1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned long xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags; 100 }; 101 102 struct ata_force_ent { 103 int port; 104 int device; 105 struct ata_force_param param; 106 }; 107 108 static struct ata_force_ent *ata_force_tbl; 109 static int ata_force_tbl_size; 110 111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 112 /* param_buf is thrown away after initialization, disallow read */ 113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 115 #endif 116 117 static int atapi_enabled = 1; 118 module_param(atapi_enabled, int, 0444); 119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 120 121 static int atapi_dmadir = 0; 122 module_param(atapi_dmadir, int, 0444); 123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 124 125 int atapi_passthru16 = 1; 126 module_param(atapi_passthru16, int, 0444); 127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 128 129 int libata_fua = 0; 130 module_param_named(fua, libata_fua, int, 0444); 131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 132 133 static int ata_ignore_hpa; 134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 136 137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 138 module_param_named(dma, libata_dma_mask, int, 0444); 139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 140 141 static int ata_probe_timeout; 142 module_param(ata_probe_timeout, int, 0444); 143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 144 145 int libata_noacpi = 0; 146 module_param_named(noacpi, libata_noacpi, int, 0444); 147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 148 149 int libata_allow_tpm = 0; 150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 152 153 static int atapi_an; 154 module_param(atapi_an, int, 0444); 155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 156 157 MODULE_AUTHOR("Jeff Garzik"); 158 MODULE_DESCRIPTION("Library module for ATA devices"); 159 MODULE_LICENSE("GPL"); 160 MODULE_VERSION(DRV_VERSION); 161 162 static inline bool ata_dev_print_info(struct ata_device *dev) 163 { 164 struct ata_eh_context *ehc = &dev->link->eh_context; 165 166 return ehc->i.flags & ATA_EHI_PRINTINFO; 167 } 168 169 static bool ata_sstatus_online(u32 sstatus) 170 { 171 return (sstatus & 0xf) == 0x3; 172 } 173 174 /** 175 * ata_link_next - link iteration helper 176 * @link: the previous link, NULL to start 177 * @ap: ATA port containing links to iterate 178 * @mode: iteration mode, one of ATA_LITER_* 179 * 180 * LOCKING: 181 * Host lock or EH context. 182 * 183 * RETURNS: 184 * Pointer to the next link. 185 */ 186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 187 enum ata_link_iter_mode mode) 188 { 189 BUG_ON(mode != ATA_LITER_EDGE && 190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 191 192 /* NULL link indicates start of iteration */ 193 if (!link) 194 switch (mode) { 195 case ATA_LITER_EDGE: 196 case ATA_LITER_PMP_FIRST: 197 if (sata_pmp_attached(ap)) 198 return ap->pmp_link; 199 fallthrough; 200 case ATA_LITER_HOST_FIRST: 201 return &ap->link; 202 } 203 204 /* we just iterated over the host link, what's next? */ 205 if (link == &ap->link) 206 switch (mode) { 207 case ATA_LITER_HOST_FIRST: 208 if (sata_pmp_attached(ap)) 209 return ap->pmp_link; 210 fallthrough; 211 case ATA_LITER_PMP_FIRST: 212 if (unlikely(ap->slave_link)) 213 return ap->slave_link; 214 fallthrough; 215 case ATA_LITER_EDGE: 216 return NULL; 217 } 218 219 /* slave_link excludes PMP */ 220 if (unlikely(link == ap->slave_link)) 221 return NULL; 222 223 /* we were over a PMP link */ 224 if (++link < ap->pmp_link + ap->nr_pmp_links) 225 return link; 226 227 if (mode == ATA_LITER_PMP_FIRST) 228 return &ap->link; 229 230 return NULL; 231 } 232 EXPORT_SYMBOL_GPL(ata_link_next); 233 234 /** 235 * ata_dev_next - device iteration helper 236 * @dev: the previous device, NULL to start 237 * @link: ATA link containing devices to iterate 238 * @mode: iteration mode, one of ATA_DITER_* 239 * 240 * LOCKING: 241 * Host lock or EH context. 242 * 243 * RETURNS: 244 * Pointer to the next device. 245 */ 246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 247 enum ata_dev_iter_mode mode) 248 { 249 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 250 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 251 252 /* NULL dev indicates start of iteration */ 253 if (!dev) 254 switch (mode) { 255 case ATA_DITER_ENABLED: 256 case ATA_DITER_ALL: 257 dev = link->device; 258 goto check; 259 case ATA_DITER_ENABLED_REVERSE: 260 case ATA_DITER_ALL_REVERSE: 261 dev = link->device + ata_link_max_devices(link) - 1; 262 goto check; 263 } 264 265 next: 266 /* move to the next one */ 267 switch (mode) { 268 case ATA_DITER_ENABLED: 269 case ATA_DITER_ALL: 270 if (++dev < link->device + ata_link_max_devices(link)) 271 goto check; 272 return NULL; 273 case ATA_DITER_ENABLED_REVERSE: 274 case ATA_DITER_ALL_REVERSE: 275 if (--dev >= link->device) 276 goto check; 277 return NULL; 278 } 279 280 check: 281 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 282 !ata_dev_enabled(dev)) 283 goto next; 284 return dev; 285 } 286 EXPORT_SYMBOL_GPL(ata_dev_next); 287 288 /** 289 * ata_dev_phys_link - find physical link for a device 290 * @dev: ATA device to look up physical link for 291 * 292 * Look up physical link which @dev is attached to. Note that 293 * this is different from @dev->link only when @dev is on slave 294 * link. For all other cases, it's the same as @dev->link. 295 * 296 * LOCKING: 297 * Don't care. 298 * 299 * RETURNS: 300 * Pointer to the found physical link. 301 */ 302 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 303 { 304 struct ata_port *ap = dev->link->ap; 305 306 if (!ap->slave_link) 307 return dev->link; 308 if (!dev->devno) 309 return &ap->link; 310 return ap->slave_link; 311 } 312 313 #ifdef CONFIG_ATA_FORCE 314 /** 315 * ata_force_cbl - force cable type according to libata.force 316 * @ap: ATA port of interest 317 * 318 * Force cable type according to libata.force and whine about it. 319 * The last entry which has matching port number is used, so it 320 * can be specified as part of device force parameters. For 321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 322 * same effect. 323 * 324 * LOCKING: 325 * EH context. 326 */ 327 void ata_force_cbl(struct ata_port *ap) 328 { 329 int i; 330 331 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 332 const struct ata_force_ent *fe = &ata_force_tbl[i]; 333 334 if (fe->port != -1 && fe->port != ap->print_id) 335 continue; 336 337 if (fe->param.cbl == ATA_CBL_NONE) 338 continue; 339 340 ap->cbl = fe->param.cbl; 341 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 342 return; 343 } 344 } 345 346 /** 347 * ata_force_link_limits - force link limits according to libata.force 348 * @link: ATA link of interest 349 * 350 * Force link flags and SATA spd limit according to libata.force 351 * and whine about it. When only the port part is specified 352 * (e.g. 1:), the limit applies to all links connected to both 353 * the host link and all fan-out ports connected via PMP. If the 354 * device part is specified as 0 (e.g. 1.00:), it specifies the 355 * first fan-out link not the host link. Device number 15 always 356 * points to the host link whether PMP is attached or not. If the 357 * controller has slave link, device number 16 points to it. 358 * 359 * LOCKING: 360 * EH context. 361 */ 362 static void ata_force_link_limits(struct ata_link *link) 363 { 364 bool did_spd = false; 365 int linkno = link->pmp; 366 int i; 367 368 if (ata_is_host_link(link)) 369 linkno += 15; 370 371 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 372 const struct ata_force_ent *fe = &ata_force_tbl[i]; 373 374 if (fe->port != -1 && fe->port != link->ap->print_id) 375 continue; 376 377 if (fe->device != -1 && fe->device != linkno) 378 continue; 379 380 /* only honor the first spd limit */ 381 if (!did_spd && fe->param.spd_limit) { 382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 383 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 384 fe->param.name); 385 did_spd = true; 386 } 387 388 /* let lflags stack */ 389 if (fe->param.lflags) { 390 link->flags |= fe->param.lflags; 391 ata_link_notice(link, 392 "FORCE: link flag 0x%x forced -> 0x%x\n", 393 fe->param.lflags, link->flags); 394 } 395 } 396 } 397 398 /** 399 * ata_force_xfermask - force xfermask according to libata.force 400 * @dev: ATA device of interest 401 * 402 * Force xfer_mask according to libata.force and whine about it. 403 * For consistency with link selection, device number 15 selects 404 * the first device connected to the host link. 405 * 406 * LOCKING: 407 * EH context. 408 */ 409 static void ata_force_xfermask(struct ata_device *dev) 410 { 411 int devno = dev->link->pmp + dev->devno; 412 int alt_devno = devno; 413 int i; 414 415 /* allow n.15/16 for devices attached to host port */ 416 if (ata_is_host_link(dev->link)) 417 alt_devno += 15; 418 419 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 420 const struct ata_force_ent *fe = &ata_force_tbl[i]; 421 unsigned long pio_mask, mwdma_mask, udma_mask; 422 423 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 424 continue; 425 426 if (fe->device != -1 && fe->device != devno && 427 fe->device != alt_devno) 428 continue; 429 430 if (!fe->param.xfer_mask) 431 continue; 432 433 ata_unpack_xfermask(fe->param.xfer_mask, 434 &pio_mask, &mwdma_mask, &udma_mask); 435 if (udma_mask) 436 dev->udma_mask = udma_mask; 437 else if (mwdma_mask) { 438 dev->udma_mask = 0; 439 dev->mwdma_mask = mwdma_mask; 440 } else { 441 dev->udma_mask = 0; 442 dev->mwdma_mask = 0; 443 dev->pio_mask = pio_mask; 444 } 445 446 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 447 fe->param.name); 448 return; 449 } 450 } 451 452 /** 453 * ata_force_horkage - force horkage according to libata.force 454 * @dev: ATA device of interest 455 * 456 * Force horkage according to libata.force and whine about it. 457 * For consistency with link selection, device number 15 selects 458 * the first device connected to the host link. 459 * 460 * LOCKING: 461 * EH context. 462 */ 463 static void ata_force_horkage(struct ata_device *dev) 464 { 465 int devno = dev->link->pmp + dev->devno; 466 int alt_devno = devno; 467 int i; 468 469 /* allow n.15/16 for devices attached to host port */ 470 if (ata_is_host_link(dev->link)) 471 alt_devno += 15; 472 473 for (i = 0; i < ata_force_tbl_size; i++) { 474 const struct ata_force_ent *fe = &ata_force_tbl[i]; 475 476 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 477 continue; 478 479 if (fe->device != -1 && fe->device != devno && 480 fe->device != alt_devno) 481 continue; 482 483 if (!(~dev->horkage & fe->param.horkage_on) && 484 !(dev->horkage & fe->param.horkage_off)) 485 continue; 486 487 dev->horkage |= fe->param.horkage_on; 488 dev->horkage &= ~fe->param.horkage_off; 489 490 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 491 fe->param.name); 492 } 493 } 494 #else 495 static inline void ata_force_link_limits(struct ata_link *link) { } 496 static inline void ata_force_xfermask(struct ata_device *dev) { } 497 static inline void ata_force_horkage(struct ata_device *dev) { } 498 #endif 499 500 /** 501 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 502 * @opcode: SCSI opcode 503 * 504 * Determine ATAPI command type from @opcode. 505 * 506 * LOCKING: 507 * None. 508 * 509 * RETURNS: 510 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 511 */ 512 int atapi_cmd_type(u8 opcode) 513 { 514 switch (opcode) { 515 case GPCMD_READ_10: 516 case GPCMD_READ_12: 517 return ATAPI_READ; 518 519 case GPCMD_WRITE_10: 520 case GPCMD_WRITE_12: 521 case GPCMD_WRITE_AND_VERIFY_10: 522 return ATAPI_WRITE; 523 524 case GPCMD_READ_CD: 525 case GPCMD_READ_CD_MSF: 526 return ATAPI_READ_CD; 527 528 case ATA_16: 529 case ATA_12: 530 if (atapi_passthru16) 531 return ATAPI_PASS_THRU; 532 fallthrough; 533 default: 534 return ATAPI_MISC; 535 } 536 } 537 EXPORT_SYMBOL_GPL(atapi_cmd_type); 538 539 static const u8 ata_rw_cmds[] = { 540 /* pio multi */ 541 ATA_CMD_READ_MULTI, 542 ATA_CMD_WRITE_MULTI, 543 ATA_CMD_READ_MULTI_EXT, 544 ATA_CMD_WRITE_MULTI_EXT, 545 0, 546 0, 547 0, 548 ATA_CMD_WRITE_MULTI_FUA_EXT, 549 /* pio */ 550 ATA_CMD_PIO_READ, 551 ATA_CMD_PIO_WRITE, 552 ATA_CMD_PIO_READ_EXT, 553 ATA_CMD_PIO_WRITE_EXT, 554 0, 555 0, 556 0, 557 0, 558 /* dma */ 559 ATA_CMD_READ, 560 ATA_CMD_WRITE, 561 ATA_CMD_READ_EXT, 562 ATA_CMD_WRITE_EXT, 563 0, 564 0, 565 0, 566 ATA_CMD_WRITE_FUA_EXT 567 }; 568 569 /** 570 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 571 * @tf: command to examine and configure 572 * @dev: device tf belongs to 573 * 574 * Examine the device configuration and tf->flags to calculate 575 * the proper read/write commands and protocol to use. 576 * 577 * LOCKING: 578 * caller. 579 */ 580 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 581 { 582 u8 cmd; 583 584 int index, fua, lba48, write; 585 586 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 587 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 588 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 589 590 if (dev->flags & ATA_DFLAG_PIO) { 591 tf->protocol = ATA_PROT_PIO; 592 index = dev->multi_count ? 0 : 8; 593 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 594 /* Unable to use DMA due to host limitation */ 595 tf->protocol = ATA_PROT_PIO; 596 index = dev->multi_count ? 0 : 8; 597 } else { 598 tf->protocol = ATA_PROT_DMA; 599 index = 16; 600 } 601 602 cmd = ata_rw_cmds[index + fua + lba48 + write]; 603 if (cmd) { 604 tf->command = cmd; 605 return 0; 606 } 607 return -1; 608 } 609 610 /** 611 * ata_tf_read_block - Read block address from ATA taskfile 612 * @tf: ATA taskfile of interest 613 * @dev: ATA device @tf belongs to 614 * 615 * LOCKING: 616 * None. 617 * 618 * Read block address from @tf. This function can handle all 619 * three address formats - LBA, LBA48 and CHS. tf->protocol and 620 * flags select the address format to use. 621 * 622 * RETURNS: 623 * Block address read from @tf. 624 */ 625 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 626 { 627 u64 block = 0; 628 629 if (tf->flags & ATA_TFLAG_LBA) { 630 if (tf->flags & ATA_TFLAG_LBA48) { 631 block |= (u64)tf->hob_lbah << 40; 632 block |= (u64)tf->hob_lbam << 32; 633 block |= (u64)tf->hob_lbal << 24; 634 } else 635 block |= (tf->device & 0xf) << 24; 636 637 block |= tf->lbah << 16; 638 block |= tf->lbam << 8; 639 block |= tf->lbal; 640 } else { 641 u32 cyl, head, sect; 642 643 cyl = tf->lbam | (tf->lbah << 8); 644 head = tf->device & 0xf; 645 sect = tf->lbal; 646 647 if (!sect) { 648 ata_dev_warn(dev, 649 "device reported invalid CHS sector 0\n"); 650 return U64_MAX; 651 } 652 653 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 654 } 655 656 return block; 657 } 658 659 /** 660 * ata_build_rw_tf - Build ATA taskfile for given read/write request 661 * @tf: Target ATA taskfile 662 * @dev: ATA device @tf belongs to 663 * @block: Block address 664 * @n_block: Number of blocks 665 * @tf_flags: RW/FUA etc... 666 * @tag: tag 667 * @class: IO priority class 668 * 669 * LOCKING: 670 * None. 671 * 672 * Build ATA taskfile @tf for read/write request described by 673 * @block, @n_block, @tf_flags and @tag on @dev. 674 * 675 * RETURNS: 676 * 677 * 0 on success, -ERANGE if the request is too large for @dev, 678 * -EINVAL if the request is invalid. 679 */ 680 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 681 u64 block, u32 n_block, unsigned int tf_flags, 682 unsigned int tag, int class) 683 { 684 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 685 tf->flags |= tf_flags; 686 687 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) { 688 /* yay, NCQ */ 689 if (!lba_48_ok(block, n_block)) 690 return -ERANGE; 691 692 tf->protocol = ATA_PROT_NCQ; 693 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 694 695 if (tf->flags & ATA_TFLAG_WRITE) 696 tf->command = ATA_CMD_FPDMA_WRITE; 697 else 698 tf->command = ATA_CMD_FPDMA_READ; 699 700 tf->nsect = tag << 3; 701 tf->hob_feature = (n_block >> 8) & 0xff; 702 tf->feature = n_block & 0xff; 703 704 tf->hob_lbah = (block >> 40) & 0xff; 705 tf->hob_lbam = (block >> 32) & 0xff; 706 tf->hob_lbal = (block >> 24) & 0xff; 707 tf->lbah = (block >> 16) & 0xff; 708 tf->lbam = (block >> 8) & 0xff; 709 tf->lbal = block & 0xff; 710 711 tf->device = ATA_LBA; 712 if (tf->flags & ATA_TFLAG_FUA) 713 tf->device |= 1 << 7; 714 715 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE && 716 class == IOPRIO_CLASS_RT) 717 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 718 } else if (dev->flags & ATA_DFLAG_LBA) { 719 tf->flags |= ATA_TFLAG_LBA; 720 721 if (lba_28_ok(block, n_block)) { 722 /* use LBA28 */ 723 tf->device |= (block >> 24) & 0xf; 724 } else if (lba_48_ok(block, n_block)) { 725 if (!(dev->flags & ATA_DFLAG_LBA48)) 726 return -ERANGE; 727 728 /* use LBA48 */ 729 tf->flags |= ATA_TFLAG_LBA48; 730 731 tf->hob_nsect = (n_block >> 8) & 0xff; 732 733 tf->hob_lbah = (block >> 40) & 0xff; 734 tf->hob_lbam = (block >> 32) & 0xff; 735 tf->hob_lbal = (block >> 24) & 0xff; 736 } else 737 /* request too large even for LBA48 */ 738 return -ERANGE; 739 740 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 741 return -EINVAL; 742 743 tf->nsect = n_block & 0xff; 744 745 tf->lbah = (block >> 16) & 0xff; 746 tf->lbam = (block >> 8) & 0xff; 747 tf->lbal = block & 0xff; 748 749 tf->device |= ATA_LBA; 750 } else { 751 /* CHS */ 752 u32 sect, head, cyl, track; 753 754 /* The request -may- be too large for CHS addressing. */ 755 if (!lba_28_ok(block, n_block)) 756 return -ERANGE; 757 758 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 759 return -EINVAL; 760 761 /* Convert LBA to CHS */ 762 track = (u32)block / dev->sectors; 763 cyl = track / dev->heads; 764 head = track % dev->heads; 765 sect = (u32)block % dev->sectors + 1; 766 767 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 768 (u32)block, track, cyl, head, sect); 769 770 /* Check whether the converted CHS can fit. 771 Cylinder: 0-65535 772 Head: 0-15 773 Sector: 1-255*/ 774 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 775 return -ERANGE; 776 777 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 778 tf->lbal = sect; 779 tf->lbam = cyl; 780 tf->lbah = cyl >> 8; 781 tf->device |= head; 782 } 783 784 return 0; 785 } 786 787 /** 788 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 789 * @pio_mask: pio_mask 790 * @mwdma_mask: mwdma_mask 791 * @udma_mask: udma_mask 792 * 793 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 794 * unsigned int xfer_mask. 795 * 796 * LOCKING: 797 * None. 798 * 799 * RETURNS: 800 * Packed xfer_mask. 801 */ 802 unsigned long ata_pack_xfermask(unsigned long pio_mask, 803 unsigned long mwdma_mask, 804 unsigned long udma_mask) 805 { 806 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 807 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 808 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 809 } 810 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 811 812 /** 813 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 814 * @xfer_mask: xfer_mask to unpack 815 * @pio_mask: resulting pio_mask 816 * @mwdma_mask: resulting mwdma_mask 817 * @udma_mask: resulting udma_mask 818 * 819 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 820 * Any NULL destination masks will be ignored. 821 */ 822 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 823 unsigned long *mwdma_mask, unsigned long *udma_mask) 824 { 825 if (pio_mask) 826 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 827 if (mwdma_mask) 828 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 829 if (udma_mask) 830 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 831 } 832 833 static const struct ata_xfer_ent { 834 int shift, bits; 835 u8 base; 836 } ata_xfer_tbl[] = { 837 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 838 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 839 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 840 { -1, }, 841 }; 842 843 /** 844 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 845 * @xfer_mask: xfer_mask of interest 846 * 847 * Return matching XFER_* value for @xfer_mask. Only the highest 848 * bit of @xfer_mask is considered. 849 * 850 * LOCKING: 851 * None. 852 * 853 * RETURNS: 854 * Matching XFER_* value, 0xff if no match found. 855 */ 856 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 857 { 858 int highbit = fls(xfer_mask) - 1; 859 const struct ata_xfer_ent *ent; 860 861 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 862 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 863 return ent->base + highbit - ent->shift; 864 return 0xff; 865 } 866 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 867 868 /** 869 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 870 * @xfer_mode: XFER_* of interest 871 * 872 * Return matching xfer_mask for @xfer_mode. 873 * 874 * LOCKING: 875 * None. 876 * 877 * RETURNS: 878 * Matching xfer_mask, 0 if no match found. 879 */ 880 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 881 { 882 const struct ata_xfer_ent *ent; 883 884 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 885 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 886 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 887 & ~((1 << ent->shift) - 1); 888 return 0; 889 } 890 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 891 892 /** 893 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 894 * @xfer_mode: XFER_* of interest 895 * 896 * Return matching xfer_shift for @xfer_mode. 897 * 898 * LOCKING: 899 * None. 900 * 901 * RETURNS: 902 * Matching xfer_shift, -1 if no match found. 903 */ 904 int ata_xfer_mode2shift(unsigned long xfer_mode) 905 { 906 const struct ata_xfer_ent *ent; 907 908 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 909 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 910 return ent->shift; 911 return -1; 912 } 913 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 914 915 /** 916 * ata_mode_string - convert xfer_mask to string 917 * @xfer_mask: mask of bits supported; only highest bit counts. 918 * 919 * Determine string which represents the highest speed 920 * (highest bit in @modemask). 921 * 922 * LOCKING: 923 * None. 924 * 925 * RETURNS: 926 * Constant C string representing highest speed listed in 927 * @mode_mask, or the constant C string "<n/a>". 928 */ 929 const char *ata_mode_string(unsigned long xfer_mask) 930 { 931 static const char * const xfer_mode_str[] = { 932 "PIO0", 933 "PIO1", 934 "PIO2", 935 "PIO3", 936 "PIO4", 937 "PIO5", 938 "PIO6", 939 "MWDMA0", 940 "MWDMA1", 941 "MWDMA2", 942 "MWDMA3", 943 "MWDMA4", 944 "UDMA/16", 945 "UDMA/25", 946 "UDMA/33", 947 "UDMA/44", 948 "UDMA/66", 949 "UDMA/100", 950 "UDMA/133", 951 "UDMA7", 952 }; 953 int highbit; 954 955 highbit = fls(xfer_mask) - 1; 956 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 957 return xfer_mode_str[highbit]; 958 return "<n/a>"; 959 } 960 EXPORT_SYMBOL_GPL(ata_mode_string); 961 962 const char *sata_spd_string(unsigned int spd) 963 { 964 static const char * const spd_str[] = { 965 "1.5 Gbps", 966 "3.0 Gbps", 967 "6.0 Gbps", 968 }; 969 970 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 971 return "<unknown>"; 972 return spd_str[spd - 1]; 973 } 974 975 /** 976 * ata_dev_classify - determine device type based on ATA-spec signature 977 * @tf: ATA taskfile register set for device to be identified 978 * 979 * Determine from taskfile register contents whether a device is 980 * ATA or ATAPI, as per "Signature and persistence" section 981 * of ATA/PI spec (volume 1, sect 5.14). 