1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <scsi/scsi.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_host.h> 62 #include <linux/libata.h> 63 #include <asm/byteorder.h> 64 #include <linux/cdrom.h> 65 66 #include "libata.h" 67 68 69 /* debounce timing parameters in msecs { interval, duration, timeout } */ 70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 73 74 const struct ata_port_operations ata_base_port_ops = { 75 .prereset = ata_std_prereset, 76 .postreset = ata_std_postreset, 77 .error_handler = ata_std_error_handler, 78 }; 79 80 const struct ata_port_operations sata_port_ops = { 81 .inherits = &ata_base_port_ops, 82 83 .qc_defer = ata_std_qc_defer, 84 .hardreset = sata_std_hardreset, 85 }; 86 87 static unsigned int ata_dev_init_params(struct ata_device *dev, 88 u16 heads, u16 sectors); 89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 90 static unsigned int ata_dev_set_feature(struct ata_device *dev, 91 u8 enable, u8 feature); 92 static void ata_dev_xfermask(struct ata_device *dev); 93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 94 95 unsigned int ata_print_id = 1; 96 static struct workqueue_struct *ata_wq; 97 98 struct workqueue_struct *ata_aux_wq; 99 100 struct ata_force_param { 101 const char *name; 102 unsigned int cbl; 103 int spd_limit; 104 unsigned long xfer_mask; 105 unsigned int horkage_on; 106 unsigned int horkage_off; 107 }; 108 109 struct ata_force_ent { 110 int port; 111 int device; 112 struct ata_force_param param; 113 }; 114 115 static struct ata_force_ent *ata_force_tbl; 116 static int ata_force_tbl_size; 117 118 static char ata_force_param_buf[PAGE_SIZE] __initdata; 119 /* param_buf is thrown away after initialization, disallow read */ 120 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 121 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 122 123 int atapi_enabled = 1; 124 module_param(atapi_enabled, int, 0444); 125 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 126 127 static int atapi_dmadir = 0; 128 module_param(atapi_dmadir, int, 0444); 129 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 130 131 int atapi_passthru16 = 1; 132 module_param(atapi_passthru16, int, 0444); 133 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)"); 134 135 int libata_fua = 0; 136 module_param_named(fua, libata_fua, int, 0444); 137 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 138 139 static int ata_ignore_hpa; 140 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 141 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 142 143 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 144 module_param_named(dma, libata_dma_mask, int, 0444); 145 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 146 147 static int ata_probe_timeout; 148 module_param(ata_probe_timeout, int, 0444); 149 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 150 151 int libata_noacpi = 0; 152 module_param_named(noacpi, libata_noacpi, int, 0444); 153 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set"); 154 155 int libata_allow_tpm = 0; 156 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 157 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands"); 158 159 MODULE_AUTHOR("Jeff Garzik"); 160 MODULE_DESCRIPTION("Library module for ATA devices"); 161 MODULE_LICENSE("GPL"); 162 MODULE_VERSION(DRV_VERSION); 163 164 165 /** 166 * ata_force_cbl - force cable type according to libata.force 167 * @ap: ATA port of interest 168 * 169 * Force cable type according to libata.force and whine about it. 170 * The last entry which has matching port number is used, so it 171 * can be specified as part of device force parameters. For 172 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 173 * same effect. 174 * 175 * LOCKING: 176 * EH context. 177 */ 178 void ata_force_cbl(struct ata_port *ap) 179 { 180 int i; 181 182 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 183 const struct ata_force_ent *fe = &ata_force_tbl[i]; 184 185 if (fe->port != -1 && fe->port != ap->print_id) 186 continue; 187 188 if (fe->param.cbl == ATA_CBL_NONE) 189 continue; 190 191 ap->cbl = fe->param.cbl; 192 ata_port_printk(ap, KERN_NOTICE, 193 "FORCE: cable set to %s\n", fe->param.name); 194 return; 195 } 196 } 197 198 /** 199 * ata_force_spd_limit - force SATA spd limit according to libata.force 200 * @link: ATA link of interest 201 * 202 * Force SATA spd limit according to libata.force and whine about 203 * it. When only the port part is specified (e.g. 1:), the limit 204 * applies to all links connected to both the host link and all 205 * fan-out ports connected via PMP. If the device part is 206 * specified as 0 (e.g. 1.00:), it specifies the first fan-out 207 * link not the host link. Device number 15 always points to the 208 * host link whether PMP is attached or not. 209 * 210 * LOCKING: 211 * EH context. 212 */ 213 static void ata_force_spd_limit(struct ata_link *link) 214 { 215 int linkno, i; 216 217 if (ata_is_host_link(link)) 218 linkno = 15; 219 else 220 linkno = link->pmp; 221 222 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 223 const struct ata_force_ent *fe = &ata_force_tbl[i]; 224 225 if (fe->port != -1 && fe->port != link->ap->print_id) 226 continue; 227 228 if (fe->device != -1 && fe->device != linkno) 229 continue; 230 231 if (!fe->param.spd_limit) 232 continue; 233 234 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 235 ata_link_printk(link, KERN_NOTICE, 236 "FORCE: PHY spd limit set to %s\n", fe->param.name); 237 return; 238 } 239 } 240 241 /** 242 * ata_force_xfermask - force xfermask according to libata.force 243 * @dev: ATA device of interest 244 * 245 * Force xfer_mask according to libata.force and whine about it. 246 * For consistency with link selection, device number 15 selects 247 * the first device connected to the host link. 248 * 249 * LOCKING: 250 * EH context. 251 */ 252 static void ata_force_xfermask(struct ata_device *dev) 253 { 254 int devno = dev->link->pmp + dev->devno; 255 int alt_devno = devno; 256 int i; 257 258 /* allow n.15 for the first device attached to host port */ 259 if (ata_is_host_link(dev->link) && devno == 0) 260 alt_devno = 15; 261 262 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 263 const struct ata_force_ent *fe = &ata_force_tbl[i]; 264 unsigned long pio_mask, mwdma_mask, udma_mask; 265 266 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 267 continue; 268 269 if (fe->device != -1 && fe->device != devno && 270 fe->device != alt_devno) 271 continue; 272 273 if (!fe->param.xfer_mask) 274 continue; 275 276 ata_unpack_xfermask(fe->param.xfer_mask, 277 &pio_mask, &mwdma_mask, &udma_mask); 278 if (udma_mask) 279 dev->udma_mask = udma_mask; 280 else if (mwdma_mask) { 281 dev->udma_mask = 0; 282 dev->mwdma_mask = mwdma_mask; 283 } else { 284 dev->udma_mask = 0; 285 dev->mwdma_mask = 0; 286 dev->pio_mask = pio_mask; 287 } 288 289 ata_dev_printk(dev, KERN_NOTICE, 290 "FORCE: xfer_mask set to %s\n", fe->param.name); 291 return; 292 } 293 } 294 295 /** 296 * ata_force_horkage - force horkage according to libata.force 297 * @dev: ATA device of interest 298 * 299 * Force horkage according to libata.force and whine about it. 300 * For consistency with link selection, device number 15 selects 301 * the first device connected to the host link. 302 * 303 * LOCKING: 304 * EH context. 305 */ 306 static void ata_force_horkage(struct ata_device *dev) 307 { 308 int devno = dev->link->pmp + dev->devno; 309 int alt_devno = devno; 310 int i; 311 312 /* allow n.15 for the first device attached to host port */ 313 if (ata_is_host_link(dev->link) && devno == 0) 314 alt_devno = 15; 315 316 for (i = 0; i < ata_force_tbl_size; i++) { 317 const struct ata_force_ent *fe = &ata_force_tbl[i]; 318 319 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 320 continue; 321 322 if (fe->device != -1 && fe->device != devno && 323 fe->device != alt_devno) 324 continue; 325 326 if (!(~dev->horkage & fe->param.horkage_on) && 327 !(dev->horkage & fe->param.horkage_off)) 328 continue; 329 330 dev->horkage |= fe->param.horkage_on; 331 dev->horkage &= ~fe->param.horkage_off; 332 333 ata_dev_printk(dev, KERN_NOTICE, 334 "FORCE: horkage modified (%s)\n", fe->param.name); 335 } 336 } 337 338 /** 339 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 340 * @opcode: SCSI opcode 341 * 342 * Determine ATAPI command type from @opcode. 343 * 344 * LOCKING: 345 * None. 346 * 347 * RETURNS: 348 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 349 */ 350 int atapi_cmd_type(u8 opcode) 351 { 352 switch (opcode) { 353 case GPCMD_READ_10: 354 case GPCMD_READ_12: 355 return ATAPI_READ; 356 357 case GPCMD_WRITE_10: 358 case GPCMD_WRITE_12: 359 case GPCMD_WRITE_AND_VERIFY_10: 360 return ATAPI_WRITE; 361 362 case GPCMD_READ_CD: 363 case GPCMD_READ_CD_MSF: 364 return ATAPI_READ_CD; 365 366 case ATA_16: 367 case ATA_12: 368 if (atapi_passthru16) 369 return ATAPI_PASS_THRU; 370 /* fall thru */ 371 default: 372 return ATAPI_MISC; 373 } 374 } 375 376 /** 377 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 378 * @tf: Taskfile to convert 379 * @pmp: Port multiplier port 380 * @is_cmd: This FIS is for command 381 * @fis: Buffer into which data will output 382 * 383 * Converts a standard ATA taskfile to a Serial ATA 384 * FIS structure (Register - Host to Device). 385 * 386 * LOCKING: 387 * Inherited from caller. 388 */ 389 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 390 { 391 fis[0] = 0x27; /* Register - Host to Device FIS */ 392 fis[1] = pmp & 0xf; /* Port multiplier number*/ 393 if (is_cmd) 394 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 395 396 fis[2] = tf->command; 397 fis[3] = tf->feature; 398 399 fis[4] = tf->lbal; 400 fis[5] = tf->lbam; 401 fis[6] = tf->lbah; 402 fis[7] = tf->device; 403 404 fis[8] = tf->hob_lbal; 405 fis[9] = tf->hob_lbam; 406 fis[10] = tf->hob_lbah; 407 fis[11] = tf->hob_feature; 408 409 fis[12] = tf->nsect; 410 fis[13] = tf->hob_nsect; 411 fis[14] = 0; 412 fis[15] = tf->ctl; 413 414 fis[16] = 0; 415 fis[17] = 0; 416 fis[18] = 0; 417 fis[19] = 0; 418 } 419 420 /** 421 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 422 * @fis: Buffer from which data will be input 423 * @tf: Taskfile to output 424 * 425 * Converts a serial ATA FIS structure to a standard ATA taskfile. 426 * 427 * LOCKING: 428 * Inherited from caller. 429 */ 430 431 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 432 { 433 tf->command = fis[2]; /* status */ 434 tf->feature = fis[3]; /* error */ 435 436 tf->lbal = fis[4]; 437 tf->lbam = fis[5]; 438 tf->lbah = fis[6]; 439 tf->device = fis[7]; 440 441 tf->hob_lbal = fis[8]; 442 tf->hob_lbam = fis[9]; 443 tf->hob_lbah = fis[10]; 444 445 tf->nsect = fis[12]; 446 tf->hob_nsect = fis[13]; 447 } 448 449 static const u8 ata_rw_cmds[] = { 450 /* pio multi */ 451 ATA_CMD_READ_MULTI, 452 ATA_CMD_WRITE_MULTI, 453 ATA_CMD_READ_MULTI_EXT, 454 ATA_CMD_WRITE_MULTI_EXT, 455 0, 456 0, 457 0, 458 ATA_CMD_WRITE_MULTI_FUA_EXT, 459 /* pio */ 460 ATA_CMD_PIO_READ, 461 ATA_CMD_PIO_WRITE, 462 ATA_CMD_PIO_READ_EXT, 463 ATA_CMD_PIO_WRITE_EXT, 464 0, 465 0, 466 0, 467 0, 468 /* dma */ 469 ATA_CMD_READ, 470 ATA_CMD_WRITE, 471 ATA_CMD_READ_EXT, 472 ATA_CMD_WRITE_EXT, 473 0, 474 0, 475 0, 476 ATA_CMD_WRITE_FUA_EXT 477 }; 478 479 /** 480 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 481 * @tf: command to examine and configure 482 * @dev: device tf belongs to 483 * 484 * Examine the device configuration and tf->flags to calculate 485 * the proper read/write commands and protocol to use. 486 * 487 * LOCKING: 488 * caller. 489 */ 490 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 491 { 492 u8 cmd; 493 494 int index, fua, lba48, write; 495 496 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 497 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 498 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 499 500 if (dev->flags & ATA_DFLAG_PIO) { 501 tf->protocol = ATA_PROT_PIO; 502 index = dev->multi_count ? 0 : 8; 503 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 504 /* Unable to use DMA due to host limitation */ 505 tf->protocol = ATA_PROT_PIO; 506 index = dev->multi_count ? 0 : 8; 507 } else { 508 tf->protocol = ATA_PROT_DMA; 509 index = 16; 510 } 511 512 cmd = ata_rw_cmds[index + fua + lba48 + write]; 513 if (cmd) { 514 tf->command = cmd; 515 return 0; 516 } 517 return -1; 518 } 519 520 /** 521 * ata_tf_read_block - Read block address from ATA taskfile 522 * @tf: ATA taskfile of interest 523 * @dev: ATA device @tf belongs to 524 * 525 * LOCKING: 526 * None. 527 * 528 * Read block address from @tf. This function can handle all 529 * three address formats - LBA, LBA48 and CHS. tf->protocol and 530 * flags select the address format to use. 531 * 532 * RETURNS: 533 * Block address read from @tf. 534 */ 535 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 536 { 537 u64 block = 0; 538 539 if (tf->flags & ATA_TFLAG_LBA) { 540 if (tf->flags & ATA_TFLAG_LBA48) { 541 block |= (u64)tf->hob_lbah << 40; 542 block |= (u64)tf->hob_lbam << 32; 543 block |= tf->hob_lbal << 24; 544 } else 545 block |= (tf->device & 0xf) << 24; 546 547 block |= tf->lbah << 16; 548 block |= tf->lbam << 8; 549 block |= tf->lbal; 550 } else { 551 u32 cyl, head, sect; 552 553 cyl = tf->lbam | (tf->lbah << 8); 554 head = tf->device & 0xf; 555 sect = tf->lbal; 556 557 block = (cyl * dev->heads + head) * dev->sectors + sect; 558 } 559 560 return block; 561 } 562 563 /** 564 * ata_build_rw_tf - Build ATA taskfile for given read/write request 565 * @tf: Target ATA taskfile 566 * @dev: ATA device @tf belongs to 567 * @block: Block address 568 * @n_block: Number of blocks 569 * @tf_flags: RW/FUA etc... 570 * @tag: tag 571 * 572 * LOCKING: 573 * None. 574 * 575 * Build ATA taskfile @tf for read/write request described by 576 * @block, @n_block, @tf_flags and @tag on @dev. 577 * 578 * RETURNS: 579 * 580 * 0 on success, -ERANGE if the request is too large for @dev, 581 * -EINVAL if the request is invalid. 582 */ 583 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 584 u64 block, u32 n_block, unsigned int tf_flags, 585 unsigned int tag) 586 { 587 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 588 tf->flags |= tf_flags; 589 590 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 591 /* yay, NCQ */ 592 if (!lba_48_ok(block, n_block)) 593 return -ERANGE; 594 595 tf->protocol = ATA_PROT_NCQ; 596 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 597 598 if (tf->flags & ATA_TFLAG_WRITE) 599 tf->command = ATA_CMD_FPDMA_WRITE; 600 else 601 tf->command = ATA_CMD_FPDMA_READ; 602 603 tf->nsect = tag << 3; 604 tf->hob_feature = (n_block >> 8) & 0xff; 605 tf->feature = n_block & 0xff; 606 607 tf->hob_lbah = (block >> 40) & 0xff; 608 tf->hob_lbam = (block >> 32) & 0xff; 609 tf->hob_lbal = (block >> 24) & 0xff; 610 tf->lbah = (block >> 16) & 0xff; 611 tf->lbam = (block >> 8) & 0xff; 612 tf->lbal = block & 0xff; 613 614 tf->device = 1 << 6; 615 if (tf->flags & ATA_TFLAG_FUA) 616 tf->device |= 1 << 7; 617 } else if (dev->flags & ATA_DFLAG_LBA) { 618 tf->flags |= ATA_TFLAG_LBA; 619 620 if (lba_28_ok(block, n_block)) { 621 /* use LBA28 */ 622 tf->device |= (block >> 24) & 0xf; 623 } else if (lba_48_ok(block, n_block)) { 624 if (!(dev->flags & ATA_DFLAG_LBA48)) 625 return -ERANGE; 626 627 /* use LBA48 */ 628 tf->flags |= ATA_TFLAG_LBA48; 629 630 tf->hob_nsect = (n_block >> 8) & 0xff; 631 632 tf->hob_lbah = (block >> 40) & 0xff; 633 tf->hob_lbam = (block >> 32) & 0xff; 634 tf->hob_lbal = (block >> 24) & 0xff; 635 } else 636 /* request too large even for LBA48 */ 637 return -ERANGE; 638 639 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 640 return -EINVAL; 641 642 tf->nsect = n_block & 0xff; 643 644 tf->lbah = (block >> 16) & 0xff; 645 tf->lbam = (block >> 8) & 0xff; 646 tf->lbal = block & 0xff; 647 648 tf->device |= ATA_LBA; 649 } else { 650 /* CHS */ 651 u32 sect, head, cyl, track; 652 653 /* The request -may- be too large for CHS addressing. */ 654 if (!lba_28_ok(block, n_block)) 655 return -ERANGE; 656 657 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 658 return -EINVAL; 659 660 /* Convert LBA to CHS */ 661 track = (u32)block / dev->sectors; 662 cyl = track / dev->heads; 663 head = track % dev->heads; 664 sect = (u32)block % dev->sectors + 1; 665 666 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 667 (u32)block, track, cyl, head, sect); 668 669 /* Check whether the converted CHS can fit. 670 Cylinder: 0-65535 671 Head: 0-15 672 Sector: 1-255*/ 673 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 674 return -ERANGE; 675 676 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 677 tf->lbal = sect; 678 tf->lbam = cyl; 679 tf->lbah = cyl >> 8; 680 tf->device |= head; 681 } 682 683 return 0; 684 } 685 686 /** 687 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 688 * @pio_mask: pio_mask 689 * @mwdma_mask: mwdma_mask 690 * @udma_mask: udma_mask 691 * 692 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 693 * unsigned int xfer_mask. 694 * 695 * LOCKING: 696 * None. 697 * 698 * RETURNS: 699 * Packed xfer_mask. 700 */ 701 unsigned long ata_pack_xfermask(unsigned long pio_mask, 702 unsigned long mwdma_mask, 703 unsigned long udma_mask) 704 { 705 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 706 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 707 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 708 } 709 710 /** 711 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 712 * @xfer_mask: xfer_mask to unpack 713 * @pio_mask: resulting pio_mask 714 * @mwdma_mask: resulting mwdma_mask 715 * @udma_mask: resulting udma_mask 716 * 717 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 718 * Any NULL distination masks will be ignored. 719 */ 720 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 721 unsigned long *mwdma_mask, unsigned long *udma_mask) 722 { 723 if (pio_mask) 724 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 725 if (mwdma_mask) 726 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 727 if (udma_mask) 728 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 729 } 730 731 static const struct ata_xfer_ent { 732 int shift, bits; 733 u8 base; 734 } ata_xfer_tbl[] = { 735 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 736 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 737 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 738 { -1, }, 739 }; 740 741 /** 742 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 743 * @xfer_mask: xfer_mask of interest 744 * 745 * Return matching XFER_* value for @xfer_mask. Only the highest 746 * bit of @xfer_mask is considered. 747 * 748 * LOCKING: 749 * None. 750 * 751 * RETURNS: 752 * Matching XFER_* value, 0xff if no match found. 753 */ 754 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 755 { 756 int highbit = fls(xfer_mask) - 1; 757 const struct ata_xfer_ent *ent; 758 759 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 760 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 761 return ent->base + highbit - ent->shift; 762 return 0xff; 763 } 764 765 /** 766 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 767 * @xfer_mode: XFER_* of interest 768 * 769 * Return matching xfer_mask for @xfer_mode. 770 * 771 * LOCKING: 772 * None. 773 * 774 * RETURNS: 775 * Matching xfer_mask, 0 if no match found. 776 */ 777 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 778 { 779 const struct ata_xfer_ent *ent; 780 781 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 782 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 783 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 784 & ~((1 << ent->shift) - 1); 785 return 0; 786 } 787 788 /** 789 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 790 * @xfer_mode: XFER_* of interest 791 * 792 * Return matching xfer_shift for @xfer_mode. 793 * 794 * LOCKING: 795 * None. 796 * 797 * RETURNS: 798 * Matching xfer_shift, -1 if no match found. 799 */ 800 int ata_xfer_mode2shift(unsigned long xfer_mode) 801 { 802 const struct ata_xfer_ent *ent; 803 804 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 805 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 806 return ent->shift; 807 return -1; 808 } 809 810 /** 811 * ata_mode_string - convert xfer_mask to string 812 * @xfer_mask: mask of bits supported; only highest bit counts. 813 * 814 * Determine string which represents the highest speed 815 * (highest bit in @modemask). 816 * 817 * LOCKING: 818 * None. 819 * 820 * RETURNS: 821 * Constant C string representing highest speed listed in 822 * @mode_mask, or the constant C string "<n/a>". 823 */ 824 const char *ata_mode_string(unsigned long xfer_mask) 825 { 826 static const char * const xfer_mode_str[] = { 827 "PIO0", 828 "PIO1", 829 "PIO2", 830 "PIO3", 831 "PIO4", 832 "PIO5", 833 "PIO6", 834 "MWDMA0", 835 "MWDMA1", 836 "MWDMA2", 837 "MWDMA3", 838 "MWDMA4", 839 "UDMA/16", 840 "UDMA/25", 841 "UDMA/33", 842 "UDMA/44", 843 "UDMA/66", 844 "UDMA/100", 845 "UDMA/133", 846 "UDMA7", 847 }; 848 int highbit; 849 850 highbit = fls(xfer_mask) - 1; 851 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 852 return xfer_mode_str[highbit]; 853 return "<n/a>"; 854 } 855 856 static const char *sata_spd_string(unsigned int spd) 857 { 858 static const char * const spd_str[] = { 859 "1.5 Gbps", 860 "3.0 Gbps", 861 }; 862 863 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 864 return "<unknown>"; 865 return spd_str[spd - 1]; 866 } 867 868 void ata_dev_disable(struct ata_device *dev) 869 { 870 if (ata_dev_enabled(dev)) { 871 if (ata_msg_drv(dev->link->ap)) 872 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 873 ata_acpi_on_disable(dev); 874 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 875 ATA_DNXFER_QUIET); 876 dev->class++; 877 } 878 } 879 880 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 881 { 882 struct ata_link *link = dev->link; 883 struct ata_port *ap = link->ap; 884 u32 scontrol; 885 unsigned int err_mask; 886 int rc; 887 888 /* 889 * disallow DIPM for drivers which haven't set 890 * ATA_FLAG_IPM. This is because when DIPM is enabled, 891 * phy ready will be set in the interrupt status on 892 * state changes, which will cause some drivers to 893 * think there are errors - additionally drivers will 894 * need to disable hot plug. 895 */ 896 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 897 ap->pm_policy = NOT_AVAILABLE; 898 return -EINVAL; 899 } 900 901 /* 902 * For DIPM, we will only enable it for the 903 * min_power setting. 