1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/driver-api/libata.rst 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/time.h> 54 #include <linux/interrupt.h> 55 #include <linux/completion.h> 56 #include <linux/suspend.h> 57 #include <linux/workqueue.h> 58 #include <linux/scatterlist.h> 59 #include <linux/io.h> 60 #include <linux/async.h> 61 #include <linux/log2.h> 62 #include <linux/slab.h> 63 #include <linux/glob.h> 64 #include <scsi/scsi.h> 65 #include <scsi/scsi_cmnd.h> 66 #include <scsi/scsi_host.h> 67 #include <linux/libata.h> 68 #include <asm/byteorder.h> 69 #include <asm/unaligned.h> 70 #include <linux/cdrom.h> 71 #include <linux/ratelimit.h> 72 #include <linux/leds.h> 73 #include <linux/pm_runtime.h> 74 #include <linux/platform_device.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/libata.h> 78 79 #include "libata.h" 80 #include "libata-transport.h" 81 82 /* debounce timing parameters in msecs { interval, duration, timeout } */ 83 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 84 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 85 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 86 87 const struct ata_port_operations ata_base_port_ops = { 88 .prereset = ata_std_prereset, 89 .postreset = ata_std_postreset, 90 .error_handler = ata_std_error_handler, 91 .sched_eh = ata_std_sched_eh, 92 .end_eh = ata_std_end_eh, 93 }; 94 95 const struct ata_port_operations sata_port_ops = { 96 .inherits = &ata_base_port_ops, 97 98 .qc_defer = ata_std_qc_defer, 99 .hardreset = sata_std_hardreset, 100 }; 101 102 static unsigned int ata_dev_init_params(struct ata_device *dev, 103 u16 heads, u16 sectors); 104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 105 static void ata_dev_xfermask(struct ata_device *dev); 106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 107 108 atomic_t ata_print_id = ATOMIC_INIT(0); 109 110 struct ata_force_param { 111 const char *name; 112 unsigned int cbl; 113 int spd_limit; 114 unsigned long xfer_mask; 115 unsigned int horkage_on; 116 unsigned int horkage_off; 117 unsigned int lflags; 118 }; 119 120 struct ata_force_ent { 121 int port; 122 int device; 123 struct ata_force_param param; 124 }; 125 126 static struct ata_force_ent *ata_force_tbl; 127 static int ata_force_tbl_size; 128 129 static char ata_force_param_buf[PAGE_SIZE] __initdata; 130 /* param_buf is thrown away after initialization, disallow read */ 131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 133 134 static int atapi_enabled = 1; 135 module_param(atapi_enabled, int, 0444); 136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 137 138 static int atapi_dmadir = 0; 139 module_param(atapi_dmadir, int, 0444); 140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 141 142 int atapi_passthru16 = 1; 143 module_param(atapi_passthru16, int, 0444); 144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 145 146 int libata_fua = 0; 147 module_param_named(fua, libata_fua, int, 0444); 148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 149 150 static int ata_ignore_hpa; 151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 153 154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 155 module_param_named(dma, libata_dma_mask, int, 0444); 156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 157 158 static int ata_probe_timeout; 159 module_param(ata_probe_timeout, int, 0444); 160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 161 162 int libata_noacpi = 0; 163 module_param_named(noacpi, libata_noacpi, int, 0444); 164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 165 166 int libata_allow_tpm = 0; 167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 169 170 static int atapi_an; 171 module_param(atapi_an, int, 0444); 172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 173 174 MODULE_AUTHOR("Jeff Garzik"); 175 MODULE_DESCRIPTION("Library module for ATA devices"); 176 MODULE_LICENSE("GPL"); 177 MODULE_VERSION(DRV_VERSION); 178 179 180 static bool ata_sstatus_online(u32 sstatus) 181 { 182 return (sstatus & 0xf) == 0x3; 183 } 184 185 /** 186 * ata_link_next - link iteration helper 187 * @link: the previous link, NULL to start 188 * @ap: ATA port containing links to iterate 189 * @mode: iteration mode, one of ATA_LITER_* 190 * 191 * LOCKING: 192 * Host lock or EH context. 193 * 194 * RETURNS: 195 * Pointer to the next link. 196 */ 197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 198 enum ata_link_iter_mode mode) 199 { 200 BUG_ON(mode != ATA_LITER_EDGE && 201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 202 203 /* NULL link indicates start of iteration */ 204 if (!link) 205 switch (mode) { 206 case ATA_LITER_EDGE: 207 case ATA_LITER_PMP_FIRST: 208 if (sata_pmp_attached(ap)) 209 return ap->pmp_link; 210 /* fall through */ 211 case ATA_LITER_HOST_FIRST: 212 return &ap->link; 213 } 214 215 /* we just iterated over the host link, what's next? */ 216 if (link == &ap->link) 217 switch (mode) { 218 case ATA_LITER_HOST_FIRST: 219 if (sata_pmp_attached(ap)) 220 return ap->pmp_link; 221 /* fall through */ 222 case ATA_LITER_PMP_FIRST: 223 if (unlikely(ap->slave_link)) 224 return ap->slave_link; 225 /* fall through */ 226 case ATA_LITER_EDGE: 227 return NULL; 228 } 229 230 /* slave_link excludes PMP */ 231 if (unlikely(link == ap->slave_link)) 232 return NULL; 233 234 /* we were over a PMP link */ 235 if (++link < ap->pmp_link + ap->nr_pmp_links) 236 return link; 237 238 if (mode == ATA_LITER_PMP_FIRST) 239 return &ap->link; 240 241 return NULL; 242 } 243 244 /** 245 * ata_dev_next - device iteration helper 246 * @dev: the previous device, NULL to start 247 * @link: ATA link containing devices to iterate 248 * @mode: iteration mode, one of ATA_DITER_* 249 * 250 * LOCKING: 251 * Host lock or EH context. 252 * 253 * RETURNS: 254 * Pointer to the next device. 255 */ 256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 257 enum ata_dev_iter_mode mode) 258 { 259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 261 262 /* NULL dev indicates start of iteration */ 263 if (!dev) 264 switch (mode) { 265 case ATA_DITER_ENABLED: 266 case ATA_DITER_ALL: 267 dev = link->device; 268 goto check; 269 case ATA_DITER_ENABLED_REVERSE: 270 case ATA_DITER_ALL_REVERSE: 271 dev = link->device + ata_link_max_devices(link) - 1; 272 goto check; 273 } 274 275 next: 276 /* move to the next one */ 277 switch (mode) { 278 case ATA_DITER_ENABLED: 279 case ATA_DITER_ALL: 280 if (++dev < link->device + ata_link_max_devices(link)) 281 goto check; 282 return NULL; 283 case ATA_DITER_ENABLED_REVERSE: 284 case ATA_DITER_ALL_REVERSE: 285 if (--dev >= link->device) 286 goto check; 287 return NULL; 288 } 289 290 check: 291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 292 !ata_dev_enabled(dev)) 293 goto next; 294 return dev; 295 } 296 297 /** 298 * ata_dev_phys_link - find physical link for a device 299 * @dev: ATA device to look up physical link for 300 * 301 * Look up physical link which @dev is attached to. Note that 302 * this is different from @dev->link only when @dev is on slave 303 * link. For all other cases, it's the same as @dev->link. 304 * 305 * LOCKING: 306 * Don't care. 307 * 308 * RETURNS: 309 * Pointer to the found physical link. 310 */ 311 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 312 { 313 struct ata_port *ap = dev->link->ap; 314 315 if (!ap->slave_link) 316 return dev->link; 317 if (!dev->devno) 318 return &ap->link; 319 return ap->slave_link; 320 } 321 322 /** 323 * ata_force_cbl - force cable type according to libata.force 324 * @ap: ATA port of interest 325 * 326 * Force cable type according to libata.force and whine about it. 327 * The last entry which has matching port number is used, so it 328 * can be specified as part of device force parameters. For 329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 330 * same effect. 331 * 332 * LOCKING: 333 * EH context. 334 */ 335 void ata_force_cbl(struct ata_port *ap) 336 { 337 int i; 338 339 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 340 const struct ata_force_ent *fe = &ata_force_tbl[i]; 341 342 if (fe->port != -1 && fe->port != ap->print_id) 343 continue; 344 345 if (fe->param.cbl == ATA_CBL_NONE) 346 continue; 347 348 ap->cbl = fe->param.cbl; 349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 350 return; 351 } 352 } 353 354 /** 355 * ata_force_link_limits - force link limits according to libata.force 356 * @link: ATA link of interest 357 * 358 * Force link flags and SATA spd limit according to libata.force 359 * and whine about it. When only the port part is specified 360 * (e.g. 1:), the limit applies to all links connected to both 361 * the host link and all fan-out ports connected via PMP. If the 362 * device part is specified as 0 (e.g. 1.00:), it specifies the 363 * first fan-out link not the host link. Device number 15 always 364 * points to the host link whether PMP is attached or not. If the 365 * controller has slave link, device number 16 points to it. 366 * 367 * LOCKING: 368 * EH context. 369 */ 370 static void ata_force_link_limits(struct ata_link *link) 371 { 372 bool did_spd = false; 373 int linkno = link->pmp; 374 int i; 375 376 if (ata_is_host_link(link)) 377 linkno += 15; 378 379 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 380 const struct ata_force_ent *fe = &ata_force_tbl[i]; 381 382 if (fe->port != -1 && fe->port != link->ap->print_id) 383 continue; 384 385 if (fe->device != -1 && fe->device != linkno) 386 continue; 387 388 /* only honor the first spd limit */ 389 if (!did_spd && fe->param.spd_limit) { 390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 392 fe->param.name); 393 did_spd = true; 394 } 395 396 /* let lflags stack */ 397 if (fe->param.lflags) { 398 link->flags |= fe->param.lflags; 399 ata_link_notice(link, 400 "FORCE: link flag 0x%x forced -> 0x%x\n", 401 fe->param.lflags, link->flags); 402 } 403 } 404 } 405 406 /** 407 * ata_force_xfermask - force xfermask according to libata.force 408 * @dev: ATA device of interest 409 * 410 * Force xfer_mask according to libata.force and whine about it. 411 * For consistency with link selection, device number 15 selects 412 * the first device connected to the host link. 413 * 414 * LOCKING: 415 * EH context. 416 */ 417 static void ata_force_xfermask(struct ata_device *dev) 418 { 419 int devno = dev->link->pmp + dev->devno; 420 int alt_devno = devno; 421 int i; 422 423 /* allow n.15/16 for devices attached to host port */ 424 if (ata_is_host_link(dev->link)) 425 alt_devno += 15; 426 427 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 428 const struct ata_force_ent *fe = &ata_force_tbl[i]; 429 unsigned long pio_mask, mwdma_mask, udma_mask; 430 431 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 432 continue; 433 434 if (fe->device != -1 && fe->device != devno && 435 fe->device != alt_devno) 436 continue; 437 438 if (!fe->param.xfer_mask) 439 continue; 440 441 ata_unpack_xfermask(fe->param.xfer_mask, 442 &pio_mask, &mwdma_mask, &udma_mask); 443 if (udma_mask) 444 dev->udma_mask = udma_mask; 445 else if (mwdma_mask) { 446 dev->udma_mask = 0; 447 dev->mwdma_mask = mwdma_mask; 448 } else { 449 dev->udma_mask = 0; 450 dev->mwdma_mask = 0; 451 dev->pio_mask = pio_mask; 452 } 453 454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 455 fe->param.name); 456 return; 457 } 458 } 459 460 /** 461 * ata_force_horkage - force horkage according to libata.force 462 * @dev: ATA device of interest 463 * 464 * Force horkage according to libata.force and whine about it. 465 * For consistency with link selection, device number 15 selects 466 * the first device connected to the host link. 467 * 468 * LOCKING: 469 * EH context. 470 */ 471 static void ata_force_horkage(struct ata_device *dev) 472 { 473 int devno = dev->link->pmp + dev->devno; 474 int alt_devno = devno; 475 int i; 476 477 /* allow n.15/16 for devices attached to host port */ 478 if (ata_is_host_link(dev->link)) 479 alt_devno += 15; 480 481 for (i = 0; i < ata_force_tbl_size; i++) { 482 const struct ata_force_ent *fe = &ata_force_tbl[i]; 483 484 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 485 continue; 486 487 if (fe->device != -1 && fe->device != devno && 488 fe->device != alt_devno) 489 continue; 490 491 if (!(~dev->horkage & fe->param.horkage_on) && 492 !(dev->horkage & fe->param.horkage_off)) 493 continue; 494 495 dev->horkage |= fe->param.horkage_on; 496 dev->horkage &= ~fe->param.horkage_off; 497 498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 499 fe->param.name); 500 } 501 } 502 503 /** 504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 505 * @opcode: SCSI opcode 506 * 507 * Determine ATAPI command type from @opcode. 508 * 509 * LOCKING: 510 * None. 511 * 512 * RETURNS: 513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 514 */ 515 int atapi_cmd_type(u8 opcode) 516 { 517 switch (opcode) { 518 case GPCMD_READ_10: 519 case GPCMD_READ_12: 520 return ATAPI_READ; 521 522 case GPCMD_WRITE_10: 523 case GPCMD_WRITE_12: 524 case GPCMD_WRITE_AND_VERIFY_10: 525 return ATAPI_WRITE; 526 527 case GPCMD_READ_CD: 528 case GPCMD_READ_CD_MSF: 529 return ATAPI_READ_CD; 530 531 case ATA_16: 532 case ATA_12: 533 if (atapi_passthru16) 534 return ATAPI_PASS_THRU; 535 /* fall thru */ 536 default: 537 return ATAPI_MISC; 538 } 539 } 540 541 /** 542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 543 * @tf: Taskfile to convert 544 * @pmp: Port multiplier port 545 * @is_cmd: This FIS is for command 546 * @fis: Buffer into which data will output 547 * 548 * Converts a standard ATA taskfile to a Serial ATA 549 * FIS structure (Register - Host to Device). 550 * 551 * LOCKING: 552 * Inherited from caller. 553 */ 554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 555 { 556 fis[0] = 0x27; /* Register - Host to Device FIS */ 557 fis[1] = pmp & 0xf; /* Port multiplier number*/ 558 if (is_cmd) 559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 560 561 fis[2] = tf->command; 562 fis[3] = tf->feature; 563 564 fis[4] = tf->lbal; 565 fis[5] = tf->lbam; 566 fis[6] = tf->lbah; 567 fis[7] = tf->device; 568 569 fis[8] = tf->hob_lbal; 570 fis[9] = tf->hob_lbam; 571 fis[10] = tf->hob_lbah; 572 fis[11] = tf->hob_feature; 573 574 fis[12] = tf->nsect; 575 fis[13] = tf->hob_nsect; 576 fis[14] = 0; 577 fis[15] = tf->ctl; 578 579 fis[16] = tf->auxiliary & 0xff; 580 fis[17] = (tf->auxiliary >> 8) & 0xff; 581 fis[18] = (tf->auxiliary >> 16) & 0xff; 582 fis[19] = (tf->auxiliary >> 24) & 0xff; 583 } 584 585 /** 586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 587 * @fis: Buffer from which data will be input 588 * @tf: Taskfile to output 589 * 590 * Converts a serial ATA FIS structure to a standard ATA taskfile. 591 * 592 * LOCKING: 593 * Inherited from caller. 594 */ 595 596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 597 { 598 tf->command = fis[2]; /* status */ 599 tf->feature = fis[3]; /* error */ 600 601 tf->lbal = fis[4]; 602 tf->lbam = fis[5]; 603 tf->lbah = fis[6]; 604 tf->device = fis[7]; 605 606 tf->hob_lbal = fis[8]; 607 tf->hob_lbam = fis[9]; 608 tf->hob_lbah = fis[10]; 609 610 tf->nsect = fis[12]; 611 tf->hob_nsect = fis[13]; 612 } 613 614 static const u8 ata_rw_cmds[] = { 615 /* pio multi */ 616 ATA_CMD_READ_MULTI, 617 ATA_CMD_WRITE_MULTI, 618 ATA_CMD_READ_MULTI_EXT, 619 ATA_CMD_WRITE_MULTI_EXT, 620 0, 621 0, 622 0, 623 ATA_CMD_WRITE_MULTI_FUA_EXT, 624 /* pio */ 625 ATA_CMD_PIO_READ, 626 ATA_CMD_PIO_WRITE, 627 ATA_CMD_PIO_READ_EXT, 628 ATA_CMD_PIO_WRITE_EXT, 629 0, 630 0, 631 0, 632 0, 633 /* dma */ 634 ATA_CMD_READ, 635 ATA_CMD_WRITE, 636 ATA_CMD_READ_EXT, 637 ATA_CMD_WRITE_EXT, 638 0, 639 0, 640 0, 641 ATA_CMD_WRITE_FUA_EXT 642 }; 643 644 /** 645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 646 * @tf: command to examine and configure 647 * @dev: device tf belongs to 648 * 649 * Examine the device configuration and tf->flags to calculate 650 * the proper read/write commands and protocol to use. 651 * 652 * LOCKING: 653 * caller. 654 */ 655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 656 { 657 u8 cmd; 658 659 int index, fua, lba48, write; 660 661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 664 665 if (dev->flags & ATA_DFLAG_PIO) { 666 tf->protocol = ATA_PROT_PIO; 667 index = dev->multi_count ? 0 : 8; 668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 669 /* Unable to use DMA due to host limitation */ 670 tf->protocol = ATA_PROT_PIO; 671 index = dev->multi_count ? 0 : 8; 672 } else { 673 tf->protocol = ATA_PROT_DMA; 674 index = 16; 675 } 676 677 cmd = ata_rw_cmds[index + fua + lba48 + write]; 678 if (cmd) { 679 tf->command = cmd; 680 return 0; 681 } 682 return -1; 683 } 684 685 /** 686 * ata_tf_read_block - Read block address from ATA taskfile 687 * @tf: ATA taskfile of interest 688 * @dev: ATA device @tf belongs to 689 * 690 * LOCKING: 691 * None. 692 * 693 * Read block address from @tf. This function can handle all 694 * three address formats - LBA, LBA48 and CHS. tf->protocol and 695 * flags select the address format to use. 696 * 697 * RETURNS: 698 * Block address read from @tf. 699 */ 700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 701 { 702 u64 block = 0; 703 704 if (tf->flags & ATA_TFLAG_LBA) { 705 if (tf->flags & ATA_TFLAG_LBA48) { 706 block |= (u64)tf->hob_lbah << 40; 707 block |= (u64)tf->hob_lbam << 32; 708 block |= (u64)tf->hob_lbal << 24; 709 } else 710 block |= (tf->device & 0xf) << 24; 711 712 block |= tf->lbah << 16; 713 block |= tf->lbam << 8; 714 block |= tf->lbal; 715 } else { 716 u32 cyl, head, sect; 717 718 cyl = tf->lbam | (tf->lbah << 8); 719 head = tf->device & 0xf; 720 sect = tf->lbal; 721 722 if (!sect) { 723 ata_dev_warn(dev, 724 "device reported invalid CHS sector 0\n"); 725 return U64_MAX; 726 } 727 728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 729 } 730 731 return block; 732 } 733 734 /** 735 * ata_build_rw_tf - Build ATA taskfile for given read/write request 736 * @tf: Target ATA taskfile 737 * @dev: ATA device @tf belongs to 738 * @block: Block address 739 * @n_block: Number of blocks 740 * @tf_flags: RW/FUA etc... 741 * @tag: tag 742 * @class: IO priority class 743 * 744 * LOCKING: 745 * None. 746 * 747 * Build ATA taskfile @tf for read/write request described by 748 * @block, @n_block, @tf_flags and @tag on @dev. 749 * 750 * RETURNS: 751 * 752 * 0 on success, -ERANGE if the request is too large for @dev, 753 * -EINVAL if the request is invalid. 754 */ 755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 756 u64 block, u32 n_block, unsigned int tf_flags, 757 unsigned int tag, int class) 758 { 759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 760 tf->flags |= tf_flags; 761 762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 763 /* yay, NCQ */ 764 if (!lba_48_ok(block, n_block)) 765 return -ERANGE; 766 767 tf->protocol = ATA_PROT_NCQ; 768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 769 770 if (tf->flags & ATA_TFLAG_WRITE) 771 tf->command = ATA_CMD_FPDMA_WRITE; 772 else 773 tf->command = ATA_CMD_FPDMA_READ; 774 775 tf->nsect = tag << 3; 776 tf->hob_feature = (n_block >> 8) & 0xff; 777 tf->feature = n_block & 0xff; 778 779 tf->hob_lbah = (block >> 40) & 0xff; 780 tf->hob_lbam = (block >> 32) & 0xff; 781 tf->hob_lbal = (block >> 24) & 0xff; 782 tf->lbah = (block >> 16) & 0xff; 783 tf->lbam = (block >> 8) & 0xff; 784 tf->lbal = block & 0xff; 785 786 tf->device = ATA_LBA; 787 if (tf->flags & ATA_TFLAG_FUA) 788 tf->device |= 1 << 7; 789 790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) { 791 if (class == IOPRIO_CLASS_RT) 792 tf->hob_nsect |= ATA_PRIO_HIGH << 793 ATA_SHIFT_PRIO; 794 } 795 } else if (dev->flags & ATA_DFLAG_LBA) { 796 tf->flags |= ATA_TFLAG_LBA; 797 798 if (lba_28_ok(block, n_block)) { 799 /* use LBA28 */ 800 tf->device |= (block >> 24) & 0xf; 801 } else if (lba_48_ok(block, n_block)) { 802 if (!(dev->flags & ATA_DFLAG_LBA48)) 803 return -ERANGE; 804 805 /* use LBA48 */ 806 tf->flags |= ATA_TFLAG_LBA48; 807 808 tf->hob_nsect = (n_block >> 8) & 0xff; 809 810 tf->hob_lbah = (block >> 40) & 0xff; 811 tf->hob_lbam = (block >> 32) & 0xff; 812 tf->hob_lbal = (block >> 24) & 0xff; 813 } else 814 /* request too large even for LBA48 */ 815 return -ERANGE; 816 817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 818 return -EINVAL; 819 820 tf->nsect = n_block & 0xff; 821 822 tf->lbah = (block >> 16) & 0xff; 823 tf->lbam = (block >> 8) & 0xff; 824 tf->lbal = block & 0xff; 825 826 tf->device |= ATA_LBA; 827 } else { 828 /* CHS */ 829 u32 sect, head, cyl, track; 830 831 /* The request -may- be too large for CHS addressing. */ 832 if (!lba_28_ok(block, n_block)) 833 return -ERANGE; 834 835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 836 return -EINVAL; 837 838 /* Convert LBA to CHS */ 839 track = (u32)block / dev->sectors; 840 cyl = track / dev->heads; 841 head = track % dev->heads; 842 sect = (u32)block % dev->sectors + 1; 843 844 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 845 (u32)block, track, cyl, head, sect); 846 847 /* Check whether the converted CHS can fit. 848 Cylinder: 0-65535 849 Head: 0-15 850 Sector: 1-255*/ 851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 852 return -ERANGE; 853 854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 855 tf->lbal = sect; 856 tf->lbam = cyl; 857 tf->lbah = cyl >> 8; 858 tf->device |= head; 859 } 860 861 return 0; 862 } 863 864 /** 865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 866 * @pio_mask: pio_mask 867 * @mwdma_mask: mwdma_mask 868 * @udma_mask: udma_mask 869 * 870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 871 * unsigned int xfer_mask. 872 * 873 * LOCKING: 874 * None. 875 * 876 * RETURNS: 877 * Packed xfer_mask. 878 */ 879 unsigned long ata_pack_xfermask(unsigned long pio_mask, 880 unsigned long mwdma_mask, 881 unsigned long udma_mask) 882 { 883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 886 } 887 888 /** 889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 890 * @xfer_mask: xfer_mask to unpack 891 * @pio_mask: resulting pio_mask 892 * @mwdma_mask: resulting mwdma_mask 893 * @udma_mask: resulting udma_mask 894 * 895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 896 * Any NULL destination masks will be ignored. 897 */ 898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 899 unsigned long *mwdma_mask, unsigned long *udma_mask) 900 { 901 if (pio_mask) 902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 903 if (mwdma_mask) 904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 905 if (udma_mask) 906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 907 } 908 909 static const struct ata_xfer_ent { 910 int shift, bits; 911 u8 base; 912 } ata_xfer_tbl[] = { 913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 916 { -1, }, 917 }; 918 919 /** 920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 921 * @xfer_mask: xfer_mask of interest 922 * 923 * Return matching XFER_* value for @xfer_mask. Only the highest 924 * bit of @xfer_mask is considered. 925 * 926 * LOCKING: 927 * None. 928 * 929 * RETURNS: 930 * Matching XFER_* value, 0xff if no match found. 931 */ 932 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 933 { 934 int highbit = fls(xfer_mask) - 1; 935 const struct ata_xfer_ent *ent; 936 937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 939 return ent->base + highbit - ent->shift; 940 return 0xff; 941 } 942 943 /** 944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 945 * @xfer_mode: XFER_* of interest 946 * 947 * Return matching xfer_mask for @xfer_mode. 948 * 949 * LOCKING: 950 * None. 951 * 952 * RETURNS: 953 * Matching xfer_mask, 0 if no match found. 954 */ 955 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 956 { 957 const struct ata_xfer_ent *ent; 958 959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 962 & ~((1 << ent->shift) - 1); 963 return 0; 964 } 965 966 /** 967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 968 * @xfer_mode: XFER_* of interest 969 * 970 * Return matching xfer_shift for @xfer_mode. 971 * 972 * LOCKING: 973 * None. 974 * 975 * RETURNS: 976 * Matching xfer_shift, -1 if no match found. 977 */ 978 int ata_xfer_mode2shift(unsigned long xfer_mode) 979 { 980 const struct ata_xfer_ent *ent; 981 982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 984 return ent->shift; 985 return -1; 986 } 987 988 /** 989 * ata_mode_string - convert xfer_mask to string 990 * @xfer_mask: mask of bits supported; only highest bit counts. 991 * 992 * Determine string which represents the highest speed 993 * (highest bit in @modemask). 994 * 995 * LOCKING: 996 * None. 997 * 998 * RETURNS: 999 * Constant C string representing highest speed listed in 1000 * @mode_mask, or the constant C string "<n/a>". 1001 */ 1002 const char *ata_mode_string(unsigned long xfer_mask) 1003 { 1004 static const char * const xfer_mode_str[] = { 1005 "PIO0", 1006 "PIO1", 1007 "PIO2", 1008 "PIO3", 1009 "PIO4", 1010 "PIO5", 1011 "PIO6", 1012 "MWDMA0", 1013 "MWDMA1", 1014 "MWDMA2", 1015 "MWDMA3", 1016 "MWDMA4", 1017 "UDMA/16", 1018 "UDMA/25", 1019 "UDMA/33", 1020 "UDMA/44", 1021 "UDMA/66", 1022 "UDMA/100", 1023 "UDMA/133", 1024 "UDMA7", 1025 }; 1026 int highbit; 1027 1028 highbit = fls(xfer_mask) - 1; 1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1030 return xfer_mode_str[highbit]; 1031 return "<n/a>"; 1032 } 1033 1034 const char *sata_spd_string(unsigned int spd) 1035 { 1036 static const char * const spd_str[] = { 1037 "1.5 Gbps", 1038 "3.0 Gbps", 1039 "6.0 Gbps", 1040 }; 1041 1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1043 return "<unknown>"; 1044 return spd_str[spd - 1]; 1045 } 1046 1047 /** 1048 * ata_dev_classify - determine device type based on ATA-spec signature 1049 * @tf: ATA taskfile register set for device to be identified 1050 * 1051 * Determine from taskfile register contents whether a device is 1052 * ATA or ATAPI, as per "Signature and persistence" section 1053 * of ATA/PI spec (volume 1, sect 5.14). 1054 * 1055 * LOCKING: 1056 * None. 1057 * 1058 * RETURNS: 1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1061 */ 1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1063 { 1064 /* Apple's open source Darwin code hints that some devices only 1065 * put a proper signature into the LBA mid/high registers, 1066 * So, we only check those. It's sufficient for uniqueness. 