982 * 983 * LOCKING: 984 * None. 985 * 986 * RETURNS: 987 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 988 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 989 */ 990 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 991 { 992 /* Apple's open source Darwin code hints that some devices only 993 * put a proper signature into the LBA mid/high registers, 994 * So, we only check those. It's sufficient for uniqueness. 995 * 996 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 997 * signatures for ATA and ATAPI devices attached on SerialATA, 998 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 999 * spec has never mentioned about using different signatures 1000 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1001 * Multiplier specification began to use 0x69/0x96 to identify 1002 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1003 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1004 * 0x69/0x96 shortly and described them as reserved for 1005 * SerialATA. 1006 * 1007 * We follow the current spec and consider that 0x69/0x96 1008 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1009 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1010 * SEMB signature. This is worked around in 1011 * ata_dev_read_id(). 1012 */ 1013 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1014 DPRINTK("found ATA device by sig\n"); 1015 return ATA_DEV_ATA; 1016 } 1017 1018 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1019 DPRINTK("found ATAPI device by sig\n"); 1020 return ATA_DEV_ATAPI; 1021 } 1022 1023 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1024 DPRINTK("found PMP device by sig\n"); 1025 return ATA_DEV_PMP; 1026 } 1027 1028 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1029 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1030 return ATA_DEV_SEMB; 1031 } 1032 1033 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { 1034 DPRINTK("found ZAC device by sig\n"); 1035 return ATA_DEV_ZAC; 1036 } 1037 1038 DPRINTK("unknown device\n"); 1039 return ATA_DEV_UNKNOWN; 1040 } 1041 EXPORT_SYMBOL_GPL(ata_dev_classify); 1042 1043 /** 1044 * ata_id_string - Convert IDENTIFY DEVICE page into string 1045 * @id: IDENTIFY DEVICE results we will examine 1046 * @s: string into which data is output 1047 * @ofs: offset into identify device page 1048 * @len: length of string to return. must be an even number. 1049 * 1050 * The strings in the IDENTIFY DEVICE page are broken up into 1051 * 16-bit chunks. Run through the string, and output each 1052 * 8-bit chunk linearly, regardless of platform. 1053 * 1054 * LOCKING: 1055 * caller. 1056 */ 1057 1058 void ata_id_string(const u16 *id, unsigned char *s, 1059 unsigned int ofs, unsigned int len) 1060 { 1061 unsigned int c; 1062 1063 BUG_ON(len & 1); 1064 1065 while (len > 0) { 1066 c = id[ofs] >> 8; 1067 *s = c; 1068 s++; 1069 1070 c = id[ofs] & 0xff; 1071 *s = c; 1072 s++; 1073 1074 ofs++; 1075 len -= 2; 1076 } 1077 } 1078 EXPORT_SYMBOL_GPL(ata_id_string); 1079 1080 /** 1081 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1082 * @id: IDENTIFY DEVICE results we will examine 1083 * @s: string into which data is output 1084 * @ofs: offset into identify device page 1085 * @len: length of string to return. must be an odd number. 1086 * 1087 * This function is identical to ata_id_string except that it 1088 * trims trailing spaces and terminates the resulting string with 1089 * null. @len must be actual maximum length (even number) + 1. 1090 * 1091 * LOCKING: 1092 * caller. 1093 */ 1094 void ata_id_c_string(const u16 *id, unsigned char *s, 1095 unsigned int ofs, unsigned int len) 1096 { 1097 unsigned char *p; 1098 1099 ata_id_string(id, s, ofs, len - 1); 1100 1101 p = s + strnlen(s, len - 1); 1102 while (p > s && p[-1] == ' ') 1103 p--; 1104 *p = '\0'; 1105 } 1106 EXPORT_SYMBOL_GPL(ata_id_c_string); 1107 1108 static u64 ata_id_n_sectors(const u16 *id) 1109 { 1110 if (ata_id_has_lba(id)) { 1111 if (ata_id_has_lba48(id)) 1112 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1113 else 1114 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1115 } else { 1116 if (ata_id_current_chs_valid(id)) 1117 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1118 id[ATA_ID_CUR_SECTORS]; 1119 else 1120 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1121 id[ATA_ID_SECTORS]; 1122 } 1123 } 1124 1125 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1126 { 1127 u64 sectors = 0; 1128 1129 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1130 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1131 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1132 sectors |= (tf->lbah & 0xff) << 16; 1133 sectors |= (tf->lbam & 0xff) << 8; 1134 sectors |= (tf->lbal & 0xff); 1135 1136 return sectors; 1137 } 1138 1139 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1140 { 1141 u64 sectors = 0; 1142 1143 sectors |= (tf->device & 0x0f) << 24; 1144 sectors |= (tf->lbah & 0xff) << 16; 1145 sectors |= (tf->lbam & 0xff) << 8; 1146 sectors |= (tf->lbal & 0xff); 1147 1148 return sectors; 1149 } 1150 1151 /** 1152 * ata_read_native_max_address - Read native max address 1153 * @dev: target device 1154 * @max_sectors: out parameter for the result native max address 1155 * 1156 * Perform an LBA48 or LBA28 native size query upon the device in 1157 * question. 1158 * 1159 * RETURNS: 1160 * 0 on success, -EACCES if command is aborted by the drive. 1161 * -EIO on other errors. 1162 */ 1163 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1164 { 1165 unsigned int err_mask; 1166 struct ata_taskfile tf; 1167 int lba48 = ata_id_has_lba48(dev->id); 1168 1169 ata_tf_init(dev, &tf); 1170 1171 /* always clear all address registers */ 1172 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1173 1174 if (lba48) { 1175 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1176 tf.flags |= ATA_TFLAG_LBA48; 1177 } else 1178 tf.command = ATA_CMD_READ_NATIVE_MAX; 1179 1180 tf.protocol = ATA_PROT_NODATA; 1181 tf.device |= ATA_LBA; 1182 1183 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1184 if (err_mask) { 1185 ata_dev_warn(dev, 1186 "failed to read native max address (err_mask=0x%x)\n", 1187 err_mask); 1188 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1189 return -EACCES; 1190 return -EIO; 1191 } 1192 1193 if (lba48) 1194 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1195 else 1196 *max_sectors = ata_tf_to_lba(&tf) + 1; 1197 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1198 (*max_sectors)--; 1199 return 0; 1200 } 1201 1202 /** 1203 * ata_set_max_sectors - Set max sectors 1204 * @dev: target device 1205 * @new_sectors: new max sectors value to set for the device 1206 * 1207 * Set max sectors of @dev to @new_sectors. 1208 * 1209 * RETURNS: 1210 * 0 on success, -EACCES if command is aborted or denied (due to 1211 * previous non-volatile SET_MAX) by the drive. -EIO on other 1212 * errors. 1213 */ 1214 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1215 { 1216 unsigned int err_mask; 1217 struct ata_taskfile tf; 1218 int lba48 = ata_id_has_lba48(dev->id); 1219 1220 new_sectors--; 1221 1222 ata_tf_init(dev, &tf); 1223 1224 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1225 1226 if (lba48) { 1227 tf.command = ATA_CMD_SET_MAX_EXT; 1228 tf.flags |= ATA_TFLAG_LBA48; 1229 1230 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1231 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1232 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1233 } else { 1234 tf.command = ATA_CMD_SET_MAX; 1235 1236 tf.device |= (new_sectors >> 24) & 0xf; 1237 } 1238 1239 tf.protocol = ATA_PROT_NODATA; 1240 tf.device |= ATA_LBA; 1241 1242 tf.lbal = (new_sectors >> 0) & 0xff; 1243 tf.lbam = (new_sectors >> 8) & 0xff; 1244 tf.lbah = (new_sectors >> 16) & 0xff; 1245 1246 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1247 if (err_mask) { 1248 ata_dev_warn(dev, 1249 "failed to set max address (err_mask=0x%x)\n", 1250 err_mask); 1251 if (err_mask == AC_ERR_DEV && 1252 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1253 return -EACCES; 1254 return -EIO; 1255 } 1256 1257 return 0; 1258 } 1259 1260 /** 1261 * ata_hpa_resize - Resize a device with an HPA set 1262 * @dev: Device to resize 1263 * 1264 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1265 * it if required to the full size of the media. The caller must check 1266 * the drive has the HPA feature set enabled. 1267 * 1268 * RETURNS: 1269 * 0 on success, -errno on failure. 1270 */ 1271 static int ata_hpa_resize(struct ata_device *dev) 1272 { 1273 bool print_info = ata_dev_print_info(dev); 1274 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1275 u64 sectors = ata_id_n_sectors(dev->id); 1276 u64 native_sectors; 1277 int rc; 1278 1279 /* do we need to do it? */ 1280 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1281 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1282 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1283 return 0; 1284 1285 /* read native max address */ 1286 rc = ata_read_native_max_address(dev, &native_sectors); 1287 if (rc) { 1288 /* If device aborted the command or HPA isn't going to 1289 * be unlocked, skip HPA resizing. 1290 */ 1291 if (rc == -EACCES || !unlock_hpa) { 1292 ata_dev_warn(dev, 1293 "HPA support seems broken, skipping HPA handling\n"); 1294 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1295 1296 /* we can continue if device aborted the command */ 1297 if (rc == -EACCES) 1298 rc = 0; 1299 } 1300 1301 return rc; 1302 } 1303 dev->n_native_sectors = native_sectors; 1304 1305 /* nothing to do? */ 1306 if (native_sectors <= sectors || !unlock_hpa) { 1307 if (!print_info || native_sectors == sectors) 1308 return 0; 1309 1310 if (native_sectors > sectors) 1311 ata_dev_info(dev, 1312 "HPA detected: current %llu, native %llu\n", 1313 (unsigned long long)sectors, 1314 (unsigned long long)native_sectors); 1315 else if (native_sectors < sectors) 1316 ata_dev_warn(dev, 1317 "native sectors (%llu) is smaller than sectors (%llu)\n", 1318 (unsigned long long)native_sectors, 1319 (unsigned long long)sectors); 1320 return 0; 1321 } 1322 1323 /* let's unlock HPA */ 1324 rc = ata_set_max_sectors(dev, native_sectors); 1325 if (rc == -EACCES) { 1326 /* if device aborted the command, skip HPA resizing */ 1327 ata_dev_warn(dev, 1328 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1329 (unsigned long long)sectors, 1330 (unsigned long long)native_sectors); 1331 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1332 return 0; 1333 } else if (rc) 1334 return rc; 1335 1336 /* re-read IDENTIFY data */ 1337 rc = ata_dev_reread_id(dev, 0); 1338 if (rc) { 1339 ata_dev_err(dev, 1340 "failed to re-read IDENTIFY data after HPA resizing\n"); 1341 return rc; 1342 } 1343 1344 if (print_info) { 1345 u64 new_sectors = ata_id_n_sectors(dev->id); 1346 ata_dev_info(dev, 1347 "HPA unlocked: %llu -> %llu, native %llu\n", 1348 (unsigned long long)sectors, 1349 (unsigned long long)new_sectors, 1350 (unsigned long long)native_sectors); 1351 } 1352 1353 return 0; 1354 } 1355 1356 /** 1357 * ata_dump_id - IDENTIFY DEVICE info debugging output 1358 * @id: IDENTIFY DEVICE page to dump 1359 * 1360 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1361 * page. 1362 * 1363 * LOCKING: 1364 * caller. 1365 */ 1366 1367 static inline void ata_dump_id(const u16 *id) 1368 { 1369 DPRINTK("49==0x%04x " 1370 "53==0x%04x " 1371 "63==0x%04x " 1372 "64==0x%04x " 1373 "75==0x%04x \n", 1374 id[49], 1375 id[53], 1376 id[63], 1377 id[64], 1378 id[75]); 1379 DPRINTK("80==0x%04x " 1380 "81==0x%04x " 1381 "82==0x%04x " 1382 "83==0x%04x " 1383 "84==0x%04x \n", 1384 id[80], 1385 id[81], 1386 id[82], 1387 id[83], 1388 id[84]); 1389 DPRINTK("88==0x%04x " 1390 "93==0x%04x\n", 1391 id[88], 1392 id[93]); 1393 } 1394 1395 /** 1396 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1397 * @id: IDENTIFY data to compute xfer mask from 1398 * 1399 * Compute the xfermask for this device. This is not as trivial 1400 * as it seems if we must consider early devices correctly. 1401 * 1402 * FIXME: pre IDE drive timing (do we care ?). 1403 * 1404 * LOCKING: 1405 * None. 1406 * 1407 * RETURNS: 1408 * Computed xfermask 1409 */ 1410 unsigned long ata_id_xfermask(const u16 *id) 1411 { 1412 unsigned long pio_mask, mwdma_mask, udma_mask; 1413 1414 /* Usual case. Word 53 indicates word 64 is valid */ 1415 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1416 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1417 pio_mask <<= 3; 1418 pio_mask |= 0x7; 1419 } else { 1420 /* If word 64 isn't valid then Word 51 high byte holds 1421 * the PIO timing number for the maximum. Turn it into 1422 * a mask. 1423 */ 1424 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1425 if (mode < 5) /* Valid PIO range */ 1426 pio_mask = (2 << mode) - 1; 1427 else 1428 pio_mask = 1; 1429 1430 /* But wait.. there's more. Design your standards by 1431 * committee and you too can get a free iordy field to 1432 * process. However its the speeds not the modes that 1433 * are supported... Note drivers using the timing API 1434 * will get this right anyway 1435 */ 1436 } 1437 1438 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1439 1440 if (ata_id_is_cfa(id)) { 1441 /* 1442 * Process compact flash extended modes 1443 */ 1444 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1445 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1446 1447 if (pio) 1448 pio_mask |= (1 << 5); 1449 if (pio > 1) 1450 pio_mask |= (1 << 6); 1451 if (dma) 1452 mwdma_mask |= (1 << 3); 1453 if (dma > 1) 1454 mwdma_mask |= (1 << 4); 1455 } 1456 1457 udma_mask = 0; 1458 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1459 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1460 1461 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1462 } 1463 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1464 1465 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1466 { 1467 struct completion *waiting = qc->private_data; 1468 1469 complete(waiting); 1470 } 1471 1472 /** 1473 * ata_exec_internal_sg - execute libata internal command 1474 * @dev: Device to which the command is sent 1475 * @tf: Taskfile registers for the command and the result 1476 * @cdb: CDB for packet command 1477 * @dma_dir: Data transfer direction of the command 1478 * @sgl: sg list for the data buffer of the command 1479 * @n_elem: Number of sg entries 1480 * @timeout: Timeout in msecs (0 for default) 1481 * 1482 * Executes libata internal command with timeout. @tf contains 1483 * command on entry and result on return. Timeout and error 1484 * conditions are reported via return value. No recovery action 1485 * is taken after a command times out. It's caller's duty to 1486 * clean up after timeout. 1487 * 1488 * LOCKING: 1489 * None. Should be called with kernel context, might sleep. 1490 * 1491 * RETURNS: 1492 * Zero on success, AC_ERR_* mask on failure 1493 */ 1494 unsigned ata_exec_internal_sg(struct ata_device *dev, 1495 struct ata_taskfile *tf, const u8 *cdb, 1496 int dma_dir, struct scatterlist *sgl, 1497 unsigned int n_elem, unsigned long timeout) 1498 { 1499 struct ata_link *link = dev->link; 1500 struct ata_port *ap = link->ap; 1501 u8 command = tf->command; 1502 int auto_timeout = 0; 1503 struct ata_queued_cmd *qc; 1504 unsigned int preempted_tag; 1505 u32 preempted_sactive; 1506 u64 preempted_qc_active; 1507 int preempted_nr_active_links; 1508 DECLARE_COMPLETION_ONSTACK(wait); 1509 unsigned long flags; 1510 unsigned int err_mask; 1511 int rc; 1512 1513 spin_lock_irqsave(ap->lock, flags); 1514 1515 /* no internal command while frozen */ 1516 if (ap->pflags & ATA_PFLAG_FROZEN) { 1517 spin_unlock_irqrestore(ap->lock, flags); 1518 return AC_ERR_SYSTEM; 1519 } 1520 1521 /* initialize internal qc */ 1522 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1523 1524 qc->tag = ATA_TAG_INTERNAL; 1525 qc->hw_tag = 0; 1526 qc->scsicmd = NULL; 1527 qc->ap = ap; 1528 qc->dev = dev; 1529 ata_qc_reinit(qc); 1530 1531 preempted_tag = link->active_tag; 1532 preempted_sactive = link->sactive; 1533 preempted_qc_active = ap->qc_active; 1534 preempted_nr_active_links = ap->nr_active_links; 1535 link->active_tag = ATA_TAG_POISON; 1536 link->sactive = 0; 1537 ap->qc_active = 0; 1538 ap->nr_active_links = 0; 1539 1540 /* prepare & issue qc */ 1541 qc->tf = *tf; 1542 if (cdb) 1543 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1544 1545 /* some SATA bridges need us to indicate data xfer direction */ 1546 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1547 dma_dir == DMA_FROM_DEVICE) 1548 qc->tf.feature |= ATAPI_DMADIR; 1549 1550 qc->flags |= ATA_QCFLAG_RESULT_TF; 1551 qc->dma_dir = dma_dir; 1552 if (dma_dir != DMA_NONE) { 1553 unsigned int i, buflen = 0; 1554 struct scatterlist *sg; 1555 1556 for_each_sg(sgl, sg, n_elem, i) 1557 buflen += sg->length; 1558 1559 ata_sg_init(qc, sgl, n_elem); 1560 qc->nbytes = buflen; 1561 } 1562 1563 qc->private_data = &wait; 1564 qc->complete_fn = ata_qc_complete_internal; 1565 1566 ata_qc_issue(qc); 1567 1568 spin_unlock_irqrestore(ap->lock, flags); 1569 1570 if (!timeout) { 1571 if (ata_probe_timeout) 1572 timeout = ata_probe_timeout * 1000; 1573 else { 1574 timeout = ata_internal_cmd_timeout(dev, command); 1575 auto_timeout = 1; 1576 } 1577 } 1578 1579 if (ap->ops->error_handler) 1580 ata_eh_release(ap); 1581 1582 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1583 1584 if (ap->ops->error_handler) 1585 ata_eh_acquire(ap); 1586 1587 ata_sff_flush_pio_task(ap); 1588 1589 if (!rc) { 1590 spin_lock_irqsave(ap->lock, flags); 1591 1592 /* We're racing with irq here. If we lose, the 1593 * following test prevents us from completing the qc 1594 * twice. If we win, the port is frozen and will be 1595 * cleaned up by ->post_internal_cmd(). 1596 */ 1597 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1598 qc->err_mask |= AC_ERR_TIMEOUT; 1599 1600 if (ap->ops->error_handler) 1601 ata_port_freeze(ap); 1602 else 1603 ata_qc_complete(qc); 1604 1605 if (ata_msg_warn(ap)) 1606 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1607 command); 1608 } 1609 1610 spin_unlock_irqrestore(ap->lock, flags); 1611 } 1612 1613 /* do post_internal_cmd */ 1614 if (ap->ops->post_internal_cmd) 1615 ap->ops->post_internal_cmd(qc); 1616 1617 /* perform minimal error analysis */ 1618 if (qc->flags & ATA_QCFLAG_FAILED) { 1619 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1620 qc->err_mask |= AC_ERR_DEV; 1621 1622 if (!qc->err_mask) 1623 qc->err_mask |= AC_ERR_OTHER; 1624 1625 if (qc->err_mask & ~AC_ERR_OTHER) 1626 qc->err_mask &= ~AC_ERR_OTHER; 1627 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1628 qc->result_tf.command |= ATA_SENSE; 1629 } 1630 1631 /* finish up */ 1632 spin_lock_irqsave(ap->lock, flags); 1633 1634 *tf = qc->result_tf; 1635 err_mask = qc->err_mask; 1636 1637 ata_qc_free(qc); 1638 link->active_tag = preempted_tag; 1639 link->sactive = preempted_sactive; 1640 ap->qc_active = preempted_qc_active; 1641 ap->nr_active_links = preempted_nr_active_links; 1642 1643 spin_unlock_irqrestore(ap->lock, flags); 1644 1645 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1646 ata_internal_cmd_timed_out(dev, command); 1647 1648 return err_mask; 1649 } 1650 1651 /** 1652 * ata_exec_internal - execute libata internal command 1653 * @dev: Device to which the command is sent 1654 * @tf: Taskfile registers for the command and the result 1655 * @cdb: CDB for packet command 1656 * @dma_dir: Data transfer direction of the command 1657 * @buf: Data buffer of the command 1658 * @buflen: Length of data buffer 1659 * @timeout: Timeout in msecs (0 for default) 1660 * 1661 * Wrapper around ata_exec_internal_sg() which takes simple 1662 * buffer instead of sg list. 1663 * 1664 * LOCKING: 1665 * None. Should be called with kernel context, might sleep. 1666 * 1667 * RETURNS: 1668 * Zero on success, AC_ERR_* mask on failure 1669 */ 1670 unsigned ata_exec_internal(struct ata_device *dev, 1671 struct ata_taskfile *tf, const u8 *cdb, 1672 int dma_dir, void *buf, unsigned int buflen, 1673 unsigned long timeout) 1674 { 1675 struct scatterlist *psg = NULL, sg; 1676 unsigned int n_elem = 0; 1677 1678 if (dma_dir != DMA_NONE) { 1679 WARN_ON(!buf); 1680 sg_init_one(&sg, buf, buflen); 1681 psg = &sg; 1682 n_elem++; 1683 } 1684 1685 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1686 timeout); 1687 } 1688 1689 /** 1690 * ata_pio_need_iordy - check if iordy needed 1691 * @adev: ATA device 1692 * 1693 * Check if the current speed of the device requires IORDY. Used 1694 * by various controllers for chip configuration. 1695 */ 1696 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1697 { 1698 /* Don't set IORDY if we're preparing for reset. IORDY may 1699 * lead to controller lock up on certain controllers if the 1700 * port is not occupied. See bko#11703 for details. 1701 */ 1702 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1703 return 0; 1704 /* Controller doesn't support IORDY. Probably a pointless 1705 * check as the caller should know this. 1706 */ 1707 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1708 return 0; 1709 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1710 if (ata_id_is_cfa(adev->id) 1711 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1712 return 0; 1713 /* PIO3 and higher it is mandatory */ 1714 if (adev->pio_mode > XFER_PIO_2) 1715 return 1; 1716 /* We turn it on when possible */ 1717 if (ata_id_has_iordy(adev->id)) 1718 return 1; 1719 return 0; 1720 } 1721 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1722 1723 /** 1724 * ata_pio_mask_no_iordy - Return the non IORDY mask 1725 * @adev: ATA device 1726 * 1727 * Compute the highest mode possible if we are not using iordy. Return 1728 * -1 if no iordy mode is available. 1729 */ 1730 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1731 { 1732 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1733 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1734 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1735 /* Is the speed faster than the drive allows non IORDY ? */ 1736 if (pio) { 1737 /* This is cycle times not frequency - watch the logic! */ 1738 if (pio > 240) /* PIO2 is 240nS per cycle */ 1739 return 3 << ATA_SHIFT_PIO; 1740 return 7 << ATA_SHIFT_PIO; 1741 } 1742 } 1743 return 3 << ATA_SHIFT_PIO; 1744 } 1745 1746 /** 1747 * ata_do_dev_read_id - default ID read method 1748 * @dev: device 1749 * @tf: proposed taskfile 1750 * @id: data buffer 1751 * 1752 * Issue the identify taskfile and hand back the buffer containing 1753 * identify data. For some RAID controllers and for pre ATA devices 1754 * this function is wrapped or replaced by the driver 1755 */ 1756 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1757 struct ata_taskfile *tf, u16 *id) 1758 { 1759 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1760 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1761 } 1762 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1763 1764 /** 1765 * ata_dev_read_id - Read ID data from the specified device 1766 * @dev: target device 1767 * @p_class: pointer to class of the target device (may be changed) 1768 * @flags: ATA_READID_* flags 1769 * @id: buffer to read IDENTIFY data into 1770 * 1771 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1772 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1773 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1774 * for pre-ATA4 drives. 1775 * 1776 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1777 * now we abort if we hit that case. 1778 * 1779 * LOCKING: 1780 * Kernel thread context (may sleep) 1781 * 1782 * RETURNS: 1783 * 0 on success, -errno otherwise. 