1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <scsi/scsi.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_host.h> 62 #include <linux/libata.h> 63 #include <asm/byteorder.h> 64 #include <linux/cdrom.h> 65 66 #include "libata.h" 67 68 69 /* debounce timing parameters in msecs { interval, duration, timeout } */ 70 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 71 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 72 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 73 74 const struct ata_port_operations ata_base_port_ops = { 75 .prereset = ata_std_prereset, 76 .postreset = ata_std_postreset, 77 .error_handler = ata_std_error_handler, 78 }; 79 80 const struct ata_port_operations sata_port_ops = { 81 .inherits = &ata_base_port_ops, 82 83 .qc_defer = ata_std_qc_defer, 84 .hardreset = sata_std_hardreset, 85 }; 86 87 static unsigned int ata_dev_init_params(struct ata_device *dev, 88 u16 heads, u16 sectors); 89 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 90 static unsigned int ata_dev_set_feature(struct ata_device *dev, 91 u8 enable, u8 feature); 92 static void ata_dev_xfermask(struct ata_device *dev); 93 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 94 95 unsigned int ata_print_id = 1; 96 static struct workqueue_struct *ata_wq; 97 98 struct workqueue_struct *ata_aux_wq; 99 100 struct ata_force_param { 101 const char *name; 102 unsigned int cbl; 103 int spd_limit; 104 unsigned long xfer_mask; 105 unsigned int horkage_on; 106 unsigned int horkage_off; 107 unsigned int lflags; 108 }; 109 110 struct ata_force_ent { 111 int port; 112 int device; 113 struct ata_force_param param; 114 }; 115 116 static struct ata_force_ent *ata_force_tbl; 117 static int ata_force_tbl_size; 118 119 static char ata_force_param_buf[PAGE_SIZE] __initdata; 120 /* param_buf is thrown away after initialization, disallow read */ 121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 123 124 static int atapi_enabled = 1; 125 module_param(atapi_enabled, int, 0444); 126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 127 128 static int atapi_dmadir = 0; 129 module_param(atapi_dmadir, int, 0444); 130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 131 132 int atapi_passthru16 = 1; 133 module_param(atapi_passthru16, int, 0444); 134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)"); 135 136 int libata_fua = 0; 137 module_param_named(fua, libata_fua, int, 0444); 138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 139 140 static int ata_ignore_hpa; 141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 143 144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 145 module_param_named(dma, libata_dma_mask, int, 0444); 146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 147 148 static int ata_probe_timeout; 149 module_param(ata_probe_timeout, int, 0444); 150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 151 152 int libata_noacpi = 0; 153 module_param_named(noacpi, libata_noacpi, int, 0444); 154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set"); 155 156 int libata_allow_tpm = 0; 157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands"); 159 160 MODULE_AUTHOR("Jeff Garzik"); 161 MODULE_DESCRIPTION("Library module for ATA devices"); 162 MODULE_LICENSE("GPL"); 163 MODULE_VERSION(DRV_VERSION); 164 165 166 /* 167 * Iterator helpers. Don't use directly. 168 * 169 * LOCKING: 170 * Host lock or EH context. 171 */ 172 struct ata_link *__ata_port_next_link(struct ata_port *ap, 173 struct ata_link *link, bool dev_only) 174 { 175 /* NULL link indicates start of iteration */ 176 if (!link) { 177 if (dev_only && sata_pmp_attached(ap)) 178 return ap->pmp_link; 179 return &ap->link; 180 } 181 182 /* we just iterated over the host master link, what's next? */ 183 if (link == &ap->link) { 184 if (!sata_pmp_attached(ap)) { 185 if (unlikely(ap->slave_link) && !dev_only) 186 return ap->slave_link; 187 return NULL; 188 } 189 return ap->pmp_link; 190 } 191 192 /* slave_link excludes PMP */ 193 if (unlikely(link == ap->slave_link)) 194 return NULL; 195 196 /* iterate to the next PMP link */ 197 if (++link < ap->pmp_link + ap->nr_pmp_links) 198 return link; 199 return NULL; 200 } 201 202 /** 203 * ata_dev_phys_link - find physical link for a device 204 * @dev: ATA device to look up physical link for 205 * 206 * Look up physical link which @dev is attached to. Note that 207 * this is different from @dev->link only when @dev is on slave 208 * link. For all other cases, it's the same as @dev->link. 209 * 210 * LOCKING: 211 * Don't care. 212 * 213 * RETURNS: 214 * Pointer to the found physical link. 215 */ 216 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 217 { 218 struct ata_port *ap = dev->link->ap; 219 220 if (!ap->slave_link) 221 return dev->link; 222 if (!dev->devno) 223 return &ap->link; 224 return ap->slave_link; 225 } 226 227 /** 228 * ata_force_cbl - force cable type according to libata.force 229 * @ap: ATA port of interest 230 * 231 * Force cable type according to libata.force and whine about it. 232 * The last entry which has matching port number is used, so it 233 * can be specified as part of device force parameters. For 234 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 235 * same effect. 236 * 237 * LOCKING: 238 * EH context. 239 */ 240 void ata_force_cbl(struct ata_port *ap) 241 { 242 int i; 243 244 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 245 const struct ata_force_ent *fe = &ata_force_tbl[i]; 246 247 if (fe->port != -1 && fe->port != ap->print_id) 248 continue; 249 250 if (fe->param.cbl == ATA_CBL_NONE) 251 continue; 252 253 ap->cbl = fe->param.cbl; 254 ata_port_printk(ap, KERN_NOTICE, 255 "FORCE: cable set to %s\n", fe->param.name); 256 return; 257 } 258 } 259 260 /** 261 * ata_force_link_limits - force link limits according to libata.force 262 * @link: ATA link of interest 263 * 264 * Force link flags and SATA spd limit according to libata.force 265 * and whine about it. When only the port part is specified 266 * (e.g. 1:), the limit applies to all links connected to both 267 * the host link and all fan-out ports connected via PMP. If the 268 * device part is specified as 0 (e.g. 1.00:), it specifies the 269 * first fan-out link not the host link. Device number 15 always 270 * points to the host link whether PMP is attached or not. If the 271 * controller has slave link, device number 16 points to it. 272 * 273 * LOCKING: 274 * EH context. 275 */ 276 static void ata_force_link_limits(struct ata_link *link) 277 { 278 bool did_spd = false; 279 int linkno = link->pmp; 280 int i; 281 282 if (ata_is_host_link(link)) 283 linkno += 15; 284 285 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 286 const struct ata_force_ent *fe = &ata_force_tbl[i]; 287 288 if (fe->port != -1 && fe->port != link->ap->print_id) 289 continue; 290 291 if (fe->device != -1 && fe->device != linkno) 292 continue; 293 294 /* only honor the first spd limit */ 295 if (!did_spd && fe->param.spd_limit) { 296 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 297 ata_link_printk(link, KERN_NOTICE, 298 "FORCE: PHY spd limit set to %s\n", 299 fe->param.name); 300 did_spd = true; 301 } 302 303 /* let lflags stack */ 304 if (fe->param.lflags) { 305 link->flags |= fe->param.lflags; 306 ata_link_printk(link, KERN_NOTICE, 307 "FORCE: link flag 0x%x forced -> 0x%x\n", 308 fe->param.lflags, link->flags); 309 } 310 } 311 } 312 313 /** 314 * ata_force_xfermask - force xfermask according to libata.force 315 * @dev: ATA device of interest 316 * 317 * Force xfer_mask according to libata.force and whine about it. 318 * For consistency with link selection, device number 15 selects 319 * the first device connected to the host link. 320 * 321 * LOCKING: 322 * EH context. 