_ali) explode 3371 * if status register is read more than once when 3372 * there's no device attached. 3373 */ 3374 if (ready == -ENODEV) { 3375 if (ata_link_online(link)) 3376 ready = 0; 3377 else if ((link->ap->flags & ATA_FLAG_SATA) && 3378 !ata_link_offline(link) && 3379 time_before(now, nodev_deadline)) 3380 ready = 0; 3381 } 3382 3383 if (ready) 3384 return ready; 3385 if (time_after(now, deadline)) 3386 return -EBUSY; 3387 3388 if (!warned && time_after(now, start + 5 * HZ) && 3389 (deadline - now > 3 * HZ)) { 3390 ata_link_warn(link, 3391 "link is slow to respond, please be patient " 3392 "(ready=%d)\n", tmp); 3393 warned = 1; 3394 } 3395 3396 ata_msleep(link->ap, 50); 3397 } 3398 } 3399 3400 /** 3401 * ata_wait_after_reset - wait for link to become ready after reset 3402 * @link: link to be waited on 3403 * @deadline: deadline jiffies for the operation 3404 * @check_ready: callback to check link readiness 3405 * 3406 * Wait for @link to become ready after reset. 3407 * 3408 * LOCKING: 3409 * EH context. 3410 * 3411 * RETURNS: 3412 * 0 if @linke is ready before @deadline; otherwise, -errno. 3413 */ 3414 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3415 int (*check_ready)(struct ata_link *link)) 3416 { 3417 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3418 3419 return ata_wait_ready(link, deadline, check_ready); 3420 } 3421 3422 /** 3423 * sata_link_debounce - debounce SATA phy status 3424 * @link: ATA link to debounce SATA phy status for 3425 * @params: timing parameters { interval, duratinon, timeout } in msec 3426 * @deadline: deadline jiffies for the operation 3427 * 3428 * Make sure SStatus of @link reaches stable state, determined by 3429 * holding the same value where DET is not 1 for @duration polled 3430 * every @interval, before @timeout. Timeout constraints the 3431 * beginning of the stable state. Because DET gets stuck at 1 on 3432 * some controllers after hot unplugging, this functions waits 3433 * until timeout then returns 0 if DET is stable at 1. 3434 * 3435 * @timeout is further limited by @deadline. The sooner of the 3436 * two is used. 3437 * 3438 * LOCKING: 3439 * Kernel thread context (may sleep) 3440 * 3441 * RETURNS: 3442 * 0 on success, -errno on failure. 3443 */ 3444 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3445 unsigned long deadline) 3446 { 3447 unsigned long interval = params[0]; 3448 unsigned long duration = params[1]; 3449 unsigned long last_jiffies, t; 3450 u32 last, cur; 3451 int rc; 3452 3453 t = ata_deadline(jiffies, params[2]); 3454 if (time_before(t, deadline)) 3455 deadline = t; 3456 3457 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3458 return rc; 3459 cur &= 0xf; 3460 3461 last = cur; 3462 last_jiffies = jiffies; 3463 3464 while (1) { 3465 ata_msleep(link->ap, interval); 3466 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3467 return rc; 3468 cur &= 0xf; 3469 3470 /* DET stable? */ 3471 if (cur == last) { 3472 if (cur == 1 && time_before(jiffies, deadline)) 3473 continue; 3474 if (time_after(jiffies, 3475 ata_deadline(last_jiffies, duration))) 3476 return 0; 3477 continue; 3478 } 3479 3480 /* unstable, start over */ 3481 last = cur; 3482 last_jiffies = jiffies; 3483 3484 /* Check deadline. If debouncing failed, return 3485 * -EPIPE to tell upper layer to lower link speed. 3486 */ 3487 if (time_after(jiffies, deadline)) 3488 return -EPIPE; 3489 } 3490 } 3491 3492 /** 3493 * sata_link_resume - resume SATA link 3494 * @link: ATA link to resume SATA 3495 * @params: timing parameters { interval, duratinon, timeout } in msec 3496 * @deadline: deadline jiffies for the operation 3497 * 3498 * Resume SATA phy @link and debounce it. 3499 * 3500 * LOCKING: 3501 * Kernel thread context (may sleep) 3502 * 3503 * RETURNS: 3504 * 0 on success, -errno on failure. 3505 */ 3506 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3507 unsigned long deadline) 3508 { 3509 int tries = ATA_LINK_RESUME_TRIES; 3510 u32 scontrol, serror; 3511 int rc; 3512 3513 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3514 return rc; 3515 3516 /* 3517 * Writes to SControl sometimes get ignored under certain 3518 * controllers (ata_piix SIDPR). Make sure DET actually is 3519 * cleared. 3520 */ 3521 do { 3522 scontrol = (scontrol & 0x0f0) | 0x300; 3523 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3524 return rc; 3525 /* 3526 * Some PHYs react badly if SStatus is pounded 3527 * immediately after resuming. Delay 200ms before 3528 * debouncing. 3529 */ 3530 ata_msleep(link->ap, 200); 3531 3532 /* is SControl restored correctly? */ 3533 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3534 return rc; 3535 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3536 3537 if ((scontrol & 0xf0f) != 0x300) { 3538 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3539 scontrol); 3540 return 0; 3541 } 3542 3543 if (tries < ATA_LINK_RESUME_TRIES) 3544 ata_link_warn(link, "link resume succeeded after %d retries\n", 3545 ATA_LINK_RESUME_TRIES - tries); 3546 3547 if ((rc = sata_link_debounce(link, params, deadline))) 3548 return rc; 3549 3550 /* clear SError, some PHYs require this even for SRST to work */ 3551 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3552 rc = sata_scr_write(link, SCR_ERROR, serror); 3553 3554 return rc != -EINVAL ? rc : 0; 3555 } 3556 3557 /** 3558 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3559 * @link: ATA link to manipulate SControl for 3560 * @policy: LPM policy to configure 3561 * @spm_wakeup: initiate LPM transition to active state 3562 * 3563 * Manipulate the IPM field of the SControl register of @link 3564 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3565 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3566 * the link. This function also clears PHYRDY_CHG before 3567 * returning. 3568 * 3569 * LOCKING: 3570 * EH context. 3571 * 3572 * RETURNS: 3573 * 0 on succes, -errno otherwise. 3574 */ 3575 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3576 bool spm_wakeup) 3577 { 3578 struct ata_eh_context *ehc = &link->eh_context; 3579 bool woken_up = false; 3580 u32 scontrol; 3581 int rc; 3582 3583 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3584 if (rc) 3585 return rc; 3586 3587 switch (policy) { 3588 case ATA_LPM_MAX_POWER: 3589 /* disable all LPM transitions */ 3590 scontrol |= (0x3 << 8); 3591 /* initiate transition to active state */ 3592 if (spm_wakeup) { 3593 scontrol |= (0x4 << 12); 3594 woken_up = true; 3595 } 3596 break; 3597 case ATA_LPM_MED_POWER: 3598 /* allow LPM to PARTIAL */ 3599 scontrol &= ~(0x1 << 8); 3600 scontrol |= (0x2 << 8); 3601 break; 3602 case ATA_LPM_MIN_POWER: 3603 if (ata_link_nr_enabled(link) > 0) 3604 /* no restrictions on LPM transitions */ 3605 scontrol &= ~(0x3 << 8); 3606 else { 3607 /* empty port, power off */ 3608 scontrol &= ~0xf; 3609 scontrol |= (0x1 << 2); 3610 } 3611 break; 3612 default: 3613 WARN_ON(1); 3614 } 3615 3616 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3617 if (rc) 3618 return rc; 3619 3620 /* give the link time to transit out of LPM state */ 3621 if (woken_up) 3622 msleep(10); 3623 3624 /* clear PHYRDY_CHG from SError */ 3625 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3626 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3627 } 3628 3629 /** 3630 * ata_std_prereset - prepare for reset 3631 * @link: ATA link to be reset 3632 * @deadline: deadline jiffies for the operation 3633 * 3634 * @link is about to be reset. Initialize it. Failure from 3635 * prereset makes libata abort whole reset sequence and give up 3636 * that port, so prereset should be best-effort. It does its 3637 * best to prepare for reset sequence but if things go wrong, it 3638 * should just whine, not fail. 3639 * 3640 * LOCKING: 3641 * Kernel thread context (may sleep) 3642 * 3643 * RETURNS: 3644 * 0 on success, -errno otherwise. 3645 */ 3646 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3647 { 3648 struct ata_port *ap = link->ap; 3649 struct ata_eh_context *ehc = &link->eh_context; 3650 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3651 int rc; 3652 3653 /* if we're about to do hardreset, nothing more to do */ 3654 if (ehc->i.action & ATA_EH_HARDRESET) 3655 return 0; 3656 3657 /* if SATA, resume link */ 3658 if (ap->flags & ATA_FLAG_SATA) { 3659 rc = sata_link_resume(link, timing, deadline); 3660 /* whine about phy resume failure but proceed */ 3661 if (rc && rc != -EOPNOTSUPP) 3662 ata_link_warn(link, 3663 "failed to resume link for reset (errno=%d)\n", 3664 rc); 3665 } 3666 3667 /* no point in trying softreset on offline link */ 3668 if (ata_phys_link_offline(link)) 3669 ehc->i.action &= ~ATA_EH_SOFTRESET; 3670 3671 return 0; 3672 } 3673 3674 /** 3675 * sata_link_hardreset - reset link via SATA phy reset 3676 * @link: link to reset 3677 * @timing: timing parameters { interval, duratinon, timeout } in msec 3678 * @deadline: deadline jiffies for the operation 3679 * @online: optional out parameter indicating link onlineness 3680 * @check_ready: optional callback to check link readiness 3681 * 3682 * SATA phy-reset @link using DET bits of SControl register. 3683 * After hardreset, link readiness is waited upon using 3684 * ata_wait_ready() if @check_ready is specified. LLDs are 3685 * allowed to not specify @check_ready and wait itself after this 3686 * function returns. Device classification is LLD's 3687 * responsibility. 3688 * 3689 * *@online is set to one iff reset succeeded and @link is online 3690 * after reset. 3691 * 3692 * LOCKING: 3693 * Kernel thread context (may sleep) 3694 * 3695 * RETURNS: 3696 * 0 on success, -errno otherwise. 3697 */ 3698 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3699 unsigned long deadline, 3700 bool *online, int (*check_ready)(struct ata_link *)) 3701 { 3702 u32 scontrol; 3703 int rc; 3704 3705 DPRINTK("ENTER\n"); 3706 3707 if (online) 3708 *online = false; 3709 3710 if (sata_set_spd_needed(link)) { 3711 /* SATA spec says nothing about how to reconfigure 3712 * spd. To be on the safe side, turn off phy during 3713 * reconfiguration. This works for at least ICH7 AHCI 3714 * and Sil3124. 3715 */ 3716 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3717 goto out; 3718 3719 scontrol = (scontrol & 0x0f0) | 0x304; 3720 3721 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3722 goto out; 3723 3724 sata_set_spd(link); 3725 } 3726 3727 /* issue phy wake/reset */ 3728 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3729 goto out; 3730 3731 scontrol = (scontrol & 0x0f0) | 0x301; 3732 3733 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3734 goto out; 3735 3736 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3737 * 10.4.2 says at least 1 ms. 3738 */ 3739 ata_msleep(link->ap, 1); 3740 3741 /* bring link back */ 3742 rc = sata_link_resume(link, timing, deadline); 3743 if (rc) 3744 goto out; 3745 /* if link is offline nothing more to do */ 3746 if (ata_phys_link_offline(link)) 3747 goto out; 3748 3749 /* Link is online. From this point, -ENODEV too is an error. */ 3750 if (online) 3751 *online = true; 3752 3753 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3754 /* If PMP is supported, we have to do follow-up SRST. 3755 * Some PMPs don't send D2H Reg FIS after hardreset if 3756 * the first port is empty. Wait only for 3757 * ATA_TMOUT_PMP_SRST_WAIT. 3758 */ 3759 if (check_ready) { 3760 unsigned long pmp_deadline; 3761 3762 pmp_deadline = ata_deadline(jiffies, 3763 ATA_TMOUT_PMP_SRST_WAIT); 3764 if (time_after(pmp_deadline, deadline)) 3765 pmp_deadline = deadline; 3766 ata_wait_ready(link, pmp_deadline, check_ready); 3767 } 3768 rc = -EAGAIN; 3769 goto out; 3770 } 3771 3772 rc = 0; 3773 if (check_ready) 3774 rc = ata_wait_ready(link, deadline, check_ready); 3775 out: 3776 if (rc && rc != -EAGAIN) { 3777 /* online is set iff link is online && reset succeeded */ 3778 if (online) 3779 *online = false; 3780 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3781 } 3782 DPRINTK("EXIT, rc=%d\n", rc); 3783 return rc; 3784 } 3785 3786 /** 3787 * sata_std_hardreset - COMRESET w/o waiting or classification 3788 * @link: link to reset 3789 * @class: resulting class of attached device 3790 * @deadline: deadline jiffies for the operation 3791 * 3792 * Standard SATA COMRESET w/o waiting or classification. 3793 * 3794 * LOCKING: 3795 * Kernel thread context (may sleep) 3796 * 3797 * RETURNS: 3798 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3799 */ 3800 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3801 unsigned long deadline) 3802 { 3803 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3804 bool online; 3805 int rc; 3806 3807 /* do hardreset */ 3808 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3809 return online ? -EAGAIN : rc; 3810 } 3811 3812 /** 3813 * ata_std_postreset - standard postreset callback 3814 * @link: the target ata_link 3815 * @classes: classes of attached devices 3816 * 3817 * This function is invoked after a successful reset. Note that 3818 * the device might have been reset more than once using 3819 * different reset methods before postreset is invoked. 