1784 */ 1785 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1786 unsigned int flags, u16 *id) 1787 { 1788 struct ata_port *ap = dev->link->ap; 1789 unsigned int class = *p_class; 1790 struct ata_taskfile tf; 1791 unsigned int err_mask = 0; 1792 const char *reason; 1793 bool is_semb = class == ATA_DEV_SEMB; 1794 int may_fallback = 1, tried_spinup = 0; 1795 int rc; 1796 1797 if (ata_msg_ctl(ap)) 1798 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1799 1800 retry: 1801 ata_tf_init(dev, &tf); 1802 1803 switch (class) { 1804 case ATA_DEV_SEMB: 1805 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1806 fallthrough; 1807 case ATA_DEV_ATA: 1808 case ATA_DEV_ZAC: 1809 tf.command = ATA_CMD_ID_ATA; 1810 break; 1811 case ATA_DEV_ATAPI: 1812 tf.command = ATA_CMD_ID_ATAPI; 1813 break; 1814 default: 1815 rc = -ENODEV; 1816 reason = "unsupported class"; 1817 goto err_out; 1818 } 1819 1820 tf.protocol = ATA_PROT_PIO; 1821 1822 /* Some devices choke if TF registers contain garbage. Make 1823 * sure those are properly initialized. 1824 */ 1825 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1826 1827 /* Device presence detection is unreliable on some 1828 * controllers. Always poll IDENTIFY if available. 1829 */ 1830 tf.flags |= ATA_TFLAG_POLLING; 1831 1832 if (ap->ops->read_id) 1833 err_mask = ap->ops->read_id(dev, &tf, id); 1834 else 1835 err_mask = ata_do_dev_read_id(dev, &tf, id); 1836 1837 if (err_mask) { 1838 if (err_mask & AC_ERR_NODEV_HINT) { 1839 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1840 return -ENOENT; 1841 } 1842 1843 if (is_semb) { 1844 ata_dev_info(dev, 1845 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1846 /* SEMB is not supported yet */ 1847 *p_class = ATA_DEV_SEMB_UNSUP; 1848 return 0; 1849 } 1850 1851 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1852 /* Device or controller might have reported 1853 * the wrong device class. Give a shot at the 1854 * other IDENTIFY if the current one is 1855 * aborted by the device. 1856 */ 1857 if (may_fallback) { 1858 may_fallback = 0; 1859 1860 if (class == ATA_DEV_ATA) 1861 class = ATA_DEV_ATAPI; 1862 else 1863 class = ATA_DEV_ATA; 1864 goto retry; 1865 } 1866 1867 /* Control reaches here iff the device aborted 1868 * both flavors of IDENTIFYs which happens 1869 * sometimes with phantom devices. 1870 */ 1871 ata_dev_dbg(dev, 1872 "both IDENTIFYs aborted, assuming NODEV\n"); 1873 return -ENOENT; 1874 } 1875 1876 rc = -EIO; 1877 reason = "I/O error"; 1878 goto err_out; 1879 } 1880 1881 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1882 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1883 "class=%d may_fallback=%d tried_spinup=%d\n", 1884 class, may_fallback, tried_spinup); 1885 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1886 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1887 } 1888 1889 /* Falling back doesn't make sense if ID data was read 1890 * successfully at least once. 1891 */ 1892 may_fallback = 0; 1893 1894 swap_buf_le16(id, ATA_ID_WORDS); 1895 1896 /* sanity check */ 1897 rc = -EINVAL; 1898 reason = "device reports invalid type"; 1899 1900 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1901 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1902 goto err_out; 1903 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1904 ata_id_is_ata(id)) { 1905 ata_dev_dbg(dev, 1906 "host indicates ignore ATA devices, ignored\n"); 1907 return -ENOENT; 1908 } 1909 } else { 1910 if (ata_id_is_ata(id)) 1911 goto err_out; 1912 } 1913 1914 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1915 tried_spinup = 1; 1916 /* 1917 * Drive powered-up in standby mode, and requires a specific 1918 * SET_FEATURES spin-up subcommand before it will accept 1919 * anything other than the original IDENTIFY command. 1920 */ 1921 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1922 if (err_mask && id[2] != 0x738c) { 1923 rc = -EIO; 1924 reason = "SPINUP failed"; 1925 goto err_out; 1926 } 1927 /* 1928 * If the drive initially returned incomplete IDENTIFY info, 1929 * we now must reissue the IDENTIFY command. 1930 */ 1931 if (id[2] == 0x37c8) 1932 goto retry; 1933 } 1934 1935 if ((flags & ATA_READID_POSTRESET) && 1936 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1937 /* 1938 * The exact sequence expected by certain pre-ATA4 drives is: 1939 * SRST RESET 1940 * IDENTIFY (optional in early ATA) 1941 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1942 * anything else.. 1943 * Some drives were very specific about that exact sequence. 1944 * 1945 * Note that ATA4 says lba is mandatory so the second check 1946 * should never trigger. 1947 */ 1948 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1949 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1950 if (err_mask) { 1951 rc = -EIO; 1952 reason = "INIT_DEV_PARAMS failed"; 1953 goto err_out; 1954 } 1955 1956 /* current CHS translation info (id[53-58]) might be 1957 * changed. reread the identify device info. 1958 */ 1959 flags &= ~ATA_READID_POSTRESET; 1960 goto retry; 1961 } 1962 } 1963 1964 *p_class = class; 1965 1966 return 0; 1967 1968 err_out: 1969 if (ata_msg_warn(ap)) 1970 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1971 reason, err_mask); 1972 return rc; 1973 } 1974 1975 /** 1976 * ata_read_log_page - read a specific log page 1977 * @dev: target device 1978 * @log: log to read 1979 * @page: page to read 1980 * @buf: buffer to store read page 1981 * @sectors: number of sectors to read 1982 * 1983 * Read log page using READ_LOG_EXT command. 1984 * 1985 * LOCKING: 1986 * Kernel thread context (may sleep). 1987 * 1988 * RETURNS: 1989 * 0 on success, AC_ERR_* mask otherwise. 1990 */ 1991 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 1992 u8 page, void *buf, unsigned int sectors) 1993 { 1994 unsigned long ap_flags = dev->link->ap->flags; 1995 struct ata_taskfile tf; 1996 unsigned int err_mask; 1997 bool dma = false; 1998 1999 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page); 2000 2001 /* 2002 * Return error without actually issuing the command on controllers 2003 * which e.g. lockup on a read log page. 2004 */ 2005 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2006 return AC_ERR_DEV; 2007 2008 retry: 2009 ata_tf_init(dev, &tf); 2010 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 2011 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2012 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2013 tf.protocol = ATA_PROT_DMA; 2014 dma = true; 2015 } else { 2016 tf.command = ATA_CMD_READ_LOG_EXT; 2017 tf.protocol = ATA_PROT_PIO; 2018 dma = false; 2019 } 2020 tf.lbal = log; 2021 tf.lbam = page; 2022 tf.nsect = sectors; 2023 tf.hob_nsect = sectors >> 8; 2024 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2025 2026 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2027 buf, sectors * ATA_SECT_SIZE, 0); 2028 2029 if (err_mask) { 2030 if (dma) { 2031 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2032 goto retry; 2033 } 2034 ata_dev_err(dev, "Read log page 0x%02x failed, Emask 0x%x\n", 2035 (unsigned int)page, err_mask); 2036 } 2037 2038 return err_mask; 2039 } 2040 2041 static bool ata_log_supported(struct ata_device *dev, u8 log) 2042 { 2043 struct ata_port *ap = dev->link->ap; 2044 2045 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2046 return false; 2047 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false; 2048 } 2049 2050 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2051 { 2052 struct ata_port *ap = dev->link->ap; 2053 unsigned int err, i; 2054 2055 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG) 2056 return false; 2057 2058 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2059 /* 2060 * IDENTIFY DEVICE data log is defined as mandatory starting 2061 * with ACS-3 (ATA version 10). Warn about the missing log 2062 * for drives which implement this ATA level or above. 2063 */ 2064 if (ata_id_major_version(dev->id) >= 10) 2065 ata_dev_warn(dev, 2066 "ATA Identify Device Log not supported\n"); 2067 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG; 2068 return false; 2069 } 2070 2071 /* 2072 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2073 * supported. 2074 */ 2075 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2076 1); 2077 if (err) 2078 return false; 2079 2080 for (i = 0; i < ap->sector_buf[8]; i++) { 2081 if (ap->sector_buf[9 + i] == page) 2082 return true; 2083 } 2084 2085 return false; 2086 } 2087 2088 static int ata_do_link_spd_horkage(struct ata_device *dev) 2089 { 2090 struct ata_link *plink = ata_dev_phys_link(dev); 2091 u32 target, target_limit; 2092 2093 if (!sata_scr_valid(plink)) 2094 return 0; 2095 2096 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2097 target = 1; 2098 else 2099 return 0; 2100 2101 target_limit = (1 << target) - 1; 2102 2103 /* if already on stricter limit, no need to push further */ 2104 if (plink->sata_spd_limit <= target_limit) 2105 return 0; 2106 2107 plink->sata_spd_limit = target_limit; 2108 2109 /* Request another EH round by returning -EAGAIN if link is 2110 * going faster than the target speed. Forward progress is 2111 * guaranteed by setting sata_spd_limit to target_limit above. 2112 */ 2113 if (plink->sata_spd > target) { 2114 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2115 sata_spd_string(target)); 2116 return -EAGAIN; 2117 } 2118 return 0; 2119 } 2120 2121 static inline u8 ata_dev_knobble(struct ata_device *dev) 2122 { 2123 struct ata_port *ap = dev->link->ap; 2124 2125 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2126 return 0; 2127 2128 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2129 } 2130 2131 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2132 { 2133 struct ata_port *ap = dev->link->ap; 2134 unsigned int err_mask; 2135 2136 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2137 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2138 return; 2139 } 2140 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2141 0, ap->sector_buf, 1); 2142 if (!err_mask) { 2143 u8 *cmds = dev->ncq_send_recv_cmds; 2144 2145 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2146 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2147 2148 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2149 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2150 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2151 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2152 } 2153 } 2154 } 2155 2156 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2157 { 2158 struct ata_port *ap = dev->link->ap; 2159 unsigned int err_mask; 2160 2161 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2162 ata_dev_warn(dev, 2163 "NCQ Send/Recv Log not supported\n"); 2164 return; 2165 } 2166 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2167 0, ap->sector_buf, 1); 2168 if (!err_mask) { 2169 u8 *cmds = dev->ncq_non_data_cmds; 2170 2171 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2172 } 2173 } 2174 2175 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2176 { 2177 struct ata_port *ap = dev->link->ap; 2178 unsigned int err_mask; 2179 2180 err_mask = ata_read_log_page(dev, 2181 ATA_LOG_IDENTIFY_DEVICE, 2182 ATA_LOG_SATA_SETTINGS, 2183 ap->sector_buf, 2184 1); 2185 if (err_mask) 2186 goto not_supported; 2187 2188 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2189 goto not_supported; 2190 2191 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2192 2193 return; 2194 2195 not_supported: 2196 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE; 2197 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2198 } 2199 2200 static bool ata_dev_check_adapter(struct ata_device *dev, 2201 unsigned short vendor_id) 2202 { 2203 struct pci_dev *pcidev = NULL; 2204 struct device *parent_dev = NULL; 2205 2206 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2207 parent_dev = parent_dev->parent) { 2208 if (dev_is_pci(parent_dev)) { 2209 pcidev = to_pci_dev(parent_dev); 2210 if (pcidev->vendor == vendor_id) 2211 return true; 2212 break; 2213 } 2214 } 2215 2216 return false; 2217 } 2218 2219 static int ata_dev_config_ncq(struct ata_device *dev, 2220 char *desc, size_t desc_sz) 2221 { 2222 struct ata_port *ap = dev->link->ap; 2223 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2224 unsigned int err_mask; 2225 char *aa_desc = ""; 2226 2227 if (!ata_id_has_ncq(dev->id)) { 2228 desc[0] = '\0'; 2229 return 0; 2230 } 2231 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2232 return 0; 2233 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2234 snprintf(desc, desc_sz, "NCQ (not used)"); 2235 return 0; 2236 } 2237 2238 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2239 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2240 snprintf(desc, desc_sz, "NCQ (not used)"); 2241 return 0; 2242 } 2243 2244 if (ap->flags & ATA_FLAG_NCQ) { 2245 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2246 dev->flags |= ATA_DFLAG_NCQ; 2247 } 2248 2249 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2250 (ap->flags & ATA_FLAG_FPDMA_AA) && 2251 ata_id_has_fpdma_aa(dev->id)) { 2252 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2253 SATA_FPDMA_AA); 2254 if (err_mask) { 2255 ata_dev_err(dev, 2256 "failed to enable AA (error_mask=0x%x)\n", 2257 err_mask); 2258 if (err_mask != AC_ERR_DEV) { 2259 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2260 return -EIO; 2261 } 2262 } else 2263 aa_desc = ", AA"; 2264 } 2265 2266 if (hdepth >= ddepth) 2267 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2268 else 2269 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2270 ddepth, aa_desc); 2271 2272 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2273 if (ata_id_has_ncq_send_and_recv(dev->id)) 2274 ata_dev_config_ncq_send_recv(dev); 2275 if (ata_id_has_ncq_non_data(dev->id)) 2276 ata_dev_config_ncq_non_data(dev); 2277 if (ata_id_has_ncq_prio(dev->id)) 2278 ata_dev_config_ncq_prio(dev); 2279 } 2280 2281 return 0; 2282 } 2283 2284 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2285 { 2286 unsigned int err_mask; 2287 2288 if (!ata_id_has_sense_reporting(dev->id)) 2289 return; 2290 2291 if (ata_id_sense_reporting_enabled(dev->id)) 2292 return; 2293 2294 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2295 if (err_mask) { 2296 ata_dev_dbg(dev, 2297 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2298 err_mask); 2299 } 2300 } 2301 2302 static void ata_dev_config_zac(struct ata_device *dev) 2303 { 2304 struct ata_port *ap = dev->link->ap; 2305 unsigned int err_mask; 2306 u8 *identify_buf = ap->sector_buf; 2307 2308 dev->zac_zones_optimal_open = U32_MAX; 2309 dev->zac_zones_optimal_nonseq = U32_MAX; 2310 dev->zac_zones_max_open = U32_MAX; 2311 2312 /* 2313 * Always set the 'ZAC' flag for Host-managed devices. 2314 */ 2315 if (dev->class == ATA_DEV_ZAC) 2316 dev->flags |= ATA_DFLAG_ZAC; 2317 else if (ata_id_zoned_cap(dev->id) == 0x01) 2318 /* 2319 * Check for host-aware devices. 2320 */ 2321 dev->flags |= ATA_DFLAG_ZAC; 2322 2323 if (!(dev->flags & ATA_DFLAG_ZAC)) 2324 return; 2325 2326 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2327 ata_dev_warn(dev, 2328 "ATA Zoned Information Log not supported\n"); 2329 return; 2330 } 2331 2332 /* 2333 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2334 */ 2335 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2336 ATA_LOG_ZONED_INFORMATION, 2337 identify_buf, 1); 2338 if (!err_mask) { 2339 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2340 2341 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2342 if ((zoned_cap >> 63)) 2343 dev->zac_zoned_cap = (zoned_cap & 1); 2344 opt_open = get_unaligned_le64(&identify_buf[24]); 2345 if ((opt_open >> 63)) 2346 dev->zac_zones_optimal_open = (u32)opt_open; 2347 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2348 if ((opt_nonseq >> 63)) 2349 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2350 max_open = get_unaligned_le64(&identify_buf[40]); 2351 if ((max_open >> 63)) 2352 dev->zac_zones_max_open = (u32)max_open; 2353 } 2354 } 2355 2356 static void ata_dev_config_trusted(struct ata_device *dev) 2357 { 2358 struct ata_port *ap = dev->link->ap; 2359 u64 trusted_cap; 2360 unsigned int err; 2361 2362 if (!ata_id_has_trusted(dev->id)) 2363 return; 2364 2365 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2366 ata_dev_warn(dev, 2367 "Security Log not supported\n"); 2368 return; 2369 } 2370 2371 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2372 ap->sector_buf, 1); 2373 if (err) 2374 return; 2375 2376 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2377 if (!(trusted_cap & (1ULL << 63))) { 2378 ata_dev_dbg(dev, 2379 "Trusted Computing capability qword not valid!\n"); 2380 return; 2381 } 2382 2383 if (trusted_cap & (1 << 0)) 2384 dev->flags |= ATA_DFLAG_TRUSTED; 2385 } 2386 2387 static int ata_dev_config_lba(struct ata_device *dev) 2388 { 2389 struct ata_port *ap = dev->link->ap; 2390 const u16 *id = dev->id; 2391 const char *lba_desc; 2392 char ncq_desc[24]; 2393 int ret; 2394 2395 dev->flags |= ATA_DFLAG_LBA; 2396 2397 if (ata_id_has_lba48(id)) { 2398 lba_desc = "LBA48"; 2399 dev->flags |= ATA_DFLAG_LBA48; 2400 if (dev->n_sectors >= (1UL << 28) && 2401 ata_id_has_flush_ext(id)) 2402 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2403 } else { 2404 lba_desc = "LBA"; 2405 } 2406 2407 /* config NCQ */ 2408 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2409 2410 /* print device info to dmesg */ 2411 if (ata_msg_drv(ap) && ata_dev_print_info(dev)) 2412 ata_dev_info(dev, 2413 "%llu sectors, multi %u: %s %s\n", 2414 (unsigned long long)dev->n_sectors, 2415 dev->multi_count, lba_desc, ncq_desc); 2416 2417 return ret; 2418 } 2419 2420 static void ata_dev_config_chs(struct ata_device *dev) 2421 { 2422 struct ata_port *ap = dev->link->ap; 2423 const u16 *id = dev->id; 2424 2425 if (ata_id_current_chs_valid(id)) { 2426 /* Current CHS translation is valid. */ 2427 dev->cylinders = id[54]; 2428 dev->heads = id[55]; 2429 dev->sectors = id[56]; 2430 } else { 2431 /* Default translation */ 2432 dev->cylinders = id[1]; 2433 dev->heads = id[3]; 2434 dev->sectors = id[6]; 2435 } 2436 2437 /* print device info to dmesg */ 2438 if (ata_msg_drv(ap) && ata_dev_print_info(dev)) 2439 ata_dev_info(dev, 2440 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2441 (unsigned long long)dev->n_sectors, 2442 dev->multi_count, dev->cylinders, 2443 dev->heads, dev->sectors); 2444 } 2445 2446 static void ata_dev_config_devslp(struct ata_device *dev) 2447 { 2448 u8 *sata_setting = dev->link->ap->sector_buf; 2449 unsigned int err_mask; 2450 int i, j; 2451 2452 /* 2453 * Check device sleep capability. Get DevSlp timing variables 2454 * from SATA Settings page of Identify Device Data Log. 2455 */ 2456 if (!ata_id_has_devslp(dev->id)) 2457 return; 2458 2459 err_mask = ata_read_log_page(dev, 2460 ATA_LOG_IDENTIFY_DEVICE, 2461 ATA_LOG_SATA_SETTINGS, 2462 sata_setting, 1); 2463 if (err_mask) 2464 return; 2465 2466 dev->flags |= ATA_DFLAG_DEVSLP; 2467 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2468 j = ATA_LOG_DEVSLP_OFFSET + i; 2469 dev->devslp_timing[i] = sata_setting[j]; 2470 } 2471 } 2472 2473 static void ata_dev_config_cpr(struct ata_device *dev) 2474 { 2475 unsigned int err_mask; 2476 size_t buf_len; 2477 int i, nr_cpr = 0; 2478 struct ata_cpr_log *cpr_log = NULL; 2479 u8 *desc, *buf = NULL; 2480 2481 if (!ata_identify_page_supported(dev, 2482 ATA_LOG_CONCURRENT_POSITIONING_RANGES)) 2483 goto out; 2484 2485 /* 2486 * Read IDENTIFY DEVICE data log, page 0x47 2487 * (concurrent positioning ranges). We can have at most 255 32B range 2488 * descriptors plus a 64B header. 2489 */ 2490 buf_len = (64 + 255 * 32 + 511) & ~511; 2491 buf = kzalloc(buf_len, GFP_KERNEL); 2492 if (!buf) 2493 goto out; 2494 2495 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2496 ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2497 buf, buf_len >> 9); 2498 if (err_mask) 2499 goto out; 2500 2501 nr_cpr = buf[0]; 2502 if (!nr_cpr) 2503 goto out; 2504 2505 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2506 if (!cpr_log) 2507 goto out; 2508 2509 cpr_log->nr_cpr = nr_cpr; 2510 desc = &buf[64]; 2511 for (i = 0; i < nr_cpr; i++, desc += 32) { 2512 cpr_log->cpr[i].num = desc[0]; 2513 cpr_log->cpr[i].num_storage_elements = desc[1]; 2514 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2515 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2516 } 2517 2518 out: 2519 swap(dev->cpr_log, cpr_log); 2520 kfree(cpr_log); 2521 kfree(buf); 2522 } 2523 2524 static void ata_dev_print_features(struct ata_device *dev) 2525 { 2526 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2527 return; 2528 2529 ata_dev_info(dev, 2530 "Features:%s%s%s%s%s%s\n", 2531 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2532 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2533 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2534 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2535 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2536 dev->cpr_log ? " CPR" : ""); 2537 } 2538 2539 /** 2540 * ata_dev_configure - Configure the specified ATA/ATAPI device 2541 * @dev: Target device to configure 2542 * 2543 * Configure @dev according to @dev->id. Generic and low-level 2544 * driver specific fixups are also applied. 