323 */ 324 static void ata_force_xfermask(struct ata_device *dev) 325 { 326 int devno = dev->link->pmp + dev->devno; 327 int alt_devno = devno; 328 int i; 329 330 /* allow n.15/16 for devices attached to host port */ 331 if (ata_is_host_link(dev->link)) 332 alt_devno += 15; 333 334 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 335 const struct ata_force_ent *fe = &ata_force_tbl[i]; 336 unsigned long pio_mask, mwdma_mask, udma_mask; 337 338 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 339 continue; 340 341 if (fe->device != -1 && fe->device != devno && 342 fe->device != alt_devno) 343 continue; 344 345 if (!fe->param.xfer_mask) 346 continue; 347 348 ata_unpack_xfermask(fe->param.xfer_mask, 349 &pio_mask, &mwdma_mask, &udma_mask); 350 if (udma_mask) 351 dev->udma_mask = udma_mask; 352 else if (mwdma_mask) { 353 dev->udma_mask = 0; 354 dev->mwdma_mask = mwdma_mask; 355 } else { 356 dev->udma_mask = 0; 357 dev->mwdma_mask = 0; 358 dev->pio_mask = pio_mask; 359 } 360 361 ata_dev_printk(dev, KERN_NOTICE, 362 "FORCE: xfer_mask set to %s\n", fe->param.name); 363 return; 364 } 365 } 366 367 /** 368 * ata_force_horkage - force horkage according to libata.force 369 * @dev: ATA device of interest 370 * 371 * Force horkage according to libata.force and whine about it. 372 * For consistency with link selection, device number 15 selects 373 * the first device connected to the host link. 374 * 375 * LOCKING: 376 * EH context. 377 */ 378 static void ata_force_horkage(struct ata_device *dev) 379 { 380 int devno = dev->link->pmp + dev->devno; 381 int alt_devno = devno; 382 int i; 383 384 /* allow n.15/16 for devices attached to host port */ 385 if (ata_is_host_link(dev->link)) 386 alt_devno += 15; 387 388 for (i = 0; i < ata_force_tbl_size; i++) { 389 const struct ata_force_ent *fe = &ata_force_tbl[i]; 390 391 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 392 continue; 393 394 if (fe->device != -1 && fe->device != devno && 395 fe->device != alt_devno) 396 continue; 397 398 if (!(~dev->horkage & fe->param.horkage_on) && 399 !(dev->horkage & fe->param.horkage_off)) 400 continue; 401 402 dev->horkage |= fe->param.horkage_on; 403 dev->horkage &= ~fe->param.horkage_off; 404 405 ata_dev_printk(dev, KERN_NOTICE, 406 "FORCE: horkage modified (%s)\n", fe->param.name); 407 } 408 } 409 410 /** 411 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 412 * @opcode: SCSI opcode 413 * 414 * Determine ATAPI command type from @opcode. 415 * 416 * LOCKING: 417 * None. 418 * 419 * RETURNS: 420 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 421 */ 422 int atapi_cmd_type(u8 opcode) 423 { 424 switch (opcode) { 425 case GPCMD_READ_10: 426 case GPCMD_READ_12: 427 return ATAPI_READ; 428 429 case GPCMD_WRITE_10: 430 case GPCMD_WRITE_12: 431 case GPCMD_WRITE_AND_VERIFY_10: 432 return ATAPI_WRITE; 433 434 case GPCMD_READ_CD: 435 case GPCMD_READ_CD_MSF: 436 return ATAPI_READ_CD; 437 438 case ATA_16: 439 case ATA_12: 440 if (atapi_passthru16) 441 return ATAPI_PASS_THRU; 442 /* fall thru */ 443 default: 444 return ATAPI_MISC; 445 } 446 } 447 448 /** 449 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 450 * @tf: Taskfile to convert 451 * @pmp: Port multiplier port 452 * @is_cmd: This FIS is for command 453 * @fis: Buffer into which data will output 454 * 455 * Converts a standard ATA taskfile to a Serial ATA 456 * FIS structure (Register - Host to Device). 457 * 458 * LOCKING: 459 * Inherited from caller. 460 */ 461 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 462 { 463 fis[0] = 0x27; /* Register - Host to Device FIS */ 464 fis[1] = pmp & 0xf; /* Port multiplier number*/ 465 if (is_cmd) 466 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 467 468 fis[2] = tf->command; 469 fis[3] = tf->feature; 470 471 fis[4] = tf->lbal; 472 fis[5] = tf->lbam; 473 fis[6] = tf->lbah; 474 fis[7] = tf->device; 475 476 fis[8] = tf->hob_lbal; 477 fis[9] = tf->hob_lbam; 478 fis[10] = tf->hob_lbah; 479 fis[11] = tf->hob_feature; 480 481 fis[12] = tf->nsect; 482 fis[13] = tf->hob_nsect; 483 fis[14] = 0; 484 fis[15] = tf->ctl; 485 486 fis[16] = 0; 487 fis[17] = 0; 488 fis[18] = 0; 489 fis[19] = 0; 490 } 491 492 /** 493 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 494 * @fis: Buffer from which data will be input 495 * @tf: Taskfile to output 496 * 497 * Converts a serial ATA FIS structure to a standard ATA taskfile. 498 * 499 * LOCKING: 500 * Inherited from caller. 501 */ 502 503 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 504 { 505 tf->command = fis[2]; /* status */ 506 tf->feature = fis[3]; /* error */ 507 508 tf->lbal = fis[4]; 509 tf->lbam = fis[5]; 510 tf->lbah = fis[6]; 511 tf->device = fis[7]; 512 513 tf->hob_lbal = fis[8]; 514 tf->hob_lbam = fis[9]; 515 tf->hob_lbah = fis[10]; 516 517 tf->nsect = fis[12]; 518 tf->hob_nsect = fis[13]; 519 } 520 521 static const u8 ata_rw_cmds[] = { 522 /* pio multi */ 523 ATA_CMD_READ_MULTI, 524 ATA_CMD_WRITE_MULTI, 525 ATA_CMD_READ_MULTI_EXT, 526 ATA_CMD_WRITE_MULTI_EXT, 527 0, 528 0, 529 0, 530 ATA_CMD_WRITE_MULTI_FUA_EXT, 531 /* pio */ 532 ATA_CMD_PIO_READ, 533 ATA_CMD_PIO_WRITE, 534 ATA_CMD_PIO_READ_EXT, 535 ATA_CMD_PIO_WRITE_EXT, 536 0, 537 0, 538 0, 539 0, 540 /* dma */ 541 ATA_CMD_READ, 542 ATA_CMD_WRITE, 543 ATA_CMD_READ_EXT, 544 ATA_CMD_WRITE_EXT, 545 0, 546 0, 547 0, 548 ATA_CMD_WRITE_FUA_EXT 549 }; 550 551 /** 552 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 553 * @tf: command to examine and configure 554 * @dev: device tf belongs to 555 * 556 * Examine the device configuration and tf->flags to calculate 557 * the proper read/write commands and protocol to use. 558 * 559 * LOCKING: 560 * caller. 561 */ 562 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 563 { 564 u8 cmd; 565 566 int index, fua, lba48, write; 567 568 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 569 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 570 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 571 572 if (dev->flags & ATA_DFLAG_PIO) { 573 tf->protocol = ATA_PROT_PIO; 574 index = dev->multi_count ? 0 : 8; 575 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 576 /* Unable to use DMA due to host limitation */ 577 tf->protocol = ATA_PROT_PIO; 578 index = dev->multi_count ? 0 : 8; 579 } else { 580 tf->protocol = ATA_PROT_DMA; 581 index = 16; 582 } 583 584 cmd = ata_rw_cmds[index + fua + lba48 + write]; 585 if (cmd) { 586 tf->command = cmd; 587 return 0; 588 } 589 return -1; 590 } 591 592 /** 593 * ata_tf_read_block - Read block address from ATA taskfile 594 * @tf: ATA taskfile of interest 595 * @dev: ATA device @tf belongs to 596 * 597 * LOCKING: 598 * None. 599 * 600 * Read block address from @tf. This function can handle all 601 * three address formats - LBA, LBA48 and CHS. tf->protocol and 602 * flags select the address format to use. 603 * 604 * RETURNS: 605 * Block address read from @tf. 606 */ 607 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 608 { 609 u64 block = 0; 610 611 if (tf->flags & ATA_TFLAG_LBA) { 612 if (tf->flags & ATA_TFLAG_LBA48) { 613 block |= (u64)tf->hob_lbah << 40; 614 block |= (u64)tf->hob_lbam << 32; 615 block |= tf->hob_lbal << 24; 616 } else 617 block |= (tf->device & 0xf) << 24; 618 619 block |= tf->lbah << 16; 620 block |= tf->lbam << 8; 621 block |= tf->lbal; 622 } else { 623 u32 cyl, head, sect; 624 625 cyl = tf->lbam | (tf->lbah << 8); 626 head = tf->device & 0xf; 627 sect = tf->lbal; 628 629 block = (cyl * dev->heads + head) * dev->sectors + sect; 630 } 631 632 return block; 633 } 634 635 /** 636 * ata_build_rw_tf - Build ATA taskfile for given read/write request 637 * @tf: Target ATA taskfile 638 * @dev: ATA device @tf belongs to 639 * @block: Block address 640 * @n_block: Number of blocks 641 * @tf_flags: RW/FUA etc... 642 * @tag: tag 643 * 644 * LOCKING: 645 * None. 646 * 647 * Build ATA taskfile @tf for read/write request described by 648 * @block, @n_block, @tf_flags and @tag on @dev. 649 * 650 * RETURNS: 651 * 652 * 0 on success, -ERANGE if the request is too large for @dev, 653 * -EINVAL if the request is invalid. 654 */ 655 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 656 u64 block, u32 n_block, unsigned int tf_flags, 657 unsigned int tag) 658 { 659 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 660 tf->flags |= tf_flags; 661 662 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 663 /* yay, NCQ */ 664 if (!lba_48_ok(block, n_block)) 665 return -ERANGE; 666 667 tf->protocol = ATA_PROT_NCQ; 668 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 669 670 if (tf->flags & ATA_TFLAG_WRITE) 671 tf->command = ATA_CMD_FPDMA_WRITE; 672 else 673 tf->command = ATA_CMD_FPDMA_READ; 674 675 tf->nsect = tag << 3; 676 tf->hob_feature = (n_block >> 8) & 0xff; 677 tf->feature = n_block & 0xff; 678 679 tf->hob_lbah = (block >> 40) & 0xff; 680 tf->hob_lbam = (block >> 32) & 0xff; 681 tf->hob_lbal = (block >> 24) & 0xff; 682 tf->lbah = (block >> 16) & 0xff; 683 tf->lbam = (block >> 8) & 0xff; 684 tf->lbal = block & 0xff; 685 686 tf->device = 1 << 6; 687 if (tf->flags & ATA_TFLAG_FUA) 688 tf->device |= 1 << 7; 689 } else if (dev->flags & ATA_DFLAG_LBA) { 690 tf->flags |= ATA_TFLAG_LBA; 691 692 if (lba_28_ok(block, n_block)) { 693 /* use LBA28 */ 694 tf->device |= (block >> 24) & 0xf; 695 } else if (lba_48_ok(block, n_block)) { 696 if (!