3820 * 3821 * LOCKING: 3822 * Kernel thread context (may sleep) 3823 */ 3824 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3825 { 3826 u32 serror; 3827 3828 DPRINTK("ENTER\n"); 3829 3830 /* reset complete, clear SError */ 3831 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3832 sata_scr_write(link, SCR_ERROR, serror); 3833 3834 /* print link status */ 3835 sata_print_link_status(link); 3836 3837 DPRINTK("EXIT\n"); 3838 } 3839 3840 /** 3841 * ata_dev_same_device - Determine whether new ID matches configured device 3842 * @dev: device to compare against 3843 * @new_class: class of the new device 3844 * @new_id: IDENTIFY page of the new device 3845 * 3846 * Compare @new_class and @new_id against @dev and determine 3847 * whether @dev is the device indicated by @new_class and 3848 * @new_id. 3849 * 3850 * LOCKING: 3851 * None. 3852 * 3853 * RETURNS: 3854 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3855 */ 3856 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3857 const u16 *new_id) 3858 { 3859 const u16 *old_id = dev->id; 3860 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3861 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3862 3863 if (dev->class != new_class) { 3864 ata_dev_info(dev, "class mismatch %d != %d\n", 3865 dev->class, new_class); 3866 return 0; 3867 } 3868 3869 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3870 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3871 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3872 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3873 3874 if (strcmp(model[0], model[1])) { 3875 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3876 model[0], model[1]); 3877 return 0; 3878 } 3879 3880 if (strcmp(serial[0], serial[1])) { 3881 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3882 serial[0], serial[1]); 3883 return 0; 3884 } 3885 3886 return 1; 3887 } 3888 3889 /** 3890 * ata_dev_reread_id - Re-read IDENTIFY data 3891 * @dev: target ATA device 3892 * @readid_flags: read ID flags 3893 * 3894 * Re-read IDENTIFY page and make sure @dev is still attached to 3895 * the port. 3896 * 3897 * LOCKING: 3898 * Kernel thread context (may sleep) 3899 * 3900 * RETURNS: 3901 * 0 on success, negative errno otherwise 3902 */ 3903 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3904 { 3905 unsigned int class = dev->class; 3906 u16 *id = (void *)dev->link->ap->sector_buf; 3907 int rc; 3908 3909 /* read ID data */ 3910 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3911 if (rc) 3912 return rc; 3913 3914 /* is the device still there? */ 3915 if (!ata_dev_same_device(dev, class, id)) 3916 return -ENODEV; 3917 3918 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3919 return 0; 3920 } 3921 3922 /** 3923 * ata_dev_revalidate - Revalidate ATA device 3924 * @dev: device to revalidate 3925 * @new_class: new class code 3926 * @readid_flags: read ID flags 3927 * 3928 * Re-read IDENTIFY page, make sure @dev is still attached to the 3929 * port and reconfigure it according to the new IDENTIFY page. 3930 * 3931 * LOCKING: 3932 * Kernel thread context (may sleep) 3933 * 3934 * RETURNS: 3935 * 0 on success, negative errno otherwise 3936 */ 3937 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3938 unsigned int readid_flags) 3939 { 3940 u64 n_sectors = dev->n_sectors; 3941 u64 n_native_sectors = dev->n_native_sectors; 3942 int rc; 3943 3944 if (!ata_dev_enabled(dev)) 3945 return -ENODEV; 3946 3947 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3948 if (ata_class_enabled(new_class) && 3949 new_class != ATA_DEV_ATA && 3950 new_class != ATA_DEV_ATAPI && 3951 new_class != ATA_DEV_SEMB) { 3952 ata_dev_info(dev, "class mismatch %u != %u\n", 3953 dev->class, new_class); 3954 rc = -ENODEV; 3955 goto fail; 3956 } 3957 3958 /* re-read ID */ 3959 rc = ata_dev_reread_id(dev, readid_flags); 3960 if (rc) 3961 goto fail; 3962 3963 /* configure device according to the new ID */ 3964 rc = ata_dev_configure(dev); 3965 if (rc) 3966 goto fail; 3967 3968 /* verify n_sectors hasn't changed */ 3969 if (dev->class != ATA_DEV_ATA || !n_sectors || 3970 dev->n_sectors == n_sectors) 3971 return 0; 3972 3973 /* n_sectors has changed */ 3974 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3975 (unsigned long long)n_sectors, 3976 (unsigned long long)dev->n_sectors); 3977 3978 /* 3979 * Something could have caused HPA to be unlocked 3980 * involuntarily. If n_native_sectors hasn't changed and the 3981 * new size matches it, keep the device. 3982 */ 3983 if (dev->n_native_sectors == n_native_sectors && 3984 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3985 ata_dev_warn(dev, 3986 "new n_sectors matches native, probably " 3987 "late HPA unlock, n_sectors updated\n"); 3988 /* use the larger n_sectors */ 3989 return 0; 3990 } 3991 3992 /* 3993 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3994 * unlocking HPA in those cases. 3995 * 3996 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3997 */ 3998 if (dev->n_native_sectors == n_native_sectors && 3999 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4000 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4001 ata_dev_warn(dev, 4002 "old n_sectors matches native, probably " 4003 "late HPA lock, will try to unlock HPA\n"); 4004 /* try unlocking HPA */ 4005 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4006 rc = -EIO; 4007 } else 4008 rc = -ENODEV; 4009 4010 /* restore original n_[native_]sectors and fail */ 4011 dev->n_native_sectors = n_native_sectors; 4012 dev->n_sectors = n_sectors; 4013 fail: 4014 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4015 return rc; 4016 } 4017 4018 struct ata_blacklist_entry { 4019 const char *model_num; 4020 const char *model_rev; 4021 unsigned long horkage; 4022 }; 4023 4024 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4025 /* Devices with DMA related problems under Linux */ 4026 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4027 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4028 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4029 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4030 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4031 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4032 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4033 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4034 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4035 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4036 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4037 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4038 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4039 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4040 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4041 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4042 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4043 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4044 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4045 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4046 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4047 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4048 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4049 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4050 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4051 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4052 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4053 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4054 /* Odd clown on sil3726/4726 PMPs */ 4055 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4056 4057 /* Weird ATAPI devices */ 4058 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4059 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4060 4061 /* Devices we expect to fail diagnostics */ 4062 4063 /* Devices where NCQ should be avoided */ 4064 /* NCQ is slow */ 4065 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4066 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4067 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4068 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4069 /* NCQ is broken */ 4070 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4071 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4072 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4073 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4074 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4075 4076 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4077 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4078 ATA_HORKAGE_FIRMWARE_WARN }, 4079 4080 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4081 ATA_HORKAGE_FIRMWARE_WARN }, 4082 4083 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4084 ATA_HORKAGE_FIRMWARE_WARN }, 4085 4086 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4087 ATA_HORKAGE_FIRMWARE_WARN }, 4088 4089 /* Blacklist entries taken from Silicon Image 3124/3132 4090 Windows driver .inf file - also several Linux problem reports */ 4091 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4092 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4093 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4094 4095 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4096 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4097 4098 /* devices which puke on READ_NATIVE_MAX */ 4099 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4100 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4101 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4102 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4103 4104 /* this one allows HPA unlocking but fails IOs on the area */ 4105 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4106 4107 /* Devices which report 1 sector over size HPA */ 4108 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4109 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4110 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4111 4112 /* Devices which get the IVB wrong */ 4113 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4114 /* Maybe we should just blacklist TSSTcorp... */ 4115 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4116 4117 /* Devices that do not need bridging limits applied */ 4118 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4119 4120 /* Devices which aren't very happy with higher link speeds */ 4121 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4122 4123 /* 4124 * Devices which choke on SETXFER. Applies only if both the 4125 * device and controller are SATA. 4126 */ 4127 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4128 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4129 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4130 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4131 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4132 4133 /* End Marker */ 4134 { } 4135 }; 4136 4137 /** 4138 * glob_match - match a text string against a glob-style pattern 4139 * @text: the string to be examined 4140 * @pattern: the glob-style pattern to be matched against 4141 * 4142 * Either/both of text and pattern can be empty strings. 4143 * 4144 * Match text against a glob-style pattern, with wildcards and simple sets: 4145 * 4146 * ? matches any single character. 4147 * * matches any run of characters. 4148 * [xyz] matches a single character from the set: x, y, or z. 4149 * [a-d] matches a single character from the range: a, b, c, or d. 4150 * [a-d0-9] matches a single character from either range. 4151 * 4152 * The special characters ?, [, -, or *, can be matched using a set, eg. [*] 4153 * Behaviour with malformed patterns is undefined, though generally reasonable. 4154 * 4155 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx" 4156 * 4157 * This function uses one level of recursion per '*' in pattern. 4158 * Since it calls _nothing_ else, and has _no_ explicit local variables, 4159 * this will not cause stack problems for any reasonable use here. 4160 * 4161 * RETURNS: 4162 * 0 on match, 1 otherwise. 4163 */ 4164 static int glob_match (const char *text, const char *pattern) 4165 { 4166 do { 4167 /* Match single character or a '?' wildcard */ 4168 if (*text == *pattern || *pattern == '?') { 4169 if (!*pattern++) 4170 return 0; /* End of both strings: match */ 4171 } else { 4172 /* Match single char against a '[' bracketed ']' pattern set */ 4173 if (!*text || *pattern != '[') 4174 break; /* Not a pattern set */ 4175 while (*++pattern && *pattern != ']' && *text != *pattern) { 4176 if (*pattern == '-' && *(pattern - 1) != '[') 4177 if (*text > *(pattern - 1) && *text < *(pattern + 1)) { 4178 ++pattern; 4179 break; 4180 } 4181 } 4182 if (!