2545 * 2546 * LOCKING: 2547 * Kernel thread context (may sleep) 2548 * 2549 * RETURNS: 2550 * 0 on success, -errno otherwise 2551 */ 2552 int ata_dev_configure(struct ata_device *dev) 2553 { 2554 struct ata_port *ap = dev->link->ap; 2555 bool print_info = ata_dev_print_info(dev); 2556 const u16 *id = dev->id; 2557 unsigned long xfer_mask; 2558 unsigned int err_mask; 2559 char revbuf[7]; /* XYZ-99\0 */ 2560 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2561 char modelbuf[ATA_ID_PROD_LEN+1]; 2562 int rc; 2563 2564 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2565 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2566 return 0; 2567 } 2568 2569 if (ata_msg_probe(ap)) 2570 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2571 2572 /* set horkage */ 2573 dev->horkage |= ata_dev_blacklisted(dev); 2574 ata_force_horkage(dev); 2575 2576 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2577 ata_dev_info(dev, "unsupported device, disabling\n"); 2578 ata_dev_disable(dev); 2579 return 0; 2580 } 2581 2582 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2583 dev->class == ATA_DEV_ATAPI) { 2584 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2585 atapi_enabled ? "not supported with this driver" 2586 : "disabled"); 2587 ata_dev_disable(dev); 2588 return 0; 2589 } 2590 2591 rc = ata_do_link_spd_horkage(dev); 2592 if (rc) 2593 return rc; 2594 2595 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2596 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2597 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2598 dev->horkage |= ATA_HORKAGE_NOLPM; 2599 2600 if (ap->flags & ATA_FLAG_NO_LPM) 2601 dev->horkage |= ATA_HORKAGE_NOLPM; 2602 2603 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2604 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2605 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2606 } 2607 2608 /* let ACPI work its magic */ 2609 rc = ata_acpi_on_devcfg(dev); 2610 if (rc) 2611 return rc; 2612 2613 /* massage HPA, do it early as it might change IDENTIFY data */ 2614 rc = ata_hpa_resize(dev); 2615 if (rc) 2616 return rc; 2617 2618 /* print device capabilities */ 2619 if (ata_msg_probe(ap)) 2620 ata_dev_dbg(dev, 2621 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2622 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2623 __func__, 2624 id[49], id[82], id[83], id[84], 2625 id[85], id[86], id[87], id[88]); 2626 2627 /* initialize to-be-configured parameters */ 2628 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2629 dev->max_sectors = 0; 2630 dev->cdb_len = 0; 2631 dev->n_sectors = 0; 2632 dev->cylinders = 0; 2633 dev->heads = 0; 2634 dev->sectors = 0; 2635 dev->multi_count = 0; 2636 2637 /* 2638 * common ATA, ATAPI feature tests 2639 */ 2640 2641 /* find max transfer mode; for printk only */ 2642 xfer_mask = ata_id_xfermask(id); 2643 2644 if (ata_msg_probe(ap)) 2645 ata_dump_id(id); 2646 2647 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2648 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2649 sizeof(fwrevbuf)); 2650 2651 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2652 sizeof(modelbuf)); 2653 2654 /* ATA-specific feature tests */ 2655 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2656 if (ata_id_is_cfa(id)) { 2657 /* CPRM may make this media unusable */ 2658 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2659 ata_dev_warn(dev, 2660 "supports DRM functions and may not be fully accessible\n"); 2661 snprintf(revbuf, 7, "CFA"); 2662 } else { 2663 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2664 /* Warn the user if the device has TPM extensions */ 2665 if (ata_id_has_tpm(id)) 2666 ata_dev_warn(dev, 2667 "supports DRM functions and may not be fully accessible\n"); 2668 } 2669 2670 dev->n_sectors = ata_id_n_sectors(id); 2671 2672 /* get current R/W Multiple count setting */ 2673 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2674 unsigned int max = dev->id[47] & 0xff; 2675 unsigned int cnt = dev->id[59] & 0xff; 2676 /* only recognize/allow powers of two here */ 2677 if (is_power_of_2(max) && is_power_of_2(cnt)) 2678 if (cnt <= max) 2679 dev->multi_count = cnt; 2680 } 2681 2682 /* print device info to dmesg */ 2683 if (ata_msg_drv(ap) && print_info) 2684 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2685 revbuf, modelbuf, fwrevbuf, 2686 ata_mode_string(xfer_mask)); 2687 2688 if (ata_id_has_lba(id)) { 2689 rc = ata_dev_config_lba(dev); 2690 if (rc) 2691 return rc; 2692 } else { 2693 ata_dev_config_chs(dev); 2694 } 2695 2696 ata_dev_config_devslp(dev); 2697 ata_dev_config_sense_reporting(dev); 2698 ata_dev_config_zac(dev); 2699 ata_dev_config_trusted(dev); 2700 ata_dev_config_cpr(dev); 2701 dev->cdb_len = 32; 2702 2703 if (ata_msg_drv(ap) && print_info) 2704 ata_dev_print_features(dev); 2705 } 2706 2707 /* ATAPI-specific feature tests */ 2708 else if (dev->class == ATA_DEV_ATAPI) { 2709 const char *cdb_intr_string = ""; 2710 const char *atapi_an_string = ""; 2711 const char *dma_dir_string = ""; 2712 u32 sntf; 2713 2714 rc = atapi_cdb_len(id); 2715 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2716 if (ata_msg_warn(ap)) 2717 ata_dev_warn(dev, "unsupported CDB len\n"); 2718 rc = -EINVAL; 2719 goto err_out_nosup; 2720 } 2721 dev->cdb_len = (unsigned int) rc; 2722 2723 /* Enable ATAPI AN if both the host and device have 2724 * the support. If PMP is attached, SNTF is required 2725 * to enable ATAPI AN to discern between PHY status 2726 * changed notifications and ATAPI ANs. 2727 */ 2728 if (atapi_an && 2729 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2730 (!sata_pmp_attached(ap) || 2731 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2732 /* issue SET feature command to turn this on */ 2733 err_mask = ata_dev_set_feature(dev, 2734 SETFEATURES_SATA_ENABLE, SATA_AN); 2735 if (err_mask) 2736 ata_dev_err(dev, 2737 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2738 err_mask); 2739 else { 2740 dev->flags |= ATA_DFLAG_AN; 2741 atapi_an_string = ", ATAPI AN"; 2742 } 2743 } 2744 2745 if (ata_id_cdb_intr(dev->id)) { 2746 dev->flags |= ATA_DFLAG_CDB_INTR; 2747 cdb_intr_string = ", CDB intr"; 2748 } 2749 2750 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2751 dev->flags |= ATA_DFLAG_DMADIR; 2752 dma_dir_string = ", DMADIR"; 2753 } 2754 2755 if (ata_id_has_da(dev->id)) { 2756 dev->flags |= ATA_DFLAG_DA; 2757 zpodd_init(dev); 2758 } 2759 2760 /* print device info to dmesg */ 2761 if (ata_msg_drv(ap) && print_info) 2762 ata_dev_info(dev, 2763 "ATAPI: %s, %s, max %s%s%s%s\n", 2764 modelbuf, fwrevbuf, 2765 ata_mode_string(xfer_mask), 2766 cdb_intr_string, atapi_an_string, 2767 dma_dir_string); 2768 } 2769 2770 /* determine max_sectors */ 2771 dev->max_sectors = ATA_MAX_SECTORS; 2772 if (dev->flags & ATA_DFLAG_LBA48) 2773 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2774 2775 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2776 200 sectors */ 2777 if (ata_dev_knobble(dev)) { 2778 if (ata_msg_drv(ap) && print_info) 2779 ata_dev_info(dev, "applying bridge limits\n"); 2780 dev->udma_mask &= ATA_UDMA5; 2781 dev->max_sectors = ATA_MAX_SECTORS; 2782 } 2783 2784 if ((dev->class == ATA_DEV_ATAPI) && 2785 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2786 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2787 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2788 } 2789 2790 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2791 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2792 dev->max_sectors); 2793 2794 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2795 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2796 dev->max_sectors); 2797 2798 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2799 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2800 2801 if (ap->ops->dev_config) 2802 ap->ops->dev_config(dev); 2803 2804 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2805 /* Let the user know. We don't want to disallow opens for 2806 rescue purposes, or in case the vendor is just a blithering 2807 idiot. Do this after the dev_config call as some controllers 2808 with buggy firmware may want to avoid reporting false device 2809 bugs */ 2810 2811 if (print_info) { 2812 ata_dev_warn(dev, 2813 "Drive reports diagnostics failure. This may indicate a drive\n"); 2814 ata_dev_warn(dev, 2815 "fault or invalid emulation. Contact drive vendor for information.\n"); 2816 } 2817 } 2818 2819 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2820 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2821 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2822 } 2823 2824 return 0; 2825 2826 err_out_nosup: 2827 if (ata_msg_probe(ap)) 2828 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2829 return rc; 2830 } 2831 2832 /** 2833 * ata_cable_40wire - return 40 wire cable type 2834 * @ap: port 2835 * 2836 * Helper method for drivers which want to hardwire 40 wire cable 2837 * detection. 2838 */ 2839 2840 int ata_cable_40wire(struct ata_port *ap) 2841 { 2842 return ATA_CBL_PATA40; 2843 } 2844 EXPORT_SYMBOL_GPL(ata_cable_40wire); 2845 2846 /** 2847 * ata_cable_80wire - return 80 wire cable type 2848 * @ap: port 2849 * 2850 * Helper method for drivers which want to hardwire 80 wire cable 2851 * detection. 2852 */ 2853 2854 int ata_cable_80wire(struct ata_port *ap) 2855 { 2856 return ATA_CBL_PATA80; 2857 } 2858 EXPORT_SYMBOL_GPL(ata_cable_80wire); 2859 2860 /** 2861 * ata_cable_unknown - return unknown PATA cable. 2862 * @ap: port 2863 * 2864 * Helper method for drivers which have no PATA cable detection. 2865 */ 2866 2867 int ata_cable_unknown(struct ata_port *ap) 2868 { 2869 return ATA_CBL_PATA_UNK; 2870 } 2871 EXPORT_SYMBOL_GPL(ata_cable_unknown); 2872 2873 /** 2874 * ata_cable_ignore - return ignored PATA cable. 2875 * @ap: port 2876 * 2877 * Helper method for drivers which don't use cable type to limit 2878 * transfer mode. 2879 */ 2880 int ata_cable_ignore(struct ata_port *ap) 2881 { 2882 return ATA_CBL_PATA_IGN; 2883 } 2884 EXPORT_SYMBOL_GPL(ata_cable_ignore); 2885 2886 /** 2887 * ata_cable_sata - return SATA cable type 2888 * @ap: port 2889 * 2890 * Helper method for drivers which have SATA cables 2891 */ 2892 2893 int ata_cable_sata(struct ata_port *ap) 2894 { 2895 return ATA_CBL_SATA; 2896 } 2897 EXPORT_SYMBOL_GPL(ata_cable_sata); 2898 2899 /** 2900 * ata_bus_probe - Reset and probe ATA bus 2901 * @ap: Bus to probe 2902 * 2903 * Master ATA bus probing function. Initiates a hardware-dependent 2904 * bus reset, then attempts to identify any devices found on 2905 * the bus. 2906 * 2907 * LOCKING: 2908 * PCI/etc. bus probe sem. 2909 * 2910 * RETURNS: 2911 * Zero on success, negative errno otherwise. 2912 */ 2913 2914 int ata_bus_probe(struct ata_port *ap) 2915 { 2916 unsigned int classes[ATA_MAX_DEVICES]; 2917 int tries[ATA_MAX_DEVICES]; 2918 int rc; 2919 struct ata_device *dev; 2920 2921 ata_for_each_dev(dev, &ap->link, ALL) 2922 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2923 2924 retry: 2925 ata_for_each_dev(dev, &ap->link, ALL) { 2926 /* If we issue an SRST then an ATA drive (not ATAPI) 2927 * may change configuration and be in PIO0 timing. If 2928 * we do a hard reset (or are coming from power on) 2929 * this is true for ATA or ATAPI. Until we've set a 2930 * suitable controller mode we should not touch the 2931 * bus as we may be talking too fast. 2932 */ 2933 dev->pio_mode = XFER_PIO_0; 2934 dev->dma_mode = 0xff; 2935 2936 /* If the controller has a pio mode setup function 2937 * then use it to set the chipset to rights. Don't 2938 * touch the DMA setup as that will be dealt with when 2939 * configuring devices. 2940 */ 2941 if (ap->ops->set_piomode) 2942 ap->ops->set_piomode(ap, dev); 2943 } 2944 2945 /* reset and determine device classes */ 2946 ap->ops->phy_reset(ap); 2947 2948 ata_for_each_dev(dev, &ap->link, ALL) { 2949 if (dev->class != ATA_DEV_UNKNOWN) 2950 classes[dev->devno] = dev->class; 2951 else 2952 classes[dev->devno] = ATA_DEV_NONE; 2953 2954 dev->class = ATA_DEV_UNKNOWN; 2955 } 2956 2957 /* read IDENTIFY page and configure devices. We have to do the identify 2958 specific sequence bass-ackwards so that PDIAG- is released by 2959 the slave device */ 2960 2961 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2962 if (tries[dev->devno]) 2963 dev->class = classes[dev->devno]; 2964 2965 if (!ata_dev_enabled(dev)) 2966 continue; 2967 2968 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2969 dev->id); 2970 if (rc) 2971 goto fail; 2972 } 2973 2974 /* Now ask for the cable type as PDIAG- should have been released */ 2975 if (ap->ops->cable_detect) 2976 ap->cbl = ap->ops->cable_detect(ap); 2977 2978 /* We may have SATA bridge glue hiding here irrespective of 2979 * the reported cable types and sensed types. When SATA 2980 * drives indicate we have a bridge, we don't know which end 2981 * of the link the bridge is which is a problem. 2982 */ 2983 ata_for_each_dev(dev, &ap->link, ENABLED) 2984 if (ata_id_is_sata(dev->id)) 2985 ap->cbl = ATA_CBL_SATA; 2986 2987 /* After the identify sequence we can now set up the devices. We do 2988 this in the normal order so that the user doesn't get confused */ 2989 2990 ata_for_each_dev(dev, &ap->link, ENABLED) { 2991 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2992 rc = ata_dev_configure(dev); 2993 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2994 if (rc) 2995 goto fail; 2996 } 2997 2998 /* configure transfer mode */ 2999 rc = ata_set_mode(&ap->link, &dev); 3000 if (rc) 3001 goto fail; 3002 3003 ata_for_each_dev(dev, &ap->link, ENABLED) 3004 return 0; 3005 3006 return -ENODEV; 3007 3008 fail: 3009 tries[dev->devno]--; 3010 3011 switch (rc) { 3012 case -EINVAL: 3013 /* eeek, something went very wrong, give up */ 3014 tries[dev->devno] = 0; 3015 break; 3016 3017 case -ENODEV: 3018 /* give it just one more chance */ 3019 tries[dev->devno] = min(tries[dev->devno], 1); 3020 fallthrough; 3021 case -EIO: 3022 if (tries[dev->devno] == 1) { 3023 /* This is the last chance, better to slow 3024 * down than lose it. 3025 */ 3026 sata_down_spd_limit(&ap->link, 0); 3027 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 3028 } 3029 } 3030 3031 if (!tries[dev->devno]) 3032 ata_dev_disable(dev); 3033 3034 goto retry; 3035 } 3036 3037 /** 3038 * sata_print_link_status - Print SATA link status 3039 * @link: SATA link to printk link status about 3040 * 3041 * This function prints link speed and status of a SATA link. 3042 * 3043 * LOCKING: 3044 * None. 3045 */ 3046 static void sata_print_link_status(struct ata_link *link) 3047 { 3048 u32 sstatus, scontrol, tmp; 3049 3050 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3051 return; 3052 sata_scr_read(link, SCR_CONTROL, &scontrol); 3053 3054 if (ata_phys_link_online(link)) { 3055 tmp = (sstatus >> 4) & 0xf; 3056 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3057 sata_spd_string(tmp), sstatus, scontrol); 3058 } else { 3059 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3060 sstatus, scontrol); 3061 } 3062 } 3063 3064 /** 3065 * ata_dev_pair - return other device on cable 3066 * @adev: device 3067 * 3068 * Obtain the other device on the same cable, or if none is 3069 * present NULL is returned 3070 */ 3071 3072 struct ata_device *ata_dev_pair(struct ata_device *adev) 3073 { 3074 struct ata_link *link = adev->link; 3075 struct ata_device *pair = &link->device[1 - adev->devno]; 3076 if (!ata_dev_enabled(pair)) 3077 return NULL; 3078 return pair; 3079 } 3080 EXPORT_SYMBOL_GPL(ata_dev_pair); 3081 3082 /** 3083 * sata_down_spd_limit - adjust SATA spd limit downward 3084 * @link: Link to adjust SATA spd limit for 3085 * @spd_limit: Additional limit 3086 * 3087 * Adjust SATA spd limit of @link downward. Note that this 3088 * function only adjusts the limit. The change must be applied 3089 * using sata_set_spd(). 3090 * 3091 * If @spd_limit is non-zero, the speed is limited to equal to or 3092 * lower than @spd_limit if such speed is supported. If 3093 * @spd_limit is slower than any supported speed, only the lowest 3094 * supported speed is allowed. 3095 * 3096 * LOCKING: 3097 * Inherited from caller. 3098 * 3099 * RETURNS: 3100 * 0 on success, negative errno on failure 3101 */ 3102 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3103 { 3104 u32 sstatus, spd, mask; 3105 int rc, bit; 3106 3107 if (!sata_scr_valid(link)) 3108 return -EOPNOTSUPP; 3109 3110 /* If SCR can be read, use it to determine the current SPD. 3111 * If not, use cached value in link->sata_spd. 3112 */ 3113 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3114 if (rc == 0 && ata_sstatus_online(sstatus)) 3115 spd = (sstatus >> 4) & 0xf; 3116 else 3117 spd = link->sata_spd; 3118 3119 mask = link->sata_spd_limit; 3120 if (mask <= 1) 3121 return -EINVAL; 3122 3123 /* unconditionally mask off the highest bit */ 3124 bit = fls(mask) - 1; 3125 mask &= ~(1 << bit); 3126 3127 /* 3128 * Mask off all speeds higher than or equal to the current one. At 3129 * this point, if current SPD is not available and we previously 3130 * recorded the link speed from SStatus, the driver has already 3131 * masked off the highest bit so mask should already be 1 or 0. 3132 * Otherwise, we should not force 1.5Gbps on a link where we have 3133 * not previously recorded speed from SStatus. Just return in this 3134 * case. 3135 */ 3136 if (spd > 1) 3137 mask &= (1 << (spd - 1)) - 1; 3138 else 3139 return -EINVAL; 3140 3141 /* were we already at the bottom? */ 3142 if (!mask) 3143 return -EINVAL; 3144 3145 if (spd_limit) { 3146 if (mask & ((1 << spd_limit) - 1)) 3147 mask &= (1 << spd_limit) - 1; 3148 else { 3149 bit = ffs(mask) - 1; 3150 mask = 1 << bit; 3151 } 3152 } 3153 3154 link->sata_spd_limit = mask; 3155 3156 ata_link_warn(link, "limiting SATA link speed to %s\n", 3157 sata_spd_string(fls(mask))); 3158 3159 return 0; 3160 } 3161 3162 #ifdef CONFIG_ATA_ACPI 3163 /** 3164 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3165 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3166 * @cycle: cycle duration in ns 3167 * 3168 * Return matching xfer mode for @cycle. The returned mode is of 3169 * the transfer type specified by @xfer_shift. If @cycle is too 3170 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3171 * than the fastest known mode, the fasted mode is returned. 3172 * 3173 * LOCKING: 3174 * None. 3175 * 3176 * RETURNS: 3177 * Matching xfer_mode, 0xff if no match found. 3178 */ 3179 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3180 { 3181 u8 base_mode = 0xff, last_mode = 0xff; 3182 const struct ata_xfer_ent *ent; 3183 const struct ata_timing *t; 3184 3185 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3186 if (ent->shift == xfer_shift) 3187 base_mode = ent->base; 3188 3189 for (t = ata_timing_find_mode(base_mode); 3190 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3191 unsigned short this_cycle; 3192 3193 switch (xfer_shift) { 3194 case ATA_SHIFT_PIO: 3195 case ATA_SHIFT_MWDMA: 3196 this_cycle = t->cycle; 3197 break; 3198 case ATA_SHIFT_UDMA: 3199 this_cycle = t->udma; 3200 break; 3201 default: 3202 return 0xff; 3203 } 3204 3205 if (cycle > this_cycle) 3206 break; 3207 3208 last_mode = t->mode; 3209 } 3210 3211 return last_mode; 3212 } 3213 #endif 3214 3215 /** 3216 * ata_down_xfermask_limit - adjust dev xfer masks downward 3217 * @dev: Device to adjust xfer masks 3218 * @sel: ATA_DNXFER_* selector 3219 * 3220 * Adjust xfer masks of @dev downward. Note that this function 3221 * does not apply the change. Invoking ata_set_mode() afterwards 3222 * will apply the limit. 3223 * 3224 * LOCKING: 3225 * Inherited from caller. 3226 * 3227 * RETURNS: 3228 * 0 on success, negative errno on failure 3229 */ 3230 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3231 { 3232 char buf[32]; 3233 unsigned long orig_mask, xfer_mask; 3234 unsigned long pio_mask, mwdma_mask, udma_mask; 3235 int quiet, highbit; 3236 3237 quiet = !!(sel & ATA_DNXFER_QUIET); 3238 sel &= ~ATA_DNXFER_QUIET; 3239 3240 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3241 dev->mwdma_mask, 3242 dev->udma_mask); 3243 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3244 3245 switch (sel) { 3246 case ATA_DNXFER_PIO: 3247 highbit = fls(pio_mask) - 1; 3248 pio_mask &= ~(1 << highbit); 3249 break; 3250 3251 case ATA_DNXFER_DMA: 3252 if (udma_mask) { 3253 highbit = fls(udma_mask) - 1; 3254 udma_mask &= ~(1 << highbit); 3255 if (!udma_mask) 3256 return -ENOENT; 3257 } else if (mwdma_mask) { 3258 highbit = fls(mwdma_mask) - 1; 3259 mwdma_mask &= ~(1 << highbit); 3260 if (!mwdma_mask) 3261 return -ENOENT; 3262 } 3263 break; 3264 3265 case ATA_DNXFER_40C: 3266 udma_mask &= ATA_UDMA_MASK_40C; 3267 break; 3268 3269 case ATA_DNXFER_FORCE_PIO0: 3270 pio_mask &= 1; 3271 fallthrough; 3272 case ATA_DNXFER_FORCE_PIO: 3273 mwdma_mask = 0; 3274 udma_mask = 0; 3275 break; 3276 3277 default: 3278 BUG(); 3279 } 3280 3281 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3282 3283 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3284 return -ENOENT; 3285 3286 if (!quiet) { 3287 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3288 snprintf(buf, sizeof(buf), "%s:%s", 3289 ata_mode_string(xfer_mask), 3290 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3291 else 3292 snprintf(buf, sizeof(buf), "%s", 3293 ata_mode_string(xfer_mask)); 3294 3295 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3296 } 3297 3298 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3299 &dev->udma_mask); 3300 3301 return 0; 3302 } 3303 3304 static int ata_dev_set_mode(struct ata_device *dev) 3305 { 3306 struct ata_port *ap = dev->link->ap; 3307 struct ata_eh_context *ehc = &dev->link->eh_context; 3308 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3309 const char *dev_err_whine = ""; 3310 int ign_dev_err = 0; 3311 unsigned int err_mask = 0; 3312 int rc; 3313 3314 dev->flags &= ~ATA_DFLAG_PIO; 3315 if (dev->xfer_shift == ATA_SHIFT_PIO) 3316 dev->flags |= ATA_DFLAG_PIO; 3317 3318 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3319 dev_err_whine = " (SET_XFERMODE skipped)"; 3320 else { 3321 if (nosetxfer) 3322 ata_dev_warn(dev, 3323 "NOSETXFER but PATA detected - can't " 3324 "skip SETXFER, might malfunction\n"); 3325 err_mask = ata_dev_set_xfermode(dev); 3326 } 3327 3328 if (err_mask & ~AC_ERR_DEV) 3329 goto fail; 3330 3331 /* revalidate */ 3332 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3333 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3334 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3335 if (rc) 3336 return rc; 3337 3338 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3339 /* Old CFA may refuse this command, which is just fine */ 3340 if (ata_id_is_cfa(dev->id)) 3341 ign_dev_err = 1; 3342 /* Catch several broken garbage emulations plus some pre 3343 ATA devices */ 3344 if (ata_id_major_version(dev->id) == 0 && 3345 dev->pio_mode <= XFER_PIO_2) 3346 ign_dev_err = 1; 3347 /* Some very old devices and some bad newer ones fail 3348 any kind of SET_XFERMODE request but support PIO0-2 3349 timings and no IORDY */ 3350 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3351 ign_dev_err = 1; 3352 } 3353 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3354 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3355 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3356 dev->dma_mode == XFER_MW_DMA_0 && 3357 (dev->id[63] >> 8) & 1) 3358 ign_dev_err = 1; 3359 3360 /* if the device is actually configured correctly, ignore dev err */ 3361 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3362 ign_dev_err = 1; 3363 3364 if (err_mask & AC_ERR_DEV) { 3365 if (!ign_dev_err) 3366 goto fail; 3367 else 3368 dev_err_whine = " (device error ignored)"; 3369 } 3370 3371 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3372 dev->xfer_shift, (int)dev->xfer_mode); 3373 3374 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3375 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3376 ata_dev_info(dev, "configured for %s%s\n", 3377 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3378 dev_err_whine); 3379 3380 return 0; 3381 3382 fail: 3383 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3384 return -EIO; 3385 } 3386 3387 /** 3388 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3389 * @link: link on which timings will be programmed 3390 * @r_failed_dev: out parameter for failed device 3391 * 3392 * Standard implementation of the function used to tune and set 3393 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3394 * ata_dev_set_mode() fails, pointer to the failing device is 3395 * returned in @r_failed_dev. 3396 * 3397 * LOCKING: 3398 * PCI/etc. bus probe sem. 3399 * 3400 * RETURNS: 3401 * 0 on success, negative errno otherwise 3402 */ 3403 3404 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3405 { 3406 struct ata_port *ap = link->ap; 3407 struct ata_device *dev; 3408 int rc = 0, used_dma = 0, found = 0; 3409 3410 /* step 1: calculate xfer_mask */ 3411 ata_for_each_dev(dev, link, ENABLED) { 3412 unsigned long pio_mask, dma_mask; 3413 unsigned int mode_mask; 3414 3415 mode_mask = ATA_DMA_MASK_ATA; 3416 if (dev->class == ATA_DEV_ATAPI) 3417 mode_mask = ATA_DMA_MASK_ATAPI; 3418 else if (ata_id_is_cfa(dev->id)) 3419 mode_mask = ATA_DMA_MASK_CFA; 3420 3421 ata_dev_xfermask(dev); 3422 ata_force_xfermask(dev); 3423 3424 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3425 3426 if (libata_dma_mask & mode_mask) 3427 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3428 dev->udma_mask); 3429 else 3430 dma_mask = 0; 3431 3432 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3433 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3434 3435 found = 1; 3436 if (ata_dma_enabled(dev)) 3437 used_dma = 1; 3438 } 3439 if (!found) 3440 goto out; 3441 3442 /* step 2: always set host PIO timings */ 3443 ata_for_each_dev(dev, link, ENABLED) { 3444 if (dev->pio_mode == 0xff) { 3445 ata_dev_warn(dev, "no PIO support\n"); 3446 rc = -EINVAL; 3447 goto out; 3448 } 3449 3450 dev->xfer_mode = dev->pio_mode; 3451 dev->xfer_shift = ATA_SHIFT_PIO; 3452 if (ap->ops->set_piomode) 3453 ap->ops->set_piomode(ap, dev); 3454 } 3455 3456 /* step 3: set host DMA timings */ 3457 ata_for_each_dev(dev, link, ENABLED) { 3458 if (!ata_dma_enabled(dev)) 3459 continue; 3460 3461 dev->xfer_mode = dev->dma_mode; 3462 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3463 if (ap->ops->set_dmamode) 3464 ap->ops->set_dmamode(ap, dev); 3465 } 3466 3467 /* step 4: update devices' xfer mode */ 3468 ata_for_each_dev(dev, link, ENABLED) { 3469 rc = ata_dev_set_mode(dev); 3470 if (rc) 3471 goto out; 3472 } 3473 3474 /* Record simplex status. If we selected DMA then the other 3475 * host channels are not permitted to do so. 3476 */ 3477 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3478 ap->host->simplex_claimed = ap; 3479 3480 out: 3481 if (rc) 3482 *r_failed_dev = dev; 3483 return rc; 3484 } 3485 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3486 3487 /** 3488 * ata_wait_ready - wait for link to become ready 3489 * @link: link to be waited on 3490 * @deadline: deadline jiffies for the operation 3491 * @check_ready: callback to check link readiness 3492 * 3493 * Wait for @link to become ready. @check_ready should return 3494 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3495 * link doesn't seem to be occupied, other errno for other error 3496 * conditions. 