904 * 905 * Why? Because Disks are too stupid to know that 906 * If the host rejects a request to go to SLUMBER 907 * they should retry at PARTIAL, and instead it 908 * just would give up. So, for medium_power to 909 * work at all, we need to only allow HIPM. 910 */ 911 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 912 if (rc) 913 return rc; 914 915 switch (policy) { 916 case MIN_POWER: 917 /* no restrictions on IPM transitions */ 918 scontrol &= ~(0x3 << 8); 919 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 920 if (rc) 921 return rc; 922 923 /* enable DIPM */ 924 if (dev->flags & ATA_DFLAG_DIPM) 925 err_mask = ata_dev_set_feature(dev, 926 SETFEATURES_SATA_ENABLE, SATA_DIPM); 927 break; 928 case MEDIUM_POWER: 929 /* allow IPM to PARTIAL */ 930 scontrol &= ~(0x1 << 8); 931 scontrol |= (0x2 << 8); 932 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 933 if (rc) 934 return rc; 935 936 /* 937 * we don't have to disable DIPM since IPM flags 938 * disallow transitions to SLUMBER, which effectively 939 * disable DIPM if it does not support PARTIAL 940 */ 941 break; 942 case NOT_AVAILABLE: 943 case MAX_PERFORMANCE: 944 /* disable all IPM transitions */ 945 scontrol |= (0x3 << 8); 946 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 947 if (rc) 948 return rc; 949 950 /* 951 * we don't have to disable DIPM since IPM flags 952 * disallow all transitions which effectively 953 * disable DIPM anyway. 954 */ 955 break; 956 } 957 958 /* FIXME: handle SET FEATURES failure */ 959 (void) err_mask; 960 961 return 0; 962 } 963 964 /** 965 * ata_dev_enable_pm - enable SATA interface power management 966 * @dev: device to enable power management 967 * @policy: the link power management policy 968 * 969 * Enable SATA Interface power management. This will enable 970 * Device Interface Power Management (DIPM) for min_power 971 * policy, and then call driver specific callbacks for 972 * enabling Host Initiated Power management. 973 * 974 * Locking: Caller. 975 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 976 */ 977 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 978 { 979 int rc = 0; 980 struct ata_port *ap = dev->link->ap; 981 982 /* set HIPM first, then DIPM */ 983 if (ap->ops->enable_pm) 984 rc = ap->ops->enable_pm(ap, policy); 985 if (rc) 986 goto enable_pm_out; 987 rc = ata_dev_set_dipm(dev, policy); 988 989 enable_pm_out: 990 if (rc) 991 ap->pm_policy = MAX_PERFORMANCE; 992 else 993 ap->pm_policy = policy; 994 return /* rc */; /* hopefully we can use 'rc' eventually */ 995 } 996 997 #ifdef CONFIG_PM 998 /** 999 * ata_dev_disable_pm - disable SATA interface power management 1000 * @dev: device to disable power management 1001 * 1002 * Disable SATA Interface power management. This will disable 1003 * Device Interface Power Management (DIPM) without changing 1004 * policy, call driver specific callbacks for disabling Host 1005 * Initiated Power management. 1006 * 1007 * Locking: Caller. 1008 * Returns: void 1009 */ 1010 static void ata_dev_disable_pm(struct ata_device *dev) 1011 { 1012 struct ata_port *ap = dev->link->ap; 1013 1014 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1015 if (ap->ops->disable_pm) 1016 ap->ops->disable_pm(ap); 1017 } 1018 #endif /* CONFIG_PM */ 1019 1020 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1021 { 1022 ap->pm_policy = policy; 1023 ap->link.eh_info.action |= ATA_EH_LPM; 1024 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1025 ata_port_schedule_eh(ap); 1026 } 1027 1028 #ifdef CONFIG_PM 1029 static void ata_lpm_enable(struct ata_host *host) 1030 { 1031 struct ata_link *link; 1032 struct ata_port *ap; 1033 struct ata_device *dev; 1034 int i; 1035 1036 for (i = 0; i < host->n_ports; i++) { 1037 ap = host->ports[i]; 1038 ata_port_for_each_link(link, ap) { 1039 ata_link_for_each_dev(dev, link) 1040 ata_dev_disable_pm(dev); 1041 } 1042 } 1043 } 1044 1045 static void ata_lpm_disable(struct ata_host *host) 1046 { 1047 int i; 1048 1049 for (i = 0; i < host->n_ports; i++) { 1050 struct ata_port *ap = host->ports[i]; 1051 ata_lpm_schedule(ap, ap->pm_policy); 1052 } 1053 } 1054 #endif /* CONFIG_PM */ 1055 1056 /** 1057 * ata_dev_classify - determine device type based on ATA-spec signature 1058 * @tf: ATA taskfile register set for device to be identified 1059 * 1060 * Determine from taskfile register contents whether a device is 1061 * ATA or ATAPI, as per "Signature and persistence" section 1062 * of ATA/PI spec (volume 1, sect 5.14). 1063 * 1064 * LOCKING: 1065 * None. 1066 * 1067 * RETURNS: 1068 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1069 * %ATA_DEV_UNKNOWN the event of failure. 1070 */ 1071 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1072 { 1073 /* Apple's open source Darwin code hints that some devices only 1074 * put a proper signature into the LBA mid/high registers, 1075 * So, we only check those. It's sufficient for uniqueness. 1076 * 1077 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1078 * signatures for ATA and ATAPI devices attached on SerialATA, 1079 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1080 * spec has never mentioned about using different signatures 1081 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1082 * Multiplier specification began to use 0x69/0x96 to identify 1083 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1084 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1085 * 0x69/0x96 shortly and described them as reserved for 1086 * SerialATA. 1087 * 1088 * We follow the current spec and consider that 0x69/0x96 1089 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1090 */ 1091 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1092 DPRINTK("found ATA device by sig\n"); 1093 return ATA_DEV_ATA; 1094 } 1095 1096 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1097 DPRINTK("found ATAPI device by sig\n"); 1098 return ATA_DEV_ATAPI; 1099 } 1100 1101 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1102 DPRINTK("found PMP device by sig\n"); 1103 return ATA_DEV_PMP; 1104 } 1105 1106 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1107 printk(KERN_INFO "ata: SEMB device ignored\n"); 1108 return ATA_DEV_SEMB_UNSUP; /* not yet */ 1109 } 1110 1111 DPRINTK("unknown device\n"); 1112 return ATA_DEV_UNKNOWN; 1113 } 1114 1115 /** 1116 * ata_id_string - Convert IDENTIFY DEVICE page into string 1117 * @id: IDENTIFY DEVICE results we will examine 1118 * @s: string into which data is output 1119 * @ofs: offset into identify device page 1120 * @len: length of string to return. must be an even number. 1121 * 1122 * The strings in the IDENTIFY DEVICE page are broken up into 1123 * 16-bit chunks. Run through the string, and output each 1124 * 8-bit chunk linearly, regardless of platform. 1125 * 1126 * LOCKING: 1127 * caller. 1128 */ 1129 1130 void ata_id_string(const u16 *id, unsigned char *s, 1131 unsigned int ofs, unsigned int len) 1132 { 1133 unsigned int c; 1134 1135 while (len > 0) { 1136 c = id[ofs] >> 8; 1137 *s = c; 1138 s++; 1139 1140 c = id[ofs] & 0xff; 1141 *s = c; 1142 s++; 1143 1144 ofs++; 1145 len -= 2; 1146 } 1147 } 1148 1149 /** 1150 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1151 * @id: IDENTIFY DEVICE results we will examine 1152 * @s: string into which data is output 1153 * @ofs: offset into identify device page 1154 * @len: length of string to return. must be an odd number. 1155 * 1156 * This function is identical to ata_id_string except that it 1157 * trims trailing spaces and terminates the resulting string with 1158 * null. @len must be actual maximum length (even number) + 1. 1159 * 1160 * LOCKING: 1161 * caller. 1162 */ 1163 void ata_id_c_string(const u16 *id, unsigned char *s, 1164 unsigned int ofs, unsigned int len) 1165 { 1166 unsigned char *p; 1167 1168 WARN_ON(!(len & 1)); 1169 1170 ata_id_string(id, s, ofs, len - 1); 1171 1172 p = s + strnlen(s, len - 1); 1173 while (p > s && p[-1] == ' ') 1174 p--; 1175 *p = '\0'; 1176 } 1177 1178 static u64 ata_id_n_sectors(const u16 *id) 1179 { 1180 if (ata_id_has_lba(id)) { 1181 if (ata_id_has_lba48(id)) 1182 return ata_id_u64(id, 100); 1183 else 1184 return ata_id_u32(id, 60); 1185 } else { 1186 if (ata_id_current_chs_valid(id)) 1187 return ata_id_u32(id, 57); 1188 else 1189 return id[1] * id[3] * id[6]; 1190 } 1191 } 1192 1193 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1194 { 1195 u64 sectors = 0; 1196 1197 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1198 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1199 sectors |= (tf->hob_lbal & 0xff) << 24; 1200 sectors |= (tf->lbah & 0xff) << 16; 1201 sectors |= (tf->lbam & 0xff) << 8; 1202 sectors |= (tf->lbal & 0xff); 1203 1204 return sectors; 1205 } 1206 1207 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1208 { 1209 u64 sectors = 0; 1210 1211 sectors |= (tf->device & 0x0f) << 24; 1212 sectors |= (tf->lbah & 0xff) << 16; 1213 sectors |= (tf->lbam & 0xff) << 8; 1214 sectors |= (tf->lbal & 0xff); 1215 1216 return sectors; 1217 } 1218 1219 /** 1220 * ata_read_native_max_address - Read native max address 1221 * @dev: target device 1222 * @max_sectors: out parameter for the result native max address 1223 * 1224 * Perform an LBA48 or LBA28 native size query upon the device in 1225 * question. 1226 * 1227 * RETURNS: 1228 * 0 on success, -EACCES if command is aborted by the drive. 1229 * -EIO on other errors. 1230 */ 1231 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1232 { 1233 unsigned int err_mask; 1234 struct ata_taskfile tf; 1235 int lba48 = ata_id_has_lba48(dev->id); 1236 1237 ata_tf_init(dev, &tf); 1238 1239 /* always clear all address registers */ 1240 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1241 1242 if (lba48) { 1243 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1244 tf.flags |= ATA_TFLAG_LBA48; 1245 } else 1246 tf.command = ATA_CMD_READ_NATIVE_MAX; 1247 1248 tf.protocol |= ATA_PROT_NODATA; 1249 tf.device |= ATA_LBA; 1250 1251 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1252 if (err_mask) { 1253 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1254 "max address (err_mask=0x%x)\n", err_mask); 1255 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1256 return -EACCES; 1257 return -EIO; 1258 } 1259 1260 if (lba48) 1261 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1262 else 1263 *max_sectors = ata_tf_to_lba(&tf) + 1; 1264 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1265 (*max_sectors)--; 1266 return 0; 1267 } 1268 1269 /** 1270 * ata_set_max_sectors - Set max sectors 1271 * @dev: target device 1272 * @new_sectors: new max sectors value to set for the device 1273 * 1274 * Set max sectors of @dev to @new_sectors. 1275 * 1276 * RETURNS: 1277 * 0 on success, -EACCES if command is aborted or denied (due to 1278 * previous non-volatile SET_MAX) by the drive. -EIO on other 1279 * errors. 1280 */ 1281 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1282 { 1283 unsigned int err_mask; 1284 struct ata_taskfile tf; 1285 int lba48 = ata_id_has_lba48(dev->id); 1286 1287 new_sectors--; 1288 1289 ata_tf_init(dev, &tf); 1290 1291 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1292 1293 if (lba48) { 1294 tf.command = ATA_CMD_SET_MAX_EXT; 1295 tf.flags |= ATA_TFLAG_LBA48; 1296 1297 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1298 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1299 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1300 } else { 1301 tf.command = ATA_CMD_SET_MAX; 1302 1303 tf.device |= (new_sectors >> 24) & 0xf; 1304 } 1305 1306 tf.protocol |= ATA_PROT_NODATA; 1307 tf.device |= ATA_LBA; 1308 1309 tf.lbal = (new_sectors >> 0) & 0xff; 1310 tf.lbam = (new_sectors >> 8) & 0xff; 1311 tf.lbah = (new_sectors >> 16) & 0xff; 1312 1313 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1314 if (err_mask) { 1315 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1316 "max address (err_mask=0x%x)\n", err_mask); 1317 if (err_mask == AC_ERR_DEV && 1318 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1319 return -EACCES; 1320 return -EIO; 1321 } 1322 1323 return 0; 1324 } 1325 1326 /** 1327 * ata_hpa_resize - Resize a device with an HPA set 1328 * @dev: Device to resize 1329 * 1330 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1331 * it if required to the full size of the media. The caller must check 1332 * the drive has the HPA feature set enabled. 1333 * 1334 * RETURNS: 1335 * 0 on success, -errno on failure. 1336 */ 1337 static int ata_hpa_resize(struct ata_device *dev) 1338 { 1339 struct ata_eh_context *ehc = &dev->link->eh_context; 1340 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1341 u64 sectors = ata_id_n_sectors(dev->id); 1342 u64 native_sectors; 1343 int rc; 1344 1345 /* do we need to do it? */ 1346 if (dev->class != ATA_DEV_ATA || 1347 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1348 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1349 return 0; 1350 1351 /* read native max address */ 1352 rc = ata_read_native_max_address(dev, &native_sectors); 1353 if (rc) { 1354 /* If device aborted the command or HPA isn't going to 1355 * be unlocked, skip HPA resizing. 1356 */ 1357 if (rc == -EACCES || !ata_ignore_hpa) { 1358 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1359 "broken, skipping HPA handling\n"); 1360 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1361 1362 /* we can continue if device aborted the command */ 1363 if (rc == -EACCES) 1364 rc = 0; 1365 } 1366 1367 return rc; 1368 } 1369 1370 /* nothing to do? */ 1371 if (native_sectors <= sectors || !ata_ignore_hpa) { 1372 if (!print_info || native_sectors == sectors) 1373 return 0; 1374 1375 if (native_sectors > sectors) 1376 ata_dev_printk(dev, KERN_INFO, 1377 "HPA detected: current %llu, native %llu\n", 1378 (unsigned long long)sectors, 1379 (unsigned long long)native_sectors); 1380 else if (native_sectors < sectors) 1381 ata_dev_printk(dev, KERN_WARNING, 1382 "native sectors (%llu) is smaller than " 1383 "sectors (%llu)\n", 1384 (unsigned long long)native_sectors, 1385 (unsigned long long)sectors); 1386 return 0; 1387 } 1388 1389 /* let's unlock HPA */ 1390 rc = ata_set_max_sectors(dev, native_sectors); 1391 if (rc == -EACCES) { 1392 /* if device aborted the command, skip HPA resizing */ 1393 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1394 "(%llu -> %llu), skipping HPA handling\n", 1395 (unsigned long long)sectors, 1396 (unsigned long long)native_sectors); 1397 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1398 return 0; 1399 } else if (rc) 1400 return rc; 1401 1402 /* re-read IDENTIFY data */ 1403 rc = ata_dev_reread_id(dev, 0); 1404 if (rc) { 1405 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1406 "data after HPA resizing\n"); 1407 return rc; 1408 } 1409 1410 if (print_info) { 1411 u64 new_sectors = ata_id_n_sectors(dev->id); 1412 ata_dev_printk(dev, KERN_INFO, 1413 "HPA unlocked: %llu -> %llu, native %llu\n", 1414 (unsigned long long)sectors, 1415 (unsigned long long)new_sectors, 1416 (unsigned long long)native_sectors); 1417 } 1418 1419 return 0; 1420 } 1421 1422 /** 1423 * ata_dump_id - IDENTIFY DEVICE info debugging output 1424 * @id: IDENTIFY DEVICE page to dump 1425 * 1426 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1427 * page. 1428 * 1429 * LOCKING: 1430 * caller. 1431 */ 1432 1433 static inline void ata_dump_id(const u16 *id) 1434 { 1435 DPRINTK("49==0x%04x " 1436 "53==0x%04x " 1437 "63==0x%04x " 1438 "64==0x%04x " 1439 "75==0x%04x \n", 1440 id[49], 1441 id[53], 1442 id[63], 1443 id[64], 1444 id[75]); 1445 DPRINTK("80==0x%04x " 1446 "81==0x%04x " 1447 "82==0x%04x " 1448 "83==0x%04x " 1449 "84==0x%04x \n", 1450 id[80], 1451 id[81], 1452 id[82], 1453 id[83], 1454 id[84]); 1455 DPRINTK("88==0x%04x " 1456 "93==0x%04x\n", 1457 id[88], 1458 id[93]); 1459 } 1460 1461 /** 1462 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1463 * @id: IDENTIFY data to compute xfer mask from 1464 * 1465 * Compute the xfermask for this device. This is not as trivial 1466 * as it seems if we must consider early devices correctly. 1467 * 1468 * FIXME: pre IDE drive timing (do we care ?). 1469 * 1470 * LOCKING: 1471 * None. 1472 * 1473 * RETURNS: 1474 * Computed xfermask 1475 */ 1476 unsigned long ata_id_xfermask(const u16 *id) 1477 { 1478 unsigned long pio_mask, mwdma_mask, udma_mask; 1479 1480 /* Usual case. Word 53 indicates word 64 is valid */ 1481 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1482 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1483 pio_mask <<= 3; 1484 pio_mask |= 0x7; 1485 } else { 1486 /* If word 64 isn't valid then Word 51 high byte holds 1487 * the PIO timing number for the maximum. Turn it into 1488 * a mask. 1489 */ 1490 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1491 if (mode < 5) /* Valid PIO range */ 1492 pio_mask = (2 << mode) - 1; 1493 else 1494 pio_mask = 1; 1495 1496 /* But wait.. there's more. Design your standards by 1497 * committee and you too can get a free iordy field to 1498 * process. However its the speeds not the modes that 1499 * are supported... Note drivers using the timing API 1500 * will get this right anyway 1501 */ 1502 } 1503 1504 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1505 1506 if (ata_id_is_cfa(id)) { 1507 /* 1508 * Process compact flash extended modes 1509 */ 1510 int pio = id[163] & 0x7; 1511 int dma = (id[163] >> 3) & 7; 1512 1513 if (pio) 1514 pio_mask |= (1 << 5); 1515 if (pio > 1) 1516 pio_mask |= (1 << 6); 1517 if (dma) 1518 mwdma_mask |= (1 << 3); 1519 if (dma > 1) 1520 mwdma_mask |= (1 << 4); 1521 } 1522 1523 udma_mask = 0; 1524 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1525 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1526 1527 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1528 } 1529 1530 /** 1531 * ata_pio_queue_task - Queue port_task 1532 * @ap: The ata_port to queue port_task for 1533 * @fn: workqueue function to be scheduled 1534 * @data: data for @fn to use 1535 * @delay: delay time in msecs for workqueue function 1536 * 1537 * Schedule @fn(@data) for execution after @delay jiffies using 1538 * port_task. There is one port_task per port and it's the 1539 * user(low level driver)'s responsibility to make sure that only 1540 * one task is active at any given time. 1541 * 1542 * libata core layer takes care of synchronization between 1543 * port_task and EH. ata_pio_queue_task() may be ignored for EH 1544 * synchronization. 1545 * 1546 * LOCKING: 1547 * Inherited from caller. 1548 */ 1549 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay) 1550 { 1551 ap->port_task_data = data; 1552 1553 /* may fail if ata_port_flush_task() in progress */ 1554 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay)); 1555 } 1556 1557 /** 1558 * ata_port_flush_task - Flush port_task 1559 * @ap: The ata_port to flush port_task for 1560 * 1561 * After this function completes, port_task is guranteed not to 1562 * be running or scheduled. 1563 * 1564 * LOCKING: 1565 * Kernel thread context (may sleep) 1566 */ 1567 void ata_port_flush_task(struct ata_port *ap) 1568 { 1569 DPRINTK("ENTER\n"); 1570 1571 cancel_rearming_delayed_work(&ap->port_task); 1572 1573 if (ata_msg_ctl(ap)) 1574 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1575 } 1576 1577 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1578 { 1579 struct completion *waiting = qc->private_data; 1580 1581 complete(waiting); 1582 } 1583 1584 /** 1585 * ata_exec_internal_sg - execute libata internal command 1586 * @dev: Device to which the command is sent 1587 * @tf: Taskfile registers for the command and the result 1588 * @cdb: CDB for packet command 1589 * @dma_dir: Data tranfer direction of the command 1590 * @sgl: sg list for the data buffer of the command 1591 * @n_elem: Number of sg entries 1592 * @timeout: Timeout in msecs (0 for default) 1593 * 1594 * Executes libata internal command with timeout. @tf contains 1595 * command on entry and result on return. Timeout and error 1596 * conditions are reported via return value. No recovery action 1597 * is taken after a command times out. It's caller's duty to 1598 * clean up after timeout. 1599 * 1600 * LOCKING: 1601 * None. Should be called with kernel context, might sleep. 1602 * 1603 * RETURNS: 1604 * Zero on success, AC_ERR_* mask on failure 1605 */ 1606 unsigned ata_exec_internal_sg(struct ata_device *dev, 1607 struct ata_taskfile *tf, const u8 *cdb, 1608 int dma_dir, struct scatterlist *sgl, 1609 unsigned int n_elem, unsigned long timeout) 1610 { 1611 struct ata_link *link = dev->link; 1612 struct ata_port *ap = link->ap; 1613 u8 command = tf->command; 1614 int auto_timeout = 0; 1615 struct ata_queued_cmd *qc; 1616 unsigned int tag, preempted_tag; 1617 u32 preempted_sactive, preempted_qc_active; 1618 int preempted_nr_active_links; 1619 DECLARE_COMPLETION_ONSTACK(wait); 1620 unsigned long flags; 1621 unsigned int err_mask; 1622 int rc; 1623 1624 spin_lock_irqsave(ap->lock, flags); 1625 1626 /* no internal command while frozen */ 1627 if (ap->pflags & ATA_PFLAG_FROZEN) { 1628 spin_unlock_irqrestore(ap->lock, flags); 1629 return AC_ERR_SYSTEM; 1630 } 1631 1632 /* initialize internal qc */ 1633 1634 /* XXX: Tag 0 is used for drivers with legacy EH as some 1635 * drivers choke if any other tag is given. This breaks 1636 * ata_tag_internal() test for those drivers. Don't use new 1637 * EH stuff without converting to it. 1638 */ 1639 if (ap->ops->error_handler) 1640 tag = ATA_TAG_INTERNAL; 1641 else 1642 tag = 0; 1643 1644 if (test_and_set_bit(tag, &ap->qc_allocated)) 1645 BUG(); 1646 qc = __ata_qc_from_tag(ap, tag); 1647 1648 qc->tag = tag; 1649 qc->scsicmd = NULL; 1650 qc->ap = ap; 1651 qc->dev = dev; 1652 ata_qc_reinit(qc); 1653 1654 preempted_tag = link->active_tag; 1655 preempted_sactive = link->sactive; 1656 preempted_qc_active = ap->qc_active; 1657 preempted_nr_active_links = ap->nr_active_links; 1658 link->active_tag = ATA_TAG_POISON; 1659 link->sactive = 0; 1660 ap->qc_active = 0; 1661 ap->nr_active_links = 0; 1662 1663 /* prepare & issue qc */ 1664 qc->tf = *tf; 1665 if (cdb) 1666 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1667 qc->flags |= ATA_QCFLAG_RESULT_TF; 1668 qc->dma_dir = dma_dir; 1669 if (dma_dir != DMA_NONE) { 1670 unsigned int i, buflen = 0; 1671 struct scatterlist *sg; 1672 1673 for_each_sg(sgl, sg, n_elem, i) 1674 buflen += sg->length; 1675 1676 ata_sg_init(qc, sgl, n_elem); 1677 qc->nbytes = buflen; 1678 } 1679 1680 qc->private_data = &wait; 1681 qc->complete_fn = ata_qc_complete_internal; 1682 1683 ata_qc_issue(qc); 1684 1685 spin_unlock_irqrestore(ap->lock, flags); 1686 1687 if (!timeout) { 1688 if (ata_probe_timeout) 1689 timeout = ata_probe_timeout * 1000; 1690 else { 1691 timeout = ata_internal_cmd_timeout(dev, command); 1692 auto_timeout = 1; 1693 } 1694 } 1695 1696 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1697 1698 ata_port_flush_task(ap); 1699 1700 if (!rc) { 1701 spin_lock_irqsave(ap->lock, flags); 1702 1703 /* We're racing with irq here. If we lose, the 1704 * following test prevents us from completing the qc 1705 * twice. If we win, the port is frozen and will be 1706 * cleaned up by ->post_internal_cmd(). 