xref: /openbmc/linux/drivers/ata/libata-core.c (revision 6331b876)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 const struct ata_port_operations sata_port_ops = {
76 	.inherits		= &ata_base_port_ops,
77 
78 	.qc_defer		= ata_std_qc_defer,
79 	.hardreset		= sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82 
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 					u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88 
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90 
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 	const char	*name;
94 	u8		cbl;
95 	u8		spd_limit;
96 	unsigned long	xfer_mask;
97 	unsigned int	horkage_on;
98 	unsigned int	horkage_off;
99 	u16		lflags;
100 };
101 
102 struct ata_force_ent {
103 	int			port;
104 	int			device;
105 	struct ata_force_param	param;
106 };
107 
108 static struct ata_force_ent *ata_force_tbl;
109 static int ata_force_tbl_size;
110 
111 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
112 /* param_buf is thrown away after initialization, disallow read */
113 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
114 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
115 #endif
116 
117 static int atapi_enabled = 1;
118 module_param(atapi_enabled, int, 0444);
119 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
120 
121 static int atapi_dmadir = 0;
122 module_param(atapi_dmadir, int, 0444);
123 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
124 
125 int atapi_passthru16 = 1;
126 module_param(atapi_passthru16, int, 0444);
127 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
128 
129 int libata_fua = 0;
130 module_param_named(fua, libata_fua, int, 0444);
131 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
132 
133 static int ata_ignore_hpa;
134 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
135 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
136 
137 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
138 module_param_named(dma, libata_dma_mask, int, 0444);
139 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
140 
141 static int ata_probe_timeout;
142 module_param(ata_probe_timeout, int, 0444);
143 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
144 
145 int libata_noacpi = 0;
146 module_param_named(noacpi, libata_noacpi, int, 0444);
147 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
148 
149 int libata_allow_tpm = 0;
150 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
151 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
152 
153 static int atapi_an;
154 module_param(atapi_an, int, 0444);
155 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
156 
157 MODULE_AUTHOR("Jeff Garzik");
158 MODULE_DESCRIPTION("Library module for ATA devices");
159 MODULE_LICENSE("GPL");
160 MODULE_VERSION(DRV_VERSION);
161 
162 static inline bool ata_dev_print_info(struct ata_device *dev)
163 {
164 	struct ata_eh_context *ehc = &dev->link->eh_context;
165 
166 	return ehc->i.flags & ATA_EHI_PRINTINFO;
167 }
168 
169 static bool ata_sstatus_online(u32 sstatus)
170 {
171 	return (sstatus & 0xf) == 0x3;
172 }
173 
174 /**
175  *	ata_link_next - link iteration helper
176  *	@link: the previous link, NULL to start
177  *	@ap: ATA port containing links to iterate
178  *	@mode: iteration mode, one of ATA_LITER_*
179  *
180  *	LOCKING:
181  *	Host lock or EH context.
182  *
183  *	RETURNS:
184  *	Pointer to the next link.
185  */
186 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 			       enum ata_link_iter_mode mode)
188 {
189 	BUG_ON(mode != ATA_LITER_EDGE &&
190 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191 
192 	/* NULL link indicates start of iteration */
193 	if (!link)
194 		switch (mode) {
195 		case ATA_LITER_EDGE:
196 		case ATA_LITER_PMP_FIRST:
197 			if (sata_pmp_attached(ap))
198 				return ap->pmp_link;
199 			fallthrough;
200 		case ATA_LITER_HOST_FIRST:
201 			return &ap->link;
202 		}
203 
204 	/* we just iterated over the host link, what's next? */
205 	if (link == &ap->link)
206 		switch (mode) {
207 		case ATA_LITER_HOST_FIRST:
208 			if (sata_pmp_attached(ap))
209 				return ap->pmp_link;
210 			fallthrough;
211 		case ATA_LITER_PMP_FIRST:
212 			if (unlikely(ap->slave_link))
213 				return ap->slave_link;
214 			fallthrough;
215 		case ATA_LITER_EDGE:
216 			return NULL;
217 		}
218 
219 	/* slave_link excludes PMP */
220 	if (unlikely(link == ap->slave_link))
221 		return NULL;
222 
223 	/* we were over a PMP link */
224 	if (++link < ap->pmp_link + ap->nr_pmp_links)
225 		return link;
226 
227 	if (mode == ATA_LITER_PMP_FIRST)
228 		return &ap->link;
229 
230 	return NULL;
231 }
232 EXPORT_SYMBOL_GPL(ata_link_next);
233 
234 /**
235  *	ata_dev_next - device iteration helper
236  *	@dev: the previous device, NULL to start
237  *	@link: ATA link containing devices to iterate
238  *	@mode: iteration mode, one of ATA_DITER_*
239  *
240  *	LOCKING:
241  *	Host lock or EH context.
242  *
243  *	RETURNS:
244  *	Pointer to the next device.
245  */
246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
247 				enum ata_dev_iter_mode mode)
248 {
249 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
250 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251 
252 	/* NULL dev indicates start of iteration */
253 	if (!dev)
254 		switch (mode) {
255 		case ATA_DITER_ENABLED:
256 		case ATA_DITER_ALL:
257 			dev = link->device;
258 			goto check;
259 		case ATA_DITER_ENABLED_REVERSE:
260 		case ATA_DITER_ALL_REVERSE:
261 			dev = link->device + ata_link_max_devices(link) - 1;
262 			goto check;
263 		}
264 
265  next:
266 	/* move to the next one */
267 	switch (mode) {
268 	case ATA_DITER_ENABLED:
269 	case ATA_DITER_ALL:
270 		if (++dev < link->device + ata_link_max_devices(link))
271 			goto check;
272 		return NULL;
273 	case ATA_DITER_ENABLED_REVERSE:
274 	case ATA_DITER_ALL_REVERSE:
275 		if (--dev >= link->device)
276 			goto check;
277 		return NULL;
278 	}
279 
280  check:
281 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
282 	    !ata_dev_enabled(dev))
283 		goto next;
284 	return dev;
285 }
286 EXPORT_SYMBOL_GPL(ata_dev_next);
287 
288 /**
289  *	ata_dev_phys_link - find physical link for a device
290  *	@dev: ATA device to look up physical link for
291  *
292  *	Look up physical link which @dev is attached to.  Note that
293  *	this is different from @dev->link only when @dev is on slave
294  *	link.  For all other cases, it's the same as @dev->link.
295  *
296  *	LOCKING:
297  *	Don't care.
298  *
299  *	RETURNS:
300  *	Pointer to the found physical link.
301  */
302 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
303 {
304 	struct ata_port *ap = dev->link->ap;
305 
306 	if (!ap->slave_link)
307 		return dev->link;
308 	if (!dev->devno)
309 		return &ap->link;
310 	return ap->slave_link;
311 }
312 
313 #ifdef CONFIG_ATA_FORCE
314 /**
315  *	ata_force_cbl - force cable type according to libata.force
316  *	@ap: ATA port of interest
317  *
318  *	Force cable type according to libata.force and whine about it.
319  *	The last entry which has matching port number is used, so it
320  *	can be specified as part of device force parameters.  For
321  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322  *	same effect.
323  *
324  *	LOCKING:
325  *	EH context.
326  */
327 void ata_force_cbl(struct ata_port *ap)
328 {
329 	int i;
330 
331 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
332 		const struct ata_force_ent *fe = &ata_force_tbl[i];
333 
334 		if (fe->port != -1 && fe->port != ap->print_id)
335 			continue;
336 
337 		if (fe->param.cbl == ATA_CBL_NONE)
338 			continue;
339 
340 		ap->cbl = fe->param.cbl;
341 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
342 		return;
343 	}
344 }
345 
346 /**
347  *	ata_force_link_limits - force link limits according to libata.force
348  *	@link: ATA link of interest
349  *
350  *	Force link flags and SATA spd limit according to libata.force
351  *	and whine about it.  When only the port part is specified
352  *	(e.g. 1:), the limit applies to all links connected to both
353  *	the host link and all fan-out ports connected via PMP.  If the
354  *	device part is specified as 0 (e.g. 1.00:), it specifies the
355  *	first fan-out link not the host link.  Device number 15 always
356  *	points to the host link whether PMP is attached or not.  If the
357  *	controller has slave link, device number 16 points to it.
358  *
359  *	LOCKING:
360  *	EH context.
361  */
362 static void ata_force_link_limits(struct ata_link *link)
363 {
364 	bool did_spd = false;
365 	int linkno = link->pmp;
366 	int i;
367 
368 	if (ata_is_host_link(link))
369 		linkno += 15;
370 
371 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
372 		const struct ata_force_ent *fe = &ata_force_tbl[i];
373 
374 		if (fe->port != -1 && fe->port != link->ap->print_id)
375 			continue;
376 
377 		if (fe->device != -1 && fe->device != linkno)
378 			continue;
379 
380 		/* only honor the first spd limit */
381 		if (!did_spd && fe->param.spd_limit) {
382 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
383 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
384 					fe->param.name);
385 			did_spd = true;
386 		}
387 
388 		/* let lflags stack */
389 		if (fe->param.lflags) {
390 			link->flags |= fe->param.lflags;
391 			ata_link_notice(link,
392 					"FORCE: link flag 0x%x forced -> 0x%x\n",
393 					fe->param.lflags, link->flags);
394 		}
395 	}
396 }
397 
398 /**
399  *	ata_force_xfermask - force xfermask according to libata.force
400  *	@dev: ATA device of interest
401  *
402  *	Force xfer_mask according to libata.force and whine about it.
403  *	For consistency with link selection, device number 15 selects
404  *	the first device connected to the host link.
405  *
406  *	LOCKING:
407  *	EH context.
408  */
409 static void ata_force_xfermask(struct ata_device *dev)
410 {
411 	int devno = dev->link->pmp + dev->devno;
412 	int alt_devno = devno;
413 	int i;
414 
415 	/* allow n.15/16 for devices attached to host port */
416 	if (ata_is_host_link(dev->link))
417 		alt_devno += 15;
418 
419 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
420 		const struct ata_force_ent *fe = &ata_force_tbl[i];
421 		unsigned long pio_mask, mwdma_mask, udma_mask;
422 
423 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
424 			continue;
425 
426 		if (fe->device != -1 && fe->device != devno &&
427 		    fe->device != alt_devno)
428 			continue;
429 
430 		if (!fe->param.xfer_mask)
431 			continue;
432 
433 		ata_unpack_xfermask(fe->param.xfer_mask,
434 				    &pio_mask, &mwdma_mask, &udma_mask);
435 		if (udma_mask)
436 			dev->udma_mask = udma_mask;
437 		else if (mwdma_mask) {
438 			dev->udma_mask = 0;
439 			dev->mwdma_mask = mwdma_mask;
440 		} else {
441 			dev->udma_mask = 0;
442 			dev->mwdma_mask = 0;
443 			dev->pio_mask = pio_mask;
444 		}
445 
446 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
447 			       fe->param.name);
448 		return;
449 	}
450 }
451 
452 /**
453  *	ata_force_horkage - force horkage according to libata.force
454  *	@dev: ATA device of interest
455  *
456  *	Force horkage according to libata.force and whine about it.
457  *	For consistency with link selection, device number 15 selects
458  *	the first device connected to the host link.
459  *
460  *	LOCKING:
461  *	EH context.
462  */
463 static void ata_force_horkage(struct ata_device *dev)
464 {
465 	int devno = dev->link->pmp + dev->devno;
466 	int alt_devno = devno;
467 	int i;
468 
469 	/* allow n.15/16 for devices attached to host port */
470 	if (ata_is_host_link(dev->link))
471 		alt_devno += 15;
472 
473 	for (i = 0; i < ata_force_tbl_size; i++) {
474 		const struct ata_force_ent *fe = &ata_force_tbl[i];
475 
476 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
477 			continue;
478 
479 		if (fe->device != -1 && fe->device != devno &&
480 		    fe->device != alt_devno)
481 			continue;
482 
483 		if (!(~dev->horkage & fe->param.horkage_on) &&
484 		    !(dev->horkage & fe->param.horkage_off))
485 			continue;
486 
487 		dev->horkage |= fe->param.horkage_on;
488 		dev->horkage &= ~fe->param.horkage_off;
489 
490 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
491 			       fe->param.name);
492 	}
493 }
494 #else
495 static inline void ata_force_link_limits(struct ata_link *link) { }
496 static inline void ata_force_xfermask(struct ata_device *dev) { }
497 static inline void ata_force_horkage(struct ata_device *dev) { }
498 #endif
499 
500 /**
501  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
502  *	@opcode: SCSI opcode
503  *
504  *	Determine ATAPI command type from @opcode.
505  *
506  *	LOCKING:
507  *	None.
508  *
509  *	RETURNS:
510  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
511  */
512 int atapi_cmd_type(u8 opcode)
513 {
514 	switch (opcode) {
515 	case GPCMD_READ_10:
516 	case GPCMD_READ_12:
517 		return ATAPI_READ;
518 
519 	case GPCMD_WRITE_10:
520 	case GPCMD_WRITE_12:
521 	case GPCMD_WRITE_AND_VERIFY_10:
522 		return ATAPI_WRITE;
523 
524 	case GPCMD_READ_CD:
525 	case GPCMD_READ_CD_MSF:
526 		return ATAPI_READ_CD;
527 
528 	case ATA_16:
529 	case ATA_12:
530 		if (atapi_passthru16)
531 			return ATAPI_PASS_THRU;
532 		fallthrough;
533 	default:
534 		return ATAPI_MISC;
535 	}
536 }
537 EXPORT_SYMBOL_GPL(atapi_cmd_type);
538 
539 static const u8 ata_rw_cmds[] = {
540 	/* pio multi */
541 	ATA_CMD_READ_MULTI,
542 	ATA_CMD_WRITE_MULTI,
543 	ATA_CMD_READ_MULTI_EXT,
544 	ATA_CMD_WRITE_MULTI_EXT,
545 	0,
546 	0,
547 	0,
548 	ATA_CMD_WRITE_MULTI_FUA_EXT,
549 	/* pio */
550 	ATA_CMD_PIO_READ,
551 	ATA_CMD_PIO_WRITE,
552 	ATA_CMD_PIO_READ_EXT,
553 	ATA_CMD_PIO_WRITE_EXT,
554 	0,
555 	0,
556 	0,
557 	0,
558 	/* dma */
559 	ATA_CMD_READ,
560 	ATA_CMD_WRITE,
561 	ATA_CMD_READ_EXT,
562 	ATA_CMD_WRITE_EXT,
563 	0,
564 	0,
565 	0,
566 	ATA_CMD_WRITE_FUA_EXT
567 };
568 
569 /**
570  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
571  *	@tf: command to examine and configure
572  *	@dev: device tf belongs to
573  *
574  *	Examine the device configuration and tf->flags to calculate
575  *	the proper read/write commands and protocol to use.
576  *
577  *	LOCKING:
578  *	caller.
579  */
580 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
581 {
582 	u8 cmd;
583 
584 	int index, fua, lba48, write;
585 
586 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
587 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
588 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
589 
590 	if (dev->flags & ATA_DFLAG_PIO) {
591 		tf->protocol = ATA_PROT_PIO;
592 		index = dev->multi_count ? 0 : 8;
593 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
594 		/* Unable to use DMA due to host limitation */
595 		tf->protocol = ATA_PROT_PIO;
596 		index = dev->multi_count ? 0 : 8;
597 	} else {
598 		tf->protocol = ATA_PROT_DMA;
599 		index = 16;
600 	}
601 
602 	cmd = ata_rw_cmds[index + fua + lba48 + write];
603 	if (cmd) {
604 		tf->command = cmd;
605 		return 0;
606 	}
607 	return -1;
608 }
609 
610 /**
611  *	ata_tf_read_block - Read block address from ATA taskfile
612  *	@tf: ATA taskfile of interest
613  *	@dev: ATA device @tf belongs to
614  *
615  *	LOCKING:
616  *	None.
617  *
618  *	Read block address from @tf.  This function can handle all
619  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
620  *	flags select the address format to use.
621  *
622  *	RETURNS:
623  *	Block address read from @tf.
624  */
625 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
626 {
627 	u64 block = 0;
628 
629 	if (tf->flags & ATA_TFLAG_LBA) {
630 		if (tf->flags & ATA_TFLAG_LBA48) {
631 			block |= (u64)tf->hob_lbah << 40;
632 			block |= (u64)tf->hob_lbam << 32;
633 			block |= (u64)tf->hob_lbal << 24;
634 		} else
635 			block |= (tf->device & 0xf) << 24;
636 
637 		block |= tf->lbah << 16;
638 		block |= tf->lbam << 8;
639 		block |= tf->lbal;
640 	} else {
641 		u32 cyl, head, sect;
642 
643 		cyl = tf->lbam | (tf->lbah << 8);
644 		head = tf->device & 0xf;
645 		sect = tf->lbal;
646 
647 		if (!sect) {
648 			ata_dev_warn(dev,
649 				     "device reported invalid CHS sector 0\n");
650 			return U64_MAX;
651 		}
652 
653 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
654 	}
655 
656 	return block;
657 }
658 
659 /**
660  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
661  *	@tf: Target ATA taskfile
662  *	@dev: ATA device @tf belongs to
663  *	@block: Block address
664  *	@n_block: Number of blocks
665  *	@tf_flags: RW/FUA etc...
666  *	@tag: tag
667  *	@class: IO priority class
668  *
669  *	LOCKING:
670  *	None.
671  *
672  *	Build ATA taskfile @tf for read/write request described by
673  *	@block, @n_block, @tf_flags and @tag on @dev.
674  *
675  *	RETURNS:
676  *
677  *	0 on success, -ERANGE if the request is too large for @dev,
678  *	-EINVAL if the request is invalid.
679  */
680 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
681 		    u64 block, u32 n_block, unsigned int tf_flags,
682 		    unsigned int tag, int class)
683 {
684 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
685 	tf->flags |= tf_flags;
686 
687 	if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
688 		/* yay, NCQ */
689 		if (!lba_48_ok(block, n_block))
690 			return -ERANGE;
691 
692 		tf->protocol = ATA_PROT_NCQ;
693 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
694 
695 		if (tf->flags & ATA_TFLAG_WRITE)
696 			tf->command = ATA_CMD_FPDMA_WRITE;
697 		else
698 			tf->command = ATA_CMD_FPDMA_READ;
699 
700 		tf->nsect = tag << 3;
701 		tf->hob_feature = (n_block >> 8) & 0xff;
702 		tf->feature = n_block & 0xff;
703 
704 		tf->hob_lbah = (block >> 40) & 0xff;
705 		tf->hob_lbam = (block >> 32) & 0xff;
706 		tf->hob_lbal = (block >> 24) & 0xff;
707 		tf->lbah = (block >> 16) & 0xff;
708 		tf->lbam = (block >> 8) & 0xff;
709 		tf->lbal = block & 0xff;
710 
711 		tf->device = ATA_LBA;
712 		if (tf->flags & ATA_TFLAG_FUA)
713 			tf->device |= 1 << 7;
714 
715 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE &&
716 		    class == IOPRIO_CLASS_RT)
717 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
718 	} else if (dev->flags & ATA_DFLAG_LBA) {
719 		tf->flags |= ATA_TFLAG_LBA;
720 
721 		if (lba_28_ok(block, n_block)) {
722 			/* use LBA28 */
723 			tf->device |= (block >> 24) & 0xf;
724 		} else if (lba_48_ok(block, n_block)) {
725 			if (!(dev->flags & ATA_DFLAG_LBA48))
726 				return -ERANGE;
727 
728 			/* use LBA48 */
729 			tf->flags |= ATA_TFLAG_LBA48;
730 
731 			tf->hob_nsect = (n_block >> 8) & 0xff;
732 
733 			tf->hob_lbah = (block >> 40) & 0xff;
734 			tf->hob_lbam = (block >> 32) & 0xff;
735 			tf->hob_lbal = (block >> 24) & 0xff;
736 		} else
737 			/* request too large even for LBA48 */
738 			return -ERANGE;
739 
740 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
741 			return -EINVAL;
742 
743 		tf->nsect = n_block & 0xff;
744 
745 		tf->lbah = (block >> 16) & 0xff;
746 		tf->lbam = (block >> 8) & 0xff;
747 		tf->lbal = block & 0xff;
748 
749 		tf->device |= ATA_LBA;
750 	} else {
751 		/* CHS */
752 		u32 sect, head, cyl, track;
753 
754 		/* The request -may- be too large for CHS addressing. */
755 		if (!lba_28_ok(block, n_block))
756 			return -ERANGE;
757 
758 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
759 			return -EINVAL;
760 
761 		/* Convert LBA to CHS */
762 		track = (u32)block / dev->sectors;
763 		cyl   = track / dev->heads;
764 		head  = track % dev->heads;
765 		sect  = (u32)block % dev->sectors + 1;
766 
767 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
768 			(u32)block, track, cyl, head, sect);
769 
770 		/* Check whether the converted CHS can fit.
771 		   Cylinder: 0-65535
772 		   Head: 0-15
773 		   Sector: 1-255*/
774 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
775 			return -ERANGE;
776 
777 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
778 		tf->lbal = sect;
779 		tf->lbam = cyl;
780 		tf->lbah = cyl >> 8;
781 		tf->device |= head;
782 	}
783 
784 	return 0;
785 }
786 
787 /**
788  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
789  *	@pio_mask: pio_mask
790  *	@mwdma_mask: mwdma_mask
791  *	@udma_mask: udma_mask
792  *
793  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
794  *	unsigned int xfer_mask.
795  *
796  *	LOCKING:
797  *	None.
798  *
799  *	RETURNS:
800  *	Packed xfer_mask.
801  */
802 unsigned long ata_pack_xfermask(unsigned long pio_mask,
803 				unsigned long mwdma_mask,
804 				unsigned long udma_mask)
805 {
806 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
807 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
808 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
809 }
810 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
811 
812 /**
813  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
814  *	@xfer_mask: xfer_mask to unpack
815  *	@pio_mask: resulting pio_mask
816  *	@mwdma_mask: resulting mwdma_mask
817  *	@udma_mask: resulting udma_mask
818  *
819  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
820  *	Any NULL destination masks will be ignored.
821  */
822 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
823 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
824 {
825 	if (pio_mask)
826 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
827 	if (mwdma_mask)
828 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
829 	if (udma_mask)
830 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
831 }
832 
833 static const struct ata_xfer_ent {
834 	int shift, bits;
835 	u8 base;
836 } ata_xfer_tbl[] = {
837 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
838 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
839 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
840 	{ -1, },
841 };
842 
843 /**
844  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
845  *	@xfer_mask: xfer_mask of interest
846  *
847  *	Return matching XFER_* value for @xfer_mask.  Only the highest
848  *	bit of @xfer_mask is considered.
849  *
850  *	LOCKING:
851  *	None.
852  *
853  *	RETURNS:
854  *	Matching XFER_* value, 0xff if no match found.
855  */
856 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
857 {
858 	int highbit = fls(xfer_mask) - 1;
859 	const struct ata_xfer_ent *ent;
860 
861 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
862 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
863 			return ent->base + highbit - ent->shift;
864 	return 0xff;
865 }
866 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
867 
868 /**
869  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
870  *	@xfer_mode: XFER_* of interest
871  *
872  *	Return matching xfer_mask for @xfer_mode.
873  *
874  *	LOCKING:
875  *	None.
876  *
877  *	RETURNS:
878  *	Matching xfer_mask, 0 if no match found.
879  */
880 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
881 {
882 	const struct ata_xfer_ent *ent;
883 
884 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
885 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
886 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
887 				& ~((1 << ent->shift) - 1);
888 	return 0;
889 }
890 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
891 
892 /**
893  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
894  *	@xfer_mode: XFER_* of interest
895  *
896  *	Return matching xfer_shift for @xfer_mode.
897  *
898  *	LOCKING:
899  *	None.
900  *
901  *	RETURNS:
902  *	Matching xfer_shift, -1 if no match found.
903  */
904 int ata_xfer_mode2shift(unsigned long xfer_mode)
905 {
906 	const struct ata_xfer_ent *ent;
907 
908 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
909 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
910 			return ent->shift;
911 	return -1;
912 }
913 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
914 
915 /**
916  *	ata_mode_string - convert xfer_mask to string
917  *	@xfer_mask: mask of bits supported; only highest bit counts.
918  *
919  *	Determine string which represents the highest speed
920  *	(highest bit in @modemask).
921  *
922  *	LOCKING:
923  *	None.
924  *
925  *	RETURNS:
926  *	Constant C string representing highest speed listed in
927  *	@mode_mask, or the constant C string "<n/a>".