1067 * 1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1069 * signatures for ATA and ATAPI devices attached on SerialATA, 1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1071 * spec has never mentioned about using different signatures 1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1073 * Multiplier specification began to use 0x69/0x96 to identify 1074 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1076 * 0x69/0x96 shortly and described them as reserved for 1077 * SerialATA. 1078 * 1079 * We follow the current spec and consider that 0x69/0x96 1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1082 * SEMB signature. This is worked around in 1083 * ata_dev_read_id(). 1084 */ 1085 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1086 DPRINTK("found ATA device by sig\n"); 1087 return ATA_DEV_ATA; 1088 } 1089 1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1091 DPRINTK("found ATAPI device by sig\n"); 1092 return ATA_DEV_ATAPI; 1093 } 1094 1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1096 DPRINTK("found PMP device by sig\n"); 1097 return ATA_DEV_PMP; 1098 } 1099 1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1101 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1102 return ATA_DEV_SEMB; 1103 } 1104 1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { 1106 DPRINTK("found ZAC device by sig\n"); 1107 return ATA_DEV_ZAC; 1108 } 1109 1110 DPRINTK("unknown device\n"); 1111 return ATA_DEV_UNKNOWN; 1112 } 1113 1114 /** 1115 * ata_id_string - Convert IDENTIFY DEVICE page into string 1116 * @id: IDENTIFY DEVICE results we will examine 1117 * @s: string into which data is output 1118 * @ofs: offset into identify device page 1119 * @len: length of string to return. must be an even number. 1120 * 1121 * The strings in the IDENTIFY DEVICE page are broken up into 1122 * 16-bit chunks. Run through the string, and output each 1123 * 8-bit chunk linearly, regardless of platform. 1124 * 1125 * LOCKING: 1126 * caller. 1127 */ 1128 1129 void ata_id_string(const u16 *id, unsigned char *s, 1130 unsigned int ofs, unsigned int len) 1131 { 1132 unsigned int c; 1133 1134 BUG_ON(len & 1); 1135 1136 while (len > 0) { 1137 c = id[ofs] >> 8; 1138 *s = c; 1139 s++; 1140 1141 c = id[ofs] & 0xff; 1142 *s = c; 1143 s++; 1144 1145 ofs++; 1146 len -= 2; 1147 } 1148 } 1149 1150 /** 1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1152 * @id: IDENTIFY DEVICE results we will examine 1153 * @s: string into which data is output 1154 * @ofs: offset into identify device page 1155 * @len: length of string to return. must be an odd number. 1156 * 1157 * This function is identical to ata_id_string except that it 1158 * trims trailing spaces and terminates the resulting string with 1159 * null. @len must be actual maximum length (even number) + 1. 1160 * 1161 * LOCKING: 1162 * caller. 1163 */ 1164 void ata_id_c_string(const u16 *id, unsigned char *s, 1165 unsigned int ofs, unsigned int len) 1166 { 1167 unsigned char *p; 1168 1169 ata_id_string(id, s, ofs, len - 1); 1170 1171 p = s + strnlen(s, len - 1); 1172 while (p > s && p[-1] == ' ') 1173 p--; 1174 *p = '\0'; 1175 } 1176 1177 static u64 ata_id_n_sectors(const u16 *id) 1178 { 1179 if (ata_id_has_lba(id)) { 1180 if (ata_id_has_lba48(id)) 1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1182 else 1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1184 } else { 1185 if (ata_id_current_chs_valid(id)) 1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1187 id[ATA_ID_CUR_SECTORS]; 1188 else 1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1190 id[ATA_ID_SECTORS]; 1191 } 1192 } 1193 1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1195 { 1196 u64 sectors = 0; 1197 1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1201 sectors |= (tf->lbah & 0xff) << 16; 1202 sectors |= (tf->lbam & 0xff) << 8; 1203 sectors |= (tf->lbal & 0xff); 1204 1205 return sectors; 1206 } 1207 1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1209 { 1210 u64 sectors = 0; 1211 1212 sectors |= (tf->device & 0x0f) << 24; 1213 sectors |= (tf->lbah & 0xff) << 16; 1214 sectors |= (tf->lbam & 0xff) << 8; 1215 sectors |= (tf->lbal & 0xff); 1216 1217 return sectors; 1218 } 1219 1220 /** 1221 * ata_read_native_max_address - Read native max address 1222 * @dev: target device 1223 * @max_sectors: out parameter for the result native max address 1224 * 1225 * Perform an LBA48 or LBA28 native size query upon the device in 1226 * question. 1227 * 1228 * RETURNS: 1229 * 0 on success, -EACCES if command is aborted by the drive. 1230 * -EIO on other errors. 1231 */ 1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1233 { 1234 unsigned int err_mask; 1235 struct ata_taskfile tf; 1236 int lba48 = ata_id_has_lba48(dev->id); 1237 1238 ata_tf_init(dev, &tf); 1239 1240 /* always clear all address registers */ 1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1242 1243 if (lba48) { 1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1245 tf.flags |= ATA_TFLAG_LBA48; 1246 } else 1247 tf.command = ATA_CMD_READ_NATIVE_MAX; 1248 1249 tf.protocol = ATA_PROT_NODATA; 1250 tf.device |= ATA_LBA; 1251 1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1253 if (err_mask) { 1254 ata_dev_warn(dev, 1255 "failed to read native max address (err_mask=0x%x)\n", 1256 err_mask); 1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1258 return -EACCES; 1259 return -EIO; 1260 } 1261 1262 if (lba48) 1263 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1264 else 1265 *max_sectors = ata_tf_to_lba(&tf) + 1; 1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1267 (*max_sectors)--; 1268 return 0; 1269 } 1270 1271 /** 1272 * ata_set_max_sectors - Set max sectors 1273 * @dev: target device 1274 * @new_sectors: new max sectors value to set for the device 1275 * 1276 * Set max sectors of @dev to @new_sectors. 1277 * 1278 * RETURNS: 1279 * 0 on success, -EACCES if command is aborted or denied (due to 1280 * previous non-volatile SET_MAX) by the drive. -EIO on other 1281 * errors. 1282 */ 1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1284 { 1285 unsigned int err_mask; 1286 struct ata_taskfile tf; 1287 int lba48 = ata_id_has_lba48(dev->id); 1288 1289 new_sectors--; 1290 1291 ata_tf_init(dev, &tf); 1292 1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1294 1295 if (lba48) { 1296 tf.command = ATA_CMD_SET_MAX_EXT; 1297 tf.flags |= ATA_TFLAG_LBA48; 1298 1299 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1300 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1301 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1302 } else { 1303 tf.command = ATA_CMD_SET_MAX; 1304 1305 tf.device |= (new_sectors >> 24) & 0xf; 1306 } 1307 1308 tf.protocol = ATA_PROT_NODATA; 1309 tf.device |= ATA_LBA; 1310 1311 tf.lbal = (new_sectors >> 0) & 0xff; 1312 tf.lbam = (new_sectors >> 8) & 0xff; 1313 tf.lbah = (new_sectors >> 16) & 0xff; 1314 1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1316 if (err_mask) { 1317 ata_dev_warn(dev, 1318 "failed to set max address (err_mask=0x%x)\n", 1319 err_mask); 1320 if (err_mask == AC_ERR_DEV && 1321 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1322 return -EACCES; 1323 return -EIO; 1324 } 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * ata_hpa_resize - Resize a device with an HPA set 1331 * @dev: Device to resize 1332 * 1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1334 * it if required to the full size of the media. The caller must check 1335 * the drive has the HPA feature set enabled. 1336 * 1337 * RETURNS: 1338 * 0 on success, -errno on failure. 1339 */ 1340 static int ata_hpa_resize(struct ata_device *dev) 1341 { 1342 struct ata_eh_context *ehc = &dev->link->eh_context; 1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1345 u64 sectors = ata_id_n_sectors(dev->id); 1346 u64 native_sectors; 1347 int rc; 1348 1349 /* do we need to do it? */ 1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1353 return 0; 1354 1355 /* read native max address */ 1356 rc = ata_read_native_max_address(dev, &native_sectors); 1357 if (rc) { 1358 /* If device aborted the command or HPA isn't going to 1359 * be unlocked, skip HPA resizing. 1360 */ 1361 if (rc == -EACCES || !unlock_hpa) { 1362 ata_dev_warn(dev, 1363 "HPA support seems broken, skipping HPA handling\n"); 1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1365 1366 /* we can continue if device aborted the command */ 1367 if (rc == -EACCES) 1368 rc = 0; 1369 } 1370 1371 return rc; 1372 } 1373 dev->n_native_sectors = native_sectors; 1374 1375 /* nothing to do? */ 1376 if (native_sectors <= sectors || !unlock_hpa) { 1377 if (!print_info || native_sectors == sectors) 1378 return 0; 1379 1380 if (native_sectors > sectors) 1381 ata_dev_info(dev, 1382 "HPA detected: current %llu, native %llu\n", 1383 (unsigned long long)sectors, 1384 (unsigned long long)native_sectors); 1385 else if (native_sectors < sectors) 1386 ata_dev_warn(dev, 1387 "native sectors (%llu) is smaller than sectors (%llu)\n", 1388 (unsigned long long)native_sectors, 1389 (unsigned long long)sectors); 1390 return 0; 1391 } 1392 1393 /* let's unlock HPA */ 1394 rc = ata_set_max_sectors(dev, native_sectors); 1395 if (rc == -EACCES) { 1396 /* if device aborted the command, skip HPA resizing */ 1397 ata_dev_warn(dev, 1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1399 (unsigned long long)sectors, 1400 (unsigned long long)native_sectors); 1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1402 return 0; 1403 } else if (rc) 1404 return rc; 1405 1406 /* re-read IDENTIFY data */ 1407 rc = ata_dev_reread_id(dev, 0); 1408 if (rc) { 1409 ata_dev_err(dev, 1410 "failed to re-read IDENTIFY data after HPA resizing\n"); 1411 return rc; 1412 } 1413 1414 if (print_info) { 1415 u64 new_sectors = ata_id_n_sectors(dev->id); 1416 ata_dev_info(dev, 1417 "HPA unlocked: %llu -> %llu, native %llu\n", 1418 (unsigned long long)sectors, 1419 (unsigned long long)new_sectors, 1420 (unsigned long long)native_sectors); 1421 } 1422 1423 return 0; 1424 } 1425 1426 /** 1427 * ata_dump_id - IDENTIFY DEVICE info debugging output 1428 * @id: IDENTIFY DEVICE page to dump 1429 * 1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1431 * page. 1432 * 1433 * LOCKING: 1434 * caller. 1435 */ 1436 1437 static inline void ata_dump_id(const u16 *id) 1438 { 1439 DPRINTK("49==0x%04x " 1440 "53==0x%04x " 1441 "63==0x%04x " 1442 "64==0x%04x " 1443 "75==0x%04x \n", 1444 id[49], 1445 id[53], 1446 id[63], 1447 id[64], 1448 id[75]); 1449 DPRINTK("80==0x%04x " 1450 "81==0x%04x " 1451 "82==0x%04x " 1452 "83==0x%04x " 1453 "84==0x%04x \n", 1454 id[80], 1455 id[81], 1456 id[82], 1457 id[83], 1458 id[84]); 1459 DPRINTK("88==0x%04x " 1460 "93==0x%04x\n", 1461 id[88], 1462 id[93]); 1463 } 1464 1465 /** 1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1467 * @id: IDENTIFY data to compute xfer mask from 1468 * 1469 * Compute the xfermask for this device. This is not as trivial 1470 * as it seems if we must consider early devices correctly. 1471 * 1472 * FIXME: pre IDE drive timing (do we care ?). 1473 * 1474 * LOCKING: 1475 * None. 1476 * 1477 * RETURNS: 1478 * Computed xfermask 1479 */ 1480 unsigned long ata_id_xfermask(const u16 *id) 1481 { 1482 unsigned long pio_mask, mwdma_mask, udma_mask; 1483 1484 /* Usual case. Word 53 indicates word 64 is valid */ 1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1487 pio_mask <<= 3; 1488 pio_mask |= 0x7; 1489 } else { 1490 /* If word 64 isn't valid then Word 51 high byte holds 1491 * the PIO timing number for the maximum. Turn it into 1492 * a mask. 1493 */ 1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1495 if (mode < 5) /* Valid PIO range */ 1496 pio_mask = (2 << mode) - 1; 1497 else 1498 pio_mask = 1; 1499 1500 /* But wait.. there's more. Design your standards by 1501 * committee and you too can get a free iordy field to 1502 * process. However its the speeds not the modes that 1503 * are supported... Note drivers using the timing API 1504 * will get this right anyway 1505 */ 1506 } 1507 1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1509 1510 if (ata_id_is_cfa(id)) { 1511 /* 1512 * Process compact flash extended modes 1513 */ 1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1516 1517 if (pio) 1518 pio_mask |= (1 << 5); 1519 if (pio > 1) 1520 pio_mask |= (1 << 6); 1521 if (dma) 1522 mwdma_mask |= (1 << 3); 1523 if (dma > 1) 1524 mwdma_mask |= (1 << 4); 1525 } 1526 1527 udma_mask = 0; 1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1530 1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1532 } 1533 1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1535 { 1536 struct completion *waiting = qc->private_data; 1537 1538 complete(waiting); 1539 } 1540 1541 /** 1542 * ata_exec_internal_sg - execute libata internal command 1543 * @dev: Device to which the command is sent 1544 * @tf: Taskfile registers for the command and the result 1545 * @cdb: CDB for packet command 1546 * @dma_dir: Data transfer direction of the command 1547 * @sgl: sg list for the data buffer of the command 1548 * @n_elem: Number of sg entries 1549 * @timeout: Timeout in msecs (0 for default) 1550 * 1551 * Executes libata internal command with timeout. @tf contains 1552 * command on entry and result on return. Timeout and error 1553 * conditions are reported via return value. No recovery action 1554 * is taken after a command times out. It's caller's duty to 1555 * clean up after timeout. 1556 * 1557 * LOCKING: 1558 * None. Should be called with kernel context, might sleep. 1559 * 1560 * RETURNS: 1561 * Zero on success, AC_ERR_* mask on failure 1562 */ 1563 unsigned ata_exec_internal_sg(struct ata_device *dev, 1564 struct ata_taskfile *tf, const u8 *cdb, 1565 int dma_dir, struct scatterlist *sgl, 1566 unsigned int n_elem, unsigned long timeout) 1567 { 1568 struct ata_link *link = dev->link; 1569 struct ata_port *ap = link->ap; 1570 u8 command = tf->command; 1571 int auto_timeout = 0; 1572 struct ata_queued_cmd *qc; 1573 unsigned int tag, preempted_tag; 1574 u32 preempted_sactive, preempted_qc_active; 1575 int preempted_nr_active_links; 1576 DECLARE_COMPLETION_ONSTACK(wait); 1577 unsigned long flags; 1578 unsigned int err_mask; 1579 int rc; 1580 1581 spin_lock_irqsave(ap->lock, flags); 1582 1583 /* no internal command while frozen */ 1584 if (ap->pflags & ATA_PFLAG_FROZEN) { 1585 spin_unlock_irqrestore(ap->lock, flags); 1586 return AC_ERR_SYSTEM; 1587 } 1588 1589 /* initialize internal qc */ 1590 1591 /* XXX: Tag 0 is used for drivers with legacy EH as some 1592 * drivers choke if any other tag is given. This breaks 1593 * ata_tag_internal() test for those drivers. Don't use new 1594 * EH stuff without converting to it. 1595 */ 1596 if (ap->ops->error_handler) 1597 tag = ATA_TAG_INTERNAL; 1598 else 1599 tag = 0; 1600 1601 qc = __ata_qc_from_tag(ap, tag); 1602 1603 qc->tag = tag; 1604 qc->scsicmd = NULL; 1605 qc->ap = ap; 1606 qc->dev = dev; 1607 ata_qc_reinit(qc); 1608 1609 preempted_tag = link->active_tag; 1610 preempted_sactive = link->sactive; 1611 preempted_qc_active = ap->qc_active; 1612 preempted_nr_active_links = ap->nr_active_links; 1613 link->active_tag = ATA_TAG_POISON; 1614 link->sactive = 0; 1615 ap->qc_active = 0; 1616 ap->nr_active_links = 0; 1617 1618 /* prepare & issue qc */ 1619 qc->tf = *tf; 1620 if (cdb) 1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1622 1623 /* some SATA bridges need us to indicate data xfer direction */ 1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1625 dma_dir == DMA_FROM_DEVICE) 1626 qc->tf.feature |= ATAPI_DMADIR; 1627 1628 qc->flags |= ATA_QCFLAG_RESULT_TF; 1629 qc->dma_dir = dma_dir; 1630 if (dma_dir != DMA_NONE) { 1631 unsigned int i, buflen = 0; 1632 struct scatterlist *sg; 1633 1634 for_each_sg(sgl, sg, n_elem, i) 1635 buflen += sg->length; 1636 1637 ata_sg_init(qc, sgl, n_elem); 1638 qc->nbytes = buflen; 1639 } 1640 1641 qc->private_data = &wait; 1642 qc->complete_fn = ata_qc_complete_internal; 1643 1644 ata_qc_issue(qc); 1645 1646 spin_unlock_irqrestore(ap->lock, flags); 1647 1648 if (!timeout) { 1649 if (ata_probe_timeout) 1650 timeout = ata_probe_timeout * 1000; 1651 else { 1652 timeout = ata_internal_cmd_timeout(dev, command); 1653 auto_timeout = 1; 1654 } 1655 } 1656 1657 if (ap->ops->error_handler) 1658 ata_eh_release(ap); 1659 1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1661 1662 if (ap->ops->error_handler) 1663 ata_eh_acquire(ap); 1664 1665 ata_sff_flush_pio_task(ap); 1666 1667 if (!rc) { 1668 spin_lock_irqsave(ap->lock, flags); 1669 1670 /* We're racing with irq here. If we lose, the 1671 * following test prevents us from completing the qc 1672 * twice. If we win, the port is frozen and will be 1673 * cleaned up by ->post_internal_cmd(). 1674 */ 1675 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1676 qc->err_mask |= AC_ERR_TIMEOUT; 1677 1678 if (ap->ops->error_handler) 1679 ata_port_freeze(ap); 1680 else 1681 ata_qc_complete(qc); 1682 1683 if (ata_msg_warn(ap)) 1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1685 command); 1686 } 1687 1688 spin_unlock_irqrestore(ap->lock, flags); 1689 } 1690 1691 /* do post_internal_cmd */ 1692 if (ap->ops->post_internal_cmd) 1693 ap->ops->post_internal_cmd(qc); 1694 1695 /* perform minimal error analysis */ 1696 if (qc->flags & ATA_QCFLAG_FAILED) { 1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1698 qc->err_mask |= AC_ERR_DEV; 1699 1700 if (!qc->err_mask) 1701 qc->err_mask |= AC_ERR_OTHER; 1702 1703 if (qc->err_mask & ~AC_ERR_OTHER) 1704 qc->err_mask &= ~AC_ERR_OTHER; 1705 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1706 qc->result_tf.command |= ATA_SENSE; 1707 } 1708 1709 /* finish up */ 1710 spin_lock_irqsave(ap->lock, flags); 1711 1712 *tf = qc->result_tf; 1713 err_mask = qc->err_mask; 1714 1715 ata_qc_free(qc); 1716 link->active_tag = preempted_tag; 1717 link->sactive = preempted_sactive; 1718 ap->qc_active = preempted_qc_active; 1719 ap->nr_active_links = preempted_nr_active_links; 1720 1721 spin_unlock_irqrestore(ap->lock, flags); 1722 1723 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1724 ata_internal_cmd_timed_out(dev, command); 1725 1726 return err_mask; 1727 } 1728 1729 /** 1730 * ata_exec_internal - execute libata internal command 1731 * @dev: Device to which the command is sent 1732 * @tf: Taskfile registers for the command and the result 1733 * @cdb: CDB for packet command 1734 * @dma_dir: Data transfer direction of the command 1735 * @buf: Data buffer of the command 1736 * @buflen: Length of data buffer 1737 * @timeout: Timeout in msecs (0 for default) 1738 * 1739 * Wrapper around ata_exec_internal_sg() which takes simple 1740 * buffer instead of sg list. 1741 * 1742 * LOCKING: 1743 * None. Should be called with kernel context, might sleep. 1744 * 1745 * RETURNS: 1746 * Zero on success, AC_ERR_* mask on failure 1747 */ 1748 unsigned ata_exec_internal(struct ata_device *dev, 1749 struct ata_taskfile *tf, const u8 *cdb, 1750 int dma_dir, void *buf, unsigned int buflen, 1751 unsigned long timeout) 1752 { 1753 struct scatterlist *psg = NULL, sg; 1754 unsigned int n_elem = 0; 1755 1756 if (dma_dir != DMA_NONE) { 1757 WARN_ON(!buf); 1758 sg_init_one(&sg, buf, buflen); 1759 psg = &sg; 1760 n_elem++; 1761 } 1762 1763 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1764 timeout); 1765 } 1766 1767 /** 1768 * ata_pio_need_iordy - check if iordy needed 1769 * @adev: ATA device 1770 * 1771 * Check if the current speed of the device requires IORDY. Used 1772 * by various controllers for chip configuration. 1773 */ 1774 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1775 { 1776 /* Don't set IORDY if we're preparing for reset. IORDY may 1777 * lead to controller lock up on certain controllers if the 1778 * port is not occupied. See bko#11703 for details. 1779 */ 1780 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1781 return 0; 1782 /* Controller doesn't support IORDY. Probably a pointless 1783 * check as the caller should know this. 1784 */ 1785 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1786 return 0; 1787 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1788 if (ata_id_is_cfa(adev->id) 1789 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1790 return 0; 1791 /* PIO3 and higher it is mandatory */ 1792 if (adev->pio_mode > XFER_PIO_2) 1793 return 1; 1794 /* We turn it on when possible */ 1795 if (ata_id_has_iordy(adev->id)) 1796 return 1; 1797 return 0; 1798 } 1799 1800 /** 1801 * ata_pio_mask_no_iordy - Return the non IORDY mask 1802 * @adev: ATA device 1803 * 1804 * Compute the highest mode possible if we are not using iordy. Return 1805 * -1 if no iordy mode is available. 1806 */ 1807 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1808 { 1809 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1810 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1811 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1812 /* Is the speed faster than the drive allows non IORDY ? */ 1813 if (pio) { 1814 /* This is cycle times not frequency - watch the logic! */ 1815 if (pio > 240) /* PIO2 is 240nS per cycle */ 1816 return 3 << ATA_SHIFT_PIO; 1817 return 7 << ATA_SHIFT_PIO; 1818 } 1819 } 1820 return 3 << ATA_SHIFT_PIO; 1821 } 1822 1823 /** 1824 * ata_do_dev_read_id - default ID read method 1825 * @dev: device 1826 * @tf: proposed taskfile 1827 * @id: data buffer 1828 * 1829 * Issue the identify taskfile and hand back the buffer containing 1830 * identify data. For some RAID controllers and for pre ATA devices 1831 * this function is wrapped or replaced by the driver 1832 */ 1833 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1834 struct ata_taskfile *tf, u16 *id) 1835 { 1836 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1837 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1838 } 1839 1840 /** 1841 * ata_dev_read_id - Read ID data from the specified device 1842 * @dev: target device 1843 * @p_class: pointer to class of the target device (may be changed) 1844 * @flags: ATA_READID_* flags 1845 * @id: buffer to read IDENTIFY data into 1846 * 1847 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1848 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1849 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1850 * for pre-ATA4 drives. 1851 * 1852 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1853 * now we abort if we hit that case. 1854 * 1855 * LOCKING: 1856 * Kernel thread context (may sleep) 1857 * 1858 * RETURNS: 1859 * 0 on success, -errno otherwise. 1860 */ 1861 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1862 unsigned int flags, u16 *id) 1863 { 1864 struct ata_port *ap = dev->link->ap; 1865 unsigned int class = *p_class; 1866 struct ata_taskfile tf; 1867 unsigned int err_mask = 0; 1868 const char *reason; 1869 bool is_semb = class == ATA_DEV_SEMB; 1870 int may_fallback = 1, tried_spinup = 0; 1871 int rc; 1872 1873 if (ata_msg_ctl(ap)) 1874 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1875 1876 retry: 1877 ata_tf_init(dev, &tf); 1878 1879 switch (class) { 1880 case ATA_DEV_SEMB: 1881 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1882 case ATA_DEV_ATA: 1883 case ATA_DEV_ZAC: 1884 tf.command = ATA_CMD_ID_ATA; 1885 break; 1886 case ATA_DEV_ATAPI: 1887 tf.command = ATA_CMD_ID_ATAPI; 1888 break; 1889 default: 1890 rc = -ENODEV; 1891 reason = "unsupported class"; 1892 goto err_out; 1893 } 1894 1895 tf.protocol = ATA_PROT_PIO; 1896 1897 /* Some devices choke if TF registers contain garbage. Make 1898 * sure those are properly initialized. 1899 */ 1900 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1901 1902 /* Device presence detection is unreliable on some 1903 * controllers. Always poll IDENTIFY if available. 1904 */ 1905 tf.flags |= ATA_TFLAG_POLLING; 1906 1907 if (ap->ops->read_id) 1908 err_mask = ap->ops->read_id(dev, &tf, id); 1909 else 1910 err_mask = ata_do_dev_read_id(dev, &tf, id); 1911 1912 if (err_mask) { 1913 if (err_mask & AC_ERR_NODEV_HINT) { 1914 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1915 return -ENOENT; 1916 } 1917 1918 if (is_semb) { 1919 ata_dev_info(dev, 1920 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1921 /* SEMB is not supported yet */ 1922 *p_class = ATA_DEV_SEMB_UNSUP; 1923 return 0; 1924 } 1925 1926 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1927 /* Device or controller might have reported 1928 * the wrong device class. Give a shot at the 1929 * other IDENTIFY if the current one is 1930 * aborted by the device. 1931 */ 1932 if (may_fallback) { 1933 may_fallback = 0; 1934 1935 if (class == ATA_DEV_ATA) 1936 class = ATA_DEV_ATAPI; 1937 else 1938 class = ATA_DEV_ATA; 1939 goto retry; 1940 } 1941 1942 /* Control reaches here iff the device aborted 1943 * both flavors of IDENTIFYs which happens 1944 * sometimes with phantom devices. 1945 */ 1946 ata_dev_dbg(dev, 1947 "both IDENTIFYs aborted, assuming NODEV\n"); 1948 return -ENOENT; 1949 } 1950 1951 rc = -EIO; 1952 reason = "I/O error"; 1953 goto err_out; 1954 } 1955 1956 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1957 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1958 "class=%d may_fallback=%d tried_spinup=%d\n", 1959 class, may_fallback, tried_spinup); 1960 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1961 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1962 } 1963 1964 /* Falling back doesn't make sense if ID data was read 1965 * successfully at least once. 1966 */ 1967 may_fallback = 0; 1968 1969 swap_buf_le16(id, ATA_ID_WORDS); 1970 1971 /* sanity check */ 1972 rc = -EINVAL; 1973 reason = "device reports invalid type"; 1974 1975 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1976 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1977 goto err_out; 1978 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1979 ata_id_is_ata(id)) { 1980 ata_dev_dbg(dev, 1981 "host indicates ignore ATA devices, ignored\n"); 1982 return -ENOENT; 1983 } 1984 } else { 1985 if (ata_id_is_ata(id)) 1986 goto err_out; 1987 } 1988 1989 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1990 tried_spinup = 1; 1991 /* 1992 * Drive powered-up in standby mode, and requires a specific 1993 * SET_FEATURES spin-up subcommand before it will accept 1994 * anything other than the original IDENTIFY command. 1995 */ 1996 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1997 if (err_mask && id[2] != 0x738c) { 1998 rc = -EIO; 1999 reason = "SPINUP failed"; 2000 goto err_out; 2001 } 2002 /* 2003 * If the drive initially returned incomplete IDENTIFY info, 2004 * we now must reissue the IDENTIFY command. 