1707 */ 1708 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1709 qc->err_mask |= AC_ERR_TIMEOUT; 1710 1711 if (ap->ops->error_handler) 1712 ata_port_freeze(ap); 1713 else 1714 ata_qc_complete(qc); 1715 1716 if (ata_msg_warn(ap)) 1717 ata_dev_printk(dev, KERN_WARNING, 1718 "qc timeout (cmd 0x%x)\n", command); 1719 } 1720 1721 spin_unlock_irqrestore(ap->lock, flags); 1722 } 1723 1724 /* do post_internal_cmd */ 1725 if (ap->ops->post_internal_cmd) 1726 ap->ops->post_internal_cmd(qc); 1727 1728 /* perform minimal error analysis */ 1729 if (qc->flags & ATA_QCFLAG_FAILED) { 1730 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1731 qc->err_mask |= AC_ERR_DEV; 1732 1733 if (!qc->err_mask) 1734 qc->err_mask |= AC_ERR_OTHER; 1735 1736 if (qc->err_mask & ~AC_ERR_OTHER) 1737 qc->err_mask &= ~AC_ERR_OTHER; 1738 } 1739 1740 /* finish up */ 1741 spin_lock_irqsave(ap->lock, flags); 1742 1743 *tf = qc->result_tf; 1744 err_mask = qc->err_mask; 1745 1746 ata_qc_free(qc); 1747 link->active_tag = preempted_tag; 1748 link->sactive = preempted_sactive; 1749 ap->qc_active = preempted_qc_active; 1750 ap->nr_active_links = preempted_nr_active_links; 1751 1752 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1753 * Until those drivers are fixed, we detect the condition 1754 * here, fail the command with AC_ERR_SYSTEM and reenable the 1755 * port. 1756 * 1757 * Note that this doesn't change any behavior as internal 1758 * command failure results in disabling the device in the 1759 * higher layer for LLDDs without new reset/EH callbacks. 1760 * 1761 * Kill the following code as soon as those drivers are fixed. 1762 */ 1763 if (ap->flags & ATA_FLAG_DISABLED) { 1764 err_mask |= AC_ERR_SYSTEM; 1765 ata_port_probe(ap); 1766 } 1767 1768 spin_unlock_irqrestore(ap->lock, flags); 1769 1770 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1771 ata_internal_cmd_timed_out(dev, command); 1772 1773 return err_mask; 1774 } 1775 1776 /** 1777 * ata_exec_internal - execute libata internal command 1778 * @dev: Device to which the command is sent 1779 * @tf: Taskfile registers for the command and the result 1780 * @cdb: CDB for packet command 1781 * @dma_dir: Data tranfer direction of the command 1782 * @buf: Data buffer of the command 1783 * @buflen: Length of data buffer 1784 * @timeout: Timeout in msecs (0 for default) 1785 * 1786 * Wrapper around ata_exec_internal_sg() which takes simple 1787 * buffer instead of sg list. 1788 * 1789 * LOCKING: 1790 * None. Should be called with kernel context, might sleep. 1791 * 1792 * RETURNS: 1793 * Zero on success, AC_ERR_* mask on failure 1794 */ 1795 unsigned ata_exec_internal(struct ata_device *dev, 1796 struct ata_taskfile *tf, const u8 *cdb, 1797 int dma_dir, void *buf, unsigned int buflen, 1798 unsigned long timeout) 1799 { 1800 struct scatterlist *psg = NULL, sg; 1801 unsigned int n_elem = 0; 1802 1803 if (dma_dir != DMA_NONE) { 1804 WARN_ON(!buf); 1805 sg_init_one(&sg, buf, buflen); 1806 psg = &sg; 1807 n_elem++; 1808 } 1809 1810 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1811 timeout); 1812 } 1813 1814 /** 1815 * ata_do_simple_cmd - execute simple internal command 1816 * @dev: Device to which the command is sent 1817 * @cmd: Opcode to execute 1818 * 1819 * Execute a 'simple' command, that only consists of the opcode 1820 * 'cmd' itself, without filling any other registers 1821 * 1822 * LOCKING: 1823 * Kernel thread context (may sleep). 1824 * 1825 * RETURNS: 1826 * Zero on success, AC_ERR_* mask on failure 1827 */ 1828 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1829 { 1830 struct ata_taskfile tf; 1831 1832 ata_tf_init(dev, &tf); 1833 1834 tf.command = cmd; 1835 tf.flags |= ATA_TFLAG_DEVICE; 1836 tf.protocol = ATA_PROT_NODATA; 1837 1838 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1839 } 1840 1841 /** 1842 * ata_pio_need_iordy - check if iordy needed 1843 * @adev: ATA device 1844 * 1845 * Check if the current speed of the device requires IORDY. Used 1846 * by various controllers for chip configuration. 1847 */ 1848 1849 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1850 { 1851 /* Controller doesn't support IORDY. Probably a pointless check 1852 as the caller should know this */ 1853 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1854 return 0; 1855 /* PIO3 and higher it is mandatory */ 1856 if (adev->pio_mode > XFER_PIO_2) 1857 return 1; 1858 /* We turn it on when possible */ 1859 if (ata_id_has_iordy(adev->id)) 1860 return 1; 1861 return 0; 1862 } 1863 1864 /** 1865 * ata_pio_mask_no_iordy - Return the non IORDY mask 1866 * @adev: ATA device 1867 * 1868 * Compute the highest mode possible if we are not using iordy. Return 1869 * -1 if no iordy mode is available. 1870 */ 1871 1872 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1873 { 1874 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1875 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1876 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1877 /* Is the speed faster than the drive allows non IORDY ? */ 1878 if (pio) { 1879 /* This is cycle times not frequency - watch the logic! */ 1880 if (pio > 240) /* PIO2 is 240nS per cycle */ 1881 return 3 << ATA_SHIFT_PIO; 1882 return 7 << ATA_SHIFT_PIO; 1883 } 1884 } 1885 return 3 << ATA_SHIFT_PIO; 1886 } 1887 1888 /** 1889 * ata_dev_read_id - Read ID data from the specified device 1890 * @dev: target device 1891 * @p_class: pointer to class of the target device (may be changed) 1892 * @flags: ATA_READID_* flags 1893 * @id: buffer to read IDENTIFY data into 1894 * 1895 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1896 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1897 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1898 * for pre-ATA4 drives. 1899 * 1900 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1901 * now we abort if we hit that case. 1902 * 1903 * LOCKING: 1904 * Kernel thread context (may sleep) 1905 * 1906 * RETURNS: 1907 * 0 on success, -errno otherwise. 1908 */ 1909 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1910 unsigned int flags, u16 *id) 1911 { 1912 struct ata_port *ap = dev->link->ap; 1913 unsigned int class = *p_class; 1914 struct ata_taskfile tf; 1915 unsigned int err_mask = 0; 1916 const char *reason; 1917 int may_fallback = 1, tried_spinup = 0; 1918 int rc; 1919 1920 if (ata_msg_ctl(ap)) 1921 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 1922 1923 retry: 1924 ata_tf_init(dev, &tf); 1925 1926 switch (class) { 1927 case ATA_DEV_ATA: 1928 tf.command = ATA_CMD_ID_ATA; 1929 break; 1930 case ATA_DEV_ATAPI: 1931 tf.command = ATA_CMD_ID_ATAPI; 1932 break; 1933 default: 1934 rc = -ENODEV; 1935 reason = "unsupported class"; 1936 goto err_out; 1937 } 1938 1939 tf.protocol = ATA_PROT_PIO; 1940 1941 /* Some devices choke if TF registers contain garbage. Make 1942 * sure those are properly initialized. 1943 */ 1944 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1945 1946 /* Device presence detection is unreliable on some 1947 * controllers. Always poll IDENTIFY if available. 1948 */ 1949 tf.flags |= ATA_TFLAG_POLLING; 1950 1951 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 1952 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1953 if (err_mask) { 1954 if (err_mask & AC_ERR_NODEV_HINT) { 1955 ata_dev_printk(dev, KERN_DEBUG, 1956 "NODEV after polling detection\n"); 1957 return -ENOENT; 1958 } 1959 1960 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1961 /* Device or controller might have reported 1962 * the wrong device class. Give a shot at the 1963 * other IDENTIFY if the current one is 1964 * aborted by the device. 1965 */ 1966 if (may_fallback) { 1967 may_fallback = 0; 1968 1969 if (class == ATA_DEV_ATA) 1970 class = ATA_DEV_ATAPI; 1971 else 1972 class = ATA_DEV_ATA; 1973 goto retry; 1974 } 1975 1976 /* Control reaches here iff the device aborted 1977 * both flavors of IDENTIFYs which happens 1978 * sometimes with phantom devices. 1979 */ 1980 ata_dev_printk(dev, KERN_DEBUG, 1981 "both IDENTIFYs aborted, assuming NODEV\n"); 1982 return -ENOENT; 1983 } 1984 1985 rc = -EIO; 1986 reason = "I/O error"; 1987 goto err_out; 1988 } 1989 1990 /* Falling back doesn't make sense if ID data was read 1991 * successfully at least once. 1992 */ 1993 may_fallback = 0; 1994 1995 swap_buf_le16(id, ATA_ID_WORDS); 1996 1997 /* sanity check */ 1998 rc = -EINVAL; 1999 reason = "device reports invalid type"; 2000 2001 if (class == ATA_DEV_ATA) { 2002 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2003 goto err_out; 2004 } else { 2005 if (ata_id_is_ata(id)) 2006 goto err_out; 2007 } 2008 2009 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2010 tried_spinup = 1; 2011 /* 2012 * Drive powered-up in standby mode, and requires a specific 2013 * SET_FEATURES spin-up subcommand before it will accept 2014 * anything other than the original IDENTIFY command. 2015 */ 2016 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2017 if (err_mask && id[2] != 0x738c) { 2018 rc = -EIO; 2019 reason = "SPINUP failed"; 2020 goto err_out; 2021 } 2022 /* 2023 * If the drive initially returned incomplete IDENTIFY info, 2024 * we now must reissue the IDENTIFY command. 2025 */ 2026 if (id[2] == 0x37c8) 2027 goto retry; 2028 } 2029 2030 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2031 /* 2032 * The exact sequence expected by certain pre-ATA4 drives is: 2033 * SRST RESET 2034 * IDENTIFY (optional in early ATA) 2035 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2036 * anything else.. 2037 * Some drives were very specific about that exact sequence. 2038 * 2039 * Note that ATA4 says lba is mandatory so the second check 2040 * shoud never trigger. 2041 */ 2042 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2043 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2044 if (err_mask) { 2045 rc = -EIO; 2046 reason = "INIT_DEV_PARAMS failed"; 2047 goto err_out; 2048 } 2049 2050 /* current CHS translation info (id[53-58]) might be 2051 * changed. reread the identify device info. 2052 */ 2053 flags &= ~ATA_READID_POSTRESET; 2054 goto retry; 2055 } 2056 } 2057 2058 *p_class = class; 2059 2060 return 0; 2061 2062 err_out: 2063 if (ata_msg_warn(ap)) 2064 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2065 "(%s, err_mask=0x%x)\n", reason, err_mask); 2066 return rc; 2067 } 2068 2069 static inline u8 ata_dev_knobble(struct ata_device *dev) 2070 { 2071 struct ata_port *ap = dev->link->ap; 2072 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2073 } 2074 2075 static void ata_dev_config_ncq(struct ata_device *dev, 2076 char *desc, size_t desc_sz) 2077 { 2078 struct ata_port *ap = dev->link->ap; 2079 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2080 2081 if (!ata_id_has_ncq(dev->id)) { 2082 desc[0] = '\0'; 2083 return; 2084 } 2085 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2086 snprintf(desc, desc_sz, "NCQ (not used)"); 2087 return; 2088 } 2089 if (ap->flags & ATA_FLAG_NCQ) { 2090 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2091 dev->flags |= ATA_DFLAG_NCQ; 2092 } 2093 2094 if (hdepth >= ddepth) 2095 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 2096 else 2097 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 2098 } 2099 2100 /** 2101 * ata_dev_configure - Configure the specified ATA/ATAPI device 2102 * @dev: Target device to configure 2103 * 2104 * Configure @dev according to @dev->id. Generic and low-level 2105 * driver specific fixups are also applied. 2106 * 2107 * LOCKING: 2108 * Kernel thread context (may sleep) 2109 * 2110 * RETURNS: 2111 * 0 on success, -errno otherwise 2112 */ 2113 int ata_dev_configure(struct ata_device *dev) 2114 { 2115 struct ata_port *ap = dev->link->ap; 2116 struct ata_eh_context *ehc = &dev->link->eh_context; 2117 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2118 const u16 *id = dev->id; 2119 unsigned long xfer_mask; 2120 char revbuf[7]; /* XYZ-99\0 */ 2121 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2122 char modelbuf[ATA_ID_PROD_LEN+1]; 2123 int rc; 2124 2125 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2126 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2127 __func__); 2128 return 0; 2129 } 2130 2131 if (ata_msg_probe(ap)) 2132 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2133 2134 /* set horkage */ 2135 dev->horkage |= ata_dev_blacklisted(dev); 2136 ata_force_horkage(dev); 2137 2138 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2139 ata_dev_printk(dev, KERN_INFO, 2140 "unsupported device, disabling\n"); 2141 ata_dev_disable(dev); 2142 return 0; 2143 } 2144 2145 /* let ACPI work its magic */ 2146 rc = ata_acpi_on_devcfg(dev); 2147 if (rc) 2148 return rc; 2149 2150 /* massage HPA, do it early as it might change IDENTIFY data */ 2151 rc = ata_hpa_resize(dev); 2152 if (rc) 2153 return rc; 2154 2155 /* print device capabilities */ 2156 if (ata_msg_probe(ap)) 2157 ata_dev_printk(dev, KERN_DEBUG, 2158 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2159 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2160 __func__, 2161 id[49], id[82], id[83], id[84], 2162 id[85], id[86], id[87], id[88]); 2163 2164 /* initialize to-be-configured parameters */ 2165 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2166 dev->max_sectors = 0; 2167 dev->cdb_len = 0; 2168 dev->n_sectors = 0; 2169 dev->cylinders = 0; 2170 dev->heads = 0; 2171 dev->sectors = 0; 2172 2173 /* 2174 * common ATA, ATAPI feature tests 2175 */ 2176 2177 /* find max transfer mode; for printk only */ 2178 xfer_mask = ata_id_xfermask(id); 2179 2180 if (ata_msg_probe(ap)) 2181 ata_dump_id(id); 2182 2183 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2184 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2185 sizeof(fwrevbuf)); 2186 2187 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2188 sizeof(modelbuf)); 2189 2190 /* ATA-specific feature tests */ 2191 if (dev->class == ATA_DEV_ATA) { 2192 if (ata_id_is_cfa(id)) { 2193 if (id[162] & 1) /* CPRM may make this media unusable */ 2194 ata_dev_printk(dev, KERN_WARNING, 2195 "supports DRM functions and may " 2196 "not be fully accessable.\n"); 2197 snprintf(revbuf, 7, "CFA"); 2198 } else { 2199 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2200 /* Warn the user if the device has TPM extensions */ 2201 if (ata_id_has_tpm(id)) 2202 ata_dev_printk(dev, KERN_WARNING, 2203 "supports DRM functions and may " 2204 "not be fully accessable.\n"); 2205 } 2206 2207 dev->n_sectors = ata_id_n_sectors(id); 2208 2209 if (dev->id[59] & 0x100) 2210 dev->multi_count = dev->id[59] & 0xff; 2211 2212 if (ata_id_has_lba(id)) { 2213 const char *lba_desc; 2214 char ncq_desc[20]; 2215 2216 lba_desc = "LBA"; 2217 dev->flags |= ATA_DFLAG_LBA; 2218 if (ata_id_has_lba48(id)) { 2219 dev->flags |= ATA_DFLAG_LBA48; 2220 lba_desc = "LBA48"; 2221 2222 if (dev->n_sectors >= (1UL << 28) && 2223 ata_id_has_flush_ext(id)) 2224 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2225 } 2226 2227 /* config NCQ */ 2228 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2229 2230 /* print device info to dmesg */ 2231 if (ata_msg_drv(ap) && print_info) { 2232 ata_dev_printk(dev, KERN_INFO, 2233 "%s: %s, %s, max %s\n", 2234 revbuf, modelbuf, fwrevbuf, 2235 ata_mode_string(xfer_mask)); 2236 ata_dev_printk(dev, KERN_INFO, 2237 "%Lu sectors, multi %u: %s %s\n", 2238 (unsigned long long)dev->n_sectors, 2239 dev->multi_count, lba_desc, ncq_desc); 2240 } 2241 } else { 2242 /* CHS */ 2243 2244 /* Default translation */ 2245 dev->cylinders = id[1]; 2246 dev->heads = id[3]; 2247 dev->sectors = id[6]; 2248 2249 if (ata_id_current_chs_valid(id)) { 2250 /* Current CHS translation is valid. */ 2251 dev->cylinders = id[54]; 2252 dev->heads = id[55]; 2253 dev->sectors = id[56]; 2254 } 2255 2256 /* print device info to dmesg */ 2257 if (ata_msg_drv(ap) && print_info) { 2258 ata_dev_printk(dev, KERN_INFO, 2259 "%s: %s, %s, max %s\n", 2260 revbuf, modelbuf, fwrevbuf, 2261 ata_mode_string(xfer_mask)); 2262 ata_dev_printk(dev, KERN_INFO, 2263 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2264 (unsigned long long)dev->n_sectors, 2265 dev->multi_count, dev->cylinders, 2266 dev->heads, dev->sectors); 2267 } 2268 } 2269 2270 dev->cdb_len = 16; 2271 } 2272 2273 /* ATAPI-specific feature tests */ 2274 else if (dev->class == ATA_DEV_ATAPI) { 2275 const char *cdb_intr_string = ""; 2276 const char *atapi_an_string = ""; 2277 const char *dma_dir_string = ""; 2278 u32 sntf; 2279 2280 rc = atapi_cdb_len(id); 2281 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2282 if (ata_msg_warn(ap)) 2283 ata_dev_printk(dev, KERN_WARNING, 2284 "unsupported CDB len\n"); 2285 rc = -EINVAL; 2286 goto err_out_nosup; 2287 } 2288 dev->cdb_len = (unsigned int) rc; 2289 2290 /* Enable ATAPI AN if both the host and device have 2291 * the support. If PMP is attached, SNTF is required 2292 * to enable ATAPI AN to discern between PHY status 2293 * changed notifications and ATAPI ANs. 2294 */ 2295 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2296 (!sata_pmp_attached(ap) || 2297 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2298 unsigned int err_mask; 2299 2300 /* issue SET feature command to turn this on */ 2301 err_mask = ata_dev_set_feature(dev, 2302 SETFEATURES_SATA_ENABLE, SATA_AN); 2303 if (err_mask) 2304 ata_dev_printk(dev, KERN_ERR, 2305 "failed to enable ATAPI AN " 2306 "(err_mask=0x%x)\n", err_mask); 2307 else { 2308 dev->flags |= ATA_DFLAG_AN; 2309 atapi_an_string = ", ATAPI AN"; 2310 } 2311 } 2312 2313 if (ata_id_cdb_intr(dev->id)) { 2314 dev->flags |= ATA_DFLAG_CDB_INTR; 2315 cdb_intr_string = ", CDB intr"; 2316 } 2317 2318 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2319 dev->flags |= ATA_DFLAG_DMADIR; 2320 dma_dir_string = ", DMADIR"; 2321 } 2322 2323 /* print device info to dmesg */ 2324 if (ata_msg_drv(ap) && print_info) 2325 ata_dev_printk(dev, KERN_INFO, 2326 "ATAPI: %s, %s, max %s%s%s%s\n", 2327 modelbuf, fwrevbuf, 2328 ata_mode_string(xfer_mask), 2329 cdb_intr_string, atapi_an_string, 2330 dma_dir_string); 2331 } 2332 2333 /* determine max_sectors */ 2334 dev->max_sectors = ATA_MAX_SECTORS; 2335 if (dev->flags & ATA_DFLAG_LBA48) 2336 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2337 2338 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2339 if (ata_id_has_hipm(dev->id)) 2340 dev->flags |= ATA_DFLAG_HIPM; 2341 if (ata_id_has_dipm(dev->id)) 2342 dev->flags |= ATA_DFLAG_DIPM; 2343 } 2344 2345 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2346 200 sectors */ 2347 if (ata_dev_knobble(dev)) { 2348 if (ata_msg_drv(ap) && print_info) 2349 ata_dev_printk(dev, KERN_INFO, 2350 "applying bridge limits\n"); 2351 dev->udma_mask &= ATA_UDMA5; 2352 dev->max_sectors = ATA_MAX_SECTORS; 2353 } 2354 2355 if ((dev->class == ATA_DEV_ATAPI) && 2356 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2357 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2358 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2359 } 2360 2361 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2362 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2363 dev->max_sectors); 2364 2365 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2366 dev->horkage |= ATA_HORKAGE_IPM; 2367 2368 /* reset link pm_policy for this port to no pm */ 2369 ap->pm_policy = MAX_PERFORMANCE; 2370 } 2371 2372 if (ap->ops->dev_config) 2373 ap->ops->dev_config(dev); 2374 2375 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2376 /* Let the user know. We don't want to disallow opens for 2377 rescue purposes, or in case the vendor is just a blithering 2378 idiot. Do this after the dev_config call as some controllers 2379 with buggy firmware may want to avoid reporting false device 2380 bugs */ 2381 2382 if (print_info) { 2383 ata_dev_printk(dev, KERN_WARNING, 2384 "Drive reports diagnostics failure. This may indicate a drive\n"); 2385 ata_dev_printk(dev, KERN_WARNING, 2386 "fault or invalid emulation. Contact drive vendor for information.\n"); 2387 } 2388 } 2389 2390 return 0; 2391 2392 err_out_nosup: 2393 if (ata_msg_probe(ap)) 2394 ata_dev_printk(dev, KERN_DEBUG, 2395 "%s: EXIT, err\n", __func__); 2396 return rc; 2397 } 2398 2399 /** 2400 * ata_cable_40wire - return 40 wire cable type 2401 * @ap: port 2402 * 2403 * Helper method for drivers which want to hardwire 40 wire cable 2404 * detection. 2405 */ 2406 2407 int ata_cable_40wire(struct ata_port *ap) 2408 { 2409 return ATA_CBL_PATA40; 2410 } 2411 2412 /** 2413 * ata_cable_80wire - return 80 wire cable type 2414 * @ap: port 2415 * 2416 * Helper method for drivers which want to hardwire 80 wire cable 2417 * detection. 2418 */ 2419 2420 int ata_cable_80wire(struct ata_port *ap) 2421 { 2422 return ATA_CBL_PATA80; 2423 } 2424 2425 /** 2426 * ata_cable_unknown - return unknown PATA cable. 2427 * @ap: port 2428 * 2429 * Helper method for drivers which have no PATA cable detection. 2430 */ 2431 2432 int ata_cable_unknown(struct ata_port *ap) 2433 { 2434 return ATA_CBL_PATA_UNK; 2435 } 2436 2437 /** 2438 * ata_cable_ignore - return ignored PATA cable. 2439 * @ap: port 2440 * 2441 * Helper method for drivers which don't use cable type to limit 2442 * transfer mode. 2443 */ 2444 int ata_cable_ignore(struct ata_port *ap) 2445 { 2446 return ATA_CBL_PATA_IGN; 2447 } 2448 2449 /** 2450 * ata_cable_sata - return SATA cable type 2451 * @ap: port 2452 * 2453 * Helper method for drivers which have SATA cables 2454 */ 2455 2456 int ata_cable_sata(struct ata_port *ap) 2457 { 2458 return ATA_CBL_SATA; 2459 } 2460 2461 /** 2462 * ata_bus_probe - Reset and probe ATA bus 2463 * @ap: Bus to probe 2464 * 2465 * Master ATA bus probing function. Initiates a hardware-dependent 2466 * bus reset, then attempts to identify any devices found on 2467 * the bus. 2468 * 2469 * LOCKING: 2470 * PCI/etc. bus probe sem. 2471 * 2472 * RETURNS: 2473 * Zero on success, negative errno otherwise. 