928  */
929 const char *ata_mode_string(unsigned long xfer_mask)
930 {
931 	static const char * const xfer_mode_str[] = {
932 		"PIO0",
933 		"PIO1",
934 		"PIO2",
935 		"PIO3",
936 		"PIO4",
937 		"PIO5",
938 		"PIO6",
939 		"MWDMA0",
940 		"MWDMA1",
941 		"MWDMA2",
942 		"MWDMA3",
943 		"MWDMA4",
944 		"UDMA/16",
945 		"UDMA/25",
946 		"UDMA/33",
947 		"UDMA/44",
948 		"UDMA/66",
949 		"UDMA/100",
950 		"UDMA/133",
951 		"UDMA7",
952 	};
953 	int highbit;
954 
955 	highbit = fls(xfer_mask) - 1;
956 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
957 		return xfer_mode_str[highbit];
958 	return "<n/a>";
959 }
960 EXPORT_SYMBOL_GPL(ata_mode_string);
961 
962 const char *sata_spd_string(unsigned int spd)
963 {
964 	static const char * const spd_str[] = {
965 		"1.5 Gbps",
966 		"3.0 Gbps",
967 		"6.0 Gbps",
968 	};
969 
970 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
971 		return "<unknown>";
972 	return spd_str[spd - 1];
973 }
974 
975 /**
976  *	ata_dev_classify - determine device type based on ATA-spec signature
977  *	@tf: ATA taskfile register set for device to be identified
978  *
979  *	Determine from taskfile register contents whether a device is
980  *	ATA or ATAPI, as per "Signature and persistence" section
981  *	of ATA/PI spec (volume 1, sect 5.14).
982  *
983  *	LOCKING:
984  *	None.
985  *
986  *	RETURNS:
987  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
988  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
989  */
990 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
991 {
992 	/* Apple's open source Darwin code hints that some devices only
993 	 * put a proper signature into the LBA mid/high registers,
994 	 * So, we only check those.  It's sufficient for uniqueness.
995 	 *
996 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
997 	 * signatures for ATA and ATAPI devices attached on SerialATA,
998 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
999 	 * spec has never mentioned about using different signatures
1000 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1001 	 * Multiplier specification began to use 0x69/0x96 to identify
1002 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1003 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1004 	 * 0x69/0x96 shortly and described them as reserved for
1005 	 * SerialATA.
1006 	 *
1007 	 * We follow the current spec and consider that 0x69/0x96
1008 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1009 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1010 	 * SEMB signature.  This is worked around in
1011 	 * ata_dev_read_id().
1012 	 */
1013 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1014 		DPRINTK("found ATA device by sig\n");
1015 		return ATA_DEV_ATA;
1016 	}
1017 
1018 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1019 		DPRINTK("found ATAPI device by sig\n");
1020 		return ATA_DEV_ATAPI;
1021 	}
1022 
1023 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1024 		DPRINTK("found PMP device by sig\n");
1025 		return ATA_DEV_PMP;
1026 	}
1027 
1028 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1029 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1030 		return ATA_DEV_SEMB;
1031 	}
1032 
1033 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1034 		DPRINTK("found ZAC device by sig\n");
1035 		return ATA_DEV_ZAC;
1036 	}
1037 
1038 	DPRINTK("unknown device\n");
1039 	return ATA_DEV_UNKNOWN;
1040 }
1041 EXPORT_SYMBOL_GPL(ata_dev_classify);
1042 
1043 /**
1044  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1045  *	@id: IDENTIFY DEVICE results we will examine
1046  *	@s: string into which data is output
1047  *	@ofs: offset into identify device page
1048  *	@len: length of string to return. must be an even number.
1049  *
1050  *	The strings in the IDENTIFY DEVICE page are broken up into
1051  *	16-bit chunks.  Run through the string, and output each
1052  *	8-bit chunk linearly, regardless of platform.
1053  *
1054  *	LOCKING:
1055  *	caller.
1056  */
1057 
1058 void ata_id_string(const u16 *id, unsigned char *s,
1059 		   unsigned int ofs, unsigned int len)
1060 {
1061 	unsigned int c;
1062 
1063 	BUG_ON(len & 1);
1064 
1065 	while (len > 0) {
1066 		c = id[ofs] >> 8;
1067 		*s = c;
1068 		s++;
1069 
1070 		c = id[ofs] & 0xff;
1071 		*s = c;
1072 		s++;
1073 
1074 		ofs++;
1075 		len -= 2;
1076 	}
1077 }
1078 EXPORT_SYMBOL_GPL(ata_id_string);
1079 
1080 /**
1081  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1082  *	@id: IDENTIFY DEVICE results we will examine
1083  *	@s: string into which data is output
1084  *	@ofs: offset into identify device page
1085  *	@len: length of string to return. must be an odd number.
1086  *
1087  *	This function is identical to ata_id_string except that it
1088  *	trims trailing spaces and terminates the resulting string with
1089  *	null.  @len must be actual maximum length (even number) + 1.
1090  *
1091  *	LOCKING:
1092  *	caller.
1093  */
1094 void ata_id_c_string(const u16 *id, unsigned char *s,
1095 		     unsigned int ofs, unsigned int len)
1096 {
1097 	unsigned char *p;
1098 
1099 	ata_id_string(id, s, ofs, len - 1);
1100 
1101 	p = s + strnlen(s, len - 1);
1102 	while (p > s && p[-1] == ' ')
1103 		p--;
1104 	*p = '\0';
1105 }
1106 EXPORT_SYMBOL_GPL(ata_id_c_string);
1107 
1108 static u64 ata_id_n_sectors(const u16 *id)
1109 {
1110 	if (ata_id_has_lba(id)) {
1111 		if (ata_id_has_lba48(id))
1112 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1113 		else
1114 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1115 	} else {
1116 		if (ata_id_current_chs_valid(id))
1117 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1118 			       id[ATA_ID_CUR_SECTORS];
1119 		else
1120 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1121 			       id[ATA_ID_SECTORS];
1122 	}
1123 }
1124 
1125 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1126 {
1127 	u64 sectors = 0;
1128 
1129 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1130 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1131 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1132 	sectors |= (tf->lbah & 0xff) << 16;
1133 	sectors |= (tf->lbam & 0xff) << 8;
1134 	sectors |= (tf->lbal & 0xff);
1135 
1136 	return sectors;
1137 }
1138 
1139 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1140 {
1141 	u64 sectors = 0;
1142 
1143 	sectors |= (tf->device & 0x0f) << 24;
1144 	sectors |= (tf->lbah & 0xff) << 16;
1145 	sectors |= (tf->lbam & 0xff) << 8;
1146 	sectors |= (tf->lbal & 0xff);
1147 
1148 	return sectors;
1149 }
1150 
1151 /**
1152  *	ata_read_native_max_address - Read native max address
1153  *	@dev: target device
1154  *	@max_sectors: out parameter for the result native max address
1155  *
1156  *	Perform an LBA48 or LBA28 native size query upon the device in
1157  *	question.
1158  *
1159  *	RETURNS:
1160  *	0 on success, -EACCES if command is aborted by the drive.
1161  *	-EIO on other errors.
1162  */
1163 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1164 {
1165 	unsigned int err_mask;
1166 	struct ata_taskfile tf;
1167 	int lba48 = ata_id_has_lba48(dev->id);
1168 
1169 	ata_tf_init(dev, &tf);
1170 
1171 	/* always clear all address registers */
1172 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1173 
1174 	if (lba48) {
1175 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1176 		tf.flags |= ATA_TFLAG_LBA48;
1177 	} else
1178 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1179 
1180 	tf.protocol = ATA_PROT_NODATA;
1181 	tf.device |= ATA_LBA;
1182 
1183 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1184 	if (err_mask) {
1185 		ata_dev_warn(dev,
1186 			     "failed to read native max address (err_mask=0x%x)\n",
1187 			     err_mask);
1188 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1189 			return -EACCES;
1190 		return -EIO;
1191 	}
1192 
1193 	if (lba48)
1194 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1195 	else
1196 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1197 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1198 		(*max_sectors)--;
1199 	return 0;
1200 }
1201 
1202 /**
1203  *	ata_set_max_sectors - Set max sectors
1204  *	@dev: target device
1205  *	@new_sectors: new max sectors value to set for the device
1206  *
1207  *	Set max sectors of @dev to @new_sectors.
1208  *
1209  *	RETURNS:
1210  *	0 on success, -EACCES if command is aborted or denied (due to
1211  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1212  *	errors.
1213  */
1214 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1215 {
1216 	unsigned int err_mask;
1217 	struct ata_taskfile tf;
1218 	int lba48 = ata_id_has_lba48(dev->id);
1219 
1220 	new_sectors--;
1221 
1222 	ata_tf_init(dev, &tf);
1223 
1224 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1225 
1226 	if (lba48) {
1227 		tf.command = ATA_CMD_SET_MAX_EXT;
1228 		tf.flags |= ATA_TFLAG_LBA48;
1229 
1230 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1231 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1232 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1233 	} else {
1234 		tf.command = ATA_CMD_SET_MAX;
1235 
1236 		tf.device |= (new_sectors >> 24) & 0xf;
1237 	}
1238 
1239 	tf.protocol = ATA_PROT_NODATA;
1240 	tf.device |= ATA_LBA;
1241 
1242 	tf.lbal = (new_sectors >> 0) & 0xff;
1243 	tf.lbam = (new_sectors >> 8) & 0xff;
1244 	tf.lbah = (new_sectors >> 16) & 0xff;
1245 
1246 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1247 	if (err_mask) {
1248 		ata_dev_warn(dev,
1249 			     "failed to set max address (err_mask=0x%x)\n",
1250 			     err_mask);
1251 		if (err_mask == AC_ERR_DEV &&
1252 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1253 			return -EACCES;
1254 		return -EIO;
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 /**
1261  *	ata_hpa_resize		-	Resize a device with an HPA set
1262  *	@dev: Device to resize
1263  *
1264  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1265  *	it if required to the full size of the media. The caller must check
1266  *	the drive has the HPA feature set enabled.
1267  *
1268  *	RETURNS:
1269  *	0 on success, -errno on failure.
1270  */
1271 static int ata_hpa_resize(struct ata_device *dev)
1272 {
1273 	bool print_info = ata_dev_print_info(dev);
1274 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1275 	u64 sectors = ata_id_n_sectors(dev->id);
1276 	u64 native_sectors;
1277 	int rc;
1278 
1279 	/* do we need to do it? */
1280 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1281 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1282 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1283 		return 0;
1284 
1285 	/* read native max address */
1286 	rc = ata_read_native_max_address(dev, &native_sectors);
1287 	if (rc) {
1288 		/* If device aborted the command or HPA isn't going to
1289 		 * be unlocked, skip HPA resizing.
1290 		 */
1291 		if (rc == -EACCES || !unlock_hpa) {
1292 			ata_dev_warn(dev,
1293 				     "HPA support seems broken, skipping HPA handling\n");
1294 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1295 
1296 			/* we can continue if device aborted the command */
1297 			if (rc == -EACCES)
1298 				rc = 0;
1299 		}
1300 
1301 		return rc;
1302 	}
1303 	dev->n_native_sectors = native_sectors;
1304 
1305 	/* nothing to do? */
1306 	if (native_sectors <= sectors || !unlock_hpa) {
1307 		if (!print_info || native_sectors == sectors)
1308 			return 0;
1309 
1310 		if (native_sectors > sectors)
1311 			ata_dev_info(dev,
1312 				"HPA detected: current %llu, native %llu\n",
1313 				(unsigned long long)sectors,
1314 				(unsigned long long)native_sectors);
1315 		else if (native_sectors < sectors)
1316 			ata_dev_warn(dev,
1317 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1318 				(unsigned long long)native_sectors,
1319 				(unsigned long long)sectors);
1320 		return 0;
1321 	}
1322 
1323 	/* let's unlock HPA */
1324 	rc = ata_set_max_sectors(dev, native_sectors);
1325 	if (rc == -EACCES) {
1326 		/* if device aborted the command, skip HPA resizing */
1327 		ata_dev_warn(dev,
1328 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1329 			     (unsigned long long)sectors,
1330 			     (unsigned long long)native_sectors);
1331 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1332 		return 0;
1333 	} else if (rc)
1334 		return rc;
1335 
1336 	/* re-read IDENTIFY data */
1337 	rc = ata_dev_reread_id(dev, 0);
1338 	if (rc) {
1339 		ata_dev_err(dev,
1340 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1341 		return rc;
1342 	}
1343 
1344 	if (print_info) {
1345 		u64 new_sectors = ata_id_n_sectors(dev->id);
1346 		ata_dev_info(dev,
1347 			"HPA unlocked: %llu -> %llu, native %llu\n",
1348 			(unsigned long long)sectors,
1349 			(unsigned long long)new_sectors,
1350 			(unsigned long long)native_sectors);
1351 	}
1352 
1353 	return 0;
1354 }
1355 
1356 /**
1357  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1358  *	@id: IDENTIFY DEVICE page to dump
1359  *
1360  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1361  *	page.
1362  *
1363  *	LOCKING:
1364  *	caller.
1365  */
1366 
1367 static inline void ata_dump_id(const u16 *id)
1368 {
1369 	DPRINTK("49==0x%04x  "
1370 		"53==0x%04x  "
1371 		"63==0x%04x  "
1372 		"64==0x%04x  "
1373 		"75==0x%04x  \n",
1374 		id[49],
1375 		id[53],
1376 		id[63],
1377 		id[64],
1378 		id[75]);
1379 	DPRINTK("80==0x%04x  "
1380 		"81==0x%04x  "
1381 		"82==0x%04x  "
1382 		"83==0x%04x  "
1383 		"84==0x%04x  \n",
1384 		id[80],
1385 		id[81],
1386 		id[82],
1387 		id[83],
1388 		id[84]);
1389 	DPRINTK("88==0x%04x  "
1390 		"93==0x%04x\n",
1391 		id[88],
1392 		id[93]);
1393 }
1394 
1395 /**
1396  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1397  *	@id: IDENTIFY data to compute xfer mask from
1398  *
1399  *	Compute the xfermask for this device. This is not as trivial
1400  *	as it seems if we must consider early devices correctly.
1401  *
1402  *	FIXME: pre IDE drive timing (do we care ?).
1403  *
1404  *	LOCKING:
1405  *	None.
1406  *
1407  *	RETURNS:
1408  *	Computed xfermask
1409  */
1410 unsigned long ata_id_xfermask(const u16 *id)
1411 {
1412 	unsigned long pio_mask, mwdma_mask, udma_mask;
1413 
1414 	/* Usual case. Word 53 indicates word 64 is valid */
1415 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1416 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1417 		pio_mask <<= 3;
1418 		pio_mask |= 0x7;
1419 	} else {
1420 		/* If word 64 isn't valid then Word 51 high byte holds
1421 		 * the PIO timing number for the maximum. Turn it into
1422 		 * a mask.
1423 		 */
1424 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1425 		if (mode < 5)	/* Valid PIO range */
1426 			pio_mask = (2 << mode) - 1;
1427 		else
1428 			pio_mask = 1;
1429 
1430 		/* But wait.. there's more. Design your standards by
1431 		 * committee and you too can get a free iordy field to
1432 		 * process. However its the speeds not the modes that
1433 		 * are supported... Note drivers using the timing API
1434 		 * will get this right anyway
1435 		 */
1436 	}
1437 
1438 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1439 
1440 	if (ata_id_is_cfa(id)) {
1441 		/*
1442 		 *	Process compact flash extended modes
1443 		 */
1444 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1445 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1446 
1447 		if (pio)
1448 			pio_mask |= (1 << 5);
1449 		if (pio > 1)
1450 			pio_mask |= (1 << 6);
1451 		if (dma)
1452 			mwdma_mask |= (1 << 3);
1453 		if (dma > 1)
1454 			mwdma_mask |= (1 << 4);
1455 	}
1456 
1457 	udma_mask = 0;
1458 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1459 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1460 
1461 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1462 }
1463 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1464 
1465 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1466 {
1467 	struct completion *waiting = qc->private_data;
1468 
1469 	complete(waiting);
1470 }
1471 
1472 /**
1473  *	ata_exec_internal_sg - execute libata internal command
1474  *	@dev: Device to which the command is sent
1475  *	@tf: Taskfile registers for the command and the result
1476  *	@cdb: CDB for packet command
1477  *	@dma_dir: Data transfer direction of the command
1478  *	@sgl: sg list for the data buffer of the command
1479  *	@n_elem: Number of sg entries
1480  *	@timeout: Timeout in msecs (0 for default)
1481  *
1482  *	Executes libata internal command with timeout.  @tf contains
1483  *	command on entry and result on return.  Timeout and error
1484  *	conditions are reported via return value.  No recovery action
1485  *	is taken after a command times out.  It's caller's duty to
1486  *	clean up after timeout.
1487  *
1488  *	LOCKING:
1489  *	None.  Should be called with kernel context, might sleep.
1490  *
1491  *	RETURNS:
1492  *	Zero on success, AC_ERR_* mask on failure
1493  */
1494 unsigned ata_exec_internal_sg(struct ata_device *dev,
1495 			      struct ata_taskfile *tf, const u8 *cdb,
1496 			      int dma_dir, struct scatterlist *sgl,
1497 			      unsigned int n_elem, unsigned long timeout)
1498 {
1499 	struct ata_link *link = dev->link;
1500 	struct ata_port *ap = link->ap;
1501 	u8 command = tf->command;
1502 	int auto_timeout = 0;
1503 	struct ata_queued_cmd *qc;
1504 	unsigned int preempted_tag;
1505 	u32 preempted_sactive;
1506 	u64 preempted_qc_active;
1507 	int preempted_nr_active_links;
1508 	DECLARE_COMPLETION_ONSTACK(wait);
1509 	unsigned long flags;
1510 	unsigned int err_mask;
1511 	int rc;
1512 
1513 	spin_lock_irqsave(ap->lock, flags);
1514 
1515 	/* no internal command while frozen */
1516 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1517 		spin_unlock_irqrestore(ap->lock, flags);
1518 		return AC_ERR_SYSTEM;
1519 	}
1520 
1521 	/* initialize internal qc */
1522 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1523 
1524 	qc->tag = ATA_TAG_INTERNAL;
1525 	qc->hw_tag = 0;
1526 	qc->scsicmd = NULL;
1527 	qc->ap = ap;
1528 	qc->dev = dev;
1529 	ata_qc_reinit(qc);
1530 
1531 	preempted_tag = link->active_tag;
1532 	preempted_sactive = link->sactive;
1533 	preempted_qc_active = ap->qc_active;
1534 	preempted_nr_active_links = ap->nr_active_links;
1535 	link->active_tag = ATA_TAG_POISON;
1536 	link->sactive = 0;
1537 	ap->qc_active = 0;
1538 	ap->nr_active_links = 0;
1539 
1540 	/* prepare & issue qc */
1541 	qc->tf = *tf;
1542 	if (cdb)
1543 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1544 
1545 	/* some SATA bridges need us to indicate data xfer direction */
1546 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1547 	    dma_dir == DMA_FROM_DEVICE)
1548 		qc->tf.feature |= ATAPI_DMADIR;
1549 
1550 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1551 	qc->dma_dir = dma_dir;
1552 	if (dma_dir != DMA_NONE) {
1553 		unsigned int i, buflen = 0;
1554 		struct scatterlist *sg;
1555 
1556 		for_each_sg(sgl, sg, n_elem, i)
1557 			buflen += sg->length;
1558 
1559 		ata_sg_init(qc, sgl, n_elem);
1560 		qc->nbytes = buflen;
1561 	}
1562 
1563 	qc->private_data = &wait;
1564 	qc->complete_fn = ata_qc_complete_internal;
1565 
1566 	ata_qc_issue(qc);
1567 
1568 	spin_unlock_irqrestore(ap->lock, flags);
1569 
1570 	if (!timeout) {
1571 		if (ata_probe_timeout)
1572 			timeout = ata_probe_timeout * 1000;
1573 		else {
1574 			timeout = ata_internal_cmd_timeout(dev, command);
1575 			auto_timeout = 1;
1576 		}
1577 	}
1578 
1579 	if (ap->ops->error_handler)
1580 		ata_eh_release(ap);
1581 
1582 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1583 
1584 	if (ap->ops->error_handler)
1585 		ata_eh_acquire(ap);
1586 
1587 	ata_sff_flush_pio_task(ap);
1588 
1589 	if (!rc) {
1590 		spin_lock_irqsave(ap->lock, flags);
1591 
1592 		/* We're racing with irq here.  If we lose, the
1593 		 * following test prevents us from completing the qc
1594 		 * twice.  If we win, the port is frozen and will be
1595 		 * cleaned up by ->post_internal_cmd().
1596 		 */
1597 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1598 			qc->err_mask |= AC_ERR_TIMEOUT;
1599 
1600 			if (ap->ops->error_handler)
1601 				ata_port_freeze(ap);
1602 			else
1603 				ata_qc_complete(qc);
1604 
1605 			if (ata_msg_warn(ap))
1606 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1607 					     command);
1608 		}
1609 
1610 		spin_unlock_irqrestore(ap->lock, flags);
1611 	}
1612 
1613 	/* do post_internal_cmd */
1614 	if (ap->ops->post_internal_cmd)
1615 		ap->ops->post_internal_cmd(qc);
1616 
1617 	/* perform minimal error analysis */
1618 	if (qc->flags & ATA_QCFLAG_FAILED) {
1619 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1620 			qc->err_mask |= AC_ERR_DEV;
1621 
1622 		if (!qc->err_mask)
1623 			qc->err_mask |= AC_ERR_OTHER;
1624 
1625 		if (qc->err_mask & ~AC_ERR_OTHER)
1626 			qc->err_mask &= ~AC_ERR_OTHER;
1627 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1628 		qc->result_tf.command |= ATA_SENSE;
1629 	}
1630 
1631 	/* finish up */
1632 	spin_lock_irqsave(ap->lock, flags);
1633 
1634 	*tf = qc->result_tf;
1635 	err_mask = qc->err_mask;
1636 
1637 	ata_qc_free(qc);
1638 	link->active_tag = preempted_tag;
1639 	link->sactive = preempted_sactive;
1640 	ap->qc_active = preempted_qc_active;
1641 	ap->nr_active_links = preempted_nr_active_links;
1642 
1643 	spin_unlock_irqrestore(ap->lock, flags);
1644 
1645 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1646 		ata_internal_cmd_timed_out(dev, command);
1647 
1648 	return err_mask;
1649 }
1650 
1651 /**
1652  *	ata_exec_internal - execute libata internal command
1653  *	@dev: Device to which the command is sent
1654  *	@tf: Taskfile registers for the command and the result
1655  *	@cdb: CDB for packet command
1656  *	@dma_dir: Data transfer direction of the command
1657  *	@buf: Data buffer of the command
1658  *	@buflen: Length of data buffer
1659  *	@timeout: Timeout in msecs (0 for default)
1660  *
1661  *	Wrapper around ata_exec_internal_sg() which takes simple
1662  *	buffer instead of sg list.
1663  *
1664  *	LOCKING:
1665  *	None.  Should be called with kernel context, might sleep.
1666  *
1667  *	RETURNS:
1668  *	Zero on success, AC_ERR_* mask on failure
1669  */
1670 unsigned ata_exec_internal(struct ata_device *dev,
1671 			   struct ata_taskfile *tf, const u8 *cdb,
1672 			   int dma_dir, void *buf, unsigned int buflen,
1673 			   unsigned long timeout)
1674 {
1675 	struct scatterlist *psg = NULL, sg;
1676 	unsigned int n_elem = 0;
1677 
1678 	if (dma_dir != DMA_NONE) {
1679 		WARN_ON(!buf);
1680 		sg_init_one(&sg, buf, buflen);
1681 		psg = &sg;
1682 		n_elem++;
1683 	}
1684 
1685 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1686 				    timeout);
1687 }
1688 
1689 /**
1690  *	ata_pio_need_iordy	-	check if iordy needed
1691  *	@adev: ATA device
1692  *
1693  *	Check if the current speed of the device requires IORDY. Used
1694  *	by various controllers for chip configuration.
1695  */
1696 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1697 {
1698 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1699 	 * lead to controller lock up on certain controllers if the
1700 	 * port is not occupied.  See bko#11703 for details.
1701 	 */
1702 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1703 		return 0;
1704 	/* Controller doesn't support IORDY.  Probably a pointless
1705 	 * check as the caller should know this.
1706 	 */
1707 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1708 		return 0;
1709 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1710 	if (ata_id_is_cfa(adev->id)
1711 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1712 		return 0;
1713 	/* PIO3 and higher it is mandatory */
1714 	if (adev->pio_mode > XFER_PIO_2)
1715 		return 1;
1716 	/* We turn it on when possible */
1717 	if (ata_id_has_iordy(adev->id))
1718 		return 1;
1719 	return 0;
1720 }
1721 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1722 
1723 /**
1724  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1725  *	@adev: ATA device
1726  *
1727  *	Compute the highest mode possible if we are not using iordy. Return
1728  *	-1 if no iordy mode is available.