3497 * 3498 * Transient -ENODEV conditions are allowed for 3499 * ATA_TMOUT_FF_WAIT. 3500 * 3501 * LOCKING: 3502 * EH context. 3503 * 3504 * RETURNS: 3505 * 0 if @link is ready before @deadline; otherwise, -errno. 3506 */ 3507 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3508 int (*check_ready)(struct ata_link *link)) 3509 { 3510 unsigned long start = jiffies; 3511 unsigned long nodev_deadline; 3512 int warned = 0; 3513 3514 /* choose which 0xff timeout to use, read comment in libata.h */ 3515 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3516 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3517 else 3518 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3519 3520 /* Slave readiness can't be tested separately from master. On 3521 * M/S emulation configuration, this function should be called 3522 * only on the master and it will handle both master and slave. 3523 */ 3524 WARN_ON(link == link->ap->slave_link); 3525 3526 if (time_after(nodev_deadline, deadline)) 3527 nodev_deadline = deadline; 3528 3529 while (1) { 3530 unsigned long now = jiffies; 3531 int ready, tmp; 3532 3533 ready = tmp = check_ready(link); 3534 if (ready > 0) 3535 return 0; 3536 3537 /* 3538 * -ENODEV could be transient. Ignore -ENODEV if link 3539 * is online. Also, some SATA devices take a long 3540 * time to clear 0xff after reset. Wait for 3541 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3542 * offline. 3543 * 3544 * Note that some PATA controllers (pata_ali) explode 3545 * if status register is read more than once when 3546 * there's no device attached. 3547 */ 3548 if (ready == -ENODEV) { 3549 if (ata_link_online(link)) 3550 ready = 0; 3551 else if ((link->ap->flags & ATA_FLAG_SATA) && 3552 !ata_link_offline(link) && 3553 time_before(now, nodev_deadline)) 3554 ready = 0; 3555 } 3556 3557 if (ready) 3558 return ready; 3559 if (time_after(now, deadline)) 3560 return -EBUSY; 3561 3562 if (!warned && time_after(now, start + 5 * HZ) && 3563 (deadline - now > 3 * HZ)) { 3564 ata_link_warn(link, 3565 "link is slow to respond, please be patient " 3566 "(ready=%d)\n", tmp); 3567 warned = 1; 3568 } 3569 3570 ata_msleep(link->ap, 50); 3571 } 3572 } 3573 3574 /** 3575 * ata_wait_after_reset - wait for link to become ready after reset 3576 * @link: link to be waited on 3577 * @deadline: deadline jiffies for the operation 3578 * @check_ready: callback to check link readiness 3579 * 3580 * Wait for @link to become ready after reset. 3581 * 3582 * LOCKING: 3583 * EH context. 3584 * 3585 * RETURNS: 3586 * 0 if @link is ready before @deadline; otherwise, -errno. 3587 */ 3588 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3589 int (*check_ready)(struct ata_link *link)) 3590 { 3591 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3592 3593 return ata_wait_ready(link, deadline, check_ready); 3594 } 3595 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3596 3597 /** 3598 * ata_std_prereset - prepare for reset 3599 * @link: ATA link to be reset 3600 * @deadline: deadline jiffies for the operation 3601 * 3602 * @link is about to be reset. Initialize it. Failure from 3603 * prereset makes libata abort whole reset sequence and give up 3604 * that port, so prereset should be best-effort. It does its 3605 * best to prepare for reset sequence but if things go wrong, it 3606 * should just whine, not fail. 3607 * 3608 * LOCKING: 3609 * Kernel thread context (may sleep) 3610 * 3611 * RETURNS: 3612 * 0 on success, -errno otherwise. 3613 */ 3614 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3615 { 3616 struct ata_port *ap = link->ap; 3617 struct ata_eh_context *ehc = &link->eh_context; 3618 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3619 int rc; 3620 3621 /* if we're about to do hardreset, nothing more to do */ 3622 if (ehc->i.action & ATA_EH_HARDRESET) 3623 return 0; 3624 3625 /* if SATA, resume link */ 3626 if (ap->flags & ATA_FLAG_SATA) { 3627 rc = sata_link_resume(link, timing, deadline); 3628 /* whine about phy resume failure but proceed */ 3629 if (rc && rc != -EOPNOTSUPP) 3630 ata_link_warn(link, 3631 "failed to resume link for reset (errno=%d)\n", 3632 rc); 3633 } 3634 3635 /* no point in trying softreset on offline link */ 3636 if (ata_phys_link_offline(link)) 3637 ehc->i.action &= ~ATA_EH_SOFTRESET; 3638 3639 return 0; 3640 } 3641 EXPORT_SYMBOL_GPL(ata_std_prereset); 3642 3643 /** 3644 * sata_std_hardreset - COMRESET w/o waiting or classification 3645 * @link: link to reset 3646 * @class: resulting class of attached device 3647 * @deadline: deadline jiffies for the operation 3648 * 3649 * Standard SATA COMRESET w/o waiting or classification. 3650 * 3651 * LOCKING: 3652 * Kernel thread context (may sleep) 3653 * 3654 * RETURNS: 3655 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3656 */ 3657 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3658 unsigned long deadline) 3659 { 3660 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3661 bool online; 3662 int rc; 3663 3664 /* do hardreset */ 3665 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3666 return online ? -EAGAIN : rc; 3667 } 3668 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3669 3670 /** 3671 * ata_std_postreset - standard postreset callback 3672 * @link: the target ata_link 3673 * @classes: classes of attached devices 3674 * 3675 * This function is invoked after a successful reset. Note that 3676 * the device might have been reset more than once using 3677 * different reset methods before postreset is invoked. 3678 * 3679 * LOCKING: 3680 * Kernel thread context (may sleep) 3681 */ 3682 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3683 { 3684 u32 serror; 3685 3686 DPRINTK("ENTER\n"); 3687 3688 /* reset complete, clear SError */ 3689 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3690 sata_scr_write(link, SCR_ERROR, serror); 3691 3692 /* print link status */ 3693 sata_print_link_status(link); 3694 3695 DPRINTK("EXIT\n"); 3696 } 3697 EXPORT_SYMBOL_GPL(ata_std_postreset); 3698 3699 /** 3700 * ata_dev_same_device - Determine whether new ID matches configured device 3701 * @dev: device to compare against 3702 * @new_class: class of the new device 3703 * @new_id: IDENTIFY page of the new device 3704 * 3705 * Compare @new_class and @new_id against @dev and determine 3706 * whether @dev is the device indicated by @new_class and 3707 * @new_id. 3708 * 3709 * LOCKING: 3710 * None. 3711 * 3712 * RETURNS: 3713 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3714 */ 3715 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3716 const u16 *new_id) 3717 { 3718 const u16 *old_id = dev->id; 3719 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3720 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3721 3722 if (dev->class != new_class) { 3723 ata_dev_info(dev, "class mismatch %d != %d\n", 3724 dev->class, new_class); 3725 return 0; 3726 } 3727 3728 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3729 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3730 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3731 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3732 3733 if (strcmp(model[0], model[1])) { 3734 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3735 model[0], model[1]); 3736 return 0; 3737 } 3738 3739 if (strcmp(serial[0], serial[1])) { 3740 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3741 serial[0], serial[1]); 3742 return 0; 3743 } 3744 3745 return 1; 3746 } 3747 3748 /** 3749 * ata_dev_reread_id - Re-read IDENTIFY data 3750 * @dev: target ATA device 3751 * @readid_flags: read ID flags 3752 * 3753 * Re-read IDENTIFY page and make sure @dev is still attached to 3754 * the port. 3755 * 3756 * LOCKING: 3757 * Kernel thread context (may sleep) 3758 * 3759 * RETURNS: 3760 * 0 on success, negative errno otherwise 3761 */ 3762 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3763 { 3764 unsigned int class = dev->class; 3765 u16 *id = (void *)dev->link->ap->sector_buf; 3766 int rc; 3767 3768 /* read ID data */ 3769 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3770 if (rc) 3771 return rc; 3772 3773 /* is the device still there? */ 3774 if (!ata_dev_same_device(dev, class, id)) 3775 return -ENODEV; 3776 3777 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3778 return 0; 3779 } 3780 3781 /** 3782 * ata_dev_revalidate - Revalidate ATA device 3783 * @dev: device to revalidate 3784 * @new_class: new class code 3785 * @readid_flags: read ID flags 3786 * 3787 * Re-read IDENTIFY page, make sure @dev is still attached to the 3788 * port and reconfigure it according to the new IDENTIFY page. 3789 * 3790 * LOCKING: 3791 * Kernel thread context (may sleep) 3792 * 3793 * RETURNS: 3794 * 0 on success, negative errno otherwise 3795 */ 3796 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3797 unsigned int readid_flags) 3798 { 3799 u64 n_sectors = dev->n_sectors; 3800 u64 n_native_sectors = dev->n_native_sectors; 3801 int rc; 3802 3803 if (!ata_dev_enabled(dev)) 3804 return -ENODEV; 3805 3806 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3807 if (ata_class_enabled(new_class) && 3808 new_class != ATA_DEV_ATA && 3809 new_class != ATA_DEV_ATAPI && 3810 new_class != ATA_DEV_ZAC && 3811 new_class != ATA_DEV_SEMB) { 3812 ata_dev_info(dev, "class mismatch %u != %u\n", 3813 dev->class, new_class); 3814 rc = -ENODEV; 3815 goto fail; 3816 } 3817 3818 /* re-read ID */ 3819 rc = ata_dev_reread_id(dev, readid_flags); 3820 if (rc) 3821 goto fail; 3822 3823 /* configure device according to the new ID */ 3824 rc = ata_dev_configure(dev); 3825 if (rc) 3826 goto fail; 3827 3828 /* verify n_sectors hasn't changed */ 3829 if (dev->class != ATA_DEV_ATA || !n_sectors || 3830 dev->n_sectors == n_sectors) 3831 return 0; 3832 3833 /* n_sectors has changed */ 3834 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3835 (unsigned long long)n_sectors, 3836 (unsigned long long)dev->n_sectors); 3837 3838 /* 3839 * Something could have caused HPA to be unlocked 3840 * involuntarily. If n_native_sectors hasn't changed and the 3841 * new size matches it, keep the device. 3842 */ 3843 if (dev->n_native_sectors == n_native_sectors && 3844 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3845 ata_dev_warn(dev, 3846 "new n_sectors matches native, probably " 3847 "late HPA unlock, n_sectors updated\n"); 3848 /* use the larger n_sectors */ 3849 return 0; 3850 } 3851 3852 /* 3853 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3854 * unlocking HPA in those cases. 3855 * 3856 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3857 */ 3858 if (dev->n_native_sectors == n_native_sectors && 3859 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3860 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 3861 ata_dev_warn(dev, 3862 "old n_sectors matches native, probably " 3863 "late HPA lock, will try to unlock HPA\n"); 3864 /* try unlocking HPA */ 3865 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3866 rc = -EIO; 3867 } else 3868 rc = -ENODEV; 3869 3870 /* restore original n_[native_]sectors and fail */ 3871 dev->n_native_sectors = n_native_sectors; 3872 dev->n_sectors = n_sectors; 3873 fail: 3874 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3875 return rc; 3876 } 3877 3878 struct ata_blacklist_entry { 3879 const char *model_num; 3880 const char *model_rev; 3881 unsigned long horkage; 3882 }; 3883 3884 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3885 /* Devices with DMA related problems under Linux */ 3886 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3887 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3888 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3889 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3890 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3891 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3892 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3893 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3894 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3895 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 3896 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3897 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3898 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3899 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3900 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3901 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 3902 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3903 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3904 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3905 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3906 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3907 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3908 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3909 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3910 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3911 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3912 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3913 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3914 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 3915 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 3916 /* Odd clown on sil3726/4726 PMPs */ 3917 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3918 3919 /* Weird ATAPI devices */ 3920 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3921 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 3922 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3923 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3924 3925 /* 3926 * Causes silent data corruption with higher max sects. 3927 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 3928 */ 3929 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 3930 3931 /* 3932 * These devices time out with higher max sects. 3933 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 3934 */ 3935 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3936 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3937 3938 /* Devices we expect to fail diagnostics */ 3939 3940 /* Devices where NCQ should be avoided */ 3941 /* NCQ is slow */ 3942 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3943 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3944 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3945 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3946 /* NCQ is broken */ 3947 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3948 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3949 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3950 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3951 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 3952 3953 /* Seagate NCQ + FLUSH CACHE firmware bug */ 3954 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3955 ATA_HORKAGE_FIRMWARE_WARN }, 3956 3957 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3958 ATA_HORKAGE_FIRMWARE_WARN }, 3959 3960 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3961 ATA_HORKAGE_FIRMWARE_WARN }, 3962 3963 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3964 ATA_HORKAGE_FIRMWARE_WARN }, 3965 3966 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 3967 the ST disks also have LPM issues */ 3968 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 3969 ATA_HORKAGE_NOLPM, }, 3970 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 3971 3972 /* Blacklist entries taken from Silicon Image 3124/3132 3973 Windows driver .inf file - also several Linux problem reports */ 3974 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3975 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3976 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3977 3978 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 3979 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 3980 3981 /* Sandisk SD7/8/9s lock up hard on large trims */ 3982 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M, }, 3983 3984 /* devices which puke on READ_NATIVE_MAX */ 3985 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 3986 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3987 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3988 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3989 3990 /* this one allows HPA unlocking but fails IOs on the area */ 3991 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 3992 3993 /* Devices which report 1 sector over size HPA */ 3994 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3995 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3996 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3997 3998 /* Devices which get the IVB wrong */ 3999 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4000 /* Maybe we should just blacklist TSSTcorp... */ 4001 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4002 4003 /* Devices that do not need bridging limits applied */ 4004 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4005 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4006 4007 /* Devices which aren't very happy with higher link speeds */ 4008 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4009 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4010 4011 /* 4012 * Devices which choke on SETXFER. Applies only if both the 4013 * device and controller are SATA. 4014 */ 4015 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4016 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4017 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4018 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4019 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4020 4021 /* Crucial BX100 SSD 500GB has broken LPM support */ 4022 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 4023 4024 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4025 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4026 ATA_HORKAGE_ZERO_AFTER_TRIM | 4027 ATA_HORKAGE_NOLPM, }, 4028 /* 512GB MX100 with newer firmware has only LPM issues */ 4029 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 4030 ATA_HORKAGE_NOLPM, }, 4031 4032 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4033 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4034 ATA_HORKAGE_ZERO_AFTER_TRIM | 4035 ATA_HORKAGE_NOLPM, }, 4036 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4037 ATA_HORKAGE_ZERO_AFTER_TRIM | 4038 ATA_HORKAGE_NOLPM, }, 4039 4040 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4041 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, }, 4042 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, }, 4043 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM, }, 4044 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, }, 4045 4046 /* devices that don't properly handle queued TRIM commands */ 4047 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4048 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4049 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4050 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4051 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4052 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4053 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4054 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4055 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4056 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4057 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4058 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4059 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4060 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4061 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4062 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4063 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4064 ATA_HORKAGE_ZERO_AFTER_TRIM | 4065 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4066 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4067 ATA_HORKAGE_ZERO_AFTER_TRIM | 4068 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4069 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4070 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4071 4072 /* devices that don't properly handle TRIM commands */ 4073 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, 4074 4075 /* 4076 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4077 * (Return Zero After Trim) flags in the ATA Command Set are 4078 * unreliable in the sense that they only define what happens if 4079 * the device successfully executed the DSM TRIM command. TRIM 4080 * is only advisory, however, and the device is free to silently 4081 * ignore all or parts of the request. 4082 * 4083 * Whitelist drives that are known to reliably return zeroes 4084 * after TRIM. 4085 */ 4086 4087 /* 4088 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4089 * that model before whitelisting all other intel SSDs. 4090 */ 4091 { "INTEL*SSDSC2MH*", NULL, 0, }, 4092 4093 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4094 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4095 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4096 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4097 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4098 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4099 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4100 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4101 4102 /* 4103 * Some WD SATA-I drives spin up and down erratically when the link 4104 * is put into the slumber mode. We don't have full list of the 4105 * affected devices. Disable LPM if the device matches one of the 4106 * known prefixes and is SATA-1. As a side effect LPM partial is 4107 * lost too. 4108 * 4109 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4110 */ 4111 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4112 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4113 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4114 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4115 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4116 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4117 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4118 4119 /* End Marker */ 4120 { } 4121 }; 4122 4123 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4124 { 4125 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4126 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4127 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4128 4129 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4130 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4131 4132 while (ad->model_num) { 4133 if (glob_match(ad->model_num, model_num)) { 4134 if (ad->model_rev == NULL) 4135 return ad->horkage; 4136 if (glob_match(ad->model_rev, model_rev)) 4137 return ad->horkage; 4138 } 4139 ad++; 4140 } 4141 return 0; 4142 } 4143 4144 static int ata_dma_blacklisted(const struct ata_device *dev) 4145 { 4146 /* We don't support polling DMA. 4147 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4148 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4149 */ 4150 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4151 (dev->flags & ATA_DFLAG_CDB_INTR)) 4152 return 1; 4153 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4154 } 4155 4156 /** 4157 * ata_is_40wire - check drive side detection 4158 * @dev: device 4159 * 4160 * Perform drive side detection decoding, allowing for device vendors 4161 * who can't follow the documentation. 