*pattern || *pattern == ']') 4183 return 1; /* No match */ 4184 while (*pattern && *pattern++ != ']'); 4185 } 4186 } while (*++text && *pattern); 4187 4188 /* Match any run of chars against a '*' wildcard */ 4189 if (*pattern == '*') { 4190 if (!*++pattern) 4191 return 0; /* Match: avoid recursion at end of pattern */ 4192 /* Loop to handle additional pattern chars after the wildcard */ 4193 while (*text) { 4194 if (glob_match(text, pattern) == 0) 4195 return 0; /* Remainder matched */ 4196 ++text; /* Absorb (match) this char and try again */ 4197 } 4198 } 4199 if (!*text && !*pattern) 4200 return 0; /* End of both strings: match */ 4201 return 1; /* No match */ 4202 } 4203 4204 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4205 { 4206 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4207 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4208 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4209 4210 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4211 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4212 4213 while (ad->model_num) { 4214 if (!glob_match(model_num, ad->model_num)) { 4215 if (ad->model_rev == NULL) 4216 return ad->horkage; 4217 if (!glob_match(model_rev, ad->model_rev)) 4218 return ad->horkage; 4219 } 4220 ad++; 4221 } 4222 return 0; 4223 } 4224 4225 static int ata_dma_blacklisted(const struct ata_device *dev) 4226 { 4227 /* We don't support polling DMA. 4228 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4229 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4230 */ 4231 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4232 (dev->flags & ATA_DFLAG_CDB_INTR)) 4233 return 1; 4234 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4235 } 4236 4237 /** 4238 * ata_is_40wire - check drive side detection 4239 * @dev: device 4240 * 4241 * Perform drive side detection decoding, allowing for device vendors 4242 * who can't follow the documentation. 4243 */ 4244 4245 static int ata_is_40wire(struct ata_device *dev) 4246 { 4247 if (dev->horkage & ATA_HORKAGE_IVB) 4248 return ata_drive_40wire_relaxed(dev->id); 4249 return ata_drive_40wire(dev->id); 4250 } 4251 4252 /** 4253 * cable_is_40wire - 40/80/SATA decider 4254 * @ap: port to consider 4255 * 4256 * This function encapsulates the policy for speed management 4257 * in one place. At the moment we don't cache the result but 4258 * there is a good case for setting ap->cbl to the result when 4259 * we are called with unknown cables (and figuring out if it 4260 * impacts hotplug at all). 4261 * 4262 * Return 1 if the cable appears to be 40 wire. 4263 */ 4264 4265 static int cable_is_40wire(struct ata_port *ap) 4266 { 4267 struct ata_link *link; 4268 struct ata_device *dev; 4269 4270 /* If the controller thinks we are 40 wire, we are. */ 4271 if (ap->cbl == ATA_CBL_PATA40) 4272 return 1; 4273 4274 /* If the controller thinks we are 80 wire, we are. */ 4275 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4276 return 0; 4277 4278 /* If the system is known to be 40 wire short cable (eg 4279 * laptop), then we allow 80 wire modes even if the drive 4280 * isn't sure. 4281 */ 4282 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4283 return 0; 4284 4285 /* If the controller doesn't know, we scan. 4286 * 4287 * Note: We look for all 40 wire detects at this point. Any 4288 * 80 wire detect is taken to be 80 wire cable because 4289 * - in many setups only the one drive (slave if present) will 4290 * give a valid detect 4291 * - if you have a non detect capable drive you don't want it 4292 * to colour the choice 4293 */ 4294 ata_for_each_link(link, ap, EDGE) { 4295 ata_for_each_dev(dev, link, ENABLED) { 4296 if (!ata_is_40wire(dev)) 4297 return 0; 4298 } 4299 } 4300 return 1; 4301 } 4302 4303 /** 4304 * ata_dev_xfermask - Compute supported xfermask of the given device 4305 * @dev: Device to compute xfermask for 4306 * 4307 * Compute supported xfermask of @dev and store it in 4308 * dev->*_mask. This function is responsible for applying all 4309 * known limits including host controller limits, device 4310 * blacklist, etc... 4311 * 4312 * LOCKING: 4313 * None. 4314 */ 4315 static void ata_dev_xfermask(struct ata_device *dev) 4316 { 4317 struct ata_link *link = dev->link; 4318 struct ata_port *ap = link->ap; 4319 struct ata_host *host = ap->host; 4320 unsigned long xfer_mask; 4321 4322 /* controller modes available */ 4323 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4324 ap->mwdma_mask, ap->udma_mask); 4325 4326 /* drive modes available */ 4327 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4328 dev->mwdma_mask, dev->udma_mask); 4329 xfer_mask &= ata_id_xfermask(dev->id); 4330 4331 /* 4332 * CFA Advanced TrueIDE timings are not allowed on a shared 4333 * cable 4334 */ 4335 if (ata_dev_pair(dev)) { 4336 /* No PIO5 or PIO6 */ 4337 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4338 /* No MWDMA3 or MWDMA 4 */ 4339 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4340 } 4341 4342 if (ata_dma_blacklisted(dev)) { 4343 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4344 ata_dev_warn(dev, 4345 "device is on DMA blacklist, disabling DMA\n"); 4346 } 4347 4348 if ((host->flags & ATA_HOST_SIMPLEX) && 4349 host->simplex_claimed && host->simplex_claimed != ap) { 4350 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4351 ata_dev_warn(dev, 4352 "simplex DMA is claimed by other device, disabling DMA\n"); 4353 } 4354 4355 if (ap->flags & ATA_FLAG_NO_IORDY) 4356 xfer_mask &= ata_pio_mask_no_iordy(dev); 4357 4358 if (ap->ops->mode_filter) 4359 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4360 4361 /* Apply cable rule here. Don't apply it early because when 4362 * we handle hot plug the cable type can itself change. 4363 * Check this last so that we know if the transfer rate was 4364 * solely limited by the cable. 4365 * Unknown or 80 wire cables reported host side are checked 4366 * drive side as well. Cases where we know a 40wire cable 4367 * is used safely for 80 are not checked here. 4368 */ 4369 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4370 /* UDMA/44 or higher would be available */ 4371 if (cable_is_40wire(ap)) { 4372 ata_dev_warn(dev, 4373 "limited to UDMA/33 due to 40-wire cable\n"); 4374 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4375 } 4376 4377 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4378 &dev->mwdma_mask, &dev->udma_mask); 4379 } 4380 4381 /** 4382 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4383 * @dev: Device to which command will be sent 4384 * 4385 * Issue SET FEATURES - XFER MODE command to device @dev 4386 * on port @ap. 4387 * 4388 * LOCKING: 4389 * PCI/etc. bus probe sem. 4390 * 4391 * RETURNS: 4392 * 0 on success, AC_ERR_* mask otherwise. 4393 */ 4394 4395 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4396 { 4397 struct ata_taskfile tf; 4398 unsigned int err_mask; 4399 4400 /* set up set-features taskfile */ 4401 DPRINTK("set features - xfer mode\n"); 4402 4403 /* Some controllers and ATAPI devices show flaky interrupt 4404 * behavior after setting xfer mode. Use polling instead. 4405 */ 4406 ata_tf_init(dev, &tf); 4407 tf.command = ATA_CMD_SET_FEATURES; 4408 tf.feature = SETFEATURES_XFER; 4409 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4410 tf.protocol = ATA_PROT_NODATA; 4411 /* If we are using IORDY we must send the mode setting command */ 4412 if (ata_pio_need_iordy(dev)) 4413 tf.nsect = dev->xfer_mode; 4414 /* If the device has IORDY and the controller does not - turn it off */ 4415 else if (ata_id_has_iordy(dev->id)) 4416 tf.nsect = 0x01; 4417 else /* In the ancient relic department - skip all of this */ 4418 return 0; 4419 4420 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4421 4422 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4423 return err_mask; 4424 } 4425 4426 /** 4427 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4428 * @dev: Device to which command will be sent 4429 * @enable: Whether to enable or disable the feature 4430 * @feature: The sector count represents the feature to set 4431 * 4432 * Issue SET FEATURES - SATA FEATURES command to device @dev 4433 * on port @ap with sector count 4434 * 4435 * LOCKING: 4436 * PCI/etc. bus probe sem. 4437 * 4438 * RETURNS: 4439 * 0 on success, AC_ERR_* mask otherwise. 4440 */ 4441 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4442 { 4443 struct ata_taskfile tf; 4444 unsigned int err_mask; 4445 4446 /* set up set-features taskfile */ 4447 DPRINTK("set features - SATA features\n"); 4448 4449 ata_tf_init(dev, &tf); 4450 tf.command = ATA_CMD_SET_FEATURES; 4451 tf.feature = enable; 4452 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4453 tf.protocol = ATA_PROT_NODATA; 4454 tf.nsect = feature; 4455 4456 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4457 4458 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4459 return err_mask; 4460 } 4461 4462 /** 4463 * ata_dev_init_params - Issue INIT DEV PARAMS command 4464 * @dev: Device to which command will be sent 4465 * @heads: Number of heads (taskfile parameter) 4466 * @sectors: Number of sectors (taskfile parameter) 4467 * 4468 * LOCKING: 4469 * Kernel thread context (may sleep) 4470 * 4471 * RETURNS: 4472 * 0 on success, AC_ERR_* mask otherwise. 4473 */ 4474 static unsigned int ata_dev_init_params(struct ata_device *dev, 4475 u16 heads, u16 sectors) 4476 { 4477 struct ata_taskfile tf; 4478 unsigned int err_mask; 4479 4480 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4481 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4482 return AC_ERR_INVALID; 4483 4484 /* set up init dev params taskfile */ 4485 DPRINTK("init dev params \n"); 4486 4487 ata_tf_init(dev, &tf); 4488 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4489 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4490 tf.protocol = ATA_PROT_NODATA; 4491 tf.nsect = sectors; 4492 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4493 4494 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4495 /* A clean abort indicates an original or just out of spec drive 4496 and we should continue as we issue the setup based on the 4497 drive reported working geometry */ 4498 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4499 err_mask = 0; 4500 4501 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4502 return err_mask; 4503 } 4504 4505 /** 4506 * ata_sg_clean - Unmap DMA memory associated with command 4507 * @qc: Command containing DMA memory to be released 4508 * 4509 * Unmap all mapped DMA memory associated with this command. 4510 * 4511 * LOCKING: 4512 * spin_lock_irqsave(host lock) 4513 */ 4514 void ata_sg_clean(struct ata_queued_cmd *qc) 4515 { 4516 struct ata_port *ap = qc->ap; 4517 struct scatterlist *sg = qc->sg; 4518 int dir = qc->dma_dir; 4519 4520 WARN_ON_ONCE(sg == NULL); 4521 4522 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4523 4524 if (qc->n_elem) 4525 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4526 4527 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4528 qc->sg = NULL; 4529 } 4530 4531 /** 4532 * atapi_check_dma - Check whether ATAPI DMA can be supported 4533 * @qc: Metadata associated with taskfile to check 4534 * 4535 * Allow low-level driver to filter ATA PACKET commands, returning 4536 * a status indicating whether or not it is OK to use DMA for the 4537 * supplied PACKET command. 4538 * 4539 * LOCKING: 4540 * spin_lock_irqsave(host lock) 4541 * 4542 * RETURNS: 0 when ATAPI DMA can be used 4543 * nonzero otherwise 4544 */ 4545 int atapi_check_dma(struct ata_queued_cmd *qc) 4546 { 4547 struct ata_port *ap = qc->ap; 4548 4549 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4550 * few ATAPI devices choke on such DMA requests. 4551 */ 4552 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4553 unlikely(qc->nbytes & 15)) 4554 return 1; 4555 4556 if (ap->ops->check_atapi_dma) 4557 return ap->ops->check_atapi_dma(qc); 4558 4559 return 0; 4560 } 4561 4562 /** 4563 * ata_std_qc_defer - Check whether a qc needs to be deferred 4564 * @qc: ATA command in question 4565 * 4566 * Non-NCQ commands cannot run with any other command, NCQ or 4567 * not. As upper layer only knows the queue depth, we are 4568 * responsible for maintaining exclusion. This function checks 4569 * whether a new command @qc can be issued. 4570 * 4571 * LOCKING: 4572 * spin_lock_irqsave(host lock) 4573 * 4574 * RETURNS: 4575 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4576 */ 4577 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4578 { 4579 struct ata_link *link = qc->dev->link; 4580 4581 if (qc->tf.protocol == ATA_PROT_NCQ) { 4582 if (!ata_tag_valid(link->active_tag)) 4583 return 0; 4584 } else { 4585 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4586 return 0; 4587 } 4588 4589 return ATA_DEFER_LINK; 4590 } 4591 4592 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4593 4594 /** 4595 * ata_sg_init - Associate command with scatter-gather table. 