1729  */
1730 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1731 {
1732 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1733 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1734 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1735 		/* Is the speed faster than the drive allows non IORDY ? */
1736 		if (pio) {
1737 			/* This is cycle times not frequency - watch the logic! */
1738 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1739 				return 3 << ATA_SHIFT_PIO;
1740 			return 7 << ATA_SHIFT_PIO;
1741 		}
1742 	}
1743 	return 3 << ATA_SHIFT_PIO;
1744 }
1745 
1746 /**
1747  *	ata_do_dev_read_id		-	default ID read method
1748  *	@dev: device
1749  *	@tf: proposed taskfile
1750  *	@id: data buffer
1751  *
1752  *	Issue the identify taskfile and hand back the buffer containing
1753  *	identify data. For some RAID controllers and for pre ATA devices
1754  *	this function is wrapped or replaced by the driver
1755  */
1756 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1757 					struct ata_taskfile *tf, u16 *id)
1758 {
1759 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1760 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1761 }
1762 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1763 
1764 /**
1765  *	ata_dev_read_id - Read ID data from the specified device
1766  *	@dev: target device
1767  *	@p_class: pointer to class of the target device (may be changed)
1768  *	@flags: ATA_READID_* flags
1769  *	@id: buffer to read IDENTIFY data into
1770  *
1771  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1772  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1773  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1774  *	for pre-ATA4 drives.
1775  *
1776  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1777  *	now we abort if we hit that case.
1778  *
1779  *	LOCKING:
1780  *	Kernel thread context (may sleep)
1781  *
1782  *	RETURNS:
1783  *	0 on success, -errno otherwise.
1784  */
1785 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1786 		    unsigned int flags, u16 *id)
1787 {
1788 	struct ata_port *ap = dev->link->ap;
1789 	unsigned int class = *p_class;
1790 	struct ata_taskfile tf;
1791 	unsigned int err_mask = 0;
1792 	const char *reason;
1793 	bool is_semb = class == ATA_DEV_SEMB;
1794 	int may_fallback = 1, tried_spinup = 0;
1795 	int rc;
1796 
1797 	if (ata_msg_ctl(ap))
1798 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1799 
1800 retry:
1801 	ata_tf_init(dev, &tf);
1802 
1803 	switch (class) {
1804 	case ATA_DEV_SEMB:
1805 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1806 		fallthrough;
1807 	case ATA_DEV_ATA:
1808 	case ATA_DEV_ZAC:
1809 		tf.command = ATA_CMD_ID_ATA;
1810 		break;
1811 	case ATA_DEV_ATAPI:
1812 		tf.command = ATA_CMD_ID_ATAPI;
1813 		break;
1814 	default:
1815 		rc = -ENODEV;
1816 		reason = "unsupported class";
1817 		goto err_out;
1818 	}
1819 
1820 	tf.protocol = ATA_PROT_PIO;
1821 
1822 	/* Some devices choke if TF registers contain garbage.  Make
1823 	 * sure those are properly initialized.
1824 	 */
1825 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1826 
1827 	/* Device presence detection is unreliable on some
1828 	 * controllers.  Always poll IDENTIFY if available.
1829 	 */
1830 	tf.flags |= ATA_TFLAG_POLLING;
1831 
1832 	if (ap->ops->read_id)
1833 		err_mask = ap->ops->read_id(dev, &tf, id);
1834 	else
1835 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1836 
1837 	if (err_mask) {
1838 		if (err_mask & AC_ERR_NODEV_HINT) {
1839 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1840 			return -ENOENT;
1841 		}
1842 
1843 		if (is_semb) {
1844 			ata_dev_info(dev,
1845 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1846 			/* SEMB is not supported yet */
1847 			*p_class = ATA_DEV_SEMB_UNSUP;
1848 			return 0;
1849 		}
1850 
1851 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1852 			/* Device or controller might have reported
1853 			 * the wrong device class.  Give a shot at the
1854 			 * other IDENTIFY if the current one is
1855 			 * aborted by the device.
1856 			 */
1857 			if (may_fallback) {
1858 				may_fallback = 0;
1859 
1860 				if (class == ATA_DEV_ATA)
1861 					class = ATA_DEV_ATAPI;
1862 				else
1863 					class = ATA_DEV_ATA;
1864 				goto retry;
1865 			}
1866 
1867 			/* Control reaches here iff the device aborted
1868 			 * both flavors of IDENTIFYs which happens
1869 			 * sometimes with phantom devices.
1870 			 */
1871 			ata_dev_dbg(dev,
1872 				    "both IDENTIFYs aborted, assuming NODEV\n");
1873 			return -ENOENT;
1874 		}
1875 
1876 		rc = -EIO;
1877 		reason = "I/O error";
1878 		goto err_out;
1879 	}
1880 
1881 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1882 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1883 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1884 			    class, may_fallback, tried_spinup);
1885 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1886 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1887 	}
1888 
1889 	/* Falling back doesn't make sense if ID data was read
1890 	 * successfully at least once.
1891 	 */
1892 	may_fallback = 0;
1893 
1894 	swap_buf_le16(id, ATA_ID_WORDS);
1895 
1896 	/* sanity check */
1897 	rc = -EINVAL;
1898 	reason = "device reports invalid type";
1899 
1900 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1901 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1902 			goto err_out;
1903 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1904 							ata_id_is_ata(id)) {
1905 			ata_dev_dbg(dev,
1906 				"host indicates ignore ATA devices, ignored\n");
1907 			return -ENOENT;
1908 		}
1909 	} else {
1910 		if (ata_id_is_ata(id))
1911 			goto err_out;
1912 	}
1913 
1914 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1915 		tried_spinup = 1;
1916 		/*
1917 		 * Drive powered-up in standby mode, and requires a specific
1918 		 * SET_FEATURES spin-up subcommand before it will accept
1919 		 * anything other than the original IDENTIFY command.
1920 		 */
1921 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1922 		if (err_mask && id[2] != 0x738c) {
1923 			rc = -EIO;
1924 			reason = "SPINUP failed";
1925 			goto err_out;
1926 		}
1927 		/*
1928 		 * If the drive initially returned incomplete IDENTIFY info,
1929 		 * we now must reissue the IDENTIFY command.
1930 		 */
1931 		if (id[2] == 0x37c8)
1932 			goto retry;
1933 	}
1934 
1935 	if ((flags & ATA_READID_POSTRESET) &&
1936 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1937 		/*
1938 		 * The exact sequence expected by certain pre-ATA4 drives is:
1939 		 * SRST RESET
1940 		 * IDENTIFY (optional in early ATA)
1941 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1942 		 * anything else..
1943 		 * Some drives were very specific about that exact sequence.
1944 		 *
1945 		 * Note that ATA4 says lba is mandatory so the second check
1946 		 * should never trigger.
1947 		 */
1948 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1949 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1950 			if (err_mask) {
1951 				rc = -EIO;
1952 				reason = "INIT_DEV_PARAMS failed";
1953 				goto err_out;
1954 			}
1955 
1956 			/* current CHS translation info (id[53-58]) might be
1957 			 * changed. reread the identify device info.
1958 			 */
1959 			flags &= ~ATA_READID_POSTRESET;
1960 			goto retry;
1961 		}
1962 	}
1963 
1964 	*p_class = class;
1965 
1966 	return 0;
1967 
1968  err_out:
1969 	if (ata_msg_warn(ap))
1970 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971 			     reason, err_mask);
1972 	return rc;
1973 }
1974 
1975 /**
1976  *	ata_read_log_page - read a specific log page
1977  *	@dev: target device
1978  *	@log: log to read
1979  *	@page: page to read
1980  *	@buf: buffer to store read page
1981  *	@sectors: number of sectors to read
1982  *
1983  *	Read log page using READ_LOG_EXT command.
1984  *
1985  *	LOCKING:
1986  *	Kernel thread context (may sleep).
1987  *
1988  *	RETURNS:
1989  *	0 on success, AC_ERR_* mask otherwise.
1990  */
1991 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1992 			       u8 page, void *buf, unsigned int sectors)
1993 {
1994 	unsigned long ap_flags = dev->link->ap->flags;
1995 	struct ata_taskfile tf;
1996 	unsigned int err_mask;
1997 	bool dma = false;
1998 
1999 	DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2000 
2001 	/*
2002 	 * Return error without actually issuing the command on controllers
2003 	 * which e.g. lockup on a read log page.
2004 	 */
2005 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2006 		return AC_ERR_DEV;
2007 
2008 retry:
2009 	ata_tf_init(dev, &tf);
2010 	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2011 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2012 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2013 		tf.protocol = ATA_PROT_DMA;
2014 		dma = true;
2015 	} else {
2016 		tf.command = ATA_CMD_READ_LOG_EXT;
2017 		tf.protocol = ATA_PROT_PIO;
2018 		dma = false;
2019 	}
2020 	tf.lbal = log;
2021 	tf.lbam = page;
2022 	tf.nsect = sectors;
2023 	tf.hob_nsect = sectors >> 8;
2024 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2025 
2026 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2027 				     buf, sectors * ATA_SECT_SIZE, 0);
2028 
2029 	if (err_mask) {
2030 		if (dma) {
2031 			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2032 			goto retry;
2033 		}
2034 		ata_dev_err(dev, "Read log page 0x%02x failed, Emask 0x%x\n",
2035 			    (unsigned int)page, err_mask);
2036 	}
2037 
2038 	return err_mask;
2039 }
2040 
2041 static bool ata_log_supported(struct ata_device *dev, u8 log)
2042 {
2043 	struct ata_port *ap = dev->link->ap;
2044 
2045 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2046 		return false;
2047 	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2048 }
2049 
2050 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2051 {
2052 	struct ata_port *ap = dev->link->ap;
2053 	unsigned int err, i;
2054 
2055 	if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2056 		return false;
2057 
2058 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2059 		/*
2060 		 * IDENTIFY DEVICE data log is defined as mandatory starting
2061 		 * with ACS-3 (ATA version 10). Warn about the missing log
2062 		 * for drives which implement this ATA level or above.
2063 		 */
2064 		if (ata_id_major_version(dev->id) >= 10)
2065 			ata_dev_warn(dev,
2066 				"ATA Identify Device Log not supported\n");
2067 		dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2068 		return false;
2069 	}
2070 
2071 	/*
2072 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2073 	 * supported.
2074 	 */
2075 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2076 				1);
2077 	if (err)
2078 		return false;
2079 
2080 	for (i = 0; i < ap->sector_buf[8]; i++) {
2081 		if (ap->sector_buf[9 + i] == page)
2082 			return true;
2083 	}
2084 
2085 	return false;
2086 }
2087 
2088 static int ata_do_link_spd_horkage(struct ata_device *dev)
2089 {
2090 	struct ata_link *plink = ata_dev_phys_link(dev);
2091 	u32 target, target_limit;
2092 
2093 	if (!sata_scr_valid(plink))
2094 		return 0;
2095 
2096 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2097 		target = 1;
2098 	else
2099 		return 0;
2100 
2101 	target_limit = (1 << target) - 1;
2102 
2103 	/* if already on stricter limit, no need to push further */
2104 	if (plink->sata_spd_limit <= target_limit)
2105 		return 0;
2106 
2107 	plink->sata_spd_limit = target_limit;
2108 
2109 	/* Request another EH round by returning -EAGAIN if link is
2110 	 * going faster than the target speed.  Forward progress is
2111 	 * guaranteed by setting sata_spd_limit to target_limit above.
2112 	 */
2113 	if (plink->sata_spd > target) {
2114 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2115 			     sata_spd_string(target));
2116 		return -EAGAIN;
2117 	}
2118 	return 0;
2119 }
2120 
2121 static inline u8 ata_dev_knobble(struct ata_device *dev)
2122 {
2123 	struct ata_port *ap = dev->link->ap;
2124 
2125 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2126 		return 0;
2127 
2128 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2129 }
2130 
2131 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2132 {
2133 	struct ata_port *ap = dev->link->ap;
2134 	unsigned int err_mask;
2135 
2136 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2137 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2138 		return;
2139 	}
2140 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2141 				     0, ap->sector_buf, 1);
2142 	if (!err_mask) {
2143 		u8 *cmds = dev->ncq_send_recv_cmds;
2144 
2145 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2146 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2147 
2148 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2149 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2150 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2151 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2152 		}
2153 	}
2154 }
2155 
2156 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2157 {
2158 	struct ata_port *ap = dev->link->ap;
2159 	unsigned int err_mask;
2160 
2161 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2162 		ata_dev_warn(dev,
2163 			     "NCQ Send/Recv Log not supported\n");
2164 		return;
2165 	}
2166 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2167 				     0, ap->sector_buf, 1);
2168 	if (!err_mask) {
2169 		u8 *cmds = dev->ncq_non_data_cmds;
2170 
2171 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2172 	}
2173 }
2174 
2175 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2176 {
2177 	struct ata_port *ap = dev->link->ap;
2178 	unsigned int err_mask;
2179 
2180 	err_mask = ata_read_log_page(dev,
2181 				     ATA_LOG_IDENTIFY_DEVICE,
2182 				     ATA_LOG_SATA_SETTINGS,
2183 				     ap->sector_buf,
2184 				     1);
2185 	if (err_mask)
2186 		goto not_supported;
2187 
2188 	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2189 		goto not_supported;
2190 
2191 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2192 
2193 	return;
2194 
2195 not_supported:
2196 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE;
2197 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2198 }
2199 
2200 static bool ata_dev_check_adapter(struct ata_device *dev,
2201 				  unsigned short vendor_id)
2202 {
2203 	struct pci_dev *pcidev = NULL;
2204 	struct device *parent_dev = NULL;
2205 
2206 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2207 	     parent_dev = parent_dev->parent) {
2208 		if (dev_is_pci(parent_dev)) {
2209 			pcidev = to_pci_dev(parent_dev);
2210 			if (pcidev->vendor == vendor_id)
2211 				return true;
2212 			break;
2213 		}
2214 	}
2215 
2216 	return false;
2217 }
2218 
2219 static int ata_dev_config_ncq(struct ata_device *dev,
2220 			       char *desc, size_t desc_sz)
2221 {
2222 	struct ata_port *ap = dev->link->ap;
2223 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2224 	unsigned int err_mask;
2225 	char *aa_desc = "";
2226 
2227 	if (!ata_id_has_ncq(dev->id)) {
2228 		desc[0] = '\0';
2229 		return 0;
2230 	}
2231 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2232 		return 0;
2233 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2234 		snprintf(desc, desc_sz, "NCQ (not used)");
2235 		return 0;
2236 	}
2237 
2238 	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2239 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2240 		snprintf(desc, desc_sz, "NCQ (not used)");
2241 		return 0;
2242 	}
2243 
2244 	if (ap->flags & ATA_FLAG_NCQ) {
2245 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2246 		dev->flags |= ATA_DFLAG_NCQ;
2247 	}
2248 
2249 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2250 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2251 		ata_id_has_fpdma_aa(dev->id)) {
2252 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2253 			SATA_FPDMA_AA);
2254 		if (err_mask) {
2255 			ata_dev_err(dev,
2256 				    "failed to enable AA (error_mask=0x%x)\n",
2257 				    err_mask);
2258 			if (err_mask != AC_ERR_DEV) {
2259 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2260 				return -EIO;
2261 			}
2262 		} else
2263 			aa_desc = ", AA";
2264 	}
2265 
2266 	if (hdepth >= ddepth)
2267 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2268 	else
2269 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2270 			ddepth, aa_desc);
2271 
2272 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2273 		if (ata_id_has_ncq_send_and_recv(dev->id))
2274 			ata_dev_config_ncq_send_recv(dev);
2275 		if (ata_id_has_ncq_non_data(dev->id))
2276 			ata_dev_config_ncq_non_data(dev);
2277 		if (ata_id_has_ncq_prio(dev->id))
2278 			ata_dev_config_ncq_prio(dev);
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2285 {
2286 	unsigned int err_mask;
2287 
2288 	if (!ata_id_has_sense_reporting(dev->id))
2289 		return;
2290 
2291 	if (ata_id_sense_reporting_enabled(dev->id))
2292 		return;
2293 
2294 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2295 	if (err_mask) {
2296 		ata_dev_dbg(dev,
2297 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2298 			    err_mask);
2299 	}
2300 }
2301 
2302 static void ata_dev_config_zac(struct ata_device *dev)
2303 {
2304 	struct ata_port *ap = dev->link->ap;
2305 	unsigned int err_mask;
2306 	u8 *identify_buf = ap->sector_buf;
2307 
2308 	dev->zac_zones_optimal_open = U32_MAX;
2309 	dev->zac_zones_optimal_nonseq = U32_MAX;
2310 	dev->zac_zones_max_open = U32_MAX;
2311 
2312 	/*
2313 	 * Always set the 'ZAC' flag for Host-managed devices.
2314 	 */
2315 	if (dev->class == ATA_DEV_ZAC)
2316 		dev->flags |= ATA_DFLAG_ZAC;
2317 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2318 		/*
2319 		 * Check for host-aware devices.
2320 		 */
2321 		dev->flags |= ATA_DFLAG_ZAC;
2322 
2323 	if (!(dev->flags & ATA_DFLAG_ZAC))
2324 		return;
2325 
2326 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2327 		ata_dev_warn(dev,
2328 			     "ATA Zoned Information Log not supported\n");
2329 		return;
2330 	}
2331 
2332 	/*
2333 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2334 	 */
2335 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2336 				     ATA_LOG_ZONED_INFORMATION,
2337 				     identify_buf, 1);
2338 	if (!err_mask) {
2339 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2340 
2341 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2342 		if ((zoned_cap >> 63))
2343 			dev->zac_zoned_cap = (zoned_cap & 1);
2344 		opt_open = get_unaligned_le64(&identify_buf[24]);
2345 		if ((opt_open >> 63))
2346 			dev->zac_zones_optimal_open = (u32)opt_open;
2347 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2348 		if ((opt_nonseq >> 63))
2349 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2350 		max_open = get_unaligned_le64(&identify_buf[40]);
2351 		if ((max_open >> 63))
2352 			dev->zac_zones_max_open = (u32)max_open;
2353 	}
2354 }
2355 
2356 static void ata_dev_config_trusted(struct ata_device *dev)
2357 {
2358 	struct ata_port *ap = dev->link->ap;
2359 	u64 trusted_cap;
2360 	unsigned int err;
2361 
2362 	if (!ata_id_has_trusted(dev->id))
2363 		return;
2364 
2365 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2366 		ata_dev_warn(dev,
2367 			     "Security Log not supported\n");
2368 		return;
2369 	}
2370 
2371 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2372 			ap->sector_buf, 1);
2373 	if (err)
2374 		return;
2375 
2376 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2377 	if (!(trusted_cap & (1ULL << 63))) {
2378 		ata_dev_dbg(dev,
2379 			    "Trusted Computing capability qword not valid!\n");
2380 		return;
2381 	}
2382 
2383 	if (trusted_cap & (1 << 0))
2384 		dev->flags |= ATA_DFLAG_TRUSTED;
2385 }
2386 
2387 static int ata_dev_config_lba(struct ata_device *dev)
2388 {
2389 	struct ata_port *ap = dev->link->ap;
2390 	const u16 *id = dev->id;
2391 	const char *lba_desc;
2392 	char ncq_desc[24];
2393 	int ret;
2394 
2395 	dev->flags |= ATA_DFLAG_LBA;
2396 
2397 	if (ata_id_has_lba48(id)) {
2398 		lba_desc = "LBA48";
2399 		dev->flags |= ATA_DFLAG_LBA48;
2400 		if (dev->n_sectors >= (1UL << 28) &&
2401 		    ata_id_has_flush_ext(id))
2402 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2403 	} else {
2404 		lba_desc = "LBA";
2405 	}
2406 
2407 	/* config NCQ */
2408 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2409 
2410 	/* print device info to dmesg */
2411 	if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2412 		ata_dev_info(dev,
2413 			     "%llu sectors, multi %u: %s %s\n",
2414 			     (unsigned long long)dev->n_sectors,
2415 			     dev->multi_count, lba_desc, ncq_desc);
2416 
2417 	return ret;
2418 }
2419 
2420 static void ata_dev_config_chs(struct ata_device *dev)
2421 {
2422 	struct ata_port *ap = dev->link->ap;
2423 	const u16 *id = dev->id;
2424 
2425 	if (ata_id_current_chs_valid(id)) {
2426 		/* Current CHS translation is valid. */
2427 		dev->cylinders = id[54];
2428 		dev->heads     = id[55];
2429 		dev->sectors   = id[56];
2430 	} else {
2431 		/* Default translation */
2432 		dev->cylinders	= id[1];
2433 		dev->heads	= id[3];
2434 		dev->sectors	= id[6];
2435 	}
2436 
2437 	/* print device info to dmesg */
2438 	if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2439 		ata_dev_info(dev,
2440 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2441 			     (unsigned long long)dev->n_sectors,
2442 			     dev->multi_count, dev->cylinders,
2443 			     dev->heads, dev->sectors);
2444 }
2445 
2446 static void ata_dev_config_devslp(struct ata_device *dev)
2447 {
2448 	u8 *sata_setting = dev->link->ap->sector_buf;
2449 	unsigned int err_mask;
2450 	int i, j;
2451 
2452 	/*
2453 	 * Check device sleep capability. Get DevSlp timing variables
2454 	 * from SATA Settings page of Identify Device Data Log.
2455 	 */
2456 	if (!ata_id_has_devslp(dev->id))
2457 		return;
2458 
2459 	err_mask = ata_read_log_page(dev,
2460 				     ATA_LOG_IDENTIFY_DEVICE,
2461 				     ATA_LOG_SATA_SETTINGS,
2462 				     sata_setting, 1);
2463 	if (err_mask)
2464 		return;
2465 
2466 	dev->flags |= ATA_DFLAG_DEVSLP;
2467 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2468 		j = ATA_LOG_DEVSLP_OFFSET + i;
2469 		dev->devslp_timing[i] = sata_setting[j];
2470 	}
2471 }
2472 
2473 static void ata_dev_config_cpr(struct ata_device *dev)
2474 {
2475 	unsigned int err_mask;
2476 	size_t buf_len;
2477 	int i, nr_cpr = 0;
2478 	struct ata_cpr_log *cpr_log = NULL;
2479 	u8 *desc, *buf = NULL;
2480 
2481 	if (!ata_identify_page_supported(dev,
2482 				 ATA_LOG_CONCURRENT_POSITIONING_RANGES))
2483 		goto out;
2484 
2485 	/*
2486 	 * Read IDENTIFY DEVICE data log, page 0x47
2487 	 * (concurrent positioning ranges). We can have at most 255 32B range
2488 	 * descriptors plus a 64B header.
2489 	 */
2490 	buf_len = (64 + 255 * 32 + 511) & ~511;
2491 	buf = kzalloc(buf_len, GFP_KERNEL);
2492 	if (!buf)
2493 		goto out;
2494 
2495 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2496 				     ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2497 				     buf, buf_len >> 9);
2498 	if (err_mask)
2499 		goto out;
2500 
2501 	nr_cpr = buf[0];
2502 	if (!nr_cpr)
2503 		goto out;
2504 
2505 	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2506 	if (!cpr_log)
2507 		goto out;
2508 
2509 	cpr_log->nr_cpr = nr_cpr;
2510 	desc = &buf[64];
2511 	for (i = 0; i < nr_cpr; i++, desc += 32) {
2512 		cpr_log->cpr[i].num = desc[0];
2513 		cpr_log->cpr[i].num_storage_elements = desc[1];
2514 		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2515 		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2516 	}
2517 
2518 out:
2519 	swap(dev->cpr_log, cpr_log);
2520 	kfree(cpr_log);
2521 	kfree(buf);
2522 }
2523 
2524 static void ata_dev_print_features(struct ata_device *dev)
2525 {
2526 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2527 		return;
2528 
2529 	ata_dev_info(dev,
2530 		     "Features:%s%s%s%s%s%s\n",
2531 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2532 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2533 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2534 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2535 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2536 		     dev->cpr_log ? " CPR" : "");
2537 }
2538 
2539 /**
2540  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2541  *	@dev: Target device to configure
2542  *
2543  *	Configure @dev according to @dev->id.  Generic and low-level
2544  *	driver specific fixups are also applied.