2474 */ 2475 2476 int ata_bus_probe(struct ata_port *ap) 2477 { 2478 unsigned int classes[ATA_MAX_DEVICES]; 2479 int tries[ATA_MAX_DEVICES]; 2480 int rc; 2481 struct ata_device *dev; 2482 2483 ata_port_probe(ap); 2484 2485 ata_link_for_each_dev(dev, &ap->link) 2486 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2487 2488 retry: 2489 ata_link_for_each_dev(dev, &ap->link) { 2490 /* If we issue an SRST then an ATA drive (not ATAPI) 2491 * may change configuration and be in PIO0 timing. If 2492 * we do a hard reset (or are coming from power on) 2493 * this is true for ATA or ATAPI. Until we've set a 2494 * suitable controller mode we should not touch the 2495 * bus as we may be talking too fast. 2496 */ 2497 dev->pio_mode = XFER_PIO_0; 2498 2499 /* If the controller has a pio mode setup function 2500 * then use it to set the chipset to rights. Don't 2501 * touch the DMA setup as that will be dealt with when 2502 * configuring devices. 2503 */ 2504 if (ap->ops->set_piomode) 2505 ap->ops->set_piomode(ap, dev); 2506 } 2507 2508 /* reset and determine device classes */ 2509 ap->ops->phy_reset(ap); 2510 2511 ata_link_for_each_dev(dev, &ap->link) { 2512 if (!(ap->flags & ATA_FLAG_DISABLED) && 2513 dev->class != ATA_DEV_UNKNOWN) 2514 classes[dev->devno] = dev->class; 2515 else 2516 classes[dev->devno] = ATA_DEV_NONE; 2517 2518 dev->class = ATA_DEV_UNKNOWN; 2519 } 2520 2521 ata_port_probe(ap); 2522 2523 /* read IDENTIFY page and configure devices. We have to do the identify 2524 specific sequence bass-ackwards so that PDIAG- is released by 2525 the slave device */ 2526 2527 ata_link_for_each_dev_reverse(dev, &ap->link) { 2528 if (tries[dev->devno]) 2529 dev->class = classes[dev->devno]; 2530 2531 if (!ata_dev_enabled(dev)) 2532 continue; 2533 2534 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2535 dev->id); 2536 if (rc) 2537 goto fail; 2538 } 2539 2540 /* Now ask for the cable type as PDIAG- should have been released */ 2541 if (ap->ops->cable_detect) 2542 ap->cbl = ap->ops->cable_detect(ap); 2543 2544 /* We may have SATA bridge glue hiding here irrespective of the 2545 reported cable types and sensed types */ 2546 ata_link_for_each_dev(dev, &ap->link) { 2547 if (!ata_dev_enabled(dev)) 2548 continue; 2549 /* SATA drives indicate we have a bridge. We don't know which 2550 end of the link the bridge is which is a problem */ 2551 if (ata_id_is_sata(dev->id)) 2552 ap->cbl = ATA_CBL_SATA; 2553 } 2554 2555 /* After the identify sequence we can now set up the devices. We do 2556 this in the normal order so that the user doesn't get confused */ 2557 2558 ata_link_for_each_dev(dev, &ap->link) { 2559 if (!ata_dev_enabled(dev)) 2560 continue; 2561 2562 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2563 rc = ata_dev_configure(dev); 2564 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2565 if (rc) 2566 goto fail; 2567 } 2568 2569 /* configure transfer mode */ 2570 rc = ata_set_mode(&ap->link, &dev); 2571 if (rc) 2572 goto fail; 2573 2574 ata_link_for_each_dev(dev, &ap->link) 2575 if (ata_dev_enabled(dev)) 2576 return 0; 2577 2578 /* no device present, disable port */ 2579 ata_port_disable(ap); 2580 return -ENODEV; 2581 2582 fail: 2583 tries[dev->devno]--; 2584 2585 switch (rc) { 2586 case -EINVAL: 2587 /* eeek, something went very wrong, give up */ 2588 tries[dev->devno] = 0; 2589 break; 2590 2591 case -ENODEV: 2592 /* give it just one more chance */ 2593 tries[dev->devno] = min(tries[dev->devno], 1); 2594 case -EIO: 2595 if (tries[dev->devno] == 1) { 2596 /* This is the last chance, better to slow 2597 * down than lose it. 2598 */ 2599 sata_down_spd_limit(&ap->link); 2600 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2601 } 2602 } 2603 2604 if (!tries[dev->devno]) 2605 ata_dev_disable(dev); 2606 2607 goto retry; 2608 } 2609 2610 /** 2611 * ata_port_probe - Mark port as enabled 2612 * @ap: Port for which we indicate enablement 2613 * 2614 * Modify @ap data structure such that the system 2615 * thinks that the entire port is enabled. 2616 * 2617 * LOCKING: host lock, or some other form of 2618 * serialization. 2619 */ 2620 2621 void ata_port_probe(struct ata_port *ap) 2622 { 2623 ap->flags &= ~ATA_FLAG_DISABLED; 2624 } 2625 2626 /** 2627 * sata_print_link_status - Print SATA link status 2628 * @link: SATA link to printk link status about 2629 * 2630 * This function prints link speed and status of a SATA link. 2631 * 2632 * LOCKING: 2633 * None. 2634 */ 2635 static void sata_print_link_status(struct ata_link *link) 2636 { 2637 u32 sstatus, scontrol, tmp; 2638 2639 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2640 return; 2641 sata_scr_read(link, SCR_CONTROL, &scontrol); 2642 2643 if (ata_link_online(link)) { 2644 tmp = (sstatus >> 4) & 0xf; 2645 ata_link_printk(link, KERN_INFO, 2646 "SATA link up %s (SStatus %X SControl %X)\n", 2647 sata_spd_string(tmp), sstatus, scontrol); 2648 } else { 2649 ata_link_printk(link, KERN_INFO, 2650 "SATA link down (SStatus %X SControl %X)\n", 2651 sstatus, scontrol); 2652 } 2653 } 2654 2655 /** 2656 * ata_dev_pair - return other device on cable 2657 * @adev: device 2658 * 2659 * Obtain the other device on the same cable, or if none is 2660 * present NULL is returned 2661 */ 2662 2663 struct ata_device *ata_dev_pair(struct ata_device *adev) 2664 { 2665 struct ata_link *link = adev->link; 2666 struct ata_device *pair = &link->device[1 - adev->devno]; 2667 if (!ata_dev_enabled(pair)) 2668 return NULL; 2669 return pair; 2670 } 2671 2672 /** 2673 * ata_port_disable - Disable port. 2674 * @ap: Port to be disabled. 2675 * 2676 * Modify @ap data structure such that the system 2677 * thinks that the entire port is disabled, and should 2678 * never attempt to probe or communicate with devices 2679 * on this port. 2680 * 2681 * LOCKING: host lock, or some other form of 2682 * serialization. 2683 */ 2684 2685 void ata_port_disable(struct ata_port *ap) 2686 { 2687 ap->link.device[0].class = ATA_DEV_NONE; 2688 ap->link.device[1].class = ATA_DEV_NONE; 2689 ap->flags |= ATA_FLAG_DISABLED; 2690 } 2691 2692 /** 2693 * sata_down_spd_limit - adjust SATA spd limit downward 2694 * @link: Link to adjust SATA spd limit for 2695 * 2696 * Adjust SATA spd limit of @link downward. Note that this 2697 * function only adjusts the limit. The change must be applied 2698 * using sata_set_spd(). 2699 * 2700 * LOCKING: 2701 * Inherited from caller. 2702 * 2703 * RETURNS: 2704 * 0 on success, negative errno on failure 2705 */ 2706 int sata_down_spd_limit(struct ata_link *link) 2707 { 2708 u32 sstatus, spd, mask; 2709 int rc, highbit; 2710 2711 if (!sata_scr_valid(link)) 2712 return -EOPNOTSUPP; 2713 2714 /* If SCR can be read, use it to determine the current SPD. 2715 * If not, use cached value in link->sata_spd. 2716 */ 2717 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2718 if (rc == 0) 2719 spd = (sstatus >> 4) & 0xf; 2720 else 2721 spd = link->sata_spd; 2722 2723 mask = link->sata_spd_limit; 2724 if (mask <= 1) 2725 return -EINVAL; 2726 2727 /* unconditionally mask off the highest bit */ 2728 highbit = fls(mask) - 1; 2729 mask &= ~(1 << highbit); 2730 2731 /* Mask off all speeds higher than or equal to the current 2732 * one. Force 1.5Gbps if current SPD is not available. 2733 */ 2734 if (spd > 1) 2735 mask &= (1 << (spd - 1)) - 1; 2736 else 2737 mask &= 1; 2738 2739 /* were we already at the bottom? */ 2740 if (!mask) 2741 return -EINVAL; 2742 2743 link->sata_spd_limit = mask; 2744 2745 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2746 sata_spd_string(fls(mask))); 2747 2748 return 0; 2749 } 2750 2751 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2752 { 2753 struct ata_link *host_link = &link->ap->link; 2754 u32 limit, target, spd; 2755 2756 limit = link->sata_spd_limit; 2757 2758 /* Don't configure downstream link faster than upstream link. 2759 * It doesn't speed up anything and some PMPs choke on such 2760 * configuration. 2761 */ 2762 if (!ata_is_host_link(link) && host_link->sata_spd) 2763 limit &= (1 << host_link->sata_spd) - 1; 2764 2765 if (limit == UINT_MAX) 2766 target = 0; 2767 else 2768 target = fls(limit); 2769 2770 spd = (*scontrol >> 4) & 0xf; 2771 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2772 2773 return spd != target; 2774 } 2775 2776 /** 2777 * sata_set_spd_needed - is SATA spd configuration needed 2778 * @link: Link in question 2779 * 2780 * Test whether the spd limit in SControl matches 2781 * @link->sata_spd_limit. This function is used to determine 2782 * whether hardreset is necessary to apply SATA spd 2783 * configuration. 2784 * 2785 * LOCKING: 2786 * Inherited from caller. 2787 * 2788 * RETURNS: 2789 * 1 if SATA spd configuration is needed, 0 otherwise. 2790 */ 2791 static int sata_set_spd_needed(struct ata_link *link) 2792 { 2793 u32 scontrol; 2794 2795 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2796 return 1; 2797 2798 return __sata_set_spd_needed(link, &scontrol); 2799 } 2800 2801 /** 2802 * sata_set_spd - set SATA spd according to spd limit 2803 * @link: Link to set SATA spd for 2804 * 2805 * Set SATA spd of @link according to sata_spd_limit. 2806 * 2807 * LOCKING: 2808 * Inherited from caller. 2809 * 2810 * RETURNS: 2811 * 0 if spd doesn't need to be changed, 1 if spd has been 2812 * changed. Negative errno if SCR registers are inaccessible. 2813 */ 2814 int sata_set_spd(struct ata_link *link) 2815 { 2816 u32 scontrol; 2817 int rc; 2818 2819 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2820 return rc; 2821 2822 if (!__sata_set_spd_needed(link, &scontrol)) 2823 return 0; 2824 2825 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2826 return rc; 2827 2828 return 1; 2829 } 2830 2831 /* 2832 * This mode timing computation functionality is ported over from 2833 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2834 */ 2835 /* 2836 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2837 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2838 * for UDMA6, which is currently supported only by Maxtor drives. 2839 * 2840 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2841 */ 2842 2843 static const struct ata_timing ata_timing[] = { 2844 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2845 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2846 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2847 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2848 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2849 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2850 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2851 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2852 2853 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2854 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2855 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2856 2857 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2858 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2859 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2860 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2861 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2862 2863 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2864 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2865 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2866 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2867 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2868 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2869 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2870 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2871 2872 { 0xFF } 2873 }; 2874 2875 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2876 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2877 2878 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2879 { 2880 q->setup = EZ(t->setup * 1000, T); 2881 q->act8b = EZ(t->act8b * 1000, T); 2882 q->rec8b = EZ(t->rec8b * 1000, T); 2883 q->cyc8b = EZ(t->cyc8b * 1000, T); 2884 q->active = EZ(t->active * 1000, T); 2885 q->recover = EZ(t->recover * 1000, T); 2886 q->cycle = EZ(t->cycle * 1000, T); 2887 q->udma = EZ(t->udma * 1000, UT); 2888 } 2889 2890 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2891 struct ata_timing *m, unsigned int what) 2892 { 2893 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2894 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2895 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2896 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2897 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2898 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2899 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2900 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2901 } 2902 2903 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2904 { 2905 const struct ata_timing *t = ata_timing; 2906 2907 while (xfer_mode > t->mode) 2908 t++; 2909 2910 if (xfer_mode == t->mode) 2911 return t; 2912 return NULL; 2913 } 2914 2915 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2916 struct ata_timing *t, int T, int UT) 2917 { 2918 const struct ata_timing *s; 2919 struct ata_timing p; 2920 2921 /* 2922 * Find the mode. 2923 */ 2924 2925 if (!(s = ata_timing_find_mode(speed))) 2926 return -EINVAL; 2927 2928 memcpy(t, s, sizeof(*s)); 2929 2930 /* 2931 * If the drive is an EIDE drive, it can tell us it needs extended 2932 * PIO/MW_DMA cycle timing. 2933 */ 2934 2935 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2936 memset(&p, 0, sizeof(p)); 2937 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 2938 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 2939 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 2940 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 2941 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 2942 } 2943 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2944 } 2945 2946 /* 2947 * Convert the timing to bus clock counts. 2948 */ 2949 2950 ata_timing_quantize(t, t, T, UT); 2951 2952 /* 2953 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2954 * S.M.A.R.T * and some other commands. We have to ensure that the 2955 * DMA cycle timing is slower/equal than the fastest PIO timing. 2956 */ 2957 2958 if (speed > XFER_PIO_6) { 2959 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2960 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2961 } 2962 2963 /* 2964 * Lengthen active & recovery time so that cycle time is correct. 2965 */ 2966 2967 if (t->act8b + t->rec8b < t->cyc8b) { 2968 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2969 t->rec8b = t->cyc8b - t->act8b; 2970 } 2971 2972 if (t->active + t->recover < t->cycle) { 2973 t->active += (t->cycle - (t->active + t->recover)) / 2; 2974 t->recover = t->cycle - t->active; 2975 } 2976 2977 /* In a few cases quantisation may produce enough errors to 2978 leave t->cycle too low for the sum of active and recovery 2979 if so we must correct this */ 2980 if (t->active + t->recover > t->cycle) 2981 t->cycle = t->active + t->recover; 2982 2983 return 0; 2984 } 2985 2986 /** 2987 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 2988 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 2989 * @cycle: cycle duration in ns 2990 * 2991 * Return matching xfer mode for @cycle. The returned mode is of 2992 * the transfer type specified by @xfer_shift. If @cycle is too 2993 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 2994 * than the fastest known mode, the fasted mode is returned. 2995 * 2996 * LOCKING: 2997 * None. 2998 * 2999 * RETURNS: 3000 * Matching xfer_mode, 0xff if no match found. 3001 */ 3002 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3003 { 3004 u8 base_mode = 0xff, last_mode = 0xff; 3005 const struct ata_xfer_ent *ent; 3006 const struct ata_timing *t; 3007 3008 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3009 if (ent->shift == xfer_shift) 3010 base_mode = ent->base; 3011 3012 for (t = ata_timing_find_mode(base_mode); 3013 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3014 unsigned short this_cycle; 3015 3016 switch (xfer_shift) { 3017 case ATA_SHIFT_PIO: 3018 case ATA_SHIFT_MWDMA: 3019 this_cycle = t->cycle; 3020 break; 3021 case ATA_SHIFT_UDMA: 3022 this_cycle = t->udma; 3023 break; 3024 default: 3025 return 0xff; 3026 } 3027 3028 if (cycle > this_cycle) 3029 break; 3030 3031 last_mode = t->mode; 3032 } 3033 3034 return last_mode; 3035 } 3036 3037 /** 3038 * ata_down_xfermask_limit - adjust dev xfer masks downward 3039 * @dev: Device to adjust xfer masks 3040 * @sel: ATA_DNXFER_* selector 3041 * 3042 * Adjust xfer masks of @dev downward. Note that this function 3043 * does not apply the change. Invoking ata_set_mode() afterwards 3044 * will apply the limit. 3045 * 3046 * LOCKING: 3047 * Inherited from caller. 3048 * 3049 * RETURNS: 3050 * 0 on success, negative errno on failure 3051 */ 3052 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3053 { 3054 char buf[32]; 3055 unsigned long orig_mask, xfer_mask; 3056 unsigned long pio_mask, mwdma_mask, udma_mask; 3057 int quiet, highbit; 3058 3059 quiet = !!(sel & ATA_DNXFER_QUIET); 3060 sel &= ~ATA_DNXFER_QUIET; 3061 3062 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3063 dev->mwdma_mask, 3064 dev->udma_mask); 3065 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3066 3067 switch (sel) { 3068 case ATA_DNXFER_PIO: 3069 highbit = fls(pio_mask) - 1; 3070 pio_mask &= ~(1 << highbit); 3071 break; 3072 3073 case ATA_DNXFER_DMA: 3074 if (udma_mask) { 3075 highbit = fls(udma_mask) - 1; 3076 udma_mask &= ~(1 << highbit); 3077 if (!udma_mask) 3078 return -ENOENT; 3079 } else if (mwdma_mask) { 3080 highbit = fls(mwdma_mask) - 1; 3081 mwdma_mask &= ~(1 << highbit); 3082 if (!mwdma_mask) 3083 return -ENOENT; 3084 } 3085 break; 3086 3087 case ATA_DNXFER_40C: 3088 udma_mask &= ATA_UDMA_MASK_40C; 3089 break; 3090 3091 case ATA_DNXFER_FORCE_PIO0: 3092 pio_mask &= 1; 3093 case ATA_DNXFER_FORCE_PIO: 3094 mwdma_mask = 0; 3095 udma_mask = 0; 3096 break; 3097 3098 default: 3099 BUG(); 3100 } 3101 3102 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3103 3104 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3105 return -ENOENT; 3106 3107 if (!quiet) { 3108 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3109 snprintf(buf, sizeof(buf), "%s:%s", 3110 ata_mode_string(xfer_mask), 3111 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3112 else 3113 snprintf(buf, sizeof(buf), "%s", 3114 ata_mode_string(xfer_mask)); 3115 3116 ata_dev_printk(dev, KERN_WARNING, 3117 "limiting speed to %s\n", buf); 3118 } 3119 3120 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3121 &dev->udma_mask); 3122 3123 return 0; 3124 } 3125 3126 static int ata_dev_set_mode(struct ata_device *dev) 3127 { 3128 struct ata_eh_context *ehc = &dev->link->eh_context; 3129 const char *dev_err_whine = ""; 3130 int ign_dev_err = 0; 3131 unsigned int err_mask; 3132 int rc; 3133 3134 dev->flags &= ~ATA_DFLAG_PIO; 3135 if (dev->xfer_shift == ATA_SHIFT_PIO) 3136 dev->flags |= ATA_DFLAG_PIO; 3137 3138 err_mask = ata_dev_set_xfermode(dev); 3139 3140 if (err_mask & ~AC_ERR_DEV) 3141 goto fail; 3142 3143 /* revalidate */ 3144 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3145 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3146 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3147 if (rc) 3148 return rc; 3149 3150 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3151 /* Old CFA may refuse this command, which is just fine */ 3152 if (ata_id_is_cfa(dev->id)) 3153 ign_dev_err = 1; 3154 /* Catch several broken garbage emulations plus some pre 3155 ATA devices */ 3156 if (ata_id_major_version(dev->id) == 0 && 3157 dev->pio_mode <= XFER_PIO_2) 3158 ign_dev_err = 1; 3159 /* Some very old devices and some bad newer ones fail 3160 any kind of SET_XFERMODE request but support PIO0-2 3161 timings and no IORDY */ 3162 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3163 ign_dev_err = 1; 3164 } 3165 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3166 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3167 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3168 dev->dma_mode == XFER_MW_DMA_0 && 3169 (dev->id[63] >> 8) & 1) 3170 ign_dev_err = 1; 3171 3172 /* if the device is actually configured correctly, ignore dev err */ 3173 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3174 ign_dev_err = 1; 3175 3176 if (err_mask & AC_ERR_DEV) { 3177 if (!ign_dev_err) 3178 goto fail; 3179 else 3180 dev_err_whine = " (device error ignored)"; 3181 } 3182 3183 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3184 dev->xfer_shift, (int)dev->xfer_mode); 3185 3186 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3187 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3188 dev_err_whine); 3189 3190 return 0; 3191 3192 fail: 3193 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3194 "(err_mask=0x%x)\n", err_mask); 3195 return -EIO; 3196 } 3197 3198 /** 3199 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3200 * @link: link on which timings will be programmed 3201 * @r_failed_dev: out parameter for failed device 3202 * 3203 * Standard implementation of the function used to tune and set 3204 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3205 * ata_dev_set_mode() fails, pointer to the failing device is 3206 * returned in @r_failed_dev. 3207 * 3208 * LOCKING: 3209 * PCI/etc. bus probe sem. 3210 * 3211 * RETURNS: 3212 * 0 on success, negative errno otherwise 3213 */ 3214 3215 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3216 { 3217 struct ata_port *ap = link->ap; 3218 struct ata_device *dev; 3219 int rc = 0, used_dma = 0, found = 0; 3220 3221 /* step 1: calculate xfer_mask */ 3222 ata_link_for_each_dev(dev, link) { 3223 unsigned long pio_mask, dma_mask; 3224 unsigned int mode_mask; 3225 3226 if (!ata_dev_enabled(dev)) 3227 continue; 3228 3229 mode_mask = ATA_DMA_MASK_ATA; 3230 if (dev->class == ATA_DEV_ATAPI) 3231 mode_mask = ATA_DMA_MASK_ATAPI; 3232 else if (ata_id_is_cfa(dev->id)) 3233 mode_mask = ATA_DMA_MASK_CFA; 3234 3235 ata_dev_xfermask(dev); 3236 ata_force_xfermask(dev); 3237 3238 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3239 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3240 3241 if (libata_dma_mask & mode_mask) 3242 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3243 else 3244 dma_mask = 0; 3245 3246 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3247 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3248 3249 found = 1; 3250 if (dev->dma_mode != 0xff) 3251 used_dma = 1; 3252 } 3253 if (!found) 3254 goto out; 3255 3256 /* step 2: always set host PIO timings */ 3257 ata_link_for_each_dev(dev, link) { 3258 if (!ata_dev_enabled(dev)) 3259 continue; 3260 3261 if (dev->pio_mode == 0xff) { 3262 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3263 rc = -EINVAL; 3264 goto out; 3265 } 3266 3267 dev->xfer_mode = dev->pio_mode; 3268 dev->xfer_shift = ATA_SHIFT_PIO; 3269 if (ap->ops->set_piomode) 3270 ap->ops->set_piomode(ap, dev); 3271 } 3272 3273 /* step 3: set host DMA timings */ 3274 ata_link_for_each_dev(dev, link) { 3275 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff) 3276 continue; 3277 3278 dev->xfer_mode = dev->dma_mode; 3279 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3280 if (ap->ops->set_dmamode) 3281 ap->ops->set_dmamode(ap, dev); 3282 } 3283 3284 /* step 4: update devices' xfer mode */ 3285 ata_link_for_each_dev(dev, link) { 3286 /* don't update suspended devices' xfer mode */ 3287 if (!ata_dev_enabled(dev)) 3288 continue; 3289 3290 rc = ata_dev_set_mode(dev); 3291 if (rc) 3292 goto out; 3293 } 3294 3295 /* Record simplex status. If we selected DMA then the other 3296 * host channels are not permitted to do so. 3297 */ 3298 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3299 ap->host->simplex_claimed = ap; 3300 3301 out: 3302 if (rc) 3303 *r_failed_dev = dev; 3304 return rc; 3305 } 3306 3307 /** 3308 * ata_wait_ready - wait for link to become ready 3309 * @link: link to be waited on 3310 * @deadline: deadline jiffies for the operation 3311 * @check_ready: callback to check link readiness 3312 * 3313 * Wait for @link to become ready. @check_ready should return 3314 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3315 * link doesn't seem to be occupied, other errno for other error 3316 * conditions. 