(dev->flags & ATA_DFLAG_LBA48)) 697 return -ERANGE; 698 699 /* use LBA48 */ 700 tf->flags |= ATA_TFLAG_LBA48; 701 702 tf->hob_nsect = (n_block >> 8) & 0xff; 703 704 tf->hob_lbah = (block >> 40) & 0xff; 705 tf->hob_lbam = (block >> 32) & 0xff; 706 tf->hob_lbal = (block >> 24) & 0xff; 707 } else 708 /* request too large even for LBA48 */ 709 return -ERANGE; 710 711 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 712 return -EINVAL; 713 714 tf->nsect = n_block & 0xff; 715 716 tf->lbah = (block >> 16) & 0xff; 717 tf->lbam = (block >> 8) & 0xff; 718 tf->lbal = block & 0xff; 719 720 tf->device |= ATA_LBA; 721 } else { 722 /* CHS */ 723 u32 sect, head, cyl, track; 724 725 /* The request -may- be too large for CHS addressing. */ 726 if (!lba_28_ok(block, n_block)) 727 return -ERANGE; 728 729 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 730 return -EINVAL; 731 732 /* Convert LBA to CHS */ 733 track = (u32)block / dev->sectors; 734 cyl = track / dev->heads; 735 head = track % dev->heads; 736 sect = (u32)block % dev->sectors + 1; 737 738 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 739 (u32)block, track, cyl, head, sect); 740 741 /* Check whether the converted CHS can fit. 742 Cylinder: 0-65535 743 Head: 0-15 744 Sector: 1-255*/ 745 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 746 return -ERANGE; 747 748 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 749 tf->lbal = sect; 750 tf->lbam = cyl; 751 tf->lbah = cyl >> 8; 752 tf->device |= head; 753 } 754 755 return 0; 756 } 757 758 /** 759 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 760 * @pio_mask: pio_mask 761 * @mwdma_mask: mwdma_mask 762 * @udma_mask: udma_mask 763 * 764 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 765 * unsigned int xfer_mask. 766 * 767 * LOCKING: 768 * None. 769 * 770 * RETURNS: 771 * Packed xfer_mask. 772 */ 773 unsigned long ata_pack_xfermask(unsigned long pio_mask, 774 unsigned long mwdma_mask, 775 unsigned long udma_mask) 776 { 777 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 778 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 779 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 780 } 781 782 /** 783 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 784 * @xfer_mask: xfer_mask to unpack 785 * @pio_mask: resulting pio_mask 786 * @mwdma_mask: resulting mwdma_mask 787 * @udma_mask: resulting udma_mask 788 * 789 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 790 * Any NULL distination masks will be ignored. 791 */ 792 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 793 unsigned long *mwdma_mask, unsigned long *udma_mask) 794 { 795 if (pio_mask) 796 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 797 if (mwdma_mask) 798 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 799 if (udma_mask) 800 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 801 } 802 803 static const struct ata_xfer_ent { 804 int shift, bits; 805 u8 base; 806 } ata_xfer_tbl[] = { 807 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 808 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 809 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 810 { -1, }, 811 }; 812 813 /** 814 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 815 * @xfer_mask: xfer_mask of interest 816 * 817 * Return matching XFER_* value for @xfer_mask. Only the highest 818 * bit of @xfer_mask is considered. 819 * 820 * LOCKING: 821 * None. 822 * 823 * RETURNS: 824 * Matching XFER_* value, 0xff if no match found. 825 */ 826 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 827 { 828 int highbit = fls(xfer_mask) - 1; 829 const struct ata_xfer_ent *ent; 830 831 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 832 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 833 return ent->base + highbit - ent->shift; 834 return 0xff; 835 } 836 837 /** 838 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 839 * @xfer_mode: XFER_* of interest 840 * 841 * Return matching xfer_mask for @xfer_mode. 842 * 843 * LOCKING: 844 * None. 845 * 846 * RETURNS: 847 * Matching xfer_mask, 0 if no match found. 848 */ 849 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 850 { 851 const struct ata_xfer_ent *ent; 852 853 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 854 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 855 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 856 & ~((1 << ent->shift) - 1); 857 return 0; 858 } 859 860 /** 861 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 862 * @xfer_mode: XFER_* of interest 863 * 864 * Return matching xfer_shift for @xfer_mode. 865 * 866 * LOCKING: 867 * None. 868 * 869 * RETURNS: 870 * Matching xfer_shift, -1 if no match found. 871 */ 872 int ata_xfer_mode2shift(unsigned long xfer_mode) 873 { 874 const struct ata_xfer_ent *ent; 875 876 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 877 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 878 return ent->shift; 879 return -1; 880 } 881 882 /** 883 * ata_mode_string - convert xfer_mask to string 884 * @xfer_mask: mask of bits supported; only highest bit counts. 885 * 886 * Determine string which represents the highest speed 887 * (highest bit in @modemask). 888 * 889 * LOCKING: 890 * None. 891 * 892 * RETURNS: 893 * Constant C string representing highest speed listed in 894 * @mode_mask, or the constant C string "<n/a>". 895 */ 896 const char *ata_mode_string(unsigned long xfer_mask) 897 { 898 static const char * const xfer_mode_str[] = { 899 "PIO0", 900 "PIO1", 901 "PIO2", 902 "PIO3", 903 "PIO4", 904 "PIO5", 905 "PIO6", 906 "MWDMA0", 907 "MWDMA1", 908 "MWDMA2", 909 "MWDMA3", 910 "MWDMA4", 911 "UDMA/16", 912 "UDMA/25", 913 "UDMA/33", 914 "UDMA/44", 915 "UDMA/66", 916 "UDMA/100", 917 "UDMA/133", 918 "UDMA7", 919 }; 920 int highbit; 921 922 highbit = fls(xfer_mask) - 1; 923 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 924 return xfer_mode_str[highbit]; 925 return "<n/a>"; 926 } 927 928 static const char *sata_spd_string(unsigned int spd) 929 { 930 static const char * const spd_str[] = { 931 "1.5 Gbps", 932 "3.0 Gbps", 933 }; 934 935 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 936 return "<unknown>"; 937 return spd_str[spd - 1]; 938 } 939 940 void ata_dev_disable(struct ata_device *dev) 941 { 942 if (ata_dev_enabled(dev)) { 943 if (ata_msg_drv(dev->link->ap)) 944 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 945 ata_acpi_on_disable(dev); 946 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 947 ATA_DNXFER_QUIET); 948 dev->class++; 949 } 950 } 951 952 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 953 { 954 struct ata_link *link = dev->link; 955 struct ata_port *ap = link->ap; 956 u32 scontrol; 957 unsigned int err_mask; 958 int rc; 959 960 /* 961 * disallow DIPM for drivers which haven't set 962 * ATA_FLAG_IPM. This is because when DIPM is enabled, 963 * phy ready will be set in the interrupt status on 964 * state changes, which will cause some drivers to 965 * think there are errors - additionally drivers will 966 * need to disable hot plug. 967 */ 968 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 969 ap->pm_policy = NOT_AVAILABLE; 970 return -EINVAL; 971 } 972 973 /* 974 * For DIPM, we will only enable it for the 975 * min_power setting. 976 * 977 * Why? Because Disks are too stupid to know that 978 * If the host rejects a request to go to SLUMBER 979 * they should retry at PARTIAL, and instead it 980 * just would give up. So, for medium_power to 981 * work at all, we need to only allow HIPM. 982 */ 983 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 984 if (rc) 985 return rc; 986 987 switch (policy) { 988 case MIN_POWER: 989 /* no restrictions on IPM transitions */ 990 scontrol &= ~(0x3 << 8); 991 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 992 if (rc) 993 return rc; 994 995 /* enable DIPM */ 996 if (dev->flags & ATA_DFLAG_DIPM) 997 err_mask = ata_dev_set_feature(dev, 998 SETFEATURES_SATA_ENABLE, SATA_DIPM); 999 break; 1000 case MEDIUM_POWER: 1001 /* allow IPM to PARTIAL */ 1002 scontrol &= ~(0x1 << 8); 1003 scontrol |= (0x2 << 8); 1004 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1005 if (rc) 1006 return rc; 1007 1008 /* 1009 * we don't have to disable DIPM since IPM flags 1010 * disallow transitions to SLUMBER, which effectively 1011 * disable DIPM if it does not support PARTIAL 1012 */ 1013 break; 1014 case NOT_AVAILABLE: 1015 case MAX_PERFORMANCE: 1016 /* disable all IPM transitions */ 1017 scontrol |= (0x3 << 8); 1018 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 1019 if (rc) 1020 return rc; 1021 1022 /* 1023 * we don't have to disable DIPM since IPM flags 1024 * disallow all transitions which effectively 1025 * disable DIPM anyway. 