2545  *
2546  *	LOCKING:
2547  *	Kernel thread context (may sleep)
2548  *
2549  *	RETURNS:
2550  *	0 on success, -errno otherwise
2551  */
2552 int ata_dev_configure(struct ata_device *dev)
2553 {
2554 	struct ata_port *ap = dev->link->ap;
2555 	bool print_info = ata_dev_print_info(dev);
2556 	const u16 *id = dev->id;
2557 	unsigned long xfer_mask;
2558 	unsigned int err_mask;
2559 	char revbuf[7];		/* XYZ-99\0 */
2560 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2561 	char modelbuf[ATA_ID_PROD_LEN+1];
2562 	int rc;
2563 
2564 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2565 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2566 		return 0;
2567 	}
2568 
2569 	if (ata_msg_probe(ap))
2570 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2571 
2572 	/* set horkage */
2573 	dev->horkage |= ata_dev_blacklisted(dev);
2574 	ata_force_horkage(dev);
2575 
2576 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2577 		ata_dev_info(dev, "unsupported device, disabling\n");
2578 		ata_dev_disable(dev);
2579 		return 0;
2580 	}
2581 
2582 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2583 	    dev->class == ATA_DEV_ATAPI) {
2584 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2585 			     atapi_enabled ? "not supported with this driver"
2586 			     : "disabled");
2587 		ata_dev_disable(dev);
2588 		return 0;
2589 	}
2590 
2591 	rc = ata_do_link_spd_horkage(dev);
2592 	if (rc)
2593 		return rc;
2594 
2595 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2596 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2597 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2598 		dev->horkage |= ATA_HORKAGE_NOLPM;
2599 
2600 	if (ap->flags & ATA_FLAG_NO_LPM)
2601 		dev->horkage |= ATA_HORKAGE_NOLPM;
2602 
2603 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2604 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2605 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2606 	}
2607 
2608 	/* let ACPI work its magic */
2609 	rc = ata_acpi_on_devcfg(dev);
2610 	if (rc)
2611 		return rc;
2612 
2613 	/* massage HPA, do it early as it might change IDENTIFY data */
2614 	rc = ata_hpa_resize(dev);
2615 	if (rc)
2616 		return rc;
2617 
2618 	/* print device capabilities */
2619 	if (ata_msg_probe(ap))
2620 		ata_dev_dbg(dev,
2621 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2622 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2623 			    __func__,
2624 			    id[49], id[82], id[83], id[84],
2625 			    id[85], id[86], id[87], id[88]);
2626 
2627 	/* initialize to-be-configured parameters */
2628 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2629 	dev->max_sectors = 0;
2630 	dev->cdb_len = 0;
2631 	dev->n_sectors = 0;
2632 	dev->cylinders = 0;
2633 	dev->heads = 0;
2634 	dev->sectors = 0;
2635 	dev->multi_count = 0;
2636 
2637 	/*
2638 	 * common ATA, ATAPI feature tests
2639 	 */
2640 
2641 	/* find max transfer mode; for printk only */
2642 	xfer_mask = ata_id_xfermask(id);
2643 
2644 	if (ata_msg_probe(ap))
2645 		ata_dump_id(id);
2646 
2647 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2648 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2649 			sizeof(fwrevbuf));
2650 
2651 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2652 			sizeof(modelbuf));
2653 
2654 	/* ATA-specific feature tests */
2655 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2656 		if (ata_id_is_cfa(id)) {
2657 			/* CPRM may make this media unusable */
2658 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2659 				ata_dev_warn(dev,
2660 	"supports DRM functions and may not be fully accessible\n");
2661 			snprintf(revbuf, 7, "CFA");
2662 		} else {
2663 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2664 			/* Warn the user if the device has TPM extensions */
2665 			if (ata_id_has_tpm(id))
2666 				ata_dev_warn(dev,
2667 	"supports DRM functions and may not be fully accessible\n");
2668 		}
2669 
2670 		dev->n_sectors = ata_id_n_sectors(id);
2671 
2672 		/* get current R/W Multiple count setting */
2673 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2674 			unsigned int max = dev->id[47] & 0xff;
2675 			unsigned int cnt = dev->id[59] & 0xff;
2676 			/* only recognize/allow powers of two here */
2677 			if (is_power_of_2(max) && is_power_of_2(cnt))
2678 				if (cnt <= max)
2679 					dev->multi_count = cnt;
2680 		}
2681 
2682 		/* print device info to dmesg */
2683 		if (ata_msg_drv(ap) && print_info)
2684 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2685 				     revbuf, modelbuf, fwrevbuf,
2686 				     ata_mode_string(xfer_mask));
2687 
2688 		if (ata_id_has_lba(id)) {
2689 			rc = ata_dev_config_lba(dev);
2690 			if (rc)
2691 				return rc;
2692 		} else {
2693 			ata_dev_config_chs(dev);
2694 		}
2695 
2696 		ata_dev_config_devslp(dev);
2697 		ata_dev_config_sense_reporting(dev);
2698 		ata_dev_config_zac(dev);
2699 		ata_dev_config_trusted(dev);
2700 		ata_dev_config_cpr(dev);
2701 		dev->cdb_len = 32;
2702 
2703 		if (ata_msg_drv(ap) && print_info)
2704 			ata_dev_print_features(dev);
2705 	}
2706 
2707 	/* ATAPI-specific feature tests */
2708 	else if (dev->class == ATA_DEV_ATAPI) {
2709 		const char *cdb_intr_string = "";
2710 		const char *atapi_an_string = "";
2711 		const char *dma_dir_string = "";
2712 		u32 sntf;
2713 
2714 		rc = atapi_cdb_len(id);
2715 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2716 			if (ata_msg_warn(ap))
2717 				ata_dev_warn(dev, "unsupported CDB len\n");
2718 			rc = -EINVAL;
2719 			goto err_out_nosup;
2720 		}
2721 		dev->cdb_len = (unsigned int) rc;
2722 
2723 		/* Enable ATAPI AN if both the host and device have
2724 		 * the support.  If PMP is attached, SNTF is required
2725 		 * to enable ATAPI AN to discern between PHY status
2726 		 * changed notifications and ATAPI ANs.
2727 		 */
2728 		if (atapi_an &&
2729 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2730 		    (!sata_pmp_attached(ap) ||
2731 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2732 			/* issue SET feature command to turn this on */
2733 			err_mask = ata_dev_set_feature(dev,
2734 					SETFEATURES_SATA_ENABLE, SATA_AN);
2735 			if (err_mask)
2736 				ata_dev_err(dev,
2737 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2738 					    err_mask);
2739 			else {
2740 				dev->flags |= ATA_DFLAG_AN;
2741 				atapi_an_string = ", ATAPI AN";
2742 			}
2743 		}
2744 
2745 		if (ata_id_cdb_intr(dev->id)) {
2746 			dev->flags |= ATA_DFLAG_CDB_INTR;
2747 			cdb_intr_string = ", CDB intr";
2748 		}
2749 
2750 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2751 			dev->flags |= ATA_DFLAG_DMADIR;
2752 			dma_dir_string = ", DMADIR";
2753 		}
2754 
2755 		if (ata_id_has_da(dev->id)) {
2756 			dev->flags |= ATA_DFLAG_DA;
2757 			zpodd_init(dev);
2758 		}
2759 
2760 		/* print device info to dmesg */
2761 		if (ata_msg_drv(ap) && print_info)
2762 			ata_dev_info(dev,
2763 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2764 				     modelbuf, fwrevbuf,
2765 				     ata_mode_string(xfer_mask),
2766 				     cdb_intr_string, atapi_an_string,
2767 				     dma_dir_string);
2768 	}
2769 
2770 	/* determine max_sectors */
2771 	dev->max_sectors = ATA_MAX_SECTORS;
2772 	if (dev->flags & ATA_DFLAG_LBA48)
2773 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2774 
2775 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2776 	   200 sectors */
2777 	if (ata_dev_knobble(dev)) {
2778 		if (ata_msg_drv(ap) && print_info)
2779 			ata_dev_info(dev, "applying bridge limits\n");
2780 		dev->udma_mask &= ATA_UDMA5;
2781 		dev->max_sectors = ATA_MAX_SECTORS;
2782 	}
2783 
2784 	if ((dev->class == ATA_DEV_ATAPI) &&
2785 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2786 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2787 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2788 	}
2789 
2790 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2791 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2792 					 dev->max_sectors);
2793 
2794 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2795 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2796 					 dev->max_sectors);
2797 
2798 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2799 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2800 
2801 	if (ap->ops->dev_config)
2802 		ap->ops->dev_config(dev);
2803 
2804 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2805 		/* Let the user know. We don't want to disallow opens for
2806 		   rescue purposes, or in case the vendor is just a blithering
2807 		   idiot. Do this after the dev_config call as some controllers
2808 		   with buggy firmware may want to avoid reporting false device
2809 		   bugs */
2810 
2811 		if (print_info) {
2812 			ata_dev_warn(dev,
2813 "Drive reports diagnostics failure. This may indicate a drive\n");
2814 			ata_dev_warn(dev,
2815 "fault or invalid emulation. Contact drive vendor for information.\n");
2816 		}
2817 	}
2818 
2819 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2820 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2821 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2822 	}
2823 
2824 	return 0;
2825 
2826 err_out_nosup:
2827 	if (ata_msg_probe(ap))
2828 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2829 	return rc;
2830 }
2831 
2832 /**
2833  *	ata_cable_40wire	-	return 40 wire cable type
2834  *	@ap: port
2835  *
2836  *	Helper method for drivers which want to hardwire 40 wire cable
2837  *	detection.
2838  */
2839 
2840 int ata_cable_40wire(struct ata_port *ap)
2841 {
2842 	return ATA_CBL_PATA40;
2843 }
2844 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2845 
2846 /**
2847  *	ata_cable_80wire	-	return 80 wire cable type
2848  *	@ap: port
2849  *
2850  *	Helper method for drivers which want to hardwire 80 wire cable
2851  *	detection.
2852  */
2853 
2854 int ata_cable_80wire(struct ata_port *ap)
2855 {
2856 	return ATA_CBL_PATA80;
2857 }
2858 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2859 
2860 /**
2861  *	ata_cable_unknown	-	return unknown PATA cable.
2862  *	@ap: port
2863  *
2864  *	Helper method for drivers which have no PATA cable detection.
2865  */
2866 
2867 int ata_cable_unknown(struct ata_port *ap)
2868 {
2869 	return ATA_CBL_PATA_UNK;
2870 }
2871 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2872 
2873 /**
2874  *	ata_cable_ignore	-	return ignored PATA cable.
2875  *	@ap: port
2876  *
2877  *	Helper method for drivers which don't use cable type to limit
2878  *	transfer mode.
2879  */
2880 int ata_cable_ignore(struct ata_port *ap)
2881 {
2882 	return ATA_CBL_PATA_IGN;
2883 }
2884 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2885 
2886 /**
2887  *	ata_cable_sata	-	return SATA cable type
2888  *	@ap: port
2889  *
2890  *	Helper method for drivers which have SATA cables
2891  */
2892 
2893 int ata_cable_sata(struct ata_port *ap)
2894 {
2895 	return ATA_CBL_SATA;
2896 }
2897 EXPORT_SYMBOL_GPL(ata_cable_sata);
2898 
2899 /**
2900  *	ata_bus_probe - Reset and probe ATA bus
2901  *	@ap: Bus to probe
2902  *
2903  *	Master ATA bus probing function.  Initiates a hardware-dependent
2904  *	bus reset, then attempts to identify any devices found on
2905  *	the bus.
2906  *
2907  *	LOCKING:
2908  *	PCI/etc. bus probe sem.
2909  *
2910  *	RETURNS:
2911  *	Zero on success, negative errno otherwise.
2912  */
2913 
2914 int ata_bus_probe(struct ata_port *ap)
2915 {
2916 	unsigned int classes[ATA_MAX_DEVICES];
2917 	int tries[ATA_MAX_DEVICES];
2918 	int rc;
2919 	struct ata_device *dev;
2920 
2921 	ata_for_each_dev(dev, &ap->link, ALL)
2922 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2923 
2924  retry:
2925 	ata_for_each_dev(dev, &ap->link, ALL) {
2926 		/* If we issue an SRST then an ATA drive (not ATAPI)
2927 		 * may change configuration and be in PIO0 timing. If
2928 		 * we do a hard reset (or are coming from power on)
2929 		 * this is true for ATA or ATAPI. Until we've set a
2930 		 * suitable controller mode we should not touch the
2931 		 * bus as we may be talking too fast.
2932 		 */
2933 		dev->pio_mode = XFER_PIO_0;
2934 		dev->dma_mode = 0xff;
2935 
2936 		/* If the controller has a pio mode setup function
2937 		 * then use it to set the chipset to rights. Don't
2938 		 * touch the DMA setup as that will be dealt with when
2939 		 * configuring devices.
2940 		 */
2941 		if (ap->ops->set_piomode)
2942 			ap->ops->set_piomode(ap, dev);
2943 	}
2944 
2945 	/* reset and determine device classes */
2946 	ap->ops->phy_reset(ap);
2947 
2948 	ata_for_each_dev(dev, &ap->link, ALL) {
2949 		if (dev->class != ATA_DEV_UNKNOWN)
2950 			classes[dev->devno] = dev->class;
2951 		else
2952 			classes[dev->devno] = ATA_DEV_NONE;
2953 
2954 		dev->class = ATA_DEV_UNKNOWN;
2955 	}
2956 
2957 	/* read IDENTIFY page and configure devices. We have to do the identify
2958 	   specific sequence bass-ackwards so that PDIAG- is released by
2959 	   the slave device */
2960 
2961 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2962 		if (tries[dev->devno])
2963 			dev->class = classes[dev->devno];
2964 
2965 		if (!ata_dev_enabled(dev))
2966 			continue;
2967 
2968 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2969 				     dev->id);
2970 		if (rc)
2971 			goto fail;
2972 	}
2973 
2974 	/* Now ask for the cable type as PDIAG- should have been released */
2975 	if (ap->ops->cable_detect)
2976 		ap->cbl = ap->ops->cable_detect(ap);
2977 
2978 	/* We may have SATA bridge glue hiding here irrespective of
2979 	 * the reported cable types and sensed types.  When SATA
2980 	 * drives indicate we have a bridge, we don't know which end
2981 	 * of the link the bridge is which is a problem.
2982 	 */
2983 	ata_for_each_dev(dev, &ap->link, ENABLED)
2984 		if (ata_id_is_sata(dev->id))
2985 			ap->cbl = ATA_CBL_SATA;
2986 
2987 	/* After the identify sequence we can now set up the devices. We do
2988 	   this in the normal order so that the user doesn't get confused */
2989 
2990 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2991 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2992 		rc = ata_dev_configure(dev);
2993 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2994 		if (rc)
2995 			goto fail;
2996 	}
2997 
2998 	/* configure transfer mode */
2999 	rc = ata_set_mode(&ap->link, &dev);
3000 	if (rc)
3001 		goto fail;
3002 
3003 	ata_for_each_dev(dev, &ap->link, ENABLED)
3004 		return 0;
3005 
3006 	return -ENODEV;
3007 
3008  fail:
3009 	tries[dev->devno]--;
3010 
3011 	switch (rc) {
3012 	case -EINVAL:
3013 		/* eeek, something went very wrong, give up */
3014 		tries[dev->devno] = 0;
3015 		break;
3016 
3017 	case -ENODEV:
3018 		/* give it just one more chance */
3019 		tries[dev->devno] = min(tries[dev->devno], 1);
3020 		fallthrough;
3021 	case -EIO:
3022 		if (tries[dev->devno] == 1) {
3023 			/* This is the last chance, better to slow
3024 			 * down than lose it.
3025 			 */
3026 			sata_down_spd_limit(&ap->link, 0);
3027 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
3028 		}
3029 	}
3030 
3031 	if (!tries[dev->devno])
3032 		ata_dev_disable(dev);
3033 
3034 	goto retry;
3035 }
3036 
3037 /**
3038  *	sata_print_link_status - Print SATA link status
3039  *	@link: SATA link to printk link status about
3040  *
3041  *	This function prints link speed and status of a SATA link.
3042  *
3043  *	LOCKING:
3044  *	None.
3045  */
3046 static void sata_print_link_status(struct ata_link *link)
3047 {
3048 	u32 sstatus, scontrol, tmp;
3049 
3050 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3051 		return;
3052 	sata_scr_read(link, SCR_CONTROL, &scontrol);
3053 
3054 	if (ata_phys_link_online(link)) {
3055 		tmp = (sstatus >> 4) & 0xf;
3056 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3057 			      sata_spd_string(tmp), sstatus, scontrol);
3058 	} else {
3059 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3060 			      sstatus, scontrol);
3061 	}
3062 }
3063 
3064 /**
3065  *	ata_dev_pair		-	return other device on cable
3066  *	@adev: device
3067  *
3068  *	Obtain the other device on the same cable, or if none is
3069  *	present NULL is returned
3070  */
3071 
3072 struct ata_device *ata_dev_pair(struct ata_device *adev)
3073 {
3074 	struct ata_link *link = adev->link;
3075 	struct ata_device *pair = &link->device[1 - adev->devno];
3076 	if (!ata_dev_enabled(pair))
3077 		return NULL;
3078 	return pair;
3079 }
3080 EXPORT_SYMBOL_GPL(ata_dev_pair);
3081 
3082 /**
3083  *	sata_down_spd_limit - adjust SATA spd limit downward
3084  *	@link: Link to adjust SATA spd limit for
3085  *	@spd_limit: Additional limit
3086  *
3087  *	Adjust SATA spd limit of @link downward.  Note that this
3088  *	function only adjusts the limit.  The change must be applied
3089  *	using sata_set_spd().
3090  *
3091  *	If @spd_limit is non-zero, the speed is limited to equal to or
3092  *	lower than @spd_limit if such speed is supported.  If
3093  *	@spd_limit is slower than any supported speed, only the lowest
3094  *	supported speed is allowed.
3095  *
3096  *	LOCKING:
3097  *	Inherited from caller.
3098  *
3099  *	RETURNS:
3100  *	0 on success, negative errno on failure
3101  */
3102 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3103 {
3104 	u32 sstatus, spd, mask;
3105 	int rc, bit;
3106 
3107 	if (!sata_scr_valid(link))
3108 		return -EOPNOTSUPP;
3109 
3110 	/* If SCR can be read, use it to determine the current SPD.
3111 	 * If not, use cached value in link->sata_spd.
3112 	 */
3113 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3114 	if (rc == 0 && ata_sstatus_online(sstatus))
3115 		spd = (sstatus >> 4) & 0xf;
3116 	else
3117 		spd = link->sata_spd;
3118 
3119 	mask = link->sata_spd_limit;
3120 	if (mask <= 1)
3121 		return -EINVAL;
3122 
3123 	/* unconditionally mask off the highest bit */
3124 	bit = fls(mask) - 1;
3125 	mask &= ~(1 << bit);
3126 
3127 	/*
3128 	 * Mask off all speeds higher than or equal to the current one.  At
3129 	 * this point, if current SPD is not available and we previously
3130 	 * recorded the link speed from SStatus, the driver has already
3131 	 * masked off the highest bit so mask should already be 1 or 0.
3132 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3133 	 * not previously recorded speed from SStatus.  Just return in this
3134 	 * case.
3135 	 */
3136 	if (spd > 1)
3137 		mask &= (1 << (spd - 1)) - 1;
3138 	else
3139 		return -EINVAL;
3140 
3141 	/* were we already at the bottom? */
3142 	if (!mask)
3143 		return -EINVAL;
3144 
3145 	if (spd_limit) {
3146 		if (mask & ((1 << spd_limit) - 1))
3147 			mask &= (1 << spd_limit) - 1;
3148 		else {
3149 			bit = ffs(mask) - 1;
3150 			mask = 1 << bit;
3151 		}
3152 	}
3153 
3154 	link->sata_spd_limit = mask;
3155 
3156 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3157 		      sata_spd_string(fls(mask)));
3158 
3159 	return 0;
3160 }
3161 
3162 #ifdef CONFIG_ATA_ACPI
3163 /**
3164  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3165  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3166  *	@cycle: cycle duration in ns
3167  *
3168  *	Return matching xfer mode for @cycle.  The returned mode is of
3169  *	the transfer type specified by @xfer_shift.  If @cycle is too
3170  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3171  *	than the fastest known mode, the fasted mode is returned.
3172  *
3173  *	LOCKING:
3174  *	None.
3175  *
3176  *	RETURNS:
3177  *	Matching xfer_mode, 0xff if no match found.
3178  */
3179 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3180 {
3181 	u8 base_mode = 0xff, last_mode = 0xff;
3182 	const struct ata_xfer_ent *ent;
3183 	const struct ata_timing *t;
3184 
3185 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3186 		if (ent->shift == xfer_shift)
3187 			base_mode = ent->base;
3188 
3189 	for (t = ata_timing_find_mode(base_mode);
3190 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3191 		unsigned short this_cycle;
3192 
3193 		switch (xfer_shift) {
3194 		case ATA_SHIFT_PIO:
3195 		case ATA_SHIFT_MWDMA:
3196 			this_cycle = t->cycle;
3197 			break;
3198 		case ATA_SHIFT_UDMA:
3199 			this_cycle = t->udma;
3200 			break;
3201 		default:
3202 			return 0xff;
3203 		}
3204 
3205 		if (cycle > this_cycle)
3206 			break;
3207 
3208 		last_mode = t->mode;
3209 	}
3210 
3211 	return last_mode;
3212 }
3213 #endif
3214 
3215 /**
3216  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3217  *	@dev: Device to adjust xfer masks
3218  *	@sel: ATA_DNXFER_* selector
3219  *
3220  *	Adjust xfer masks of @dev downward.  Note that this function
3221  *	does not apply the change.  Invoking ata_set_mode() afterwards
3222  *	will apply the limit.
3223  *
3224  *	LOCKING:
3225  *	Inherited from caller.
3226  *
3227  *	RETURNS:
3228  *	0 on success, negative errno on failure
3229  */
3230 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3231 {
3232 	char buf[32];
3233 	unsigned long orig_mask, xfer_mask;
3234 	unsigned long pio_mask, mwdma_mask, udma_mask;
3235 	int quiet, highbit;
3236 
3237 	quiet = !!(sel & ATA_DNXFER_QUIET);
3238 	sel &= ~ATA_DNXFER_QUIET;
3239 
3240 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3241 						  dev->mwdma_mask,
3242 						  dev->udma_mask);
3243 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3244 
3245 	switch (sel) {
3246 	case ATA_DNXFER_PIO:
3247 		highbit = fls(pio_mask) - 1;
3248 		pio_mask &= ~(1 << highbit);
3249 		break;
3250 
3251 	case ATA_DNXFER_DMA:
3252 		if (udma_mask) {
3253 			highbit = fls(udma_mask) - 1;
3254 			udma_mask &= ~(1 << highbit);
3255 			if (!udma_mask)
3256 				return -ENOENT;
3257 		} else if (mwdma_mask) {
3258 			highbit = fls(mwdma_mask) - 1;
3259 			mwdma_mask &= ~(1 << highbit);
3260 			if (!mwdma_mask)
3261 				return -ENOENT;
3262 		}
3263 		break;
3264 
3265 	case ATA_DNXFER_40C:
3266 		udma_mask &= ATA_UDMA_MASK_40C;
3267 		break;
3268 
3269 	case ATA_DNXFER_FORCE_PIO0:
3270 		pio_mask &= 1;
3271 		fallthrough;
3272 	case ATA_DNXFER_FORCE_PIO:
3273 		mwdma_mask = 0;
3274 		udma_mask = 0;
3275 		break;
3276 
3277 	default:
3278 		BUG();
3279 	}
3280 
3281 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3282 
3283 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3284 		return -ENOENT;
3285 
3286 	if (!quiet) {
3287 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3288 			snprintf(buf, sizeof(buf), "%s:%s",
3289 				 ata_mode_string(xfer_mask),
3290 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3291 		else
3292 			snprintf(buf, sizeof(buf), "%s",
3293 				 ata_mode_string(xfer_mask));
3294 
3295 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3296 	}
3297 
3298 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3299 			    &dev->udma_mask);
3300 
3301 	return 0;
3302 }
3303 
3304 static int ata_dev_set_mode(struct ata_device *dev)
3305 {
3306 	struct ata_port *ap = dev->link->ap;
3307 	struct ata_eh_context *ehc = &dev->link->eh_context;
3308 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3309 	const char *dev_err_whine = "";
3310 	int ign_dev_err = 0;
3311 	unsigned int err_mask = 0;
3312 	int rc;
3313 
3314 	dev->flags &= ~ATA_DFLAG_PIO;
3315 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3316 		dev->flags |= ATA_DFLAG_PIO;
3317 
3318 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3319 		dev_err_whine = " (SET_XFERMODE skipped)";
3320 	else {
3321 		if (nosetxfer)
3322 			ata_dev_warn(dev,
3323 				     "NOSETXFER but PATA detected - can't "
3324 				     "skip SETXFER, might malfunction\n");
3325 		err_mask = ata_dev_set_xfermode(dev);
3326 	}
3327 
3328 	if (err_mask & ~AC_ERR_DEV)
3329 		goto fail;
3330 
3331 	/* revalidate */
3332 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3333 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3334 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3335 	if (rc)
3336 		return rc;
3337 
3338 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3339 		/* Old CFA may refuse this command, which is just fine */
3340 		if (ata_id_is_cfa(dev->id))
3341 			ign_dev_err = 1;
3342 		/* Catch several broken garbage emulations plus some pre
3343 		   ATA devices */
3344 		if (ata_id_major_version(dev->id) == 0 &&
3345 					dev->pio_mode <= XFER_PIO_2)
3346 			ign_dev_err = 1;
3347 		/* Some very old devices and some bad newer ones fail
3348 		   any kind of SET_XFERMODE request but support PIO0-2
3349 		   timings and no IORDY */
3350 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3351 			ign_dev_err = 1;
3352 	}
3353 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3354 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3355 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3356 	    dev->dma_mode == XFER_MW_DMA_0 &&
3357 	    (dev->id[63] >> 8) & 1)
3358 		ign_dev_err = 1;
3359 
3360 	/* if the device is actually configured correctly, ignore dev err */
3361 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3362 		ign_dev_err = 1;
3363 
3364 	if (err_mask & AC_ERR_DEV) {
3365 		if (!ign_dev_err)
3366 			goto fail;
3367 		else
3368 			dev_err_whine = " (device error ignored)";
3369 	}
3370 
3371 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3372 		dev->xfer_shift, (int)dev->xfer_mode);
3373 
3374 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3375 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3376 		ata_dev_info(dev, "configured for %s%s\n",
3377 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3378 			     dev_err_whine);
3379 
3380 	return 0;
3381 
3382  fail:
3383 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3384 	return -EIO;
3385 }
3386 
3387 /**
3388  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3389  *	@link: link on which timings will be programmed
3390  *	@r_failed_dev: out parameter for failed device
3391  *
3392  *	Standard implementation of the function used to tune and set
3393  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3394  *	ata_dev_set_mode() fails, pointer to the failing device is
3395  *	returned in @r_failed_dev.