2005 */ 2006 if (id[2] == 0x37c8) 2007 goto retry; 2008 } 2009 2010 if ((flags & ATA_READID_POSTRESET) && 2011 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 2012 /* 2013 * The exact sequence expected by certain pre-ATA4 drives is: 2014 * SRST RESET 2015 * IDENTIFY (optional in early ATA) 2016 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2017 * anything else.. 2018 * Some drives were very specific about that exact sequence. 2019 * 2020 * Note that ATA4 says lba is mandatory so the second check 2021 * should never trigger. 2022 */ 2023 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2024 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2025 if (err_mask) { 2026 rc = -EIO; 2027 reason = "INIT_DEV_PARAMS failed"; 2028 goto err_out; 2029 } 2030 2031 /* current CHS translation info (id[53-58]) might be 2032 * changed. reread the identify device info. 2033 */ 2034 flags &= ~ATA_READID_POSTRESET; 2035 goto retry; 2036 } 2037 } 2038 2039 *p_class = class; 2040 2041 return 0; 2042 2043 err_out: 2044 if (ata_msg_warn(ap)) 2045 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2046 reason, err_mask); 2047 return rc; 2048 } 2049 2050 /** 2051 * ata_read_log_page - read a specific log page 2052 * @dev: target device 2053 * @log: log to read 2054 * @page: page to read 2055 * @buf: buffer to store read page 2056 * @sectors: number of sectors to read 2057 * 2058 * Read log page using READ_LOG_EXT command. 2059 * 2060 * LOCKING: 2061 * Kernel thread context (may sleep). 2062 * 2063 * RETURNS: 2064 * 0 on success, AC_ERR_* mask otherwise. 2065 */ 2066 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 2067 u8 page, void *buf, unsigned int sectors) 2068 { 2069 unsigned long ap_flags = dev->link->ap->flags; 2070 struct ata_taskfile tf; 2071 unsigned int err_mask; 2072 bool dma = false; 2073 2074 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page); 2075 2076 /* 2077 * Return error without actually issuing the command on controllers 2078 * which e.g. lockup on a read log page. 2079 */ 2080 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2081 return AC_ERR_DEV; 2082 2083 retry: 2084 ata_tf_init(dev, &tf); 2085 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) && 2086 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2087 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2088 tf.protocol = ATA_PROT_DMA; 2089 dma = true; 2090 } else { 2091 tf.command = ATA_CMD_READ_LOG_EXT; 2092 tf.protocol = ATA_PROT_PIO; 2093 dma = false; 2094 } 2095 tf.lbal = log; 2096 tf.lbam = page; 2097 tf.nsect = sectors; 2098 tf.hob_nsect = sectors >> 8; 2099 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2100 2101 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2102 buf, sectors * ATA_SECT_SIZE, 0); 2103 2104 if (err_mask && dma) { 2105 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2106 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n"); 2107 goto retry; 2108 } 2109 2110 DPRINTK("EXIT, err_mask=%x\n", err_mask); 2111 return err_mask; 2112 } 2113 2114 static bool ata_log_supported(struct ata_device *dev, u8 log) 2115 { 2116 struct ata_port *ap = dev->link->ap; 2117 2118 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2119 return false; 2120 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false; 2121 } 2122 2123 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2124 { 2125 struct ata_port *ap = dev->link->ap; 2126 unsigned int err, i; 2127 2128 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2129 ata_dev_warn(dev, "ATA Identify Device Log not supported\n"); 2130 return false; 2131 } 2132 2133 /* 2134 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2135 * supported. 2136 */ 2137 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2138 1); 2139 if (err) { 2140 ata_dev_info(dev, 2141 "failed to get Device Identify Log Emask 0x%x\n", 2142 err); 2143 return false; 2144 } 2145 2146 for (i = 0; i < ap->sector_buf[8]; i++) { 2147 if (ap->sector_buf[9 + i] == page) 2148 return true; 2149 } 2150 2151 return false; 2152 } 2153 2154 static int ata_do_link_spd_horkage(struct ata_device *dev) 2155 { 2156 struct ata_link *plink = ata_dev_phys_link(dev); 2157 u32 target, target_limit; 2158 2159 if (!sata_scr_valid(plink)) 2160 return 0; 2161 2162 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2163 target = 1; 2164 else 2165 return 0; 2166 2167 target_limit = (1 << target) - 1; 2168 2169 /* if already on stricter limit, no need to push further */ 2170 if (plink->sata_spd_limit <= target_limit) 2171 return 0; 2172 2173 plink->sata_spd_limit = target_limit; 2174 2175 /* Request another EH round by returning -EAGAIN if link is 2176 * going faster than the target speed. Forward progress is 2177 * guaranteed by setting sata_spd_limit to target_limit above. 2178 */ 2179 if (plink->sata_spd > target) { 2180 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2181 sata_spd_string(target)); 2182 return -EAGAIN; 2183 } 2184 return 0; 2185 } 2186 2187 static inline u8 ata_dev_knobble(struct ata_device *dev) 2188 { 2189 struct ata_port *ap = dev->link->ap; 2190 2191 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2192 return 0; 2193 2194 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2195 } 2196 2197 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2198 { 2199 struct ata_port *ap = dev->link->ap; 2200 unsigned int err_mask; 2201 2202 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2203 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2204 return; 2205 } 2206 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2207 0, ap->sector_buf, 1); 2208 if (err_mask) { 2209 ata_dev_dbg(dev, 2210 "failed to get NCQ Send/Recv Log Emask 0x%x\n", 2211 err_mask); 2212 } else { 2213 u8 *cmds = dev->ncq_send_recv_cmds; 2214 2215 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2216 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2217 2218 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2219 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2220 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2221 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2222 } 2223 } 2224 } 2225 2226 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2227 { 2228 struct ata_port *ap = dev->link->ap; 2229 unsigned int err_mask; 2230 2231 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2232 ata_dev_warn(dev, 2233 "NCQ Send/Recv Log not supported\n"); 2234 return; 2235 } 2236 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2237 0, ap->sector_buf, 1); 2238 if (err_mask) { 2239 ata_dev_dbg(dev, 2240 "failed to get NCQ Non-Data Log Emask 0x%x\n", 2241 err_mask); 2242 } else { 2243 u8 *cmds = dev->ncq_non_data_cmds; 2244 2245 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2246 } 2247 } 2248 2249 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2250 { 2251 struct ata_port *ap = dev->link->ap; 2252 unsigned int err_mask; 2253 2254 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) { 2255 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2256 return; 2257 } 2258 2259 err_mask = ata_read_log_page(dev, 2260 ATA_LOG_IDENTIFY_DEVICE, 2261 ATA_LOG_SATA_SETTINGS, 2262 ap->sector_buf, 2263 1); 2264 if (err_mask) { 2265 ata_dev_dbg(dev, 2266 "failed to get Identify Device data, Emask 0x%x\n", 2267 err_mask); 2268 return; 2269 } 2270 2271 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) { 2272 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2273 } else { 2274 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2275 ata_dev_dbg(dev, "SATA page does not support priority\n"); 2276 } 2277 2278 } 2279 2280 static int ata_dev_config_ncq(struct ata_device *dev, 2281 char *desc, size_t desc_sz) 2282 { 2283 struct ata_port *ap = dev->link->ap; 2284 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2285 unsigned int err_mask; 2286 char *aa_desc = ""; 2287 2288 if (!ata_id_has_ncq(dev->id)) { 2289 desc[0] = '\0'; 2290 return 0; 2291 } 2292 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2293 snprintf(desc, desc_sz, "NCQ (not used)"); 2294 return 0; 2295 } 2296 if (ap->flags & ATA_FLAG_NCQ) { 2297 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2298 dev->flags |= ATA_DFLAG_NCQ; 2299 } 2300 2301 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2302 (ap->flags & ATA_FLAG_FPDMA_AA) && 2303 ata_id_has_fpdma_aa(dev->id)) { 2304 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2305 SATA_FPDMA_AA); 2306 if (err_mask) { 2307 ata_dev_err(dev, 2308 "failed to enable AA (error_mask=0x%x)\n", 2309 err_mask); 2310 if (err_mask != AC_ERR_DEV) { 2311 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2312 return -EIO; 2313 } 2314 } else 2315 aa_desc = ", AA"; 2316 } 2317 2318 if (hdepth >= ddepth) 2319 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2320 else 2321 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2322 ddepth, aa_desc); 2323 2324 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2325 if (ata_id_has_ncq_send_and_recv(dev->id)) 2326 ata_dev_config_ncq_send_recv(dev); 2327 if (ata_id_has_ncq_non_data(dev->id)) 2328 ata_dev_config_ncq_non_data(dev); 2329 if (ata_id_has_ncq_prio(dev->id)) 2330 ata_dev_config_ncq_prio(dev); 2331 } 2332 2333 return 0; 2334 } 2335 2336 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2337 { 2338 unsigned int err_mask; 2339 2340 if (!ata_id_has_sense_reporting(dev->id)) 2341 return; 2342 2343 if (ata_id_sense_reporting_enabled(dev->id)) 2344 return; 2345 2346 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2347 if (err_mask) { 2348 ata_dev_dbg(dev, 2349 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2350 err_mask); 2351 } 2352 } 2353 2354 static void ata_dev_config_zac(struct ata_device *dev) 2355 { 2356 struct ata_port *ap = dev->link->ap; 2357 unsigned int err_mask; 2358 u8 *identify_buf = ap->sector_buf; 2359 2360 dev->zac_zones_optimal_open = U32_MAX; 2361 dev->zac_zones_optimal_nonseq = U32_MAX; 2362 dev->zac_zones_max_open = U32_MAX; 2363 2364 /* 2365 * Always set the 'ZAC' flag for Host-managed devices. 2366 */ 2367 if (dev->class == ATA_DEV_ZAC) 2368 dev->flags |= ATA_DFLAG_ZAC; 2369 else if (ata_id_zoned_cap(dev->id) == 0x01) 2370 /* 2371 * Check for host-aware devices. 2372 */ 2373 dev->flags |= ATA_DFLAG_ZAC; 2374 2375 if (!(dev->flags & ATA_DFLAG_ZAC)) 2376 return; 2377 2378 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2379 ata_dev_warn(dev, 2380 "ATA Zoned Information Log not supported\n"); 2381 return; 2382 } 2383 2384 /* 2385 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2386 */ 2387 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2388 ATA_LOG_ZONED_INFORMATION, 2389 identify_buf, 1); 2390 if (!err_mask) { 2391 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2392 2393 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2394 if ((zoned_cap >> 63)) 2395 dev->zac_zoned_cap = (zoned_cap & 1); 2396 opt_open = get_unaligned_le64(&identify_buf[24]); 2397 if ((opt_open >> 63)) 2398 dev->zac_zones_optimal_open = (u32)opt_open; 2399 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2400 if ((opt_nonseq >> 63)) 2401 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2402 max_open = get_unaligned_le64(&identify_buf[40]); 2403 if ((max_open >> 63)) 2404 dev->zac_zones_max_open = (u32)max_open; 2405 } 2406 } 2407 2408 static void ata_dev_config_trusted(struct ata_device *dev) 2409 { 2410 struct ata_port *ap = dev->link->ap; 2411 u64 trusted_cap; 2412 unsigned int err; 2413 2414 if (!ata_id_has_trusted(dev->id)) 2415 return; 2416 2417 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2418 ata_dev_warn(dev, 2419 "Security Log not supported\n"); 2420 return; 2421 } 2422 2423 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2424 ap->sector_buf, 1); 2425 if (err) { 2426 ata_dev_dbg(dev, 2427 "failed to read Security Log, Emask 0x%x\n", err); 2428 return; 2429 } 2430 2431 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2432 if (!(trusted_cap & (1ULL << 63))) { 2433 ata_dev_dbg(dev, 2434 "Trusted Computing capability qword not valid!\n"); 2435 return; 2436 } 2437 2438 if (trusted_cap & (1 << 0)) 2439 dev->flags |= ATA_DFLAG_TRUSTED; 2440 } 2441 2442 /** 2443 * ata_dev_configure - Configure the specified ATA/ATAPI device 2444 * @dev: Target device to configure 2445 * 2446 * Configure @dev according to @dev->id. Generic and low-level 2447 * driver specific fixups are also applied. 2448 * 2449 * LOCKING: 2450 * Kernel thread context (may sleep) 2451 * 2452 * RETURNS: 2453 * 0 on success, -errno otherwise 2454 */ 2455 int ata_dev_configure(struct ata_device *dev) 2456 { 2457 struct ata_port *ap = dev->link->ap; 2458 struct ata_eh_context *ehc = &dev->link->eh_context; 2459 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2460 const u16 *id = dev->id; 2461 unsigned long xfer_mask; 2462 unsigned int err_mask; 2463 char revbuf[7]; /* XYZ-99\0 */ 2464 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2465 char modelbuf[ATA_ID_PROD_LEN+1]; 2466 int rc; 2467 2468 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2469 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2470 return 0; 2471 } 2472 2473 if (ata_msg_probe(ap)) 2474 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2475 2476 /* set horkage */ 2477 dev->horkage |= ata_dev_blacklisted(dev); 2478 ata_force_horkage(dev); 2479 2480 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2481 ata_dev_info(dev, "unsupported device, disabling\n"); 2482 ata_dev_disable(dev); 2483 return 0; 2484 } 2485 2486 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2487 dev->class == ATA_DEV_ATAPI) { 2488 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2489 atapi_enabled ? "not supported with this driver" 2490 : "disabled"); 2491 ata_dev_disable(dev); 2492 return 0; 2493 } 2494 2495 rc = ata_do_link_spd_horkage(dev); 2496 if (rc) 2497 return rc; 2498 2499 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2500 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2501 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2502 dev->horkage |= ATA_HORKAGE_NOLPM; 2503 2504 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2505 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2506 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2507 } 2508 2509 /* let ACPI work its magic */ 2510 rc = ata_acpi_on_devcfg(dev); 2511 if (rc) 2512 return rc; 2513 2514 /* massage HPA, do it early as it might change IDENTIFY data */ 2515 rc = ata_hpa_resize(dev); 2516 if (rc) 2517 return rc; 2518 2519 /* print device capabilities */ 2520 if (ata_msg_probe(ap)) 2521 ata_dev_dbg(dev, 2522 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2523 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2524 __func__, 2525 id[49], id[82], id[83], id[84], 2526 id[85], id[86], id[87], id[88]); 2527 2528 /* initialize to-be-configured parameters */ 2529 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2530 dev->max_sectors = 0; 2531 dev->cdb_len = 0; 2532 dev->n_sectors = 0; 2533 dev->cylinders = 0; 2534 dev->heads = 0; 2535 dev->sectors = 0; 2536 dev->multi_count = 0; 2537 2538 /* 2539 * common ATA, ATAPI feature tests 2540 */ 2541 2542 /* find max transfer mode; for printk only */ 2543 xfer_mask = ata_id_xfermask(id); 2544 2545 if (ata_msg_probe(ap)) 2546 ata_dump_id(id); 2547 2548 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2549 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2550 sizeof(fwrevbuf)); 2551 2552 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2553 sizeof(modelbuf)); 2554 2555 /* ATA-specific feature tests */ 2556 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2557 if (ata_id_is_cfa(id)) { 2558 /* CPRM may make this media unusable */ 2559 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2560 ata_dev_warn(dev, 2561 "supports DRM functions and may not be fully accessible\n"); 2562 snprintf(revbuf, 7, "CFA"); 2563 } else { 2564 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2565 /* Warn the user if the device has TPM extensions */ 2566 if (ata_id_has_tpm(id)) 2567 ata_dev_warn(dev, 2568 "supports DRM functions and may not be fully accessible\n"); 2569 } 2570 2571 dev->n_sectors = ata_id_n_sectors(id); 2572 2573 /* get current R/W Multiple count setting */ 2574 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2575 unsigned int max = dev->id[47] & 0xff; 2576 unsigned int cnt = dev->id[59] & 0xff; 2577 /* only recognize/allow powers of two here */ 2578 if (is_power_of_2(max) && is_power_of_2(cnt)) 2579 if (cnt <= max) 2580 dev->multi_count = cnt; 2581 } 2582 2583 if (ata_id_has_lba(id)) { 2584 const char *lba_desc; 2585 char ncq_desc[24]; 2586 2587 lba_desc = "LBA"; 2588 dev->flags |= ATA_DFLAG_LBA; 2589 if (ata_id_has_lba48(id)) { 2590 dev->flags |= ATA_DFLAG_LBA48; 2591 lba_desc = "LBA48"; 2592 2593 if (dev->n_sectors >= (1UL << 28) && 2594 ata_id_has_flush_ext(id)) 2595 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2596 } 2597 2598 /* config NCQ */ 2599 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2600 if (rc) 2601 return rc; 2602 2603 /* print device info to dmesg */ 2604 if (ata_msg_drv(ap) && print_info) { 2605 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2606 revbuf, modelbuf, fwrevbuf, 2607 ata_mode_string(xfer_mask)); 2608 ata_dev_info(dev, 2609 "%llu sectors, multi %u: %s %s\n", 2610 (unsigned long long)dev->n_sectors, 2611 dev->multi_count, lba_desc, ncq_desc); 2612 } 2613 } else { 2614 /* CHS */ 2615 2616 /* Default translation */ 2617 dev->cylinders = id[1]; 2618 dev->heads = id[3]; 2619 dev->sectors = id[6]; 2620 2621 if (ata_id_current_chs_valid(id)) { 2622 /* Current CHS translation is valid. */ 2623 dev->cylinders = id[54]; 2624 dev->heads = id[55]; 2625 dev->sectors = id[56]; 2626 } 2627 2628 /* print device info to dmesg */ 2629 if (ata_msg_drv(ap) && print_info) { 2630 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2631 revbuf, modelbuf, fwrevbuf, 2632 ata_mode_string(xfer_mask)); 2633 ata_dev_info(dev, 2634 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2635 (unsigned long long)dev->n_sectors, 2636 dev->multi_count, dev->cylinders, 2637 dev->heads, dev->sectors); 2638 } 2639 } 2640 2641 /* Check and mark DevSlp capability. Get DevSlp timing variables 2642 * from SATA Settings page of Identify Device Data Log. 2643 */ 2644 if (ata_id_has_devslp(dev->id)) { 2645 u8 *sata_setting = ap->sector_buf; 2646 int i, j; 2647 2648 dev->flags |= ATA_DFLAG_DEVSLP; 2649 err_mask = ata_read_log_page(dev, 2650 ATA_LOG_IDENTIFY_DEVICE, 2651 ATA_LOG_SATA_SETTINGS, 2652 sata_setting, 2653 1); 2654 if (err_mask) 2655 ata_dev_dbg(dev, 2656 "failed to get Identify Device Data, Emask 0x%x\n", 2657 err_mask); 2658 else 2659 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2660 j = ATA_LOG_DEVSLP_OFFSET + i; 2661 dev->devslp_timing[i] = sata_setting[j]; 2662 } 2663 } 2664 ata_dev_config_sense_reporting(dev); 2665 ata_dev_config_zac(dev); 2666 ata_dev_config_trusted(dev); 2667 dev->cdb_len = 32; 2668 } 2669 2670 /* ATAPI-specific feature tests */ 2671 else if (dev->class == ATA_DEV_ATAPI) { 2672 const char *cdb_intr_string = ""; 2673 const char *atapi_an_string = ""; 2674 const char *dma_dir_string = ""; 2675 u32 sntf; 2676 2677 rc = atapi_cdb_len(id); 2678 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2679 if (ata_msg_warn(ap)) 2680 ata_dev_warn(dev, "unsupported CDB len\n"); 2681 rc = -EINVAL; 2682 goto err_out_nosup; 2683 } 2684 dev->cdb_len = (unsigned int) rc; 2685 2686 /* Enable ATAPI AN if both the host and device have 2687 * the support. If PMP is attached, SNTF is required 2688 * to enable ATAPI AN to discern between PHY status 2689 * changed notifications and ATAPI ANs. 2690 */ 2691 if (atapi_an && 2692 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2693 (!sata_pmp_attached(ap) || 2694 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2695 /* issue SET feature command to turn this on */ 2696 err_mask = ata_dev_set_feature(dev, 2697 SETFEATURES_SATA_ENABLE, SATA_AN); 2698 if (err_mask) 2699 ata_dev_err(dev, 2700 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2701 err_mask); 2702 else { 2703 dev->flags |= ATA_DFLAG_AN; 2704 atapi_an_string = ", ATAPI AN"; 2705 } 2706 } 2707 2708 if (ata_id_cdb_intr(dev->id)) { 2709 dev->flags |= ATA_DFLAG_CDB_INTR; 2710 cdb_intr_string = ", CDB intr"; 2711 } 2712 2713 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2714 dev->flags |= ATA_DFLAG_DMADIR; 2715 dma_dir_string = ", DMADIR"; 2716 } 2717 2718 if (ata_id_has_da(dev->id)) { 2719 dev->flags |= ATA_DFLAG_DA; 2720 zpodd_init(dev); 2721 } 2722 2723 /* print device info to dmesg */ 2724 if (ata_msg_drv(ap) && print_info) 2725 ata_dev_info(dev, 2726 "ATAPI: %s, %s, max %s%s%s%s\n", 2727 modelbuf, fwrevbuf, 2728 ata_mode_string(xfer_mask), 2729 cdb_intr_string, atapi_an_string, 2730 dma_dir_string); 2731 } 2732 2733 /* determine max_sectors */ 2734 dev->max_sectors = ATA_MAX_SECTORS; 2735 if (dev->flags & ATA_DFLAG_LBA48) 2736 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2737 2738 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2739 200 sectors */ 2740 if (ata_dev_knobble(dev)) { 2741 if (ata_msg_drv(ap) && print_info) 2742 ata_dev_info(dev, "applying bridge limits\n"); 2743 dev->udma_mask &= ATA_UDMA5; 2744 dev->max_sectors = ATA_MAX_SECTORS; 2745 } 2746 2747 if ((dev->class == ATA_DEV_ATAPI) && 2748 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2749 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2750 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2751 } 2752 2753 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2754 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2755 dev->max_sectors); 2756 2757 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2758 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2759 dev->max_sectors); 2760 2761 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2762 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2763 2764 if (ap->ops->dev_config) 2765 ap->ops->dev_config(dev); 2766 2767 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2768 /* Let the user know. We don't want to disallow opens for 2769 rescue purposes, or in case the vendor is just a blithering 2770 idiot. Do this after the dev_config call as some controllers 2771 with buggy firmware may want to avoid reporting false device 2772 bugs */ 2773 2774 if (print_info) { 2775 ata_dev_warn(dev, 2776 "Drive reports diagnostics failure. This may indicate a drive\n"); 2777 ata_dev_warn(dev, 2778 "fault or invalid emulation. Contact drive vendor for information.\n"); 2779 } 2780 } 2781 2782 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2783 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2784 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2785 } 2786 2787 return 0; 2788 2789 err_out_nosup: 2790 if (ata_msg_probe(ap)) 2791 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2792 return rc; 2793 } 2794 2795 /** 2796 * ata_cable_40wire - return 40 wire cable type 2797 * @ap: port 2798 * 2799 * Helper method for drivers which want to hardwire 40 wire cable 2800 * detection. 2801 */ 2802 2803 int ata_cable_40wire(struct ata_port *ap) 2804 { 2805 return ATA_CBL_PATA40; 2806 } 2807 2808 /** 2809 * ata_cable_80wire - return 80 wire cable type 2810 * @ap: port 2811 * 2812 * Helper method for drivers which want to hardwire 80 wire cable 2813 * detection. 2814 */ 2815 2816 int ata_cable_80wire(struct ata_port *ap) 2817 { 2818 return ATA_CBL_PATA80; 2819 } 2820 2821 /** 2822 * ata_cable_unknown - return unknown PATA cable. 2823 * @ap: port 2824 * 2825 * Helper method for drivers which have no PATA cable detection. 2826 */ 2827 2828 int ata_cable_unknown(struct ata_port *ap) 2829 { 2830 return ATA_CBL_PATA_UNK; 2831 } 2832 2833 /** 2834 * ata_cable_ignore - return ignored PATA cable. 2835 * @ap: port 2836 * 2837 * Helper method for drivers which don't use cable type to limit 2838 * transfer mode. 2839 */ 2840 int ata_cable_ignore(struct ata_port *ap) 2841 { 2842 return ATA_CBL_PATA_IGN; 2843 } 2844 2845 /** 2846 * ata_cable_sata - return SATA cable type 2847 * @ap: port 2848 * 2849 * Helper method for drivers which have SATA cables 2850 */ 2851 2852 int ata_cable_sata(struct ata_port *ap) 2853 { 2854 return ATA_CBL_SATA; 2855 } 2856 2857 /** 2858 * ata_bus_probe - Reset and probe ATA bus 2859 * @ap: Bus to probe 2860 * 2861 * Master ATA bus probing function. Initiates a hardware-dependent 2862 * bus reset, then attempts to identify any devices found on 2863 * the bus. 2864 * 2865 * LOCKING: 2866 * PCI/etc. bus probe sem. 2867 * 2868 * RETURNS: 2869 * Zero on success, negative errno otherwise. 2870 */ 2871 2872 int ata_bus_probe(struct ata_port *ap) 2873 { 2874 unsigned int classes[ATA_MAX_DEVICES]; 2875 int tries[ATA_MAX_DEVICES]; 2876 int rc; 2877 struct ata_device *dev; 2878 2879 ata_for_each_dev(dev, &ap->link, ALL) 2880 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2881 2882 retry: 2883 ata_for_each_dev(dev, &ap->link, ALL) { 2884 /* If we issue an SRST then an ATA drive (not ATAPI) 2885 * may change configuration and be in PIO0 timing. If 2886 * we do a hard reset (or are coming from power on) 2887 * this is true for ATA or ATAPI. Until we've set a 2888 * suitable controller mode we should not touch the 2889 * bus as we may be talking too fast. 2890 */ 2891 dev->pio_mode = XFER_PIO_0; 2892 dev->dma_mode = 0xff; 2893 2894 /* If the controller has a pio mode setup function 2895 * then use it to set the chipset to rights. Don't 2896 * touch the DMA setup as that will be dealt with when 2897 * configuring devices. 2898 */ 2899 if (ap->ops->set_piomode) 2900 ap->ops->set_piomode(ap, dev); 2901 } 2902 2903 /* reset and determine device classes */ 2904 ap->ops->phy_reset(ap); 2905 2906 ata_for_each_dev(dev, &ap->link, ALL) { 2907 if (dev->class != ATA_DEV_UNKNOWN) 2908 classes[dev->devno] = dev->class; 2909 else 2910 classes[dev->devno] = ATA_DEV_NONE; 2911 2912 dev->class = ATA_DEV_UNKNOWN; 2913 } 2914 2915 /* read IDENTIFY page and configure devices. We have to do the identify 2916 specific sequence bass-ackwards so that PDIAG- is released by 2917 the slave device */ 2918 2919 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2920 if (tries[dev->devno]) 2921 dev->class = classes[dev->devno]; 2922 2923 if (!ata_dev_enabled(dev)) 2924 continue; 2925 2926 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2927 dev->id); 2928 if (rc) 2929 goto fail; 2930 } 2931 2932 /* Now ask for the cable type as PDIAG- should have been released */ 2933 if (ap->ops->cable_detect) 2934 ap->cbl = ap->ops->cable_detect(ap); 2935 2936 /* We may have SATA bridge glue hiding here irrespective of 2937 * the reported cable types and sensed types. When SATA 2938 * drives indicate we have a bridge, we don't know which end 2939 * of the link the bridge is which is a problem. 