4596 * @qc: Command to be associated 4597 * @sg: Scatter-gather table. 4598 * @n_elem: Number of elements in s/g table. 4599 * 4600 * Initialize the data-related elements of queued_cmd @qc 4601 * to point to a scatter-gather table @sg, containing @n_elem 4602 * elements. 4603 * 4604 * LOCKING: 4605 * spin_lock_irqsave(host lock) 4606 */ 4607 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4608 unsigned int n_elem) 4609 { 4610 qc->sg = sg; 4611 qc->n_elem = n_elem; 4612 qc->cursg = qc->sg; 4613 } 4614 4615 /** 4616 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4617 * @qc: Command with scatter-gather table to be mapped. 4618 * 4619 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4620 * 4621 * LOCKING: 4622 * spin_lock_irqsave(host lock) 4623 * 4624 * RETURNS: 4625 * Zero on success, negative on error. 4626 * 4627 */ 4628 static int ata_sg_setup(struct ata_queued_cmd *qc) 4629 { 4630 struct ata_port *ap = qc->ap; 4631 unsigned int n_elem; 4632 4633 VPRINTK("ENTER, ata%u\n", ap->print_id); 4634 4635 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4636 if (n_elem < 1) 4637 return -1; 4638 4639 DPRINTK("%d sg elements mapped\n", n_elem); 4640 qc->orig_n_elem = qc->n_elem; 4641 qc->n_elem = n_elem; 4642 qc->flags |= ATA_QCFLAG_DMAMAP; 4643 4644 return 0; 4645 } 4646 4647 /** 4648 * swap_buf_le16 - swap halves of 16-bit words in place 4649 * @buf: Buffer to swap 4650 * @buf_words: Number of 16-bit words in buffer. 4651 * 4652 * Swap halves of 16-bit words if needed to convert from 4653 * little-endian byte order to native cpu byte order, or 4654 * vice-versa. 4655 * 4656 * LOCKING: 4657 * Inherited from caller. 4658 */ 4659 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4660 { 4661 #ifdef __BIG_ENDIAN 4662 unsigned int i; 4663 4664 for (i = 0; i < buf_words; i++) 4665 buf[i] = le16_to_cpu(buf[i]); 4666 #endif /* __BIG_ENDIAN */ 4667 } 4668 4669 /** 4670 * ata_qc_new - Request an available ATA command, for queueing 4671 * @ap: target port 4672 * 4673 * LOCKING: 4674 * None. 4675 */ 4676 4677 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4678 { 4679 struct ata_queued_cmd *qc = NULL; 4680 unsigned int i; 4681 4682 /* no command while frozen */ 4683 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4684 return NULL; 4685 4686 /* the last tag is reserved for internal command. */ 4687 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4688 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4689 qc = __ata_qc_from_tag(ap, i); 4690 break; 4691 } 4692 4693 if (qc) 4694 qc->tag = i; 4695 4696 return qc; 4697 } 4698 4699 /** 4700 * ata_qc_new_init - Request an available ATA command, and initialize it 4701 * @dev: Device from whom we request an available command structure 4702 * 4703 * LOCKING: 4704 * None. 4705 */ 4706 4707 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4708 { 4709 struct ata_port *ap = dev->link->ap; 4710 struct ata_queued_cmd *qc; 4711 4712 qc = ata_qc_new(ap); 4713 if (qc) { 4714 qc->scsicmd = NULL; 4715 qc->ap = ap; 4716 qc->dev = dev; 4717 4718 ata_qc_reinit(qc); 4719 } 4720 4721 return qc; 4722 } 4723 4724 /** 4725 * ata_qc_free - free unused ata_queued_cmd 4726 * @qc: Command to complete 4727 * 4728 * Designed to free unused ata_queued_cmd object 4729 * in case something prevents using it. 4730 * 4731 * LOCKING: 4732 * spin_lock_irqsave(host lock) 4733 */ 4734 void ata_qc_free(struct ata_queued_cmd *qc) 4735 { 4736 struct ata_port *ap; 4737 unsigned int tag; 4738 4739 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4740 ap = qc->ap; 4741 4742 qc->flags = 0; 4743 tag = qc->tag; 4744 if (likely(ata_tag_valid(tag))) { 4745 qc->tag = ATA_TAG_POISON; 4746 clear_bit(tag, &ap->qc_allocated); 4747 } 4748 } 4749 4750 void __ata_qc_complete(struct ata_queued_cmd *qc) 4751 { 4752 struct ata_port *ap; 4753 struct ata_link *link; 4754 4755 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4756 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4757 ap = qc->ap; 4758 link = qc->dev->link; 4759 4760 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4761 ata_sg_clean(qc); 4762 4763 /* command should be marked inactive atomically with qc completion */ 4764 if (qc->tf.protocol == ATA_PROT_NCQ) { 4765 link->sactive &= ~(1 << qc->tag); 4766 if (!link->sactive) 4767 ap->nr_active_links--; 4768 } else { 4769 link->active_tag = ATA_TAG_POISON; 4770 ap->nr_active_links--; 4771 } 4772 4773 /* clear exclusive status */ 4774 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4775 ap->excl_link == link)) 4776 ap->excl_link = NULL; 4777 4778 /* atapi: mark qc as inactive to prevent the interrupt handler 4779 * from completing the command twice later, before the error handler 4780 * is called. (when rc != 0 and atapi request sense is needed) 4781 */ 4782 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4783 ap->qc_active &= ~(1 << qc->tag); 4784 4785 /* call completion callback */ 4786 qc->complete_fn(qc); 4787 } 4788 4789 static void fill_result_tf(struct ata_queued_cmd *qc) 4790 { 4791 struct ata_port *ap = qc->ap; 4792 4793 qc->result_tf.flags = qc->tf.flags; 4794 ap->ops->qc_fill_rtf(qc); 4795 } 4796 4797 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4798 { 4799 struct ata_device *dev = qc->dev; 4800 4801 if (ata_is_nodata(qc->tf.protocol)) 4802 return; 4803 4804 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4805 return; 4806 4807 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4808 } 4809 4810 /** 4811 * ata_qc_complete - Complete an active ATA command 4812 * @qc: Command to complete 4813 * 4814 * Indicate to the mid and upper layers that an ATA command has 4815 * completed, with either an ok or not-ok status. 4816 * 4817 * Refrain from calling this function multiple times when 4818 * successfully completing multiple NCQ commands. 4819 * ata_qc_complete_multiple() should be used instead, which will 4820 * properly update IRQ expect state. 4821 * 4822 * LOCKING: 4823 * spin_lock_irqsave(host lock) 4824 */ 4825 void ata_qc_complete(struct ata_queued_cmd *qc) 4826 { 4827 struct ata_port *ap = qc->ap; 4828 4829 /* XXX: New EH and old EH use different mechanisms to 4830 * synchronize EH with regular execution path. 4831 * 4832 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4833 * Normal execution path is responsible for not accessing a 4834 * failed qc. libata core enforces the rule by returning NULL 4835 * from ata_qc_from_tag() for failed qcs. 4836 * 4837 * Old EH depends on ata_qc_complete() nullifying completion 4838 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4839 * not synchronize with interrupt handler. Only PIO task is 4840 * taken care of. 4841 */ 4842 if (ap->ops->error_handler) { 4843 struct ata_device *dev = qc->dev; 4844 struct ata_eh_info *ehi = &dev->link->eh_info; 4845 4846 if (unlikely(qc->err_mask)) 4847 qc->flags |= ATA_QCFLAG_FAILED; 4848 4849 /* 4850 * Finish internal commands without any further processing 4851 * and always with the result TF filled. 4852 */ 4853 if (unlikely(ata_tag_internal(qc->tag))) { 4854 fill_result_tf(qc); 4855 __ata_qc_complete(qc); 4856 return; 4857 } 4858 4859 /* 4860 * Non-internal qc has failed. Fill the result TF and 4861 * summon EH. 4862 */ 4863 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4864 fill_result_tf(qc); 4865 ata_qc_schedule_eh(qc); 4866 return; 4867 } 4868 4869 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4870 4871 /* read result TF if requested */ 4872 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4873 fill_result_tf(qc); 4874 4875 /* Some commands need post-processing after successful 4876 * completion. 4877 */ 4878 switch (qc->tf.command) { 4879 case ATA_CMD_SET_FEATURES: 4880 if (qc->tf.feature != SETFEATURES_WC_ON && 4881 qc->tf.feature != SETFEATURES_WC_OFF) 4882 break; 4883 /* fall through */ 4884 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4885 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4886 /* revalidate device */ 4887 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4888 ata_port_schedule_eh(ap); 4889 break; 4890 4891 case ATA_CMD_SLEEP: 4892 dev->flags |= ATA_DFLAG_SLEEPING; 4893 break; 4894 } 4895 4896 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4897 ata_verify_xfer(qc); 4898 4899 __ata_qc_complete(qc); 4900 } else { 4901 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4902 return; 4903 4904 /* read result TF if failed or requested */ 4905 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4906 fill_result_tf(qc); 4907 4908 __ata_qc_complete(qc); 4909 } 4910 } 4911 4912 /** 4913 * ata_qc_complete_multiple - Complete multiple qcs successfully 4914 * @ap: port in question 4915 * @qc_active: new qc_active mask 4916 * 4917 * Complete in-flight commands. This functions is meant to be 4918 * called from low-level driver's interrupt routine to complete 4919 * requests normally. ap->qc_active and @qc_active is compared 4920 * and commands are completed accordingly. 4921 * 4922 * Always use this function when completing multiple NCQ commands 4923 * from IRQ handlers instead of calling ata_qc_complete() 4924 * multiple times to keep IRQ expect status properly in sync. 4925 * 4926 * LOCKING: 4927 * spin_lock_irqsave(host lock) 4928 * 4929 * RETURNS: 4930 * Number of completed commands on success, -errno otherwise. 4931 */ 4932 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4933 { 4934 int nr_done = 0; 4935 u32 done_mask; 4936 4937 done_mask = ap->qc_active ^ qc_active; 4938 4939 if (unlikely(done_mask & qc_active)) { 4940 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 4941 ap->qc_active, qc_active); 4942 return -EINVAL; 4943 } 4944 4945 while (done_mask) { 4946 struct ata_queued_cmd *qc; 4947 unsigned int tag = __ffs(done_mask); 4948 4949 qc = ata_qc_from_tag(ap, tag); 4950 if (qc) { 4951 ata_qc_complete(qc); 4952 nr_done++; 4953 } 4954 done_mask &= ~(1 << tag); 4955 } 4956 4957 return nr_done; 4958 } 4959 4960 /** 4961 * ata_qc_issue - issue taskfile to device 4962 * @qc: command to issue to device 4963 * 4964 * Prepare an ATA command to submission to device. 4965 * This includes mapping the data into a DMA-able 4966 * area, filling in the S/G table, and finally 4967 * writing the taskfile to hardware, starting the command. 4968 * 4969 * LOCKING: 4970 * spin_lock_irqsave(host lock) 4971 */ 4972 void ata_qc_issue(struct ata_queued_cmd *qc) 4973 { 4974 struct ata_port *ap = qc->ap; 4975 struct ata_link *link = qc->dev->link; 4976 u8 prot = qc->tf.protocol; 4977 4978 /* Make sure only one non-NCQ command is outstanding. The 4979 * check is skipped for old EH because it reuses active qc to 4980 * request ATAPI sense. 4981 */ 4982 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4983 4984 if (ata_is_ncq(prot)) { 4985 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 4986 4987 if (!link->sactive) 4988 ap->nr_active_links++; 4989 link->sactive |= 1 << qc->tag; 4990 } else { 4991 WARN_ON_ONCE(link->sactive); 4992 4993 ap->nr_active_links++; 4994 link->active_tag = qc->tag; 4995 } 4996 4997 qc->flags |= ATA_QCFLAG_ACTIVE; 4998 ap->qc_active |= 1 << qc->tag; 4999 5000 /* 5001 * We guarantee to LLDs that they will have at least one 5002 * non-zero sg if the command is a data command. 5003 */ 5004 if (WARN_ON_ONCE(ata_is_data(prot) && 5005 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5006 goto sys_err; 5007 5008 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5009 (ap->flags & ATA_FLAG_PIO_DMA))) 5010 if (ata_sg_setup(qc)) 5011 goto sys_err; 5012 5013 /* if device is sleeping, schedule reset and abort the link */ 5014 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5015 link->eh_info.action |= ATA_EH_RESET; 5016 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5017 ata_link_abort(link); 5018 return; 5019 } 5020 5021 ap->ops->qc_prep(qc); 5022 5023 qc->err_mask |= ap->ops->qc_issue(qc); 5024 if (unlikely(qc->err_mask)) 5025 goto err; 5026 return; 5027 5028 sys_err: 5029 qc->err_mask |= AC_ERR_SYSTEM; 5030 err: 5031 ata_qc_complete(qc); 5032 } 5033 5034 /** 5035 * sata_scr_valid - test whether SCRs are accessible 5036 * @link: ATA link to test SCR accessibility for 5037 * 5038 * Test whether SCRs are accessible for @link. 5039 * 5040 * LOCKING: 5041 * None. 5042 * 5043 * RETURNS: 5044 * 1 if SCRs are accessible, 0 otherwise. 5045 */ 5046 int sata_scr_valid(struct ata_link *link) 5047 { 5048 struct ata_port *ap = link->ap; 5049 5050 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5051 } 5052 5053 /** 5054 * sata_scr_read - read SCR register of the specified port 5055 * @link: ATA link to read SCR for 5056 * @reg: SCR to read 5057 * @val: Place to store read value 5058 * 5059 * Read SCR register @reg of @link into *@val. This function is 5060 * guaranteed to succeed if @link is ap->link, the cable type of 5061 * the port is SATA and the port implements ->scr_read. 5062 * 5063 * LOCKING: 5064 * None if @link is ap->link. Kernel thread context otherwise. 