3396  *
3397  *	LOCKING:
3398  *	PCI/etc. bus probe sem.
3399  *
3400  *	RETURNS:
3401  *	0 on success, negative errno otherwise
3402  */
3403 
3404 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3405 {
3406 	struct ata_port *ap = link->ap;
3407 	struct ata_device *dev;
3408 	int rc = 0, used_dma = 0, found = 0;
3409 
3410 	/* step 1: calculate xfer_mask */
3411 	ata_for_each_dev(dev, link, ENABLED) {
3412 		unsigned long pio_mask, dma_mask;
3413 		unsigned int mode_mask;
3414 
3415 		mode_mask = ATA_DMA_MASK_ATA;
3416 		if (dev->class == ATA_DEV_ATAPI)
3417 			mode_mask = ATA_DMA_MASK_ATAPI;
3418 		else if (ata_id_is_cfa(dev->id))
3419 			mode_mask = ATA_DMA_MASK_CFA;
3420 
3421 		ata_dev_xfermask(dev);
3422 		ata_force_xfermask(dev);
3423 
3424 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3425 
3426 		if (libata_dma_mask & mode_mask)
3427 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3428 						     dev->udma_mask);
3429 		else
3430 			dma_mask = 0;
3431 
3432 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3433 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3434 
3435 		found = 1;
3436 		if (ata_dma_enabled(dev))
3437 			used_dma = 1;
3438 	}
3439 	if (!found)
3440 		goto out;
3441 
3442 	/* step 2: always set host PIO timings */
3443 	ata_for_each_dev(dev, link, ENABLED) {
3444 		if (dev->pio_mode == 0xff) {
3445 			ata_dev_warn(dev, "no PIO support\n");
3446 			rc = -EINVAL;
3447 			goto out;
3448 		}
3449 
3450 		dev->xfer_mode = dev->pio_mode;
3451 		dev->xfer_shift = ATA_SHIFT_PIO;
3452 		if (ap->ops->set_piomode)
3453 			ap->ops->set_piomode(ap, dev);
3454 	}
3455 
3456 	/* step 3: set host DMA timings */
3457 	ata_for_each_dev(dev, link, ENABLED) {
3458 		if (!ata_dma_enabled(dev))
3459 			continue;
3460 
3461 		dev->xfer_mode = dev->dma_mode;
3462 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3463 		if (ap->ops->set_dmamode)
3464 			ap->ops->set_dmamode(ap, dev);
3465 	}
3466 
3467 	/* step 4: update devices' xfer mode */
3468 	ata_for_each_dev(dev, link, ENABLED) {
3469 		rc = ata_dev_set_mode(dev);
3470 		if (rc)
3471 			goto out;
3472 	}
3473 
3474 	/* Record simplex status. If we selected DMA then the other
3475 	 * host channels are not permitted to do so.
3476 	 */
3477 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3478 		ap->host->simplex_claimed = ap;
3479 
3480  out:
3481 	if (rc)
3482 		*r_failed_dev = dev;
3483 	return rc;
3484 }
3485 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3486 
3487 /**
3488  *	ata_wait_ready - wait for link to become ready
3489  *	@link: link to be waited on
3490  *	@deadline: deadline jiffies for the operation
3491  *	@check_ready: callback to check link readiness
3492  *
3493  *	Wait for @link to become ready.  @check_ready should return
3494  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3495  *	link doesn't seem to be occupied, other errno for other error
3496  *	conditions.
3497  *
3498  *	Transient -ENODEV conditions are allowed for
3499  *	ATA_TMOUT_FF_WAIT.
3500  *
3501  *	LOCKING:
3502  *	EH context.
3503  *
3504  *	RETURNS:
3505  *	0 if @link is ready before @deadline; otherwise, -errno.
3506  */
3507 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3508 		   int (*check_ready)(struct ata_link *link))
3509 {
3510 	unsigned long start = jiffies;
3511 	unsigned long nodev_deadline;
3512 	int warned = 0;
3513 
3514 	/* choose which 0xff timeout to use, read comment in libata.h */
3515 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3516 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3517 	else
3518 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3519 
3520 	/* Slave readiness can't be tested separately from master.  On
3521 	 * M/S emulation configuration, this function should be called
3522 	 * only on the master and it will handle both master and slave.
3523 	 */
3524 	WARN_ON(link == link->ap->slave_link);
3525 
3526 	if (time_after(nodev_deadline, deadline))
3527 		nodev_deadline = deadline;
3528 
3529 	while (1) {
3530 		unsigned long now = jiffies;
3531 		int ready, tmp;
3532 
3533 		ready = tmp = check_ready(link);
3534 		if (ready > 0)
3535 			return 0;
3536 
3537 		/*
3538 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3539 		 * is online.  Also, some SATA devices take a long
3540 		 * time to clear 0xff after reset.  Wait for
3541 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3542 		 * offline.
3543 		 *
3544 		 * Note that some PATA controllers (pata_ali) explode
3545 		 * if status register is read more than once when
3546 		 * there's no device attached.
3547 		 */
3548 		if (ready == -ENODEV) {
3549 			if (ata_link_online(link))
3550 				ready = 0;
3551 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3552 				 !ata_link_offline(link) &&
3553 				 time_before(now, nodev_deadline))
3554 				ready = 0;
3555 		}
3556 
3557 		if (ready)
3558 			return ready;
3559 		if (time_after(now, deadline))
3560 			return -EBUSY;
3561 
3562 		if (!warned && time_after(now, start + 5 * HZ) &&
3563 		    (deadline - now > 3 * HZ)) {
3564 			ata_link_warn(link,
3565 				"link is slow to respond, please be patient "
3566 				"(ready=%d)\n", tmp);
3567 			warned = 1;
3568 		}
3569 
3570 		ata_msleep(link->ap, 50);
3571 	}
3572 }
3573 
3574 /**
3575  *	ata_wait_after_reset - wait for link to become ready after reset
3576  *	@link: link to be waited on
3577  *	@deadline: deadline jiffies for the operation
3578  *	@check_ready: callback to check link readiness
3579  *
3580  *	Wait for @link to become ready after reset.
3581  *
3582  *	LOCKING:
3583  *	EH context.
3584  *
3585  *	RETURNS:
3586  *	0 if @link is ready before @deadline; otherwise, -errno.
3587  */
3588 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3589 				int (*check_ready)(struct ata_link *link))
3590 {
3591 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3592 
3593 	return ata_wait_ready(link, deadline, check_ready);
3594 }
3595 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3596 
3597 /**
3598  *	ata_std_prereset - prepare for reset
3599  *	@link: ATA link to be reset
3600  *	@deadline: deadline jiffies for the operation
3601  *
3602  *	@link is about to be reset.  Initialize it.  Failure from
3603  *	prereset makes libata abort whole reset sequence and give up
3604  *	that port, so prereset should be best-effort.  It does its
3605  *	best to prepare for reset sequence but if things go wrong, it
3606  *	should just whine, not fail.
3607  *
3608  *	LOCKING:
3609  *	Kernel thread context (may sleep)
3610  *
3611  *	RETURNS:
3612  *	0 on success, -errno otherwise.
3613  */
3614 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3615 {
3616 	struct ata_port *ap = link->ap;
3617 	struct ata_eh_context *ehc = &link->eh_context;
3618 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3619 	int rc;
3620 
3621 	/* if we're about to do hardreset, nothing more to do */
3622 	if (ehc->i.action & ATA_EH_HARDRESET)
3623 		return 0;
3624 
3625 	/* if SATA, resume link */
3626 	if (ap->flags & ATA_FLAG_SATA) {
3627 		rc = sata_link_resume(link, timing, deadline);
3628 		/* whine about phy resume failure but proceed */
3629 		if (rc && rc != -EOPNOTSUPP)
3630 			ata_link_warn(link,
3631 				      "failed to resume link for reset (errno=%d)\n",
3632 				      rc);
3633 	}
3634 
3635 	/* no point in trying softreset on offline link */
3636 	if (ata_phys_link_offline(link))
3637 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3638 
3639 	return 0;
3640 }
3641 EXPORT_SYMBOL_GPL(ata_std_prereset);
3642 
3643 /**
3644  *	sata_std_hardreset - COMRESET w/o waiting or classification
3645  *	@link: link to reset
3646  *	@class: resulting class of attached device
3647  *	@deadline: deadline jiffies for the operation
3648  *
3649  *	Standard SATA COMRESET w/o waiting or classification.
3650  *
3651  *	LOCKING:
3652  *	Kernel thread context (may sleep)
3653  *
3654  *	RETURNS:
3655  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3656  */
3657 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3658 		       unsigned long deadline)
3659 {
3660 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3661 	bool online;
3662 	int rc;
3663 
3664 	/* do hardreset */
3665 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3666 	return online ? -EAGAIN : rc;
3667 }
3668 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3669 
3670 /**
3671  *	ata_std_postreset - standard postreset callback
3672  *	@link: the target ata_link
3673  *	@classes: classes of attached devices
3674  *
3675  *	This function is invoked after a successful reset.  Note that
3676  *	the device might have been reset more than once using
3677  *	different reset methods before postreset is invoked.
3678  *
3679  *	LOCKING:
3680  *	Kernel thread context (may sleep)
3681  */
3682 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3683 {
3684 	u32 serror;
3685 
3686 	DPRINTK("ENTER\n");
3687 
3688 	/* reset complete, clear SError */
3689 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3690 		sata_scr_write(link, SCR_ERROR, serror);
3691 
3692 	/* print link status */
3693 	sata_print_link_status(link);
3694 
3695 	DPRINTK("EXIT\n");
3696 }
3697 EXPORT_SYMBOL_GPL(ata_std_postreset);
3698 
3699 /**
3700  *	ata_dev_same_device - Determine whether new ID matches configured device
3701  *	@dev: device to compare against
3702  *	@new_class: class of the new device
3703  *	@new_id: IDENTIFY page of the new device
3704  *
3705  *	Compare @new_class and @new_id against @dev and determine
3706  *	whether @dev is the device indicated by @new_class and
3707  *	@new_id.
3708  *
3709  *	LOCKING:
3710  *	None.
3711  *
3712  *	RETURNS:
3713  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3714  */
3715 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3716 			       const u16 *new_id)
3717 {
3718 	const u16 *old_id = dev->id;
3719 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3720 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3721 
3722 	if (dev->class != new_class) {
3723 		ata_dev_info(dev, "class mismatch %d != %d\n",
3724 			     dev->class, new_class);
3725 		return 0;
3726 	}
3727 
3728 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3729 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3730 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3731 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3732 
3733 	if (strcmp(model[0], model[1])) {
3734 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3735 			     model[0], model[1]);
3736 		return 0;
3737 	}
3738 
3739 	if (strcmp(serial[0], serial[1])) {
3740 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3741 			     serial[0], serial[1]);
3742 		return 0;
3743 	}
3744 
3745 	return 1;
3746 }
3747 
3748 /**
3749  *	ata_dev_reread_id - Re-read IDENTIFY data
3750  *	@dev: target ATA device
3751  *	@readid_flags: read ID flags
3752  *
3753  *	Re-read IDENTIFY page and make sure @dev is still attached to
3754  *	the port.
3755  *
3756  *	LOCKING:
3757  *	Kernel thread context (may sleep)
3758  *
3759  *	RETURNS:
3760  *	0 on success, negative errno otherwise
3761  */
3762 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3763 {
3764 	unsigned int class = dev->class;
3765 	u16 *id = (void *)dev->link->ap->sector_buf;
3766 	int rc;
3767 
3768 	/* read ID data */
3769 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3770 	if (rc)
3771 		return rc;
3772 
3773 	/* is the device still there? */
3774 	if (!ata_dev_same_device(dev, class, id))
3775 		return -ENODEV;
3776 
3777 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3778 	return 0;
3779 }
3780 
3781 /**
3782  *	ata_dev_revalidate - Revalidate ATA device
3783  *	@dev: device to revalidate
3784  *	@new_class: new class code
3785  *	@readid_flags: read ID flags
3786  *
3787  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3788  *	port and reconfigure it according to the new IDENTIFY page.
3789  *
3790  *	LOCKING:
3791  *	Kernel thread context (may sleep)
3792  *
3793  *	RETURNS:
3794  *	0 on success, negative errno otherwise
3795  */
3796 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3797 		       unsigned int readid_flags)
3798 {
3799 	u64 n_sectors = dev->n_sectors;
3800 	u64 n_native_sectors = dev->n_native_sectors;
3801 	int rc;
3802 
3803 	if (!ata_dev_enabled(dev))
3804 		return -ENODEV;
3805 
3806 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3807 	if (ata_class_enabled(new_class) &&
3808 	    new_class != ATA_DEV_ATA &&
3809 	    new_class != ATA_DEV_ATAPI &&
3810 	    new_class != ATA_DEV_ZAC &&
3811 	    new_class != ATA_DEV_SEMB) {
3812 		ata_dev_info(dev, "class mismatch %u != %u\n",
3813 			     dev->class, new_class);
3814 		rc = -ENODEV;
3815 		goto fail;
3816 	}
3817 
3818 	/* re-read ID */
3819 	rc = ata_dev_reread_id(dev, readid_flags);
3820 	if (rc)
3821 		goto fail;
3822 
3823 	/* configure device according to the new ID */
3824 	rc = ata_dev_configure(dev);
3825 	if (rc)
3826 		goto fail;
3827 
3828 	/* verify n_sectors hasn't changed */
3829 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3830 	    dev->n_sectors == n_sectors)
3831 		return 0;
3832 
3833 	/* n_sectors has changed */
3834 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3835 		     (unsigned long long)n_sectors,
3836 		     (unsigned long long)dev->n_sectors);
3837 
3838 	/*
3839 	 * Something could have caused HPA to be unlocked
3840 	 * involuntarily.  If n_native_sectors hasn't changed and the
3841 	 * new size matches it, keep the device.
3842 	 */
3843 	if (dev->n_native_sectors == n_native_sectors &&
3844 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3845 		ata_dev_warn(dev,
3846 			     "new n_sectors matches native, probably "
3847 			     "late HPA unlock, n_sectors updated\n");
3848 		/* use the larger n_sectors */
3849 		return 0;
3850 	}
3851 
3852 	/*
3853 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3854 	 * unlocking HPA in those cases.
3855 	 *
3856 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3857 	 */
3858 	if (dev->n_native_sectors == n_native_sectors &&
3859 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3860 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3861 		ata_dev_warn(dev,
3862 			     "old n_sectors matches native, probably "
3863 			     "late HPA lock, will try to unlock HPA\n");
3864 		/* try unlocking HPA */
3865 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3866 		rc = -EIO;
3867 	} else
3868 		rc = -ENODEV;
3869 
3870 	/* restore original n_[native_]sectors and fail */
3871 	dev->n_native_sectors = n_native_sectors;
3872 	dev->n_sectors = n_sectors;
3873  fail:
3874 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3875 	return rc;
3876 }
3877 
3878 struct ata_blacklist_entry {
3879 	const char *model_num;
3880 	const char *model_rev;
3881 	unsigned long horkage;
3882 };
3883 
3884 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3885 	/* Devices with DMA related problems under Linux */
3886 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3887 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3888 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3889 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3890 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3891 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3892 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3893 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3894 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3895 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
3896 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3897 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3898 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3899 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3900 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3901 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
3902 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3903 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3904 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3905 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3906 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3907 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3908 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3909 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3910 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3911 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3912 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
3913 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3914 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
3915 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
3916 	/* Odd clown on sil3726/4726 PMPs */
3917 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
3918 
3919 	/* Weird ATAPI devices */
3920 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3921 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
3922 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3923 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3924 
3925 	/*
3926 	 * Causes silent data corruption with higher max sects.
3927 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3928 	 */
3929 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
3930 
3931 	/*
3932 	 * These devices time out with higher max sects.
3933 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3934 	 */
3935 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3936 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3937 
3938 	/* Devices we expect to fail diagnostics */
3939 
3940 	/* Devices where NCQ should be avoided */
3941 	/* NCQ is slow */
3942 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
3943 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
3944 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3945 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3946 	/* NCQ is broken */
3947 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
3948 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3949 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
3950 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
3951 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
3952 
3953 	/* Seagate NCQ + FLUSH CACHE firmware bug */
3954 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3955 						ATA_HORKAGE_FIRMWARE_WARN },
3956 
3957 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3958 						ATA_HORKAGE_FIRMWARE_WARN },
3959 
3960 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3961 						ATA_HORKAGE_FIRMWARE_WARN },
3962 
3963 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3964 						ATA_HORKAGE_FIRMWARE_WARN },
3965 
3966 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
3967 	   the ST disks also have LPM issues */
3968 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
3969 						ATA_HORKAGE_NOLPM, },
3970 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
3971 
3972 	/* Blacklist entries taken from Silicon Image 3124/3132
3973 	   Windows driver .inf file - also several Linux problem reports */
3974 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3975 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3976 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3977 
3978 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3979 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
3980 
3981 	/* Sandisk SD7/8/9s lock up hard on large trims */
3982 	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M, },
3983 
3984 	/* devices which puke on READ_NATIVE_MAX */
3985 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
3986 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3987 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3988 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
3989 
3990 	/* this one allows HPA unlocking but fails IOs on the area */
3991 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
3992 
3993 	/* Devices which report 1 sector over size HPA */
3994 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3995 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3996 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3997 
3998 	/* Devices which get the IVB wrong */
3999 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4000 	/* Maybe we should just blacklist TSSTcorp... */
4001 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4002 
4003 	/* Devices that do not need bridging limits applied */
4004 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4005 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4006 
4007 	/* Devices which aren't very happy with higher link speeds */
4008 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4009 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4010 
4011 	/*
4012 	 * Devices which choke on SETXFER.  Applies only if both the
4013 	 * device and controller are SATA.
4014 	 */
4015 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4016 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4017 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4018 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4019 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4020 
4021 	/* Crucial BX100 SSD 500GB has broken LPM support */
4022 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4023 
4024 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4025 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4026 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4027 						ATA_HORKAGE_NOLPM, },
4028 	/* 512GB MX100 with newer firmware has only LPM issues */
4029 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4030 						ATA_HORKAGE_NOLPM, },
4031 
4032 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4033 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4034 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4035 						ATA_HORKAGE_NOLPM, },
4036 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4037 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4038 						ATA_HORKAGE_NOLPM, },
4039 
4040 	/* These specific Samsung models/firmware-revs do not handle LPM well */
4041 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4042 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4043 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
4044 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
4045 
4046 	/* devices that don't properly handle queued TRIM commands */
4047 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4048 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4049 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4050 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4051 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4052 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4053 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4054 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4055 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4056 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4057 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4058 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4059 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4060 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4061 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4062 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4063 	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4064 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4065 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4066 	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4067 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4068 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4069 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4070 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4071 
4072 	/* devices that don't properly handle TRIM commands */
4073 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4074 
4075 	/*
4076 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4077 	 * (Return Zero After Trim) flags in the ATA Command Set are
4078 	 * unreliable in the sense that they only define what happens if
4079 	 * the device successfully executed the DSM TRIM command. TRIM
4080 	 * is only advisory, however, and the device is free to silently
4081 	 * ignore all or parts of the request.
4082 	 *
4083 	 * Whitelist drives that are known to reliably return zeroes
4084 	 * after TRIM.
4085 	 */
4086 
4087 	/*
4088 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4089 	 * that model before whitelisting all other intel SSDs.
4090 	 */
4091 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4092 
4093 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4094 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4095 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4096 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4097 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4098 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4099 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4100 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4101 
4102 	/*
4103 	 * Some WD SATA-I drives spin up and down erratically when the link
4104 	 * is put into the slumber mode.  We don't have full list of the
4105 	 * affected devices.  Disable LPM if the device matches one of the
4106 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4107 	 * lost too.
4108 	 *
4109 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4110 	 */
4111 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4112 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4113 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4114 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4115 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4116 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4117 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4118 
4119 	/* End Marker */
4120 	{ }
4121 };
4122 
4123 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4124 {
4125 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4126 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4127 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4128 
4129 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4130 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4131 
4132 	while (ad->model_num) {
4133 		if (glob_match(ad->model_num, model_num)) {
4134 			if (ad->model_rev == NULL)
4135 				return ad->horkage;
4136 			if (glob_match(ad->model_rev, model_rev))
4137 				return ad->horkage;
4138 		}
4139 		ad++;
4140 	}
4141 	return 0;
4142 }
4143 
4144 static int ata_dma_blacklisted(const struct ata_device *dev)
4145 {
4146 	/* We don't support polling DMA.
4147 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4148 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4149 	 */
4150 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4151 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4152 		return 1;
4153 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4154 }
4155 
4156 /**
4157  *	ata_is_40wire		-	check drive side detection
4158  *	@dev: device
4159  *
4160  *	Perform drive side detection decoding, allowing for device vendors
4161  *	who can't follow the documentation.
4162  */
4163 
4164 static int ata_is_40wire(struct ata_device *dev)
4165 {
4166 	if (dev->horkage & ATA_HORKAGE_IVB)
4167 		return ata_drive_40wire_relaxed(dev->id);
4168 	return ata_drive_40wire(dev->id);
4169 }
4170 
4171 /**
4172  *	cable_is_40wire		-	40/80/SATA decider
4173  *	@ap: port to consider
4174  *
4175  *	This function encapsulates the policy for speed management
4176  *	in one place. At the moment we don't cache the result but
4177  *	there is a good case for setting ap->cbl to the result when
4178  *	we are called with unknown cables (and figuring out if it
4179  *	impacts hotplug at all).
4180  *
4181  *	Return 1 if the cable appears to be 40 wire.
4182  */
4183 
4184 static int cable_is_40wire(struct ata_port *ap)
4185 {
4186 	struct ata_link *link;
4187 	struct ata_device *dev;
4188 
4189 	/* If the controller thinks we are 40 wire, we are. */
4190 	if (ap->cbl == ATA_CBL_PATA40)
4191 		return 1;
4192 
4193 	/* If the controller thinks we are 80 wire, we are. */
4194 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4195 		return 0;
4196 
4197 	/* If the system is known to be 40 wire short cable (eg
4198 	 * laptop), then we allow 80 wire modes even if the drive
4199 	 * isn't sure.
4200 	 */
4201 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4202 		return 0;
4203 
4204 	/* If the controller doesn't know, we scan.