1026 */ 1027 break; 1028 } 1029 1030 /* FIXME: handle SET FEATURES failure */ 1031 (void) err_mask; 1032 1033 return 0; 1034 } 1035 1036 /** 1037 * ata_dev_enable_pm - enable SATA interface power management 1038 * @dev: device to enable power management 1039 * @policy: the link power management policy 1040 * 1041 * Enable SATA Interface power management. This will enable 1042 * Device Interface Power Management (DIPM) for min_power 1043 * policy, and then call driver specific callbacks for 1044 * enabling Host Initiated Power management. 1045 * 1046 * Locking: Caller. 1047 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 1048 */ 1049 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 1050 { 1051 int rc = 0; 1052 struct ata_port *ap = dev->link->ap; 1053 1054 /* set HIPM first, then DIPM */ 1055 if (ap->ops->enable_pm) 1056 rc = ap->ops->enable_pm(ap, policy); 1057 if (rc) 1058 goto enable_pm_out; 1059 rc = ata_dev_set_dipm(dev, policy); 1060 1061 enable_pm_out: 1062 if (rc) 1063 ap->pm_policy = MAX_PERFORMANCE; 1064 else 1065 ap->pm_policy = policy; 1066 return /* rc */; /* hopefully we can use 'rc' eventually */ 1067 } 1068 1069 #ifdef CONFIG_PM 1070 /** 1071 * ata_dev_disable_pm - disable SATA interface power management 1072 * @dev: device to disable power management 1073 * 1074 * Disable SATA Interface power management. This will disable 1075 * Device Interface Power Management (DIPM) without changing 1076 * policy, call driver specific callbacks for disabling Host 1077 * Initiated Power management. 1078 * 1079 * Locking: Caller. 1080 * Returns: void 1081 */ 1082 static void ata_dev_disable_pm(struct ata_device *dev) 1083 { 1084 struct ata_port *ap = dev->link->ap; 1085 1086 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1087 if (ap->ops->disable_pm) 1088 ap->ops->disable_pm(ap); 1089 } 1090 #endif /* CONFIG_PM */ 1091 1092 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1093 { 1094 ap->pm_policy = policy; 1095 ap->link.eh_info.action |= ATA_EH_LPM; 1096 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1097 ata_port_schedule_eh(ap); 1098 } 1099 1100 #ifdef CONFIG_PM 1101 static void ata_lpm_enable(struct ata_host *host) 1102 { 1103 struct ata_link *link; 1104 struct ata_port *ap; 1105 struct ata_device *dev; 1106 int i; 1107 1108 for (i = 0; i < host->n_ports; i++) { 1109 ap = host->ports[i]; 1110 ata_port_for_each_link(link, ap) { 1111 ata_link_for_each_dev(dev, link) 1112 ata_dev_disable_pm(dev); 1113 } 1114 } 1115 } 1116 1117 static void ata_lpm_disable(struct ata_host *host) 1118 { 1119 int i; 1120 1121 for (i = 0; i < host->n_ports; i++) { 1122 struct ata_port *ap = host->ports[i]; 1123 ata_lpm_schedule(ap, ap->pm_policy); 1124 } 1125 } 1126 #endif /* CONFIG_PM */ 1127 1128 /** 1129 * ata_dev_classify - determine device type based on ATA-spec signature 1130 * @tf: ATA taskfile register set for device to be identified 1131 * 1132 * Determine from taskfile register contents whether a device is 1133 * ATA or ATAPI, as per "Signature and persistence" section 1134 * of ATA/PI spec (volume 1, sect 5.14). 1135 * 1136 * LOCKING: 1137 * None. 1138 * 1139 * RETURNS: 1140 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1141 * %ATA_DEV_UNKNOWN the event of failure. 1142 */ 1143 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1144 { 1145 /* Apple's open source Darwin code hints that some devices only 1146 * put a proper signature into the LBA mid/high registers, 1147 * So, we only check those. It's sufficient for uniqueness. 1148 * 1149 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1150 * signatures for ATA and ATAPI devices attached on SerialATA, 1151 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1152 * spec has never mentioned about using different signatures 1153 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1154 * Multiplier specification began to use 0x69/0x96 to identify 1155 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1156 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1157 * 0x69/0x96 shortly and described them as reserved for 1158 * SerialATA. 1159 * 1160 * We follow the current spec and consider that 0x69/0x96 1161 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1162 */ 1163 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1164 DPRINTK("found ATA device by sig\n"); 1165 return ATA_DEV_ATA; 1166 } 1167 1168 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1169 DPRINTK("found ATAPI device by sig\n"); 1170 return ATA_DEV_ATAPI; 1171 } 1172 1173 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1174 DPRINTK("found PMP device by sig\n"); 1175 return ATA_DEV_PMP; 1176 } 1177 1178 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1179 printk(KERN_INFO "ata: SEMB device ignored\n"); 1180 return ATA_DEV_SEMB_UNSUP; /* not yet */ 1181 } 1182 1183 DPRINTK("unknown device\n"); 1184 return ATA_DEV_UNKNOWN; 1185 } 1186 1187 /** 1188 * ata_id_string - Convert IDENTIFY DEVICE page into string 1189 * @id: IDENTIFY DEVICE results we will examine 1190 * @s: string into which data is output 1191 * @ofs: offset into identify device page 1192 * @len: length of string to return. must be an even number. 1193 * 1194 * The strings in the IDENTIFY DEVICE page are broken up into 1195 * 16-bit chunks. Run through the string, and output each 1196 * 8-bit chunk linearly, regardless of platform. 1197 * 1198 * LOCKING: 1199 * caller. 1200 */ 1201 1202 void ata_id_string(const u16 *id, unsigned char *s, 1203 unsigned int ofs, unsigned int len) 1204 { 1205 unsigned int c; 1206 1207 BUG_ON(len & 1); 1208 1209 while (len > 0) { 1210 c = id[ofs] >> 8; 1211 *s = c; 1212 s++; 1213 1214 c = id[ofs] & 0xff; 1215 *s = c; 1216 s++; 1217 1218 ofs++; 1219 len -= 2; 1220 } 1221 } 1222 1223 /** 1224 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1225 * @id: IDENTIFY DEVICE results we will examine 1226 * @s: string into which data is output 1227 * @ofs: offset into identify device page 1228 * @len: length of string to return. must be an odd number. 1229 * 1230 * This function is identical to ata_id_string except that it 1231 * trims trailing spaces and terminates the resulting string with 1232 * null. @len must be actual maximum length (even number) + 1. 1233 * 1234 * LOCKING: 1235 * caller. 1236 */ 1237 void ata_id_c_string(const u16 *id, unsigned char *s, 1238 unsigned int ofs, unsigned int len) 1239 { 1240 unsigned char *p; 1241 1242 ata_id_string(id, s, ofs, len - 1); 1243 1244 p = s + strnlen(s, len - 1); 1245 while (p > s && p[-1] == ' ') 1246 p--; 1247 *p = '\0'; 1248 } 1249 1250 static u64 ata_id_n_sectors(const u16 *id) 1251 { 1252 if (ata_id_has_lba(id)) { 1253 if (ata_id_has_lba48(id)) 1254 return ata_id_u64(id, 100); 1255 else 1256 return ata_id_u32(id, 60); 1257 } else { 1258 if (ata_id_current_chs_valid(id)) 1259 return ata_id_u32(id, 57); 1260 else 1261 return id[1] * id[3] * id[6]; 1262 } 1263 } 1264 1265 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1266 { 1267 u64 sectors = 0; 1268 1269 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1270 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1271 sectors |= (tf->hob_lbal & 0xff) << 24; 1272 sectors |= (tf->lbah & 0xff) << 16; 1273 sectors |= (tf->lbam & 0xff) << 8; 1274 sectors |= (tf->lbal & 0xff); 1275 1276 return sectors; 1277 } 1278 1279 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1280 { 1281 u64 sectors = 0; 1282 1283 sectors |= (tf->device & 0x0f) << 24; 1284 sectors |= (tf->lbah & 0xff) << 16; 1285 sectors |= (tf->lbam & 0xff) << 8; 1286 sectors |= (tf->lbal & 0xff); 1287 1288 return sectors; 1289 } 1290 1291 /** 1292 * ata_read_native_max_address - Read native max address 1293 * @dev: target device 1294 * @max_sectors: out parameter for the result native max address 1295 * 1296 * Perform an LBA48 or LBA28 native size query upon the device in 1297 * question. 