2940 */ 2941 ata_for_each_dev(dev, &ap->link, ENABLED) 2942 if (ata_id_is_sata(dev->id)) 2943 ap->cbl = ATA_CBL_SATA; 2944 2945 /* After the identify sequence we can now set up the devices. We do 2946 this in the normal order so that the user doesn't get confused */ 2947 2948 ata_for_each_dev(dev, &ap->link, ENABLED) { 2949 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2950 rc = ata_dev_configure(dev); 2951 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2952 if (rc) 2953 goto fail; 2954 } 2955 2956 /* configure transfer mode */ 2957 rc = ata_set_mode(&ap->link, &dev); 2958 if (rc) 2959 goto fail; 2960 2961 ata_for_each_dev(dev, &ap->link, ENABLED) 2962 return 0; 2963 2964 return -ENODEV; 2965 2966 fail: 2967 tries[dev->devno]--; 2968 2969 switch (rc) { 2970 case -EINVAL: 2971 /* eeek, something went very wrong, give up */ 2972 tries[dev->devno] = 0; 2973 break; 2974 2975 case -ENODEV: 2976 /* give it just one more chance */ 2977 tries[dev->devno] = min(tries[dev->devno], 1); 2978 case -EIO: 2979 if (tries[dev->devno] == 1) { 2980 /* This is the last chance, better to slow 2981 * down than lose it. 2982 */ 2983 sata_down_spd_limit(&ap->link, 0); 2984 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2985 } 2986 } 2987 2988 if (!tries[dev->devno]) 2989 ata_dev_disable(dev); 2990 2991 goto retry; 2992 } 2993 2994 /** 2995 * sata_print_link_status - Print SATA link status 2996 * @link: SATA link to printk link status about 2997 * 2998 * This function prints link speed and status of a SATA link. 2999 * 3000 * LOCKING: 3001 * None. 3002 */ 3003 static void sata_print_link_status(struct ata_link *link) 3004 { 3005 u32 sstatus, scontrol, tmp; 3006 3007 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3008 return; 3009 sata_scr_read(link, SCR_CONTROL, &scontrol); 3010 3011 if (ata_phys_link_online(link)) { 3012 tmp = (sstatus >> 4) & 0xf; 3013 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3014 sata_spd_string(tmp), sstatus, scontrol); 3015 } else { 3016 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3017 sstatus, scontrol); 3018 } 3019 } 3020 3021 /** 3022 * ata_dev_pair - return other device on cable 3023 * @adev: device 3024 * 3025 * Obtain the other device on the same cable, or if none is 3026 * present NULL is returned 3027 */ 3028 3029 struct ata_device *ata_dev_pair(struct ata_device *adev) 3030 { 3031 struct ata_link *link = adev->link; 3032 struct ata_device *pair = &link->device[1 - adev->devno]; 3033 if (!ata_dev_enabled(pair)) 3034 return NULL; 3035 return pair; 3036 } 3037 3038 /** 3039 * sata_down_spd_limit - adjust SATA spd limit downward 3040 * @link: Link to adjust SATA spd limit for 3041 * @spd_limit: Additional limit 3042 * 3043 * Adjust SATA spd limit of @link downward. Note that this 3044 * function only adjusts the limit. The change must be applied 3045 * using sata_set_spd(). 3046 * 3047 * If @spd_limit is non-zero, the speed is limited to equal to or 3048 * lower than @spd_limit if such speed is supported. If 3049 * @spd_limit is slower than any supported speed, only the lowest 3050 * supported speed is allowed. 3051 * 3052 * LOCKING: 3053 * Inherited from caller. 3054 * 3055 * RETURNS: 3056 * 0 on success, negative errno on failure 3057 */ 3058 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3059 { 3060 u32 sstatus, spd, mask; 3061 int rc, bit; 3062 3063 if (!sata_scr_valid(link)) 3064 return -EOPNOTSUPP; 3065 3066 /* If SCR can be read, use it to determine the current SPD. 3067 * If not, use cached value in link->sata_spd. 3068 */ 3069 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3070 if (rc == 0 && ata_sstatus_online(sstatus)) 3071 spd = (sstatus >> 4) & 0xf; 3072 else 3073 spd = link->sata_spd; 3074 3075 mask = link->sata_spd_limit; 3076 if (mask <= 1) 3077 return -EINVAL; 3078 3079 /* unconditionally mask off the highest bit */ 3080 bit = fls(mask) - 1; 3081 mask &= ~(1 << bit); 3082 3083 /* Mask off all speeds higher than or equal to the current 3084 * one. Force 1.5Gbps if current SPD is not available. 3085 */ 3086 if (spd > 1) 3087 mask &= (1 << (spd - 1)) - 1; 3088 else 3089 mask &= 1; 3090 3091 /* were we already at the bottom? */ 3092 if (!mask) 3093 return -EINVAL; 3094 3095 if (spd_limit) { 3096 if (mask & ((1 << spd_limit) - 1)) 3097 mask &= (1 << spd_limit) - 1; 3098 else { 3099 bit = ffs(mask) - 1; 3100 mask = 1 << bit; 3101 } 3102 } 3103 3104 link->sata_spd_limit = mask; 3105 3106 ata_link_warn(link, "limiting SATA link speed to %s\n", 3107 sata_spd_string(fls(mask))); 3108 3109 return 0; 3110 } 3111 3112 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 3113 { 3114 struct ata_link *host_link = &link->ap->link; 3115 u32 limit, target, spd; 3116 3117 limit = link->sata_spd_limit; 3118 3119 /* Don't configure downstream link faster than upstream link. 3120 * It doesn't speed up anything and some PMPs choke on such 3121 * configuration. 3122 */ 3123 if (!ata_is_host_link(link) && host_link->sata_spd) 3124 limit &= (1 << host_link->sata_spd) - 1; 3125 3126 if (limit == UINT_MAX) 3127 target = 0; 3128 else 3129 target = fls(limit); 3130 3131 spd = (*scontrol >> 4) & 0xf; 3132 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 3133 3134 return spd != target; 3135 } 3136 3137 /** 3138 * sata_set_spd_needed - is SATA spd configuration needed 3139 * @link: Link in question 3140 * 3141 * Test whether the spd limit in SControl matches 3142 * @link->sata_spd_limit. This function is used to determine 3143 * whether hardreset is necessary to apply SATA spd 3144 * configuration. 3145 * 3146 * LOCKING: 3147 * Inherited from caller. 3148 * 3149 * RETURNS: 3150 * 1 if SATA spd configuration is needed, 0 otherwise. 3151 */ 3152 static int sata_set_spd_needed(struct ata_link *link) 3153 { 3154 u32 scontrol; 3155 3156 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3157 return 1; 3158 3159 return __sata_set_spd_needed(link, &scontrol); 3160 } 3161 3162 /** 3163 * sata_set_spd - set SATA spd according to spd limit 3164 * @link: Link to set SATA spd for 3165 * 3166 * Set SATA spd of @link according to sata_spd_limit. 3167 * 3168 * LOCKING: 3169 * Inherited from caller. 3170 * 3171 * RETURNS: 3172 * 0 if spd doesn't need to be changed, 1 if spd has been 3173 * changed. Negative errno if SCR registers are inaccessible. 3174 */ 3175 int sata_set_spd(struct ata_link *link) 3176 { 3177 u32 scontrol; 3178 int rc; 3179 3180 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3181 return rc; 3182 3183 if (!__sata_set_spd_needed(link, &scontrol)) 3184 return 0; 3185 3186 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3187 return rc; 3188 3189 return 1; 3190 } 3191 3192 /* 3193 * This mode timing computation functionality is ported over from 3194 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 3195 */ 3196 /* 3197 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 3198 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 3199 * for UDMA6, which is currently supported only by Maxtor drives. 3200 * 3201 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 3202 */ 3203 3204 static const struct ata_timing ata_timing[] = { 3205 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 3206 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 3207 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 3208 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 3209 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 3210 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 3211 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 3212 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 3213 3214 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 3215 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 3216 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 3217 3218 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 3219 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 3220 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 3221 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 3222 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 3223 3224 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 3225 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 3226 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 3227 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 3228 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 3229 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 3230 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 3231 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 3232 3233 { 0xFF } 3234 }; 3235 3236 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 3237 #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0) 3238 3239 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 3240 { 3241 q->setup = EZ(t->setup, T); 3242 q->act8b = EZ(t->act8b, T); 3243 q->rec8b = EZ(t->rec8b, T); 3244 q->cyc8b = EZ(t->cyc8b, T); 3245 q->active = EZ(t->active, T); 3246 q->recover = EZ(t->recover, T); 3247 q->dmack_hold = EZ(t->dmack_hold, T); 3248 q->cycle = EZ(t->cycle, T); 3249 q->udma = EZ(t->udma, UT); 3250 } 3251 3252 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3253 struct ata_timing *m, unsigned int what) 3254 { 3255 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3256 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3257 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3258 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3259 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3260 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3261 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 3262 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3263 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3264 } 3265 3266 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3267 { 3268 const struct ata_timing *t = ata_timing; 3269 3270 while (xfer_mode > t->mode) 3271 t++; 3272 3273 if (xfer_mode == t->mode) 3274 return t; 3275 3276 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 3277 __func__, xfer_mode); 3278 3279 return NULL; 3280 } 3281 3282 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3283 struct ata_timing *t, int T, int UT) 3284 { 3285 const u16 *id = adev->id; 3286 const struct ata_timing *s; 3287 struct ata_timing p; 3288 3289 /* 3290 * Find the mode. 3291 */ 3292 3293 if (!(s = ata_timing_find_mode(speed))) 3294 return -EINVAL; 3295 3296 memcpy(t, s, sizeof(*s)); 3297 3298 /* 3299 * If the drive is an EIDE drive, it can tell us it needs extended 3300 * PIO/MW_DMA cycle timing. 3301 */ 3302 3303 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3304 memset(&p, 0, sizeof(p)); 3305 3306 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 3307 if (speed <= XFER_PIO_2) 3308 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3309 else if ((speed <= XFER_PIO_4) || 3310 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3311 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3312 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3313 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3314 3315 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3316 } 3317 3318 /* 3319 * Convert the timing to bus clock counts. 3320 */ 3321 3322 ata_timing_quantize(t, t, T, UT); 3323 3324 /* 3325 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3326 * S.M.A.R.T * and some other commands. We have to ensure that the 3327 * DMA cycle timing is slower/equal than the fastest PIO timing. 3328 */ 3329 3330 if (speed > XFER_PIO_6) { 3331 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3332 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3333 } 3334 3335 /* 3336 * Lengthen active & recovery time so that cycle time is correct. 3337 */ 3338 3339 if (t->act8b + t->rec8b < t->cyc8b) { 3340 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3341 t->rec8b = t->cyc8b - t->act8b; 3342 } 3343 3344 if (t->active + t->recover < t->cycle) { 3345 t->active += (t->cycle - (t->active + t->recover)) / 2; 3346 t->recover = t->cycle - t->active; 3347 } 3348 3349 /* In a few cases quantisation may produce enough errors to 3350 leave t->cycle too low for the sum of active and recovery 3351 if so we must correct this */ 3352 if (t->active + t->recover > t->cycle) 3353 t->cycle = t->active + t->recover; 3354 3355 return 0; 3356 } 3357 3358 /** 3359 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3360 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3361 * @cycle: cycle duration in ns 3362 * 3363 * Return matching xfer mode for @cycle. The returned mode is of 3364 * the transfer type specified by @xfer_shift. If @cycle is too 3365 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3366 * than the fastest known mode, the fasted mode is returned. 3367 * 3368 * LOCKING: 3369 * None. 3370 * 3371 * RETURNS: 3372 * Matching xfer_mode, 0xff if no match found. 3373 */ 3374 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3375 { 3376 u8 base_mode = 0xff, last_mode = 0xff; 3377 const struct ata_xfer_ent *ent; 3378 const struct ata_timing *t; 3379 3380 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3381 if (ent->shift == xfer_shift) 3382 base_mode = ent->base; 3383 3384 for (t = ata_timing_find_mode(base_mode); 3385 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3386 unsigned short this_cycle; 3387 3388 switch (xfer_shift) { 3389 case ATA_SHIFT_PIO: 3390 case ATA_SHIFT_MWDMA: 3391 this_cycle = t->cycle; 3392 break; 3393 case ATA_SHIFT_UDMA: 3394 this_cycle = t->udma; 3395 break; 3396 default: 3397 return 0xff; 3398 } 3399 3400 if (cycle > this_cycle) 3401 break; 3402 3403 last_mode = t->mode; 3404 } 3405 3406 return last_mode; 3407 } 3408 3409 /** 3410 * ata_down_xfermask_limit - adjust dev xfer masks downward 3411 * @dev: Device to adjust xfer masks 3412 * @sel: ATA_DNXFER_* selector 3413 * 3414 * Adjust xfer masks of @dev downward. Note that this function 3415 * does not apply the change. Invoking ata_set_mode() afterwards 3416 * will apply the limit. 3417 * 3418 * LOCKING: 3419 * Inherited from caller. 3420 * 3421 * RETURNS: 3422 * 0 on success, negative errno on failure 3423 */ 3424 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3425 { 3426 char buf[32]; 3427 unsigned long orig_mask, xfer_mask; 3428 unsigned long pio_mask, mwdma_mask, udma_mask; 3429 int quiet, highbit; 3430 3431 quiet = !!(sel & ATA_DNXFER_QUIET); 3432 sel &= ~ATA_DNXFER_QUIET; 3433 3434 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3435 dev->mwdma_mask, 3436 dev->udma_mask); 3437 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3438 3439 switch (sel) { 3440 case ATA_DNXFER_PIO: 3441 highbit = fls(pio_mask) - 1; 3442 pio_mask &= ~(1 << highbit); 3443 break; 3444 3445 case ATA_DNXFER_DMA: 3446 if (udma_mask) { 3447 highbit = fls(udma_mask) - 1; 3448 udma_mask &= ~(1 << highbit); 3449 if (!udma_mask) 3450 return -ENOENT; 3451 } else if (mwdma_mask) { 3452 highbit = fls(mwdma_mask) - 1; 3453 mwdma_mask &= ~(1 << highbit); 3454 if (!mwdma_mask) 3455 return -ENOENT; 3456 } 3457 break; 3458 3459 case ATA_DNXFER_40C: 3460 udma_mask &= ATA_UDMA_MASK_40C; 3461 break; 3462 3463 case ATA_DNXFER_FORCE_PIO0: 3464 pio_mask &= 1; 3465 case ATA_DNXFER_FORCE_PIO: 3466 mwdma_mask = 0; 3467 udma_mask = 0; 3468 break; 3469 3470 default: 3471 BUG(); 3472 } 3473 3474 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3475 3476 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3477 return -ENOENT; 3478 3479 if (!quiet) { 3480 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3481 snprintf(buf, sizeof(buf), "%s:%s", 3482 ata_mode_string(xfer_mask), 3483 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3484 else 3485 snprintf(buf, sizeof(buf), "%s", 3486 ata_mode_string(xfer_mask)); 3487 3488 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3489 } 3490 3491 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3492 &dev->udma_mask); 3493 3494 return 0; 3495 } 3496 3497 static int ata_dev_set_mode(struct ata_device *dev) 3498 { 3499 struct ata_port *ap = dev->link->ap; 3500 struct ata_eh_context *ehc = &dev->link->eh_context; 3501 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3502 const char *dev_err_whine = ""; 3503 int ign_dev_err = 0; 3504 unsigned int err_mask = 0; 3505 int rc; 3506 3507 dev->flags &= ~ATA_DFLAG_PIO; 3508 if (dev->xfer_shift == ATA_SHIFT_PIO) 3509 dev->flags |= ATA_DFLAG_PIO; 3510 3511 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3512 dev_err_whine = " (SET_XFERMODE skipped)"; 3513 else { 3514 if (nosetxfer) 3515 ata_dev_warn(dev, 3516 "NOSETXFER but PATA detected - can't " 3517 "skip SETXFER, might malfunction\n"); 3518 err_mask = ata_dev_set_xfermode(dev); 3519 } 3520 3521 if (err_mask & ~AC_ERR_DEV) 3522 goto fail; 3523 3524 /* revalidate */ 3525 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3526 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3527 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3528 if (rc) 3529 return rc; 3530 3531 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3532 /* Old CFA may refuse this command, which is just fine */ 3533 if (ata_id_is_cfa(dev->id)) 3534 ign_dev_err = 1; 3535 /* Catch several broken garbage emulations plus some pre 3536 ATA devices */ 3537 if (ata_id_major_version(dev->id) == 0 && 3538 dev->pio_mode <= XFER_PIO_2) 3539 ign_dev_err = 1; 3540 /* Some very old devices and some bad newer ones fail 3541 any kind of SET_XFERMODE request but support PIO0-2 3542 timings and no IORDY */ 3543 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3544 ign_dev_err = 1; 3545 } 3546 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3547 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3548 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3549 dev->dma_mode == XFER_MW_DMA_0 && 3550 (dev->id[63] >> 8) & 1) 3551 ign_dev_err = 1; 3552 3553 /* if the device is actually configured correctly, ignore dev err */ 3554 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3555 ign_dev_err = 1; 3556 3557 if (err_mask & AC_ERR_DEV) { 3558 if (!ign_dev_err) 3559 goto fail; 3560 else 3561 dev_err_whine = " (device error ignored)"; 3562 } 3563 3564 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3565 dev->xfer_shift, (int)dev->xfer_mode); 3566 3567 ata_dev_info(dev, "configured for %s%s\n", 3568 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3569 dev_err_whine); 3570 3571 return 0; 3572 3573 fail: 3574 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3575 return -EIO; 3576 } 3577 3578 /** 3579 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3580 * @link: link on which timings will be programmed 3581 * @r_failed_dev: out parameter for failed device 3582 * 3583 * Standard implementation of the function used to tune and set 3584 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3585 * ata_dev_set_mode() fails, pointer to the failing device is 3586 * returned in @r_failed_dev. 3587 * 3588 * LOCKING: 3589 * PCI/etc. bus probe sem. 3590 * 3591 * RETURNS: 3592 * 0 on success, negative errno otherwise 3593 */ 3594 3595 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3596 { 3597 struct ata_port *ap = link->ap; 3598 struct ata_device *dev; 3599 int rc = 0, used_dma = 0, found = 0; 3600 3601 /* step 1: calculate xfer_mask */ 3602 ata_for_each_dev(dev, link, ENABLED) { 3603 unsigned long pio_mask, dma_mask; 3604 unsigned int mode_mask; 3605 3606 mode_mask = ATA_DMA_MASK_ATA; 3607 if (dev->class == ATA_DEV_ATAPI) 3608 mode_mask = ATA_DMA_MASK_ATAPI; 3609 else if (ata_id_is_cfa(dev->id)) 3610 mode_mask = ATA_DMA_MASK_CFA; 3611 3612 ata_dev_xfermask(dev); 3613 ata_force_xfermask(dev); 3614 3615 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3616 3617 if (libata_dma_mask & mode_mask) 3618 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3619 dev->udma_mask); 3620 else 3621 dma_mask = 0; 3622 3623 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3624 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3625 3626 found = 1; 3627 if (ata_dma_enabled(dev)) 3628 used_dma = 1; 3629 } 3630 if (!found) 3631 goto out; 3632 3633 /* step 2: always set host PIO timings */ 3634 ata_for_each_dev(dev, link, ENABLED) { 3635 if (dev->pio_mode == 0xff) { 3636 ata_dev_warn(dev, "no PIO support\n"); 3637 rc = -EINVAL; 3638 goto out; 3639 } 3640 3641 dev->xfer_mode = dev->pio_mode; 3642 dev->xfer_shift = ATA_SHIFT_PIO; 3643 if (ap->ops->set_piomode) 3644 ap->ops->set_piomode(ap, dev); 3645 } 3646 3647 /* step 3: set host DMA timings */ 3648 ata_for_each_dev(dev, link, ENABLED) { 3649 if (!ata_dma_enabled(dev)) 3650 continue; 3651 3652 dev->xfer_mode = dev->dma_mode; 3653 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3654 if (ap->ops->set_dmamode) 3655 ap->ops->set_dmamode(ap, dev); 3656 } 3657 3658 /* step 4: update devices' xfer mode */ 3659 ata_for_each_dev(dev, link, ENABLED) { 3660 rc = ata_dev_set_mode(dev); 3661 if (rc) 3662 goto out; 3663 } 3664 3665 /* Record simplex status. If we selected DMA then the other 3666 * host channels are not permitted to do so. 3667 */ 3668 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3669 ap->host->simplex_claimed = ap; 3670 3671 out: 3672 if (rc) 3673 *r_failed_dev = dev; 3674 return rc; 3675 } 3676 3677 /** 3678 * ata_wait_ready - wait for link to become ready 3679 * @link: link to be waited on 3680 * @deadline: deadline jiffies for the operation 3681 * @check_ready: callback to check link readiness 3682 * 3683 * Wait for @link to become ready. @check_ready should return 3684 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3685 * link doesn't seem to be occupied, other errno for other error 3686 * conditions. 3687 * 3688 * Transient -ENODEV conditions are allowed for 3689 * ATA_TMOUT_FF_WAIT. 3690 * 3691 * LOCKING: 3692 * EH context. 3693 * 3694 * RETURNS: 3695 * 0 if @link is ready before @deadline; otherwise, -errno. 3696 */ 3697 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3698 int (*check_ready)(struct ata_link *link)) 3699 { 3700 unsigned long start = jiffies; 3701 unsigned long nodev_deadline; 3702 int warned = 0; 3703 3704 /* choose which 0xff timeout to use, read comment in libata.h */ 3705 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3706 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3707 else 3708 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3709 3710 /* Slave readiness can't be tested separately from master. On 3711 * M/S emulation configuration, this function should be called 3712 * only on the master and it will handle both master and slave. 3713 */ 3714 WARN_ON(link == link->ap->slave_link); 3715 3716 if (time_after(nodev_deadline, deadline)) 3717 nodev_deadline = deadline; 3718 3719 while (1) { 3720 unsigned long now = jiffies; 3721 int ready, tmp; 3722 3723 ready = tmp = check_ready(link); 3724 if (ready > 0) 3725 return 0; 3726 3727 /* 3728 * -ENODEV could be transient. Ignore -ENODEV if link 3729 * is online. Also, some SATA devices take a long 3730 * time to clear 0xff after reset. Wait for 3731 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3732 * offline. 3733 * 3734 * Note that some PATA controllers (pata_ali) explode 3735 * if status register is read more than once when 3736 * there's no device attached. 3737 */ 3738 if (ready == -ENODEV) { 3739 if (ata_link_online(link)) 3740 ready = 0; 3741 else if ((link->ap->flags & ATA_FLAG_SATA) && 3742 !ata_link_offline(link) && 3743 time_before(now, nodev_deadline)) 3744 ready = 0; 3745 } 3746 3747 if (ready) 3748 return ready; 3749 if (time_after(now, deadline)) 3750 return -EBUSY; 3751 3752 if (!warned && time_after(now, start + 5 * HZ) && 3753 (deadline - now > 3 * HZ)) { 3754 ata_link_warn(link, 3755 "link is slow to respond, please be patient " 3756 "(ready=%d)\n", tmp); 3757 warned = 1; 3758 } 3759 3760 ata_msleep(link->ap, 50); 3761 } 3762 } 3763 3764 /** 3765 * ata_wait_after_reset - wait for link to become ready after reset 3766 * @link: link to be waited on 3767 * @deadline: deadline jiffies for the operation 3768 * @check_ready: callback to check link readiness 3769 * 3770 * Wait for @link to become ready after reset. 3771 * 3772 * LOCKING: 3773 * EH context. 3774 * 3775 * RETURNS: 3776 * 0 if @link is ready before @deadline; otherwise, -errno. 3777 */ 3778 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3779 int (*check_ready)(struct ata_link *link)) 3780 { 3781 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3782 3783 return ata_wait_ready(link, deadline, check_ready); 3784 } 3785 3786 /** 3787 * sata_link_debounce - debounce SATA phy status 3788 * @link: ATA link to debounce SATA phy status for 3789 * @params: timing parameters { interval, duration, timeout } in msec 3790 * @deadline: deadline jiffies for the operation 3791 * 3792 * Make sure SStatus of @link reaches stable state, determined by 3793 * holding the same value where DET is not 1 for @duration polled 3794 * every @interval, before @timeout. Timeout constraints the 3795 * beginning of the stable state. Because DET gets stuck at 1 on 3796 * some controllers after hot unplugging, this functions waits 3797 * until timeout then returns 0 if DET is stable at 1. 3798 * 3799 * @timeout is further limited by @deadline. The sooner of the 3800 * two is used. 3801 * 3802 * LOCKING: 3803 * Kernel thread context (may sleep) 3804 * 3805 * RETURNS: 3806 * 0 on success, -errno on failure. 3807 */ 3808 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3809 unsigned long deadline) 3810 { 3811 unsigned long interval = params[0]; 3812 unsigned long duration = params[1]; 3813 unsigned long last_jiffies, t; 3814 u32 last, cur; 3815 int rc; 3816 3817 t = ata_deadline(jiffies, params[2]); 3818 if (time_before(t, deadline)) 3819 deadline = t; 3820 3821 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3822 return rc; 3823 cur &= 0xf; 3824 3825 last = cur; 3826 last_jiffies = jiffies; 3827 3828 while (1) { 3829 ata_msleep(link->ap, interval); 3830 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3831 return rc; 3832 cur &= 0xf; 3833 3834 /* DET stable? */ 3835 if (cur == last) { 3836 if (cur == 1 && time_before(jiffies, deadline)) 3837 continue; 3838 if (time_after(jiffies, 3839 ata_deadline(last_jiffies, duration))) 3840 return 0; 3841 continue; 3842 } 3843 3844 /* unstable, start over */ 3845 last = cur; 3846 last_jiffies = jiffies; 3847 3848 /* Check deadline. If debouncing failed, return 3849 * -EPIPE to tell upper layer to lower link speed. 