4205 	 *
4206 	 * Note: We look for all 40 wire detects at this point.  Any
4207 	 *       80 wire detect is taken to be 80 wire cable because
4208 	 * - in many setups only the one drive (slave if present) will
4209 	 *   give a valid detect
4210 	 * - if you have a non detect capable drive you don't want it
4211 	 *   to colour the choice
4212 	 */
4213 	ata_for_each_link(link, ap, EDGE) {
4214 		ata_for_each_dev(dev, link, ENABLED) {
4215 			if (!ata_is_40wire(dev))
4216 				return 0;
4217 		}
4218 	}
4219 	return 1;
4220 }
4221 
4222 /**
4223  *	ata_dev_xfermask - Compute supported xfermask of the given device
4224  *	@dev: Device to compute xfermask for
4225  *
4226  *	Compute supported xfermask of @dev and store it in
4227  *	dev->*_mask.  This function is responsible for applying all
4228  *	known limits including host controller limits, device
4229  *	blacklist, etc...
4230  *
4231  *	LOCKING:
4232  *	None.
4233  */
4234 static void ata_dev_xfermask(struct ata_device *dev)
4235 {
4236 	struct ata_link *link = dev->link;
4237 	struct ata_port *ap = link->ap;
4238 	struct ata_host *host = ap->host;
4239 	unsigned long xfer_mask;
4240 
4241 	/* controller modes available */
4242 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4243 				      ap->mwdma_mask, ap->udma_mask);
4244 
4245 	/* drive modes available */
4246 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4247 				       dev->mwdma_mask, dev->udma_mask);
4248 	xfer_mask &= ata_id_xfermask(dev->id);
4249 
4250 	/*
4251 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4252 	 *	cable
4253 	 */
4254 	if (ata_dev_pair(dev)) {
4255 		/* No PIO5 or PIO6 */
4256 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4257 		/* No MWDMA3 or MWDMA 4 */
4258 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4259 	}
4260 
4261 	if (ata_dma_blacklisted(dev)) {
4262 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4263 		ata_dev_warn(dev,
4264 			     "device is on DMA blacklist, disabling DMA\n");
4265 	}
4266 
4267 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4268 	    host->simplex_claimed && host->simplex_claimed != ap) {
4269 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4270 		ata_dev_warn(dev,
4271 			     "simplex DMA is claimed by other device, disabling DMA\n");
4272 	}
4273 
4274 	if (ap->flags & ATA_FLAG_NO_IORDY)
4275 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4276 
4277 	if (ap->ops->mode_filter)
4278 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4279 
4280 	/* Apply cable rule here.  Don't apply it early because when
4281 	 * we handle hot plug the cable type can itself change.
4282 	 * Check this last so that we know if the transfer rate was
4283 	 * solely limited by the cable.
4284 	 * Unknown or 80 wire cables reported host side are checked
4285 	 * drive side as well. Cases where we know a 40wire cable
4286 	 * is used safely for 80 are not checked here.
4287 	 */
4288 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4289 		/* UDMA/44 or higher would be available */
4290 		if (cable_is_40wire(ap)) {
4291 			ata_dev_warn(dev,
4292 				     "limited to UDMA/33 due to 40-wire cable\n");
4293 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4294 		}
4295 
4296 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4297 			    &dev->mwdma_mask, &dev->udma_mask);
4298 }
4299 
4300 /**
4301  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4302  *	@dev: Device to which command will be sent
4303  *
4304  *	Issue SET FEATURES - XFER MODE command to device @dev
4305  *	on port @ap.
4306  *
4307  *	LOCKING:
4308  *	PCI/etc. bus probe sem.
4309  *
4310  *	RETURNS:
4311  *	0 on success, AC_ERR_* mask otherwise.
4312  */
4313 
4314 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4315 {
4316 	struct ata_taskfile tf;
4317 	unsigned int err_mask;
4318 
4319 	/* set up set-features taskfile */
4320 	DPRINTK("set features - xfer mode\n");
4321 
4322 	/* Some controllers and ATAPI devices show flaky interrupt
4323 	 * behavior after setting xfer mode.  Use polling instead.
4324 	 */
4325 	ata_tf_init(dev, &tf);
4326 	tf.command = ATA_CMD_SET_FEATURES;
4327 	tf.feature = SETFEATURES_XFER;
4328 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4329 	tf.protocol = ATA_PROT_NODATA;
4330 	/* If we are using IORDY we must send the mode setting command */
4331 	if (ata_pio_need_iordy(dev))
4332 		tf.nsect = dev->xfer_mode;
4333 	/* If the device has IORDY and the controller does not - turn it off */
4334  	else if (ata_id_has_iordy(dev->id))
4335 		tf.nsect = 0x01;
4336 	else /* In the ancient relic department - skip all of this */
4337 		return 0;
4338 
4339 	/* On some disks, this command causes spin-up, so we need longer timeout */
4340 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4341 
4342 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4343 	return err_mask;
4344 }
4345 
4346 /**
4347  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4348  *	@dev: Device to which command will be sent
4349  *	@enable: Whether to enable or disable the feature
4350  *	@feature: The sector count represents the feature to set
4351  *
4352  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4353  *	on port @ap with sector count
4354  *
4355  *	LOCKING:
4356  *	PCI/etc. bus probe sem.
4357  *
4358  *	RETURNS:
4359  *	0 on success, AC_ERR_* mask otherwise.
4360  */
4361 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4362 {
4363 	struct ata_taskfile tf;
4364 	unsigned int err_mask;
4365 	unsigned long timeout = 0;
4366 
4367 	/* set up set-features taskfile */
4368 	DPRINTK("set features - SATA features\n");
4369 
4370 	ata_tf_init(dev, &tf);
4371 	tf.command = ATA_CMD_SET_FEATURES;
4372 	tf.feature = enable;
4373 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4374 	tf.protocol = ATA_PROT_NODATA;
4375 	tf.nsect = feature;
4376 
4377 	if (enable == SETFEATURES_SPINUP)
4378 		timeout = ata_probe_timeout ?
4379 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4380 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4381 
4382 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4383 	return err_mask;
4384 }
4385 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4386 
4387 /**
4388  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4389  *	@dev: Device to which command will be sent
4390  *	@heads: Number of heads (taskfile parameter)
4391  *	@sectors: Number of sectors (taskfile parameter)
4392  *
4393  *	LOCKING:
4394  *	Kernel thread context (may sleep)
4395  *
4396  *	RETURNS:
4397  *	0 on success, AC_ERR_* mask otherwise.
4398  */
4399 static unsigned int ata_dev_init_params(struct ata_device *dev,
4400 					u16 heads, u16 sectors)
4401 {
4402 	struct ata_taskfile tf;
4403 	unsigned int err_mask;
4404 
4405 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4406 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4407 		return AC_ERR_INVALID;
4408 
4409 	/* set up init dev params taskfile */
4410 	DPRINTK("init dev params \n");
4411 
4412 	ata_tf_init(dev, &tf);
4413 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4414 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4415 	tf.protocol = ATA_PROT_NODATA;
4416 	tf.nsect = sectors;
4417 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4418 
4419 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4420 	/* A clean abort indicates an original or just out of spec drive
4421 	   and we should continue as we issue the setup based on the
4422 	   drive reported working geometry */
4423 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4424 		err_mask = 0;
4425 
4426 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4427 	return err_mask;
4428 }
4429 
4430 /**
4431  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4432  *	@qc: Metadata associated with taskfile to check
4433  *
4434  *	Allow low-level driver to filter ATA PACKET commands, returning
4435  *	a status indicating whether or not it is OK to use DMA for the
4436  *	supplied PACKET command.
4437  *
4438  *	LOCKING:
4439  *	spin_lock_irqsave(host lock)
4440  *
4441  *	RETURNS: 0 when ATAPI DMA can be used
4442  *               nonzero otherwise
4443  */
4444 int atapi_check_dma(struct ata_queued_cmd *qc)
4445 {
4446 	struct ata_port *ap = qc->ap;
4447 
4448 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4449 	 * few ATAPI devices choke on such DMA requests.
4450 	 */
4451 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4452 	    unlikely(qc->nbytes & 15))
4453 		return 1;
4454 
4455 	if (ap->ops->check_atapi_dma)
4456 		return ap->ops->check_atapi_dma(qc);
4457 
4458 	return 0;
4459 }
4460 
4461 /**
4462  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4463  *	@qc: ATA command in question
4464  *
4465  *	Non-NCQ commands cannot run with any other command, NCQ or
4466  *	not.  As upper layer only knows the queue depth, we are
4467  *	responsible for maintaining exclusion.  This function checks
4468  *	whether a new command @qc can be issued.
4469  *
4470  *	LOCKING:
4471  *	spin_lock_irqsave(host lock)
4472  *
4473  *	RETURNS:
4474  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4475  */
4476 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4477 {
4478 	struct ata_link *link = qc->dev->link;
4479 
4480 	if (ata_is_ncq(qc->tf.protocol)) {
4481 		if (!ata_tag_valid(link->active_tag))
4482 			return 0;
4483 	} else {
4484 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4485 			return 0;
4486 	}
4487 
4488 	return ATA_DEFER_LINK;
4489 }
4490 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4491 
4492 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4493 {
4494 	return AC_ERR_OK;
4495 }
4496 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4497 
4498 /**
4499  *	ata_sg_init - Associate command with scatter-gather table.
4500  *	@qc: Command to be associated
4501  *	@sg: Scatter-gather table.
4502  *	@n_elem: Number of elements in s/g table.
4503  *
4504  *	Initialize the data-related elements of queued_cmd @qc
4505  *	to point to a scatter-gather table @sg, containing @n_elem
4506  *	elements.
4507  *
4508  *	LOCKING:
4509  *	spin_lock_irqsave(host lock)
4510  */
4511 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4512 		 unsigned int n_elem)
4513 {
4514 	qc->sg = sg;
4515 	qc->n_elem = n_elem;
4516 	qc->cursg = qc->sg;
4517 }
4518 
4519 #ifdef CONFIG_HAS_DMA
4520 
4521 /**
4522  *	ata_sg_clean - Unmap DMA memory associated with command
4523  *	@qc: Command containing DMA memory to be released
4524  *
4525  *	Unmap all mapped DMA memory associated with this command.
4526  *
4527  *	LOCKING:
4528  *	spin_lock_irqsave(host lock)
4529  */
4530 static void ata_sg_clean(struct ata_queued_cmd *qc)
4531 {
4532 	struct ata_port *ap = qc->ap;
4533 	struct scatterlist *sg = qc->sg;
4534 	int dir = qc->dma_dir;
4535 
4536 	WARN_ON_ONCE(sg == NULL);
4537 
4538 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4539 
4540 	if (qc->n_elem)
4541 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4542 
4543 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4544 	qc->sg = NULL;
4545 }
4546 
4547 /**
4548  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4549  *	@qc: Command with scatter-gather table to be mapped.
4550  *
4551  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4552  *
4553  *	LOCKING:
4554  *	spin_lock_irqsave(host lock)
4555  *
4556  *	RETURNS:
4557  *	Zero on success, negative on error.
4558  *
4559  */
4560 static int ata_sg_setup(struct ata_queued_cmd *qc)
4561 {
4562 	struct ata_port *ap = qc->ap;
4563 	unsigned int n_elem;
4564 
4565 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4566 
4567 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4568 	if (n_elem < 1)
4569 		return -1;
4570 
4571 	VPRINTK("%d sg elements mapped\n", n_elem);
4572 	qc->orig_n_elem = qc->n_elem;
4573 	qc->n_elem = n_elem;
4574 	qc->flags |= ATA_QCFLAG_DMAMAP;
4575 
4576 	return 0;
4577 }
4578 
4579 #else /* !CONFIG_HAS_DMA */
4580 
4581 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4582 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4583 
4584 #endif /* !CONFIG_HAS_DMA */
4585 
4586 /**
4587  *	swap_buf_le16 - swap halves of 16-bit words in place
4588  *	@buf:  Buffer to swap
4589  *	@buf_words:  Number of 16-bit words in buffer.
4590  *
4591  *	Swap halves of 16-bit words if needed to convert from
4592  *	little-endian byte order to native cpu byte order, or
4593  *	vice-versa.
4594  *
4595  *	LOCKING:
4596  *	Inherited from caller.
4597  */
4598 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4599 {
4600 #ifdef __BIG_ENDIAN
4601 	unsigned int i;
4602 
4603 	for (i = 0; i < buf_words; i++)
4604 		buf[i] = le16_to_cpu(buf[i]);
4605 #endif /* __BIG_ENDIAN */
4606 }
4607 
4608 /**
4609  *	ata_qc_new_init - Request an available ATA command, and initialize it
4610  *	@dev: Device from whom we request an available command structure
4611  *	@tag: tag
4612  *
4613  *	LOCKING:
4614  *	None.
4615  */
4616 
4617 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4618 {
4619 	struct ata_port *ap = dev->link->ap;
4620 	struct ata_queued_cmd *qc;
4621 
4622 	/* no command while frozen */
4623 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4624 		return NULL;
4625 
4626 	/* libsas case */
4627 	if (ap->flags & ATA_FLAG_SAS_HOST) {
4628 		tag = ata_sas_allocate_tag(ap);
4629 		if (tag < 0)
4630 			return NULL;
4631 	}
4632 
4633 	qc = __ata_qc_from_tag(ap, tag);
4634 	qc->tag = qc->hw_tag = tag;
4635 	qc->scsicmd = NULL;
4636 	qc->ap = ap;
4637 	qc->dev = dev;
4638 
4639 	ata_qc_reinit(qc);
4640 
4641 	return qc;
4642 }
4643 
4644 /**
4645  *	ata_qc_free - free unused ata_queued_cmd
4646  *	@qc: Command to complete
4647  *
4648  *	Designed to free unused ata_queued_cmd object
4649  *	in case something prevents using it.
4650  *
4651  *	LOCKING:
4652  *	spin_lock_irqsave(host lock)
4653  */
4654 void ata_qc_free(struct ata_queued_cmd *qc)
4655 {
4656 	struct ata_port *ap;
4657 	unsigned int tag;
4658 
4659 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4660 	ap = qc->ap;
4661 
4662 	qc->flags = 0;
4663 	tag = qc->tag;
4664 	if (ata_tag_valid(tag)) {
4665 		qc->tag = ATA_TAG_POISON;
4666 		if (ap->flags & ATA_FLAG_SAS_HOST)
4667 			ata_sas_free_tag(tag, ap);
4668 	}
4669 }
4670 
4671 void __ata_qc_complete(struct ata_queued_cmd *qc)
4672 {
4673 	struct ata_port *ap;
4674 	struct ata_link *link;
4675 
4676 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4677 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4678 	ap = qc->ap;
4679 	link = qc->dev->link;
4680 
4681 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4682 		ata_sg_clean(qc);
4683 
4684 	/* command should be marked inactive atomically with qc completion */
4685 	if (ata_is_ncq(qc->tf.protocol)) {
4686 		link->sactive &= ~(1 << qc->hw_tag);
4687 		if (!link->sactive)
4688 			ap->nr_active_links--;
4689 	} else {
4690 		link->active_tag = ATA_TAG_POISON;
4691 		ap->nr_active_links--;
4692 	}
4693 
4694 	/* clear exclusive status */
4695 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4696 		     ap->excl_link == link))
4697 		ap->excl_link = NULL;
4698 
4699 	/* atapi: mark qc as inactive to prevent the interrupt handler
4700 	 * from completing the command twice later, before the error handler
4701 	 * is called. (when rc != 0 and atapi request sense is needed)
4702 	 */
4703 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4704 	ap->qc_active &= ~(1ULL << qc->tag);
4705 
4706 	/* call completion callback */
4707 	qc->complete_fn(qc);
4708 }
4709 
4710 static void fill_result_tf(struct ata_queued_cmd *qc)
4711 {
4712 	struct ata_port *ap = qc->ap;
4713 
4714 	qc->result_tf.flags = qc->tf.flags;
4715 	ap->ops->qc_fill_rtf(qc);
4716 }
4717 
4718 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4719 {
4720 	struct ata_device *dev = qc->dev;
4721 
4722 	if (!ata_is_data(qc->tf.protocol))
4723 		return;
4724 
4725 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4726 		return;
4727 
4728 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4729 }
4730 
4731 /**
4732  *	ata_qc_complete - Complete an active ATA command
4733  *	@qc: Command to complete
4734  *
4735  *	Indicate to the mid and upper layers that an ATA command has
4736  *	completed, with either an ok or not-ok status.
4737  *
4738  *	Refrain from calling this function multiple times when
4739  *	successfully completing multiple NCQ commands.
4740  *	ata_qc_complete_multiple() should be used instead, which will
4741  *	properly update IRQ expect state.
4742  *
4743  *	LOCKING:
4744  *	spin_lock_irqsave(host lock)
4745  */
4746 void ata_qc_complete(struct ata_queued_cmd *qc)
4747 {
4748 	struct ata_port *ap = qc->ap;
4749 
4750 	/* Trigger the LED (if available) */
4751 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4752 
4753 	/* XXX: New EH and old EH use different mechanisms to
4754 	 * synchronize EH with regular execution path.
4755 	 *
4756 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4757 	 * Normal execution path is responsible for not accessing a
4758 	 * failed qc.  libata core enforces the rule by returning NULL
4759 	 * from ata_qc_from_tag() for failed qcs.
4760 	 *
4761 	 * Old EH depends on ata_qc_complete() nullifying completion
4762 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4763 	 * not synchronize with interrupt handler.  Only PIO task is
4764 	 * taken care of.
4765 	 */
4766 	if (ap->ops->error_handler) {
4767 		struct ata_device *dev = qc->dev;
4768 		struct ata_eh_info *ehi = &dev->link->eh_info;
4769 
4770 		if (unlikely(qc->err_mask))
4771 			qc->flags |= ATA_QCFLAG_FAILED;
4772 
4773 		/*
4774 		 * Finish internal commands without any further processing
4775 		 * and always with the result TF filled.
4776 		 */
4777 		if (unlikely(ata_tag_internal(qc->tag))) {
4778 			fill_result_tf(qc);
4779 			trace_ata_qc_complete_internal(qc);
4780 			__ata_qc_complete(qc);
4781 			return;
4782 		}
4783 
4784 		/*
4785 		 * Non-internal qc has failed.  Fill the result TF and
4786 		 * summon EH.
4787 		 */
4788 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4789 			fill_result_tf(qc);
4790 			trace_ata_qc_complete_failed(qc);
4791 			ata_qc_schedule_eh(qc);
4792 			return;
4793 		}
4794 
4795 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4796 
4797 		/* read result TF if requested */
4798 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4799 			fill_result_tf(qc);
4800 
4801 		trace_ata_qc_complete_done(qc);
4802 		/* Some commands need post-processing after successful
4803 		 * completion.
4804 		 */
4805 		switch (qc->tf.command) {
4806 		case ATA_CMD_SET_FEATURES:
4807 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4808 			    qc->tf.feature != SETFEATURES_WC_OFF &&
4809 			    qc->tf.feature != SETFEATURES_RA_ON &&
4810 			    qc->tf.feature != SETFEATURES_RA_OFF)
4811 				break;
4812 			fallthrough;
4813 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4814 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4815 			/* revalidate device */
4816 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4817 			ata_port_schedule_eh(ap);
4818 			break;
4819 
4820 		case ATA_CMD_SLEEP:
4821 			dev->flags |= ATA_DFLAG_SLEEPING;
4822 			break;
4823 		}
4824 
4825 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4826 			ata_verify_xfer(qc);
4827 
4828 		__ata_qc_complete(qc);
4829 	} else {
4830 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4831 			return;
4832 
4833 		/* read result TF if failed or requested */
4834 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4835 			fill_result_tf(qc);
4836 
4837 		__ata_qc_complete(qc);
4838 	}
4839 }
4840 EXPORT_SYMBOL_GPL(ata_qc_complete);
4841 
4842 /**
4843  *	ata_qc_get_active - get bitmask of active qcs
4844  *	@ap: port in question
4845  *
4846  *	LOCKING:
4847  *	spin_lock_irqsave(host lock)
4848  *
4849  *	RETURNS:
4850  *	Bitmask of active qcs
4851  */
4852 u64 ata_qc_get_active(struct ata_port *ap)
4853 {
4854 	u64 qc_active = ap->qc_active;
4855 
4856 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4857 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4858 		qc_active |= (1 << 0);
4859 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4860 	}
4861 
4862 	return qc_active;
4863 }
4864 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4865 
4866 /**
4867  *	ata_qc_issue - issue taskfile to device
4868  *	@qc: command to issue to device
4869  *
4870  *	Prepare an ATA command to submission to device.
4871  *	This includes mapping the data into a DMA-able
4872  *	area, filling in the S/G table, and finally
4873  *	writing the taskfile to hardware, starting the command.
4874  *
4875  *	LOCKING:
4876  *	spin_lock_irqsave(host lock)
4877  */
4878 void ata_qc_issue(struct ata_queued_cmd *qc)
4879 {
4880 	struct ata_port *ap = qc->ap;
4881 	struct ata_link *link = qc->dev->link;
4882 	u8 prot = qc->tf.protocol;
4883 
4884 	/* Make sure only one non-NCQ command is outstanding.  The
4885 	 * check is skipped for old EH because it reuses active qc to
4886 	 * request ATAPI sense.
4887 	 */
4888 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4889 
4890 	if (ata_is_ncq(prot)) {
4891 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4892 
4893 		if (!link->sactive)
4894 			ap->nr_active_links++;
4895 		link->sactive |= 1 << qc->hw_tag;
4896 	} else {
4897 		WARN_ON_ONCE(link->sactive);
4898 
4899 		ap->nr_active_links++;
4900 		link->active_tag = qc->tag;
4901 	}
4902 
4903 	qc->flags |= ATA_QCFLAG_ACTIVE;
4904 	ap->qc_active |= 1ULL << qc->tag;
4905 
4906 	/*
4907 	 * We guarantee to LLDs that they will have at least one
4908 	 * non-zero sg if the command is a data command.
4909 	 */
4910 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4911 		goto sys_err;
4912 
4913 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4914 				 (ap->flags & ATA_FLAG_PIO_DMA)))
4915 		if (ata_sg_setup(qc))
4916 			goto sys_err;
4917 
4918 	/* if device is sleeping, schedule reset and abort the link */
4919 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4920 		link->eh_info.action |= ATA_EH_RESET;
4921 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4922 		ata_link_abort(link);
4923 		return;
4924 	}
4925 
4926 	qc->err_mask |= ap->ops->qc_prep(qc);
4927 	if (unlikely(qc->err_mask))
4928 		goto err;
4929 	trace_ata_qc_issue(qc);
4930 	qc->err_mask |= ap->ops->qc_issue(qc);
4931 	if (unlikely(qc->err_mask))
4932 		goto err;
4933 	return;
4934 
4935 sys_err:
4936 	qc->err_mask |= AC_ERR_SYSTEM;
4937 err:
4938 	ata_qc_complete(qc);
4939 }
4940 
4941 /**
4942  *	ata_phys_link_online - test whether the given link is online
4943  *	@link: ATA link to test
4944  *
4945  *	Test whether @link is online.  Note that this function returns
4946  *	0 if online status of @link cannot be obtained, so
4947  *	ata_link_online(link) != !ata_link_offline(link).
4948  *
4949  *	LOCKING:
4950  *	None.
4951  *
4952  *	RETURNS:
4953  *	True if the port online status is available and online.
4954  */
4955 bool ata_phys_link_online(struct ata_link *link)
4956 {
4957 	u32 sstatus;
4958 
4959 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4960 	    ata_sstatus_online(sstatus))
4961 		return true;
4962 	return false;
4963 }
4964 
4965 /**
4966  *	ata_phys_link_offline - test whether the given link is offline
4967  *	@link: ATA link to test
4968  *
4969  *	Test whether @link is offline.  Note that this function
4970  *	returns 0 if offline status of @link cannot be obtained, so
4971  *	ata_link_online(link) != !ata_link_offline(link).
4972  *
4973  *	LOCKING:
4974  *	None.
4975  *
4976  *	RETURNS:
4977  *	True if the port offline status is available and offline.
4978  */
4979 bool ata_phys_link_offline(struct ata_link *link)
4980 {
4981 	u32 sstatus;
4982 
4983 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4984 	    !ata_sstatus_online(sstatus))
4985 		return true;
4986 	return false;
4987 }
4988 
4989 /**
4990  *	ata_link_online - test whether the given link is online
4991  *	@link: ATA link to test
4992  *
4993  *	Test whether @link is online.  This is identical to
4994  *	ata_phys_link_online() when there's no slave link.  When
4995  *	there's a slave link, this function should only be called on
4996  *	the master link and will return true if any of M/S links is
4997  *	online.