1298 * 1299 * RETURNS: 1300 * 0 on success, -EACCES if command is aborted by the drive. 1301 * -EIO on other errors. 1302 */ 1303 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1304 { 1305 unsigned int err_mask; 1306 struct ata_taskfile tf; 1307 int lba48 = ata_id_has_lba48(dev->id); 1308 1309 ata_tf_init(dev, &tf); 1310 1311 /* always clear all address registers */ 1312 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1313 1314 if (lba48) { 1315 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1316 tf.flags |= ATA_TFLAG_LBA48; 1317 } else 1318 tf.command = ATA_CMD_READ_NATIVE_MAX; 1319 1320 tf.protocol |= ATA_PROT_NODATA; 1321 tf.device |= ATA_LBA; 1322 1323 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1324 if (err_mask) { 1325 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1326 "max address (err_mask=0x%x)\n", err_mask); 1327 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1328 return -EACCES; 1329 return -EIO; 1330 } 1331 1332 if (lba48) 1333 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1334 else 1335 *max_sectors = ata_tf_to_lba(&tf) + 1; 1336 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1337 (*max_sectors)--; 1338 return 0; 1339 } 1340 1341 /** 1342 * ata_set_max_sectors - Set max sectors 1343 * @dev: target device 1344 * @new_sectors: new max sectors value to set for the device 1345 * 1346 * Set max sectors of @dev to @new_sectors. 1347 * 1348 * RETURNS: 1349 * 0 on success, -EACCES if command is aborted or denied (due to 1350 * previous non-volatile SET_MAX) by the drive. -EIO on other 1351 * errors. 1352 */ 1353 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1354 { 1355 unsigned int err_mask; 1356 struct ata_taskfile tf; 1357 int lba48 = ata_id_has_lba48(dev->id); 1358 1359 new_sectors--; 1360 1361 ata_tf_init(dev, &tf); 1362 1363 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1364 1365 if (lba48) { 1366 tf.command = ATA_CMD_SET_MAX_EXT; 1367 tf.flags |= ATA_TFLAG_LBA48; 1368 1369 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1370 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1371 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1372 } else { 1373 tf.command = ATA_CMD_SET_MAX; 1374 1375 tf.device |= (new_sectors >> 24) & 0xf; 1376 } 1377 1378 tf.protocol |= ATA_PROT_NODATA; 1379 tf.device |= ATA_LBA; 1380 1381 tf.lbal = (new_sectors >> 0) & 0xff; 1382 tf.lbam = (new_sectors >> 8) & 0xff; 1383 tf.lbah = (new_sectors >> 16) & 0xff; 1384 1385 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1386 if (err_mask) { 1387 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1388 "max address (err_mask=0x%x)\n", err_mask); 1389 if (err_mask == AC_ERR_DEV && 1390 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1391 return -EACCES; 1392 return -EIO; 1393 } 1394 1395 return 0; 1396 } 1397 1398 /** 1399 * ata_hpa_resize - Resize a device with an HPA set 1400 * @dev: Device to resize 1401 * 1402 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1403 * it if required to the full size of the media. The caller must check 1404 * the drive has the HPA feature set enabled. 1405 * 1406 * RETURNS: 1407 * 0 on success, -errno on failure. 1408 */ 1409 static int ata_hpa_resize(struct ata_device *dev) 1410 { 1411 struct ata_eh_context *ehc = &dev->link->eh_context; 1412 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1413 u64 sectors = ata_id_n_sectors(dev->id); 1414 u64 native_sectors; 1415 int rc; 1416 1417 /* do we need to do it? */ 1418 if (dev->class != ATA_DEV_ATA || 1419 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1420 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1421 return 0; 1422 1423 /* read native max address */ 1424 rc = ata_read_native_max_address(dev, &native_sectors); 1425 if (rc) { 1426 /* If device aborted the command or HPA isn't going to 1427 * be unlocked, skip HPA resizing. 1428 */ 1429 if (rc == -EACCES || !ata_ignore_hpa) { 1430 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1431 "broken, skipping HPA handling\n"); 1432 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1433 1434 /* we can continue if device aborted the command */ 1435 if (rc == -EACCES) 1436 rc = 0; 1437 } 1438 1439 return rc; 1440 } 1441 1442 /* nothing to do? */ 1443 if (native_sectors <= sectors || !ata_ignore_hpa) { 1444 if (!print_info || native_sectors == sectors) 1445 return 0; 1446 1447 if (native_sectors > sectors) 1448 ata_dev_printk(dev, KERN_INFO, 1449 "HPA detected: current %llu, native %llu\n", 1450 (unsigned long long)sectors, 1451 (unsigned long long)native_sectors); 1452 else if (native_sectors < sectors) 1453 ata_dev_printk(dev, KERN_WARNING, 1454 "native sectors (%llu) is smaller than " 1455 "sectors (%llu)\n", 1456 (unsigned long long)native_sectors, 1457 (unsigned long long)sectors); 1458 return 0; 1459 } 1460 1461 /* let's unlock HPA */ 1462 rc = ata_set_max_sectors(dev, native_sectors); 1463 if (rc == -EACCES) { 1464 /* if device aborted the command, skip HPA resizing */ 1465 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1466 "(%llu -> %llu), skipping HPA handling\n", 1467 (unsigned long long)sectors, 1468 (unsigned long long)native_sectors); 1469 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1470 return 0; 1471 } else if (rc) 1472 return rc; 1473 1474 /* re-read IDENTIFY data */ 1475 rc = ata_dev_reread_id(dev, 0); 1476 if (rc) { 1477 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1478 "data after HPA resizing\n"); 1479 return rc; 1480 } 1481 1482 if (print_info) { 1483 u64 new_sectors = ata_id_n_sectors(dev->id); 1484 ata_dev_printk(dev, KERN_INFO, 1485 "HPA unlocked: %llu -> %llu, native %llu\n", 1486 (unsigned long long)sectors, 1487 (unsigned long long)new_sectors, 1488 (unsigned long long)native_sectors); 1489 } 1490 1491 return 0; 1492 } 1493 1494 /** 1495 * ata_dump_id - IDENTIFY DEVICE info debugging output 1496 * @id: IDENTIFY DEVICE page to dump 1497 * 1498 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1499 * page. 1500 * 1501 * LOCKING: 1502 * caller. 1503 */ 1504 1505 static inline void ata_dump_id(const u16 *id) 1506 { 1507 DPRINTK("49==0x%04x " 1508 "53==0x%04x " 1509 "63==0x%04x " 1510 "64==0x%04x " 1511 "75==0x%04x \n", 1512 id[49], 1513 id[53], 1514 id[63], 1515 id[64], 1516 id[75]); 1517 DPRINTK("80==0x%04x " 1518 "81==0x%04x " 1519 "82==0x%04x " 1520 "83==0x%04x " 1521 "84==0x%04x \n", 1522 id[80], 1523 id[81], 1524 id[82], 1525 id[83], 1526 id[84]); 1527 DPRINTK("88==0x%04x " 1528 "93==0x%04x\n", 1529 id[88], 1530 id[93]); 1531 } 1532 1533 /** 1534 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1535 * @id: IDENTIFY data to compute xfer mask from 1536 * 1537 * Compute the xfermask for this device. This is not as trivial 1538 * as it seems if we must consider early devices correctly. 1539 * 1540 * FIXME: pre IDE drive timing (do we care ?). 1541 * 1542 * LOCKING: 1543 * None. 1544 * 1545 * RETURNS: 1546 * Computed xfermask 1547 */ 1548 unsigned long ata_id_xfermask(const u16 *id) 1549 { 1550 unsigned long pio_mask, mwdma_mask, udma_mask; 1551 1552 /* Usual case. Word 53 indicates word 64 is valid */ 1553 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1554 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1555 pio_mask <<= 3; 1556 pio_mask |= 0x7; 1557 } else { 1558 /* If word 64 isn't valid then Word 51 high byte holds 1559 * the PIO timing number for the maximum. Turn it into 1560 * a mask. 1561 */ 1562 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1563 if (mode < 5) /* Valid PIO range */ 1564 pio_mask = (2 << mode) - 1; 1565 else 1566 pio_mask = 1; 1567 1568 /* But wait.. there's more. Design your standards by 1569 * committee and you too can get a free iordy field to 1570 * process. However its the speeds not the modes that 1571 * are supported... Note drivers using the timing API 1572 * will get this right anyway 1573 */ 1574 } 1575 1576 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1577 1578 if (ata_id_is_cfa(id)) { 1579 /* 1580 * Process compact flash extended modes 1581 */ 1582 int pio = id[163] & 0x7; 1583 int dma = (id[163] >> 3) & 7; 1584 1585 if (pio) 1586 pio_mask |= (1 << 5); 1587 if (pio > 1) 1588 pio_mask |= (1 << 6); 1589 if (dma) 1590 mwdma_mask |= (1 << 3); 1591 if (dma > 1) 1592 mwdma_mask |= (1 << 4); 1593 } 1594 1595 udma_mask = 0; 1596 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1597 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1598 1599 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1600 } 1601 1602 /** 1603 * ata_pio_queue_task - Queue port_task 1604 * @ap: The ata_port to queue port_task for 1605 * @fn: workqueue function to be scheduled 1606 * @data: data for @fn to use 1607 * @delay: delay time in msecs for workqueue function 1608 * 1609 * Schedule @fn(@data) for execution after @delay jiffies using 1610 * port_task. There is one port_task per port and it's the 1611 * user(low level driver)'s responsibility to make sure that only 1612 * one task is active at any given time. 1613 * 1614 * libata core layer takes care of synchronization between 1615 * port_task and EH. ata_pio_queue_task() may be ignored for EH 1616 * synchronization. 