5065 * 5066 * RETURNS: 5067 * 0 on success, negative errno on failure. 5068 */ 5069 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5070 { 5071 if (ata_is_host_link(link)) { 5072 if (sata_scr_valid(link)) 5073 return link->ap->ops->scr_read(link, reg, val); 5074 return -EOPNOTSUPP; 5075 } 5076 5077 return sata_pmp_scr_read(link, reg, val); 5078 } 5079 5080 /** 5081 * sata_scr_write - write SCR register of the specified port 5082 * @link: ATA link to write SCR for 5083 * @reg: SCR to write 5084 * @val: value to write 5085 * 5086 * Write @val to SCR register @reg of @link. This function is 5087 * guaranteed to succeed if @link is ap->link, the cable type of 5088 * the port is SATA and the port implements ->scr_read. 5089 * 5090 * LOCKING: 5091 * None if @link is ap->link. Kernel thread context otherwise. 5092 * 5093 * RETURNS: 5094 * 0 on success, negative errno on failure. 5095 */ 5096 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5097 { 5098 if (ata_is_host_link(link)) { 5099 if (sata_scr_valid(link)) 5100 return link->ap->ops->scr_write(link, reg, val); 5101 return -EOPNOTSUPP; 5102 } 5103 5104 return sata_pmp_scr_write(link, reg, val); 5105 } 5106 5107 /** 5108 * sata_scr_write_flush - write SCR register of the specified port and flush 5109 * @link: ATA link to write SCR for 5110 * @reg: SCR to write 5111 * @val: value to write 5112 * 5113 * This function is identical to sata_scr_write() except that this 5114 * function performs flush after writing to the register. 5115 * 5116 * LOCKING: 5117 * None if @link is ap->link. Kernel thread context otherwise. 5118 * 5119 * RETURNS: 5120 * 0 on success, negative errno on failure. 5121 */ 5122 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5123 { 5124 if (ata_is_host_link(link)) { 5125 int rc; 5126 5127 if (sata_scr_valid(link)) { 5128 rc = link->ap->ops->scr_write(link, reg, val); 5129 if (rc == 0) 5130 rc = link->ap->ops->scr_read(link, reg, &val); 5131 return rc; 5132 } 5133 return -EOPNOTSUPP; 5134 } 5135 5136 return sata_pmp_scr_write(link, reg, val); 5137 } 5138 5139 /** 5140 * ata_phys_link_online - test whether the given link is online 5141 * @link: ATA link to test 5142 * 5143 * Test whether @link is online. Note that this function returns 5144 * 0 if online status of @link cannot be obtained, so 5145 * ata_link_online(link) != !ata_link_offline(link). 5146 * 5147 * LOCKING: 5148 * None. 5149 * 5150 * RETURNS: 5151 * True if the port online status is available and online. 5152 */ 5153 bool ata_phys_link_online(struct ata_link *link) 5154 { 5155 u32 sstatus; 5156 5157 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5158 ata_sstatus_online(sstatus)) 5159 return true; 5160 return false; 5161 } 5162 5163 /** 5164 * ata_phys_link_offline - test whether the given link is offline 5165 * @link: ATA link to test 5166 * 5167 * Test whether @link is offline. Note that this function 5168 * returns 0 if offline status of @link cannot be obtained, so 5169 * ata_link_online(link) != !ata_link_offline(link). 5170 * 5171 * LOCKING: 5172 * None. 5173 * 5174 * RETURNS: 5175 * True if the port offline status is available and offline. 5176 */ 5177 bool ata_phys_link_offline(struct ata_link *link) 5178 { 5179 u32 sstatus; 5180 5181 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5182 !ata_sstatus_online(sstatus)) 5183 return true; 5184 return false; 5185 } 5186 5187 /** 5188 * ata_link_online - test whether the given link is online 5189 * @link: ATA link to test 5190 * 5191 * Test whether @link is online. This is identical to 5192 * ata_phys_link_online() when there's no slave link. When 5193 * there's a slave link, this function should only be called on 5194 * the master link and will return true if any of M/S links is 5195 * online. 5196 * 5197 * LOCKING: 5198 * None. 5199 * 5200 * RETURNS: 5201 * True if the port online status is available and online. 5202 */ 5203 bool ata_link_online(struct ata_link *link) 5204 { 5205 struct ata_link *slave = link->ap->slave_link; 5206 5207 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5208 5209 return ata_phys_link_online(link) || 5210 (slave && ata_phys_link_online(slave)); 5211 } 5212 5213 /** 5214 * ata_link_offline - test whether the given link is offline 5215 * @link: ATA link to test 5216 * 5217 * Test whether @link is offline. This is identical to 5218 * ata_phys_link_offline() when there's no slave link. When 5219 * there's a slave link, this function should only be called on 5220 * the master link and will return true if both M/S links are 5221 * offline. 5222 * 5223 * LOCKING: 5224 * None. 5225 * 5226 * RETURNS: 5227 * True if the port offline status is available and offline. 5228 */ 5229 bool ata_link_offline(struct ata_link *link) 5230 { 5231 struct ata_link *slave = link->ap->slave_link; 5232 5233 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5234 5235 return ata_phys_link_offline(link) && 5236 (!slave || ata_phys_link_offline(slave)); 5237 } 5238 5239 #ifdef CONFIG_PM 5240 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5241 unsigned int action, unsigned int ehi_flags, 5242 int wait) 5243 { 5244 struct ata_link *link; 5245 unsigned long flags; 5246 int rc; 5247 5248 /* Previous resume operation might still be in 5249 * progress. Wait for PM_PENDING to clear. 5250 */ 5251 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5252 ata_port_wait_eh(ap); 5253 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5254 } 5255 5256 /* request PM ops to EH */ 5257 spin_lock_irqsave(ap->lock, flags); 5258 5259 ap->pm_mesg = mesg; 5260 if (wait) { 5261 rc = 0; 5262 ap->pm_result = &rc; 5263 } 5264 5265 ap->pflags |= ATA_PFLAG_PM_PENDING; 5266 ata_for_each_link(link, ap, HOST_FIRST) { 5267 link->eh_info.action |= action; 5268 link->eh_info.flags |= ehi_flags; 5269 } 5270 5271 ata_port_schedule_eh(ap); 5272 5273 spin_unlock_irqrestore(ap->lock, flags); 5274 5275 /* wait and check result */ 5276 if (wait) { 5277 ata_port_wait_eh(ap); 5278 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5279 } 5280 5281 return rc; 5282 } 5283 5284 #define to_ata_port(d) container_of(d, struct ata_port, tdev) 5285 5286 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg) 5287 { 5288 struct ata_port *ap = to_ata_port(dev); 5289 unsigned int ehi_flags = ATA_EHI_QUIET; 5290 int rc; 5291 5292 /* 5293 * On some hardware, device fails to respond after spun down 5294 * for suspend. As the device won't be used before being 5295 * resumed, we don't need to touch the device. Ask EH to skip 5296 * the usual stuff and proceed directly to suspend. 5297 * 5298 * http://thread.gmane.org/gmane.linux.ide/46764 5299 */ 5300 if (mesg.event == PM_EVENT_SUSPEND) 5301 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY; 5302 5303 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, 1); 5304 return rc; 5305 } 5306 5307 static int ata_port_suspend(struct device *dev) 5308 { 5309 if (pm_runtime_suspended(dev)) 5310 return 0; 5311 5312 return ata_port_suspend_common(dev, PMSG_SUSPEND); 5313 } 5314 5315 static int ata_port_do_freeze(struct device *dev) 5316 { 5317 if (pm_runtime_suspended(dev)) 5318 pm_runtime_resume(dev); 5319 5320 return ata_port_suspend_common(dev, PMSG_FREEZE); 5321 } 5322 5323 static int ata_port_poweroff(struct device *dev) 5324 { 5325 if (pm_runtime_suspended(dev)) 5326 return 0; 5327 5328 return ata_port_suspend_common(dev, PMSG_HIBERNATE); 5329 } 5330 5331 static int ata_port_resume_common(struct device *dev) 5332 { 5333 struct ata_port *ap = to_ata_port(dev); 5334 int rc; 5335 5336 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET, 5337 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 1); 5338 return rc; 5339 } 5340 5341 static int ata_port_resume(struct device *dev) 5342 { 5343 int rc; 5344 5345 rc = ata_port_resume_common(dev); 5346 if (!rc) { 5347 pm_runtime_disable(dev); 5348 pm_runtime_set_active(dev); 5349 pm_runtime_enable(dev); 5350 } 5351 5352 return rc; 5353 } 5354 5355 static int ata_port_runtime_idle(struct device *dev) 5356 { 5357 return pm_runtime_suspend(dev); 5358 } 5359 5360 static const struct dev_pm_ops ata_port_pm_ops = { 5361 .suspend = ata_port_suspend, 5362 .resume = ata_port_resume, 5363 .freeze = ata_port_do_freeze, 5364 .thaw = ata_port_resume, 5365 .poweroff = ata_port_poweroff, 5366 .restore = ata_port_resume, 5367 5368 .runtime_suspend = ata_port_suspend, 5369 .runtime_resume = ata_port_resume_common, 5370 .runtime_idle = ata_port_runtime_idle, 5371 }; 5372 5373 /** 5374 * ata_host_suspend - suspend host 5375 * @host: host to suspend 5376 * @mesg: PM message 5377 * 5378 * Suspend @host. Actual operation is performed by port suspend. 5379 */ 5380 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5381 { 5382 host->dev->power.power_state = mesg; 5383 return 0; 5384 } 5385 5386 /** 5387 * ata_host_resume - resume host 5388 * @host: host to resume 5389 * 5390 * Resume @host. Actual operation is performed by port resume. 5391 */ 5392 void ata_host_resume(struct ata_host *host) 5393 { 5394 host->dev->power.power_state = PMSG_ON; 5395 } 5396 #endif 5397 5398 struct device_type ata_port_type = { 5399 .name = "ata_port", 5400 #ifdef CONFIG_PM 5401 .pm = &ata_port_pm_ops, 5402 #endif 5403 }; 5404 5405 /** 5406 * ata_dev_init - Initialize an ata_device structure 5407 * @dev: Device structure to initialize 5408 * 5409 * Initialize @dev in preparation for probing. 5410 * 5411 * LOCKING: 5412 * Inherited from caller. 5413 */ 5414 void ata_dev_init(struct ata_device *dev) 5415 { 5416 struct ata_link *link = ata_dev_phys_link(dev); 5417 struct ata_port *ap = link->ap; 5418 unsigned long flags; 5419 5420 /* SATA spd limit is bound to the attached device, reset together */ 5421 link->sata_spd_limit = link->hw_sata_spd_limit; 5422 link->sata_spd = 0; 5423 5424 /* High bits of dev->flags are used to record warm plug 5425 * requests which occur asynchronously. Synchronize using 5426 * host lock. 5427 */ 5428 spin_lock_irqsave(ap->lock, flags); 5429 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5430 dev->horkage = 0; 5431 spin_unlock_irqrestore(ap->lock, flags); 5432 5433 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5434 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5435 dev->pio_mask = UINT_MAX; 5436 dev->mwdma_mask = UINT_MAX; 5437 dev->udma_mask = UINT_MAX; 5438 } 5439 5440 /** 5441 * ata_link_init - Initialize an ata_link structure 5442 * @ap: ATA port link is attached to 5443 * @link: Link structure to initialize 5444 * @pmp: Port multiplier port number 5445 * 5446 * Initialize @link. 5447 * 5448 * LOCKING: 5449 * Kernel thread context (may sleep) 5450 */ 5451 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5452 { 5453 int i; 5454 5455 /* clear everything except for devices */ 5456 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5457 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5458 5459 link->ap = ap; 5460 link->pmp = pmp; 5461 link->active_tag = ATA_TAG_POISON; 5462 link->hw_sata_spd_limit = UINT_MAX; 5463 5464 /* can't use iterator, ap isn't initialized yet */ 5465 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5466 struct ata_device *dev = &link->device[i]; 5467 5468 dev->link = link; 5469 dev->devno = dev - link->device; 5470 #ifdef CONFIG_ATA_ACPI 5471 dev->gtf_filter = ata_acpi_gtf_filter; 5472 #endif 5473 ata_dev_init(dev); 5474 } 5475 } 5476 5477 /** 5478 * sata_link_init_spd - Initialize link->sata_spd_limit 5479 * @link: Link to configure sata_spd_limit for 5480 * 5481 * Initialize @link->[hw_]sata_spd_limit to the currently 5482 * configured value. 5483 * 5484 * LOCKING: 5485 * Kernel thread context (may sleep). 5486 * 5487 * RETURNS: 5488 * 0 on success, -errno on failure. 5489 */ 5490 int sata_link_init_spd(struct ata_link *link) 5491 { 5492 u8 spd; 5493 int rc; 5494 5495 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5496 if (rc) 5497 return rc; 5498 5499 spd = (link->saved_scontrol >> 4) & 0xf; 5500 if (spd) 5501 link->hw_sata_spd_limit &= (1 << spd) - 1; 5502 5503 ata_force_link_limits(link); 5504 5505 link->sata_spd_limit = link->hw_sata_spd_limit; 5506 5507 return 0; 5508 } 5509 5510 /** 5511 * ata_port_alloc - allocate and initialize basic ATA port resources 5512 * @host: ATA host this allocated port belongs to 5513 * 5514 * Allocate and initialize basic ATA port resources. 5515 * 5516 * RETURNS: 5517 * Allocate ATA port on success, NULL on failure. 5518 * 5519 * LOCKING: 5520 * Inherited from calling layer (may sleep). 