4998  *
4999  *	LOCKING:
5000  *	None.
5001  *
5002  *	RETURNS:
5003  *	True if the port online status is available and online.
5004  */
5005 bool ata_link_online(struct ata_link *link)
5006 {
5007 	struct ata_link *slave = link->ap->slave_link;
5008 
5009 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5010 
5011 	return ata_phys_link_online(link) ||
5012 		(slave && ata_phys_link_online(slave));
5013 }
5014 EXPORT_SYMBOL_GPL(ata_link_online);
5015 
5016 /**
5017  *	ata_link_offline - test whether the given link is offline
5018  *	@link: ATA link to test
5019  *
5020  *	Test whether @link is offline.  This is identical to
5021  *	ata_phys_link_offline() when there's no slave link.  When
5022  *	there's a slave link, this function should only be called on
5023  *	the master link and will return true if both M/S links are
5024  *	offline.
5025  *
5026  *	LOCKING:
5027  *	None.
5028  *
5029  *	RETURNS:
5030  *	True if the port offline status is available and offline.
5031  */
5032 bool ata_link_offline(struct ata_link *link)
5033 {
5034 	struct ata_link *slave = link->ap->slave_link;
5035 
5036 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5037 
5038 	return ata_phys_link_offline(link) &&
5039 		(!slave || ata_phys_link_offline(slave));
5040 }
5041 EXPORT_SYMBOL_GPL(ata_link_offline);
5042 
5043 #ifdef CONFIG_PM
5044 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5045 				unsigned int action, unsigned int ehi_flags,
5046 				bool async)
5047 {
5048 	struct ata_link *link;
5049 	unsigned long flags;
5050 
5051 	/* Previous resume operation might still be in
5052 	 * progress.  Wait for PM_PENDING to clear.
5053 	 */
5054 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5055 		ata_port_wait_eh(ap);
5056 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5057 	}
5058 
5059 	/* request PM ops to EH */
5060 	spin_lock_irqsave(ap->lock, flags);
5061 
5062 	ap->pm_mesg = mesg;
5063 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5064 	ata_for_each_link(link, ap, HOST_FIRST) {
5065 		link->eh_info.action |= action;
5066 		link->eh_info.flags |= ehi_flags;
5067 	}
5068 
5069 	ata_port_schedule_eh(ap);
5070 
5071 	spin_unlock_irqrestore(ap->lock, flags);
5072 
5073 	if (!async) {
5074 		ata_port_wait_eh(ap);
5075 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5076 	}
5077 }
5078 
5079 /*
5080  * On some hardware, device fails to respond after spun down for suspend.  As
5081  * the device won't be used before being resumed, we don't need to touch the
5082  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5083  *
5084  * http://thread.gmane.org/gmane.linux.ide/46764
5085  */
5086 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5087 						 | ATA_EHI_NO_AUTOPSY
5088 						 | ATA_EHI_NO_RECOVERY;
5089 
5090 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5091 {
5092 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5093 }
5094 
5095 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5096 {
5097 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5098 }
5099 
5100 static int ata_port_pm_suspend(struct device *dev)
5101 {
5102 	struct ata_port *ap = to_ata_port(dev);
5103 
5104 	if (pm_runtime_suspended(dev))
5105 		return 0;
5106 
5107 	ata_port_suspend(ap, PMSG_SUSPEND);
5108 	return 0;
5109 }
5110 
5111 static int ata_port_pm_freeze(struct device *dev)
5112 {
5113 	struct ata_port *ap = to_ata_port(dev);
5114 
5115 	if (pm_runtime_suspended(dev))
5116 		return 0;
5117 
5118 	ata_port_suspend(ap, PMSG_FREEZE);
5119 	return 0;
5120 }
5121 
5122 static int ata_port_pm_poweroff(struct device *dev)
5123 {
5124 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5125 	return 0;
5126 }
5127 
5128 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5129 						| ATA_EHI_QUIET;
5130 
5131 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5132 {
5133 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5134 }
5135 
5136 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5137 {
5138 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5139 }
5140 
5141 static int ata_port_pm_resume(struct device *dev)
5142 {
5143 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5144 	pm_runtime_disable(dev);
5145 	pm_runtime_set_active(dev);
5146 	pm_runtime_enable(dev);
5147 	return 0;
5148 }
5149 
5150 /*
5151  * For ODDs, the upper layer will poll for media change every few seconds,
5152  * which will make it enter and leave suspend state every few seconds. And
5153  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5154  * is very little and the ODD may malfunction after constantly being reset.
5155  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5156  * ODD is attached to the port.
5157  */
5158 static int ata_port_runtime_idle(struct device *dev)
5159 {
5160 	struct ata_port *ap = to_ata_port(dev);
5161 	struct ata_link *link;
5162 	struct ata_device *adev;
5163 
5164 	ata_for_each_link(link, ap, HOST_FIRST) {
5165 		ata_for_each_dev(adev, link, ENABLED)
5166 			if (adev->class == ATA_DEV_ATAPI &&
5167 			    !zpodd_dev_enabled(adev))
5168 				return -EBUSY;
5169 	}
5170 
5171 	return 0;
5172 }
5173 
5174 static int ata_port_runtime_suspend(struct device *dev)
5175 {
5176 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5177 	return 0;
5178 }
5179 
5180 static int ata_port_runtime_resume(struct device *dev)
5181 {
5182 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5183 	return 0;
5184 }
5185 
5186 static const struct dev_pm_ops ata_port_pm_ops = {
5187 	.suspend = ata_port_pm_suspend,
5188 	.resume = ata_port_pm_resume,
5189 	.freeze = ata_port_pm_freeze,
5190 	.thaw = ata_port_pm_resume,
5191 	.poweroff = ata_port_pm_poweroff,
5192 	.restore = ata_port_pm_resume,
5193 
5194 	.runtime_suspend = ata_port_runtime_suspend,
5195 	.runtime_resume = ata_port_runtime_resume,
5196 	.runtime_idle = ata_port_runtime_idle,
5197 };
5198 
5199 /* sas ports don't participate in pm runtime management of ata_ports,
5200  * and need to resume ata devices at the domain level, not the per-port
5201  * level. sas suspend/resume is async to allow parallel port recovery
5202  * since sas has multiple ata_port instances per Scsi_Host.
5203  */
5204 void ata_sas_port_suspend(struct ata_port *ap)
5205 {
5206 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5207 }
5208 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5209 
5210 void ata_sas_port_resume(struct ata_port *ap)
5211 {
5212 	ata_port_resume_async(ap, PMSG_RESUME);
5213 }
5214 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5215 
5216 /**
5217  *	ata_host_suspend - suspend host
5218  *	@host: host to suspend
5219  *	@mesg: PM message
5220  *
5221  *	Suspend @host.  Actual operation is performed by port suspend.
5222  */
5223 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5224 {
5225 	host->dev->power.power_state = mesg;
5226 	return 0;
5227 }
5228 EXPORT_SYMBOL_GPL(ata_host_suspend);
5229 
5230 /**
5231  *	ata_host_resume - resume host
5232  *	@host: host to resume
5233  *
5234  *	Resume @host.  Actual operation is performed by port resume.
5235  */
5236 void ata_host_resume(struct ata_host *host)
5237 {
5238 	host->dev->power.power_state = PMSG_ON;
5239 }
5240 EXPORT_SYMBOL_GPL(ata_host_resume);
5241 #endif
5242 
5243 const struct device_type ata_port_type = {
5244 	.name = "ata_port",
5245 #ifdef CONFIG_PM
5246 	.pm = &ata_port_pm_ops,
5247 #endif
5248 };
5249 
5250 /**
5251  *	ata_dev_init - Initialize an ata_device structure
5252  *	@dev: Device structure to initialize
5253  *
5254  *	Initialize @dev in preparation for probing.
5255  *
5256  *	LOCKING:
5257  *	Inherited from caller.
5258  */
5259 void ata_dev_init(struct ata_device *dev)
5260 {
5261 	struct ata_link *link = ata_dev_phys_link(dev);
5262 	struct ata_port *ap = link->ap;
5263 	unsigned long flags;
5264 
5265 	/* SATA spd limit is bound to the attached device, reset together */
5266 	link->sata_spd_limit = link->hw_sata_spd_limit;
5267 	link->sata_spd = 0;
5268 
5269 	/* High bits of dev->flags are used to record warm plug
5270 	 * requests which occur asynchronously.  Synchronize using
5271 	 * host lock.
5272 	 */
5273 	spin_lock_irqsave(ap->lock, flags);
5274 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5275 	dev->horkage = 0;
5276 	spin_unlock_irqrestore(ap->lock, flags);
5277 
5278 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5279 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5280 	dev->pio_mask = UINT_MAX;
5281 	dev->mwdma_mask = UINT_MAX;
5282 	dev->udma_mask = UINT_MAX;
5283 }
5284 
5285 /**
5286  *	ata_link_init - Initialize an ata_link structure
5287  *	@ap: ATA port link is attached to
5288  *	@link: Link structure to initialize
5289  *	@pmp: Port multiplier port number
5290  *
5291  *	Initialize @link.
5292  *
5293  *	LOCKING:
5294  *	Kernel thread context (may sleep)
5295  */
5296 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5297 {
5298 	int i;
5299 
5300 	/* clear everything except for devices */
5301 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5302 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5303 
5304 	link->ap = ap;
5305 	link->pmp = pmp;
5306 	link->active_tag = ATA_TAG_POISON;
5307 	link->hw_sata_spd_limit = UINT_MAX;
5308 
5309 	/* can't use iterator, ap isn't initialized yet */
5310 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5311 		struct ata_device *dev = &link->device[i];
5312 
5313 		dev->link = link;
5314 		dev->devno = dev - link->device;
5315 #ifdef CONFIG_ATA_ACPI
5316 		dev->gtf_filter = ata_acpi_gtf_filter;
5317 #endif
5318 		ata_dev_init(dev);
5319 	}
5320 }
5321 
5322 /**
5323  *	sata_link_init_spd - Initialize link->sata_spd_limit
5324  *	@link: Link to configure sata_spd_limit for
5325  *
5326  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5327  *	configured value.
5328  *
5329  *	LOCKING:
5330  *	Kernel thread context (may sleep).
5331  *
5332  *	RETURNS:
5333  *	0 on success, -errno on failure.
5334  */
5335 int sata_link_init_spd(struct ata_link *link)
5336 {
5337 	u8 spd;
5338 	int rc;
5339 
5340 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5341 	if (rc)
5342 		return rc;
5343 
5344 	spd = (link->saved_scontrol >> 4) & 0xf;
5345 	if (spd)
5346 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5347 
5348 	ata_force_link_limits(link);
5349 
5350 	link->sata_spd_limit = link->hw_sata_spd_limit;
5351 
5352 	return 0;
5353 }
5354 
5355 /**
5356  *	ata_port_alloc - allocate and initialize basic ATA port resources
5357  *	@host: ATA host this allocated port belongs to
5358  *
5359  *	Allocate and initialize basic ATA port resources.
5360  *
5361  *	RETURNS:
5362  *	Allocate ATA port on success, NULL on failure.
5363  *
5364  *	LOCKING:
5365  *	Inherited from calling layer (may sleep).
5366  */
5367 struct ata_port *ata_port_alloc(struct ata_host *host)
5368 {
5369 	struct ata_port *ap;
5370 
5371 	DPRINTK("ENTER\n");
5372 
5373 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5374 	if (!ap)
5375 		return NULL;
5376 
5377 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5378 	ap->lock = &host->lock;
5379 	ap->print_id = -1;
5380 	ap->local_port_no = -1;
5381 	ap->host = host;
5382 	ap->dev = host->dev;
5383 
5384 #if defined(ATA_VERBOSE_DEBUG)
5385 	/* turn on all debugging levels */
5386 	ap->msg_enable = 0x00FF;
5387 #elif defined(ATA_DEBUG)
5388 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5389 #else
5390 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5391 #endif
5392 
5393 	mutex_init(&ap->scsi_scan_mutex);
5394 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5395 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5396 	INIT_LIST_HEAD(&ap->eh_done_q);
5397 	init_waitqueue_head(&ap->eh_wait_q);
5398 	init_completion(&ap->park_req_pending);
5399 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5400 		    TIMER_DEFERRABLE);
5401 
5402 	ap->cbl = ATA_CBL_NONE;
5403 
5404 	ata_link_init(ap, &ap->link, 0);
5405 
5406 #ifdef ATA_IRQ_TRAP
5407 	ap->stats.unhandled_irq = 1;
5408 	ap->stats.idle_irq = 1;
5409 #endif
5410 	ata_sff_port_init(ap);
5411 
5412 	return ap;
5413 }
5414 
5415 static void ata_devres_release(struct device *gendev, void *res)
5416 {
5417 	struct ata_host *host = dev_get_drvdata(gendev);
5418 	int i;
5419 
5420 	for (i = 0; i < host->n_ports; i++) {
5421 		struct ata_port *ap = host->ports[i];
5422 
5423 		if (!ap)
5424 			continue;
5425 
5426 		if (ap->scsi_host)
5427 			scsi_host_put(ap->scsi_host);
5428 
5429 	}
5430 
5431 	dev_set_drvdata(gendev, NULL);
5432 	ata_host_put(host);
5433 }
5434 
5435 static void ata_host_release(struct kref *kref)
5436 {
5437 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5438 	int i;
5439 
5440 	for (i = 0; i < host->n_ports; i++) {
5441 		struct ata_port *ap = host->ports[i];
5442 
5443 		kfree(ap->pmp_link);
5444 		kfree(ap->slave_link);
5445 		kfree(ap);
5446 		host->ports[i] = NULL;
5447 	}
5448 	kfree(host);
5449 }
5450 
5451 void ata_host_get(struct ata_host *host)
5452 {
5453 	kref_get(&host->kref);
5454 }
5455 
5456 void ata_host_put(struct ata_host *host)
5457 {
5458 	kref_put(&host->kref, ata_host_release);
5459 }
5460 EXPORT_SYMBOL_GPL(ata_host_put);
5461 
5462 /**
5463  *	ata_host_alloc - allocate and init basic ATA host resources
5464  *	@dev: generic device this host is associated with
5465  *	@max_ports: maximum number of ATA ports associated with this host
5466  *
5467  *	Allocate and initialize basic ATA host resources.  LLD calls
5468  *	this function to allocate a host, initializes it fully and
5469  *	attaches it using ata_host_register().
5470  *
5471  *	@max_ports ports are allocated and host->n_ports is
5472  *	initialized to @max_ports.  The caller is allowed to decrease
5473  *	host->n_ports before calling ata_host_register().  The unused
5474  *	ports will be automatically freed on registration.
5475  *
5476  *	RETURNS:
5477  *	Allocate ATA host on success, NULL on failure.
5478  *
5479  *	LOCKING:
5480  *	Inherited from calling layer (may sleep).
5481  */
5482 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5483 {
5484 	struct ata_host *host;
5485 	size_t sz;
5486 	int i;
5487 	void *dr;
5488 
5489 	DPRINTK("ENTER\n");
5490 
5491 	/* alloc a container for our list of ATA ports (buses) */
5492 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5493 	host = kzalloc(sz, GFP_KERNEL);
5494 	if (!host)
5495 		return NULL;
5496 
5497 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5498 		goto err_free;
5499 
5500 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5501 	if (!dr)
5502 		goto err_out;
5503 
5504 	devres_add(dev, dr);
5505 	dev_set_drvdata(dev, host);
5506 
5507 	spin_lock_init(&host->lock);
5508 	mutex_init(&host->eh_mutex);
5509 	host->dev = dev;
5510 	host->n_ports = max_ports;
5511 	kref_init(&host->kref);
5512 
5513 	/* allocate ports bound to this host */
5514 	for (i = 0; i < max_ports; i++) {
5515 		struct ata_port *ap;
5516 
5517 		ap = ata_port_alloc(host);
5518 		if (!ap)
5519 			goto err_out;
5520 
5521 		ap->port_no = i;
5522 		host->ports[i] = ap;
5523 	}
5524 
5525 	devres_remove_group(dev, NULL);
5526 	return host;
5527 
5528  err_out:
5529 	devres_release_group(dev, NULL);
5530  err_free:
5531 	kfree(host);
5532 	return NULL;
5533 }
5534 EXPORT_SYMBOL_GPL(ata_host_alloc);
5535 
5536 /**
5537  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5538  *	@dev: generic device this host is associated with
5539  *	@ppi: array of ATA port_info to initialize host with
5540  *	@n_ports: number of ATA ports attached to this host
5541  *
5542  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5543  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5544  *	last entry will be used for the remaining ports.
5545  *
5546  *	RETURNS:
5547  *	Allocate ATA host on success, NULL on failure.
5548  *
5549  *	LOCKING:
5550  *	Inherited from calling layer (may sleep).
5551  */
5552 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5553 				      const struct ata_port_info * const * ppi,
5554 				      int n_ports)
5555 {
5556 	const struct ata_port_info *pi;
5557 	struct ata_host *host;
5558 	int i, j;
5559 
5560 	host = ata_host_alloc(dev, n_ports);
5561 	if (!host)
5562 		return NULL;
5563 
5564 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5565 		struct ata_port *ap = host->ports[i];
5566 
5567 		if (ppi[j])
5568 			pi = ppi[j++];
5569 
5570 		ap->pio_mask = pi->pio_mask;
5571 		ap->mwdma_mask = pi->mwdma_mask;
5572 		ap->udma_mask = pi->udma_mask;
5573 		ap->flags |= pi->flags;
5574 		ap->link.flags |= pi->link_flags;
5575 		ap->ops = pi->port_ops;
5576 
5577 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5578 			host->ops = pi->port_ops;
5579 	}
5580 
5581 	return host;
5582 }
5583 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5584 
5585 static void ata_host_stop(struct device *gendev, void *res)
5586 {
5587 	struct ata_host *host = dev_get_drvdata(gendev);
5588 	int i;
5589 
5590 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5591 
5592 	for (i = 0; i < host->n_ports; i++) {
5593 		struct ata_port *ap = host->ports[i];
5594 
5595 		if (ap->ops->port_stop)
5596 			ap->ops->port_stop(ap);
5597 	}
5598 
5599 	if (host->ops->host_stop)
5600 		host->ops->host_stop(host);
5601 }
5602 
5603 /**
5604  *	ata_finalize_port_ops - finalize ata_port_operations
5605  *	@ops: ata_port_operations to finalize
5606  *
5607  *	An ata_port_operations can inherit from another ops and that
5608  *	ops can again inherit from another.  This can go on as many
5609  *	times as necessary as long as there is no loop in the
5610  *	inheritance chain.
5611  *
5612  *	Ops tables are finalized when the host is started.  NULL or
5613  *	unspecified entries are inherited from the closet ancestor
5614  *	which has the method and the entry is populated with it.
5615  *	After finalization, the ops table directly points to all the
5616  *	methods and ->inherits is no longer necessary and cleared.
5617  *
5618  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5619  *
5620  *	LOCKING:
5621  *	None.
5622  */
5623 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5624 {
5625 	static DEFINE_SPINLOCK(lock);
5626 	const struct ata_port_operations *cur;
5627 	void **begin = (void **)ops;
5628 	void **end = (void **)&ops->inherits;
5629 	void **pp;
5630 
5631 	if (!ops || !ops->inherits)
5632 		return;
5633 
5634 	spin_lock(&lock);
5635 
5636 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5637 		void **inherit = (void **)cur;
5638 
5639 		for (pp = begin; pp < end; pp++, inherit++)
5640 			if (!*pp)
5641 				*pp = *inherit;
5642 	}
5643 
5644 	for (pp = begin; pp < end; pp++)
5645 		if (IS_ERR(*pp))
5646 			*pp = NULL;
5647 
5648 	ops->inherits = NULL;
5649 
5650 	spin_unlock(&lock);
5651 }
5652 
5653 /**
5654  *	ata_host_start - start and freeze ports of an ATA host
5655  *	@host: ATA host to start ports for
5656  *
5657  *	Start and then freeze ports of @host.  Started status is
5658  *	recorded in host->flags, so this function can be called
5659  *	multiple times.  Ports are guaranteed to get started only
5660  *	once.  If host->ops isn't initialized yet, its set to the
5661  *	first non-dummy port ops.
5662  *
5663  *	LOCKING:
5664  *	Inherited from calling layer (may sleep).
5665  *
5666  *	RETURNS:
5667  *	0 if all ports are started successfully, -errno otherwise.
5668  */
5669 int ata_host_start(struct ata_host *host)
5670 {
5671 	int have_stop = 0;
5672 	void *start_dr = NULL;
5673 	int i, rc;
5674 
5675 	if (host->flags & ATA_HOST_STARTED)
5676 		return 0;
5677 
5678 	ata_finalize_port_ops(host->ops);
5679 
5680 	for (i = 0; i < host->n_ports; i++) {
5681 		struct ata_port *ap = host->ports[i];
5682 
5683 		ata_finalize_port_ops(ap->ops);
5684 
5685 		if (!host->ops && !ata_port_is_dummy(ap))
5686 			host->ops = ap->ops;
5687 
5688 		if (ap->ops->port_stop)
5689 			have_stop = 1;
5690 	}
5691 
5692 	if (host->ops && host->ops->host_stop)
5693 		have_stop = 1;
5694 
5695 	if (have_stop) {
5696 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5697 		if (!start_dr)
5698 			return -ENOMEM;
5699 	}
5700 
5701 	for (i = 0; i < host->n_ports; i++) {
5702 		struct ata_port *ap = host->ports[i];
5703 
5704 		if (ap->ops->port_start) {
5705 			rc = ap->ops->port_start(ap);
5706 			if (rc) {
5707 				if (rc != -ENODEV)
5708 					dev_err(host->dev,
5709 						"failed to start port %d (errno=%d)\n",
5710 						i, rc);
5711 				goto err_out;
5712 			}
5713 		}
5714 		ata_eh_freeze_port(ap);
5715 	}
5716 
5717 	if (start_dr)
5718 		devres_add(host->dev, start_dr);
5719 	host->flags |= ATA_HOST_STARTED;
5720 	return 0;
5721 
5722  err_out:
5723 	while (--i >= 0) {
5724 		struct ata_port *ap = host->ports[i];
5725 
5726 		if (ap->ops->port_stop)
5727 			ap->ops->port_stop(ap);
5728 	}
5729 	devres_free(start_dr);
5730 	return rc;
5731 }
5732 EXPORT_SYMBOL_GPL(ata_host_start);
5733 
5734 /**
5735  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5736  *	@host:	host to initialize
5737  *	@dev:	device host is attached to
5738  *	@ops:	port_ops
5739  *
5740  */
5741 void ata_host_init(struct ata_host *host, struct device *dev,
5742 		   struct ata_port_operations *ops)
5743 {
5744 	spin_lock_init(&host->lock);
5745 	mutex_init(&host->eh_mutex);
5746 	host->n_tags = ATA_MAX_QUEUE;
5747 	host->dev = dev;
5748 	host->ops = ops;
5749 	kref_init(&host->kref);
5750 }
5751 EXPORT_SYMBOL_GPL(ata_host_init);
5752 
5753 void __ata_port_probe(struct ata_port *ap)
5754 {
5755 	struct ata_eh_info *ehi = &ap->link.eh_info;
5756 	unsigned long flags;
5757 
5758 	/* kick EH for boot probing */
5759 	spin_lock_irqsave(ap->lock, flags);
5760 
5761 	ehi->probe_mask |= ATA_ALL_DEVICES;
5762 	ehi->action |= ATA_EH_RESET;
5763 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5764 
5765 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5766 	ap->pflags |= ATA_PFLAG_LOADING;
5767 	ata_port_schedule_eh(ap);
5768 
5769 	spin_unlock_irqrestore(ap->lock, flags);
5770 }
5771 
5772 int ata_port_probe(struct ata_port *ap)
5773 {
5774 	int rc = 0;
5775 
5776 	if (ap->ops->error_handler) {
5777 		__ata_port_probe(ap);
5778 		ata_port_wait_eh(ap);
5779 	} else {
5780 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5781 		rc = ata_bus_probe(ap);
5782 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
5783 	}
5784 	return rc;
5785 }
5786 
5787 
5788 static void async_port_probe(void *data, async_cookie_t cookie)
5789 {
5790 	struct ata_port *ap = data;
5791 
5792 	/*
5793 	 * If we're not allowed to scan this host in parallel,
5794 	 * we need to wait until all previous scans have completed
5795 	 * before going further.
5796 	 * Jeff Garzik says this is only within a controller, so we
5797 	 * don't need to wait for port 0, only for later ports.