3850 */ 3851 if (time_after(jiffies, deadline)) 3852 return -EPIPE; 3853 } 3854 } 3855 3856 /** 3857 * sata_link_resume - resume SATA link 3858 * @link: ATA link to resume SATA 3859 * @params: timing parameters { interval, duration, timeout } in msec 3860 * @deadline: deadline jiffies for the operation 3861 * 3862 * Resume SATA phy @link and debounce it. 3863 * 3864 * LOCKING: 3865 * Kernel thread context (may sleep) 3866 * 3867 * RETURNS: 3868 * 0 on success, -errno on failure. 3869 */ 3870 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3871 unsigned long deadline) 3872 { 3873 int tries = ATA_LINK_RESUME_TRIES; 3874 u32 scontrol, serror; 3875 int rc; 3876 3877 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3878 return rc; 3879 3880 /* 3881 * Writes to SControl sometimes get ignored under certain 3882 * controllers (ata_piix SIDPR). Make sure DET actually is 3883 * cleared. 3884 */ 3885 do { 3886 scontrol = (scontrol & 0x0f0) | 0x300; 3887 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3888 return rc; 3889 /* 3890 * Some PHYs react badly if SStatus is pounded 3891 * immediately after resuming. Delay 200ms before 3892 * debouncing. 3893 */ 3894 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY)) 3895 ata_msleep(link->ap, 200); 3896 3897 /* is SControl restored correctly? */ 3898 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3899 return rc; 3900 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3901 3902 if ((scontrol & 0xf0f) != 0x300) { 3903 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3904 scontrol); 3905 return 0; 3906 } 3907 3908 if (tries < ATA_LINK_RESUME_TRIES) 3909 ata_link_warn(link, "link resume succeeded after %d retries\n", 3910 ATA_LINK_RESUME_TRIES - tries); 3911 3912 if ((rc = sata_link_debounce(link, params, deadline))) 3913 return rc; 3914 3915 /* clear SError, some PHYs require this even for SRST to work */ 3916 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3917 rc = sata_scr_write(link, SCR_ERROR, serror); 3918 3919 return rc != -EINVAL ? rc : 0; 3920 } 3921 3922 /** 3923 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3924 * @link: ATA link to manipulate SControl for 3925 * @policy: LPM policy to configure 3926 * @spm_wakeup: initiate LPM transition to active state 3927 * 3928 * Manipulate the IPM field of the SControl register of @link 3929 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3930 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3931 * the link. This function also clears PHYRDY_CHG before 3932 * returning. 3933 * 3934 * LOCKING: 3935 * EH context. 3936 * 3937 * RETURNS: 3938 * 0 on success, -errno otherwise. 3939 */ 3940 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3941 bool spm_wakeup) 3942 { 3943 struct ata_eh_context *ehc = &link->eh_context; 3944 bool woken_up = false; 3945 u32 scontrol; 3946 int rc; 3947 3948 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3949 if (rc) 3950 return rc; 3951 3952 switch (policy) { 3953 case ATA_LPM_MAX_POWER: 3954 /* disable all LPM transitions */ 3955 scontrol |= (0x7 << 8); 3956 /* initiate transition to active state */ 3957 if (spm_wakeup) { 3958 scontrol |= (0x4 << 12); 3959 woken_up = true; 3960 } 3961 break; 3962 case ATA_LPM_MED_POWER: 3963 /* allow LPM to PARTIAL */ 3964 scontrol &= ~(0x1 << 8); 3965 scontrol |= (0x6 << 8); 3966 break; 3967 case ATA_LPM_MIN_POWER: 3968 if (ata_link_nr_enabled(link) > 0) 3969 /* no restrictions on LPM transitions */ 3970 scontrol &= ~(0x7 << 8); 3971 else { 3972 /* empty port, power off */ 3973 scontrol &= ~0xf; 3974 scontrol |= (0x1 << 2); 3975 } 3976 break; 3977 default: 3978 WARN_ON(1); 3979 } 3980 3981 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3982 if (rc) 3983 return rc; 3984 3985 /* give the link time to transit out of LPM state */ 3986 if (woken_up) 3987 msleep(10); 3988 3989 /* clear PHYRDY_CHG from SError */ 3990 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3991 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3992 } 3993 3994 /** 3995 * ata_std_prereset - prepare for reset 3996 * @link: ATA link to be reset 3997 * @deadline: deadline jiffies for the operation 3998 * 3999 * @link is about to be reset. Initialize it. Failure from 4000 * prereset makes libata abort whole reset sequence and give up 4001 * that port, so prereset should be best-effort. It does its 4002 * best to prepare for reset sequence but if things go wrong, it 4003 * should just whine, not fail. 4004 * 4005 * LOCKING: 4006 * Kernel thread context (may sleep) 4007 * 4008 * RETURNS: 4009 * 0 on success, -errno otherwise. 4010 */ 4011 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 4012 { 4013 struct ata_port *ap = link->ap; 4014 struct ata_eh_context *ehc = &link->eh_context; 4015 const unsigned long *timing = sata_ehc_deb_timing(ehc); 4016 int rc; 4017 4018 /* if we're about to do hardreset, nothing more to do */ 4019 if (ehc->i.action & ATA_EH_HARDRESET) 4020 return 0; 4021 4022 /* if SATA, resume link */ 4023 if (ap->flags & ATA_FLAG_SATA) { 4024 rc = sata_link_resume(link, timing, deadline); 4025 /* whine about phy resume failure but proceed */ 4026 if (rc && rc != -EOPNOTSUPP) 4027 ata_link_warn(link, 4028 "failed to resume link for reset (errno=%d)\n", 4029 rc); 4030 } 4031 4032 /* no point in trying softreset on offline link */ 4033 if (ata_phys_link_offline(link)) 4034 ehc->i.action &= ~ATA_EH_SOFTRESET; 4035 4036 return 0; 4037 } 4038 4039 /** 4040 * sata_link_hardreset - reset link via SATA phy reset 4041 * @link: link to reset 4042 * @timing: timing parameters { interval, duration, timeout } in msec 4043 * @deadline: deadline jiffies for the operation 4044 * @online: optional out parameter indicating link onlineness 4045 * @check_ready: optional callback to check link readiness 4046 * 4047 * SATA phy-reset @link using DET bits of SControl register. 4048 * After hardreset, link readiness is waited upon using 4049 * ata_wait_ready() if @check_ready is specified. LLDs are 4050 * allowed to not specify @check_ready and wait itself after this 4051 * function returns. Device classification is LLD's 4052 * responsibility. 4053 * 4054 * *@online is set to one iff reset succeeded and @link is online 4055 * after reset. 4056 * 4057 * LOCKING: 4058 * Kernel thread context (may sleep) 4059 * 4060 * RETURNS: 4061 * 0 on success, -errno otherwise. 4062 */ 4063 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 4064 unsigned long deadline, 4065 bool *online, int (*check_ready)(struct ata_link *)) 4066 { 4067 u32 scontrol; 4068 int rc; 4069 4070 DPRINTK("ENTER\n"); 4071 4072 if (online) 4073 *online = false; 4074 4075 if (sata_set_spd_needed(link)) { 4076 /* SATA spec says nothing about how to reconfigure 4077 * spd. To be on the safe side, turn off phy during 4078 * reconfiguration. This works for at least ICH7 AHCI 4079 * and Sil3124. 4080 */ 4081 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 4082 goto out; 4083 4084 scontrol = (scontrol & 0x0f0) | 0x304; 4085 4086 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 4087 goto out; 4088 4089 sata_set_spd(link); 4090 } 4091 4092 /* issue phy wake/reset */ 4093 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 4094 goto out; 4095 4096 scontrol = (scontrol & 0x0f0) | 0x301; 4097 4098 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 4099 goto out; 4100 4101 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 4102 * 10.4.2 says at least 1 ms. 4103 */ 4104 ata_msleep(link->ap, 1); 4105 4106 /* bring link back */ 4107 rc = sata_link_resume(link, timing, deadline); 4108 if (rc) 4109 goto out; 4110 /* if link is offline nothing more to do */ 4111 if (ata_phys_link_offline(link)) 4112 goto out; 4113 4114 /* Link is online. From this point, -ENODEV too is an error. */ 4115 if (online) 4116 *online = true; 4117 4118 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 4119 /* If PMP is supported, we have to do follow-up SRST. 4120 * Some PMPs don't send D2H Reg FIS after hardreset if 4121 * the first port is empty. Wait only for 4122 * ATA_TMOUT_PMP_SRST_WAIT. 4123 */ 4124 if (check_ready) { 4125 unsigned long pmp_deadline; 4126 4127 pmp_deadline = ata_deadline(jiffies, 4128 ATA_TMOUT_PMP_SRST_WAIT); 4129 if (time_after(pmp_deadline, deadline)) 4130 pmp_deadline = deadline; 4131 ata_wait_ready(link, pmp_deadline, check_ready); 4132 } 4133 rc = -EAGAIN; 4134 goto out; 4135 } 4136 4137 rc = 0; 4138 if (check_ready) 4139 rc = ata_wait_ready(link, deadline, check_ready); 4140 out: 4141 if (rc && rc != -EAGAIN) { 4142 /* online is set iff link is online && reset succeeded */ 4143 if (online) 4144 *online = false; 4145 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 4146 } 4147 DPRINTK("EXIT, rc=%d\n", rc); 4148 return rc; 4149 } 4150 4151 /** 4152 * sata_std_hardreset - COMRESET w/o waiting or classification 4153 * @link: link to reset 4154 * @class: resulting class of attached device 4155 * @deadline: deadline jiffies for the operation 4156 * 4157 * Standard SATA COMRESET w/o waiting or classification. 4158 * 4159 * LOCKING: 4160 * Kernel thread context (may sleep) 4161 * 4162 * RETURNS: 4163 * 0 if link offline, -EAGAIN if link online, -errno on errors. 4164 */ 4165 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 4166 unsigned long deadline) 4167 { 4168 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 4169 bool online; 4170 int rc; 4171 4172 /* do hardreset */ 4173 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 4174 return online ? -EAGAIN : rc; 4175 } 4176 4177 /** 4178 * ata_std_postreset - standard postreset callback 4179 * @link: the target ata_link 4180 * @classes: classes of attached devices 4181 * 4182 * This function is invoked after a successful reset. Note that 4183 * the device might have been reset more than once using 4184 * different reset methods before postreset is invoked. 4185 * 4186 * LOCKING: 4187 * Kernel thread context (may sleep) 4188 */ 4189 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 4190 { 4191 u32 serror; 4192 4193 DPRINTK("ENTER\n"); 4194 4195 /* reset complete, clear SError */ 4196 if (!sata_scr_read(link, SCR_ERROR, &serror)) 4197 sata_scr_write(link, SCR_ERROR, serror); 4198 4199 /* print link status */ 4200 sata_print_link_status(link); 4201 4202 DPRINTK("EXIT\n"); 4203 } 4204 4205 /** 4206 * ata_dev_same_device - Determine whether new ID matches configured device 4207 * @dev: device to compare against 4208 * @new_class: class of the new device 4209 * @new_id: IDENTIFY page of the new device 4210 * 4211 * Compare @new_class and @new_id against @dev and determine 4212 * whether @dev is the device indicated by @new_class and 4213 * @new_id. 4214 * 4215 * LOCKING: 4216 * None. 4217 * 4218 * RETURNS: 4219 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 4220 */ 4221 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 4222 const u16 *new_id) 4223 { 4224 const u16 *old_id = dev->id; 4225 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 4226 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 4227 4228 if (dev->class != new_class) { 4229 ata_dev_info(dev, "class mismatch %d != %d\n", 4230 dev->class, new_class); 4231 return 0; 4232 } 4233 4234 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 4235 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 4236 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 4237 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 4238 4239 if (strcmp(model[0], model[1])) { 4240 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 4241 model[0], model[1]); 4242 return 0; 4243 } 4244 4245 if (strcmp(serial[0], serial[1])) { 4246 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 4247 serial[0], serial[1]); 4248 return 0; 4249 } 4250 4251 return 1; 4252 } 4253 4254 /** 4255 * ata_dev_reread_id - Re-read IDENTIFY data 4256 * @dev: target ATA device 4257 * @readid_flags: read ID flags 4258 * 4259 * Re-read IDENTIFY page and make sure @dev is still attached to 4260 * the port. 4261 * 4262 * LOCKING: 4263 * Kernel thread context (may sleep) 4264 * 4265 * RETURNS: 4266 * 0 on success, negative errno otherwise 4267 */ 4268 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 4269 { 4270 unsigned int class = dev->class; 4271 u16 *id = (void *)dev->link->ap->sector_buf; 4272 int rc; 4273 4274 /* read ID data */ 4275 rc = ata_dev_read_id(dev, &class, readid_flags, id); 4276 if (rc) 4277 return rc; 4278 4279 /* is the device still there? */ 4280 if (!ata_dev_same_device(dev, class, id)) 4281 return -ENODEV; 4282 4283 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4284 return 0; 4285 } 4286 4287 /** 4288 * ata_dev_revalidate - Revalidate ATA device 4289 * @dev: device to revalidate 4290 * @new_class: new class code 4291 * @readid_flags: read ID flags 4292 * 4293 * Re-read IDENTIFY page, make sure @dev is still attached to the 4294 * port and reconfigure it according to the new IDENTIFY page. 4295 * 4296 * LOCKING: 4297 * Kernel thread context (may sleep) 4298 * 4299 * RETURNS: 4300 * 0 on success, negative errno otherwise 4301 */ 4302 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4303 unsigned int readid_flags) 4304 { 4305 u64 n_sectors = dev->n_sectors; 4306 u64 n_native_sectors = dev->n_native_sectors; 4307 int rc; 4308 4309 if (!ata_dev_enabled(dev)) 4310 return -ENODEV; 4311 4312 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4313 if (ata_class_enabled(new_class) && 4314 new_class != ATA_DEV_ATA && 4315 new_class != ATA_DEV_ATAPI && 4316 new_class != ATA_DEV_ZAC && 4317 new_class != ATA_DEV_SEMB) { 4318 ata_dev_info(dev, "class mismatch %u != %u\n", 4319 dev->class, new_class); 4320 rc = -ENODEV; 4321 goto fail; 4322 } 4323 4324 /* re-read ID */ 4325 rc = ata_dev_reread_id(dev, readid_flags); 4326 if (rc) 4327 goto fail; 4328 4329 /* configure device according to the new ID */ 4330 rc = ata_dev_configure(dev); 4331 if (rc) 4332 goto fail; 4333 4334 /* verify n_sectors hasn't changed */ 4335 if (dev->class != ATA_DEV_ATA || !n_sectors || 4336 dev->n_sectors == n_sectors) 4337 return 0; 4338 4339 /* n_sectors has changed */ 4340 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4341 (unsigned long long)n_sectors, 4342 (unsigned long long)dev->n_sectors); 4343 4344 /* 4345 * Something could have caused HPA to be unlocked 4346 * involuntarily. If n_native_sectors hasn't changed and the 4347 * new size matches it, keep the device. 4348 */ 4349 if (dev->n_native_sectors == n_native_sectors && 4350 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4351 ata_dev_warn(dev, 4352 "new n_sectors matches native, probably " 4353 "late HPA unlock, n_sectors updated\n"); 4354 /* use the larger n_sectors */ 4355 return 0; 4356 } 4357 4358 /* 4359 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4360 * unlocking HPA in those cases. 4361 * 4362 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4363 */ 4364 if (dev->n_native_sectors == n_native_sectors && 4365 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4366 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4367 ata_dev_warn(dev, 4368 "old n_sectors matches native, probably " 4369 "late HPA lock, will try to unlock HPA\n"); 4370 /* try unlocking HPA */ 4371 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4372 rc = -EIO; 4373 } else 4374 rc = -ENODEV; 4375 4376 /* restore original n_[native_]sectors and fail */ 4377 dev->n_native_sectors = n_native_sectors; 4378 dev->n_sectors = n_sectors; 4379 fail: 4380 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4381 return rc; 4382 } 4383 4384 struct ata_blacklist_entry { 4385 const char *model_num; 4386 const char *model_rev; 4387 unsigned long horkage; 4388 }; 4389 4390 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4391 /* Devices with DMA related problems under Linux */ 4392 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4393 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4394 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4395 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4396 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4397 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4398 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4399 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4400 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4401 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4402 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4403 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4404 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4405 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4406 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4407 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4408 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4409 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4410 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4411 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4412 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4413 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4414 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4415 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4416 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4417 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4418 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4419 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4420 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4421 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 4422 /* Odd clown on sil3726/4726 PMPs */ 4423 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4424 4425 /* Weird ATAPI devices */ 4426 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4427 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4428 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4429 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4430 4431 /* 4432 * Causes silent data corruption with higher max sects. 4433 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 4434 */ 4435 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 4436 4437 /* 4438 * These devices time out with higher max sects. 4439 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 4440 */ 4441 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4442 4443 /* Devices we expect to fail diagnostics */ 4444 4445 /* Devices where NCQ should be avoided */ 4446 /* NCQ is slow */ 4447 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4448 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4449 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4450 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4451 /* NCQ is broken */ 4452 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4453 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4454 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4455 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4456 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4457 4458 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4459 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4460 ATA_HORKAGE_FIRMWARE_WARN }, 4461 4462 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4463 ATA_HORKAGE_FIRMWARE_WARN }, 4464 4465 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4466 ATA_HORKAGE_FIRMWARE_WARN }, 4467 4468 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4469 ATA_HORKAGE_FIRMWARE_WARN }, 4470 4471 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */ 4472 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4473 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4474 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4475 4476 /* Blacklist entries taken from Silicon Image 3124/3132 4477 Windows driver .inf file - also several Linux problem reports */ 4478 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4479 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4480 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4481 4482 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4483 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4484 4485 /* devices which puke on READ_NATIVE_MAX */ 4486 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4487 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4488 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4489 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4490 4491 /* this one allows HPA unlocking but fails IOs on the area */ 4492 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4493 4494 /* Devices which report 1 sector over size HPA */ 4495 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4496 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4497 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4498 4499 /* Devices which get the IVB wrong */ 4500 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4501 /* Maybe we should just blacklist TSSTcorp... */ 4502 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4503 4504 /* Devices that do not need bridging limits applied */ 4505 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4506 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4507 4508 /* Devices which aren't very happy with higher link speeds */ 4509 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4510 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4511 4512 /* 4513 * Devices which choke on SETXFER. Applies only if both the 4514 * device and controller are SATA. 4515 */ 4516 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4517 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4518 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4519 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4520 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4521 4522 /* devices that don't properly handle queued TRIM commands */ 4523 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4524 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4525 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4526 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4527 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4528 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4529 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4530 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4531 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4532 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4533 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4534 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4535 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4536 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4537 4538 /* devices that don't properly handle TRIM commands */ 4539 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, 4540 4541 /* 4542 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4543 * (Return Zero After Trim) flags in the ATA Command Set are 4544 * unreliable in the sense that they only define what happens if 4545 * the device successfully executed the DSM TRIM command. TRIM 4546 * is only advisory, however, and the device is free to silently 4547 * ignore all or parts of the request. 4548 * 4549 * Whitelist drives that are known to reliably return zeroes 4550 * after TRIM. 4551 */ 4552 4553 /* 4554 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4555 * that model before whitelisting all other intel SSDs. 4556 */ 4557 { "INTEL*SSDSC2MH*", NULL, 0, }, 4558 4559 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4560 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4561 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4562 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4563 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4564 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4565 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4566 4567 /* 4568 * Some WD SATA-I drives spin up and down erratically when the link 4569 * is put into the slumber mode. We don't have full list of the 4570 * affected devices. Disable LPM if the device matches one of the 4571 * known prefixes and is SATA-1. As a side effect LPM partial is 4572 * lost too. 4573 * 4574 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4575 */ 4576 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4577 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4578 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4579 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4580 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4581 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4582 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4583 4584 /* End Marker */ 4585 { } 4586 }; 4587 4588 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4589 { 4590 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4591 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4592 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4593 4594 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4595 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4596 4597 while (ad->model_num) { 4598 if (glob_match(ad->model_num, model_num)) { 4599 if (ad->model_rev == NULL) 4600 return ad->horkage; 4601 if (glob_match(ad->model_rev, model_rev)) 4602 return ad->horkage; 4603 } 4604 ad++; 4605 } 4606 return 0; 4607 } 4608 4609 static int ata_dma_blacklisted(const struct ata_device *dev) 4610 { 4611 /* We don't support polling DMA. 4612 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4613 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4614 */ 4615 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4616 (dev->flags & ATA_DFLAG_CDB_INTR)) 4617 return 1; 4618 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4619 } 4620 4621 /** 4622 * ata_is_40wire - check drive side detection 4623 * @dev: device 4624 * 4625 * Perform drive side detection decoding, allowing for device vendors 4626 * who can't follow the documentation. 