4162 */ 4163 4164 static int ata_is_40wire(struct ata_device *dev) 4165 { 4166 if (dev->horkage & ATA_HORKAGE_IVB) 4167 return ata_drive_40wire_relaxed(dev->id); 4168 return ata_drive_40wire(dev->id); 4169 } 4170 4171 /** 4172 * cable_is_40wire - 40/80/SATA decider 4173 * @ap: port to consider 4174 * 4175 * This function encapsulates the policy for speed management 4176 * in one place. At the moment we don't cache the result but 4177 * there is a good case for setting ap->cbl to the result when 4178 * we are called with unknown cables (and figuring out if it 4179 * impacts hotplug at all). 4180 * 4181 * Return 1 if the cable appears to be 40 wire. 4182 */ 4183 4184 static int cable_is_40wire(struct ata_port *ap) 4185 { 4186 struct ata_link *link; 4187 struct ata_device *dev; 4188 4189 /* If the controller thinks we are 40 wire, we are. */ 4190 if (ap->cbl == ATA_CBL_PATA40) 4191 return 1; 4192 4193 /* If the controller thinks we are 80 wire, we are. */ 4194 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4195 return 0; 4196 4197 /* If the system is known to be 40 wire short cable (eg 4198 * laptop), then we allow 80 wire modes even if the drive 4199 * isn't sure. 4200 */ 4201 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4202 return 0; 4203 4204 /* If the controller doesn't know, we scan. 4205 * 4206 * Note: We look for all 40 wire detects at this point. Any 4207 * 80 wire detect is taken to be 80 wire cable because 4208 * - in many setups only the one drive (slave if present) will 4209 * give a valid detect 4210 * - if you have a non detect capable drive you don't want it 4211 * to colour the choice 4212 */ 4213 ata_for_each_link(link, ap, EDGE) { 4214 ata_for_each_dev(dev, link, ENABLED) { 4215 if (!ata_is_40wire(dev)) 4216 return 0; 4217 } 4218 } 4219 return 1; 4220 } 4221 4222 /** 4223 * ata_dev_xfermask - Compute supported xfermask of the given device 4224 * @dev: Device to compute xfermask for 4225 * 4226 * Compute supported xfermask of @dev and store it in 4227 * dev->*_mask. This function is responsible for applying all 4228 * known limits including host controller limits, device 4229 * blacklist, etc... 4230 * 4231 * LOCKING: 4232 * None. 4233 */ 4234 static void ata_dev_xfermask(struct ata_device *dev) 4235 { 4236 struct ata_link *link = dev->link; 4237 struct ata_port *ap = link->ap; 4238 struct ata_host *host = ap->host; 4239 unsigned long xfer_mask; 4240 4241 /* controller modes available */ 4242 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4243 ap->mwdma_mask, ap->udma_mask); 4244 4245 /* drive modes available */ 4246 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4247 dev->mwdma_mask, dev->udma_mask); 4248 xfer_mask &= ata_id_xfermask(dev->id); 4249 4250 /* 4251 * CFA Advanced TrueIDE timings are not allowed on a shared 4252 * cable 4253 */ 4254 if (ata_dev_pair(dev)) { 4255 /* No PIO5 or PIO6 */ 4256 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4257 /* No MWDMA3 or MWDMA 4 */ 4258 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4259 } 4260 4261 if (ata_dma_blacklisted(dev)) { 4262 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4263 ata_dev_warn(dev, 4264 "device is on DMA blacklist, disabling DMA\n"); 4265 } 4266 4267 if ((host->flags & ATA_HOST_SIMPLEX) && 4268 host->simplex_claimed && host->simplex_claimed != ap) { 4269 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4270 ata_dev_warn(dev, 4271 "simplex DMA is claimed by other device, disabling DMA\n"); 4272 } 4273 4274 if (ap->flags & ATA_FLAG_NO_IORDY) 4275 xfer_mask &= ata_pio_mask_no_iordy(dev); 4276 4277 if (ap->ops->mode_filter) 4278 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4279 4280 /* Apply cable rule here. Don't apply it early because when 4281 * we handle hot plug the cable type can itself change. 4282 * Check this last so that we know if the transfer rate was 4283 * solely limited by the cable. 4284 * Unknown or 80 wire cables reported host side are checked 4285 * drive side as well. Cases where we know a 40wire cable 4286 * is used safely for 80 are not checked here. 4287 */ 4288 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4289 /* UDMA/44 or higher would be available */ 4290 if (cable_is_40wire(ap)) { 4291 ata_dev_warn(dev, 4292 "limited to UDMA/33 due to 40-wire cable\n"); 4293 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4294 } 4295 4296 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4297 &dev->mwdma_mask, &dev->udma_mask); 4298 } 4299 4300 /** 4301 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4302 * @dev: Device to which command will be sent 4303 * 4304 * Issue SET FEATURES - XFER MODE command to device @dev 4305 * on port @ap. 4306 * 4307 * LOCKING: 4308 * PCI/etc. bus probe sem. 4309 * 4310 * RETURNS: 4311 * 0 on success, AC_ERR_* mask otherwise. 4312 */ 4313 4314 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4315 { 4316 struct ata_taskfile tf; 4317 unsigned int err_mask; 4318 4319 /* set up set-features taskfile */ 4320 DPRINTK("set features - xfer mode\n"); 4321 4322 /* Some controllers and ATAPI devices show flaky interrupt 4323 * behavior after setting xfer mode. Use polling instead. 4324 */ 4325 ata_tf_init(dev, &tf); 4326 tf.command = ATA_CMD_SET_FEATURES; 4327 tf.feature = SETFEATURES_XFER; 4328 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4329 tf.protocol = ATA_PROT_NODATA; 4330 /* If we are using IORDY we must send the mode setting command */ 4331 if (ata_pio_need_iordy(dev)) 4332 tf.nsect = dev->xfer_mode; 4333 /* If the device has IORDY and the controller does not - turn it off */ 4334 else if (ata_id_has_iordy(dev->id)) 4335 tf.nsect = 0x01; 4336 else /* In the ancient relic department - skip all of this */ 4337 return 0; 4338 4339 /* On some disks, this command causes spin-up, so we need longer timeout */ 4340 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4341 4342 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4343 return err_mask; 4344 } 4345 4346 /** 4347 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4348 * @dev: Device to which command will be sent 4349 * @enable: Whether to enable or disable the feature 4350 * @feature: The sector count represents the feature to set 4351 * 4352 * Issue SET FEATURES - SATA FEATURES command to device @dev 4353 * on port @ap with sector count 4354 * 4355 * LOCKING: 4356 * PCI/etc. bus probe sem. 4357 * 4358 * RETURNS: 4359 * 0 on success, AC_ERR_* mask otherwise. 4360 */ 4361 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4362 { 4363 struct ata_taskfile tf; 4364 unsigned int err_mask; 4365 unsigned long timeout = 0; 4366 4367 /* set up set-features taskfile */ 4368 DPRINTK("set features - SATA features\n"); 4369 4370 ata_tf_init(dev, &tf); 4371 tf.command = ATA_CMD_SET_FEATURES; 4372 tf.feature = enable; 4373 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4374 tf.protocol = ATA_PROT_NODATA; 4375 tf.nsect = feature; 4376 4377 if (enable == SETFEATURES_SPINUP) 4378 timeout = ata_probe_timeout ? 4379 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4380 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4381 4382 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4383 return err_mask; 4384 } 4385 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4386 4387 /** 4388 * ata_dev_init_params - Issue INIT DEV PARAMS command 4389 * @dev: Device to which command will be sent 4390 * @heads: Number of heads (taskfile parameter) 4391 * @sectors: Number of sectors (taskfile parameter) 4392 * 4393 * LOCKING: 4394 * Kernel thread context (may sleep) 4395 * 4396 * RETURNS: 4397 * 0 on success, AC_ERR_* mask otherwise. 4398 */ 4399 static unsigned int ata_dev_init_params(struct ata_device *dev, 4400 u16 heads, u16 sectors) 4401 { 4402 struct ata_taskfile tf; 4403 unsigned int err_mask; 4404 4405 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4406 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4407 return AC_ERR_INVALID; 4408 4409 /* set up init dev params taskfile */ 4410 DPRINTK("init dev params \n"); 4411 4412 ata_tf_init(dev, &tf); 4413 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4414 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4415 tf.protocol = ATA_PROT_NODATA; 4416 tf.nsect = sectors; 4417 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4418 4419 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4420 /* A clean abort indicates an original or just out of spec drive 4421 and we should continue as we issue the setup based on the 4422 drive reported working geometry */ 4423 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4424 err_mask = 0; 4425 4426 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4427 return err_mask; 4428 } 4429 4430 /** 4431 * atapi_check_dma - Check whether ATAPI DMA can be supported 4432 * @qc: Metadata associated with taskfile to check 4433 * 4434 * Allow low-level driver to filter ATA PACKET commands, returning 4435 * a status indicating whether or not it is OK to use DMA for the 4436 * supplied PACKET command. 4437 * 4438 * LOCKING: 4439 * spin_lock_irqsave(host lock) 4440 * 4441 * RETURNS: 0 when ATAPI DMA can be used 4442 * nonzero otherwise 4443 */ 4444 int atapi_check_dma(struct ata_queued_cmd *qc) 4445 { 4446 struct ata_port *ap = qc->ap; 4447 4448 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4449 * few ATAPI devices choke on such DMA requests. 4450 */ 4451 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4452 unlikely(qc->nbytes & 15)) 4453 return 1; 4454 4455 if (ap->ops->check_atapi_dma) 4456 return ap->ops->check_atapi_dma(qc); 4457 4458 return 0; 4459 } 4460 4461 /** 4462 * ata_std_qc_defer - Check whether a qc needs to be deferred 4463 * @qc: ATA command in question 4464 * 4465 * Non-NCQ commands cannot run with any other command, NCQ or 4466 * not. As upper layer only knows the queue depth, we are 4467 * responsible for maintaining exclusion. This function checks 4468 * whether a new command @qc can be issued. 4469 * 4470 * LOCKING: 4471 * spin_lock_irqsave(host lock) 4472 * 4473 * RETURNS: 4474 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4475 */ 4476 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4477 { 4478 struct ata_link *link = qc->dev->link; 4479 4480 if (ata_is_ncq(qc->tf.protocol)) { 4481 if (!ata_tag_valid(link->active_tag)) 4482 return 0; 4483 } else { 4484 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4485 return 0; 4486 } 4487 4488 return ATA_DEFER_LINK; 4489 } 4490 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4491 4492 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4493 { 4494 return AC_ERR_OK; 4495 } 4496 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4497 4498 /** 4499 * ata_sg_init - Associate command with scatter-gather table. 4500 * @qc: Command to be associated 4501 * @sg: Scatter-gather table. 4502 * @n_elem: Number of elements in s/g table. 4503 * 4504 * Initialize the data-related elements of queued_cmd @qc 4505 * to point to a scatter-gather table @sg, containing @n_elem 4506 * elements. 4507 * 4508 * LOCKING: 4509 * spin_lock_irqsave(host lock) 4510 */ 4511 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4512 unsigned int n_elem) 4513 { 4514 qc->sg = sg; 4515 qc->n_elem = n_elem; 4516 qc->cursg = qc->sg; 4517 } 4518 4519 #ifdef CONFIG_HAS_DMA 4520 4521 /** 4522 * ata_sg_clean - Unmap DMA memory associated with command 4523 * @qc: Command containing DMA memory to be released 4524 * 4525 * Unmap all mapped DMA memory associated with this command. 4526 * 4527 * LOCKING: 4528 * spin_lock_irqsave(host lock) 4529 */ 4530 static void ata_sg_clean(struct ata_queued_cmd *qc) 4531 { 4532 struct ata_port *ap = qc->ap; 4533 struct scatterlist *sg = qc->sg; 4534 int dir = qc->dma_dir; 4535 4536 WARN_ON_ONCE(sg == NULL); 4537 4538 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4539 4540 if (qc->n_elem) 4541 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4542 4543 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4544 qc->sg = NULL; 4545 } 4546 4547 /** 4548 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4549 * @qc: Command with scatter-gather table to be mapped. 4550 * 4551 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4552 * 4553 * LOCKING: 4554 * spin_lock_irqsave(host lock) 4555 * 4556 * RETURNS: 4557 * Zero on success, negative on error. 4558 * 4559 */ 4560 static int ata_sg_setup(struct ata_queued_cmd *qc) 4561 { 4562 struct ata_port *ap = qc->ap; 4563 unsigned int n_elem; 4564 4565 VPRINTK("ENTER, ata%u\n", ap->print_id); 4566 4567 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4568 if (n_elem < 1) 4569 return -1; 4570 4571 VPRINTK("%d sg elements mapped\n", n_elem); 4572 qc->orig_n_elem = qc->n_elem; 4573 qc->n_elem = n_elem; 4574 qc->flags |= ATA_QCFLAG_DMAMAP; 4575 4576 return 0; 4577 } 4578 4579 #else /* !CONFIG_HAS_DMA */ 4580 4581 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4582 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4583 4584 #endif /* !CONFIG_HAS_DMA */ 4585 4586 /** 4587 * swap_buf_le16 - swap halves of 16-bit words in place 4588 * @buf: Buffer to swap 4589 * @buf_words: Number of 16-bit words in buffer. 4590 * 4591 * Swap halves of 16-bit words if needed to convert from 4592 * little-endian byte order to native cpu byte order, or 4593 * vice-versa. 4594 * 4595 * LOCKING: 4596 * Inherited from caller. 4597 */ 4598 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4599 { 4600 #ifdef __BIG_ENDIAN 4601 unsigned int i; 4602 4603 for (i = 0; i < buf_words; i++) 4604 buf[i] = le16_to_cpu(buf[i]); 4605 #endif /* __BIG_ENDIAN */ 4606 } 4607 4608 /** 4609 * ata_qc_new_init - Request an available ATA command, and initialize it 4610 * @dev: Device from whom we request an available command structure 4611 * @tag: tag 4612 * 4613 * LOCKING: 4614 * None. 4615 */ 4616 4617 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 4618 { 4619 struct ata_port *ap = dev->link->ap; 4620 struct ata_queued_cmd *qc; 4621 4622 /* no command while frozen */ 4623 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4624 return NULL; 4625 4626 /* libsas case */ 4627 if (ap->flags & ATA_FLAG_SAS_HOST) { 4628 tag = ata_sas_allocate_tag(ap); 4629 if (tag < 0) 4630 return NULL; 4631 } 4632 4633 qc = __ata_qc_from_tag(ap, tag); 4634 qc->tag = qc->hw_tag = tag; 4635 qc->scsicmd = NULL; 4636 qc->ap = ap; 4637 qc->dev = dev; 4638 4639 ata_qc_reinit(qc); 4640 4641 return qc; 4642 } 4643 4644 /** 4645 * ata_qc_free - free unused ata_queued_cmd 4646 * @qc: Command to complete 4647 * 4648 * Designed to free unused ata_queued_cmd object 4649 * in case something prevents using it. 4650 * 4651 * LOCKING: 4652 * spin_lock_irqsave(host lock) 4653 */ 4654 void ata_qc_free(struct ata_queued_cmd *qc) 4655 { 4656 struct ata_port *ap; 4657 unsigned int tag; 4658 4659 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4660 ap = qc->ap; 4661 4662 qc->flags = 0; 4663 tag = qc->tag; 4664 if (ata_tag_valid(tag)) { 4665 qc->tag = ATA_TAG_POISON; 4666 if (ap->flags & ATA_FLAG_SAS_HOST) 4667 ata_sas_free_tag(tag, ap); 4668 } 4669 } 4670 4671 void __ata_qc_complete(struct ata_queued_cmd *qc) 4672 { 4673 struct ata_port *ap; 4674 struct ata_link *link; 4675 4676 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4677 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4678 ap = qc->ap; 4679 link = qc->dev->link; 4680 4681 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4682 ata_sg_clean(qc); 4683 4684 /* command should be marked inactive atomically with qc completion */ 4685 if (ata_is_ncq(qc->tf.protocol)) { 4686 link->sactive &= ~(1 << qc->hw_tag); 4687 if (!link->sactive) 4688 ap->nr_active_links--; 4689 } else { 4690 link->active_tag = ATA_TAG_POISON; 4691 ap->nr_active_links--; 4692 } 4693 4694 /* clear exclusive status */ 4695 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4696 ap->excl_link == link)) 4697 ap->excl_link = NULL; 4698 4699 /* atapi: mark qc as inactive to prevent the interrupt handler 4700 * from completing the command twice later, before the error handler 4701 * is called. (when rc != 0 and atapi request sense is needed) 4702 */ 4703 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4704 ap->qc_active &= ~(1ULL << qc->tag); 4705 4706 /* call completion callback */ 4707 qc->complete_fn(qc); 4708 } 4709 4710 static void fill_result_tf(struct ata_queued_cmd *qc) 4711 { 4712 struct ata_port *ap = qc->ap; 4713 4714 qc->result_tf.flags = qc->tf.flags; 4715 ap->ops->qc_fill_rtf(qc); 4716 } 4717 4718 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4719 { 4720 struct ata_device *dev = qc->dev; 4721 4722 if (!ata_is_data(qc->tf.protocol)) 4723 return; 4724 4725 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4726 return; 4727 4728 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4729 } 4730 4731 /** 4732 * ata_qc_complete - Complete an active ATA command 4733 * @qc: Command to complete 4734 * 4735 * Indicate to the mid and upper layers that an ATA command has 4736 * completed, with either an ok or not-ok status. 4737 * 4738 * Refrain from calling this function multiple times when 4739 * successfully completing multiple NCQ commands. 4740 * ata_qc_complete_multiple() should be used instead, which will 4741 * properly update IRQ expect state. 4742 * 4743 * LOCKING: 4744 * spin_lock_irqsave(host lock) 4745 */ 4746 void ata_qc_complete(struct ata_queued_cmd *qc) 4747 { 4748 struct ata_port *ap = qc->ap; 4749 4750 /* Trigger the LED (if available) */ 4751 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4752 4753 /* XXX: New EH and old EH use different mechanisms to 4754 * synchronize EH with regular execution path. 4755 * 4756 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4757 * Normal execution path is responsible for not accessing a 4758 * failed qc. libata core enforces the rule by returning NULL 4759 * from ata_qc_from_tag() for failed qcs. 4760 * 4761 * Old EH depends on ata_qc_complete() nullifying completion 4762 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4763 * not synchronize with interrupt handler. Only PIO task is 4764 * taken care of. 4765 */ 4766 if (ap->ops->error_handler) { 4767 struct ata_device *dev = qc->dev; 4768 struct ata_eh_info *ehi = &dev->link->eh_info; 4769 4770 if (unlikely(qc->err_mask)) 4771 qc->flags |= ATA_QCFLAG_FAILED; 4772 4773 /* 4774 * Finish internal commands without any further processing 4775 * and always with the result TF filled. 4776 */ 4777 if (unlikely(ata_tag_internal(qc->tag))) { 4778 fill_result_tf(qc); 4779 trace_ata_qc_complete_internal(qc); 4780 __ata_qc_complete(qc); 4781 return; 4782 } 4783 4784 /* 4785 * Non-internal qc has failed. Fill the result TF and 4786 * summon EH. 4787 */ 4788 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4789 fill_result_tf(qc); 4790 trace_ata_qc_complete_failed(qc); 4791 ata_qc_schedule_eh(qc); 4792 return; 4793 } 4794 4795 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4796 4797 /* read result TF if requested */ 4798 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4799 fill_result_tf(qc); 4800 4801 trace_ata_qc_complete_done(qc); 4802 /* Some commands need post-processing after successful 4803 * completion. 4804 */ 4805 switch (qc->tf.command) { 4806 case ATA_CMD_SET_FEATURES: 4807 if (qc->tf.feature != SETFEATURES_WC_ON && 4808 qc->tf.feature != SETFEATURES_WC_OFF && 4809 qc->tf.feature != SETFEATURES_RA_ON && 4810 qc->tf.feature != SETFEATURES_RA_OFF) 4811 break; 4812 fallthrough; 4813 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4814 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4815 /* revalidate device */ 4816 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4817 ata_port_schedule_eh(ap); 4818 break; 4819 4820 case ATA_CMD_SLEEP: 4821 dev->flags |= ATA_DFLAG_SLEEPING; 4822 break; 4823 } 4824 4825 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4826 ata_verify_xfer(qc); 4827 4828 __ata_qc_complete(qc); 4829 } else { 4830 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4831 return; 4832 4833 /* read result TF if failed or requested */ 4834 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4835 fill_result_tf(qc); 4836 4837 __ata_qc_complete(qc); 4838 } 4839 } 4840 EXPORT_SYMBOL_GPL(ata_qc_complete); 4841 4842 /** 4843 * ata_qc_get_active - get bitmask of active qcs 4844 * @ap: port in question 4845 * 4846 * LOCKING: 4847 * spin_lock_irqsave(host lock) 4848 * 4849 * RETURNS: 4850 * Bitmask of active qcs 4851 */ 4852 u64 ata_qc_get_active(struct ata_port *ap) 4853 { 4854 u64 qc_active = ap->qc_active; 4855 4856 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4857 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4858 qc_active |= (1 << 0); 4859 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4860 } 4861 4862 return qc_active; 4863 } 4864 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4865 4866 /** 4867 * ata_qc_issue - issue taskfile to device 4868 * @qc: command to issue to device 4869 * 4870 * Prepare an ATA command to submission to device. 4871 * This includes mapping the data into a DMA-able 4872 * area, filling in the S/G table, and finally 4873 * writing the taskfile to hardware, starting the command. 4874 * 4875 * LOCKING: 4876 * spin_lock_irqsave(host lock) 4877 */ 4878 void ata_qc_issue(struct ata_queued_cmd *qc) 4879 { 4880 struct ata_port *ap = qc->ap; 4881 struct ata_link *link = qc->dev->link; 4882 u8 prot = qc->tf.protocol; 4883 4884 /* Make sure only one non-NCQ command is outstanding. The 4885 * check is skipped for old EH because it reuses active qc to 4886 * request ATAPI sense. 4887 */ 4888 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4889 4890 if (ata_is_ncq(prot)) { 4891 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4892 4893 if (!link->sactive) 4894 ap->nr_active_links++; 4895 link->sactive |= 1 << qc->hw_tag; 4896 } else { 4897 WARN_ON_ONCE(link->sactive); 4898 4899 ap->nr_active_links++; 4900 link->active_tag = qc->tag; 4901 } 4902 4903 qc->flags |= ATA_QCFLAG_ACTIVE; 4904 ap->qc_active |= 1ULL << qc->tag; 4905 4906 /* 4907 * We guarantee to LLDs that they will have at least one 4908 * non-zero sg if the command is a data command. 