5798 	 */
5799 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5800 		async_synchronize_cookie(cookie);
5801 
5802 	(void)ata_port_probe(ap);
5803 
5804 	/* in order to keep device order, we need to synchronize at this point */
5805 	async_synchronize_cookie(cookie);
5806 
5807 	ata_scsi_scan_host(ap, 1);
5808 }
5809 
5810 /**
5811  *	ata_host_register - register initialized ATA host
5812  *	@host: ATA host to register
5813  *	@sht: template for SCSI host
5814  *
5815  *	Register initialized ATA host.  @host is allocated using
5816  *	ata_host_alloc() and fully initialized by LLD.  This function
5817  *	starts ports, registers @host with ATA and SCSI layers and
5818  *	probe registered devices.
5819  *
5820  *	LOCKING:
5821  *	Inherited from calling layer (may sleep).
5822  *
5823  *	RETURNS:
5824  *	0 on success, -errno otherwise.
5825  */
5826 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5827 {
5828 	int i, rc;
5829 
5830 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5831 
5832 	/* host must have been started */
5833 	if (!(host->flags & ATA_HOST_STARTED)) {
5834 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5835 		WARN_ON(1);
5836 		return -EINVAL;
5837 	}
5838 
5839 	/* Blow away unused ports.  This happens when LLD can't
5840 	 * determine the exact number of ports to allocate at
5841 	 * allocation time.
5842 	 */
5843 	for (i = host->n_ports; host->ports[i]; i++)
5844 		kfree(host->ports[i]);
5845 
5846 	/* give ports names and add SCSI hosts */
5847 	for (i = 0; i < host->n_ports; i++) {
5848 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5849 		host->ports[i]->local_port_no = i + 1;
5850 	}
5851 
5852 	/* Create associated sysfs transport objects  */
5853 	for (i = 0; i < host->n_ports; i++) {
5854 		rc = ata_tport_add(host->dev,host->ports[i]);
5855 		if (rc) {
5856 			goto err_tadd;
5857 		}
5858 	}
5859 
5860 	rc = ata_scsi_add_hosts(host, sht);
5861 	if (rc)
5862 		goto err_tadd;
5863 
5864 	/* set cable, sata_spd_limit and report */
5865 	for (i = 0; i < host->n_ports; i++) {
5866 		struct ata_port *ap = host->ports[i];
5867 		unsigned long xfer_mask;
5868 
5869 		/* set SATA cable type if still unset */
5870 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5871 			ap->cbl = ATA_CBL_SATA;
5872 
5873 		/* init sata_spd_limit to the current value */
5874 		sata_link_init_spd(&ap->link);
5875 		if (ap->slave_link)
5876 			sata_link_init_spd(ap->slave_link);
5877 
5878 		/* print per-port info to dmesg */
5879 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5880 					      ap->udma_mask);
5881 
5882 		if (!ata_port_is_dummy(ap)) {
5883 			ata_port_info(ap, "%cATA max %s %s\n",
5884 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5885 				      ata_mode_string(xfer_mask),
5886 				      ap->link.eh_info.desc);
5887 			ata_ehi_clear_desc(&ap->link.eh_info);
5888 		} else
5889 			ata_port_info(ap, "DUMMY\n");
5890 	}
5891 
5892 	/* perform each probe asynchronously */
5893 	for (i = 0; i < host->n_ports; i++) {
5894 		struct ata_port *ap = host->ports[i];
5895 		ap->cookie = async_schedule(async_port_probe, ap);
5896 	}
5897 
5898 	return 0;
5899 
5900  err_tadd:
5901 	while (--i >= 0) {
5902 		ata_tport_delete(host->ports[i]);
5903 	}
5904 	return rc;
5905 
5906 }
5907 EXPORT_SYMBOL_GPL(ata_host_register);
5908 
5909 /**
5910  *	ata_host_activate - start host, request IRQ and register it
5911  *	@host: target ATA host
5912  *	@irq: IRQ to request
5913  *	@irq_handler: irq_handler used when requesting IRQ
5914  *	@irq_flags: irq_flags used when requesting IRQ
5915  *	@sht: scsi_host_template to use when registering the host
5916  *
5917  *	After allocating an ATA host and initializing it, most libata
5918  *	LLDs perform three steps to activate the host - start host,
5919  *	request IRQ and register it.  This helper takes necessary
5920  *	arguments and performs the three steps in one go.
5921  *
5922  *	An invalid IRQ skips the IRQ registration and expects the host to
5923  *	have set polling mode on the port. In this case, @irq_handler
5924  *	should be NULL.
5925  *
5926  *	LOCKING:
5927  *	Inherited from calling layer (may sleep).
5928  *
5929  *	RETURNS:
5930  *	0 on success, -errno otherwise.
5931  */
5932 int ata_host_activate(struct ata_host *host, int irq,
5933 		      irq_handler_t irq_handler, unsigned long irq_flags,
5934 		      struct scsi_host_template *sht)
5935 {
5936 	int i, rc;
5937 	char *irq_desc;
5938 
5939 	rc = ata_host_start(host);
5940 	if (rc)
5941 		return rc;
5942 
5943 	/* Special case for polling mode */
5944 	if (!irq) {
5945 		WARN_ON(irq_handler);
5946 		return ata_host_register(host, sht);
5947 	}
5948 
5949 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5950 				  dev_driver_string(host->dev),
5951 				  dev_name(host->dev));
5952 	if (!irq_desc)
5953 		return -ENOMEM;
5954 
5955 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5956 			      irq_desc, host);
5957 	if (rc)
5958 		return rc;
5959 
5960 	for (i = 0; i < host->n_ports; i++)
5961 		ata_port_desc(host->ports[i], "irq %d", irq);
5962 
5963 	rc = ata_host_register(host, sht);
5964 	/* if failed, just free the IRQ and leave ports alone */
5965 	if (rc)
5966 		devm_free_irq(host->dev, irq, host);
5967 
5968 	return rc;
5969 }
5970 EXPORT_SYMBOL_GPL(ata_host_activate);
5971 
5972 /**
5973  *	ata_port_detach - Detach ATA port in preparation of device removal
5974  *	@ap: ATA port to be detached
5975  *
5976  *	Detach all ATA devices and the associated SCSI devices of @ap;
5977  *	then, remove the associated SCSI host.  @ap is guaranteed to
5978  *	be quiescent on return from this function.
5979  *
5980  *	LOCKING:
5981  *	Kernel thread context (may sleep).
5982  */
5983 static void ata_port_detach(struct ata_port *ap)
5984 {
5985 	unsigned long flags;
5986 	struct ata_link *link;
5987 	struct ata_device *dev;
5988 
5989 	if (!ap->ops->error_handler)
5990 		goto skip_eh;
5991 
5992 	/* tell EH we're leaving & flush EH */
5993 	spin_lock_irqsave(ap->lock, flags);
5994 	ap->pflags |= ATA_PFLAG_UNLOADING;
5995 	ata_port_schedule_eh(ap);
5996 	spin_unlock_irqrestore(ap->lock, flags);
5997 
5998 	/* wait till EH commits suicide */
5999 	ata_port_wait_eh(ap);
6000 
6001 	/* it better be dead now */
6002 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6003 
6004 	cancel_delayed_work_sync(&ap->hotplug_task);
6005 
6006  skip_eh:
6007 	/* clean up zpodd on port removal */
6008 	ata_for_each_link(link, ap, HOST_FIRST) {
6009 		ata_for_each_dev(dev, link, ALL) {
6010 			if (zpodd_dev_enabled(dev))
6011 				zpodd_exit(dev);
6012 		}
6013 	}
6014 	if (ap->pmp_link) {
6015 		int i;
6016 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6017 			ata_tlink_delete(&ap->pmp_link[i]);
6018 	}
6019 	/* remove the associated SCSI host */
6020 	scsi_remove_host(ap->scsi_host);
6021 	ata_tport_delete(ap);
6022 }
6023 
6024 /**
6025  *	ata_host_detach - Detach all ports of an ATA host
6026  *	@host: Host to detach
6027  *
6028  *	Detach all ports of @host.
6029  *
6030  *	LOCKING:
6031  *	Kernel thread context (may sleep).
6032  */
6033 void ata_host_detach(struct ata_host *host)
6034 {
6035 	int i;
6036 
6037 	for (i = 0; i < host->n_ports; i++) {
6038 		/* Ensure ata_port probe has completed */
6039 		async_synchronize_cookie(host->ports[i]->cookie + 1);
6040 		ata_port_detach(host->ports[i]);
6041 	}
6042 
6043 	/* the host is dead now, dissociate ACPI */
6044 	ata_acpi_dissociate(host);
6045 }
6046 EXPORT_SYMBOL_GPL(ata_host_detach);
6047 
6048 #ifdef CONFIG_PCI
6049 
6050 /**
6051  *	ata_pci_remove_one - PCI layer callback for device removal
6052  *	@pdev: PCI device that was removed
6053  *
6054  *	PCI layer indicates to libata via this hook that hot-unplug or
6055  *	module unload event has occurred.  Detach all ports.  Resource
6056  *	release is handled via devres.
6057  *
6058  *	LOCKING:
6059  *	Inherited from PCI layer (may sleep).
6060  */
6061 void ata_pci_remove_one(struct pci_dev *pdev)
6062 {
6063 	struct ata_host *host = pci_get_drvdata(pdev);
6064 
6065 	ata_host_detach(host);
6066 }
6067 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6068 
6069 void ata_pci_shutdown_one(struct pci_dev *pdev)
6070 {
6071 	struct ata_host *host = pci_get_drvdata(pdev);
6072 	int i;
6073 
6074 	for (i = 0; i < host->n_ports; i++) {
6075 		struct ata_port *ap = host->ports[i];
6076 
6077 		ap->pflags |= ATA_PFLAG_FROZEN;
6078 
6079 		/* Disable port interrupts */
6080 		if (ap->ops->freeze)
6081 			ap->ops->freeze(ap);
6082 
6083 		/* Stop the port DMA engines */
6084 		if (ap->ops->port_stop)
6085 			ap->ops->port_stop(ap);
6086 	}
6087 }
6088 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6089 
6090 /* move to PCI subsystem */
6091 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6092 {
6093 	unsigned long tmp = 0;
6094 
6095 	switch (bits->width) {
6096 	case 1: {
6097 		u8 tmp8 = 0;
6098 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6099 		tmp = tmp8;
6100 		break;
6101 	}
6102 	case 2: {
6103 		u16 tmp16 = 0;
6104 		pci_read_config_word(pdev, bits->reg, &tmp16);
6105 		tmp = tmp16;
6106 		break;
6107 	}
6108 	case 4: {
6109 		u32 tmp32 = 0;
6110 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6111 		tmp = tmp32;
6112 		break;
6113 	}
6114 
6115 	default:
6116 		return -EINVAL;
6117 	}
6118 
6119 	tmp &= bits->mask;
6120 
6121 	return (tmp == bits->val) ? 1 : 0;
6122 }
6123 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6124 
6125 #ifdef CONFIG_PM
6126 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6127 {
6128 	pci_save_state(pdev);
6129 	pci_disable_device(pdev);
6130 
6131 	if (mesg.event & PM_EVENT_SLEEP)
6132 		pci_set_power_state(pdev, PCI_D3hot);
6133 }
6134 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6135 
6136 int ata_pci_device_do_resume(struct pci_dev *pdev)
6137 {
6138 	int rc;
6139 
6140 	pci_set_power_state(pdev, PCI_D0);
6141 	pci_restore_state(pdev);
6142 
6143 	rc = pcim_enable_device(pdev);
6144 	if (rc) {
6145 		dev_err(&pdev->dev,
6146 			"failed to enable device after resume (%d)\n", rc);
6147 		return rc;
6148 	}
6149 
6150 	pci_set_master(pdev);
6151 	return 0;
6152 }
6153 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6154 
6155 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6156 {
6157 	struct ata_host *host = pci_get_drvdata(pdev);
6158 	int rc = 0;
6159 
6160 	rc = ata_host_suspend(host, mesg);
6161 	if (rc)
6162 		return rc;
6163 
6164 	ata_pci_device_do_suspend(pdev, mesg);
6165 
6166 	return 0;
6167 }
6168 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6169 
6170 int ata_pci_device_resume(struct pci_dev *pdev)
6171 {
6172 	struct ata_host *host = pci_get_drvdata(pdev);
6173 	int rc;
6174 
6175 	rc = ata_pci_device_do_resume(pdev);
6176 	if (rc == 0)
6177 		ata_host_resume(host);
6178 	return rc;
6179 }
6180 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6181 #endif /* CONFIG_PM */
6182 #endif /* CONFIG_PCI */
6183 
6184 /**
6185  *	ata_platform_remove_one - Platform layer callback for device removal
6186  *	@pdev: Platform device that was removed
6187  *
6188  *	Platform layer indicates to libata via this hook that hot-unplug or
6189  *	module unload event has occurred.  Detach all ports.  Resource
6190  *	release is handled via devres.
6191  *
6192  *	LOCKING:
6193  *	Inherited from platform layer (may sleep).
6194  */
6195 int ata_platform_remove_one(struct platform_device *pdev)
6196 {
6197 	struct ata_host *host = platform_get_drvdata(pdev);
6198 
6199 	ata_host_detach(host);
6200 
6201 	return 0;
6202 }
6203 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6204 
6205 #ifdef CONFIG_ATA_FORCE
6206 static int __init ata_parse_force_one(char **cur,
6207 				      struct ata_force_ent *force_ent,
6208 				      const char **reason)
6209 {
6210 	static const struct ata_force_param force_tbl[] __initconst = {
6211 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6212 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6213 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6214 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6215 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6216 		{ "sata",	.cbl		= ATA_CBL_SATA },
6217 		{ "1.5Gbps",	.spd_limit	= 1 },
6218 		{ "3.0Gbps",	.spd_limit	= 2 },
6219 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6220 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6221 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6222 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6223 		{ "noncqati",	.horkage_on	= ATA_HORKAGE_NO_NCQ_ON_ATI },
6224 		{ "ncqati",	.horkage_off	= ATA_HORKAGE_NO_NCQ_ON_ATI },
6225 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6226 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6227 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6228 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6229 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6230 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6231 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6232 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6233 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6234 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6235 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6236 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6237 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6238 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6239 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6240 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6241 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6242 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6243 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6244 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6245 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6246 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6247 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6248 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6249 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6250 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6251 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6252 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6253 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6254 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6255 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6256 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6257 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6258 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6259 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6260 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6261 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6262 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6263 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6264 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6265 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6266 	};
6267 	char *start = *cur, *p = *cur;
6268 	char *id, *val, *endp;
6269 	const struct ata_force_param *match_fp = NULL;
6270 	int nr_matches = 0, i;
6271 
6272 	/* find where this param ends and update *cur */
6273 	while (*p != '\0' && *p != ',')
6274 		p++;
6275 
6276 	if (*p == '\0')
6277 		*cur = p;
6278 	else
6279 		*cur = p + 1;
6280 
6281 	*p = '\0';
6282 
6283 	/* parse */
6284 	p = strchr(start, ':');
6285 	if (!p) {
6286 		val = strstrip(start);
6287 		goto parse_val;
6288 	}
6289 	*p = '\0';
6290 
6291 	id = strstrip(start);
6292 	val = strstrip(p + 1);
6293 
6294 	/* parse id */
6295 	p = strchr(id, '.');
6296 	if (p) {
6297 		*p++ = '\0';
6298 		force_ent->device = simple_strtoul(p, &endp, 10);
6299 		if (p == endp || *endp != '\0') {
6300 			*reason = "invalid device";
6301 			return -EINVAL;
6302 		}
6303 	}
6304 
6305 	force_ent->port = simple_strtoul(id, &endp, 10);
6306 	if (id == endp || *endp != '\0') {
6307 		*reason = "invalid port/link";
6308 		return -EINVAL;
6309 	}
6310 
6311  parse_val:
6312 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6313 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6314 		const struct ata_force_param *fp = &force_tbl[i];
6315 
6316 		if (strncasecmp(val, fp->name, strlen(val)))
6317 			continue;
6318 
6319 		nr_matches++;
6320 		match_fp = fp;
6321 
6322 		if (strcasecmp(val, fp->name) == 0) {
6323 			nr_matches = 1;
6324 			break;
6325 		}
6326 	}
6327 
6328 	if (!nr_matches) {
6329 		*reason = "unknown value";
6330 		return -EINVAL;
6331 	}
6332 	if (nr_matches > 1) {
6333 		*reason = "ambiguous value";
6334 		return -EINVAL;
6335 	}
6336 
6337 	force_ent->param = *match_fp;
6338 
6339 	return 0;
6340 }
6341 
6342 static void __init ata_parse_force_param(void)
6343 {
6344 	int idx = 0, size = 1;
6345 	int last_port = -1, last_device = -1;
6346 	char *p, *cur, *next;
6347 
6348 	/* calculate maximum number of params and allocate force_tbl */
6349 	for (p = ata_force_param_buf; *p; p++)
6350 		if (*p == ',')
6351 			size++;
6352 
6353 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6354 	if (!ata_force_tbl) {
6355 		printk(KERN_WARNING "ata: failed to extend force table, "
6356 		       "libata.force ignored\n");
6357 		return;
6358 	}
6359 
6360 	/* parse and populate the table */
6361 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6362 		const char *reason = "";
6363 		struct ata_force_ent te = { .port = -1, .device = -1 };
6364 
6365 		next = cur;
6366 		if (ata_parse_force_one(&next, &te, &reason)) {
6367 			printk(KERN_WARNING "ata: failed to parse force "
6368 			       "parameter \"%s\" (%s)\n",
6369 			       cur, reason);
6370 			continue;
6371 		}
6372 
6373 		if (te.port == -1) {
6374 			te.port = last_port;
6375 			te.device = last_device;
6376 		}
6377 
6378 		ata_force_tbl[idx++] = te;
6379 
6380 		last_port = te.port;
6381 		last_device = te.device;
6382 	}
6383 
6384 	ata_force_tbl_size = idx;
6385 }
6386 
6387 static void ata_free_force_param(void)
6388 {
6389 	kfree(ata_force_tbl);
6390 }
6391 #else
6392 static inline void ata_parse_force_param(void) { }
6393 static inline void ata_free_force_param(void) { }
6394 #endif
6395 
6396 static int __init ata_init(void)
6397 {
6398 	int rc;
6399 
6400 	ata_parse_force_param();
6401 
6402 	rc = ata_sff_init();
6403 	if (rc) {
6404 		ata_free_force_param();
6405 		return rc;
6406 	}
6407 
6408 	libata_transport_init();
6409 	ata_scsi_transport_template = ata_attach_transport();
6410 	if (!ata_scsi_transport_template) {
6411 		ata_sff_exit();
6412 		rc = -ENOMEM;
6413 		goto err_out;
6414 	}
6415 
6416 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6417 	return 0;
6418 
6419 err_out:
6420 	return rc;
6421 }
6422 
6423 static void __exit ata_exit(void)
6424 {
6425 	ata_release_transport(ata_scsi_transport_template);
6426 	libata_transport_exit();
6427 	ata_sff_exit();
6428 	ata_free_force_param();
6429 }
6430 
6431 subsys_initcall(ata_init);
6432 module_exit(ata_exit);
6433 
6434 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6435 
6436 int ata_ratelimit(void)
6437 {
6438 	return __ratelimit(&ratelimit);
6439 }
6440 EXPORT_SYMBOL_GPL(ata_ratelimit);
6441 
6442 /**
6443  *	ata_msleep - ATA EH owner aware msleep
6444  *	@ap: ATA port to attribute the sleep to
6445  *	@msecs: duration to sleep in milliseconds
6446  *
6447  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6448  *	ownership is released before going to sleep and reacquired
6449  *	after the sleep is complete.  IOW, other ports sharing the
6450  *	@ap->host will be allowed to own the EH while this task is
6451  *	sleeping.
6452  *
6453  *	LOCKING:
6454  *	Might sleep.
6455  */
6456 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6457 {
6458 	bool owns_eh = ap && ap->host->eh_owner == current;
6459 
6460 	if (owns_eh)
6461 		ata_eh_release(ap);
6462 
6463 	if (msecs < 20) {
6464 		unsigned long usecs = msecs * USEC_PER_MSEC;
6465 		usleep_range(usecs, usecs + 50);
6466 	} else {
6467 		msleep(msecs);
6468 	}
6469 
6470 	if (owns_eh)
6471 		ata_eh_acquire(ap);
6472 }
6473 EXPORT_SYMBOL_GPL(ata_msleep);
6474 
6475 /**
6476  *	ata_wait_register - wait until register value changes
6477  *	@ap: ATA port to wait register for, can be NULL
6478  *	@reg: IO-mapped register
6479  *	@mask: Mask to apply to read register value
6480  *	@val: Wait condition
6481  *	@interval: polling interval in milliseconds
6482  *	@timeout: timeout in milliseconds
6483  *
6484  *	Waiting for some bits of register to change is a common
6485  *	operation for ATA controllers.  This function reads 32bit LE
6486  *	IO-mapped register @reg and tests for the following condition.
6487  *
6488  *	(*@reg & mask) != val
6489  *
6490  *	If the condition is met, it returns; otherwise, the process is
6491  *	repeated after @interval_msec until timeout.
6492  *
6493  *	LOCKING:
6494  *	Kernel thread context (may sleep)
6495  *
6496  *	RETURNS:
6497  *	The final register value.
6498  */
6499 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6500 		      unsigned long interval, unsigned long timeout)
6501 {
6502 	unsigned long deadline;
6503 	u32 tmp;
6504 
6505 	tmp = ioread32(reg);
6506 
6507 	/* Calculate timeout _after_ the first read to make sure
6508 	 * preceding writes reach the controller before starting to
6509 	 * eat away the timeout.
6510 	 */
6511 	deadline = ata_deadline(jiffies, timeout);
6512 
6513 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6514 		ata_msleep(ap, interval);
6515 		tmp = ioread32(reg);
6516 	}
6517 
6518 	return tmp;
6519 }
6520 EXPORT_SYMBOL_GPL(ata_wait_register);
6521 
6522 /*
6523  * Dummy port_ops
6524  */
6525 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6526 {
6527 	return AC_ERR_SYSTEM;
6528 }
6529 
6530 static void ata_dummy_error_handler(struct ata_port *ap)
6531 {
6532 	/* truly dummy */
6533 }
6534 
6535 struct ata_port_operations ata_dummy_port_ops = {
6536 	.qc_prep		= ata_noop_qc_prep,
6537 	.qc_issue		= ata_dummy_qc_issue,
6538 	.error_handler		= ata_dummy_error_handler,
6539 	.sched_eh		= ata_std_sched_eh,
6540 	.end_eh			= ata_std_end_eh,
6541 };
6542 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6543 
6544 const struct ata_port_info ata_dummy_port_info = {
6545 	.port_ops		= &ata_dummy_port_ops,
6546 };
6547 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6548 
6549 /*
6550  * Utility print functions
6551  */
6552 void ata_port_printk(const struct ata_port *ap, const char *level,
6553 		     const char *fmt, ...)
6554 {
6555 	struct va_format vaf;
6556 	va_list args;
6557 
6558 	va_start(args, fmt);
6559 
6560 	vaf.fmt = fmt;
6561 	vaf.va = &args;
6562 
6563 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
6564 
6565 	va_end(args);
6566 }
6567 EXPORT_SYMBOL(ata_port_printk);
6568 
6569 void ata_link_printk(const struct ata_link *link, const char *level,
6570 		     const char *fmt, ...)
6571 {
6572 	struct va_format vaf;
6573 	va_list args;
6574 
6575 	va_start(args, fmt);
6576 
6577 	vaf.fmt = fmt;
6578 	vaf.va = &args;
6579 
6580 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6581 		printk("%sata%u.%02u: %pV",
6582 		       level, link->ap->print_id, link->pmp, &vaf);
6583 	else
6584 		printk("%sata%u: %pV",
6585 		       level, link->ap->print_id, &vaf);
6586 
6587 	va_end(args);
6588 }
6589 EXPORT_SYMBOL(ata_link_printk);
6590 
6591 void ata_dev_printk(const struct ata_device *dev, const char *level,
6592 		    const char *fmt, ...)
6593 {
6594 	struct va_format vaf;
6595 	va_list args;
6596 
6597 	va_start(args, fmt);
6598 
6599 	vaf.fmt = fmt;
6600 	vaf.va = &args;
6601 
6602 	printk("%sata%u.%02u: %pV",
6603 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6604 	       &vaf);
6605 
6606 	va_end(args);
6607 }
6608 EXPORT_SYMBOL(ata_dev_printk);
6609 
6610 void ata_print_version(const struct device *dev, const char *version)
6611 {
6612 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6613 }
6614 EXPORT_SYMBOL(ata_print_version);
6615