4627 */ 4628 4629 static int ata_is_40wire(struct ata_device *dev) 4630 { 4631 if (dev->horkage & ATA_HORKAGE_IVB) 4632 return ata_drive_40wire_relaxed(dev->id); 4633 return ata_drive_40wire(dev->id); 4634 } 4635 4636 /** 4637 * cable_is_40wire - 40/80/SATA decider 4638 * @ap: port to consider 4639 * 4640 * This function encapsulates the policy for speed management 4641 * in one place. At the moment we don't cache the result but 4642 * there is a good case for setting ap->cbl to the result when 4643 * we are called with unknown cables (and figuring out if it 4644 * impacts hotplug at all). 4645 * 4646 * Return 1 if the cable appears to be 40 wire. 4647 */ 4648 4649 static int cable_is_40wire(struct ata_port *ap) 4650 { 4651 struct ata_link *link; 4652 struct ata_device *dev; 4653 4654 /* If the controller thinks we are 40 wire, we are. */ 4655 if (ap->cbl == ATA_CBL_PATA40) 4656 return 1; 4657 4658 /* If the controller thinks we are 80 wire, we are. */ 4659 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4660 return 0; 4661 4662 /* If the system is known to be 40 wire short cable (eg 4663 * laptop), then we allow 80 wire modes even if the drive 4664 * isn't sure. 4665 */ 4666 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4667 return 0; 4668 4669 /* If the controller doesn't know, we scan. 4670 * 4671 * Note: We look for all 40 wire detects at this point. Any 4672 * 80 wire detect is taken to be 80 wire cable because 4673 * - in many setups only the one drive (slave if present) will 4674 * give a valid detect 4675 * - if you have a non detect capable drive you don't want it 4676 * to colour the choice 4677 */ 4678 ata_for_each_link(link, ap, EDGE) { 4679 ata_for_each_dev(dev, link, ENABLED) { 4680 if (!ata_is_40wire(dev)) 4681 return 0; 4682 } 4683 } 4684 return 1; 4685 } 4686 4687 /** 4688 * ata_dev_xfermask - Compute supported xfermask of the given device 4689 * @dev: Device to compute xfermask for 4690 * 4691 * Compute supported xfermask of @dev and store it in 4692 * dev->*_mask. This function is responsible for applying all 4693 * known limits including host controller limits, device 4694 * blacklist, etc... 4695 * 4696 * LOCKING: 4697 * None. 4698 */ 4699 static void ata_dev_xfermask(struct ata_device *dev) 4700 { 4701 struct ata_link *link = dev->link; 4702 struct ata_port *ap = link->ap; 4703 struct ata_host *host = ap->host; 4704 unsigned long xfer_mask; 4705 4706 /* controller modes available */ 4707 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4708 ap->mwdma_mask, ap->udma_mask); 4709 4710 /* drive modes available */ 4711 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4712 dev->mwdma_mask, dev->udma_mask); 4713 xfer_mask &= ata_id_xfermask(dev->id); 4714 4715 /* 4716 * CFA Advanced TrueIDE timings are not allowed on a shared 4717 * cable 4718 */ 4719 if (ata_dev_pair(dev)) { 4720 /* No PIO5 or PIO6 */ 4721 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4722 /* No MWDMA3 or MWDMA 4 */ 4723 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4724 } 4725 4726 if (ata_dma_blacklisted(dev)) { 4727 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4728 ata_dev_warn(dev, 4729 "device is on DMA blacklist, disabling DMA\n"); 4730 } 4731 4732 if ((host->flags & ATA_HOST_SIMPLEX) && 4733 host->simplex_claimed && host->simplex_claimed != ap) { 4734 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4735 ata_dev_warn(dev, 4736 "simplex DMA is claimed by other device, disabling DMA\n"); 4737 } 4738 4739 if (ap->flags & ATA_FLAG_NO_IORDY) 4740 xfer_mask &= ata_pio_mask_no_iordy(dev); 4741 4742 if (ap->ops->mode_filter) 4743 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4744 4745 /* Apply cable rule here. Don't apply it early because when 4746 * we handle hot plug the cable type can itself change. 4747 * Check this last so that we know if the transfer rate was 4748 * solely limited by the cable. 4749 * Unknown or 80 wire cables reported host side are checked 4750 * drive side as well. Cases where we know a 40wire cable 4751 * is used safely for 80 are not checked here. 4752 */ 4753 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4754 /* UDMA/44 or higher would be available */ 4755 if (cable_is_40wire(ap)) { 4756 ata_dev_warn(dev, 4757 "limited to UDMA/33 due to 40-wire cable\n"); 4758 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4759 } 4760 4761 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4762 &dev->mwdma_mask, &dev->udma_mask); 4763 } 4764 4765 /** 4766 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4767 * @dev: Device to which command will be sent 4768 * 4769 * Issue SET FEATURES - XFER MODE command to device @dev 4770 * on port @ap. 4771 * 4772 * LOCKING: 4773 * PCI/etc. bus probe sem. 4774 * 4775 * RETURNS: 4776 * 0 on success, AC_ERR_* mask otherwise. 4777 */ 4778 4779 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4780 { 4781 struct ata_taskfile tf; 4782 unsigned int err_mask; 4783 4784 /* set up set-features taskfile */ 4785 DPRINTK("set features - xfer mode\n"); 4786 4787 /* Some controllers and ATAPI devices show flaky interrupt 4788 * behavior after setting xfer mode. Use polling instead. 4789 */ 4790 ata_tf_init(dev, &tf); 4791 tf.command = ATA_CMD_SET_FEATURES; 4792 tf.feature = SETFEATURES_XFER; 4793 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4794 tf.protocol = ATA_PROT_NODATA; 4795 /* If we are using IORDY we must send the mode setting command */ 4796 if (ata_pio_need_iordy(dev)) 4797 tf.nsect = dev->xfer_mode; 4798 /* If the device has IORDY and the controller does not - turn it off */ 4799 else if (ata_id_has_iordy(dev->id)) 4800 tf.nsect = 0x01; 4801 else /* In the ancient relic department - skip all of this */ 4802 return 0; 4803 4804 /* On some disks, this command causes spin-up, so we need longer timeout */ 4805 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4806 4807 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4808 return err_mask; 4809 } 4810 4811 /** 4812 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4813 * @dev: Device to which command will be sent 4814 * @enable: Whether to enable or disable the feature 4815 * @feature: The sector count represents the feature to set 4816 * 4817 * Issue SET FEATURES - SATA FEATURES command to device @dev 4818 * on port @ap with sector count 4819 * 4820 * LOCKING: 4821 * PCI/etc. bus probe sem. 4822 * 4823 * RETURNS: 4824 * 0 on success, AC_ERR_* mask otherwise. 4825 */ 4826 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4827 { 4828 struct ata_taskfile tf; 4829 unsigned int err_mask; 4830 unsigned long timeout = 0; 4831 4832 /* set up set-features taskfile */ 4833 DPRINTK("set features - SATA features\n"); 4834 4835 ata_tf_init(dev, &tf); 4836 tf.command = ATA_CMD_SET_FEATURES; 4837 tf.feature = enable; 4838 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4839 tf.protocol = ATA_PROT_NODATA; 4840 tf.nsect = feature; 4841 4842 if (enable == SETFEATURES_SPINUP) 4843 timeout = ata_probe_timeout ? 4844 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4845 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4846 4847 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4848 return err_mask; 4849 } 4850 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4851 4852 /** 4853 * ata_dev_init_params - Issue INIT DEV PARAMS command 4854 * @dev: Device to which command will be sent 4855 * @heads: Number of heads (taskfile parameter) 4856 * @sectors: Number of sectors (taskfile parameter) 4857 * 4858 * LOCKING: 4859 * Kernel thread context (may sleep) 4860 * 4861 * RETURNS: 4862 * 0 on success, AC_ERR_* mask otherwise. 4863 */ 4864 static unsigned int ata_dev_init_params(struct ata_device *dev, 4865 u16 heads, u16 sectors) 4866 { 4867 struct ata_taskfile tf; 4868 unsigned int err_mask; 4869 4870 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4871 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4872 return AC_ERR_INVALID; 4873 4874 /* set up init dev params taskfile */ 4875 DPRINTK("init dev params \n"); 4876 4877 ata_tf_init(dev, &tf); 4878 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4879 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4880 tf.protocol = ATA_PROT_NODATA; 4881 tf.nsect = sectors; 4882 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4883 4884 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4885 /* A clean abort indicates an original or just out of spec drive 4886 and we should continue as we issue the setup based on the 4887 drive reported working geometry */ 4888 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4889 err_mask = 0; 4890 4891 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4892 return err_mask; 4893 } 4894 4895 /** 4896 * atapi_check_dma - Check whether ATAPI DMA can be supported 4897 * @qc: Metadata associated with taskfile to check 4898 * 4899 * Allow low-level driver to filter ATA PACKET commands, returning 4900 * a status indicating whether or not it is OK to use DMA for the 4901 * supplied PACKET command. 4902 * 4903 * LOCKING: 4904 * spin_lock_irqsave(host lock) 4905 * 4906 * RETURNS: 0 when ATAPI DMA can be used 4907 * nonzero otherwise 4908 */ 4909 int atapi_check_dma(struct ata_queued_cmd *qc) 4910 { 4911 struct ata_port *ap = qc->ap; 4912 4913 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4914 * few ATAPI devices choke on such DMA requests. 4915 */ 4916 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4917 unlikely(qc->nbytes & 15)) 4918 return 1; 4919 4920 if (ap->ops->check_atapi_dma) 4921 return ap->ops->check_atapi_dma(qc); 4922 4923 return 0; 4924 } 4925 4926 /** 4927 * ata_std_qc_defer - Check whether a qc needs to be deferred 4928 * @qc: ATA command in question 4929 * 4930 * Non-NCQ commands cannot run with any other command, NCQ or 4931 * not. As upper layer only knows the queue depth, we are 4932 * responsible for maintaining exclusion. This function checks 4933 * whether a new command @qc can be issued. 4934 * 4935 * LOCKING: 4936 * spin_lock_irqsave(host lock) 4937 * 4938 * RETURNS: 4939 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4940 */ 4941 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4942 { 4943 struct ata_link *link = qc->dev->link; 4944 4945 if (ata_is_ncq(qc->tf.protocol)) { 4946 if (!ata_tag_valid(link->active_tag)) 4947 return 0; 4948 } else { 4949 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4950 return 0; 4951 } 4952 4953 return ATA_DEFER_LINK; 4954 } 4955 4956 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4957 4958 /** 4959 * ata_sg_init - Associate command with scatter-gather table. 4960 * @qc: Command to be associated 4961 * @sg: Scatter-gather table. 4962 * @n_elem: Number of elements in s/g table. 4963 * 4964 * Initialize the data-related elements of queued_cmd @qc 4965 * to point to a scatter-gather table @sg, containing @n_elem 4966 * elements. 4967 * 4968 * LOCKING: 4969 * spin_lock_irqsave(host lock) 4970 */ 4971 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4972 unsigned int n_elem) 4973 { 4974 qc->sg = sg; 4975 qc->n_elem = n_elem; 4976 qc->cursg = qc->sg; 4977 } 4978 4979 #ifdef CONFIG_HAS_DMA 4980 4981 /** 4982 * ata_sg_clean - Unmap DMA memory associated with command 4983 * @qc: Command containing DMA memory to be released 4984 * 4985 * Unmap all mapped DMA memory associated with this command. 4986 * 4987 * LOCKING: 4988 * spin_lock_irqsave(host lock) 4989 */ 4990 static void ata_sg_clean(struct ata_queued_cmd *qc) 4991 { 4992 struct ata_port *ap = qc->ap; 4993 struct scatterlist *sg = qc->sg; 4994 int dir = qc->dma_dir; 4995 4996 WARN_ON_ONCE(sg == NULL); 4997 4998 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4999 5000 if (qc->n_elem) 5001 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 5002 5003 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5004 qc->sg = NULL; 5005 } 5006 5007 /** 5008 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 5009 * @qc: Command with scatter-gather table to be mapped. 5010 * 5011 * DMA-map the scatter-gather table associated with queued_cmd @qc. 5012 * 5013 * LOCKING: 5014 * spin_lock_irqsave(host lock) 5015 * 5016 * RETURNS: 5017 * Zero on success, negative on error. 5018 * 5019 */ 5020 static int ata_sg_setup(struct ata_queued_cmd *qc) 5021 { 5022 struct ata_port *ap = qc->ap; 5023 unsigned int n_elem; 5024 5025 VPRINTK("ENTER, ata%u\n", ap->print_id); 5026 5027 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 5028 if (n_elem < 1) 5029 return -1; 5030 5031 DPRINTK("%d sg elements mapped\n", n_elem); 5032 qc->orig_n_elem = qc->n_elem; 5033 qc->n_elem = n_elem; 5034 qc->flags |= ATA_QCFLAG_DMAMAP; 5035 5036 return 0; 5037 } 5038 5039 #else /* !CONFIG_HAS_DMA */ 5040 5041 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 5042 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 5043 5044 #endif /* !CONFIG_HAS_DMA */ 5045 5046 /** 5047 * swap_buf_le16 - swap halves of 16-bit words in place 5048 * @buf: Buffer to swap 5049 * @buf_words: Number of 16-bit words in buffer. 5050 * 5051 * Swap halves of 16-bit words if needed to convert from 5052 * little-endian byte order to native cpu byte order, or 5053 * vice-versa. 5054 * 5055 * LOCKING: 5056 * Inherited from caller. 5057 */ 5058 void swap_buf_le16(u16 *buf, unsigned int buf_words) 5059 { 5060 #ifdef __BIG_ENDIAN 5061 unsigned int i; 5062 5063 for (i = 0; i < buf_words; i++) 5064 buf[i] = le16_to_cpu(buf[i]); 5065 #endif /* __BIG_ENDIAN */ 5066 } 5067 5068 /** 5069 * ata_qc_new_init - Request an available ATA command, and initialize it 5070 * @dev: Device from whom we request an available command structure 5071 * @tag: tag 5072 * 5073 * LOCKING: 5074 * None. 5075 */ 5076 5077 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 5078 { 5079 struct ata_port *ap = dev->link->ap; 5080 struct ata_queued_cmd *qc; 5081 5082 /* no command while frozen */ 5083 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 5084 return NULL; 5085 5086 /* libsas case */ 5087 if (ap->flags & ATA_FLAG_SAS_HOST) { 5088 tag = ata_sas_allocate_tag(ap); 5089 if (tag < 0) 5090 return NULL; 5091 } 5092 5093 qc = __ata_qc_from_tag(ap, tag); 5094 qc->tag = tag; 5095 qc->scsicmd = NULL; 5096 qc->ap = ap; 5097 qc->dev = dev; 5098 5099 ata_qc_reinit(qc); 5100 5101 return qc; 5102 } 5103 5104 /** 5105 * ata_qc_free - free unused ata_queued_cmd 5106 * @qc: Command to complete 5107 * 5108 * Designed to free unused ata_queued_cmd object 5109 * in case something prevents using it. 5110 * 5111 * LOCKING: 5112 * spin_lock_irqsave(host lock) 5113 */ 5114 void ata_qc_free(struct ata_queued_cmd *qc) 5115 { 5116 struct ata_port *ap; 5117 unsigned int tag; 5118 5119 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5120 ap = qc->ap; 5121 5122 qc->flags = 0; 5123 tag = qc->tag; 5124 if (likely(ata_tag_valid(tag))) { 5125 qc->tag = ATA_TAG_POISON; 5126 if (ap->flags & ATA_FLAG_SAS_HOST) 5127 ata_sas_free_tag(tag, ap); 5128 } 5129 } 5130 5131 void __ata_qc_complete(struct ata_queued_cmd *qc) 5132 { 5133 struct ata_port *ap; 5134 struct ata_link *link; 5135 5136 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5137 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 5138 ap = qc->ap; 5139 link = qc->dev->link; 5140 5141 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 5142 ata_sg_clean(qc); 5143 5144 /* command should be marked inactive atomically with qc completion */ 5145 if (ata_is_ncq(qc->tf.protocol)) { 5146 link->sactive &= ~(1 << qc->tag); 5147 if (!link->sactive) 5148 ap->nr_active_links--; 5149 } else { 5150 link->active_tag = ATA_TAG_POISON; 5151 ap->nr_active_links--; 5152 } 5153 5154 /* clear exclusive status */ 5155 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 5156 ap->excl_link == link)) 5157 ap->excl_link = NULL; 5158 5159 /* atapi: mark qc as inactive to prevent the interrupt handler 5160 * from completing the command twice later, before the error handler 5161 * is called. (when rc != 0 and atapi request sense is needed) 5162 */ 5163 qc->flags &= ~ATA_QCFLAG_ACTIVE; 5164 ap->qc_active &= ~(1 << qc->tag); 5165 5166 /* call completion callback */ 5167 qc->complete_fn(qc); 5168 } 5169 5170 static void fill_result_tf(struct ata_queued_cmd *qc) 5171 { 5172 struct ata_port *ap = qc->ap; 5173 5174 qc->result_tf.flags = qc->tf.flags; 5175 ap->ops->qc_fill_rtf(qc); 5176 } 5177 5178 static void ata_verify_xfer(struct ata_queued_cmd *qc) 5179 { 5180 struct ata_device *dev = qc->dev; 5181 5182 if (!ata_is_data(qc->tf.protocol)) 5183 return; 5184 5185 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 5186 return; 5187 5188 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 5189 } 5190 5191 /** 5192 * ata_qc_complete - Complete an active ATA command 5193 * @qc: Command to complete 5194 * 5195 * Indicate to the mid and upper layers that an ATA command has 5196 * completed, with either an ok or not-ok status. 5197 * 5198 * Refrain from calling this function multiple times when 5199 * successfully completing multiple NCQ commands. 5200 * ata_qc_complete_multiple() should be used instead, which will 5201 * properly update IRQ expect state. 5202 * 5203 * LOCKING: 5204 * spin_lock_irqsave(host lock) 5205 */ 5206 void ata_qc_complete(struct ata_queued_cmd *qc) 5207 { 5208 struct ata_port *ap = qc->ap; 5209 5210 /* Trigger the LED (if available) */ 5211 ledtrig_disk_activity(); 5212 5213 /* XXX: New EH and old EH use different mechanisms to 5214 * synchronize EH with regular execution path. 5215 * 5216 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 5217 * Normal execution path is responsible for not accessing a 5218 * failed qc. libata core enforces the rule by returning NULL 5219 * from ata_qc_from_tag() for failed qcs. 5220 * 5221 * Old EH depends on ata_qc_complete() nullifying completion 5222 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 5223 * not synchronize with interrupt handler. Only PIO task is 5224 * taken care of. 5225 */ 5226 if (ap->ops->error_handler) { 5227 struct ata_device *dev = qc->dev; 5228 struct ata_eh_info *ehi = &dev->link->eh_info; 5229 5230 if (unlikely(qc->err_mask)) 5231 qc->flags |= ATA_QCFLAG_FAILED; 5232 5233 /* 5234 * Finish internal commands without any further processing 5235 * and always with the result TF filled. 5236 */ 5237 if (unlikely(ata_tag_internal(qc->tag))) { 5238 fill_result_tf(qc); 5239 trace_ata_qc_complete_internal(qc); 5240 __ata_qc_complete(qc); 5241 return; 5242 } 5243 5244 /* 5245 * Non-internal qc has failed. Fill the result TF and 5246 * summon EH. 5247 */ 5248 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 5249 fill_result_tf(qc); 5250 trace_ata_qc_complete_failed(qc); 5251 ata_qc_schedule_eh(qc); 5252 return; 5253 } 5254 5255 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 5256 5257 /* read result TF if requested */ 5258 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5259 fill_result_tf(qc); 5260 5261 trace_ata_qc_complete_done(qc); 5262 /* Some commands need post-processing after successful 5263 * completion. 5264 */ 5265 switch (qc->tf.command) { 5266 case ATA_CMD_SET_FEATURES: 5267 if (qc->tf.feature != SETFEATURES_WC_ON && 5268 qc->tf.feature != SETFEATURES_WC_OFF && 5269 qc->tf.feature != SETFEATURES_RA_ON && 5270 qc->tf.feature != SETFEATURES_RA_OFF) 5271 break; 5272 /* fall through */ 5273 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 5274 case ATA_CMD_SET_MULTI: /* multi_count changed */ 5275 /* revalidate device */ 5276 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 5277 ata_port_schedule_eh(ap); 5278 break; 5279 5280 case ATA_CMD_SLEEP: 5281 dev->flags |= ATA_DFLAG_SLEEPING; 5282 break; 5283 } 5284 5285 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 5286 ata_verify_xfer(qc); 5287 5288 __ata_qc_complete(qc); 5289 } else { 5290 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5291 return; 5292 5293 /* read result TF if failed or requested */ 5294 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5295 fill_result_tf(qc); 5296 5297 __ata_qc_complete(qc); 5298 } 5299 } 5300 5301 /** 5302 * ata_qc_complete_multiple - Complete multiple qcs successfully 5303 * @ap: port in question 5304 * @qc_active: new qc_active mask 5305 * 5306 * Complete in-flight commands. This functions is meant to be 5307 * called from low-level driver's interrupt routine to complete 5308 * requests normally. ap->qc_active and @qc_active is compared 5309 * and commands are completed accordingly. 5310 * 5311 * Always use this function when completing multiple NCQ commands 5312 * from IRQ handlers instead of calling ata_qc_complete() 5313 * multiple times to keep IRQ expect status properly in sync. 5314 * 5315 * LOCKING: 5316 * spin_lock_irqsave(host lock) 5317 * 5318 * RETURNS: 5319 * Number of completed commands on success, -errno otherwise. 5320 */ 5321 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5322 { 5323 int nr_done = 0; 5324 u32 done_mask; 5325 5326 done_mask = ap->qc_active ^ qc_active; 5327 5328 if (unlikely(done_mask & qc_active)) { 5329 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 5330 ap->qc_active, qc_active); 5331 return -EINVAL; 5332 } 5333 5334 while (done_mask) { 5335 struct ata_queued_cmd *qc; 5336 unsigned int tag = __ffs(done_mask); 5337 5338 qc = ata_qc_from_tag(ap, tag); 5339 if (qc) { 5340 ata_qc_complete(qc); 5341 nr_done++; 5342 } 5343 done_mask &= ~(1 << tag); 5344 } 5345 5346 return nr_done; 5347 } 5348 5349 /** 5350 * ata_qc_issue - issue taskfile to device 5351 * @qc: command to issue to device 5352 * 5353 * Prepare an ATA command to submission to device. 5354 * This includes mapping the data into a DMA-able 5355 * area, filling in the S/G table, and finally 5356 * writing the taskfile to hardware, starting the command. 5357 * 5358 * LOCKING: 5359 * spin_lock_irqsave(host lock) 5360 */ 5361 void ata_qc_issue(struct ata_queued_cmd *qc) 5362 { 5363 struct ata_port *ap = qc->ap; 5364 struct ata_link *link = qc->dev->link; 5365 u8 prot = qc->tf.protocol; 5366 5367 /* Make sure only one non-NCQ command is outstanding. The 5368 * check is skipped for old EH because it reuses active qc to 5369 * request ATAPI sense. 5370 */ 5371 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5372 5373 if (ata_is_ncq(prot)) { 5374 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5375 5376 if (!link->sactive) 5377 ap->nr_active_links++; 5378 link->sactive |= 1 << qc->tag; 5379 } else { 5380 WARN_ON_ONCE(link->sactive); 5381 5382 ap->nr_active_links++; 5383 link->active_tag = qc->tag; 5384 } 5385 5386 qc->flags |= ATA_QCFLAG_ACTIVE; 5387 ap->qc_active |= 1 << qc->tag; 5388 5389 /* 5390 * We guarantee to LLDs that they will have at least one 5391 * non-zero sg if the command is a data command. 5392 */ 5393 if (WARN_ON_ONCE(ata_is_data(prot) && 5394 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5395 goto sys_err; 5396 5397 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5398 (ap->flags & ATA_FLAG_PIO_DMA))) 5399 if (ata_sg_setup(qc)) 5400 goto sys_err; 5401 5402 /* if device is sleeping, schedule reset and abort the link */ 5403 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5404 link->eh_info.action |= ATA_EH_RESET; 5405 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5406 ata_link_abort(link); 5407 return; 5408 } 5409 5410 ap->ops->qc_prep(qc); 5411 trace_ata_qc_issue(qc); 5412 qc->err_mask |= ap->ops->qc_issue(qc); 5413 if (unlikely(qc->err_mask)) 5414 goto err; 5415 return; 5416 5417 sys_err: 5418 qc->err_mask |= AC_ERR_SYSTEM; 5419 err: 5420 ata_qc_complete(qc); 5421 } 5422 5423 /** 5424 * sata_scr_valid - test whether SCRs are accessible 5425 * @link: ATA link to test SCR accessibility for 5426 * 5427 * Test whether SCRs are accessible for @link. 5428 * 5429 * LOCKING: 5430 * None. 5431 * 5432 * RETURNS: 5433 * 1 if SCRs are accessible, 0 otherwise. 5434 */ 5435 int sata_scr_valid(struct ata_link *link) 5436 { 5437 struct ata_port *ap = link->ap; 5438 5439 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5440 } 5441 5442 /** 5443 * sata_scr_read - read SCR register of the specified port 5444 * @link: ATA link to read SCR for 5445 * @reg: SCR to read 5446 * @val: Place to store read value 5447 * 5448 * Read SCR register @reg of @link into *@val. This function is 5449 * guaranteed to succeed if @link is ap->link, the cable type of 5450 * the port is SATA and the port implements ->scr_read. 5451 * 5452 * LOCKING: 5453 * None if @link is ap->link. Kernel thread context otherwise. 5454 * 5455 * RETURNS: 5456 * 0 on success, negative errno on failure. 5457 */ 5458 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5459 { 5460 if (ata_is_host_link(link)) { 5461 if (sata_scr_valid(link)) 5462 return link->ap->ops->scr_read(link, reg, val); 5463 return -EOPNOTSUPP; 5464 } 5465 5466 return sata_pmp_scr_read(link, reg, val); 5467 } 5468 5469 /** 5470 * sata_scr_write - write SCR register of the specified port 5471 * @link: ATA link to write SCR for 5472 * @reg: SCR to write 5473 * @val: value to write 5474 * 5475 * Write @val to SCR register @reg of @link. This function is 5476 * guaranteed to succeed if @link is ap->link, the cable type of 5477 * the port is SATA and the port implements ->scr_read. 5478 * 5479 * LOCKING: 5480 * None if @link is ap->link. Kernel thread context otherwise. 5481 * 5482 * RETURNS: 5483 * 0 on success, negative errno on failure. 5484 */ 5485 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5486 { 5487 if (ata_is_host_link(link)) { 5488 if (sata_scr_valid(link)) 5489 return link->ap->ops->scr_write(link, reg, val); 5490 return -EOPNOTSUPP; 5491 } 5492 5493 return sata_pmp_scr_write(link, reg, val); 5494 } 5495 5496 /** 5497 * sata_scr_write_flush - write SCR register of the specified port and flush 5498 * @link: ATA link to write SCR for 5499 * @reg: SCR to write 5500 * @val: value to write 5501 * 5502 * This function is identical to sata_scr_write() except that this 5503 * function performs flush after writing to the register. 5504 * 5505 * LOCKING: 5506 * None if @link is ap->link. Kernel thread context otherwise. 5507 * 5508 * RETURNS: 5509 * 0 on success, negative errno on failure. 5510 */ 5511 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5512 { 5513 if (ata_is_host_link(link)) { 5514 int rc; 5515 5516 if (sata_scr_valid(link)) { 5517 rc = link->ap->ops->scr_write(link, reg, val); 5518 if (rc == 0) 5519 rc = link->ap->ops->scr_read(link, reg, &val); 5520 return rc; 5521 } 5522 return -EOPNOTSUPP; 5523 } 5524 5525 return sata_pmp_scr_write(link, reg, val); 5526 } 5527 5528 /** 5529 * ata_phys_link_online - test whether the given link is online 5530 * @link: ATA link to test 5531 * 5532 * Test whether @link is online. Note that this function returns 5533 * 0 if online status of @link cannot be obtained, so 5534 * ata_link_online(link) != !ata_link_offline(link). 