5521 */ 5522 struct ata_port *ata_port_alloc(struct ata_host *host) 5523 { 5524 struct ata_port *ap; 5525 5526 DPRINTK("ENTER\n"); 5527 5528 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5529 if (!ap) 5530 return NULL; 5531 5532 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5533 ap->lock = &host->lock; 5534 ap->print_id = -1; 5535 ap->host = host; 5536 ap->dev = host->dev; 5537 5538 #if defined(ATA_VERBOSE_DEBUG) 5539 /* turn on all debugging levels */ 5540 ap->msg_enable = 0x00FF; 5541 #elif defined(ATA_DEBUG) 5542 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5543 #else 5544 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5545 #endif 5546 5547 mutex_init(&ap->scsi_scan_mutex); 5548 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5549 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5550 INIT_LIST_HEAD(&ap->eh_done_q); 5551 init_waitqueue_head(&ap->eh_wait_q); 5552 init_completion(&ap->park_req_pending); 5553 init_timer_deferrable(&ap->fastdrain_timer); 5554 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5555 ap->fastdrain_timer.data = (unsigned long)ap; 5556 5557 ap->cbl = ATA_CBL_NONE; 5558 5559 ata_link_init(ap, &ap->link, 0); 5560 5561 #ifdef ATA_IRQ_TRAP 5562 ap->stats.unhandled_irq = 1; 5563 ap->stats.idle_irq = 1; 5564 #endif 5565 ata_sff_port_init(ap); 5566 5567 return ap; 5568 } 5569 5570 static void ata_host_release(struct device *gendev, void *res) 5571 { 5572 struct ata_host *host = dev_get_drvdata(gendev); 5573 int i; 5574 5575 for (i = 0; i < host->n_ports; i++) { 5576 struct ata_port *ap = host->ports[i]; 5577 5578 if (!ap) 5579 continue; 5580 5581 if (ap->scsi_host) 5582 scsi_host_put(ap->scsi_host); 5583 5584 kfree(ap->pmp_link); 5585 kfree(ap->slave_link); 5586 kfree(ap); 5587 host->ports[i] = NULL; 5588 } 5589 5590 dev_set_drvdata(gendev, NULL); 5591 } 5592 5593 /** 5594 * ata_host_alloc - allocate and init basic ATA host resources 5595 * @dev: generic device this host is associated with 5596 * @max_ports: maximum number of ATA ports associated with this host 5597 * 5598 * Allocate and initialize basic ATA host resources. LLD calls 5599 * this function to allocate a host, initializes it fully and 5600 * attaches it using ata_host_register(). 5601 * 5602 * @max_ports ports are allocated and host->n_ports is 5603 * initialized to @max_ports. The caller is allowed to decrease 5604 * host->n_ports before calling ata_host_register(). The unused 5605 * ports will be automatically freed on registration. 5606 * 5607 * RETURNS: 5608 * Allocate ATA host on success, NULL on failure. 5609 * 5610 * LOCKING: 5611 * Inherited from calling layer (may sleep). 5612 */ 5613 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5614 { 5615 struct ata_host *host; 5616 size_t sz; 5617 int i; 5618 5619 DPRINTK("ENTER\n"); 5620 5621 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5622 return NULL; 5623 5624 /* alloc a container for our list of ATA ports (buses) */ 5625 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5626 /* alloc a container for our list of ATA ports (buses) */ 5627 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5628 if (!host) 5629 goto err_out; 5630 5631 devres_add(dev, host); 5632 dev_set_drvdata(dev, host); 5633 5634 spin_lock_init(&host->lock); 5635 mutex_init(&host->eh_mutex); 5636 host->dev = dev; 5637 host->n_ports = max_ports; 5638 5639 /* allocate ports bound to this host */ 5640 for (i = 0; i < max_ports; i++) { 5641 struct ata_port *ap; 5642 5643 ap = ata_port_alloc(host); 5644 if (!ap) 5645 goto err_out; 5646 5647 ap->port_no = i; 5648 host->ports[i] = ap; 5649 } 5650 5651 devres_remove_group(dev, NULL); 5652 return host; 5653 5654 err_out: 5655 devres_release_group(dev, NULL); 5656 return NULL; 5657 } 5658 5659 /** 5660 * ata_host_alloc_pinfo - alloc host and init with port_info array 5661 * @dev: generic device this host is associated with 5662 * @ppi: array of ATA port_info to initialize host with 5663 * @n_ports: number of ATA ports attached to this host 5664 * 5665 * Allocate ATA host and initialize with info from @ppi. If NULL 5666 * terminated, @ppi may contain fewer entries than @n_ports. The 5667 * last entry will be used for the remaining ports. 5668 * 5669 * RETURNS: 5670 * Allocate ATA host on success, NULL on failure. 5671 * 5672 * LOCKING: 5673 * Inherited from calling layer (may sleep). 5674 */ 5675 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5676 const struct ata_port_info * const * ppi, 5677 int n_ports) 5678 { 5679 const struct ata_port_info *pi; 5680 struct ata_host *host; 5681 int i, j; 5682 5683 host = ata_host_alloc(dev, n_ports); 5684 if (!host) 5685 return NULL; 5686 5687 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5688 struct ata_port *ap = host->ports[i]; 5689 5690 if (ppi[j]) 5691 pi = ppi[j++]; 5692 5693 ap->pio_mask = pi->pio_mask; 5694 ap->mwdma_mask = pi->mwdma_mask; 5695 ap->udma_mask = pi->udma_mask; 5696 ap->flags |= pi->flags; 5697 ap->link.flags |= pi->link_flags; 5698 ap->ops = pi->port_ops; 5699 5700 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5701 host->ops = pi->port_ops; 5702 } 5703 5704 return host; 5705 } 5706 5707 /** 5708 * ata_slave_link_init - initialize slave link 5709 * @ap: port to initialize slave link for 5710 * 5711 * Create and initialize slave link for @ap. This enables slave 5712 * link handling on the port. 5713 * 5714 * In libata, a port contains links and a link contains devices. 5715 * There is single host link but if a PMP is attached to it, 5716 * there can be multiple fan-out links. On SATA, there's usually 5717 * a single device connected to a link but PATA and SATA 5718 * controllers emulating TF based interface can have two - master 5719 * and slave. 5720 * 5721 * However, there are a few controllers which don't fit into this 5722 * abstraction too well - SATA controllers which emulate TF 5723 * interface with both master and slave devices but also have 5724 * separate SCR register sets for each device. These controllers 5725 * need separate links for physical link handling 5726 * (e.g. onlineness, link speed) but should be treated like a 5727 * traditional M/S controller for everything else (e.g. command 5728 * issue, softreset). 5729 * 5730 * slave_link is libata's way of handling this class of 5731 * controllers without impacting core layer too much. For 5732 * anything other than physical link handling, the default host 5733 * link is used for both master and slave. For physical link 5734 * handling, separate @ap->slave_link is used. All dirty details 5735 * are implemented inside libata core layer. From LLD's POV, the 5736 * only difference is that prereset, hardreset and postreset are 5737 * called once more for the slave link, so the reset sequence 5738 * looks like the following. 5739 * 5740 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5741 * softreset(M) -> postreset(M) -> postreset(S) 5742 * 5743 * Note that softreset is called only for the master. Softreset 5744 * resets both M/S by definition, so SRST on master should handle 5745 * both (the standard method will work just fine). 5746 * 5747 * LOCKING: 5748 * Should be called before host is registered. 5749 * 5750 * RETURNS: 5751 * 0 on success, -errno on failure. 5752 */ 5753 int ata_slave_link_init(struct ata_port *ap) 5754 { 5755 struct ata_link *link; 5756 5757 WARN_ON(ap->slave_link); 5758 WARN_ON(ap->flags & ATA_FLAG_PMP); 5759 5760 link = kzalloc(sizeof(*link), GFP_KERNEL); 5761 if (!link) 5762 return -ENOMEM; 5763 5764 ata_link_init(ap, link, 1); 5765 ap->slave_link = link; 5766 return 0; 5767 } 5768 5769 static void ata_host_stop(struct device *gendev, void *res) 5770 { 5771 struct ata_host *host = dev_get_drvdata(gendev); 5772 int i; 5773 5774 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5775 5776 for (i = 0; i < host->n_ports; i++) { 5777 struct ata_port *ap = host->ports[i]; 5778 5779 if (ap->ops->port_stop) 5780 ap->ops->port_stop(ap); 5781 } 5782 5783 if (host->ops->host_stop) 5784 host->ops->host_stop(host); 5785 } 5786 5787 /** 5788 * ata_finalize_port_ops - finalize ata_port_operations 5789 * @ops: ata_port_operations to finalize 5790 * 5791 * An ata_port_operations can inherit from another ops and that 5792 * ops can again inherit from another. This can go on as many 5793 * times as necessary as long as there is no loop in the 5794 * inheritance chain. 5795 * 5796 * Ops tables are finalized when the host is started. NULL or 5797 * unspecified entries are inherited from the closet ancestor 5798 * which has the method and the entry is populated with it. 5799 * After finalization, the ops table directly points to all the 5800 * methods and ->inherits is no longer necessary and cleared. 5801 * 5802 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5803 * 5804 * LOCKING: 5805 * None. 5806 */ 5807 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5808 { 5809 static DEFINE_SPINLOCK(lock); 5810 const struct ata_port_operations *cur; 5811 void **begin = (void **)ops; 5812 void **end = (void **)&ops->inherits; 5813 void **pp; 5814 5815 if (!ops || !ops->inherits) 5816 return; 5817 5818 spin_lock(&lock); 5819 5820 for (cur = ops->inherits; cur; cur = cur->inherits) { 5821 void **inherit = (void **)cur; 5822 5823 for (pp = begin; pp < end; pp++, inherit++) 5824 if (!*pp) 5825 *pp = *inherit; 5826 } 5827 5828 for (pp = begin; pp < end; pp++) 5829 if (IS_ERR(*pp)) 5830 *pp = NULL; 5831 5832 ops->inherits = NULL; 5833 5834 spin_unlock(&lock); 5835 } 5836 5837 /** 5838 * ata_host_start - start and freeze ports of an ATA host 5839 * @host: ATA host to start ports for 5840 * 5841 * Start and then freeze ports of @host. Started status is 5842 * recorded in host->flags, so this function can be called 5843 * multiple times. Ports are guaranteed to get started only 5844 * once. If host->ops isn't initialized yet, its set to the 5845 * first non-dummy port ops. 5846 * 5847 * LOCKING: 5848 * Inherited from calling layer (may sleep). 5849 * 5850 * RETURNS: 5851 * 0 if all ports are started successfully, -errno otherwise. 5852 */ 5853 int ata_host_start(struct ata_host *host) 5854 { 5855 int have_stop = 0; 5856 void *start_dr = NULL; 5857 int i, rc; 5858 5859 if (host->flags & ATA_HOST_STARTED) 5860 return 0; 5861 5862 ata_finalize_port_ops(host->ops); 5863 5864 for (i = 0; i < host->n_ports; i++) { 5865 struct ata_port *ap = host->ports[i]; 5866 5867 ata_finalize_port_ops(ap->ops); 5868 5869 if (!host->ops && !ata_port_is_dummy(ap)) 5870 host->ops = ap->ops; 5871 5872 if (ap->ops->port_stop) 5873 have_stop = 1; 5874 } 5875 5876 if (host->ops->host_stop) 5877 have_stop = 1; 5878 5879 if (have_stop) { 5880 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5881 if (!start_dr) 5882 return -ENOMEM; 5883 } 5884 5885 for (i = 0; i < host->n_ports; i++) { 5886 struct ata_port *ap = host->ports[i]; 5887 5888 if (ap->ops->port_start) { 5889 rc = ap->ops->port_start(ap); 5890 if (rc) { 5891 if (rc != -ENODEV) 5892 dev_err(host->dev, 5893 "failed to start port %d (errno=%d)\n", 5894 i, rc); 5895 goto err_out; 5896 } 5897 } 5898 ata_eh_freeze_port(ap); 5899 } 5900 5901 if (start_dr) 5902 devres_add(host->dev, start_dr); 5903 host->flags |= ATA_HOST_STARTED; 5904 return 0; 5905 5906 err_out: 5907 while (--i >= 0) { 5908 struct ata_port *ap = host->ports[i]; 5909 5910 if (ap->ops->port_stop) 5911 ap->ops->port_stop(ap); 5912 } 5913 devres_free(start_dr); 5914 return rc; 5915 } 5916 5917 /** 5918 * ata_sas_host_init - Initialize a host struct 5919 * @host: host to initialize 5920 * @dev: device host is attached to 5921 * @flags: host flags 5922 * @ops: port_ops 5923 * 5924 * LOCKING: 5925 * PCI/etc. bus probe sem. 5926 * 5927 */ 5928 /* KILLME - the only user left is ipr */ 5929 void ata_host_init(struct ata_host *host, struct device *dev, 5930 unsigned long flags, struct ata_port_operations *ops) 5931 { 5932 spin_lock_init(&host->lock); 5933 mutex_init(&host->eh_mutex); 5934 host->dev = dev; 5935 host->flags = flags; 5936 host->ops = ops; 5937 } 5938 5939 void __ata_port_probe(struct ata_port *ap) 5940 { 5941 struct ata_eh_info *ehi = &ap->link.eh_info; 5942 unsigned long flags; 5943 5944 /* kick EH for boot probing */ 5945 spin_lock_irqsave(ap->lock, flags); 5946 5947 ehi->probe_mask |= ATA_ALL_DEVICES; 5948 ehi->action |= ATA_EH_RESET; 5949 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5950 5951 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5952 ap->pflags |= ATA_PFLAG_LOADING; 5953 ata_port_schedule_eh(ap); 5954 5955 spin_unlock_irqrestore(ap->lock, flags); 5956 } 5957 5958 int ata_port_probe(struct ata_port *ap) 5959 { 5960 int rc = 0; 5961 5962 if (ap->ops->error_handler) { 5963 __ata_port_probe(ap); 5964 ata_port_wait_eh(ap); 5965 } else { 5966 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5967 rc = ata_bus_probe(ap); 5968 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5969 } 5970 return rc; 5971 } 5972 5973 5974 static void async_port_probe(void *data, async_cookie_t cookie) 5975 { 5976 struct ata_port *ap = data; 5977 5978 /* 5979 * If we're not allowed to scan this host in parallel, 5980 * we need to wait until all previous scans have completed 5981 * before going further. 