1617 * 1618 * LOCKING: 1619 * Inherited from caller. 1620 */ 1621 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay) 1622 { 1623 ap->port_task_data = data; 1624 1625 /* may fail if ata_port_flush_task() in progress */ 1626 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay)); 1627 } 1628 1629 /** 1630 * ata_port_flush_task - Flush port_task 1631 * @ap: The ata_port to flush port_task for 1632 * 1633 * After this function completes, port_task is guranteed not to 1634 * be running or scheduled. 1635 * 1636 * LOCKING: 1637 * Kernel thread context (may sleep) 1638 */ 1639 void ata_port_flush_task(struct ata_port *ap) 1640 { 1641 DPRINTK("ENTER\n"); 1642 1643 cancel_rearming_delayed_work(&ap->port_task); 1644 1645 if (ata_msg_ctl(ap)) 1646 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1647 } 1648 1649 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1650 { 1651 struct completion *waiting = qc->private_data; 1652 1653 complete(waiting); 1654 } 1655 1656 /** 1657 * ata_exec_internal_sg - execute libata internal command 1658 * @dev: Device to which the command is sent 1659 * @tf: Taskfile registers for the command and the result 1660 * @cdb: CDB for packet command 1661 * @dma_dir: Data tranfer direction of the command 1662 * @sgl: sg list for the data buffer of the command 1663 * @n_elem: Number of sg entries 1664 * @timeout: Timeout in msecs (0 for default) 1665 * 1666 * Executes libata internal command with timeout. @tf contains 1667 * command on entry and result on return. Timeout and error 1668 * conditions are reported via return value. No recovery action 1669 * is taken after a command times out. It's caller's duty to 1670 * clean up after timeout. 1671 * 1672 * LOCKING: 1673 * None. Should be called with kernel context, might sleep. 1674 * 1675 * RETURNS: 1676 * Zero on success, AC_ERR_* mask on failure 1677 */ 1678 unsigned ata_exec_internal_sg(struct ata_device *dev, 1679 struct ata_taskfile *tf, const u8 *cdb, 1680 int dma_dir, struct scatterlist *sgl, 1681 unsigned int n_elem, unsigned long timeout) 1682 { 1683 struct ata_link *link = dev->link; 1684 struct ata_port *ap = link->ap; 1685 u8 command = tf->command; 1686 int auto_timeout = 0; 1687 struct ata_queued_cmd *qc; 1688 unsigned int tag, preempted_tag; 1689 u32 preempted_sactive, preempted_qc_active; 1690 int preempted_nr_active_links; 1691 DECLARE_COMPLETION_ONSTACK(wait); 1692 unsigned long flags; 1693 unsigned int err_mask; 1694 int rc; 1695 1696 spin_lock_irqsave(ap->lock, flags); 1697 1698 /* no internal command while frozen */ 1699 if (ap->pflags & ATA_PFLAG_FROZEN) { 1700 spin_unlock_irqrestore(ap->lock, flags); 1701 return AC_ERR_SYSTEM; 1702 } 1703 1704 /* initialize internal qc */ 1705 1706 /* XXX: Tag 0 is used for drivers with legacy EH as some 1707 * drivers choke if any other tag is given. This breaks 1708 * ata_tag_internal() test for those drivers. Don't use new 1709 * EH stuff without converting to it. 1710 */ 1711 if (ap->ops->error_handler) 1712 tag = ATA_TAG_INTERNAL; 1713 else 1714 tag = 0; 1715 1716 if (test_and_set_bit(tag, &ap->qc_allocated)) 1717 BUG(); 1718 qc = __ata_qc_from_tag(ap, tag); 1719 1720 qc->tag = tag; 1721 qc->scsicmd = NULL; 1722 qc->ap = ap; 1723 qc->dev = dev; 1724 ata_qc_reinit(qc); 1725 1726 preempted_tag = link->active_tag; 1727 preempted_sactive = link->sactive; 1728 preempted_qc_active = ap->qc_active; 1729 preempted_nr_active_links = ap->nr_active_links; 1730 link->active_tag = ATA_TAG_POISON; 1731 link->sactive = 0; 1732 ap->qc_active = 0; 1733 ap->nr_active_links = 0; 1734 1735 /* prepare & issue qc */ 1736 qc->tf = *tf; 1737 if (cdb) 1738 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1739 qc->flags |= ATA_QCFLAG_RESULT_TF; 1740 qc->dma_dir = dma_dir; 1741 if (dma_dir != DMA_NONE) { 1742 unsigned int i, buflen = 0; 1743 struct scatterlist *sg; 1744 1745 for_each_sg(sgl, sg, n_elem, i) 1746 buflen += sg->length; 1747 1748 ata_sg_init(qc, sgl, n_elem); 1749 qc->nbytes = buflen; 1750 } 1751 1752 qc->private_data = &wait; 1753 qc->complete_fn = ata_qc_complete_internal; 1754 1755 ata_qc_issue(qc); 1756 1757 spin_unlock_irqrestore(ap->lock, flags); 1758 1759 if (!timeout) { 1760 if (ata_probe_timeout) 1761 timeout = ata_probe_timeout * 1000; 1762 else { 1763 timeout = ata_internal_cmd_timeout(dev, command); 1764 auto_timeout = 1; 1765 } 1766 } 1767 1768 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1769 1770 ata_port_flush_task(ap); 1771 1772 if (!rc) { 1773 spin_lock_irqsave(ap->lock, flags); 1774 1775 /* We're racing with irq here. If we lose, the 1776 * following test prevents us from completing the qc 1777 * twice. If we win, the port is frozen and will be 1778 * cleaned up by ->post_internal_cmd(). 1779 */ 1780 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1781 qc->err_mask |= AC_ERR_TIMEOUT; 1782 1783 if (ap->ops->error_handler) 1784 ata_port_freeze(ap); 1785 else 1786 ata_qc_complete(qc); 1787 1788 if (ata_msg_warn(ap)) 1789 ata_dev_printk(dev, KERN_WARNING, 1790 "qc timeout (cmd 0x%x)\n", command); 1791 } 1792 1793 spin_unlock_irqrestore(ap->lock, flags); 1794 } 1795 1796 /* do post_internal_cmd */ 1797 if (ap->ops->post_internal_cmd) 1798 ap->ops->post_internal_cmd(qc); 1799 1800 /* perform minimal error analysis */ 1801 if (qc->flags & ATA_QCFLAG_FAILED) { 1802 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1803 qc->err_mask |= AC_ERR_DEV; 1804 1805 if (!qc->err_mask) 1806 qc->err_mask |= AC_ERR_OTHER; 1807 1808 if (qc->err_mask & ~AC_ERR_OTHER) 1809 qc->err_mask &= ~AC_ERR_OTHER; 1810 } 1811 1812 /* finish up */ 1813 spin_lock_irqsave(ap->lock, flags); 1814 1815 *tf = qc->result_tf; 1816 err_mask = qc->err_mask; 1817 1818 ata_qc_free(qc); 1819 link->active_tag = preempted_tag; 1820 link->sactive = preempted_sactive; 1821 ap->qc_active = preempted_qc_active; 1822 ap->nr_active_links = preempted_nr_active_links; 1823 1824 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1825 * Until those drivers are fixed, we detect the condition 1826 * here, fail the command with AC_ERR_SYSTEM and reenable the 1827 * port. 1828 * 1829 * Note that this doesn't change any behavior as internal 1830 * command failure results in disabling the device in the 1831 * higher layer for LLDDs without new reset/EH callbacks. 1832 * 1833 * Kill the following code as soon as those drivers are fixed. 1834 */ 1835 if (ap->flags & ATA_FLAG_DISABLED) { 1836 err_mask |= AC_ERR_SYSTEM; 1837 ata_port_probe(ap); 1838 } 1839 1840 spin_unlock_irqrestore(ap->lock, flags); 1841 1842 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1843 ata_internal_cmd_timed_out(dev, command); 1844 1845 return err_mask; 1846 } 1847 1848 /** 1849 * ata_exec_internal - execute libata internal command 1850 * @dev: Device to which the command is sent 1851 * @tf: Taskfile registers for the command and the result 1852 * @cdb: CDB for packet command 1853 * @dma_dir: Data tranfer direction of the command 1854 * @buf: Data buffer of the command 1855 * @buflen: Length of data buffer 1856 * @timeout: Timeout in msecs (0 for default) 1857 * 1858 * Wrapper around ata_exec_internal_sg() which takes simple 1859 * buffer instead of sg list. 1860 * 1861 * LOCKING: 1862 * None. Should be called with kernel context, might sleep. 