4909 */ 4910 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4911 goto sys_err; 4912 4913 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4914 (ap->flags & ATA_FLAG_PIO_DMA))) 4915 if (ata_sg_setup(qc)) 4916 goto sys_err; 4917 4918 /* if device is sleeping, schedule reset and abort the link */ 4919 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4920 link->eh_info.action |= ATA_EH_RESET; 4921 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4922 ata_link_abort(link); 4923 return; 4924 } 4925 4926 qc->err_mask |= ap->ops->qc_prep(qc); 4927 if (unlikely(qc->err_mask)) 4928 goto err; 4929 trace_ata_qc_issue(qc); 4930 qc->err_mask |= ap->ops->qc_issue(qc); 4931 if (unlikely(qc->err_mask)) 4932 goto err; 4933 return; 4934 4935 sys_err: 4936 qc->err_mask |= AC_ERR_SYSTEM; 4937 err: 4938 ata_qc_complete(qc); 4939 } 4940 4941 /** 4942 * ata_phys_link_online - test whether the given link is online 4943 * @link: ATA link to test 4944 * 4945 * Test whether @link is online. Note that this function returns 4946 * 0 if online status of @link cannot be obtained, so 4947 * ata_link_online(link) != !ata_link_offline(link). 4948 * 4949 * LOCKING: 4950 * None. 4951 * 4952 * RETURNS: 4953 * True if the port online status is available and online. 4954 */ 4955 bool ata_phys_link_online(struct ata_link *link) 4956 { 4957 u32 sstatus; 4958 4959 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4960 ata_sstatus_online(sstatus)) 4961 return true; 4962 return false; 4963 } 4964 4965 /** 4966 * ata_phys_link_offline - test whether the given link is offline 4967 * @link: ATA link to test 4968 * 4969 * Test whether @link is offline. Note that this function 4970 * returns 0 if offline status of @link cannot be obtained, so 4971 * ata_link_online(link) != !ata_link_offline(link). 4972 * 4973 * LOCKING: 4974 * None. 4975 * 4976 * RETURNS: 4977 * True if the port offline status is available and offline. 4978 */ 4979 bool ata_phys_link_offline(struct ata_link *link) 4980 { 4981 u32 sstatus; 4982 4983 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4984 !ata_sstatus_online(sstatus)) 4985 return true; 4986 return false; 4987 } 4988 4989 /** 4990 * ata_link_online - test whether the given link is online 4991 * @link: ATA link to test 4992 * 4993 * Test whether @link is online. This is identical to 4994 * ata_phys_link_online() when there's no slave link. When 4995 * there's a slave link, this function should only be called on 4996 * the master link and will return true if any of M/S links is 4997 * online. 4998 * 4999 * LOCKING: 5000 * None. 5001 * 5002 * RETURNS: 5003 * True if the port online status is available and online. 5004 */ 5005 bool ata_link_online(struct ata_link *link) 5006 { 5007 struct ata_link *slave = link->ap->slave_link; 5008 5009 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5010 5011 return ata_phys_link_online(link) || 5012 (slave && ata_phys_link_online(slave)); 5013 } 5014 EXPORT_SYMBOL_GPL(ata_link_online); 5015 5016 /** 5017 * ata_link_offline - test whether the given link is offline 5018 * @link: ATA link to test 5019 * 5020 * Test whether @link is offline. This is identical to 5021 * ata_phys_link_offline() when there's no slave link. When 5022 * there's a slave link, this function should only be called on 5023 * the master link and will return true if both M/S links are 5024 * offline. 5025 * 5026 * LOCKING: 5027 * None. 5028 * 5029 * RETURNS: 5030 * True if the port offline status is available and offline. 5031 */ 5032 bool ata_link_offline(struct ata_link *link) 5033 { 5034 struct ata_link *slave = link->ap->slave_link; 5035 5036 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5037 5038 return ata_phys_link_offline(link) && 5039 (!slave || ata_phys_link_offline(slave)); 5040 } 5041 EXPORT_SYMBOL_GPL(ata_link_offline); 5042 5043 #ifdef CONFIG_PM 5044 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5045 unsigned int action, unsigned int ehi_flags, 5046 bool async) 5047 { 5048 struct ata_link *link; 5049 unsigned long flags; 5050 5051 /* Previous resume operation might still be in 5052 * progress. Wait for PM_PENDING to clear. 5053 */ 5054 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5055 ata_port_wait_eh(ap); 5056 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5057 } 5058 5059 /* request PM ops to EH */ 5060 spin_lock_irqsave(ap->lock, flags); 5061 5062 ap->pm_mesg = mesg; 5063 ap->pflags |= ATA_PFLAG_PM_PENDING; 5064 ata_for_each_link(link, ap, HOST_FIRST) { 5065 link->eh_info.action |= action; 5066 link->eh_info.flags |= ehi_flags; 5067 } 5068 5069 ata_port_schedule_eh(ap); 5070 5071 spin_unlock_irqrestore(ap->lock, flags); 5072 5073 if (!async) { 5074 ata_port_wait_eh(ap); 5075 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5076 } 5077 } 5078 5079 /* 5080 * On some hardware, device fails to respond after spun down for suspend. As 5081 * the device won't be used before being resumed, we don't need to touch the 5082 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5083 * 5084 * http://thread.gmane.org/gmane.linux.ide/46764 5085 */ 5086 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5087 | ATA_EHI_NO_AUTOPSY 5088 | ATA_EHI_NO_RECOVERY; 5089 5090 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5091 { 5092 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5093 } 5094 5095 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5096 { 5097 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5098 } 5099 5100 static int ata_port_pm_suspend(struct device *dev) 5101 { 5102 struct ata_port *ap = to_ata_port(dev); 5103 5104 if (pm_runtime_suspended(dev)) 5105 return 0; 5106 5107 ata_port_suspend(ap, PMSG_SUSPEND); 5108 return 0; 5109 } 5110 5111 static int ata_port_pm_freeze(struct device *dev) 5112 { 5113 struct ata_port *ap = to_ata_port(dev); 5114 5115 if (pm_runtime_suspended(dev)) 5116 return 0; 5117 5118 ata_port_suspend(ap, PMSG_FREEZE); 5119 return 0; 5120 } 5121 5122 static int ata_port_pm_poweroff(struct device *dev) 5123 { 5124 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5125 return 0; 5126 } 5127 5128 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5129 | ATA_EHI_QUIET; 5130 5131 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5132 { 5133 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5134 } 5135 5136 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5137 { 5138 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5139 } 5140 5141 static int ata_port_pm_resume(struct device *dev) 5142 { 5143 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5144 pm_runtime_disable(dev); 5145 pm_runtime_set_active(dev); 5146 pm_runtime_enable(dev); 5147 return 0; 5148 } 5149 5150 /* 5151 * For ODDs, the upper layer will poll for media change every few seconds, 5152 * which will make it enter and leave suspend state every few seconds. And 5153 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5154 * is very little and the ODD may malfunction after constantly being reset. 5155 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5156 * ODD is attached to the port. 5157 */ 5158 static int ata_port_runtime_idle(struct device *dev) 5159 { 5160 struct ata_port *ap = to_ata_port(dev); 5161 struct ata_link *link; 5162 struct ata_device *adev; 5163 5164 ata_for_each_link(link, ap, HOST_FIRST) { 5165 ata_for_each_dev(adev, link, ENABLED) 5166 if (adev->class == ATA_DEV_ATAPI && 5167 !zpodd_dev_enabled(adev)) 5168 return -EBUSY; 5169 } 5170 5171 return 0; 5172 } 5173 5174 static int ata_port_runtime_suspend(struct device *dev) 5175 { 5176 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5177 return 0; 5178 } 5179 5180 static int ata_port_runtime_resume(struct device *dev) 5181 { 5182 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5183 return 0; 5184 } 5185 5186 static const struct dev_pm_ops ata_port_pm_ops = { 5187 .suspend = ata_port_pm_suspend, 5188 .resume = ata_port_pm_resume, 5189 .freeze = ata_port_pm_freeze, 5190 .thaw = ata_port_pm_resume, 5191 .poweroff = ata_port_pm_poweroff, 5192 .restore = ata_port_pm_resume, 5193 5194 .runtime_suspend = ata_port_runtime_suspend, 5195 .runtime_resume = ata_port_runtime_resume, 5196 .runtime_idle = ata_port_runtime_idle, 5197 }; 5198 5199 /* sas ports don't participate in pm runtime management of ata_ports, 5200 * and need to resume ata devices at the domain level, not the per-port 5201 * level. sas suspend/resume is async to allow parallel port recovery 5202 * since sas has multiple ata_port instances per Scsi_Host. 5203 */ 5204 void ata_sas_port_suspend(struct ata_port *ap) 5205 { 5206 ata_port_suspend_async(ap, PMSG_SUSPEND); 5207 } 5208 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5209 5210 void ata_sas_port_resume(struct ata_port *ap) 5211 { 5212 ata_port_resume_async(ap, PMSG_RESUME); 5213 } 5214 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5215 5216 /** 5217 * ata_host_suspend - suspend host 5218 * @host: host to suspend 5219 * @mesg: PM message 5220 * 5221 * Suspend @host. Actual operation is performed by port suspend. 5222 */ 5223 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5224 { 5225 host->dev->power.power_state = mesg; 5226 return 0; 5227 } 5228 EXPORT_SYMBOL_GPL(ata_host_suspend); 5229 5230 /** 5231 * ata_host_resume - resume host 5232 * @host: host to resume 5233 * 5234 * Resume @host. Actual operation is performed by port resume. 5235 */ 5236 void ata_host_resume(struct ata_host *host) 5237 { 5238 host->dev->power.power_state = PMSG_ON; 5239 } 5240 EXPORT_SYMBOL_GPL(ata_host_resume); 5241 #endif 5242 5243 const struct device_type ata_port_type = { 5244 .name = "ata_port", 5245 #ifdef CONFIG_PM 5246 .pm = &ata_port_pm_ops, 5247 #endif 5248 }; 5249 5250 /** 5251 * ata_dev_init - Initialize an ata_device structure 5252 * @dev: Device structure to initialize 5253 * 5254 * Initialize @dev in preparation for probing. 5255 * 5256 * LOCKING: 5257 * Inherited from caller. 5258 */ 5259 void ata_dev_init(struct ata_device *dev) 5260 { 5261 struct ata_link *link = ata_dev_phys_link(dev); 5262 struct ata_port *ap = link->ap; 5263 unsigned long flags; 5264 5265 /* SATA spd limit is bound to the attached device, reset together */ 5266 link->sata_spd_limit = link->hw_sata_spd_limit; 5267 link->sata_spd = 0; 5268 5269 /* High bits of dev->flags are used to record warm plug 5270 * requests which occur asynchronously. Synchronize using 5271 * host lock. 5272 */ 5273 spin_lock_irqsave(ap->lock, flags); 5274 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5275 dev->horkage = 0; 5276 spin_unlock_irqrestore(ap->lock, flags); 5277 5278 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5279 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5280 dev->pio_mask = UINT_MAX; 5281 dev->mwdma_mask = UINT_MAX; 5282 dev->udma_mask = UINT_MAX; 5283 } 5284 5285 /** 5286 * ata_link_init - Initialize an ata_link structure 5287 * @ap: ATA port link is attached to 5288 * @link: Link structure to initialize 5289 * @pmp: Port multiplier port number 5290 * 5291 * Initialize @link. 5292 * 5293 * LOCKING: 5294 * Kernel thread context (may sleep) 5295 */ 5296 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5297 { 5298 int i; 5299 5300 /* clear everything except for devices */ 5301 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5302 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5303 5304 link->ap = ap; 5305 link->pmp = pmp; 5306 link->active_tag = ATA_TAG_POISON; 5307 link->hw_sata_spd_limit = UINT_MAX; 5308 5309 /* can't use iterator, ap isn't initialized yet */ 5310 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5311 struct ata_device *dev = &link->device[i]; 5312 5313 dev->link = link; 5314 dev->devno = dev - link->device; 5315 #ifdef CONFIG_ATA_ACPI 5316 dev->gtf_filter = ata_acpi_gtf_filter; 5317 #endif 5318 ata_dev_init(dev); 5319 } 5320 } 5321 5322 /** 5323 * sata_link_init_spd - Initialize link->sata_spd_limit 5324 * @link: Link to configure sata_spd_limit for 5325 * 5326 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5327 * configured value. 5328 * 5329 * LOCKING: 5330 * Kernel thread context (may sleep). 5331 * 5332 * RETURNS: 5333 * 0 on success, -errno on failure. 5334 */ 5335 int sata_link_init_spd(struct ata_link *link) 5336 { 5337 u8 spd; 5338 int rc; 5339 5340 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5341 if (rc) 5342 return rc; 5343 5344 spd = (link->saved_scontrol >> 4) & 0xf; 5345 if (spd) 5346 link->hw_sata_spd_limit &= (1 << spd) - 1; 5347 5348 ata_force_link_limits(link); 5349 5350 link->sata_spd_limit = link->hw_sata_spd_limit; 5351 5352 return 0; 5353 } 5354 5355 /** 5356 * ata_port_alloc - allocate and initialize basic ATA port resources 5357 * @host: ATA host this allocated port belongs to 5358 * 5359 * Allocate and initialize basic ATA port resources. 5360 * 5361 * RETURNS: 5362 * Allocate ATA port on success, NULL on failure. 5363 * 5364 * LOCKING: 5365 * Inherited from calling layer (may sleep). 5366 */ 5367 struct ata_port *ata_port_alloc(struct ata_host *host) 5368 { 5369 struct ata_port *ap; 5370 5371 DPRINTK("ENTER\n"); 5372 5373 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5374 if (!ap) 5375 return NULL; 5376 5377 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5378 ap->lock = &host->lock; 5379 ap->print_id = -1; 5380 ap->local_port_no = -1; 5381 ap->host = host; 5382 ap->dev = host->dev; 5383 5384 #if defined(ATA_VERBOSE_DEBUG) 5385 /* turn on all debugging levels */ 5386 ap->msg_enable = 0x00FF; 5387 #elif defined(ATA_DEBUG) 5388 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5389 #else 5390 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5391 #endif 5392 5393 mutex_init(&ap->scsi_scan_mutex); 5394 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5395 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5396 INIT_LIST_HEAD(&ap->eh_done_q); 5397 init_waitqueue_head(&ap->eh_wait_q); 5398 init_completion(&ap->park_req_pending); 5399 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5400 TIMER_DEFERRABLE); 5401 5402 ap->cbl = ATA_CBL_NONE; 5403 5404 ata_link_init(ap, &ap->link, 0); 5405 5406 #ifdef ATA_IRQ_TRAP 5407 ap->stats.unhandled_irq = 1; 5408 ap->stats.idle_irq = 1; 5409 #endif 5410 ata_sff_port_init(ap); 5411 5412 return ap; 5413 } 5414 5415 static void ata_devres_release(struct device *gendev, void *res) 5416 { 5417 struct ata_host *host = dev_get_drvdata(gendev); 5418 int i; 5419 5420 for (i = 0; i < host->n_ports; i++) { 5421 struct ata_port *ap = host->ports[i]; 5422 5423 if (!ap) 5424 continue; 5425 5426 if (ap->scsi_host) 5427 scsi_host_put(ap->scsi_host); 5428 5429 } 5430 5431 dev_set_drvdata(gendev, NULL); 5432 ata_host_put(host); 5433 } 5434 5435 static void ata_host_release(struct kref *kref) 5436 { 5437 struct ata_host *host = container_of(kref, struct ata_host, kref); 5438 int i; 5439 5440 for (i = 0; i < host->n_ports; i++) { 5441 struct ata_port *ap = host->ports[i]; 5442 5443 kfree(ap->pmp_link); 5444 kfree(ap->slave_link); 5445 kfree(ap); 5446 host->ports[i] = NULL; 5447 } 5448 kfree(host); 5449 } 5450 5451 void ata_host_get(struct ata_host *host) 5452 { 5453 kref_get(&host->kref); 5454 } 5455 5456 void ata_host_put(struct ata_host *host) 5457 { 5458 kref_put(&host->kref, ata_host_release); 5459 } 5460 EXPORT_SYMBOL_GPL(ata_host_put); 5461 5462 /** 5463 * ata_host_alloc - allocate and init basic ATA host resources 5464 * @dev: generic device this host is associated with 5465 * @max_ports: maximum number of ATA ports associated with this host 5466 * 5467 * Allocate and initialize basic ATA host resources. LLD calls 5468 * this function to allocate a host, initializes it fully and 5469 * attaches it using ata_host_register(). 5470 * 5471 * @max_ports ports are allocated and host->n_ports is 5472 * initialized to @max_ports. The caller is allowed to decrease 5473 * host->n_ports before calling ata_host_register(). The unused 5474 * ports will be automatically freed on registration. 5475 * 5476 * RETURNS: 5477 * Allocate ATA host on success, NULL on failure. 5478 * 5479 * LOCKING: 5480 * Inherited from calling layer (may sleep). 5481 */ 5482 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5483 { 5484 struct ata_host *host; 5485 size_t sz; 5486 int i; 5487 void *dr; 5488 5489 DPRINTK("ENTER\n"); 5490 5491 /* alloc a container for our list of ATA ports (buses) */ 5492 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5493 host = kzalloc(sz, GFP_KERNEL); 5494 if (!host) 5495 return NULL; 5496 5497 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5498 goto err_free; 5499 5500 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5501 if (!dr) 5502 goto err_out; 5503 5504 devres_add(dev, dr); 5505 dev_set_drvdata(dev, host); 5506 5507 spin_lock_init(&host->lock); 5508 mutex_init(&host->eh_mutex); 5509 host->dev = dev; 5510 host->n_ports = max_ports; 5511 kref_init(&host->kref); 5512 5513 /* allocate ports bound to this host */ 5514 for (i = 0; i < max_ports; i++) { 5515 struct ata_port *ap; 5516 5517 ap = ata_port_alloc(host); 5518 if (!ap) 5519 goto err_out; 5520 5521 ap->port_no = i; 5522 host->ports[i] = ap; 5523 } 5524 5525 devres_remove_group(dev, NULL); 5526 return host; 5527 5528 err_out: 5529 devres_release_group(dev, NULL); 5530 err_free: 5531 kfree(host); 5532 return NULL; 5533 } 5534 EXPORT_SYMBOL_GPL(ata_host_alloc); 5535 5536 /** 5537 * ata_host_alloc_pinfo - alloc host and init with port_info array 5538 * @dev: generic device this host is associated with 5539 * @ppi: array of ATA port_info to initialize host with 5540 * @n_ports: number of ATA ports attached to this host 5541 * 5542 * Allocate ATA host and initialize with info from @ppi. If NULL 5543 * terminated, @ppi may contain fewer entries than @n_ports. The 5544 * last entry will be used for the remaining ports. 5545 * 5546 * RETURNS: 5547 * Allocate ATA host on success, NULL on failure. 5548 * 5549 * LOCKING: 5550 * Inherited from calling layer (may sleep). 5551 */ 5552 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5553 const struct ata_port_info * const * ppi, 5554 int n_ports) 5555 { 5556 const struct ata_port_info *pi; 5557 struct ata_host *host; 5558 int i, j; 5559 5560 host = ata_host_alloc(dev, n_ports); 5561 if (!host) 5562 return NULL; 5563 5564 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5565 struct ata_port *ap = host->ports[i]; 5566 5567 if (ppi[j]) 5568 pi = ppi[j++]; 5569 5570 ap->pio_mask = pi->pio_mask; 5571 ap->mwdma_mask = pi->mwdma_mask; 5572 ap->udma_mask = pi->udma_mask; 5573 ap->flags |= pi->flags; 5574 ap->link.flags |= pi->link_flags; 5575 ap->ops = pi->port_ops; 5576 5577 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5578 host->ops = pi->port_ops; 5579 } 5580 5581 return host; 5582 } 5583 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5584 5585 static void ata_host_stop(struct device *gendev, void *res) 5586 { 5587 struct ata_host *host = dev_get_drvdata(gendev); 5588 int i; 5589 5590 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5591 5592 for (i = 0; i < host->n_ports; i++) { 5593 struct ata_port *ap = host->ports[i]; 5594 5595 if (ap->ops->port_stop) 5596 ap->ops->port_stop(ap); 5597 } 5598 5599 if (host->ops->host_stop) 5600 host->ops->host_stop(host); 5601 } 5602 5603 /** 5604 * ata_finalize_port_ops - finalize ata_port_operations 5605 * @ops: ata_port_operations to finalize 5606 * 5607 * An ata_port_operations can inherit from another ops and that 5608 * ops can again inherit from another. This can go on as many 5609 * times as necessary as long as there is no loop in the 5610 * inheritance chain. 5611 * 5612 * Ops tables are finalized when the host is started. NULL or 5613 * unspecified entries are inherited from the closet ancestor 5614 * which has the method and the entry is populated with it. 5615 * After finalization, the ops table directly points to all the 5616 * methods and ->inherits is no longer necessary and cleared. 5617 * 5618 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5619 * 5620 * LOCKING: 5621 * None. 5622 */ 5623 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5624 { 5625 static DEFINE_SPINLOCK(lock); 5626 const struct ata_port_operations *cur; 5627 void **begin = (void **)ops; 5628 void **end = (void **)&ops->inherits; 5629 void **pp; 5630 5631 if (!ops || !ops->inherits) 5632 return; 5633 5634 spin_lock(&lock); 5635 5636 for (cur = ops->inherits; cur; cur = cur->inherits) { 5637 void **inherit = (void **)cur; 5638 5639 for (pp = begin; pp < end; pp++, inherit++) 5640 if (!*pp) 5641 *pp = *inherit; 5642 } 5643 5644 for (pp = begin; pp < end; pp++) 5645 if (IS_ERR(*pp)) 5646 *pp = NULL; 5647 5648 ops->inherits = NULL; 5649 5650 spin_unlock(&lock); 5651 } 5652 5653 /** 5654 * ata_host_start - start and freeze ports of an ATA host 5655 * @host: ATA host to start ports for 5656 * 5657 * Start and then freeze ports of @host. Started status is 5658 * recorded in host->flags, so this function can be called 5659 * multiple times. Ports are guaranteed to get started only 5660 * once. If host->ops isn't initialized yet, its set to the 5661 * first non-dummy port ops. 5662 * 5663 * LOCKING: 5664 * Inherited from calling layer (may sleep). 5665 * 5666 * RETURNS: 5667 * 0 if all ports are started successfully, -errno otherwise. 5668 */ 5669 int ata_host_start(struct ata_host *host) 5670 { 5671 int have_stop = 0; 5672 void *start_dr = NULL; 5673 int i, rc; 5674 5675 if (host->flags & ATA_HOST_STARTED) 5676 return 0; 5677 5678 ata_finalize_port_ops(host->ops); 5679 5680 for (i = 0; i < host->n_ports; i++) { 5681 struct ata_port *ap = host->ports[i]; 5682 5683 ata_finalize_port_ops(ap->ops); 5684 5685 if (!host->ops && !ata_port_is_dummy(ap)) 5686 host->ops = ap->ops; 5687 5688 if (ap->ops->port_stop) 5689 have_stop = 1; 5690 } 5691 5692 if (host->ops && host->ops->host_stop) 5693 have_stop = 1; 5694 5695 if (have_stop) { 5696 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5697 if (!start_dr) 5698 return -ENOMEM; 5699 } 5700 5701 for (i = 0; i < host->n_ports; i++) { 5702 struct ata_port *ap = host->ports[i]; 5703 5704 if (ap->ops->port_start) { 5705 rc = ap->ops->port_start(ap); 5706 if (rc) { 5707 if (rc != -ENODEV) 5708 dev_err(host->dev, 5709 "failed to start port %d (errno=%d)\n", 5710 i, rc); 5711 goto err_out; 5712 } 5713 } 5714 ata_eh_freeze_port(ap); 5715 } 5716 5717 if (start_dr) 5718 devres_add(host->dev, start_dr); 5719 host->flags |= ATA_HOST_STARTED; 5720 return 0; 5721 5722 err_out: 5723 while (--i >= 0) { 5724 struct ata_port *ap = host->ports[i]; 5725 5726 if (ap->ops->port_stop) 5727 ap->ops->port_stop(ap); 5728 } 5729 devres_free(start_dr); 5730 return rc; 5731 } 5732 EXPORT_SYMBOL_GPL(ata_host_start); 5733 5734 /** 5735 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5736 * @host: host to initialize 5737 * @dev: device host is attached to 5738 * @ops: port_ops 5739 * 5740 */ 5741 void ata_host_init(struct ata_host *host, struct device *dev, 5742 struct ata_port_operations *ops) 5743 { 5744 spin_lock_init(&host->lock); 5745 mutex_init(&host->eh_mutex); 5746 host->n_tags = ATA_MAX_QUEUE; 5747 host->dev = dev; 5748 host->ops = ops; 5749 kref_init(&host->kref); 5750 } 5751 EXPORT_SYMBOL_GPL(ata_host_init); 5752 5753 void __ata_port_probe(struct ata_port *ap) 5754 { 5755 struct ata_eh_info *ehi = &ap->link.eh_info; 5756 unsigned long flags; 5757 5758 /* kick EH for boot probing */ 5759 spin_lock_irqsave(ap->lock, flags); 5760 5761 ehi->probe_mask |= ATA_ALL_DEVICES; 5762 ehi->action |= ATA_EH_RESET; 5763 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5764 5765 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5766 ap->pflags |= ATA_PFLAG_LOADING; 5767 ata_port_schedule_eh(ap); 5768 5769 spin_unlock_irqrestore(ap->lock, flags); 5770 } 5771 5772 int ata_port_probe(struct ata_port *ap) 5773 { 5774 int rc = 0; 5775 5776 if (ap->ops->error_handler) { 5777 __ata_port_probe(ap); 5778 ata_port_wait_eh(ap); 5779 } else { 5780 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5781 rc = ata_bus_probe(ap); 5782 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5783 } 5784 return rc; 5785 } 5786 5787 5788 static void async_port_probe(void *data, async_cookie_t cookie) 5789 { 5790 struct ata_port *ap = data; 5791 5792 /* 5793 * If we're not allowed to scan this host in parallel, 5794 * we need to wait until all previous scans have completed 5795 * before going further. 