5535 * 5536 * LOCKING: 5537 * None. 5538 * 5539 * RETURNS: 5540 * True if the port online status is available and online. 5541 */ 5542 bool ata_phys_link_online(struct ata_link *link) 5543 { 5544 u32 sstatus; 5545 5546 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5547 ata_sstatus_online(sstatus)) 5548 return true; 5549 return false; 5550 } 5551 5552 /** 5553 * ata_phys_link_offline - test whether the given link is offline 5554 * @link: ATA link to test 5555 * 5556 * Test whether @link is offline. Note that this function 5557 * returns 0 if offline status of @link cannot be obtained, so 5558 * ata_link_online(link) != !ata_link_offline(link). 5559 * 5560 * LOCKING: 5561 * None. 5562 * 5563 * RETURNS: 5564 * True if the port offline status is available and offline. 5565 */ 5566 bool ata_phys_link_offline(struct ata_link *link) 5567 { 5568 u32 sstatus; 5569 5570 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5571 !ata_sstatus_online(sstatus)) 5572 return true; 5573 return false; 5574 } 5575 5576 /** 5577 * ata_link_online - test whether the given link is online 5578 * @link: ATA link to test 5579 * 5580 * Test whether @link is online. This is identical to 5581 * ata_phys_link_online() when there's no slave link. When 5582 * there's a slave link, this function should only be called on 5583 * the master link and will return true if any of M/S links is 5584 * online. 5585 * 5586 * LOCKING: 5587 * None. 5588 * 5589 * RETURNS: 5590 * True if the port online status is available and online. 5591 */ 5592 bool ata_link_online(struct ata_link *link) 5593 { 5594 struct ata_link *slave = link->ap->slave_link; 5595 5596 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5597 5598 return ata_phys_link_online(link) || 5599 (slave && ata_phys_link_online(slave)); 5600 } 5601 5602 /** 5603 * ata_link_offline - test whether the given link is offline 5604 * @link: ATA link to test 5605 * 5606 * Test whether @link is offline. This is identical to 5607 * ata_phys_link_offline() when there's no slave link. When 5608 * there's a slave link, this function should only be called on 5609 * the master link and will return true if both M/S links are 5610 * offline. 5611 * 5612 * LOCKING: 5613 * None. 5614 * 5615 * RETURNS: 5616 * True if the port offline status is available and offline. 5617 */ 5618 bool ata_link_offline(struct ata_link *link) 5619 { 5620 struct ata_link *slave = link->ap->slave_link; 5621 5622 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5623 5624 return ata_phys_link_offline(link) && 5625 (!slave || ata_phys_link_offline(slave)); 5626 } 5627 5628 #ifdef CONFIG_PM 5629 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5630 unsigned int action, unsigned int ehi_flags, 5631 bool async) 5632 { 5633 struct ata_link *link; 5634 unsigned long flags; 5635 5636 /* Previous resume operation might still be in 5637 * progress. Wait for PM_PENDING to clear. 5638 */ 5639 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5640 ata_port_wait_eh(ap); 5641 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5642 } 5643 5644 /* request PM ops to EH */ 5645 spin_lock_irqsave(ap->lock, flags); 5646 5647 ap->pm_mesg = mesg; 5648 ap->pflags |= ATA_PFLAG_PM_PENDING; 5649 ata_for_each_link(link, ap, HOST_FIRST) { 5650 link->eh_info.action |= action; 5651 link->eh_info.flags |= ehi_flags; 5652 } 5653 5654 ata_port_schedule_eh(ap); 5655 5656 spin_unlock_irqrestore(ap->lock, flags); 5657 5658 if (!async) { 5659 ata_port_wait_eh(ap); 5660 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5661 } 5662 } 5663 5664 /* 5665 * On some hardware, device fails to respond after spun down for suspend. As 5666 * the device won't be used before being resumed, we don't need to touch the 5667 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5668 * 5669 * http://thread.gmane.org/gmane.linux.ide/46764 5670 */ 5671 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5672 | ATA_EHI_NO_AUTOPSY 5673 | ATA_EHI_NO_RECOVERY; 5674 5675 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5676 { 5677 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5678 } 5679 5680 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5681 { 5682 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5683 } 5684 5685 static int ata_port_pm_suspend(struct device *dev) 5686 { 5687 struct ata_port *ap = to_ata_port(dev); 5688 5689 if (pm_runtime_suspended(dev)) 5690 return 0; 5691 5692 ata_port_suspend(ap, PMSG_SUSPEND); 5693 return 0; 5694 } 5695 5696 static int ata_port_pm_freeze(struct device *dev) 5697 { 5698 struct ata_port *ap = to_ata_port(dev); 5699 5700 if (pm_runtime_suspended(dev)) 5701 return 0; 5702 5703 ata_port_suspend(ap, PMSG_FREEZE); 5704 return 0; 5705 } 5706 5707 static int ata_port_pm_poweroff(struct device *dev) 5708 { 5709 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5710 return 0; 5711 } 5712 5713 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5714 | ATA_EHI_QUIET; 5715 5716 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5717 { 5718 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5719 } 5720 5721 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5722 { 5723 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5724 } 5725 5726 static int ata_port_pm_resume(struct device *dev) 5727 { 5728 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5729 pm_runtime_disable(dev); 5730 pm_runtime_set_active(dev); 5731 pm_runtime_enable(dev); 5732 return 0; 5733 } 5734 5735 /* 5736 * For ODDs, the upper layer will poll for media change every few seconds, 5737 * which will make it enter and leave suspend state every few seconds. And 5738 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5739 * is very little and the ODD may malfunction after constantly being reset. 5740 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5741 * ODD is attached to the port. 5742 */ 5743 static int ata_port_runtime_idle(struct device *dev) 5744 { 5745 struct ata_port *ap = to_ata_port(dev); 5746 struct ata_link *link; 5747 struct ata_device *adev; 5748 5749 ata_for_each_link(link, ap, HOST_FIRST) { 5750 ata_for_each_dev(adev, link, ENABLED) 5751 if (adev->class == ATA_DEV_ATAPI && 5752 !zpodd_dev_enabled(adev)) 5753 return -EBUSY; 5754 } 5755 5756 return 0; 5757 } 5758 5759 static int ata_port_runtime_suspend(struct device *dev) 5760 { 5761 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5762 return 0; 5763 } 5764 5765 static int ata_port_runtime_resume(struct device *dev) 5766 { 5767 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5768 return 0; 5769 } 5770 5771 static const struct dev_pm_ops ata_port_pm_ops = { 5772 .suspend = ata_port_pm_suspend, 5773 .resume = ata_port_pm_resume, 5774 .freeze = ata_port_pm_freeze, 5775 .thaw = ata_port_pm_resume, 5776 .poweroff = ata_port_pm_poweroff, 5777 .restore = ata_port_pm_resume, 5778 5779 .runtime_suspend = ata_port_runtime_suspend, 5780 .runtime_resume = ata_port_runtime_resume, 5781 .runtime_idle = ata_port_runtime_idle, 5782 }; 5783 5784 /* sas ports don't participate in pm runtime management of ata_ports, 5785 * and need to resume ata devices at the domain level, not the per-port 5786 * level. sas suspend/resume is async to allow parallel port recovery 5787 * since sas has multiple ata_port instances per Scsi_Host. 5788 */ 5789 void ata_sas_port_suspend(struct ata_port *ap) 5790 { 5791 ata_port_suspend_async(ap, PMSG_SUSPEND); 5792 } 5793 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5794 5795 void ata_sas_port_resume(struct ata_port *ap) 5796 { 5797 ata_port_resume_async(ap, PMSG_RESUME); 5798 } 5799 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5800 5801 /** 5802 * ata_host_suspend - suspend host 5803 * @host: host to suspend 5804 * @mesg: PM message 5805 * 5806 * Suspend @host. Actual operation is performed by port suspend. 5807 */ 5808 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5809 { 5810 host->dev->power.power_state = mesg; 5811 return 0; 5812 } 5813 5814 /** 5815 * ata_host_resume - resume host 5816 * @host: host to resume 5817 * 5818 * Resume @host. Actual operation is performed by port resume. 5819 */ 5820 void ata_host_resume(struct ata_host *host) 5821 { 5822 host->dev->power.power_state = PMSG_ON; 5823 } 5824 #endif 5825 5826 struct device_type ata_port_type = { 5827 .name = "ata_port", 5828 #ifdef CONFIG_PM 5829 .pm = &ata_port_pm_ops, 5830 #endif 5831 }; 5832 5833 /** 5834 * ata_dev_init - Initialize an ata_device structure 5835 * @dev: Device structure to initialize 5836 * 5837 * Initialize @dev in preparation for probing. 5838 * 5839 * LOCKING: 5840 * Inherited from caller. 5841 */ 5842 void ata_dev_init(struct ata_device *dev) 5843 { 5844 struct ata_link *link = ata_dev_phys_link(dev); 5845 struct ata_port *ap = link->ap; 5846 unsigned long flags; 5847 5848 /* SATA spd limit is bound to the attached device, reset together */ 5849 link->sata_spd_limit = link->hw_sata_spd_limit; 5850 link->sata_spd = 0; 5851 5852 /* High bits of dev->flags are used to record warm plug 5853 * requests which occur asynchronously. Synchronize using 5854 * host lock. 5855 */ 5856 spin_lock_irqsave(ap->lock, flags); 5857 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5858 dev->horkage = 0; 5859 spin_unlock_irqrestore(ap->lock, flags); 5860 5861 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5862 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5863 dev->pio_mask = UINT_MAX; 5864 dev->mwdma_mask = UINT_MAX; 5865 dev->udma_mask = UINT_MAX; 5866 } 5867 5868 /** 5869 * ata_link_init - Initialize an ata_link structure 5870 * @ap: ATA port link is attached to 5871 * @link: Link structure to initialize 5872 * @pmp: Port multiplier port number 5873 * 5874 * Initialize @link. 5875 * 5876 * LOCKING: 5877 * Kernel thread context (may sleep) 5878 */ 5879 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5880 { 5881 int i; 5882 5883 /* clear everything except for devices */ 5884 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5885 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5886 5887 link->ap = ap; 5888 link->pmp = pmp; 5889 link->active_tag = ATA_TAG_POISON; 5890 link->hw_sata_spd_limit = UINT_MAX; 5891 5892 /* can't use iterator, ap isn't initialized yet */ 5893 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5894 struct ata_device *dev = &link->device[i]; 5895 5896 dev->link = link; 5897 dev->devno = dev - link->device; 5898 #ifdef CONFIG_ATA_ACPI 5899 dev->gtf_filter = ata_acpi_gtf_filter; 5900 #endif 5901 ata_dev_init(dev); 5902 } 5903 } 5904 5905 /** 5906 * sata_link_init_spd - Initialize link->sata_spd_limit 5907 * @link: Link to configure sata_spd_limit for 5908 * 5909 * Initialize @link->[hw_]sata_spd_limit to the currently 5910 * configured value. 5911 * 5912 * LOCKING: 5913 * Kernel thread context (may sleep). 5914 * 5915 * RETURNS: 5916 * 0 on success, -errno on failure. 5917 */ 5918 int sata_link_init_spd(struct ata_link *link) 5919 { 5920 u8 spd; 5921 int rc; 5922 5923 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5924 if (rc) 5925 return rc; 5926 5927 spd = (link->saved_scontrol >> 4) & 0xf; 5928 if (spd) 5929 link->hw_sata_spd_limit &= (1 << spd) - 1; 5930 5931 ata_force_link_limits(link); 5932 5933 link->sata_spd_limit = link->hw_sata_spd_limit; 5934 5935 return 0; 5936 } 5937 5938 /** 5939 * ata_port_alloc - allocate and initialize basic ATA port resources 5940 * @host: ATA host this allocated port belongs to 5941 * 5942 * Allocate and initialize basic ATA port resources. 5943 * 5944 * RETURNS: 5945 * Allocate ATA port on success, NULL on failure. 5946 * 5947 * LOCKING: 5948 * Inherited from calling layer (may sleep). 5949 */ 5950 struct ata_port *ata_port_alloc(struct ata_host *host) 5951 { 5952 struct ata_port *ap; 5953 5954 DPRINTK("ENTER\n"); 5955 5956 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5957 if (!ap) 5958 return NULL; 5959 5960 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5961 ap->lock = &host->lock; 5962 ap->print_id = -1; 5963 ap->local_port_no = -1; 5964 ap->host = host; 5965 ap->dev = host->dev; 5966 5967 #if defined(ATA_VERBOSE_DEBUG) 5968 /* turn on all debugging levels */ 5969 ap->msg_enable = 0x00FF; 5970 #elif defined(ATA_DEBUG) 5971 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5972 #else 5973 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5974 #endif 5975 5976 mutex_init(&ap->scsi_scan_mutex); 5977 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5978 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5979 INIT_LIST_HEAD(&ap->eh_done_q); 5980 init_waitqueue_head(&ap->eh_wait_q); 5981 init_completion(&ap->park_req_pending); 5982 setup_deferrable_timer(&ap->fastdrain_timer, 5983 ata_eh_fastdrain_timerfn, 5984 (unsigned long)ap); 5985 5986 ap->cbl = ATA_CBL_NONE; 5987 5988 ata_link_init(ap, &ap->link, 0); 5989 5990 #ifdef ATA_IRQ_TRAP 5991 ap->stats.unhandled_irq = 1; 5992 ap->stats.idle_irq = 1; 5993 #endif 5994 ata_sff_port_init(ap); 5995 5996 return ap; 5997 } 5998 5999 static void ata_host_release(struct device *gendev, void *res) 6000 { 6001 struct ata_host *host = dev_get_drvdata(gendev); 6002 int i; 6003 6004 for (i = 0; i < host->n_ports; i++) { 6005 struct ata_port *ap = host->ports[i]; 6006 6007 if (!ap) 6008 continue; 6009 6010 if (ap->scsi_host) 6011 scsi_host_put(ap->scsi_host); 6012 6013 kfree(ap->pmp_link); 6014 kfree(ap->slave_link); 6015 kfree(ap); 6016 host->ports[i] = NULL; 6017 } 6018 6019 dev_set_drvdata(gendev, NULL); 6020 } 6021 6022 /** 6023 * ata_host_alloc - allocate and init basic ATA host resources 6024 * @dev: generic device this host is associated with 6025 * @max_ports: maximum number of ATA ports associated with this host 6026 * 6027 * Allocate and initialize basic ATA host resources. LLD calls 6028 * this function to allocate a host, initializes it fully and 6029 * attaches it using ata_host_register(). 6030 * 6031 * @max_ports ports are allocated and host->n_ports is 6032 * initialized to @max_ports. The caller is allowed to decrease 6033 * host->n_ports before calling ata_host_register(). The unused 6034 * ports will be automatically freed on registration. 6035 * 6036 * RETURNS: 6037 * Allocate ATA host on success, NULL on failure. 6038 * 6039 * LOCKING: 6040 * Inherited from calling layer (may sleep). 6041 */ 6042 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 6043 { 6044 struct ata_host *host; 6045 size_t sz; 6046 int i; 6047 6048 DPRINTK("ENTER\n"); 6049 6050 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 6051 return NULL; 6052 6053 /* alloc a container for our list of ATA ports (buses) */ 6054 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 6055 /* alloc a container for our list of ATA ports (buses) */ 6056 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 6057 if (!host) 6058 goto err_out; 6059 6060 devres_add(dev, host); 6061 dev_set_drvdata(dev, host); 6062 6063 spin_lock_init(&host->lock); 6064 mutex_init(&host->eh_mutex); 6065 host->dev = dev; 6066 host->n_ports = max_ports; 6067 6068 /* allocate ports bound to this host */ 6069 for (i = 0; i < max_ports; i++) { 6070 struct ata_port *ap; 6071 6072 ap = ata_port_alloc(host); 6073 if (!ap) 6074 goto err_out; 6075 6076 ap->port_no = i; 6077 host->ports[i] = ap; 6078 } 6079 6080 devres_remove_group(dev, NULL); 6081 return host; 6082 6083 err_out: 6084 devres_release_group(dev, NULL); 6085 return NULL; 6086 } 6087 6088 /** 6089 * ata_host_alloc_pinfo - alloc host and init with port_info array 6090 * @dev: generic device this host is associated with 6091 * @ppi: array of ATA port_info to initialize host with 6092 * @n_ports: number of ATA ports attached to this host 6093 * 6094 * Allocate ATA host and initialize with info from @ppi. If NULL 6095 * terminated, @ppi may contain fewer entries than @n_ports. The 6096 * last entry will be used for the remaining ports. 6097 * 6098 * RETURNS: 6099 * Allocate ATA host on success, NULL on failure. 6100 * 6101 * LOCKING: 6102 * Inherited from calling layer (may sleep). 6103 */ 6104 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 6105 const struct ata_port_info * const * ppi, 6106 int n_ports) 6107 { 6108 const struct ata_port_info *pi; 6109 struct ata_host *host; 6110 int i, j; 6111 6112 host = ata_host_alloc(dev, n_ports); 6113 if (!host) 6114 return NULL; 6115 6116 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 6117 struct ata_port *ap = host->ports[i]; 6118 6119 if (ppi[j]) 6120 pi = ppi[j++]; 6121 6122 ap->pio_mask = pi->pio_mask; 6123 ap->mwdma_mask = pi->mwdma_mask; 6124 ap->udma_mask = pi->udma_mask; 6125 ap->flags |= pi->flags; 6126 ap->link.flags |= pi->link_flags; 6127 ap->ops = pi->port_ops; 6128 6129 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 6130 host->ops = pi->port_ops; 6131 } 6132 6133 return host; 6134 } 6135 6136 /** 6137 * ata_slave_link_init - initialize slave link 6138 * @ap: port to initialize slave link for 6139 * 6140 * Create and initialize slave link for @ap. This enables slave 6141 * link handling on the port. 6142 * 6143 * In libata, a port contains links and a link contains devices. 6144 * There is single host link but if a PMP is attached to it, 6145 * there can be multiple fan-out links. On SATA, there's usually 6146 * a single device connected to a link but PATA and SATA 6147 * controllers emulating TF based interface can have two - master 6148 * and slave. 6149 * 6150 * However, there are a few controllers which don't fit into this 6151 * abstraction too well - SATA controllers which emulate TF 6152 * interface with both master and slave devices but also have 6153 * separate SCR register sets for each device. These controllers 6154 * need separate links for physical link handling 6155 * (e.g. onlineness, link speed) but should be treated like a 6156 * traditional M/S controller for everything else (e.g. command 6157 * issue, softreset). 6158 * 6159 * slave_link is libata's way of handling this class of 6160 * controllers without impacting core layer too much. For 6161 * anything other than physical link handling, the default host 6162 * link is used for both master and slave. For physical link 6163 * handling, separate @ap->slave_link is used. All dirty details 6164 * are implemented inside libata core layer. From LLD's POV, the 6165 * only difference is that prereset, hardreset and postreset are 6166 * called once more for the slave link, so the reset sequence 6167 * looks like the following. 6168 * 6169 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 6170 * softreset(M) -> postreset(M) -> postreset(S) 6171 * 6172 * Note that softreset is called only for the master. Softreset 6173 * resets both M/S by definition, so SRST on master should handle 6174 * both (the standard method will work just fine). 6175 * 6176 * LOCKING: 6177 * Should be called before host is registered. 6178 * 6179 * RETURNS: 6180 * 0 on success, -errno on failure. 6181 */ 6182 int ata_slave_link_init(struct ata_port *ap) 6183 { 6184 struct ata_link *link; 6185 6186 WARN_ON(ap->slave_link); 6187 WARN_ON(ap->flags & ATA_FLAG_PMP); 6188 6189 link = kzalloc(sizeof(*link), GFP_KERNEL); 6190 if (!link) 6191 return -ENOMEM; 6192 6193 ata_link_init(ap, link, 1); 6194 ap->slave_link = link; 6195 return 0; 6196 } 6197 6198 static void ata_host_stop(struct device *gendev, void *res) 6199 { 6200 struct ata_host *host = dev_get_drvdata(gendev); 6201 int i; 6202 6203 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 6204 6205 for (i = 0; i < host->n_ports; i++) { 6206 struct ata_port *ap = host->ports[i]; 6207 6208 if (ap->ops->port_stop) 6209 ap->ops->port_stop(ap); 6210 } 6211 6212 if (host->ops->host_stop) 6213 host->ops->host_stop(host); 6214 } 6215 6216 /** 6217 * ata_finalize_port_ops - finalize ata_port_operations 6218 * @ops: ata_port_operations to finalize 6219 * 6220 * An ata_port_operations can inherit from another ops and that 6221 * ops can again inherit from another. This can go on as many 6222 * times as necessary as long as there is no loop in the 6223 * inheritance chain. 6224 * 6225 * Ops tables are finalized when the host is started. NULL or 6226 * unspecified entries are inherited from the closet ancestor 6227 * which has the method and the entry is populated with it. 6228 * After finalization, the ops table directly points to all the 6229 * methods and ->inherits is no longer necessary and cleared. 6230 * 6231 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 6232 * 6233 * LOCKING: 6234 * None. 6235 */ 6236 static void ata_finalize_port_ops(struct ata_port_operations *ops) 6237 { 6238 static DEFINE_SPINLOCK(lock); 6239 const struct ata_port_operations *cur; 6240 void **begin = (void **)ops; 6241 void **end = (void **)&ops->inherits; 6242 void **pp; 6243 6244 if (!ops || !ops->inherits) 6245 return; 6246 6247 spin_lock(&lock); 6248 6249 for (cur = ops->inherits; cur; cur = cur->inherits) { 6250 void **inherit = (void **)cur; 6251 6252 for (pp = begin; pp < end; pp++, inherit++) 6253 if (!*pp) 6254 *pp = *inherit; 6255 } 6256 6257 for (pp = begin; pp < end; pp++) 6258 if (IS_ERR(*pp)) 6259 *pp = NULL; 6260 6261 ops->inherits = NULL; 6262 6263 spin_unlock(&lock); 6264 } 6265 6266 /** 6267 * ata_host_start - start and freeze ports of an ATA host 6268 * @host: ATA host to start ports for 6269 * 6270 * Start and then freeze ports of @host. Started status is 6271 * recorded in host->flags, so this function can be called 6272 * multiple times. Ports are guaranteed to get started only 6273 * once. If host->ops isn't initialized yet, its set to the 6274 * first non-dummy port ops. 6275 * 6276 * LOCKING: 6277 * Inherited from calling layer (may sleep). 6278 * 6279 * RETURNS: 6280 * 0 if all ports are started successfully, -errno otherwise. 6281 */ 6282 int ata_host_start(struct ata_host *host) 6283 { 6284 int have_stop = 0; 6285 void *start_dr = NULL; 6286 int i, rc; 6287 6288 if (host->flags & ATA_HOST_STARTED) 6289 return 0; 6290 6291 ata_finalize_port_ops(host->ops); 6292 6293 for (i = 0; i < host->n_ports; i++) { 6294 struct ata_port *ap = host->ports[i]; 6295 6296 ata_finalize_port_ops(ap->ops); 6297 6298 if (!host->ops && !ata_port_is_dummy(ap)) 6299 host->ops = ap->ops; 6300 6301 if (ap->ops->port_stop) 6302 have_stop = 1; 6303 } 6304 6305 if (host->ops->host_stop) 6306 have_stop = 1; 6307 6308 if (have_stop) { 6309 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 6310 if (!start_dr) 6311 return -ENOMEM; 6312 } 6313 6314 for (i = 0; i < host->n_ports; i++) { 6315 struct ata_port *ap = host->ports[i]; 6316 6317 if (ap->ops->port_start) { 6318 rc = ap->ops->port_start(ap); 6319 if (rc) { 6320 if (rc != -ENODEV) 6321 dev_err(host->dev, 6322 "failed to start port %d (errno=%d)\n", 6323 i, rc); 6324 goto err_out; 6325 } 6326 } 6327 ata_eh_freeze_port(ap); 6328 } 6329 6330 if (start_dr) 6331 devres_add(host->dev, start_dr); 6332 host->flags |= ATA_HOST_STARTED; 6333 return 0; 6334 6335 err_out: 6336 while (--i >= 0) { 6337 struct ata_port *ap = host->ports[i]; 6338 6339 if (ap->ops->port_stop) 6340 ap->ops->port_stop(ap); 6341 } 6342 devres_free(start_dr); 6343 return rc; 6344 } 6345 6346 /** 6347 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 6348 * @host: host to initialize 6349 * @dev: device host is attached to 6350 * @ops: port_ops 6351 * 6352 */ 6353 void ata_host_init(struct ata_host *host, struct device *dev, 6354 struct ata_port_operations *ops) 6355 { 6356 spin_lock_init(&host->lock); 6357 mutex_init(&host->eh_mutex); 6358 host->n_tags = ATA_MAX_QUEUE - 1; 6359 host->dev = dev; 6360 host->ops = ops; 6361 } 6362 6363 void __ata_port_probe(struct ata_port *ap) 6364 { 6365 struct ata_eh_info *ehi = &ap->link.eh_info; 6366 unsigned long flags; 6367 6368 /* kick EH for boot probing */ 6369 spin_lock_irqsave(ap->lock, flags); 6370 6371 ehi->probe_mask |= ATA_ALL_DEVICES; 6372 ehi->action |= ATA_EH_RESET; 6373 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6374 6375 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6376 ap->pflags |= ATA_PFLAG_LOADING; 6377 ata_port_schedule_eh(ap); 6378 6379 spin_unlock_irqrestore(ap->lock, flags); 6380 } 6381 6382 int ata_port_probe(struct ata_port *ap) 6383 { 6384 int rc = 0; 6385 6386 if (ap->ops->error_handler) { 6387 __ata_port_probe(ap); 6388 ata_port_wait_eh(ap); 6389 } else { 6390 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6391 rc = ata_bus_probe(ap); 6392 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6393 } 6394 return rc; 6395 } 6396 6397 6398 static void async_port_probe(void *data, async_cookie_t cookie) 6399 { 6400 struct ata_port *ap = data; 6401 6402 /* 6403 * If we're not allowed to scan this host in parallel, 6404 * we need to wait until all previous scans have completed 6405 * before going further. 6406 * Jeff Garzik says this is only within a controller, so we 6407 * don't need to wait for port 0, only for later ports. 6408 */ 6409 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6410 async_synchronize_cookie(cookie); 6411 6412 (void)ata_port_probe(ap); 6413 6414 /* in order to keep device order, we need to synchronize at this point */ 6415 async_synchronize_cookie(cookie); 6416 6417 ata_scsi_scan_host(ap, 1); 6418 } 6419 6420 /** 6421 * ata_host_register - register initialized ATA host 6422 * @host: ATA host to register 6423 * @sht: template for SCSI host 6424 * 6425 * Register initialized ATA host. @host is allocated using 6426 * ata_host_alloc() and fully initialized by LLD. This function 6427 * starts ports, registers @host with ATA and SCSI layers and 6428 * probe registered devices. 6429 * 6430 * LOCKING: 6431 * Inherited from calling layer (may sleep). 6432 * 6433 * RETURNS: 6434 * 0 on success, -errno otherwise. 6435 */ 6436 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6437 { 6438 int i, rc; 6439 6440 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1); 6441 6442 /* host must have been started */ 6443 if (!