1863 * 1864 * RETURNS: 1865 * Zero on success, AC_ERR_* mask on failure 1866 */ 1867 unsigned ata_exec_internal(struct ata_device *dev, 1868 struct ata_taskfile *tf, const u8 *cdb, 1869 int dma_dir, void *buf, unsigned int buflen, 1870 unsigned long timeout) 1871 { 1872 struct scatterlist *psg = NULL, sg; 1873 unsigned int n_elem = 0; 1874 1875 if (dma_dir != DMA_NONE) { 1876 WARN_ON(!buf); 1877 sg_init_one(&sg, buf, buflen); 1878 psg = &sg; 1879 n_elem++; 1880 } 1881 1882 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1883 timeout); 1884 } 1885 1886 /** 1887 * ata_do_simple_cmd - execute simple internal command 1888 * @dev: Device to which the command is sent 1889 * @cmd: Opcode to execute 1890 * 1891 * Execute a 'simple' command, that only consists of the opcode 1892 * 'cmd' itself, without filling any other registers 1893 * 1894 * LOCKING: 1895 * Kernel thread context (may sleep). 1896 * 1897 * RETURNS: 1898 * Zero on success, AC_ERR_* mask on failure 1899 */ 1900 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1901 { 1902 struct ata_taskfile tf; 1903 1904 ata_tf_init(dev, &tf); 1905 1906 tf.command = cmd; 1907 tf.flags |= ATA_TFLAG_DEVICE; 1908 tf.protocol = ATA_PROT_NODATA; 1909 1910 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1911 } 1912 1913 /** 1914 * ata_pio_need_iordy - check if iordy needed 1915 * @adev: ATA device 1916 * 1917 * Check if the current speed of the device requires IORDY. Used 1918 * by various controllers for chip configuration. 1919 */ 1920 1921 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1922 { 1923 /* Controller doesn't support IORDY. Probably a pointless check 1924 as the caller should know this */ 1925 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1926 return 0; 1927 /* PIO3 and higher it is mandatory */ 1928 if (adev->pio_mode > XFER_PIO_2) 1929 return 1; 1930 /* We turn it on when possible */ 1931 if (ata_id_has_iordy(adev->id)) 1932 return 1; 1933 return 0; 1934 } 1935 1936 /** 1937 * ata_pio_mask_no_iordy - Return the non IORDY mask 1938 * @adev: ATA device 1939 * 1940 * Compute the highest mode possible if we are not using iordy. Return 1941 * -1 if no iordy mode is available. 1942 */ 1943 1944 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1945 { 1946 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1947 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1948 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1949 /* Is the speed faster than the drive allows non IORDY ? */ 1950 if (pio) { 1951 /* This is cycle times not frequency - watch the logic! */ 1952 if (pio > 240) /* PIO2 is 240nS per cycle */ 1953 return 3 << ATA_SHIFT_PIO; 1954 return 7 << ATA_SHIFT_PIO; 1955 } 1956 } 1957 return 3 << ATA_SHIFT_PIO; 1958 } 1959 1960 /** 1961 * ata_do_dev_read_id - default ID read method 1962 * @dev: device 1963 * @tf: proposed taskfile 1964 * @id: data buffer 1965 * 1966 * Issue the identify taskfile and hand back the buffer containing 1967 * identify data. For some RAID controllers and for pre ATA devices 1968 * this function is wrapped or replaced by the driver 1969 */ 1970 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1971 struct ata_taskfile *tf, u16 *id) 1972 { 1973 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1974 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1975 } 1976 1977 /** 1978 * ata_dev_read_id - Read ID data from the specified device 1979 * @dev: target device 1980 * @p_class: pointer to class of the target device (may be changed) 1981 * @flags: ATA_READID_* flags 1982 * @id: buffer to read IDENTIFY data into 1983 * 1984 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1985 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1986 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1987 * for pre-ATA4 drives. 1988 * 1989 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1990 * now we abort if we hit that case. 1991 * 1992 * LOCKING: 1993 * Kernel thread context (may sleep) 1994 * 1995 * RETURNS: 1996 * 0 on success, -errno otherwise. 1997 */ 1998 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1999 unsigned int flags, u16 *id) 2000 { 2001 struct ata_port *ap = dev->link->ap; 2002 unsigned int class = *p_class; 2003 struct ata_taskfile tf; 2004 unsigned int err_mask = 0; 2005 const char *reason; 2006 int may_fallback = 1, tried_spinup = 0; 2007 int rc; 2008 2009 if (ata_msg_ctl(ap)) 2010 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2011 2012 retry: 2013 ata_tf_init(dev, &tf); 2014 2015 switch (class) { 2016 case ATA_DEV_ATA: 2017 tf.command = ATA_CMD_ID_ATA; 2018 break; 2019 case ATA_DEV_ATAPI: 2020 tf.command = ATA_CMD_ID_ATAPI; 2021 break; 2022 default: 2023 rc = -ENODEV; 2024 reason = "unsupported class"; 2025 goto err_out; 2026 } 2027 2028 tf.protocol = ATA_PROT_PIO; 2029 2030 /* Some devices choke if TF registers contain garbage. Make 2031 * sure those are properly initialized. 2032 */ 2033 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 2034 2035 /* Device presence detection is unreliable on some 2036 * controllers. Always poll IDENTIFY if available. 2037 */ 2038 tf.flags |= ATA_TFLAG_POLLING; 2039 2040 if (ap->ops->read_id) 2041 err_mask = ap->ops->read_id(dev, &tf, id); 2042 else 2043 err_mask = ata_do_dev_read_id(dev, &tf, id); 2044 2045 if (err_mask) { 2046 if (err_mask & AC_ERR_NODEV_HINT) { 2047 ata_dev_printk(dev, KERN_DEBUG, 2048 "NODEV after polling detection\n"); 2049 return -ENOENT; 2050 } 2051 2052 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 2053 /* Device or controller might have reported 2054 * the wrong device class. Give a shot at the 2055 * other IDENTIFY if the current one is 2056 * aborted by the device. 2057 */ 2058 if (may_fallback) { 2059 may_fallback = 0; 2060 2061 if (class == ATA_DEV_ATA) 2062 class = ATA_DEV_ATAPI; 2063 else 2064 class = ATA_DEV_ATA; 2065 goto retry; 2066 } 2067 2068 /* Control reaches here iff the device aborted 2069 * both flavors of IDENTIFYs which happens 2070 * sometimes with phantom devices. 2071 */ 2072 ata_dev_printk(dev, KERN_DEBUG, 2073 "both IDENTIFYs aborted, assuming NODEV\n"); 2074 return -ENOENT; 2075 } 2076 2077 rc = -EIO; 2078 reason = "I/O error"; 2079 goto err_out; 2080 } 2081 2082 /* Falling back doesn't make sense if ID data was read 2083 * successfully at least once. 2084 */ 2085 may_fallback = 0; 2086 2087 swap_buf_le16(id, ATA_ID_WORDS); 2088 2089 /* sanity check */ 2090 rc = -EINVAL; 2091 reason = "device reports invalid type"; 2092 2093 if (class == ATA_DEV_ATA) { 2094 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 2095 goto err_out; 2096 } else { 2097 if (ata_id_is_ata(id)) 2098 goto err_out; 2099 } 2100 2101 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2102 tried_spinup = 1; 2103 /* 2104 * Drive powered-up in standby mode, and requires a specific 2105 * SET_FEATURES spin-up subcommand before it will accept 2106 * anything other than the original IDENTIFY command. 2107 */ 2108 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2109 if (err_mask && id[2] != 0x738c) { 2110 rc = -EIO; 2111 reason = "SPINUP failed"; 2112 goto err_out; 2113 } 2114 /* 2115 * If the drive initially returned incomplete IDENTIFY info, 2116 * we now must reissue the IDENTIFY command. 2117 */ 2118 if (id[2] == 0x37c8) 2119 goto retry; 2120 } 2121 2122 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2123 /* 2124 * The exact sequence expected by certain pre-ATA4 drives is: 2125 * SRST RESET 2126 * IDENTIFY (optional in early ATA) 2127 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2128 * anything else.. 2129 * Some drives were very specific about that exact sequence. 2130 * 2131 * Note that ATA4 says lba is mandatory so the second check 2132 * shoud never trigger. 