3317 * 3318 * Transient -ENODEV conditions are allowed for 3319 * ATA_TMOUT_FF_WAIT. 3320 * 3321 * LOCKING: 3322 * EH context. 3323 * 3324 * RETURNS: 3325 * 0 if @linke is ready before @deadline; otherwise, -errno. 3326 */ 3327 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3328 int (*check_ready)(struct ata_link *link)) 3329 { 3330 unsigned long start = jiffies; 3331 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3332 int warned = 0; 3333 3334 if (time_after(nodev_deadline, deadline)) 3335 nodev_deadline = deadline; 3336 3337 while (1) { 3338 unsigned long now = jiffies; 3339 int ready, tmp; 3340 3341 ready = tmp = check_ready(link); 3342 if (ready > 0) 3343 return 0; 3344 3345 /* -ENODEV could be transient. Ignore -ENODEV if link 3346 * is online. Also, some SATA devices take a long 3347 * time to clear 0xff after reset. For example, 3348 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum 3349 * GoVault needs even more than that. Wait for 3350 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline. 3351 * 3352 * Note that some PATA controllers (pata_ali) explode 3353 * if status register is read more than once when 3354 * there's no device attached. 3355 */ 3356 if (ready == -ENODEV) { 3357 if (ata_link_online(link)) 3358 ready = 0; 3359 else if ((link->ap->flags & ATA_FLAG_SATA) && 3360 !ata_link_offline(link) && 3361 time_before(now, nodev_deadline)) 3362 ready = 0; 3363 } 3364 3365 if (ready) 3366 return ready; 3367 if (time_after(now, deadline)) 3368 return -EBUSY; 3369 3370 if (!warned && time_after(now, start + 5 * HZ) && 3371 (deadline - now > 3 * HZ)) { 3372 ata_link_printk(link, KERN_WARNING, 3373 "link is slow to respond, please be patient " 3374 "(ready=%d)\n", tmp); 3375 warned = 1; 3376 } 3377 3378 msleep(50); 3379 } 3380 } 3381 3382 /** 3383 * ata_wait_after_reset - wait for link to become ready after reset 3384 * @link: link to be waited on 3385 * @deadline: deadline jiffies for the operation 3386 * @check_ready: callback to check link readiness 3387 * 3388 * Wait for @link to become ready after reset. 3389 * 3390 * LOCKING: 3391 * EH context. 3392 * 3393 * RETURNS: 3394 * 0 if @linke is ready before @deadline; otherwise, -errno. 3395 */ 3396 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3397 int (*check_ready)(struct ata_link *link)) 3398 { 3399 msleep(ATA_WAIT_AFTER_RESET); 3400 3401 return ata_wait_ready(link, deadline, check_ready); 3402 } 3403 3404 /** 3405 * sata_link_debounce - debounce SATA phy status 3406 * @link: ATA link to debounce SATA phy status for 3407 * @params: timing parameters { interval, duratinon, timeout } in msec 3408 * @deadline: deadline jiffies for the operation 3409 * 3410 * Make sure SStatus of @link reaches stable state, determined by 3411 * holding the same value where DET is not 1 for @duration polled 3412 * every @interval, before @timeout. Timeout constraints the 3413 * beginning of the stable state. Because DET gets stuck at 1 on 3414 * some controllers after hot unplugging, this functions waits 3415 * until timeout then returns 0 if DET is stable at 1. 3416 * 3417 * @timeout is further limited by @deadline. The sooner of the 3418 * two is used. 3419 * 3420 * LOCKING: 3421 * Kernel thread context (may sleep) 3422 * 3423 * RETURNS: 3424 * 0 on success, -errno on failure. 3425 */ 3426 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3427 unsigned long deadline) 3428 { 3429 unsigned long interval = params[0]; 3430 unsigned long duration = params[1]; 3431 unsigned long last_jiffies, t; 3432 u32 last, cur; 3433 int rc; 3434 3435 t = ata_deadline(jiffies, params[2]); 3436 if (time_before(t, deadline)) 3437 deadline = t; 3438 3439 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3440 return rc; 3441 cur &= 0xf; 3442 3443 last = cur; 3444 last_jiffies = jiffies; 3445 3446 while (1) { 3447 msleep(interval); 3448 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3449 return rc; 3450 cur &= 0xf; 3451 3452 /* DET stable? */ 3453 if (cur == last) { 3454 if (cur == 1 && time_before(jiffies, deadline)) 3455 continue; 3456 if (time_after(jiffies, 3457 ata_deadline(last_jiffies, duration))) 3458 return 0; 3459 continue; 3460 } 3461 3462 /* unstable, start over */ 3463 last = cur; 3464 last_jiffies = jiffies; 3465 3466 /* Check deadline. If debouncing failed, return 3467 * -EPIPE to tell upper layer to lower link speed. 3468 */ 3469 if (time_after(jiffies, deadline)) 3470 return -EPIPE; 3471 } 3472 } 3473 3474 /** 3475 * sata_link_resume - resume SATA link 3476 * @link: ATA link to resume SATA 3477 * @params: timing parameters { interval, duratinon, timeout } in msec 3478 * @deadline: deadline jiffies for the operation 3479 * 3480 * Resume SATA phy @link and debounce it. 3481 * 3482 * LOCKING: 3483 * Kernel thread context (may sleep) 3484 * 3485 * RETURNS: 3486 * 0 on success, -errno on failure. 3487 */ 3488 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3489 unsigned long deadline) 3490 { 3491 u32 scontrol, serror; 3492 int rc; 3493 3494 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3495 return rc; 3496 3497 scontrol = (scontrol & 0x0f0) | 0x300; 3498 3499 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3500 return rc; 3501 3502 /* Some PHYs react badly if SStatus is pounded immediately 3503 * after resuming. Delay 200ms before debouncing. 3504 */ 3505 msleep(200); 3506 3507 if ((rc = sata_link_debounce(link, params, deadline))) 3508 return rc; 3509 3510 /* clear SError, some PHYs require this even for SRST to work */ 3511 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3512 rc = sata_scr_write(link, SCR_ERROR, serror); 3513 3514 return rc != -EINVAL ? rc : 0; 3515 } 3516 3517 /** 3518 * ata_std_prereset - prepare for reset 3519 * @link: ATA link to be reset 3520 * @deadline: deadline jiffies for the operation 3521 * 3522 * @link is about to be reset. Initialize it. Failure from 3523 * prereset makes libata abort whole reset sequence and give up 3524 * that port, so prereset should be best-effort. It does its 3525 * best to prepare for reset sequence but if things go wrong, it 3526 * should just whine, not fail. 3527 * 3528 * LOCKING: 3529 * Kernel thread context (may sleep) 3530 * 3531 * RETURNS: 3532 * 0 on success, -errno otherwise. 3533 */ 3534 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3535 { 3536 struct ata_port *ap = link->ap; 3537 struct ata_eh_context *ehc = &link->eh_context; 3538 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3539 int rc; 3540 3541 /* if we're about to do hardreset, nothing more to do */ 3542 if (ehc->i.action & ATA_EH_HARDRESET) 3543 return 0; 3544 3545 /* if SATA, resume link */ 3546 if (ap->flags & ATA_FLAG_SATA) { 3547 rc = sata_link_resume(link, timing, deadline); 3548 /* whine about phy resume failure but proceed */ 3549 if (rc && rc != -EOPNOTSUPP) 3550 ata_link_printk(link, KERN_WARNING, "failed to resume " 3551 "link for reset (errno=%d)\n", rc); 3552 } 3553 3554 /* no point in trying softreset on offline link */ 3555 if (ata_link_offline(link)) 3556 ehc->i.action &= ~ATA_EH_SOFTRESET; 3557 3558 return 0; 3559 } 3560 3561 /** 3562 * sata_link_hardreset - reset link via SATA phy reset 3563 * @link: link to reset 3564 * @timing: timing parameters { interval, duratinon, timeout } in msec 3565 * @deadline: deadline jiffies for the operation 3566 * @online: optional out parameter indicating link onlineness 3567 * @check_ready: optional callback to check link readiness 3568 * 3569 * SATA phy-reset @link using DET bits of SControl register. 3570 * After hardreset, link readiness is waited upon using 3571 * ata_wait_ready() if @check_ready is specified. LLDs are 3572 * allowed to not specify @check_ready and wait itself after this 3573 * function returns. Device classification is LLD's 3574 * responsibility. 3575 * 3576 * *@online is set to one iff reset succeeded and @link is online 3577 * after reset. 3578 * 3579 * LOCKING: 3580 * Kernel thread context (may sleep) 3581 * 3582 * RETURNS: 3583 * 0 on success, -errno otherwise. 3584 */ 3585 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3586 unsigned long deadline, 3587 bool *online, int (*check_ready)(struct ata_link *)) 3588 { 3589 u32 scontrol; 3590 int rc; 3591 3592 DPRINTK("ENTER\n"); 3593 3594 if (online) 3595 *online = false; 3596 3597 if (sata_set_spd_needed(link)) { 3598 /* SATA spec says nothing about how to reconfigure 3599 * spd. To be on the safe side, turn off phy during 3600 * reconfiguration. This works for at least ICH7 AHCI 3601 * and Sil3124. 3602 */ 3603 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3604 goto out; 3605 3606 scontrol = (scontrol & 0x0f0) | 0x304; 3607 3608 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3609 goto out; 3610 3611 sata_set_spd(link); 3612 } 3613 3614 /* issue phy wake/reset */ 3615 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3616 goto out; 3617 3618 scontrol = (scontrol & 0x0f0) | 0x301; 3619 3620 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3621 goto out; 3622 3623 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3624 * 10.4.2 says at least 1 ms. 3625 */ 3626 msleep(1); 3627 3628 /* bring link back */ 3629 rc = sata_link_resume(link, timing, deadline); 3630 if (rc) 3631 goto out; 3632 /* if link is offline nothing more to do */ 3633 if (ata_link_offline(link)) 3634 goto out; 3635 3636 /* Link is online. From this point, -ENODEV too is an error. */ 3637 if (online) 3638 *online = true; 3639 3640 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3641 /* If PMP is supported, we have to do follow-up SRST. 3642 * Some PMPs don't send D2H Reg FIS after hardreset if 3643 * the first port is empty. Wait only for 3644 * ATA_TMOUT_PMP_SRST_WAIT. 3645 */ 3646 if (check_ready) { 3647 unsigned long pmp_deadline; 3648 3649 pmp_deadline = ata_deadline(jiffies, 3650 ATA_TMOUT_PMP_SRST_WAIT); 3651 if (time_after(pmp_deadline, deadline)) 3652 pmp_deadline = deadline; 3653 ata_wait_ready(link, pmp_deadline, check_ready); 3654 } 3655 rc = -EAGAIN; 3656 goto out; 3657 } 3658 3659 rc = 0; 3660 if (check_ready) 3661 rc = ata_wait_ready(link, deadline, check_ready); 3662 out: 3663 if (rc && rc != -EAGAIN) { 3664 /* online is set iff link is online && reset succeeded */ 3665 if (online) 3666 *online = false; 3667 ata_link_printk(link, KERN_ERR, 3668 "COMRESET failed (errno=%d)\n", rc); 3669 } 3670 DPRINTK("EXIT, rc=%d\n", rc); 3671 return rc; 3672 } 3673 3674 /** 3675 * sata_std_hardreset - COMRESET w/o waiting or classification 3676 * @link: link to reset 3677 * @class: resulting class of attached device 3678 * @deadline: deadline jiffies for the operation 3679 * 3680 * Standard SATA COMRESET w/o waiting or classification. 3681 * 3682 * LOCKING: 3683 * Kernel thread context (may sleep) 3684 * 3685 * RETURNS: 3686 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3687 */ 3688 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3689 unsigned long deadline) 3690 { 3691 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3692 bool online; 3693 int rc; 3694 3695 /* do hardreset */ 3696 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3697 return online ? -EAGAIN : rc; 3698 } 3699 3700 /** 3701 * ata_std_postreset - standard postreset callback 3702 * @link: the target ata_link 3703 * @classes: classes of attached devices 3704 * 3705 * This function is invoked after a successful reset. Note that 3706 * the device might have been reset more than once using 3707 * different reset methods before postreset is invoked. 3708 * 3709 * LOCKING: 3710 * Kernel thread context (may sleep) 3711 */ 3712 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3713 { 3714 u32 serror; 3715 3716 DPRINTK("ENTER\n"); 3717 3718 /* reset complete, clear SError */ 3719 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3720 sata_scr_write(link, SCR_ERROR, serror); 3721 3722 /* print link status */ 3723 sata_print_link_status(link); 3724 3725 DPRINTK("EXIT\n"); 3726 } 3727 3728 /** 3729 * ata_dev_same_device - Determine whether new ID matches configured device 3730 * @dev: device to compare against 3731 * @new_class: class of the new device 3732 * @new_id: IDENTIFY page of the new device 3733 * 3734 * Compare @new_class and @new_id against @dev and determine 3735 * whether @dev is the device indicated by @new_class and 3736 * @new_id. 3737 * 3738 * LOCKING: 3739 * None. 3740 * 3741 * RETURNS: 3742 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3743 */ 3744 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3745 const u16 *new_id) 3746 { 3747 const u16 *old_id = dev->id; 3748 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3749 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3750 3751 if (dev->class != new_class) { 3752 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3753 dev->class, new_class); 3754 return 0; 3755 } 3756 3757 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3758 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3759 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3760 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3761 3762 if (strcmp(model[0], model[1])) { 3763 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3764 "'%s' != '%s'\n", model[0], model[1]); 3765 return 0; 3766 } 3767 3768 if (strcmp(serial[0], serial[1])) { 3769 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3770 "'%s' != '%s'\n", serial[0], serial[1]); 3771 return 0; 3772 } 3773 3774 return 1; 3775 } 3776 3777 /** 3778 * ata_dev_reread_id - Re-read IDENTIFY data 3779 * @dev: target ATA device 3780 * @readid_flags: read ID flags 3781 * 3782 * Re-read IDENTIFY page and make sure @dev is still attached to 3783 * the port. 3784 * 3785 * LOCKING: 3786 * Kernel thread context (may sleep) 3787 * 3788 * RETURNS: 3789 * 0 on success, negative errno otherwise 3790 */ 3791 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3792 { 3793 unsigned int class = dev->class; 3794 u16 *id = (void *)dev->link->ap->sector_buf; 3795 int rc; 3796 3797 /* read ID data */ 3798 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3799 if (rc) 3800 return rc; 3801 3802 /* is the device still there? */ 3803 if (!ata_dev_same_device(dev, class, id)) 3804 return -ENODEV; 3805 3806 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3807 return 0; 3808 } 3809 3810 /** 3811 * ata_dev_revalidate - Revalidate ATA device 3812 * @dev: device to revalidate 3813 * @new_class: new class code 3814 * @readid_flags: read ID flags 3815 * 3816 * Re-read IDENTIFY page, make sure @dev is still attached to the 3817 * port and reconfigure it according to the new IDENTIFY page. 3818 * 3819 * LOCKING: 3820 * Kernel thread context (may sleep) 3821 * 3822 * RETURNS: 3823 * 0 on success, negative errno otherwise 3824 */ 3825 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3826 unsigned int readid_flags) 3827 { 3828 u64 n_sectors = dev->n_sectors; 3829 int rc; 3830 3831 if (!ata_dev_enabled(dev)) 3832 return -ENODEV; 3833 3834 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3835 if (ata_class_enabled(new_class) && 3836 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) { 3837 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 3838 dev->class, new_class); 3839 rc = -ENODEV; 3840 goto fail; 3841 } 3842 3843 /* re-read ID */ 3844 rc = ata_dev_reread_id(dev, readid_flags); 3845 if (rc) 3846 goto fail; 3847 3848 /* configure device according to the new ID */ 3849 rc = ata_dev_configure(dev); 3850 if (rc) 3851 goto fail; 3852 3853 /* verify n_sectors hasn't changed */ 3854 if (dev->class == ATA_DEV_ATA && n_sectors && 3855 dev->n_sectors != n_sectors) { 3856 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3857 "%llu != %llu\n", 3858 (unsigned long long)n_sectors, 3859 (unsigned long long)dev->n_sectors); 3860 3861 /* restore original n_sectors */ 3862 dev->n_sectors = n_sectors; 3863 3864 rc = -ENODEV; 3865 goto fail; 3866 } 3867 3868 return 0; 3869 3870 fail: 3871 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3872 return rc; 3873 } 3874 3875 struct ata_blacklist_entry { 3876 const char *model_num; 3877 const char *model_rev; 3878 unsigned long horkage; 3879 }; 3880 3881 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3882 /* Devices with DMA related problems under Linux */ 3883 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3884 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3885 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3886 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3887 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3888 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3889 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3890 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3891 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3892 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 3893 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 3894 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3895 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3896 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3897 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3898 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3899 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 3900 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 3901 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3902 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3903 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3904 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3905 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3906 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3907 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3908 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3909 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3910 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3911 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3912 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3913 /* Odd clown on sil3726/4726 PMPs */ 3914 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3915 3916 /* Weird ATAPI devices */ 3917 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3918 3919 /* Devices we expect to fail diagnostics */ 3920 3921 /* Devices where NCQ should be avoided */ 3922 /* NCQ is slow */ 3923 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3924 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3925 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3926 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3927 /* NCQ is broken */ 3928 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3929 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3930 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3931 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3932 3933 /* Blacklist entries taken from Silicon Image 3124/3132 3934 Windows driver .inf file - also several Linux problem reports */ 3935 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3936 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3937 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3938 3939 /* devices which puke on READ_NATIVE_MAX */ 3940 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 3941 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3942 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3943 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3944 3945 /* Devices which report 1 sector over size HPA */ 3946 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3947 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3948 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3949 3950 /* Devices which get the IVB wrong */ 3951 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 3952 /* Maybe we should just blacklist TSSTcorp... */ 3953 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 3954 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 3955 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 3956 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 3957 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 3958 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 3959 3960 /* End Marker */ 3961 { } 3962 }; 3963 3964 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 3965 { 3966 const char *p; 3967 int len; 3968 3969 /* 3970 * check for trailing wildcard: *\0 3971 */ 3972 p = strchr(patt, wildchar); 3973 if (p && ((*(p + 1)) == 0)) 3974 len = p - patt; 3975 else { 3976 len = strlen(name); 3977 if (!len) { 3978 if (!