5796 * Jeff Garzik says this is only within a controller, so we 5797 * don't need to wait for port 0, only for later ports. 5798 */ 5799 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5800 async_synchronize_cookie(cookie); 5801 5802 (void)ata_port_probe(ap); 5803 5804 /* in order to keep device order, we need to synchronize at this point */ 5805 async_synchronize_cookie(cookie); 5806 5807 ata_scsi_scan_host(ap, 1); 5808 } 5809 5810 /** 5811 * ata_host_register - register initialized ATA host 5812 * @host: ATA host to register 5813 * @sht: template for SCSI host 5814 * 5815 * Register initialized ATA host. @host is allocated using 5816 * ata_host_alloc() and fully initialized by LLD. This function 5817 * starts ports, registers @host with ATA and SCSI layers and 5818 * probe registered devices. 5819 * 5820 * LOCKING: 5821 * Inherited from calling layer (may sleep). 5822 * 5823 * RETURNS: 5824 * 0 on success, -errno otherwise. 5825 */ 5826 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5827 { 5828 int i, rc; 5829 5830 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5831 5832 /* host must have been started */ 5833 if (!(host->flags & ATA_HOST_STARTED)) { 5834 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5835 WARN_ON(1); 5836 return -EINVAL; 5837 } 5838 5839 /* Blow away unused ports. This happens when LLD can't 5840 * determine the exact number of ports to allocate at 5841 * allocation time. 5842 */ 5843 for (i = host->n_ports; host->ports[i]; i++) 5844 kfree(host->ports[i]); 5845 5846 /* give ports names and add SCSI hosts */ 5847 for (i = 0; i < host->n_ports; i++) { 5848 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5849 host->ports[i]->local_port_no = i + 1; 5850 } 5851 5852 /* Create associated sysfs transport objects */ 5853 for (i = 0; i < host->n_ports; i++) { 5854 rc = ata_tport_add(host->dev,host->ports[i]); 5855 if (rc) { 5856 goto err_tadd; 5857 } 5858 } 5859 5860 rc = ata_scsi_add_hosts(host, sht); 5861 if (rc) 5862 goto err_tadd; 5863 5864 /* set cable, sata_spd_limit and report */ 5865 for (i = 0; i < host->n_ports; i++) { 5866 struct ata_port *ap = host->ports[i]; 5867 unsigned long xfer_mask; 5868 5869 /* set SATA cable type if still unset */ 5870 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5871 ap->cbl = ATA_CBL_SATA; 5872 5873 /* init sata_spd_limit to the current value */ 5874 sata_link_init_spd(&ap->link); 5875 if (ap->slave_link) 5876 sata_link_init_spd(ap->slave_link); 5877 5878 /* print per-port info to dmesg */ 5879 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5880 ap->udma_mask); 5881 5882 if (!ata_port_is_dummy(ap)) { 5883 ata_port_info(ap, "%cATA max %s %s\n", 5884 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5885 ata_mode_string(xfer_mask), 5886 ap->link.eh_info.desc); 5887 ata_ehi_clear_desc(&ap->link.eh_info); 5888 } else 5889 ata_port_info(ap, "DUMMY\n"); 5890 } 5891 5892 /* perform each probe asynchronously */ 5893 for (i = 0; i < host->n_ports; i++) { 5894 struct ata_port *ap = host->ports[i]; 5895 ap->cookie = async_schedule(async_port_probe, ap); 5896 } 5897 5898 return 0; 5899 5900 err_tadd: 5901 while (--i >= 0) { 5902 ata_tport_delete(host->ports[i]); 5903 } 5904 return rc; 5905 5906 } 5907 EXPORT_SYMBOL_GPL(ata_host_register); 5908 5909 /** 5910 * ata_host_activate - start host, request IRQ and register it 5911 * @host: target ATA host 5912 * @irq: IRQ to request 5913 * @irq_handler: irq_handler used when requesting IRQ 5914 * @irq_flags: irq_flags used when requesting IRQ 5915 * @sht: scsi_host_template to use when registering the host 5916 * 5917 * After allocating an ATA host and initializing it, most libata 5918 * LLDs perform three steps to activate the host - start host, 5919 * request IRQ and register it. This helper takes necessary 5920 * arguments and performs the three steps in one go. 5921 * 5922 * An invalid IRQ skips the IRQ registration and expects the host to 5923 * have set polling mode on the port. In this case, @irq_handler 5924 * should be NULL. 5925 * 5926 * LOCKING: 5927 * Inherited from calling layer (may sleep). 5928 * 5929 * RETURNS: 5930 * 0 on success, -errno otherwise. 5931 */ 5932 int ata_host_activate(struct ata_host *host, int irq, 5933 irq_handler_t irq_handler, unsigned long irq_flags, 5934 struct scsi_host_template *sht) 5935 { 5936 int i, rc; 5937 char *irq_desc; 5938 5939 rc = ata_host_start(host); 5940 if (rc) 5941 return rc; 5942 5943 /* Special case for polling mode */ 5944 if (!irq) { 5945 WARN_ON(irq_handler); 5946 return ata_host_register(host, sht); 5947 } 5948 5949 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 5950 dev_driver_string(host->dev), 5951 dev_name(host->dev)); 5952 if (!irq_desc) 5953 return -ENOMEM; 5954 5955 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5956 irq_desc, host); 5957 if (rc) 5958 return rc; 5959 5960 for (i = 0; i < host->n_ports; i++) 5961 ata_port_desc(host->ports[i], "irq %d", irq); 5962 5963 rc = ata_host_register(host, sht); 5964 /* if failed, just free the IRQ and leave ports alone */ 5965 if (rc) 5966 devm_free_irq(host->dev, irq, host); 5967 5968 return rc; 5969 } 5970 EXPORT_SYMBOL_GPL(ata_host_activate); 5971 5972 /** 5973 * ata_port_detach - Detach ATA port in preparation of device removal 5974 * @ap: ATA port to be detached 5975 * 5976 * Detach all ATA devices and the associated SCSI devices of @ap; 5977 * then, remove the associated SCSI host. @ap is guaranteed to 5978 * be quiescent on return from this function. 5979 * 5980 * LOCKING: 5981 * Kernel thread context (may sleep). 5982 */ 5983 static void ata_port_detach(struct ata_port *ap) 5984 { 5985 unsigned long flags; 5986 struct ata_link *link; 5987 struct ata_device *dev; 5988 5989 if (!ap->ops->error_handler) 5990 goto skip_eh; 5991 5992 /* tell EH we're leaving & flush EH */ 5993 spin_lock_irqsave(ap->lock, flags); 5994 ap->pflags |= ATA_PFLAG_UNLOADING; 5995 ata_port_schedule_eh(ap); 5996 spin_unlock_irqrestore(ap->lock, flags); 5997 5998 /* wait till EH commits suicide */ 5999 ata_port_wait_eh(ap); 6000 6001 /* it better be dead now */ 6002 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6003 6004 cancel_delayed_work_sync(&ap->hotplug_task); 6005 6006 skip_eh: 6007 /* clean up zpodd on port removal */ 6008 ata_for_each_link(link, ap, HOST_FIRST) { 6009 ata_for_each_dev(dev, link, ALL) { 6010 if (zpodd_dev_enabled(dev)) 6011 zpodd_exit(dev); 6012 } 6013 } 6014 if (ap->pmp_link) { 6015 int i; 6016 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6017 ata_tlink_delete(&ap->pmp_link[i]); 6018 } 6019 /* remove the associated SCSI host */ 6020 scsi_remove_host(ap->scsi_host); 6021 ata_tport_delete(ap); 6022 } 6023 6024 /** 6025 * ata_host_detach - Detach all ports of an ATA host 6026 * @host: Host to detach 6027 * 6028 * Detach all ports of @host. 6029 * 6030 * LOCKING: 6031 * Kernel thread context (may sleep). 6032 */ 6033 void ata_host_detach(struct ata_host *host) 6034 { 6035 int i; 6036 6037 for (i = 0; i < host->n_ports; i++) { 6038 /* Ensure ata_port probe has completed */ 6039 async_synchronize_cookie(host->ports[i]->cookie + 1); 6040 ata_port_detach(host->ports[i]); 6041 } 6042 6043 /* the host is dead now, dissociate ACPI */ 6044 ata_acpi_dissociate(host); 6045 } 6046 EXPORT_SYMBOL_GPL(ata_host_detach); 6047 6048 #ifdef CONFIG_PCI 6049 6050 /** 6051 * ata_pci_remove_one - PCI layer callback for device removal 6052 * @pdev: PCI device that was removed 6053 * 6054 * PCI layer indicates to libata via this hook that hot-unplug or 6055 * module unload event has occurred. Detach all ports. Resource 6056 * release is handled via devres. 6057 * 6058 * LOCKING: 6059 * Inherited from PCI layer (may sleep). 6060 */ 6061 void ata_pci_remove_one(struct pci_dev *pdev) 6062 { 6063 struct ata_host *host = pci_get_drvdata(pdev); 6064 6065 ata_host_detach(host); 6066 } 6067 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6068 6069 void ata_pci_shutdown_one(struct pci_dev *pdev) 6070 { 6071 struct ata_host *host = pci_get_drvdata(pdev); 6072 int i; 6073 6074 for (i = 0; i < host->n_ports; i++) { 6075 struct ata_port *ap = host->ports[i]; 6076 6077 ap->pflags |= ATA_PFLAG_FROZEN; 6078 6079 /* Disable port interrupts */ 6080 if (ap->ops->freeze) 6081 ap->ops->freeze(ap); 6082 6083 /* Stop the port DMA engines */ 6084 if (ap->ops->port_stop) 6085 ap->ops->port_stop(ap); 6086 } 6087 } 6088 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6089 6090 /* move to PCI subsystem */ 6091 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6092 { 6093 unsigned long tmp = 0; 6094 6095 switch (bits->width) { 6096 case 1: { 6097 u8 tmp8 = 0; 6098 pci_read_config_byte(pdev, bits->reg, &tmp8); 6099 tmp = tmp8; 6100 break; 6101 } 6102 case 2: { 6103 u16 tmp16 = 0; 6104 pci_read_config_word(pdev, bits->reg, &tmp16); 6105 tmp = tmp16; 6106 break; 6107 } 6108 case 4: { 6109 u32 tmp32 = 0; 6110 pci_read_config_dword(pdev, bits->reg, &tmp32); 6111 tmp = tmp32; 6112 break; 6113 } 6114 6115 default: 6116 return -EINVAL; 6117 } 6118 6119 tmp &= bits->mask; 6120 6121 return (tmp == bits->val) ? 1 : 0; 6122 } 6123 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6124 6125 #ifdef CONFIG_PM 6126 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6127 { 6128 pci_save_state(pdev); 6129 pci_disable_device(pdev); 6130 6131 if (mesg.event & PM_EVENT_SLEEP) 6132 pci_set_power_state(pdev, PCI_D3hot); 6133 } 6134 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6135 6136 int ata_pci_device_do_resume(struct pci_dev *pdev) 6137 { 6138 int rc; 6139 6140 pci_set_power_state(pdev, PCI_D0); 6141 pci_restore_state(pdev); 6142 6143 rc = pcim_enable_device(pdev); 6144 if (rc) { 6145 dev_err(&pdev->dev, 6146 "failed to enable device after resume (%d)\n", rc); 6147 return rc; 6148 } 6149 6150 pci_set_master(pdev); 6151 return 0; 6152 } 6153 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6154 6155 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6156 { 6157 struct ata_host *host = pci_get_drvdata(pdev); 6158 int rc = 0; 6159 6160 rc = ata_host_suspend(host, mesg); 6161 if (rc) 6162 return rc; 6163 6164 ata_pci_device_do_suspend(pdev, mesg); 6165 6166 return 0; 6167 } 6168 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6169 6170 int ata_pci_device_resume(struct pci_dev *pdev) 6171 { 6172 struct ata_host *host = pci_get_drvdata(pdev); 6173 int rc; 6174 6175 rc = ata_pci_device_do_resume(pdev); 6176 if (rc == 0) 6177 ata_host_resume(host); 6178 return rc; 6179 } 6180 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6181 #endif /* CONFIG_PM */ 6182 #endif /* CONFIG_PCI */ 6183 6184 /** 6185 * ata_platform_remove_one - Platform layer callback for device removal 6186 * @pdev: Platform device that was removed 6187 * 6188 * Platform layer indicates to libata via this hook that hot-unplug or 6189 * module unload event has occurred. Detach all ports. Resource 6190 * release is handled via devres. 6191 * 6192 * LOCKING: 6193 * Inherited from platform layer (may sleep). 6194 */ 6195 int ata_platform_remove_one(struct platform_device *pdev) 6196 { 6197 struct ata_host *host = platform_get_drvdata(pdev); 6198 6199 ata_host_detach(host); 6200 6201 return 0; 6202 } 6203 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6204 6205 #ifdef CONFIG_ATA_FORCE 6206 static int __init ata_parse_force_one(char **cur, 6207 struct ata_force_ent *force_ent, 6208 const char **reason) 6209 { 6210 static const struct ata_force_param force_tbl[] __initconst = { 6211 { "40c", .cbl = ATA_CBL_PATA40 }, 6212 { "80c", .cbl = ATA_CBL_PATA80 }, 6213 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6214 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6215 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6216 { "sata", .cbl = ATA_CBL_SATA }, 6217 { "1.5Gbps", .spd_limit = 1 }, 6218 { "3.0Gbps", .spd_limit = 2 }, 6219 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6220 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6221 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, 6222 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, 6223 { "noncqati", .horkage_on = ATA_HORKAGE_NO_NCQ_ON_ATI }, 6224 { "ncqati", .horkage_off = ATA_HORKAGE_NO_NCQ_ON_ATI }, 6225 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6226 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6227 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6228 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6229 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6230 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6231 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6232 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6233 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6234 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6235 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6236 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6237 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6238 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6239 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6240 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6241 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6242 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6243 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6244 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6245 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6246 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6247 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6248 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6249 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6250 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6251 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6252 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6253 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6254 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6255 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6256 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6257 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6258 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6259 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6260 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6261 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6262 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6263 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6264 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6265 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6266 }; 6267 char *start = *cur, *p = *cur; 6268 char *id, *val, *endp; 6269 const struct ata_force_param *match_fp = NULL; 6270 int nr_matches = 0, i; 6271 6272 /* find where this param ends and update *cur */ 6273 while (*p != '\0' && *p != ',') 6274 p++; 6275 6276 if (*p == '\0') 6277 *cur = p; 6278 else 6279 *cur = p + 1; 6280 6281 *p = '\0'; 6282 6283 /* parse */ 6284 p = strchr(start, ':'); 6285 if (!p) { 6286 val = strstrip(start); 6287 goto parse_val; 6288 } 6289 *p = '\0'; 6290 6291 id = strstrip(start); 6292 val = strstrip(p + 1); 6293 6294 /* parse id */ 6295 p = strchr(id, '.'); 6296 if (p) { 6297 *p++ = '\0'; 6298 force_ent->device = simple_strtoul(p, &endp, 10); 6299 if (p == endp || *endp != '\0') { 6300 *reason = "invalid device"; 6301 return -EINVAL; 6302 } 6303 } 6304 6305 force_ent->port = simple_strtoul(id, &endp, 10); 6306 if (id == endp || *endp != '\0') { 6307 *reason = "invalid port/link"; 6308 return -EINVAL; 6309 } 6310 6311 parse_val: 6312 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6313 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6314 const struct ata_force_param *fp = &force_tbl[i]; 6315 6316 if (strncasecmp(val, fp->name, strlen(val))) 6317 continue; 6318 6319 nr_matches++; 6320 match_fp = fp; 6321 6322 if (strcasecmp(val, fp->name) == 0) { 6323 nr_matches = 1; 6324 break; 6325 } 6326 } 6327 6328 if (!nr_matches) { 6329 *reason = "unknown value"; 6330 return -EINVAL; 6331 } 6332 if (nr_matches > 1) { 6333 *reason = "ambiguous value"; 6334 return -EINVAL; 6335 } 6336 6337 force_ent->param = *match_fp; 6338 6339 return 0; 6340 } 6341 6342 static void __init ata_parse_force_param(void) 6343 { 6344 int idx = 0, size = 1; 6345 int last_port = -1, last_device = -1; 6346 char *p, *cur, *next; 6347 6348 /* calculate maximum number of params and allocate force_tbl */ 6349 for (p = ata_force_param_buf; *p; p++) 6350 if (*p == ',') 6351 size++; 6352 6353 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6354 if (!ata_force_tbl) { 6355 printk(KERN_WARNING "ata: failed to extend force table, " 6356 "libata.force ignored\n"); 6357 return; 6358 } 6359 6360 /* parse and populate the table */ 6361 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6362 const char *reason = ""; 6363 struct ata_force_ent te = { .port = -1, .device = -1 }; 6364 6365 next = cur; 6366 if (ata_parse_force_one(&next, &te, &reason)) { 6367 printk(KERN_WARNING "ata: failed to parse force " 6368 "parameter \"%s\" (%s)\n", 6369 cur, reason); 6370 continue; 6371 } 6372 6373 if (te.port == -1) { 6374 te.port = last_port; 6375 te.device = last_device; 6376 } 6377 6378 ata_force_tbl[idx++] = te; 6379 6380 last_port = te.port; 6381 last_device = te.device; 6382 } 6383 6384 ata_force_tbl_size = idx; 6385 } 6386 6387 static void ata_free_force_param(void) 6388 { 6389 kfree(ata_force_tbl); 6390 } 6391 #else 6392 static inline void ata_parse_force_param(void) { } 6393 static inline void ata_free_force_param(void) { } 6394 #endif 6395 6396 static int __init ata_init(void) 6397 { 6398 int rc; 6399 6400 ata_parse_force_param(); 6401 6402 rc = ata_sff_init(); 6403 if (rc) { 6404 ata_free_force_param(); 6405 return rc; 6406 } 6407 6408 libata_transport_init(); 6409 ata_scsi_transport_template = ata_attach_transport(); 6410 if (!ata_scsi_transport_template) { 6411 ata_sff_exit(); 6412 rc = -ENOMEM; 6413 goto err_out; 6414 } 6415 6416 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6417 return 0; 6418 6419 err_out: 6420 return rc; 6421 } 6422 6423 static void __exit ata_exit(void) 6424 { 6425 ata_release_transport(ata_scsi_transport_template); 6426 libata_transport_exit(); 6427 ata_sff_exit(); 6428 ata_free_force_param(); 6429 } 6430 6431 subsys_initcall(ata_init); 6432 module_exit(ata_exit); 6433 6434 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6435 6436 int ata_ratelimit(void) 6437 { 6438 return __ratelimit(&ratelimit); 6439 } 6440 EXPORT_SYMBOL_GPL(ata_ratelimit); 6441 6442 /** 6443 * ata_msleep - ATA EH owner aware msleep 6444 * @ap: ATA port to attribute the sleep to 6445 * @msecs: duration to sleep in milliseconds 6446 * 6447 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6448 * ownership is released before going to sleep and reacquired 6449 * after the sleep is complete. IOW, other ports sharing the 6450 * @ap->host will be allowed to own the EH while this task is 6451 * sleeping. 6452 * 6453 * LOCKING: 6454 * Might sleep. 6455 */ 6456 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6457 { 6458 bool owns_eh = ap && ap->host->eh_owner == current; 6459 6460 if (owns_eh) 6461 ata_eh_release(ap); 6462 6463 if (msecs < 20) { 6464 unsigned long usecs = msecs * USEC_PER_MSEC; 6465 usleep_range(usecs, usecs + 50); 6466 } else { 6467 msleep(msecs); 6468 } 6469 6470 if (owns_eh) 6471 ata_eh_acquire(ap); 6472 } 6473 EXPORT_SYMBOL_GPL(ata_msleep); 6474 6475 /** 6476 * ata_wait_register - wait until register value changes 6477 * @ap: ATA port to wait register for, can be NULL 6478 * @reg: IO-mapped register 6479 * @mask: Mask to apply to read register value 6480 * @val: Wait condition 6481 * @interval: polling interval in milliseconds 6482 * @timeout: timeout in milliseconds 6483 * 6484 * Waiting for some bits of register to change is a common 6485 * operation for ATA controllers. This function reads 32bit LE 6486 * IO-mapped register @reg and tests for the following condition. 6487 * 6488 * (*@reg & mask) != val 6489 * 6490 * If the condition is met, it returns; otherwise, the process is 6491 * repeated after @interval_msec until timeout. 6492 * 6493 * LOCKING: 6494 * Kernel thread context (may sleep) 6495 * 6496 * RETURNS: 6497 * The final register value. 6498 */ 6499 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6500 unsigned long interval, unsigned long timeout) 6501 { 6502 unsigned long deadline; 6503 u32 tmp; 6504 6505 tmp = ioread32(reg); 6506 6507 /* Calculate timeout _after_ the first read to make sure 6508 * preceding writes reach the controller before starting to 6509 * eat away the timeout. 6510 */ 6511 deadline = ata_deadline(jiffies, timeout); 6512 6513 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6514 ata_msleep(ap, interval); 6515 tmp = ioread32(reg); 6516 } 6517 6518 return tmp; 6519 } 6520 EXPORT_SYMBOL_GPL(ata_wait_register); 6521 6522 /* 6523 * Dummy port_ops 6524 */ 6525 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6526 { 6527 return AC_ERR_SYSTEM; 6528 } 6529 6530 static void ata_dummy_error_handler(struct ata_port *ap) 6531 { 6532 /* truly dummy */ 6533 } 6534 6535 struct ata_port_operations ata_dummy_port_ops = { 6536 .qc_prep = ata_noop_qc_prep, 6537 .qc_issue = ata_dummy_qc_issue, 6538 .error_handler = ata_dummy_error_handler, 6539 .sched_eh = ata_std_sched_eh, 6540 .end_eh = ata_std_end_eh, 6541 }; 6542 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6543 6544 const struct ata_port_info ata_dummy_port_info = { 6545 .port_ops = &ata_dummy_port_ops, 6546 }; 6547 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6548 6549 /* 6550 * Utility print functions 6551 */ 6552 void ata_port_printk(const struct ata_port *ap, const char *level, 6553 const char *fmt, ...) 6554 { 6555 struct va_format vaf; 6556 va_list args; 6557 6558 va_start(args, fmt); 6559 6560 vaf.fmt = fmt; 6561 vaf.va = &args; 6562 6563 printk("%sata%u: %pV", level, ap->print_id, &vaf); 6564 6565 va_end(args); 6566 } 6567 EXPORT_SYMBOL(ata_port_printk); 6568 6569 void ata_link_printk(const struct ata_link *link, const char *level, 6570 const char *fmt, ...) 6571 { 6572 struct va_format vaf; 6573 va_list args; 6574 6575 va_start(args, fmt); 6576 6577 vaf.fmt = fmt; 6578 vaf.va = &args; 6579 6580 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6581 printk("%sata%u.%02u: %pV", 6582 level, link->ap->print_id, link->pmp, &vaf); 6583 else 6584 printk("%sata%u: %pV", 6585 level, link->ap->print_id, &vaf); 6586 6587 va_end(args); 6588 } 6589 EXPORT_SYMBOL(ata_link_printk); 6590 6591 void ata_dev_printk(const struct ata_device *dev, const char *level, 6592 const char *fmt, ...) 6593 { 6594 struct va_format vaf; 6595 va_list args; 6596 6597 va_start(args, fmt); 6598 6599 vaf.fmt = fmt; 6600 vaf.va = &args; 6601 6602 printk("%sata%u.%02u: %pV", 6603 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6604 &vaf); 6605 6606 va_end(args); 6607 } 6608 EXPORT_SYMBOL(ata_dev_printk); 6609 6610 void ata_print_version(const struct device *dev, const char *version) 6611 { 6612 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6613 } 6614 EXPORT_SYMBOL(ata_print_version); 6615