(host->flags & ATA_HOST_STARTED)) { 6444 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6445 WARN_ON(1); 6446 return -EINVAL; 6447 } 6448 6449 /* Blow away unused ports. This happens when LLD can't 6450 * determine the exact number of ports to allocate at 6451 * allocation time. 6452 */ 6453 for (i = host->n_ports; host->ports[i]; i++) 6454 kfree(host->ports[i]); 6455 6456 /* give ports names and add SCSI hosts */ 6457 for (i = 0; i < host->n_ports; i++) { 6458 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6459 host->ports[i]->local_port_no = i + 1; 6460 } 6461 6462 /* Create associated sysfs transport objects */ 6463 for (i = 0; i < host->n_ports; i++) { 6464 rc = ata_tport_add(host->dev,host->ports[i]); 6465 if (rc) { 6466 goto err_tadd; 6467 } 6468 } 6469 6470 rc = ata_scsi_add_hosts(host, sht); 6471 if (rc) 6472 goto err_tadd; 6473 6474 /* set cable, sata_spd_limit and report */ 6475 for (i = 0; i < host->n_ports; i++) { 6476 struct ata_port *ap = host->ports[i]; 6477 unsigned long xfer_mask; 6478 6479 /* set SATA cable type if still unset */ 6480 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6481 ap->cbl = ATA_CBL_SATA; 6482 6483 /* init sata_spd_limit to the current value */ 6484 sata_link_init_spd(&ap->link); 6485 if (ap->slave_link) 6486 sata_link_init_spd(ap->slave_link); 6487 6488 /* print per-port info to dmesg */ 6489 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6490 ap->udma_mask); 6491 6492 if (!ata_port_is_dummy(ap)) { 6493 ata_port_info(ap, "%cATA max %s %s\n", 6494 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6495 ata_mode_string(xfer_mask), 6496 ap->link.eh_info.desc); 6497 ata_ehi_clear_desc(&ap->link.eh_info); 6498 } else 6499 ata_port_info(ap, "DUMMY\n"); 6500 } 6501 6502 /* perform each probe asynchronously */ 6503 for (i = 0; i < host->n_ports; i++) { 6504 struct ata_port *ap = host->ports[i]; 6505 async_schedule(async_port_probe, ap); 6506 } 6507 6508 return 0; 6509 6510 err_tadd: 6511 while (--i >= 0) { 6512 ata_tport_delete(host->ports[i]); 6513 } 6514 return rc; 6515 6516 } 6517 6518 /** 6519 * ata_host_activate - start host, request IRQ and register it 6520 * @host: target ATA host 6521 * @irq: IRQ to request 6522 * @irq_handler: irq_handler used when requesting IRQ 6523 * @irq_flags: irq_flags used when requesting IRQ 6524 * @sht: scsi_host_template to use when registering the host 6525 * 6526 * After allocating an ATA host and initializing it, most libata 6527 * LLDs perform three steps to activate the host - start host, 6528 * request IRQ and register it. This helper takes necessary 6529 * arguments and performs the three steps in one go. 6530 * 6531 * An invalid IRQ skips the IRQ registration and expects the host to 6532 * have set polling mode on the port. In this case, @irq_handler 6533 * should be NULL. 6534 * 6535 * LOCKING: 6536 * Inherited from calling layer (may sleep). 6537 * 6538 * RETURNS: 6539 * 0 on success, -errno otherwise. 6540 */ 6541 int ata_host_activate(struct ata_host *host, int irq, 6542 irq_handler_t irq_handler, unsigned long irq_flags, 6543 struct scsi_host_template *sht) 6544 { 6545 int i, rc; 6546 char *irq_desc; 6547 6548 rc = ata_host_start(host); 6549 if (rc) 6550 return rc; 6551 6552 /* Special case for polling mode */ 6553 if (!irq) { 6554 WARN_ON(irq_handler); 6555 return ata_host_register(host, sht); 6556 } 6557 6558 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 6559 dev_driver_string(host->dev), 6560 dev_name(host->dev)); 6561 if (!irq_desc) 6562 return -ENOMEM; 6563 6564 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6565 irq_desc, host); 6566 if (rc) 6567 return rc; 6568 6569 for (i = 0; i < host->n_ports; i++) 6570 ata_port_desc(host->ports[i], "irq %d", irq); 6571 6572 rc = ata_host_register(host, sht); 6573 /* if failed, just free the IRQ and leave ports alone */ 6574 if (rc) 6575 devm_free_irq(host->dev, irq, host); 6576 6577 return rc; 6578 } 6579 6580 /** 6581 * ata_port_detach - Detach ATA port in preparation of device removal 6582 * @ap: ATA port to be detached 6583 * 6584 * Detach all ATA devices and the associated SCSI devices of @ap; 6585 * then, remove the associated SCSI host. @ap is guaranteed to 6586 * be quiescent on return from this function. 6587 * 6588 * LOCKING: 6589 * Kernel thread context (may sleep). 6590 */ 6591 static void ata_port_detach(struct ata_port *ap) 6592 { 6593 unsigned long flags; 6594 struct ata_link *link; 6595 struct ata_device *dev; 6596 6597 if (!ap->ops->error_handler) 6598 goto skip_eh; 6599 6600 /* tell EH we're leaving & flush EH */ 6601 spin_lock_irqsave(ap->lock, flags); 6602 ap->pflags |= ATA_PFLAG_UNLOADING; 6603 ata_port_schedule_eh(ap); 6604 spin_unlock_irqrestore(ap->lock, flags); 6605 6606 /* wait till EH commits suicide */ 6607 ata_port_wait_eh(ap); 6608 6609 /* it better be dead now */ 6610 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6611 6612 cancel_delayed_work_sync(&ap->hotplug_task); 6613 6614 skip_eh: 6615 /* clean up zpodd on port removal */ 6616 ata_for_each_link(link, ap, HOST_FIRST) { 6617 ata_for_each_dev(dev, link, ALL) { 6618 if (zpodd_dev_enabled(dev)) 6619 zpodd_exit(dev); 6620 } 6621 } 6622 if (ap->pmp_link) { 6623 int i; 6624 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6625 ata_tlink_delete(&ap->pmp_link[i]); 6626 } 6627 /* remove the associated SCSI host */ 6628 scsi_remove_host(ap->scsi_host); 6629 ata_tport_delete(ap); 6630 } 6631 6632 /** 6633 * ata_host_detach - Detach all ports of an ATA host 6634 * @host: Host to detach 6635 * 6636 * Detach all ports of @host. 6637 * 6638 * LOCKING: 6639 * Kernel thread context (may sleep). 6640 */ 6641 void ata_host_detach(struct ata_host *host) 6642 { 6643 int i; 6644 6645 for (i = 0; i < host->n_ports; i++) 6646 ata_port_detach(host->ports[i]); 6647 6648 /* the host is dead now, dissociate ACPI */ 6649 ata_acpi_dissociate(host); 6650 } 6651 6652 #ifdef CONFIG_PCI 6653 6654 /** 6655 * ata_pci_remove_one - PCI layer callback for device removal 6656 * @pdev: PCI device that was removed 6657 * 6658 * PCI layer indicates to libata via this hook that hot-unplug or 6659 * module unload event has occurred. Detach all ports. Resource 6660 * release is handled via devres. 6661 * 6662 * LOCKING: 6663 * Inherited from PCI layer (may sleep). 6664 */ 6665 void ata_pci_remove_one(struct pci_dev *pdev) 6666 { 6667 struct ata_host *host = pci_get_drvdata(pdev); 6668 6669 ata_host_detach(host); 6670 } 6671 6672 /* move to PCI subsystem */ 6673 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6674 { 6675 unsigned long tmp = 0; 6676 6677 switch (bits->width) { 6678 case 1: { 6679 u8 tmp8 = 0; 6680 pci_read_config_byte(pdev, bits->reg, &tmp8); 6681 tmp = tmp8; 6682 break; 6683 } 6684 case 2: { 6685 u16 tmp16 = 0; 6686 pci_read_config_word(pdev, bits->reg, &tmp16); 6687 tmp = tmp16; 6688 break; 6689 } 6690 case 4: { 6691 u32 tmp32 = 0; 6692 pci_read_config_dword(pdev, bits->reg, &tmp32); 6693 tmp = tmp32; 6694 break; 6695 } 6696 6697 default: 6698 return -EINVAL; 6699 } 6700 6701 tmp &= bits->mask; 6702 6703 return (tmp == bits->val) ? 1 : 0; 6704 } 6705 6706 #ifdef CONFIG_PM 6707 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6708 { 6709 pci_save_state(pdev); 6710 pci_disable_device(pdev); 6711 6712 if (mesg.event & PM_EVENT_SLEEP) 6713 pci_set_power_state(pdev, PCI_D3hot); 6714 } 6715 6716 int ata_pci_device_do_resume(struct pci_dev *pdev) 6717 { 6718 int rc; 6719 6720 pci_set_power_state(pdev, PCI_D0); 6721 pci_restore_state(pdev); 6722 6723 rc = pcim_enable_device(pdev); 6724 if (rc) { 6725 dev_err(&pdev->dev, 6726 "failed to enable device after resume (%d)\n", rc); 6727 return rc; 6728 } 6729 6730 pci_set_master(pdev); 6731 return 0; 6732 } 6733 6734 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6735 { 6736 struct ata_host *host = pci_get_drvdata(pdev); 6737 int rc = 0; 6738 6739 rc = ata_host_suspend(host, mesg); 6740 if (rc) 6741 return rc; 6742 6743 ata_pci_device_do_suspend(pdev, mesg); 6744 6745 return 0; 6746 } 6747 6748 int ata_pci_device_resume(struct pci_dev *pdev) 6749 { 6750 struct ata_host *host = pci_get_drvdata(pdev); 6751 int rc; 6752 6753 rc = ata_pci_device_do_resume(pdev); 6754 if (rc == 0) 6755 ata_host_resume(host); 6756 return rc; 6757 } 6758 #endif /* CONFIG_PM */ 6759 6760 #endif /* CONFIG_PCI */ 6761 6762 /** 6763 * ata_platform_remove_one - Platform layer callback for device removal 6764 * @pdev: Platform device that was removed 6765 * 6766 * Platform layer indicates to libata via this hook that hot-unplug or 6767 * module unload event has occurred. Detach all ports. Resource 6768 * release is handled via devres. 6769 * 6770 * LOCKING: 6771 * Inherited from platform layer (may sleep). 6772 */ 6773 int ata_platform_remove_one(struct platform_device *pdev) 6774 { 6775 struct ata_host *host = platform_get_drvdata(pdev); 6776 6777 ata_host_detach(host); 6778 6779 return 0; 6780 } 6781 6782 static int __init ata_parse_force_one(char **cur, 6783 struct ata_force_ent *force_ent, 6784 const char **reason) 6785 { 6786 static const struct ata_force_param force_tbl[] __initconst = { 6787 { "40c", .cbl = ATA_CBL_PATA40 }, 6788 { "80c", .cbl = ATA_CBL_PATA80 }, 6789 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6790 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6791 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6792 { "sata", .cbl = ATA_CBL_SATA }, 6793 { "1.5Gbps", .spd_limit = 1 }, 6794 { "3.0Gbps", .spd_limit = 2 }, 6795 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6796 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6797 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, 6798 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, 6799 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6800 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6801 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6802 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6803 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6804 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6805 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6806 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6807 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6808 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6809 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6810 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6811 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6812 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6813 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6814 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6815 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6816 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6817 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6818 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6819 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6820 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6821 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6822 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6823 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6824 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6825 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6826 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6827 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6828 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6829 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6830 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6831 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6832 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6833 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6834 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6835 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6836 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6837 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6838 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6839 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6840 }; 6841 char *start = *cur, *p = *cur; 6842 char *id, *val, *endp; 6843 const struct ata_force_param *match_fp = NULL; 6844 int nr_matches = 0, i; 6845 6846 /* find where this param ends and update *cur */ 6847 while (*p != '\0' && *p != ',') 6848 p++; 6849 6850 if (*p == '\0') 6851 *cur = p; 6852 else 6853 *cur = p + 1; 6854 6855 *p = '\0'; 6856 6857 /* parse */ 6858 p = strchr(start, ':'); 6859 if (!p) { 6860 val = strstrip(start); 6861 goto parse_val; 6862 } 6863 *p = '\0'; 6864 6865 id = strstrip(start); 6866 val = strstrip(p + 1); 6867 6868 /* parse id */ 6869 p = strchr(id, '.'); 6870 if (p) { 6871 *p++ = '\0'; 6872 force_ent->device = simple_strtoul(p, &endp, 10); 6873 if (p == endp || *endp != '\0') { 6874 *reason = "invalid device"; 6875 return -EINVAL; 6876 } 6877 } 6878 6879 force_ent->port = simple_strtoul(id, &endp, 10); 6880 if (id == endp || *endp != '\0') { 6881 *reason = "invalid port/link"; 6882 return -EINVAL; 6883 } 6884 6885 parse_val: 6886 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6887 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6888 const struct ata_force_param *fp = &force_tbl[i]; 6889 6890 if (strncasecmp(val, fp->name, strlen(val))) 6891 continue; 6892 6893 nr_matches++; 6894 match_fp = fp; 6895 6896 if (strcasecmp(val, fp->name) == 0) { 6897 nr_matches = 1; 6898 break; 6899 } 6900 } 6901 6902 if (!nr_matches) { 6903 *reason = "unknown value"; 6904 return -EINVAL; 6905 } 6906 if (nr_matches > 1) { 6907 *reason = "ambigious value"; 6908 return -EINVAL; 6909 } 6910 6911 force_ent->param = *match_fp; 6912 6913 return 0; 6914 } 6915 6916 static void __init ata_parse_force_param(void) 6917 { 6918 int idx = 0, size = 1; 6919 int last_port = -1, last_device = -1; 6920 char *p, *cur, *next; 6921 6922 /* calculate maximum number of params and allocate force_tbl */ 6923 for (p = ata_force_param_buf; *p; p++) 6924 if (*p == ',') 6925 size++; 6926 6927 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6928 if (!ata_force_tbl) { 6929 printk(KERN_WARNING "ata: failed to extend force table, " 6930 "libata.force ignored\n"); 6931 return; 6932 } 6933 6934 /* parse and populate the table */ 6935 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6936 const char *reason = ""; 6937 struct ata_force_ent te = { .port = -1, .device = -1 }; 6938 6939 next = cur; 6940 if (ata_parse_force_one(&next, &te, &reason)) { 6941 printk(KERN_WARNING "ata: failed to parse force " 6942 "parameter \"%s\" (%s)\n", 6943 cur, reason); 6944 continue; 6945 } 6946 6947 if (te.port == -1) { 6948 te.port = last_port; 6949 te.device = last_device; 6950 } 6951 6952 ata_force_tbl[idx++] = te; 6953 6954 last_port = te.port; 6955 last_device = te.device; 6956 } 6957 6958 ata_force_tbl_size = idx; 6959 } 6960 6961 static int __init ata_init(void) 6962 { 6963 int rc; 6964 6965 ata_parse_force_param(); 6966 6967 rc = ata_sff_init(); 6968 if (rc) { 6969 kfree(ata_force_tbl); 6970 return rc; 6971 } 6972 6973 libata_transport_init(); 6974 ata_scsi_transport_template = ata_attach_transport(); 6975 if (!ata_scsi_transport_template) { 6976 ata_sff_exit(); 6977 rc = -ENOMEM; 6978 goto err_out; 6979 } 6980 6981 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6982 return 0; 6983 6984 err_out: 6985 return rc; 6986 } 6987 6988 static void __exit ata_exit(void) 6989 { 6990 ata_release_transport(ata_scsi_transport_template); 6991 libata_transport_exit(); 6992 ata_sff_exit(); 6993 kfree(ata_force_tbl); 6994 } 6995 6996 subsys_initcall(ata_init); 6997 module_exit(ata_exit); 6998 6999 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 7000 7001 int ata_ratelimit(void) 7002 { 7003 return __ratelimit(&ratelimit); 7004 } 7005 7006 /** 7007 * ata_msleep - ATA EH owner aware msleep 7008 * @ap: ATA port to attribute the sleep to 7009 * @msecs: duration to sleep in milliseconds 7010 * 7011 * Sleeps @msecs. If the current task is owner of @ap's EH, the 7012 * ownership is released before going to sleep and reacquired 7013 * after the sleep is complete. IOW, other ports sharing the 7014 * @ap->host will be allowed to own the EH while this task is 7015 * sleeping. 7016 * 7017 * LOCKING: 7018 * Might sleep. 7019 */ 7020 void ata_msleep(struct ata_port *ap, unsigned int msecs) 7021 { 7022 bool owns_eh = ap && ap->host->eh_owner == current; 7023 7024 if (owns_eh) 7025 ata_eh_release(ap); 7026 7027 if (msecs < 20) { 7028 unsigned long usecs = msecs * USEC_PER_MSEC; 7029 usleep_range(usecs, usecs + 50); 7030 } else { 7031 msleep(msecs); 7032 } 7033 7034 if (owns_eh) 7035 ata_eh_acquire(ap); 7036 } 7037 7038 /** 7039 * ata_wait_register - wait until register value changes 7040 * @ap: ATA port to wait register for, can be NULL 7041 * @reg: IO-mapped register 7042 * @mask: Mask to apply to read register value 7043 * @val: Wait condition 7044 * @interval: polling interval in milliseconds 7045 * @timeout: timeout in milliseconds 7046 * 7047 * Waiting for some bits of register to change is a common 7048 * operation for ATA controllers. This function reads 32bit LE 7049 * IO-mapped register @reg and tests for the following condition. 7050 * 7051 * (*@reg & mask) != val 7052 * 7053 * If the condition is met, it returns; otherwise, the process is 7054 * repeated after @interval_msec until timeout. 7055 * 7056 * LOCKING: 7057 * Kernel thread context (may sleep) 7058 * 7059 * RETURNS: 7060 * The final register value. 7061 */ 7062 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 7063 unsigned long interval, unsigned long timeout) 7064 { 7065 unsigned long deadline; 7066 u32 tmp; 7067 7068 tmp = ioread32(reg); 7069 7070 /* Calculate timeout _after_ the first read to make sure 7071 * preceding writes reach the controller before starting to 7072 * eat away the timeout. 7073 */ 7074 deadline = ata_deadline(jiffies, timeout); 7075 7076 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 7077 ata_msleep(ap, interval); 7078 tmp = ioread32(reg); 7079 } 7080 7081 return tmp; 7082 } 7083 7084 /** 7085 * sata_lpm_ignore_phy_events - test if PHY event should be ignored 7086 * @link: Link receiving the event 7087 * 7088 * Test whether the received PHY event has to be ignored or not. 7089 * 7090 * LOCKING: 7091 * None: 7092 * 7093 * RETURNS: 7094 * True if the event has to be ignored. 7095 */ 7096 bool sata_lpm_ignore_phy_events(struct ata_link *link) 7097 { 7098 unsigned long lpm_timeout = link->last_lpm_change + 7099 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY); 7100 7101 /* if LPM is enabled, PHYRDY doesn't mean anything */ 7102 if (link->lpm_policy > ATA_LPM_MAX_POWER) 7103 return true; 7104 7105 /* ignore the first PHY event after the LPM policy changed 7106 * as it is might be spurious 7107 */ 7108 if ((link->flags & ATA_LFLAG_CHANGED) && 7109 time_before(jiffies, lpm_timeout)) 7110 return true; 7111 7112 return false; 7113 } 7114 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events); 7115 7116 /* 7117 * Dummy port_ops 7118 */ 7119 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 7120 { 7121 return AC_ERR_SYSTEM; 7122 } 7123 7124 static void ata_dummy_error_handler(struct ata_port *ap) 7125 { 7126 /* truly dummy */ 7127 } 7128 7129 struct ata_port_operations ata_dummy_port_ops = { 7130 .qc_prep = ata_noop_qc_prep, 7131 .qc_issue = ata_dummy_qc_issue, 7132 .error_handler = ata_dummy_error_handler, 7133 .sched_eh = ata_std_sched_eh, 7134 .end_eh = ata_std_end_eh, 7135 }; 7136 7137 const struct ata_port_info ata_dummy_port_info = { 7138 .port_ops = &ata_dummy_port_ops, 7139 }; 7140 7141 /* 7142 * Utility print functions 7143 */ 7144 void ata_port_printk(const struct ata_port *ap, const char *level, 7145 const char *fmt, ...) 7146 { 7147 struct va_format vaf; 7148 va_list args; 7149 7150 va_start(args, fmt); 7151 7152 vaf.fmt = fmt; 7153 vaf.va = &args; 7154 7155 printk("%sata%u: %pV", level, ap->print_id, &vaf); 7156 7157 va_end(args); 7158 } 7159 EXPORT_SYMBOL(ata_port_printk); 7160 7161 void ata_link_printk(const struct ata_link *link, const char *level, 7162 const char *fmt, ...) 7163 { 7164 struct va_format vaf; 7165 va_list args; 7166 7167 va_start(args, fmt); 7168 7169 vaf.fmt = fmt; 7170 vaf.va = &args; 7171 7172 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 7173 printk("%sata%u.%02u: %pV", 7174 level, link->ap->print_id, link->pmp, &vaf); 7175 else 7176 printk("%sata%u: %pV", 7177 level, link->ap->print_id, &vaf); 7178 7179 va_end(args); 7180 } 7181 EXPORT_SYMBOL(ata_link_printk); 7182 7183 void ata_dev_printk(const struct ata_device *dev, const char *level, 7184 const char *fmt, ...) 7185 { 7186 struct va_format vaf; 7187 va_list args; 7188 7189 va_start(args, fmt); 7190 7191 vaf.fmt = fmt; 7192 vaf.va = &args; 7193 7194 printk("%sata%u.%02u: %pV", 7195 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 7196 &vaf); 7197 7198 va_end(args); 7199 } 7200 EXPORT_SYMBOL(ata_dev_printk); 7201 7202 void ata_print_version(const struct device *dev, const char *version) 7203 { 7204 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 7205 } 7206 EXPORT_SYMBOL(ata_print_version); 7207 7208 /* 7209 * libata is essentially a library of internal helper functions for 7210 * low-level ATA host controller drivers. As such, the API/ABI is 7211 * likely to change as new drivers are added and updated. 7212 * Do not depend on ABI/API stability. 7213 */ 7214 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 7215 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 7216 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 7217 EXPORT_SYMBOL_GPL(ata_base_port_ops); 7218 EXPORT_SYMBOL_GPL(sata_port_ops); 7219 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 7220 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 7221 EXPORT_SYMBOL_GPL(ata_link_next); 7222 EXPORT_SYMBOL_GPL(ata_dev_next); 7223 EXPORT_SYMBOL_GPL(ata_std_bios_param); 7224 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 7225 EXPORT_SYMBOL_GPL(ata_host_init); 7226 EXPORT_SYMBOL_GPL(ata_host_alloc); 7227 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 7228 EXPORT_SYMBOL_GPL(ata_slave_link_init); 7229 EXPORT_SYMBOL_GPL(ata_host_start); 7230 EXPORT_SYMBOL_GPL(ata_host_register); 7231 EXPORT_SYMBOL_GPL(ata_host_activate); 7232 EXPORT_SYMBOL_GPL(ata_host_detach); 7233 EXPORT_SYMBOL_GPL(ata_sg_init); 7234 EXPORT_SYMBOL_GPL(ata_qc_complete); 7235 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 7236 EXPORT_SYMBOL_GPL(atapi_cmd_type); 7237 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 7238 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 7239 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 7240 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 7241 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 7242 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 7243 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 7244 EXPORT_SYMBOL_GPL(ata_mode_string); 7245 EXPORT_SYMBOL_GPL(ata_id_xfermask); 7246 EXPORT_SYMBOL_GPL(ata_do_set_mode); 7247 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 7248 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 7249 EXPORT_SYMBOL_GPL(ata_dev_disable); 7250 EXPORT_SYMBOL_GPL(sata_set_spd); 7251 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 7252 EXPORT_SYMBOL_GPL(sata_link_debounce); 7253 EXPORT_SYMBOL_GPL(sata_link_resume); 7254 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 7255 EXPORT_SYMBOL_GPL(ata_std_prereset); 7256 EXPORT_SYMBOL_GPL(sata_link_hardreset); 7257 EXPORT_SYMBOL_GPL(sata_std_hardreset); 7258 EXPORT_SYMBOL_GPL(ata_std_postreset); 7259 EXPORT_SYMBOL_GPL(ata_dev_classify); 7260 EXPORT_SYMBOL_GPL(ata_dev_pair); 7261 EXPORT_SYMBOL_GPL(ata_ratelimit); 7262 EXPORT_SYMBOL_GPL(ata_msleep); 7263 EXPORT_SYMBOL_GPL(ata_wait_register); 7264 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 7265 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 7266 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 7267 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 7268 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 7269 EXPORT_SYMBOL_GPL(sata_scr_valid); 7270 EXPORT_SYMBOL_GPL(sata_scr_read); 7271 EXPORT_SYMBOL_GPL(sata_scr_write); 7272 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 7273 EXPORT_SYMBOL_GPL(ata_link_online); 7274 EXPORT_SYMBOL_GPL(ata_link_offline); 7275 #ifdef CONFIG_PM 7276 EXPORT_SYMBOL_GPL(ata_host_suspend); 7277 EXPORT_SYMBOL_GPL(ata_host_resume); 7278 #endif /* CONFIG_PM */ 7279 EXPORT_SYMBOL_GPL(ata_id_string); 7280 EXPORT_SYMBOL_GPL(ata_id_c_string); 7281 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 7282 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 7283 7284 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 7285 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 7286 EXPORT_SYMBOL_GPL(ata_timing_compute); 7287 EXPORT_SYMBOL_GPL(ata_timing_merge); 7288 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 7289 7290 #ifdef CONFIG_PCI 7291 EXPORT_SYMBOL_GPL(pci_test_config_bits); 7292 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 7293 #ifdef CONFIG_PM 7294 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 7295 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 7296 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 7297 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 7298 #endif /* CONFIG_PM */ 7299 #endif /* CONFIG_PCI */ 7300 7301 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 7302 7303 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 7304 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 7305 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 7306 EXPORT_SYMBOL_GPL(ata_port_desc); 7307 #ifdef CONFIG_PCI 7308 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 7309 #endif /* CONFIG_PCI */ 7310 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 7311 EXPORT_SYMBOL_GPL(ata_link_abort); 7312 EXPORT_SYMBOL_GPL(ata_port_abort); 7313 EXPORT_SYMBOL_GPL(ata_port_freeze); 7314 EXPORT_SYMBOL_GPL(sata_async_notification); 7315 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 7316 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 7317 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 7318 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 7319 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 7320 EXPORT_SYMBOL_GPL(ata_do_eh); 7321 EXPORT_SYMBOL_GPL(ata_std_error_handler); 7322 7323 EXPORT_SYMBOL_GPL(ata_cable_40wire); 7324 EXPORT_SYMBOL_GPL(ata_cable_80wire); 7325 EXPORT_SYMBOL_GPL(ata_cable_unknown); 7326 EXPORT_SYMBOL_GPL(ata_cable_ignore); 7327 EXPORT_SYMBOL_GPL(ata_cable_sata); 7328