*patt) 3979 return 0; 3980 return -1; 3981 } 3982 } 3983 3984 return strncmp(patt, name, len); 3985 } 3986 3987 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 3988 { 3989 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 3990 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 3991 const struct ata_blacklist_entry *ad = ata_device_blacklist; 3992 3993 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 3994 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 3995 3996 while (ad->model_num) { 3997 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 3998 if (ad->model_rev == NULL) 3999 return ad->horkage; 4000 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4001 return ad->horkage; 4002 } 4003 ad++; 4004 } 4005 return 0; 4006 } 4007 4008 static int ata_dma_blacklisted(const struct ata_device *dev) 4009 { 4010 /* We don't support polling DMA. 4011 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4012 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4013 */ 4014 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4015 (dev->flags & ATA_DFLAG_CDB_INTR)) 4016 return 1; 4017 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4018 } 4019 4020 /** 4021 * ata_is_40wire - check drive side detection 4022 * @dev: device 4023 * 4024 * Perform drive side detection decoding, allowing for device vendors 4025 * who can't follow the documentation. 4026 */ 4027 4028 static int ata_is_40wire(struct ata_device *dev) 4029 { 4030 if (dev->horkage & ATA_HORKAGE_IVB) 4031 return ata_drive_40wire_relaxed(dev->id); 4032 return ata_drive_40wire(dev->id); 4033 } 4034 4035 /** 4036 * cable_is_40wire - 40/80/SATA decider 4037 * @ap: port to consider 4038 * 4039 * This function encapsulates the policy for speed management 4040 * in one place. At the moment we don't cache the result but 4041 * there is a good case for setting ap->cbl to the result when 4042 * we are called with unknown cables (and figuring out if it 4043 * impacts hotplug at all). 4044 * 4045 * Return 1 if the cable appears to be 40 wire. 4046 */ 4047 4048 static int cable_is_40wire(struct ata_port *ap) 4049 { 4050 struct ata_link *link; 4051 struct ata_device *dev; 4052 4053 /* If the controller thinks we are 40 wire, we are */ 4054 if (ap->cbl == ATA_CBL_PATA40) 4055 return 1; 4056 /* If the controller thinks we are 80 wire, we are */ 4057 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4058 return 0; 4059 /* If the system is known to be 40 wire short cable (eg laptop), 4060 then we allow 80 wire modes even if the drive isn't sure */ 4061 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4062 return 0; 4063 /* If the controller doesn't know we scan 4064 4065 - Note: We look for all 40 wire detects at this point. 4066 Any 80 wire detect is taken to be 80 wire cable 4067 because 4068 - In many setups only the one drive (slave if present) 4069 will give a valid detect 4070 - If you have a non detect capable drive you don't 4071 want it to colour the choice 4072 */ 4073 ata_port_for_each_link(link, ap) { 4074 ata_link_for_each_dev(dev, link) { 4075 if (!ata_is_40wire(dev)) 4076 return 0; 4077 } 4078 } 4079 return 1; 4080 } 4081 4082 /** 4083 * ata_dev_xfermask - Compute supported xfermask of the given device 4084 * @dev: Device to compute xfermask for 4085 * 4086 * Compute supported xfermask of @dev and store it in 4087 * dev->*_mask. This function is responsible for applying all 4088 * known limits including host controller limits, device 4089 * blacklist, etc... 4090 * 4091 * LOCKING: 4092 * None. 4093 */ 4094 static void ata_dev_xfermask(struct ata_device *dev) 4095 { 4096 struct ata_link *link = dev->link; 4097 struct ata_port *ap = link->ap; 4098 struct ata_host *host = ap->host; 4099 unsigned long xfer_mask; 4100 4101 /* controller modes available */ 4102 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4103 ap->mwdma_mask, ap->udma_mask); 4104 4105 /* drive modes available */ 4106 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4107 dev->mwdma_mask, dev->udma_mask); 4108 xfer_mask &= ata_id_xfermask(dev->id); 4109 4110 /* 4111 * CFA Advanced TrueIDE timings are not allowed on a shared 4112 * cable 4113 */ 4114 if (ata_dev_pair(dev)) { 4115 /* No PIO5 or PIO6 */ 4116 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4117 /* No MWDMA3 or MWDMA 4 */ 4118 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4119 } 4120 4121 if (ata_dma_blacklisted(dev)) { 4122 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4123 ata_dev_printk(dev, KERN_WARNING, 4124 "device is on DMA blacklist, disabling DMA\n"); 4125 } 4126 4127 if ((host->flags & ATA_HOST_SIMPLEX) && 4128 host->simplex_claimed && host->simplex_claimed != ap) { 4129 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4130 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4131 "other device, disabling DMA\n"); 4132 } 4133 4134 if (ap->flags & ATA_FLAG_NO_IORDY) 4135 xfer_mask &= ata_pio_mask_no_iordy(dev); 4136 4137 if (ap->ops->mode_filter) 4138 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4139 4140 /* Apply cable rule here. Don't apply it early because when 4141 * we handle hot plug the cable type can itself change. 4142 * Check this last so that we know if the transfer rate was 4143 * solely limited by the cable. 4144 * Unknown or 80 wire cables reported host side are checked 4145 * drive side as well. Cases where we know a 40wire cable 4146 * is used safely for 80 are not checked here. 4147 */ 4148 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4149 /* UDMA/44 or higher would be available */ 4150 if (cable_is_40wire(ap)) { 4151 ata_dev_printk(dev, KERN_WARNING, 4152 "limited to UDMA/33 due to 40-wire cable\n"); 4153 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4154 } 4155 4156 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4157 &dev->mwdma_mask, &dev->udma_mask); 4158 } 4159 4160 /** 4161 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4162 * @dev: Device to which command will be sent 4163 * 4164 * Issue SET FEATURES - XFER MODE command to device @dev 4165 * on port @ap. 4166 * 4167 * LOCKING: 4168 * PCI/etc. bus probe sem. 4169 * 4170 * RETURNS: 4171 * 0 on success, AC_ERR_* mask otherwise. 4172 */ 4173 4174 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4175 { 4176 struct ata_taskfile tf; 4177 unsigned int err_mask; 4178 4179 /* set up set-features taskfile */ 4180 DPRINTK("set features - xfer mode\n"); 4181 4182 /* Some controllers and ATAPI devices show flaky interrupt 4183 * behavior after setting xfer mode. Use polling instead. 4184 */ 4185 ata_tf_init(dev, &tf); 4186 tf.command = ATA_CMD_SET_FEATURES; 4187 tf.feature = SETFEATURES_XFER; 4188 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4189 tf.protocol = ATA_PROT_NODATA; 4190 /* If we are using IORDY we must send the mode setting command */ 4191 if (ata_pio_need_iordy(dev)) 4192 tf.nsect = dev->xfer_mode; 4193 /* If the device has IORDY and the controller does not - turn it off */ 4194 else if (ata_id_has_iordy(dev->id)) 4195 tf.nsect = 0x01; 4196 else /* In the ancient relic department - skip all of this */ 4197 return 0; 4198 4199 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4200 4201 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4202 return err_mask; 4203 } 4204 /** 4205 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4206 * @dev: Device to which command will be sent 4207 * @enable: Whether to enable or disable the feature 4208 * @feature: The sector count represents the feature to set 4209 * 4210 * Issue SET FEATURES - SATA FEATURES command to device @dev 4211 * on port @ap with sector count 4212 * 4213 * LOCKING: 4214 * PCI/etc. bus probe sem. 4215 * 4216 * RETURNS: 4217 * 0 on success, AC_ERR_* mask otherwise. 4218 */ 4219 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4220 u8 feature) 4221 { 4222 struct ata_taskfile tf; 4223 unsigned int err_mask; 4224 4225 /* set up set-features taskfile */ 4226 DPRINTK("set features - SATA features\n"); 4227 4228 ata_tf_init(dev, &tf); 4229 tf.command = ATA_CMD_SET_FEATURES; 4230 tf.feature = enable; 4231 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4232 tf.protocol = ATA_PROT_NODATA; 4233 tf.nsect = feature; 4234 4235 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4236 4237 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4238 return err_mask; 4239 } 4240 4241 /** 4242 * ata_dev_init_params - Issue INIT DEV PARAMS command 4243 * @dev: Device to which command will be sent 4244 * @heads: Number of heads (taskfile parameter) 4245 * @sectors: Number of sectors (taskfile parameter) 4246 * 4247 * LOCKING: 4248 * Kernel thread context (may sleep) 4249 * 4250 * RETURNS: 4251 * 0 on success, AC_ERR_* mask otherwise. 4252 */ 4253 static unsigned int ata_dev_init_params(struct ata_device *dev, 4254 u16 heads, u16 sectors) 4255 { 4256 struct ata_taskfile tf; 4257 unsigned int err_mask; 4258 4259 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4260 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4261 return AC_ERR_INVALID; 4262 4263 /* set up init dev params taskfile */ 4264 DPRINTK("init dev params \n"); 4265 4266 ata_tf_init(dev, &tf); 4267 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4268 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4269 tf.protocol = ATA_PROT_NODATA; 4270 tf.nsect = sectors; 4271 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4272 4273 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4274 /* A clean abort indicates an original or just out of spec drive 4275 and we should continue as we issue the setup based on the 4276 drive reported working geometry */ 4277 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4278 err_mask = 0; 4279 4280 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4281 return err_mask; 4282 } 4283 4284 /** 4285 * ata_sg_clean - Unmap DMA memory associated with command 4286 * @qc: Command containing DMA memory to be released 4287 * 4288 * Unmap all mapped DMA memory associated with this command. 4289 * 4290 * LOCKING: 4291 * spin_lock_irqsave(host lock) 4292 */ 4293 void ata_sg_clean(struct ata_queued_cmd *qc) 4294 { 4295 struct ata_port *ap = qc->ap; 4296 struct scatterlist *sg = qc->sg; 4297 int dir = qc->dma_dir; 4298 4299 WARN_ON(sg == NULL); 4300 4301 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4302 4303 if (qc->n_elem) 4304 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 4305 4306 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4307 qc->sg = NULL; 4308 } 4309 4310 /** 4311 * atapi_check_dma - Check whether ATAPI DMA can be supported 4312 * @qc: Metadata associated with taskfile to check 4313 * 4314 * Allow low-level driver to filter ATA PACKET commands, returning 4315 * a status indicating whether or not it is OK to use DMA for the 4316 * supplied PACKET command. 4317 * 4318 * LOCKING: 4319 * spin_lock_irqsave(host lock) 4320 * 4321 * RETURNS: 0 when ATAPI DMA can be used 4322 * nonzero otherwise 4323 */ 4324 int atapi_check_dma(struct ata_queued_cmd *qc) 4325 { 4326 struct ata_port *ap = qc->ap; 4327 4328 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4329 * few ATAPI devices choke on such DMA requests. 4330 */ 4331 if (unlikely(qc->nbytes & 15)) 4332 return 1; 4333 4334 if (ap->ops->check_atapi_dma) 4335 return ap->ops->check_atapi_dma(qc); 4336 4337 return 0; 4338 } 4339 4340 /** 4341 * ata_std_qc_defer - Check whether a qc needs to be deferred 4342 * @qc: ATA command in question 4343 * 4344 * Non-NCQ commands cannot run with any other command, NCQ or 4345 * not. As upper layer only knows the queue depth, we are 4346 * responsible for maintaining exclusion. This function checks 4347 * whether a new command @qc can be issued. 4348 * 4349 * LOCKING: 4350 * spin_lock_irqsave(host lock) 4351 * 4352 * RETURNS: 4353 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4354 */ 4355 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4356 { 4357 struct ata_link *link = qc->dev->link; 4358 4359 if (qc->tf.protocol == ATA_PROT_NCQ) { 4360 if (!ata_tag_valid(link->active_tag)) 4361 return 0; 4362 } else { 4363 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4364 return 0; 4365 } 4366 4367 return ATA_DEFER_LINK; 4368 } 4369 4370 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4371 4372 /** 4373 * ata_sg_init - Associate command with scatter-gather table. 4374 * @qc: Command to be associated 4375 * @sg: Scatter-gather table. 4376 * @n_elem: Number of elements in s/g table. 4377 * 4378 * Initialize the data-related elements of queued_cmd @qc 4379 * to point to a scatter-gather table @sg, containing @n_elem 4380 * elements. 4381 * 4382 * LOCKING: 4383 * spin_lock_irqsave(host lock) 4384 */ 4385 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4386 unsigned int n_elem) 4387 { 4388 qc->sg = sg; 4389 qc->n_elem = n_elem; 4390 qc->cursg = qc->sg; 4391 } 4392 4393 /** 4394 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4395 * @qc: Command with scatter-gather table to be mapped. 4396 * 4397 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4398 * 4399 * LOCKING: 4400 * spin_lock_irqsave(host lock) 4401 * 4402 * RETURNS: 4403 * Zero on success, negative on error. 4404 * 4405 */ 4406 static int ata_sg_setup(struct ata_queued_cmd *qc) 4407 { 4408 struct ata_port *ap = qc->ap; 4409 unsigned int n_elem; 4410 4411 VPRINTK("ENTER, ata%u\n", ap->print_id); 4412 4413 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4414 if (n_elem < 1) 4415 return -1; 4416 4417 DPRINTK("%d sg elements mapped\n", n_elem); 4418 4419 qc->n_elem = n_elem; 4420 qc->flags |= ATA_QCFLAG_DMAMAP; 4421 4422 return 0; 4423 } 4424 4425 /** 4426 * swap_buf_le16 - swap halves of 16-bit words in place 4427 * @buf: Buffer to swap 4428 * @buf_words: Number of 16-bit words in buffer. 4429 * 4430 * Swap halves of 16-bit words if needed to convert from 4431 * little-endian byte order to native cpu byte order, or 4432 * vice-versa. 4433 * 4434 * LOCKING: 4435 * Inherited from caller. 4436 */ 4437 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4438 { 4439 #ifdef __BIG_ENDIAN 4440 unsigned int i; 4441 4442 for (i = 0; i < buf_words; i++) 4443 buf[i] = le16_to_cpu(buf[i]); 4444 #endif /* __BIG_ENDIAN */ 4445 } 4446 4447 /** 4448 * ata_qc_new - Request an available ATA command, for queueing 4449 * @ap: Port associated with device @dev 4450 * @dev: Device from whom we request an available command structure 4451 * 4452 * LOCKING: 4453 * None. 4454 */ 4455 4456 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4457 { 4458 struct ata_queued_cmd *qc = NULL; 4459 unsigned int i; 4460 4461 /* no command while frozen */ 4462 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4463 return NULL; 4464 4465 /* the last tag is reserved for internal command. */ 4466 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4467 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4468 qc = __ata_qc_from_tag(ap, i); 4469 break; 4470 } 4471 4472 if (qc) 4473 qc->tag = i; 4474 4475 return qc; 4476 } 4477 4478 /** 4479 * ata_qc_new_init - Request an available ATA command, and initialize it 4480 * @dev: Device from whom we request an available command structure 4481 * 4482 * LOCKING: 4483 * None. 4484 */ 4485 4486 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4487 { 4488 struct ata_port *ap = dev->link->ap; 4489 struct ata_queued_cmd *qc; 4490 4491 qc = ata_qc_new(ap); 4492 if (qc) { 4493 qc->scsicmd = NULL; 4494 qc->ap = ap; 4495 qc->dev = dev; 4496 4497 ata_qc_reinit(qc); 4498 } 4499 4500 return qc; 4501 } 4502 4503 /** 4504 * ata_qc_free - free unused ata_queued_cmd 4505 * @qc: Command to complete 4506 * 4507 * Designed to free unused ata_queued_cmd object 4508 * in case something prevents using it. 4509 * 4510 * LOCKING: 4511 * spin_lock_irqsave(host lock) 4512 */ 4513 void ata_qc_free(struct ata_queued_cmd *qc) 4514 { 4515 struct ata_port *ap = qc->ap; 4516 unsigned int tag; 4517 4518 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4519 4520 qc->flags = 0; 4521 tag = qc->tag; 4522 if (likely(ata_tag_valid(tag))) { 4523 qc->tag = ATA_TAG_POISON; 4524 clear_bit(tag, &ap->qc_allocated); 4525 } 4526 } 4527 4528 void __ata_qc_complete(struct ata_queued_cmd *qc) 4529 { 4530 struct ata_port *ap = qc->ap; 4531 struct ata_link *link = qc->dev->link; 4532 4533 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4534 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4535 4536 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4537 ata_sg_clean(qc); 4538 4539 /* command should be marked inactive atomically with qc completion */ 4540 if (qc->tf.protocol == ATA_PROT_NCQ) { 4541 link->sactive &= ~(1 << qc->tag); 4542 if (!link->sactive) 4543 ap->nr_active_links--; 4544 } else { 4545 link->active_tag = ATA_TAG_POISON; 4546 ap->nr_active_links--; 4547 } 4548 4549 /* clear exclusive status */ 4550 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4551 ap->excl_link == link)) 4552 ap->excl_link = NULL; 4553 4554 /* atapi: mark qc as inactive to prevent the interrupt handler 4555 * from completing the command twice later, before the error handler 4556 * is called. (when rc != 0 and atapi request sense is needed) 4557 */ 4558 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4559 ap->qc_active &= ~(1 << qc->tag); 4560 4561 /* call completion callback */ 4562 qc->complete_fn(qc); 4563 } 4564 4565 static void fill_result_tf(struct ata_queued_cmd *qc) 4566 { 4567 struct ata_port *ap = qc->ap; 4568 4569 qc->result_tf.flags = qc->tf.flags; 4570 ap->ops->qc_fill_rtf(qc); 4571 } 4572 4573 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4574 { 4575 struct ata_device *dev = qc->dev; 4576 4577 if (ata_tag_internal(qc->tag)) 4578 return; 4579 4580 if (ata_is_nodata(qc->tf.protocol)) 4581 return; 4582 4583 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4584 return; 4585 4586 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4587 } 4588 4589 /** 4590 * ata_qc_complete - Complete an active ATA command 4591 * @qc: Command to complete 4592 * @err_mask: ATA Status register contents 4593 * 4594 * Indicate to the mid and upper layers that an ATA 4595 * command has completed, with either an ok or not-ok status. 4596 * 4597 * LOCKING: 4598 * spin_lock_irqsave(host lock) 4599 */ 4600 void ata_qc_complete(struct ata_queued_cmd *qc) 4601 { 4602 struct ata_port *ap = qc->ap; 4603 4604 /* XXX: New EH and old EH use different mechanisms to 4605 * synchronize EH with regular execution path. 4606 * 4607 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4608 * Normal execution path is responsible for not accessing a 4609 * failed qc. libata core enforces the rule by returning NULL 4610 * from ata_qc_from_tag() for failed qcs. 4611 * 4612 * Old EH depends on ata_qc_complete() nullifying completion 4613 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4614 * not synchronize with interrupt handler. Only PIO task is 4615 * taken care of. 4616 */ 4617 if (ap->ops->error_handler) { 4618 struct ata_device *dev = qc->dev; 4619 struct ata_eh_info *ehi = &dev->link->eh_info; 4620 4621 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 4622 4623 if (unlikely(qc->err_mask)) 4624 qc->flags |= ATA_QCFLAG_FAILED; 4625 4626 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4627 if (!ata_tag_internal(qc->tag)) { 4628 /* always fill result TF for failed qc */ 4629 fill_result_tf(qc); 4630 ata_qc_schedule_eh(qc); 4631 return; 4632 } 4633 } 4634 4635 /* read result TF if requested */ 4636 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4637 fill_result_tf(qc); 4638 4639 /* Some commands need post-processing after successful 4640 * completion. 4641 */ 4642 switch (qc->tf.command) { 4643 case ATA_CMD_SET_FEATURES: 4644 if (qc->tf.feature != SETFEATURES_WC_ON && 4645 qc->tf.feature != SETFEATURES_WC_OFF) 4646 break; 4647 /* fall through */ 4648 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4649 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4650 /* revalidate device */ 4651 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4652 ata_port_schedule_eh(ap); 4653 break; 4654 4655 case ATA_CMD_SLEEP: 4656 dev->flags |= ATA_DFLAG_SLEEPING; 4657 break; 4658 } 4659 4660 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4661 ata_verify_xfer(qc); 4662 4663 __ata_qc_complete(qc); 4664 } else { 4665 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4666 return; 4667 4668 /* read result TF if failed or requested */ 4669 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4670 fill_result_tf(qc); 4671 4672 __ata_qc_complete(qc); 4673 } 4674 } 4675 4676 /** 4677 * ata_qc_complete_multiple - Complete multiple qcs successfully 4678 * @ap: port in question 4679 * @qc_active: new qc_active mask 4680 * 4681 * Complete in-flight commands. This functions is meant to be 4682 * called from low-level driver's interrupt routine to complete 4683 * requests normally. ap->qc_active and @qc_active is compared 4684 * and commands are completed accordingly. 4685 * 4686 * LOCKING: 4687 * spin_lock_irqsave(host lock) 4688 * 4689 * RETURNS: 4690 * Number of completed commands on success, -errno otherwise. 4691 */ 4692 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4693 { 4694 int nr_done = 0; 4695 u32 done_mask; 4696 int i; 4697 4698 done_mask = ap->qc_active ^ qc_active; 4699 4700 if (unlikely(done_mask & qc_active)) { 4701 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 4702 "(%08x->%08x)\n", ap->qc_active, qc_active); 4703 return -EINVAL; 4704 } 4705 4706 for (i = 0; i < ATA_MAX_QUEUE; i++) { 4707 struct ata_queued_cmd *qc; 4708 4709 if (!(done_mask & (1 << i))) 4710 continue; 4711 4712 if ((qc = ata_qc_from_tag(ap, i))) { 4713 ata_qc_complete(qc); 4714 nr_done++; 4715 } 4716 } 4717 4718 return nr_done; 4719 } 4720 4721 /** 4722 * ata_qc_issue - issue taskfile to device 4723 * @qc: command to issue to device 4724 * 4725 * Prepare an ATA command to submission to device. 4726 * This includes mapping the data into a DMA-able 4727 * area, filling in the S/G table, and finally 4728 * writing the taskfile to hardware, starting the command. 4729 * 4730 * LOCKING: 4731 * spin_lock_irqsave(host lock) 4732 */ 4733 void ata_qc_issue(struct ata_queued_cmd *qc) 4734 { 4735 struct ata_port *ap = qc->ap; 4736 struct ata_link *link = qc->dev->link; 4737 u8 prot = qc->tf.protocol; 4738 4739 /* Make sure only one non-NCQ command is outstanding. The 4740 * check is skipped for old EH because it reuses active qc to 4741 * request ATAPI sense. 4742 */ 4743 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4744 4745 if (ata_is_ncq(prot)) { 4746 WARN_ON(link->sactive & (1 << qc->tag)); 4747 4748 if (!link->sactive) 4749 ap->nr_active_links++; 4750 link->sactive |= 1 << qc->tag; 4751 } else { 4752 WARN_ON(link->sactive); 4753 4754 ap->nr_active_links++; 4755 link->active_tag = qc->tag; 4756 } 4757 4758 qc->flags |= ATA_QCFLAG_ACTIVE; 4759 ap->qc_active |= 1 << qc->tag; 4760 4761 /* We guarantee to LLDs that they will have at least one 4762 * non-zero sg if the command is a data command. 