5982 * Jeff Garzik says this is only within a controller, so we 5983 * don't need to wait for port 0, only for later ports. 5984 */ 5985 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5986 async_synchronize_cookie(cookie); 5987 5988 (void)ata_port_probe(ap); 5989 5990 /* in order to keep device order, we need to synchronize at this point */ 5991 async_synchronize_cookie(cookie); 5992 5993 ata_scsi_scan_host(ap, 1); 5994 } 5995 5996 /** 5997 * ata_host_register - register initialized ATA host 5998 * @host: ATA host to register 5999 * @sht: template for SCSI host 6000 * 6001 * Register initialized ATA host. @host is allocated using 6002 * ata_host_alloc() and fully initialized by LLD. This function 6003 * starts ports, registers @host with ATA and SCSI layers and 6004 * probe registered devices. 6005 * 6006 * LOCKING: 6007 * Inherited from calling layer (may sleep). 6008 * 6009 * RETURNS: 6010 * 0 on success, -errno otherwise. 6011 */ 6012 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6013 { 6014 int i, rc; 6015 6016 /* host must have been started */ 6017 if (!(host->flags & ATA_HOST_STARTED)) { 6018 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6019 WARN_ON(1); 6020 return -EINVAL; 6021 } 6022 6023 /* Blow away unused ports. This happens when LLD can't 6024 * determine the exact number of ports to allocate at 6025 * allocation time. 6026 */ 6027 for (i = host->n_ports; host->ports[i]; i++) 6028 kfree(host->ports[i]); 6029 6030 /* give ports names and add SCSI hosts */ 6031 for (i = 0; i < host->n_ports; i++) 6032 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6033 6034 6035 /* Create associated sysfs transport objects */ 6036 for (i = 0; i < host->n_ports; i++) { 6037 rc = ata_tport_add(host->dev,host->ports[i]); 6038 if (rc) { 6039 goto err_tadd; 6040 } 6041 } 6042 6043 rc = ata_scsi_add_hosts(host, sht); 6044 if (rc) 6045 goto err_tadd; 6046 6047 /* associate with ACPI nodes */ 6048 ata_acpi_associate(host); 6049 6050 /* set cable, sata_spd_limit and report */ 6051 for (i = 0; i < host->n_ports; i++) { 6052 struct ata_port *ap = host->ports[i]; 6053 unsigned long xfer_mask; 6054 6055 /* set SATA cable type if still unset */ 6056 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6057 ap->cbl = ATA_CBL_SATA; 6058 6059 /* init sata_spd_limit to the current value */ 6060 sata_link_init_spd(&ap->link); 6061 if (ap->slave_link) 6062 sata_link_init_spd(ap->slave_link); 6063 6064 /* print per-port info to dmesg */ 6065 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6066 ap->udma_mask); 6067 6068 if (!ata_port_is_dummy(ap)) { 6069 ata_port_info(ap, "%cATA max %s %s\n", 6070 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6071 ata_mode_string(xfer_mask), 6072 ap->link.eh_info.desc); 6073 ata_ehi_clear_desc(&ap->link.eh_info); 6074 } else 6075 ata_port_info(ap, "DUMMY\n"); 6076 } 6077 6078 /* perform each probe asynchronously */ 6079 for (i = 0; i < host->n_ports; i++) { 6080 struct ata_port *ap = host->ports[i]; 6081 async_schedule(async_port_probe, ap); 6082 } 6083 6084 return 0; 6085 6086 err_tadd: 6087 while (--i >= 0) { 6088 ata_tport_delete(host->ports[i]); 6089 } 6090 return rc; 6091 6092 } 6093 6094 /** 6095 * ata_host_activate - start host, request IRQ and register it 6096 * @host: target ATA host 6097 * @irq: IRQ to request 6098 * @irq_handler: irq_handler used when requesting IRQ 6099 * @irq_flags: irq_flags used when requesting IRQ 6100 * @sht: scsi_host_template to use when registering the host 6101 * 6102 * After allocating an ATA host and initializing it, most libata 6103 * LLDs perform three steps to activate the host - start host, 6104 * request IRQ and register it. This helper takes necessasry 6105 * arguments and performs the three steps in one go. 6106 * 6107 * An invalid IRQ skips the IRQ registration and expects the host to 6108 * have set polling mode on the port. In this case, @irq_handler 6109 * should be NULL. 6110 * 6111 * LOCKING: 6112 * Inherited from calling layer (may sleep). 6113 * 6114 * RETURNS: 6115 * 0 on success, -errno otherwise. 6116 */ 6117 int ata_host_activate(struct ata_host *host, int irq, 6118 irq_handler_t irq_handler, unsigned long irq_flags, 6119 struct scsi_host_template *sht) 6120 { 6121 int i, rc; 6122 6123 rc = ata_host_start(host); 6124 if (rc) 6125 return rc; 6126 6127 /* Special case for polling mode */ 6128 if (!irq) { 6129 WARN_ON(irq_handler); 6130 return ata_host_register(host, sht); 6131 } 6132 6133 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6134 dev_driver_string(host->dev), host); 6135 if (rc) 6136 return rc; 6137 6138 for (i = 0; i < host->n_ports; i++) 6139 ata_port_desc(host->ports[i], "irq %d", irq); 6140 6141 rc = ata_host_register(host, sht); 6142 /* if failed, just free the IRQ and leave ports alone */ 6143 if (rc) 6144 devm_free_irq(host->dev, irq, host); 6145 6146 return rc; 6147 } 6148 6149 /** 6150 * ata_port_detach - Detach ATA port in prepration of device removal 6151 * @ap: ATA port to be detached 6152 * 6153 * Detach all ATA devices and the associated SCSI devices of @ap; 6154 * then, remove the associated SCSI host. @ap is guaranteed to 6155 * be quiescent on return from this function. 6156 * 6157 * LOCKING: 6158 * Kernel thread context (may sleep). 6159 */ 6160 static void ata_port_detach(struct ata_port *ap) 6161 { 6162 unsigned long flags; 6163 6164 if (!ap->ops->error_handler) 6165 goto skip_eh; 6166 6167 /* tell EH we're leaving & flush EH */ 6168 spin_lock_irqsave(ap->lock, flags); 6169 ap->pflags |= ATA_PFLAG_UNLOADING; 6170 ata_port_schedule_eh(ap); 6171 spin_unlock_irqrestore(ap->lock, flags); 6172 6173 /* wait till EH commits suicide */ 6174 ata_port_wait_eh(ap); 6175 6176 /* it better be dead now */ 6177 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6178 6179 cancel_delayed_work_sync(&ap->hotplug_task); 6180 6181 skip_eh: 6182 if (ap->pmp_link) { 6183 int i; 6184 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6185 ata_tlink_delete(&ap->pmp_link[i]); 6186 } 6187 ata_tport_delete(ap); 6188 6189 /* remove the associated SCSI host */ 6190 scsi_remove_host(ap->scsi_host); 6191 } 6192 6193 /** 6194 * ata_host_detach - Detach all ports of an ATA host 6195 * @host: Host to detach 6196 * 6197 * Detach all ports of @host. 6198 * 6199 * LOCKING: 6200 * Kernel thread context (may sleep). 6201 */ 6202 void ata_host_detach(struct ata_host *host) 6203 { 6204 int i; 6205 6206 for (i = 0; i < host->n_ports; i++) 6207 ata_port_detach(host->ports[i]); 6208 6209 /* the host is dead now, dissociate ACPI */ 6210 ata_acpi_dissociate(host); 6211 } 6212 6213 #ifdef CONFIG_PCI 6214 6215 /** 6216 * ata_pci_remove_one - PCI layer callback for device removal 6217 * @pdev: PCI device that was removed 6218 * 6219 * PCI layer indicates to libata via this hook that hot-unplug or 6220 * module unload event has occurred. Detach all ports. Resource 6221 * release is handled via devres. 6222 * 6223 * LOCKING: 6224 * Inherited from PCI layer (may sleep). 6225 */ 6226 void ata_pci_remove_one(struct pci_dev *pdev) 6227 { 6228 struct device *dev = &pdev->dev; 6229 struct ata_host *host = dev_get_drvdata(dev); 6230 6231 ata_host_detach(host); 6232 } 6233 6234 /* move to PCI subsystem */ 6235 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6236 { 6237 unsigned long tmp = 0; 6238 6239 switch (bits->width) { 6240 case 1: { 6241 u8 tmp8 = 0; 6242 pci_read_config_byte(pdev, bits->reg, &tmp8); 6243 tmp = tmp8; 6244 break; 6245 } 6246 case 2: { 6247 u16 tmp16 = 0; 6248 pci_read_config_word(pdev, bits->reg, &tmp16); 6249 tmp = tmp16; 6250 break; 6251 } 6252 case 4: { 6253 u32 tmp32 = 0; 6254 pci_read_config_dword(pdev, bits->reg, &tmp32); 6255 tmp = tmp32; 6256 break; 6257 } 6258 6259 default: 6260 return -EINVAL; 6261 } 6262 6263 tmp &= bits->mask; 6264 6265 return (tmp == bits->val) ? 1 : 0; 6266 } 6267 6268 #ifdef CONFIG_PM 6269 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6270 { 6271 pci_save_state(pdev); 6272 pci_disable_device(pdev); 6273 6274 if (mesg.event & PM_EVENT_SLEEP) 6275 pci_set_power_state(pdev, PCI_D3hot); 6276 } 6277 6278 int ata_pci_device_do_resume(struct pci_dev *pdev) 6279 { 6280 int rc; 6281 6282 pci_set_power_state(pdev, PCI_D0); 6283 pci_restore_state(pdev); 6284 6285 rc = pcim_enable_device(pdev); 6286 if (rc) { 6287 dev_err(&pdev->dev, 6288 "failed to enable device after resume (%d)\n", rc); 6289 return rc; 6290 } 6291 6292 pci_set_master(pdev); 6293 return 0; 6294 } 6295 6296 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6297 { 6298 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6299 int rc = 0; 6300 6301 rc = ata_host_suspend(host, mesg); 6302 if (rc) 6303 return rc; 6304 6305 ata_pci_device_do_suspend(pdev, mesg); 6306 6307 return 0; 6308 } 6309 6310 int ata_pci_device_resume(struct pci_dev *pdev) 6311 { 6312 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6313 int rc; 6314 6315 rc = ata_pci_device_do_resume(pdev); 6316 if (rc == 0) 6317 ata_host_resume(host); 6318 return rc; 6319 } 6320 #endif /* CONFIG_PM */ 6321 6322 #endif /* CONFIG_PCI */ 6323 6324 static int __init ata_parse_force_one(char **cur, 6325 struct ata_force_ent *force_ent, 6326 const char **reason) 6327 { 6328 /* FIXME: Currently, there's no way to tag init const data and 6329 * using __initdata causes build failure on some versions of 6330 * gcc. Once __initdataconst is implemented, add const to the 6331 * following structure. 6332 */ 6333 static struct ata_force_param force_tbl[] __initdata = { 6334 { "40c", .cbl = ATA_CBL_PATA40 }, 6335 { "80c", .cbl = ATA_CBL_PATA80 }, 6336 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6337 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6338 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6339 { "sata", .cbl = ATA_CBL_SATA }, 6340 { "1.5Gbps", .spd_limit = 1 }, 6341 { "3.0Gbps", .spd_limit = 2 }, 6342 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6343 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6344 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6345 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6346 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6347 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6348 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6349 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6350 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6351 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6352 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6353 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6354 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6355 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6356 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6357 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6358 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6359 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6360 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6361 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6362 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6363 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6364 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6365 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6366 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6367 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6368 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6369 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6370 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6371 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6372 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6373 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6374 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6375 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6376 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6377 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6378 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6379 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6380 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6381 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6382 }; 6383 char *start = *cur, *p = *cur; 6384 char *id, *val, *endp; 6385 const struct ata_force_param *match_fp = NULL; 6386 int nr_matches = 0, i; 6387 6388 /* find where this param ends and update *cur */ 6389 while (*p != '\0' && *p != ',') 6390 p++; 6391 6392 if (*p == '\0') 6393 *cur = p; 6394 else 6395 *cur = p + 1; 6396 6397 *p = '\0'; 6398 6399 /* parse */ 6400 p = strchr(start, ':'); 6401 if (!p) { 6402 val = strstrip(start); 6403 goto parse_val; 6404 } 6405 *p = '\0'; 6406 6407 id = strstrip(start); 6408 val = strstrip(p + 1); 6409 6410 /* parse id */ 6411 p = strchr(id, '.'); 6412 if (p) { 6413 *p++ = '\0'; 6414 force_ent->device = simple_strtoul(p, &endp, 10); 6415 if (p == endp || *endp != '\0') { 6416 *reason = "invalid device"; 6417 return -EINVAL; 6418 } 6419 } 6420 6421 force_ent->port = simple_strtoul(id, &endp, 10); 6422 if (p == endp || *endp != '\0') { 6423 *reason = "invalid port/link"; 6424 return -EINVAL; 6425 } 6426 6427 parse_val: 6428 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6429 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6430 const struct ata_force_param *fp = &force_tbl[i]; 6431 6432 if (strncasecmp(val, fp->name, strlen(val))) 6433 continue; 6434 6435 nr_matches++; 6436 match_fp = fp; 6437 6438 if (strcasecmp(val, fp->name) == 0) { 6439 nr_matches = 1; 6440 break; 6441 } 6442 } 6443 6444 if (!nr_matches) { 6445 *reason = "unknown value"; 6446 return -EINVAL; 6447 } 6448 if (nr_matches > 1) { 6449 *reason = "ambigious value"; 6450 return -EINVAL; 6451 } 6452 6453 force_ent->param = *match_fp; 6454 6455 return 0; 6456 } 6457 6458 static void __init ata_parse_force_param(void) 6459 { 6460 int idx = 0, size = 1; 6461 int last_port = -1, last_device = -1; 6462 char *p, *cur, *next; 6463 6464 /* calculate maximum number of params and allocate force_tbl */ 6465 for (p = ata_force_param_buf; *p; p++) 6466 if (*p == ',') 6467 size++; 6468 6469 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6470 if (!ata_force_tbl) { 6471 printk(KERN_WARNING "ata: failed to extend force table, " 6472 "libata.force ignored\n"); 6473 return; 6474 } 6475 6476 /* parse and populate the table */ 6477 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6478 const char *reason = ""; 6479 struct ata_force_ent te = { .port = -1, .device = -1 }; 6480 6481 next = cur; 6482 if (ata_parse_force_one(&next, &te, &reason)) { 6483 printk(KERN_WARNING "ata: failed to parse force " 6484 "parameter \"%s\" (%s)\n", 6485 cur, reason); 6486 continue; 6487 } 6488 6489 if (te.port == -1) { 6490 te.port = last_port; 6491 te.device = last_device; 6492 } 6493 6494 ata_force_tbl[idx++] = te; 6495 6496 last_port = te.port; 6497 last_device = te.device; 6498 } 6499 6500 ata_force_tbl_size = idx; 6501 } 6502 6503 static int __init ata_init(void) 6504 { 6505 int rc; 6506 6507 ata_parse_force_param(); 6508 6509 rc = ata_sff_init(); 6510 if (rc) { 6511 kfree(ata_force_tbl); 6512 return rc; 6513 } 6514 6515 libata_transport_init(); 6516 ata_scsi_transport_template = ata_attach_transport(); 6517 if (!ata_scsi_transport_template) { 6518 ata_sff_exit(); 6519 rc = -ENOMEM; 6520 goto err_out; 6521 } 6522 6523 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6524 return 0; 6525 6526 err_out: 6527 return rc; 6528 } 6529 6530 static void __exit ata_exit(void) 6531 { 6532 ata_release_transport(ata_scsi_transport_template); 6533 libata_transport_exit(); 6534 ata_sff_exit(); 6535 kfree(ata_force_tbl); 6536 } 6537 6538 subsys_initcall(ata_init); 6539 module_exit(ata_exit); 6540 6541 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6542 6543 int ata_ratelimit(void) 6544 { 6545 return __ratelimit(&ratelimit); 6546 } 6547 6548 /** 6549 * ata_msleep - ATA EH owner aware msleep 6550 * @ap: ATA port to attribute the sleep to 6551 * @msecs: duration to sleep in milliseconds 6552 * 6553 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6554 * ownership is released before going to sleep and reacquired 6555 * after the sleep is complete. IOW, other ports sharing the 6556 * @ap->host will be allowed to own the EH while this task is 6557 * sleeping. 6558 * 6559 * LOCKING: 6560 * Might sleep. 6561 */ 6562 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6563 { 6564 bool owns_eh = ap && ap->host->eh_owner == current; 6565 6566 if (owns_eh) 6567 ata_eh_release(ap); 6568 6569 msleep(msecs); 6570 6571 if (owns_eh) 6572 ata_eh_acquire(ap); 6573 } 6574 6575 /** 6576 * ata_wait_register - wait until register value changes 6577 * @ap: ATA port to wait register for, can be NULL 6578 * @reg: IO-mapped register 6579 * @mask: Mask to apply to read register value 6580 * @val: Wait condition 6581 * @interval: polling interval in milliseconds 6582 * @timeout: timeout in milliseconds 6583 * 6584 * Waiting for some bits of register to change is a common 6585 * operation for ATA controllers. This function reads 32bit LE 6586 * IO-mapped register @reg and tests for the following condition. 6587 * 6588 * (*@reg & mask) != val 6589 * 6590 * If the condition is met, it returns; otherwise, the process is 6591 * repeated after @interval_msec until timeout. 6592 * 6593 * LOCKING: 6594 * Kernel thread context (may sleep) 6595 * 6596 * RETURNS: 6597 * The final register value. 6598 */ 6599 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6600 unsigned long interval, unsigned long timeout) 6601 { 6602 unsigned long deadline; 6603 u32 tmp; 6604 6605 tmp = ioread32(reg); 6606 6607 /* Calculate timeout _after_ the first read to make sure 6608 * preceding writes reach the controller before starting to 6609 * eat away the timeout. 6610 */ 6611 deadline = ata_deadline(jiffies, timeout); 6612 6613 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6614 ata_msleep(ap, interval); 6615 tmp = ioread32(reg); 6616 } 6617 6618 return tmp; 6619 } 6620 6621 /* 6622 * Dummy port_ops 6623 */ 6624 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6625 { 6626 return AC_ERR_SYSTEM; 6627 } 6628 6629 static void ata_dummy_error_handler(struct ata_port *ap) 6630 { 6631 /* truly dummy */ 6632 } 6633 6634 struct ata_port_operations ata_dummy_port_ops = { 6635 .qc_prep = ata_noop_qc_prep, 6636 .qc_issue = ata_dummy_qc_issue, 6637 .error_handler = ata_dummy_error_handler, 6638 }; 6639 6640 const struct ata_port_info ata_dummy_port_info = { 6641 .port_ops = &ata_dummy_port_ops, 6642 }; 6643 6644 /* 6645 * Utility print functions 6646 */ 6647 int ata_port_printk(const struct ata_port *ap, const char *level, 6648 const char *fmt, ...) 6649 { 6650 struct va_format vaf; 6651 va_list args; 6652 int r; 6653 6654 va_start(args, fmt); 6655 6656 vaf.fmt = fmt; 6657 vaf.va = &args; 6658 6659 r = printk("%sata%u: %pV", level, ap->print_id, &vaf); 6660 6661 va_end(args); 6662 6663 return r; 6664 } 6665 EXPORT_SYMBOL(ata_port_printk); 6666 6667 int ata_link_printk(const struct ata_link *link, const char *level, 6668 const char *fmt, ...) 6669 { 6670 struct va_format vaf; 6671 va_list args; 6672 int r; 6673 6674 va_start(args, fmt); 6675 6676 vaf.fmt = fmt; 6677 vaf.va = &args; 6678 6679 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6680 r = printk("%sata%u.%02u: %pV", 6681 level, link->ap->print_id, link->pmp, &vaf); 6682 else 6683 r = printk("%sata%u: %pV", 6684 level, link->ap->print_id, &vaf); 6685 6686 va_end(args); 6687 6688 return r; 6689 } 6690 EXPORT_SYMBOL(ata_link_printk); 6691 6692 int ata_dev_printk(const struct ata_device *dev, const char *level, 6693 const char *fmt, ...) 6694 { 6695 struct va_format vaf; 6696 va_list args; 6697 int r; 6698 6699 va_start(args, fmt); 6700 6701 vaf.fmt = fmt; 6702 vaf.va = &args; 6703 6704 r = printk("%sata%u.%02u: %pV", 6705 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6706 &vaf); 6707 6708 va_end(args); 6709 6710 return r; 6711 } 6712 EXPORT_SYMBOL(ata_dev_printk); 6713 6714 void ata_print_version(const struct device *dev, const char *version) 6715 { 6716 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6717 } 6718 EXPORT_SYMBOL(ata_print_version); 6719 6720 /* 6721 * libata is essentially a library of internal helper functions for 6722 * low-level ATA host controller drivers. As such, the API/ABI is 6723 * likely to change as new drivers are added and updated. 6724 * Do not depend on ABI/API stability. 6725 */ 6726 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6727 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6728 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6729 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6730 EXPORT_SYMBOL_GPL(sata_port_ops); 6731 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6732 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6733 EXPORT_SYMBOL_GPL(ata_link_next); 6734 EXPORT_SYMBOL_GPL(ata_dev_next); 6735 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6736 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6737 EXPORT_SYMBOL_GPL(ata_host_init); 6738 EXPORT_SYMBOL_GPL(ata_host_alloc); 6739 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6740 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6741 EXPORT_SYMBOL_GPL(ata_host_start); 6742 EXPORT_SYMBOL_GPL(ata_host_register); 6743 EXPORT_SYMBOL_GPL(ata_host_activate); 6744 EXPORT_SYMBOL_GPL(ata_host_detach); 6745 EXPORT_SYMBOL_GPL(ata_sg_init); 6746 EXPORT_SYMBOL_GPL(ata_qc_complete); 6747 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6748 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6749 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6750 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6751 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6752 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6753 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6754 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6755 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6756 EXPORT_SYMBOL_GPL(ata_mode_string); 6757 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6758 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6759 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6760 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6761 EXPORT_SYMBOL_GPL(ata_dev_disable); 6762 EXPORT_SYMBOL_GPL(sata_set_spd); 6763 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6764 EXPORT_SYMBOL_GPL(sata_link_debounce); 6765 EXPORT_SYMBOL_GPL(sata_link_resume); 6766 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6767 EXPORT_SYMBOL_GPL(ata_std_prereset); 6768 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6769 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6770 EXPORT_SYMBOL_GPL(ata_std_postreset); 6771 EXPORT_SYMBOL_GPL(ata_dev_classify); 6772 EXPORT_SYMBOL_GPL(ata_dev_pair); 6773 EXPORT_SYMBOL_GPL(ata_ratelimit); 6774 EXPORT_SYMBOL_GPL(ata_msleep); 6775 EXPORT_SYMBOL_GPL(ata_wait_register); 6776 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6777 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6778 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6779 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6780 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6781 EXPORT_SYMBOL_GPL(sata_scr_valid); 6782 EXPORT_SYMBOL_GPL(sata_scr_read); 6783 EXPORT_SYMBOL_GPL(sata_scr_write); 6784 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6785 EXPORT_SYMBOL_GPL(ata_link_online); 6786 EXPORT_SYMBOL_GPL(ata_link_offline); 6787 #ifdef CONFIG_PM 6788 EXPORT_SYMBOL_GPL(ata_host_suspend); 6789 EXPORT_SYMBOL_GPL(ata_host_resume); 6790 #endif /* CONFIG_PM */ 6791 EXPORT_SYMBOL_GPL(ata_id_string); 6792 EXPORT_SYMBOL_GPL(ata_id_c_string); 6793 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6794 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6795 6796 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6797 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6798 EXPORT_SYMBOL_GPL(ata_timing_compute); 6799 EXPORT_SYMBOL_GPL(ata_timing_merge); 6800 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6801 6802 #ifdef CONFIG_PCI 6803 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6804 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6805 #ifdef CONFIG_PM 6806 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6807 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6808 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6809 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6810 #endif /* CONFIG_PM */ 6811 #endif /* CONFIG_PCI */ 6812 6813 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6814 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6815 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6816 EXPORT_SYMBOL_GPL(ata_port_desc); 6817 #ifdef CONFIG_PCI 6818 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6819 #endif /* CONFIG_PCI */ 6820 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6821 EXPORT_SYMBOL_GPL(ata_link_abort); 6822 EXPORT_SYMBOL_GPL(ata_port_abort); 6823 EXPORT_SYMBOL_GPL(ata_port_freeze); 6824 EXPORT_SYMBOL_GPL(sata_async_notification); 6825 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6826 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6827 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6828 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6829 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6830 EXPORT_SYMBOL_GPL(ata_do_eh); 6831 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6832 6833 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6834 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6835 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6836 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6837 EXPORT_SYMBOL_GPL(ata_cable_sata); 6838