4763 */ 4764 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 4765 4766 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4767 (ap->flags & ATA_FLAG_PIO_DMA))) 4768 if (ata_sg_setup(qc)) 4769 goto sg_err; 4770 4771 /* if device is sleeping, schedule reset and abort the link */ 4772 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4773 link->eh_info.action |= ATA_EH_RESET; 4774 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4775 ata_link_abort(link); 4776 return; 4777 } 4778 4779 ap->ops->qc_prep(qc); 4780 4781 qc->err_mask |= ap->ops->qc_issue(qc); 4782 if (unlikely(qc->err_mask)) 4783 goto err; 4784 return; 4785 4786 sg_err: 4787 qc->err_mask |= AC_ERR_SYSTEM; 4788 err: 4789 ata_qc_complete(qc); 4790 } 4791 4792 /** 4793 * sata_scr_valid - test whether SCRs are accessible 4794 * @link: ATA link to test SCR accessibility for 4795 * 4796 * Test whether SCRs are accessible for @link. 4797 * 4798 * LOCKING: 4799 * None. 4800 * 4801 * RETURNS: 4802 * 1 if SCRs are accessible, 0 otherwise. 4803 */ 4804 int sata_scr_valid(struct ata_link *link) 4805 { 4806 struct ata_port *ap = link->ap; 4807 4808 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 4809 } 4810 4811 /** 4812 * sata_scr_read - read SCR register of the specified port 4813 * @link: ATA link to read SCR for 4814 * @reg: SCR to read 4815 * @val: Place to store read value 4816 * 4817 * Read SCR register @reg of @link into *@val. This function is 4818 * guaranteed to succeed if @link is ap->link, the cable type of 4819 * the port is SATA and the port implements ->scr_read. 4820 * 4821 * LOCKING: 4822 * None if @link is ap->link. Kernel thread context otherwise. 4823 * 4824 * RETURNS: 4825 * 0 on success, negative errno on failure. 4826 */ 4827 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 4828 { 4829 if (ata_is_host_link(link)) { 4830 struct ata_port *ap = link->ap; 4831 4832 if (sata_scr_valid(link)) 4833 return ap->ops->scr_read(ap, reg, val); 4834 return -EOPNOTSUPP; 4835 } 4836 4837 return sata_pmp_scr_read(link, reg, val); 4838 } 4839 4840 /** 4841 * sata_scr_write - write SCR register of the specified port 4842 * @link: ATA link to write SCR for 4843 * @reg: SCR to write 4844 * @val: value to write 4845 * 4846 * Write @val to SCR register @reg of @link. This function is 4847 * guaranteed to succeed if @link is ap->link, the cable type of 4848 * the port is SATA and the port implements ->scr_read. 4849 * 4850 * LOCKING: 4851 * None if @link is ap->link. Kernel thread context otherwise. 4852 * 4853 * RETURNS: 4854 * 0 on success, negative errno on failure. 4855 */ 4856 int sata_scr_write(struct ata_link *link, int reg, u32 val) 4857 { 4858 if (ata_is_host_link(link)) { 4859 struct ata_port *ap = link->ap; 4860 4861 if (sata_scr_valid(link)) 4862 return ap->ops->scr_write(ap, reg, val); 4863 return -EOPNOTSUPP; 4864 } 4865 4866 return sata_pmp_scr_write(link, reg, val); 4867 } 4868 4869 /** 4870 * sata_scr_write_flush - write SCR register of the specified port and flush 4871 * @link: ATA link to write SCR for 4872 * @reg: SCR to write 4873 * @val: value to write 4874 * 4875 * This function is identical to sata_scr_write() except that this 4876 * function performs flush after writing to the register. 4877 * 4878 * LOCKING: 4879 * None if @link is ap->link. Kernel thread context otherwise. 4880 * 4881 * RETURNS: 4882 * 0 on success, negative errno on failure. 4883 */ 4884 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 4885 { 4886 if (ata_is_host_link(link)) { 4887 struct ata_port *ap = link->ap; 4888 int rc; 4889 4890 if (sata_scr_valid(link)) { 4891 rc = ap->ops->scr_write(ap, reg, val); 4892 if (rc == 0) 4893 rc = ap->ops->scr_read(ap, reg, &val); 4894 return rc; 4895 } 4896 return -EOPNOTSUPP; 4897 } 4898 4899 return sata_pmp_scr_write(link, reg, val); 4900 } 4901 4902 /** 4903 * ata_link_online - test whether the given link is online 4904 * @link: ATA link to test 4905 * 4906 * Test whether @link is online. Note that this function returns 4907 * 0 if online status of @link cannot be obtained, so 4908 * ata_link_online(link) != !ata_link_offline(link). 4909 * 4910 * LOCKING: 4911 * None. 4912 * 4913 * RETURNS: 4914 * 1 if the port online status is available and online. 4915 */ 4916 int ata_link_online(struct ata_link *link) 4917 { 4918 u32 sstatus; 4919 4920 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4921 (sstatus & 0xf) == 0x3) 4922 return 1; 4923 return 0; 4924 } 4925 4926 /** 4927 * ata_link_offline - test whether the given link is offline 4928 * @link: ATA link to test 4929 * 4930 * Test whether @link is offline. Note that this function 4931 * returns 0 if offline status of @link cannot be obtained, so 4932 * ata_link_online(link) != !ata_link_offline(link). 4933 * 4934 * LOCKING: 4935 * None. 4936 * 4937 * RETURNS: 4938 * 1 if the port offline status is available and offline. 4939 */ 4940 int ata_link_offline(struct ata_link *link) 4941 { 4942 u32 sstatus; 4943 4944 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4945 (sstatus & 0xf) != 0x3) 4946 return 1; 4947 return 0; 4948 } 4949 4950 #ifdef CONFIG_PM 4951 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 4952 unsigned int action, unsigned int ehi_flags, 4953 int wait) 4954 { 4955 unsigned long flags; 4956 int i, rc; 4957 4958 for (i = 0; i < host->n_ports; i++) { 4959 struct ata_port *ap = host->ports[i]; 4960 struct ata_link *link; 4961 4962 /* Previous resume operation might still be in 4963 * progress. Wait for PM_PENDING to clear. 4964 */ 4965 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 4966 ata_port_wait_eh(ap); 4967 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 4968 } 4969 4970 /* request PM ops to EH */ 4971 spin_lock_irqsave(ap->lock, flags); 4972 4973 ap->pm_mesg = mesg; 4974 if (wait) { 4975 rc = 0; 4976 ap->pm_result = &rc; 4977 } 4978 4979 ap->pflags |= ATA_PFLAG_PM_PENDING; 4980 __ata_port_for_each_link(link, ap) { 4981 link->eh_info.action |= action; 4982 link->eh_info.flags |= ehi_flags; 4983 } 4984 4985 ata_port_schedule_eh(ap); 4986 4987 spin_unlock_irqrestore(ap->lock, flags); 4988 4989 /* wait and check result */ 4990 if (wait) { 4991 ata_port_wait_eh(ap); 4992 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 4993 if (rc) 4994 return rc; 4995 } 4996 } 4997 4998 return 0; 4999 } 5000 5001 /** 5002 * ata_host_suspend - suspend host 5003 * @host: host to suspend 5004 * @mesg: PM message 5005 * 5006 * Suspend @host. Actual operation is performed by EH. This 5007 * function requests EH to perform PM operations and waits for EH 5008 * to finish. 5009 * 5010 * LOCKING: 5011 * Kernel thread context (may sleep). 5012 * 5013 * RETURNS: 5014 * 0 on success, -errno on failure. 5015 */ 5016 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5017 { 5018 int rc; 5019 5020 /* 5021 * disable link pm on all ports before requesting 5022 * any pm activity 5023 */ 5024 ata_lpm_enable(host); 5025 5026 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5027 if (rc == 0) 5028 host->dev->power.power_state = mesg; 5029 return rc; 5030 } 5031 5032 /** 5033 * ata_host_resume - resume host 5034 * @host: host to resume 5035 * 5036 * Resume @host. Actual operation is performed by EH. This 5037 * function requests EH to perform PM operations and returns. 5038 * Note that all resume operations are performed parallely. 5039 * 5040 * LOCKING: 5041 * Kernel thread context (may sleep). 5042 */ 5043 void ata_host_resume(struct ata_host *host) 5044 { 5045 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5046 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5047 host->dev->power.power_state = PMSG_ON; 5048 5049 /* reenable link pm */ 5050 ata_lpm_disable(host); 5051 } 5052 #endif 5053 5054 /** 5055 * ata_port_start - Set port up for dma. 5056 * @ap: Port to initialize 5057 * 5058 * Called just after data structures for each port are 5059 * initialized. Allocates space for PRD table. 5060 * 5061 * May be used as the port_start() entry in ata_port_operations. 5062 * 5063 * LOCKING: 5064 * Inherited from caller. 5065 */ 5066 int ata_port_start(struct ata_port *ap) 5067 { 5068 struct device *dev = ap->dev; 5069 5070 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5071 GFP_KERNEL); 5072 if (!ap->prd) 5073 return -ENOMEM; 5074 5075 return 0; 5076 } 5077 5078 /** 5079 * ata_dev_init - Initialize an ata_device structure 5080 * @dev: Device structure to initialize 5081 * 5082 * Initialize @dev in preparation for probing. 5083 * 5084 * LOCKING: 5085 * Inherited from caller. 5086 */ 5087 void ata_dev_init(struct ata_device *dev) 5088 { 5089 struct ata_link *link = dev->link; 5090 struct ata_port *ap = link->ap; 5091 unsigned long flags; 5092 5093 /* SATA spd limit is bound to the first device */ 5094 link->sata_spd_limit = link->hw_sata_spd_limit; 5095 link->sata_spd = 0; 5096 5097 /* High bits of dev->flags are used to record warm plug 5098 * requests which occur asynchronously. Synchronize using 5099 * host lock. 5100 */ 5101 spin_lock_irqsave(ap->lock, flags); 5102 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5103 dev->horkage = 0; 5104 spin_unlock_irqrestore(ap->lock, flags); 5105 5106 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 5107 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 5108 dev->pio_mask = UINT_MAX; 5109 dev->mwdma_mask = UINT_MAX; 5110 dev->udma_mask = UINT_MAX; 5111 } 5112 5113 /** 5114 * ata_link_init - Initialize an ata_link structure 5115 * @ap: ATA port link is attached to 5116 * @link: Link structure to initialize 5117 * @pmp: Port multiplier port number 5118 * 5119 * Initialize @link. 5120 * 5121 * LOCKING: 5122 * Kernel thread context (may sleep) 5123 */ 5124 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5125 { 5126 int i; 5127 5128 /* clear everything except for devices */ 5129 memset(link, 0, offsetof(struct ata_link, device[0])); 5130 5131 link->ap = ap; 5132 link->pmp = pmp; 5133 link->active_tag = ATA_TAG_POISON; 5134 link->hw_sata_spd_limit = UINT_MAX; 5135 5136 /* can't use iterator, ap isn't initialized yet */ 5137 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5138 struct ata_device *dev = &link->device[i]; 5139 5140 dev->link = link; 5141 dev->devno = dev - link->device; 5142 ata_dev_init(dev); 5143 } 5144 } 5145 5146 /** 5147 * sata_link_init_spd - Initialize link->sata_spd_limit 5148 * @link: Link to configure sata_spd_limit for 5149 * 5150 * Initialize @link->[hw_]sata_spd_limit to the currently 5151 * configured value. 5152 * 5153 * LOCKING: 5154 * Kernel thread context (may sleep). 5155 * 5156 * RETURNS: 5157 * 0 on success, -errno on failure. 5158 */ 5159 int sata_link_init_spd(struct ata_link *link) 5160 { 5161 u32 scontrol; 5162 u8 spd; 5163 int rc; 5164 5165 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 5166 if (rc) 5167 return rc; 5168 5169 spd = (scontrol >> 4) & 0xf; 5170 if (spd) 5171 link->hw_sata_spd_limit &= (1 << spd) - 1; 5172 5173 ata_force_spd_limit(link); 5174 5175 link->sata_spd_limit = link->hw_sata_spd_limit; 5176 5177 return 0; 5178 } 5179 5180 /** 5181 * ata_port_alloc - allocate and initialize basic ATA port resources 5182 * @host: ATA host this allocated port belongs to 5183 * 5184 * Allocate and initialize basic ATA port resources. 5185 * 5186 * RETURNS: 5187 * Allocate ATA port on success, NULL on failure. 5188 * 5189 * LOCKING: 5190 * Inherited from calling layer (may sleep). 5191 */ 5192 struct ata_port *ata_port_alloc(struct ata_host *host) 5193 { 5194 struct ata_port *ap; 5195 5196 DPRINTK("ENTER\n"); 5197 5198 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5199 if (!ap) 5200 return NULL; 5201 5202 ap->pflags |= ATA_PFLAG_INITIALIZING; 5203 ap->lock = &host->lock; 5204 ap->flags = ATA_FLAG_DISABLED; 5205 ap->print_id = -1; 5206 ap->ctl = ATA_DEVCTL_OBS; 5207 ap->host = host; 5208 ap->dev = host->dev; 5209 ap->last_ctl = 0xFF; 5210 5211 #if defined(ATA_VERBOSE_DEBUG) 5212 /* turn on all debugging levels */ 5213 ap->msg_enable = 0x00FF; 5214 #elif defined(ATA_DEBUG) 5215 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5216 #else 5217 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5218 #endif 5219 5220 #ifdef CONFIG_ATA_SFF 5221 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task); 5222 #endif 5223 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5224 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5225 INIT_LIST_HEAD(&ap->eh_done_q); 5226 init_waitqueue_head(&ap->eh_wait_q); 5227 init_timer_deferrable(&ap->fastdrain_timer); 5228 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5229 ap->fastdrain_timer.data = (unsigned long)ap; 5230 5231 ap->cbl = ATA_CBL_NONE; 5232 5233 ata_link_init(ap, &ap->link, 0); 5234 5235 #ifdef ATA_IRQ_TRAP 5236 ap->stats.unhandled_irq = 1; 5237 ap->stats.idle_irq = 1; 5238 #endif 5239 return ap; 5240 } 5241 5242 static void ata_host_release(struct device *gendev, void *res) 5243 { 5244 struct ata_host *host = dev_get_drvdata(gendev); 5245 int i; 5246 5247 for (i = 0; i < host->n_ports; i++) { 5248 struct ata_port *ap = host->ports[i]; 5249 5250 if (!ap) 5251 continue; 5252 5253 if (ap->scsi_host) 5254 scsi_host_put(ap->scsi_host); 5255 5256 kfree(ap->pmp_link); 5257 kfree(ap); 5258 host->ports[i] = NULL; 5259 } 5260 5261 dev_set_drvdata(gendev, NULL); 5262 } 5263 5264 /** 5265 * ata_host_alloc - allocate and init basic ATA host resources 5266 * @dev: generic device this host is associated with 5267 * @max_ports: maximum number of ATA ports associated with this host 5268 * 5269 * Allocate and initialize basic ATA host resources. LLD calls 5270 * this function to allocate a host, initializes it fully and 5271 * attaches it using ata_host_register(). 5272 * 5273 * @max_ports ports are allocated and host->n_ports is 5274 * initialized to @max_ports. The caller is allowed to decrease 5275 * host->n_ports before calling ata_host_register(). The unused 5276 * ports will be automatically freed on registration. 5277 * 5278 * RETURNS: 5279 * Allocate ATA host on success, NULL on failure. 5280 * 5281 * LOCKING: 5282 * Inherited from calling layer (may sleep). 5283 */ 5284 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5285 { 5286 struct ata_host *host; 5287 size_t sz; 5288 int i; 5289 5290 DPRINTK("ENTER\n"); 5291 5292 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5293 return NULL; 5294 5295 /* alloc a container for our list of ATA ports (buses) */ 5296 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5297 /* alloc a container for our list of ATA ports (buses) */ 5298 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5299 if (!host) 5300 goto err_out; 5301 5302 devres_add(dev, host); 5303 dev_set_drvdata(dev, host); 5304 5305 spin_lock_init(&host->lock); 5306 host->dev = dev; 5307 host->n_ports = max_ports; 5308 5309 /* allocate ports bound to this host */ 5310 for (i = 0; i < max_ports; i++) { 5311 struct ata_port *ap; 5312 5313 ap = ata_port_alloc(host); 5314 if (!ap) 5315 goto err_out; 5316 5317 ap->port_no = i; 5318 host->ports[i] = ap; 5319 } 5320 5321 devres_remove_group(dev, NULL); 5322 return host; 5323 5324 err_out: 5325 devres_release_group(dev, NULL); 5326 return NULL; 5327 } 5328 5329 /** 5330 * ata_host_alloc_pinfo - alloc host and init with port_info array 5331 * @dev: generic device this host is associated with 5332 * @ppi: array of ATA port_info to initialize host with 5333 * @n_ports: number of ATA ports attached to this host 5334 * 5335 * Allocate ATA host and initialize with info from @ppi. If NULL 5336 * terminated, @ppi may contain fewer entries than @n_ports. The 5337 * last entry will be used for the remaining ports. 5338 * 5339 * RETURNS: 5340 * Allocate ATA host on success, NULL on failure. 5341 * 5342 * LOCKING: 5343 * Inherited from calling layer (may sleep). 5344 */ 5345 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5346 const struct ata_port_info * const * ppi, 5347 int n_ports) 5348 { 5349 const struct ata_port_info *pi; 5350 struct ata_host *host; 5351 int i, j; 5352 5353 host = ata_host_alloc(dev, n_ports); 5354 if (!host) 5355 return NULL; 5356 5357 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5358 struct ata_port *ap = host->ports[i]; 5359 5360 if (ppi[j]) 5361 pi = ppi[j++]; 5362 5363 ap->pio_mask = pi->pio_mask; 5364 ap->mwdma_mask = pi->mwdma_mask; 5365 ap->udma_mask = pi->udma_mask; 5366 ap->flags |= pi->flags; 5367 ap->link.flags |= pi->link_flags; 5368 ap->ops = pi->port_ops; 5369 5370 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5371 host->ops = pi->port_ops; 5372 } 5373 5374 return host; 5375 } 5376 5377 static void ata_host_stop(struct device *gendev, void *res) 5378 { 5379 struct ata_host *host = dev_get_drvdata(gendev); 5380 int i; 5381 5382 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5383 5384 for (i = 0; i < host->n_ports; i++) { 5385 struct ata_port *ap = host->ports[i]; 5386 5387 if (ap->ops->port_stop) 5388 ap->ops->port_stop(ap); 5389 } 5390 5391 if (host->ops->host_stop) 5392 host->ops->host_stop(host); 5393 } 5394 5395 /** 5396 * ata_finalize_port_ops - finalize ata_port_operations 5397 * @ops: ata_port_operations to finalize 5398 * 5399 * An ata_port_operations can inherit from another ops and that 5400 * ops can again inherit from another. This can go on as many 5401 * times as necessary as long as there is no loop in the 5402 * inheritance chain. 5403 * 5404 * Ops tables are finalized when the host is started. NULL or 5405 * unspecified entries are inherited from the closet ancestor 5406 * which has the method and the entry is populated with it. 5407 * After finalization, the ops table directly points to all the 5408 * methods and ->inherits is no longer necessary and cleared. 5409 * 5410 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5411 * 5412 * LOCKING: 5413 * None. 5414 */ 5415 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5416 { 5417 static DEFINE_SPINLOCK(lock); 5418 const struct ata_port_operations *cur; 5419 void **begin = (void **)ops; 5420 void **end = (void **)&ops->inherits; 5421 void **pp; 5422 5423 if (!ops || !ops->inherits) 5424 return; 5425 5426 spin_lock(&lock); 5427 5428 for (cur = ops->inherits; cur; cur = cur->inherits) { 5429 void **inherit = (void **)cur; 5430 5431 for (pp = begin; pp < end; pp++, inherit++) 5432 if (!*pp) 5433 *pp = *inherit; 5434 } 5435 5436 for (pp = begin; pp < end; pp++) 5437 if (IS_ERR(*pp)) 5438 *pp = NULL; 5439 5440 ops->inherits = NULL; 5441 5442 spin_unlock(&lock); 5443 } 5444 5445 /** 5446 * ata_host_start - start and freeze ports of an ATA host 5447 * @host: ATA host to start ports for 5448 * 5449 * Start and then freeze ports of @host. Started status is 5450 * recorded in host->flags, so this function can be called 5451 * multiple times. Ports are guaranteed to get started only 5452 * once. If host->ops isn't initialized yet, its set to the 5453 * first non-dummy port ops. 5454 * 5455 * LOCKING: 5456 * Inherited from calling layer (may sleep). 5457 * 5458 * RETURNS: 5459 * 0 if all ports are started successfully, -errno otherwise. 5460 */ 5461 int ata_host_start(struct ata_host *host) 5462 { 5463 int have_stop = 0; 5464 void *start_dr = NULL; 5465 int i, rc; 5466 5467 if (host->flags & ATA_HOST_STARTED) 5468 return 0; 5469 5470 ata_finalize_port_ops(host->ops); 5471 5472 for (i = 0; i < host->n_ports; i++) { 5473 struct ata_port *ap = host->ports[i]; 5474 5475 ata_finalize_port_ops(ap->ops); 5476 5477 if (!host->ops && !ata_port_is_dummy(ap)) 5478 host->ops = ap->ops; 5479 5480 if (ap->ops->port_stop) 5481 have_stop = 1; 5482 } 5483 5484 if (host->ops->host_stop) 5485 have_stop = 1; 5486 5487 if (have_stop) { 5488 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5489 if (!start_dr) 5490 return -ENOMEM; 5491 } 5492 5493 for (i = 0; i < host->n_ports; i++) { 5494 struct ata_port *ap = host->ports[i]; 5495 5496 if (ap->ops->port_start) { 5497 rc = ap->ops->port_start(ap); 5498 if (rc) { 5499 if (rc != -ENODEV) 5500 dev_printk(KERN_ERR, host->dev, 5501 "failed to start port %d " 5502 "(errno=%d)\n", i, rc); 5503 goto err_out; 5504 } 5505 } 5506 ata_eh_freeze_port(ap); 5507 } 5508 5509 if (start_dr) 5510 devres_add(host->dev, start_dr); 5511 host->flags |= ATA_HOST_STARTED; 5512 return 0; 5513 5514 err_out: 5515 while (--i >= 0) { 5516 struct ata_port *ap = host->ports[i]; 5517 5518 if (ap->ops->port_stop) 5519 ap->ops->port_stop(ap); 5520 } 5521 devres_free(start_dr); 5522 return rc; 5523 } 5524 5525 /** 5526 * ata_sas_host_init - Initialize a host struct 5527 * @host: host to initialize 5528 * @dev: device host is attached to 5529 * @flags: host flags 5530 * @ops: port_ops 5531 * 5532 * LOCKING: 5533 * PCI/etc. bus probe sem. 5534 * 5535 */ 5536 /* KILLME - the only user left is ipr */ 5537 void ata_host_init(struct ata_host *host, struct device *dev, 5538 unsigned long flags, struct ata_port_operations *ops) 5539 { 5540 spin_lock_init(&host->lock); 5541 host->dev = dev; 5542 host->flags = flags; 5543 host->ops = ops; 5544 } 5545 5546 /** 5547 * ata_host_register - register initialized ATA host 5548 * @host: ATA host to register 5549 * @sht: template for SCSI host 5550 * 5551 * Register initialized ATA host. @host is allocated using 5552 * ata_host_alloc() and fully initialized by LLD. This function 5553 * starts ports, registers @host with ATA and SCSI layers and 5554 * probe registered devices. 5555 * 5556 * LOCKING: 5557 * Inherited from calling layer (may sleep). 5558 * 5559 * RETURNS: 5560 * 0 on success, -errno otherwise. 5561 */ 5562 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5563 { 5564 int i, rc; 5565 5566 /* host must have been started */ 5567 if (!(host->flags & ATA_HOST_STARTED)) { 5568 dev_printk(KERN_ERR, host->dev, 5569 "BUG: trying to register unstarted host\n"); 5570 WARN_ON(1); 5571 return -EINVAL; 5572 } 5573 5574 /* Blow away unused ports. This happens when LLD can't 5575 * determine the exact number of ports to allocate at 5576 * allocation time. 5577 */ 5578 for (i = host->n_ports; host->ports[i]; i++) 5579 kfree(host->ports[i]); 5580 5581 /* give ports names and add SCSI hosts */ 5582 for (i = 0; i < host->n_ports; i++) 5583 host->ports[i]->print_id = ata_print_id++; 5584 5585 rc = ata_scsi_add_hosts(host, sht); 5586 if (rc) 5587 return rc; 5588 5589 /* associate with ACPI nodes */ 5590 ata_acpi_associate(host); 5591 5592 /* set cable, sata_spd_limit and report */ 5593 for (i = 0; i < host->n_ports; i++) { 5594 struct ata_port *ap = host->ports[i]; 5595 unsigned long xfer_mask; 5596 5597 /* set SATA cable type if still unset */ 5598 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5599 ap->cbl = ATA_CBL_SATA; 5600 5601 /* init sata_spd_limit to the current value */ 5602 sata_link_init_spd(&ap->link); 5603 5604 /* print per-port info to dmesg */ 5605 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5606 ap->udma_mask); 5607 5608 if (!ata_port_is_dummy(ap)) { 5609 ata_port_printk(ap, KERN_INFO, 5610 "%cATA max %s %s\n", 5611 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5612 ata_mode_string(xfer_mask), 5613 ap->link.eh_info.desc); 5614 ata_ehi_clear_desc(&ap->link.eh_info); 5615 } else 5616 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 5617 } 5618 5619 /* perform each probe synchronously */ 5620 DPRINTK("probe begin\n"); 5621 for (i = 0; i < host->n_ports; i++) { 5622 struct ata_port *ap = host->ports[i]; 5623 5624 /* probe */ 5625 if (ap->ops->error_handler) { 5626 struct ata_eh_info *ehi = &ap->link.eh_info; 5627 unsigned long flags; 5628 5629 ata_port_probe(ap); 5630 5631 /* kick EH for boot probing */ 5632 spin_lock_irqsave(ap->lock, flags); 5633 5634 ehi->probe_mask |= ATA_ALL_DEVICES; 5635 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 5636 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5637 5638 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5639 ap->pflags |= ATA_PFLAG_LOADING; 5640 ata_port_schedule_eh(ap); 5641 5642 spin_unlock_irqrestore(ap->lock, flags); 5643 5644 /* wait for EH to finish */ 5645 ata_port_wait_eh(ap); 5646 } else { 5647 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5648 rc = ata_bus_probe(ap); 5649 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5650 5651 if (rc) { 5652 /* FIXME: do something useful here? 5653 * Current libata behavior will 5654 * tear down everything when 5655 * the module is removed 5656 * or the h/w is unplugged. 5657 */ 5658 } 5659 } 5660 } 5661 5662 /* probes are done, now scan each port's disk(s) */ 5663 DPRINTK("host probe begin\n"); 5664 for (i = 0; i < host->n_ports; i++) { 5665 struct ata_port *ap = host->ports[i]; 5666 5667 ata_scsi_scan_host(ap, 1); 5668 } 5669 5670 return 0; 5671 } 5672 5673 /** 5674 * ata_host_activate - start host, request IRQ and register it 5675 * @host: target ATA host 5676 * @irq: IRQ to request 5677 * @irq_handler: irq_handler used when requesting IRQ 5678 * @irq_flags: irq_flags used when requesting IRQ 5679 * @sht: scsi_host_template to use when registering the host 5680 * 5681 * After allocating an ATA host and initializing it, most libata 5682 * LLDs perform three steps to activate the host - start host, 5683 * request IRQ and register it. This helper takes necessasry 5684 * arguments and performs the three steps in one go. 5685 * 5686 * An invalid IRQ skips the IRQ registration and expects the host to 5687 * have set polling mode on the port. In this case, @irq_handler 5688 * should be NULL. 5689 * 5690 * LOCKING: 5691 * Inherited from calling layer (may sleep). 5692 * 5693 * RETURNS: 5694 * 0 on success, -errno otherwise. 5695 */ 5696 int ata_host_activate(struct ata_host *host, int irq, 5697 irq_handler_t irq_handler, unsigned long irq_flags, 5698 struct scsi_host_template *sht) 5699 { 5700 int i, rc; 5701 5702 rc = ata_host_start(host); 5703 if (rc) 5704 return rc; 5705 5706 /* Special case for polling mode */ 5707 if (!irq) { 5708 WARN_ON(irq_handler); 5709 return ata_host_register(host, sht); 5710 } 5711 5712 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5713 dev_driver_string(host->dev), host); 5714 if (rc) 5715 return rc; 5716 5717 for (i = 0; i < host->n_ports; i++) 5718 ata_port_desc(host->ports[i], "irq %d", irq); 5719 5720 rc = ata_host_register(host, sht); 5721 /* if failed, just free the IRQ and leave ports alone */ 5722 if (rc) 5723 devm_free_irq(host->dev, irq, host); 5724 5725 return rc; 5726 } 5727 5728 /** 5729 * ata_port_detach - Detach ATA port in prepration of device removal 5730 * @ap: ATA port to be detached 5731 * 5732 * Detach all ATA devices and the associated SCSI devices of @ap; 5733 * then, remove the associated SCSI host. @ap is guaranteed to 5734 * be quiescent on return from this function. 5735 * 5736 * LOCKING: 5737 * Kernel thread context (may sleep). 5738 */ 5739 static void ata_port_detach(struct ata_port *ap) 5740 { 5741 unsigned long flags; 5742 struct ata_link *link; 5743 struct ata_device *dev; 5744 5745 if (!ap->ops->error_handler) 5746 goto skip_eh; 5747 5748 /* tell EH we're leaving & flush EH */ 5749 spin_lock_irqsave(ap->lock, flags); 5750 ap->pflags |= ATA_PFLAG_UNLOADING; 5751 spin_unlock_irqrestore(ap->lock, flags); 5752 5753 ata_port_wait_eh(ap); 5754 5755 /* EH is now guaranteed to see UNLOADING - EH context belongs 5756 * to us. Disable all existing devices. 5757 */ 5758 ata_port_for_each_link(link, ap) { 5759 ata_link_for_each_dev(dev, link) 5760 ata_dev_disable(dev); 5761 } 5762 5763 /* Final freeze & EH. All in-flight commands are aborted. EH 5764 * will be skipped and retrials will be terminated with bad 5765 * target. 5766 */ 5767 spin_lock_irqsave(ap->lock, flags); 5768 ata_port_freeze(ap); /* won't be thawed */ 5769 spin_unlock_irqrestore(ap->lock, flags); 5770 5771 ata_port_wait_eh(ap); 5772 cancel_rearming_delayed_work(&ap->hotplug_task); 5773 5774 skip_eh: 5775 /* remove the associated SCSI host */ 5776 scsi_remove_host(ap->scsi_host); 5777 } 5778 5779 /** 5780 * ata_host_detach - Detach all ports of an ATA host 5781 * @host: Host to detach 5782 * 5783 * Detach all ports of @host. 5784 * 5785 * LOCKING: 5786 * Kernel thread context (may sleep). 5787 */ 5788 void ata_host_detach(struct ata_host *host) 5789 { 5790 int i; 5791 5792 for (i = 0; i < host->n_ports; i++) 5793 ata_port_detach(host->ports[i]); 5794 5795 /* the host is dead now, dissociate ACPI */ 5796 ata_acpi_dissociate(host); 5797 } 5798 5799 #ifdef CONFIG_PCI 5800 5801 /** 5802 * ata_pci_remove_one - PCI layer callback for device removal 5803 * @pdev: PCI device that was removed 5804 * 5805 * PCI layer indicates to libata via this hook that hot-unplug or 5806 * module unload event has occurred. Detach all ports. Resource 5807 * release is handled via devres. 5808 * 5809 * LOCKING: 5810 * Inherited from PCI layer (may sleep). 5811 */ 5812 void ata_pci_remove_one(struct pci_dev *pdev) 5813 { 5814 struct device *dev = &pdev->dev; 5815 struct ata_host *host = dev_get_drvdata(dev); 5816 5817 ata_host_detach(host); 5818 } 5819 5820 /* move to PCI subsystem */ 5821 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 5822 { 5823 unsigned long tmp = 0; 5824 5825 switch (bits->width) { 5826 case 1: { 5827 u8 tmp8 = 0; 5828 pci_read_config_byte(pdev, bits->reg, &tmp8); 5829 tmp = tmp8; 5830 break; 5831 } 5832 case 2: { 5833 u16 tmp16 = 0; 5834 pci_read_config_word(pdev, bits->reg, &tmp16); 5835 tmp = tmp16; 5836 break; 5837 } 5838 case 4: { 5839 u32 tmp32 = 0; 5840 pci_read_config_dword(pdev, bits->reg, &tmp32); 5841 tmp = tmp32; 5842 break; 5843 } 5844 5845 default: 5846 return -EINVAL; 5847 } 5848 5849 tmp &= bits->mask; 5850 5851 return (tmp == bits->val) ? 1 : 0; 5852 } 5853 5854 #ifdef CONFIG_PM 5855 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 5856 { 5857 pci_save_state(pdev); 5858 pci_disable_device(pdev); 5859 5860 if (mesg.event & PM_EVENT_SLEEP) 5861 pci_set_power_state(pdev, PCI_D3hot); 5862 } 5863 5864 int ata_pci_device_do_resume(struct pci_dev *pdev) 5865 { 5866 int rc; 5867 5868 pci_set_power_state(pdev, PCI_D0); 5869 pci_restore_state(pdev); 5870 5871 rc = pcim_enable_device(pdev); 5872 if (rc) { 5873 dev_printk(KERN_ERR, &pdev->dev, 5874 "failed to enable device after resume (%d)\n", rc); 5875 return rc; 5876 } 5877 5878 pci_set_master(pdev); 5879 return 0; 5880 } 5881 5882 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 5883 { 5884 struct ata_host *host = dev_get_drvdata(&pdev->dev); 5885 int rc = 0; 5886 5887 rc = ata_host_suspend(host, mesg); 5888 if (rc) 5889 return rc; 5890 5891 ata_pci_device_do_suspend(pdev, mesg); 5892 5893 return 0; 5894 } 5895 5896 int ata_pci_device_resume(struct pci_dev *pdev) 5897 { 5898 struct ata_host *host = dev_get_drvdata(&pdev->dev); 5899 int rc; 5900 5901 rc = ata_pci_device_do_resume(pdev); 5902 if (rc == 0) 5903 ata_host_resume(host); 5904 return rc; 5905 } 5906 #endif /* CONFIG_PM */ 5907 5908 #endif /* CONFIG_PCI */ 5909 5910 static int __init ata_parse_force_one(char **cur, 5911 struct ata_force_ent *force_ent, 5912 const char **reason) 5913 { 5914 /* FIXME: Currently, there's no way to tag init const data and 5915 * using __initdata causes build failure on some versions of 5916 * gcc. Once __initdataconst is implemented, add const to the 5917 * following structure. 5918 */ 5919 static struct ata_force_param force_tbl[] __initdata = { 5920 { "40c", .cbl = ATA_CBL_PATA40 }, 5921 { "80c", .cbl = ATA_CBL_PATA80 }, 5922 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 5923 { "unk", .cbl = ATA_CBL_PATA_UNK }, 5924 { "ign", .cbl = ATA_CBL_PATA_IGN }, 5925 { "sata", .cbl = ATA_CBL_SATA }, 5926 { "1.5Gbps", .spd_limit = 1 }, 5927 { "3.0Gbps", .spd_limit = 2 }, 5928 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 5929 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 5930 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 5931 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 5932 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 5933 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 5934 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 5935 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 5936 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 5937 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 5938 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 5939 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 5940 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 5941 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 5942 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 5943 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 5944 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 5945 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 5946 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 5947 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 5948 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 5949 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 5950 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 5951 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 5952 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 5953 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 5954 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 5955 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 5956 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 5957 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 5958 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 5959 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 5960 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 5961 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 5962 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 5963 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 5964 }; 5965 char *start = *cur, *p = *cur; 5966 char *id, *val, *endp; 5967 const struct ata_force_param *match_fp = NULL; 5968 int nr_matches = 0, i; 5969 5970 /* find where this param ends and update *cur */ 5971 while (*p != '\0' && *p != ',') 5972 p++; 5973 5974 if (*p == '\0') 5975 *cur = p; 5976 else 5977 *cur = p + 1; 5978 5979 *p = '\0'; 5980 5981 /* parse */ 5982 p = strchr(start, ':'); 5983 if (!p) { 5984 val = strstrip(start); 5985 goto parse_val; 5986 } 5987 *p = '\0'; 5988 5989 id = strstrip(start); 5990 val = strstrip(p + 1); 5991 5992 /* parse id */ 5993 p = strchr(id, '.'); 5994 if (p) { 5995 *p++ = '\0'; 5996 force_ent->device = simple_strtoul(p, &endp, 10); 5997 if (p == endp || *endp != '\0') { 5998 *reason = "invalid device"; 5999 return -EINVAL; 6000 } 6001 } 6002 6003 force_ent->port = simple_strtoul(id, &endp, 10); 6004 if (p == endp || *endp != '\0') { 6005 *reason = "invalid port/link"; 6006 return -EINVAL; 6007 } 6008 6009 parse_val: 6010 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6011 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6012 const struct ata_force_param *fp = &force_tbl[i]; 6013 6014 if (strncasecmp(val, fp->name, strlen(val))) 6015 continue; 6016 6017 nr_matches++; 6018 match_fp = fp; 6019 6020 if (strcasecmp(val, fp->name) == 0) { 6021 nr_matches = 1; 6022 break; 6023 } 6024 } 6025 6026 if (!nr_matches) { 6027 *reason = "unknown value"; 6028 return -EINVAL; 6029 } 6030 if (nr_matches > 1) { 6031 *reason = "ambigious value"; 6032 return -EINVAL; 6033 } 6034 6035 force_ent->param = *match_fp; 6036 6037 return 0; 6038 } 6039 6040 static void __init ata_parse_force_param(void) 6041 { 6042 int idx = 0, size = 1; 6043 int last_port = -1, last_device = -1; 6044 char *p, *cur, *next; 6045 6046 /* calculate maximum number of params and allocate force_tbl */ 6047 for (p = ata_force_param_buf; *p; p++) 6048 if (*p == ',') 6049 size++; 6050 6051 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6052 if (!ata_force_tbl) { 6053 printk(KERN_WARNING "ata: failed to extend force table, " 6054 "libata.force ignored\n"); 6055 return; 6056 } 6057 6058 /* parse and populate the table */ 6059 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6060 const char *reason = ""; 6061 struct ata_force_ent te = { .port = -1, .device = -1 }; 6062 6063 next = cur; 6064 if (ata_parse_force_one(&next, &te, &reason)) { 6065 printk(KERN_WARNING "ata: failed to parse force " 6066 "parameter \"%s\" (%s)\n", 6067 cur, reason); 6068 continue; 6069 } 6070 6071 if (te.port == -1) { 6072 te.port = last_port; 6073 te.device = last_device; 6074 } 6075 6076 ata_force_tbl[idx++] = te; 6077 6078 last_port = te.port; 6079 last_device = te.device; 6080 } 6081 6082 ata_force_tbl_size = idx; 6083 } 6084 6085 static int __init ata_init(void) 6086 { 6087 ata_parse_force_param(); 6088 6089 ata_wq = create_workqueue("ata"); 6090 if (!ata_wq) 6091 return -ENOMEM; 6092 6093 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6094 if (!ata_aux_wq) { 6095 destroy_workqueue(ata_wq); 6096 return -ENOMEM; 6097 } 6098 6099 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6100 return 0; 6101 } 6102 6103 static void __exit ata_exit(void) 6104 { 6105 kfree(ata_force_tbl); 6106 destroy_workqueue(ata_wq); 6107 destroy_workqueue(ata_aux_wq); 6108 } 6109 6110 subsys_initcall(ata_init); 6111 module_exit(ata_exit); 6112 6113 static unsigned long ratelimit_time; 6114 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6115 6116 int ata_ratelimit(void) 6117 { 6118 int rc; 6119 unsigned long flags; 6120 6121 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6122 6123 if (time_after(jiffies, ratelimit_time)) { 6124 rc = 1; 6125 ratelimit_time = jiffies + (HZ/5); 6126 } else 6127 rc = 0; 6128 6129 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6130 6131 return rc; 6132 } 6133 6134 /** 6135 * ata_wait_register - wait until register value changes 6136 * @reg: IO-mapped register 6137 * @mask: Mask to apply to read register value 6138 * @val: Wait condition 6139 * @interval: polling interval in milliseconds 6140 * @timeout: timeout in milliseconds 6141 * 6142 * Waiting for some bits of register to change is a common 6143 * operation for ATA controllers. This function reads 32bit LE 6144 * IO-mapped register @reg and tests for the following condition. 6145 * 6146 * (*@reg & mask) != val 6147 * 6148 * If the condition is met, it returns; otherwise, the process is 6149 * repeated after @interval_msec until timeout. 6150 * 6151 * LOCKING: 6152 * Kernel thread context (may sleep) 6153 * 6154 * RETURNS: 6155 * The final register value. 6156 */ 6157 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6158 unsigned long interval, unsigned long timeout) 6159 { 6160 unsigned long deadline; 6161 u32 tmp; 6162 6163 tmp = ioread32(reg); 6164 6165 /* Calculate timeout _after_ the first read to make sure 6166 * preceding writes reach the controller before starting to 6167 * eat away the timeout. 6168 */ 6169 deadline = ata_deadline(jiffies, timeout); 6170 6171 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6172 msleep(interval); 6173 tmp = ioread32(reg); 6174 } 6175 6176 return tmp; 6177 } 6178 6179 /* 6180 * Dummy port_ops 6181 */ 6182 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6183 { 6184 return AC_ERR_SYSTEM; 6185 } 6186 6187 static void ata_dummy_error_handler(struct ata_port *ap) 6188 { 6189 /* truly dummy */ 6190 } 6191 6192 struct ata_port_operations ata_dummy_port_ops = { 6193 .qc_prep = ata_noop_qc_prep, 6194 .qc_issue = ata_dummy_qc_issue, 6195 .error_handler = ata_dummy_error_handler, 6196 }; 6197 6198 const struct ata_port_info ata_dummy_port_info = { 6199 .port_ops = &ata_dummy_port_ops, 6200 }; 6201 6202 /* 6203 * libata is essentially a library of internal helper functions for 6204 * low-level ATA host controller drivers. As such, the API/ABI is 6205 * likely to change as new drivers are added and updated. 6206 * Do not depend on ABI/API stability. 6207 */ 6208 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6209 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6210 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6211 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6212 EXPORT_SYMBOL_GPL(sata_port_ops); 6213 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6214 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6215 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6216 EXPORT_SYMBOL_GPL(ata_host_init); 6217 EXPORT_SYMBOL_GPL(ata_host_alloc); 6218 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6219 EXPORT_SYMBOL_GPL(ata_host_start); 6220 EXPORT_SYMBOL_GPL(ata_host_register); 6221 EXPORT_SYMBOL_GPL(ata_host_activate); 6222 EXPORT_SYMBOL_GPL(ata_host_detach); 6223 EXPORT_SYMBOL_GPL(ata_sg_init); 6224 EXPORT_SYMBOL_GPL(ata_qc_complete); 6225 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6226 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6227 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6228 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6229 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6230 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6231 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6232 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6233 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6234 EXPORT_SYMBOL_GPL(ata_mode_string); 6235 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6236 EXPORT_SYMBOL_GPL(ata_port_start); 6237 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6238 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6239 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6240 EXPORT_SYMBOL_GPL(ata_port_probe); 6241 EXPORT_SYMBOL_GPL(ata_dev_disable); 6242 EXPORT_SYMBOL_GPL(sata_set_spd); 6243 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6244 EXPORT_SYMBOL_GPL(sata_link_debounce); 6245 EXPORT_SYMBOL_GPL(sata_link_resume); 6246 EXPORT_SYMBOL_GPL(ata_std_prereset); 6247 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6248 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6249 EXPORT_SYMBOL_GPL(ata_std_postreset); 6250 EXPORT_SYMBOL_GPL(ata_dev_classify); 6251 EXPORT_SYMBOL_GPL(ata_dev_pair); 6252 EXPORT_SYMBOL_GPL(ata_port_disable); 6253 EXPORT_SYMBOL_GPL(ata_ratelimit); 6254 EXPORT_SYMBOL_GPL(ata_wait_register); 6255 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6256 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6257 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6258 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6259 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6260 EXPORT_SYMBOL_GPL(sata_scr_valid); 6261 EXPORT_SYMBOL_GPL(sata_scr_read); 6262 EXPORT_SYMBOL_GPL(sata_scr_write); 6263 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6264 EXPORT_SYMBOL_GPL(ata_link_online); 6265 EXPORT_SYMBOL_GPL(ata_link_offline); 6266 #ifdef CONFIG_PM 6267 EXPORT_SYMBOL_GPL(ata_host_suspend); 6268 EXPORT_SYMBOL_GPL(ata_host_resume); 6269 #endif /* CONFIG_PM */ 6270 EXPORT_SYMBOL_GPL(ata_id_string); 6271 EXPORT_SYMBOL_GPL(ata_id_c_string); 6272 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6273 6274 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6275 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6276 EXPORT_SYMBOL_GPL(ata_timing_compute); 6277 EXPORT_SYMBOL_GPL(ata_timing_merge); 6278 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6279 6280 #ifdef CONFIG_PCI 6281 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6282 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6283 #ifdef CONFIG_PM 6284 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6285 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6286 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6287 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6288 #endif /* CONFIG_PM */ 6289 #endif /* CONFIG_PCI */ 6290 6291 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6292 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6293 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6294 EXPORT_SYMBOL_GPL(ata_port_desc); 6295 #ifdef CONFIG_PCI 6296 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6297 #endif /* CONFIG_PCI */ 6298 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6299 EXPORT_SYMBOL_GPL(ata_link_abort); 6300 EXPORT_SYMBOL_GPL(ata_port_abort); 6301 EXPORT_SYMBOL_GPL(ata_port_freeze); 6302 EXPORT_SYMBOL_GPL(sata_async_notification); 6303 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6304 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6305 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6306 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6307 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6308 EXPORT_SYMBOL_GPL(ata_do_eh); 6309 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6310 6311 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6312 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6313 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6314 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6315 EXPORT_SYMBOL_GPL(ata_cable_sata); 6316