2133 */ 2134 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2135 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2136 if (err_mask) { 2137 rc = -EIO; 2138 reason = "INIT_DEV_PARAMS failed"; 2139 goto err_out; 2140 } 2141 2142 /* current CHS translation info (id[53-58]) might be 2143 * changed. reread the identify device info. 2144 */ 2145 flags &= ~ATA_READID_POSTRESET; 2146 goto retry; 2147 } 2148 } 2149 2150 *p_class = class; 2151 2152 return 0; 2153 2154 err_out: 2155 if (ata_msg_warn(ap)) 2156 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2157 "(%s, err_mask=0x%x)\n", reason, err_mask); 2158 return rc; 2159 } 2160 2161 static inline u8 ata_dev_knobble(struct ata_device *dev) 2162 { 2163 struct ata_port *ap = dev->link->ap; 2164 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2165 } 2166 2167 static void ata_dev_config_ncq(struct ata_device *dev, 2168 char *desc, size_t desc_sz) 2169 { 2170 struct ata_port *ap = dev->link->ap; 2171 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2172 2173 if (!ata_id_has_ncq(dev->id)) { 2174 desc[0] = '\0'; 2175 return; 2176 } 2177 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2178 snprintf(desc, desc_sz, "NCQ (not used)"); 2179 return; 2180 } 2181 if (ap->flags & ATA_FLAG_NCQ) { 2182 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2183 dev->flags |= ATA_DFLAG_NCQ; 2184 } 2185 2186 if (hdepth >= ddepth) 2187 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 2188 else 2189 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 2190 } 2191 2192 /** 2193 * ata_dev_configure - Configure the specified ATA/ATAPI device 2194 * @dev: Target device to configure 2195 * 2196 * Configure @dev according to @dev->id. Generic and low-level 2197 * driver specific fixups are also applied. 2198 * 2199 * LOCKING: 2200 * Kernel thread context (may sleep) 2201 * 2202 * RETURNS: 2203 * 0 on success, -errno otherwise 2204 */ 2205 int ata_dev_configure(struct ata_device *dev) 2206 { 2207 struct ata_port *ap = dev->link->ap; 2208 struct ata_eh_context *ehc = &dev->link->eh_context; 2209 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2210 const u16 *id = dev->id; 2211 unsigned long xfer_mask; 2212 char revbuf[7]; /* XYZ-99\0 */ 2213 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2214 char modelbuf[ATA_ID_PROD_LEN+1]; 2215 int rc; 2216 2217 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2218 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2219 __func__); 2220 return 0; 2221 } 2222 2223 if (ata_msg_probe(ap)) 2224 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2225 2226 /* set horkage */ 2227 dev->horkage |= ata_dev_blacklisted(dev); 2228 ata_force_horkage(dev); 2229 2230 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2231 ata_dev_printk(dev, KERN_INFO, 2232 "unsupported device, disabling\n"); 2233 ata_dev_disable(dev); 2234 return 0; 2235 } 2236 2237 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2238 dev->class == ATA_DEV_ATAPI) { 2239 ata_dev_printk(dev, KERN_WARNING, 2240 "WARNING: ATAPI is %s, device ignored.\n", 2241 atapi_enabled ? "not supported with this driver" 2242 : "disabled"); 2243 ata_dev_disable(dev); 2244 return 0; 2245 } 2246 2247 /* let ACPI work its magic */ 2248 rc = ata_acpi_on_devcfg(dev); 2249 if (rc) 2250 return rc; 2251 2252 /* massage HPA, do it early as it might change IDENTIFY data */ 2253 rc = ata_hpa_resize(dev); 2254 if (rc) 2255 return rc; 2256 2257 /* print device capabilities */ 2258 if (ata_msg_probe(ap)) 2259 ata_dev_printk(dev, KERN_DEBUG, 2260 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2261 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2262 __func__, 2263 id[49], id[82], id[83], id[84], 2264 id[85], id[86], id[87], id[88]); 2265 2266 /* initialize to-be-configured parameters */ 2267 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2268 dev->max_sectors = 0; 2269 dev->cdb_len = 0; 2270 dev->n_sectors = 0; 2271 dev->cylinders = 0; 2272 dev->heads = 0; 2273 dev->sectors = 0; 2274 2275 /* 2276 * common ATA, ATAPI feature tests 2277 */ 2278 2279 /* find max transfer mode; for printk only */ 2280 xfer_mask = ata_id_xfermask(id); 2281 2282 if (ata_msg_probe(ap)) 2283 ata_dump_id(id); 2284 2285 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2286 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2287 sizeof(fwrevbuf)); 2288 2289 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2290 sizeof(modelbuf)); 2291 2292 /* ATA-specific feature tests */ 2293 if (dev->class == ATA_DEV_ATA) { 2294 if (ata_id_is_cfa(id)) { 2295 if (id[162] & 1) /* CPRM may make this media unusable */ 2296 ata_dev_printk(dev, KERN_WARNING, 2297 "supports DRM functions and may " 2298 "not be fully accessable.\n"); 2299 snprintf(revbuf, 7, "CFA"); 2300 } else { 2301 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2302 /* Warn the user if the device has TPM extensions */ 2303 if (ata_id_has_tpm(id)) 2304 ata_dev_printk(dev, KERN_WARNING, 2305 "supports DRM functions and may " 2306 "not be fully accessable.\n"); 2307 } 2308 2309 dev->n_sectors = ata_id_n_sectors(id); 2310 2311 if (dev->id[59] & 0x100) 2312 dev->multi_count = dev->id[59] & 0xff; 2313 2314 if (ata_id_has_lba(id)) { 2315 const char *lba_desc; 2316 char ncq_desc[20]; 2317 2318 lba_desc = "LBA"; 2319 dev->flags |= ATA_DFLAG_LBA; 2320 if (ata_id_has_lba48(id)) { 2321 dev->flags |= ATA_DFLAG_LBA48; 2322 lba_desc = "LBA48"; 2323 2324 if (dev->n_sectors >= (1UL << 28) && 2325 ata_id_has_flush_ext(id)) 2326 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2327 } 2328 2329 /* config NCQ */ 2330 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2331 2332 /* print device info to dmesg */ 2333 if (ata_msg_drv(ap) && print_info) { 2334 ata_dev_printk(dev, KERN_INFO, 2335 "%s: %s, %s, max %s\n", 2336 revbuf, modelbuf, fwrevbuf, 2337 ata_mode_string(xfer_mask)); 2338 ata_dev_printk(dev, KERN_INFO, 2339 "%Lu sectors, multi %u: %s %s\n", 2340 (unsigned long long)dev->n_sectors, 2341 dev->multi_count, lba_desc, ncq_desc); 2342 } 2343 } else { 2344 /* CHS */ 2345 2346 /* Default translation */ 2347 dev->cylinders = id[1]; 2348 dev->heads = id[3]; 2349 dev->sectors = id[6]; 2350 2351 if (ata_id_current_chs_valid(id)) { 2352 /* Current CHS translation is valid. */ 2353 dev->cylinders = id[54]; 2354 dev->heads = id[55]; 2355 dev->sectors = id[56]; 2356 } 2357 2358 /* print device info to dmesg */ 2359 if (ata_msg_drv(ap) && print_info) { 2360 ata_dev_printk(dev, KERN_INFO, 2361 "%s: %s, %s, max %s\n", 2362 revbuf, modelbuf, fwrevbuf, 2363 ata_mode_string(xfer_mask)); 2364 ata_dev_printk(dev, KERN_INFO, 2365 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2366 (unsigned long long)dev->n_sectors, 2367 dev->multi_count, dev->cylinders, 2368 dev->heads, dev->sectors); 2369 } 2370 } 2371 2372 dev->cdb_len = 16; 2373 } 2374 2375 /* ATAPI-specific feature tests */ 2376 else if (dev->class == ATA_DEV_ATAPI) { 2377 const char *cdb_intr_string = ""; 2378 const char *atapi_an_string = ""; 2379 const char *dma_dir_string = ""; 2380 u32 sntf; 2381 2382 rc = atapi_cdb_len(id); 2383 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2384 if (ata_msg_warn(ap)) 2385 ata_dev_printk(dev, KERN_WARNING, 2386 "unsupported CDB len\n"); 2387 rc = -EINVAL; 2388 goto err_out_nosup; 2389 } 2390 dev->cdb_len = (unsigned int) rc; 2391 2392 /* Enable ATAPI AN if both the host and device have 2393 * the support. If PMP is attached, SNTF is required 2394 * to enable ATAPI AN to discern between PHY status 2395 * changed notifications and ATAPI ANs. 2396 */ 2397 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2398 (!sata_pmp_attached(ap) || 2399 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2400 unsigned int err_mask; 2401 2402 /* issue SET feature command to turn this on */ 2403 err_mask = ata_dev_set_feature(dev, 2404 SETFEATURES_SATA_ENABLE, SATA_AN); 2405 if (err_mask) 2406 ata_dev_printk(dev, KERN_ERR, 2407 "failed to enable ATAPI AN " 2408 "(err_mask=0x%x)\n", err_mask); 2409 else { 2410 dev->flags |= ATA_DFLAG_AN; 2411 atapi_an_string = ", ATAPI AN"; 2412 } 2413 } 2414 2415 if (ata_id_cdb_intr(dev->id)) { 2416 dev->flags |= ATA_DFLAG_CDB_INTR; 2417 cdb_intr_string = ", CDB intr"; 2418 } 2419 2420 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2421 dev->flags |= ATA_DFLAG_DMADIR; 2422 dma_dir_string = ", DMADIR"; 2423 } 2424 2425 /* print device info to dmesg */ 2426 if (ata_msg_drv(ap) && print_info) 2427 ata_dev_printk(dev, KERN_INFO, 2428 "ATAPI: %s, %s, max %s%s%s%s\n", 2429 modelbuf, fwrevbuf, 2430 ata_mode_string(xfer_mask), 2431 cdb_intr_string, atapi_an_string, 2432 dma_dir_string); 2433 } 2434 2435 /* determine max_sectors */ 2436 dev->max_sectors = ATA_MAX_SECTORS; 2437 if (dev->flags & ATA_DFLAG_LBA48) 2438 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2439 2440 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2441 if (ata_id_has_hipm(dev->id)) 2442 dev->flags |= ATA_DFLAG_HIPM; 2443 if (ata_id_has_dipm(dev->id)) 2444 dev->flags |= ATA_DFLAG_DIPM; 2445 } 2446 2447 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2448 200 sectors */ 2449 if (ata_dev_knobble(dev)) { 2450 if (ata_msg_drv(ap) && print_info) 2451 ata_dev_printk(dev, KERN_INFO, 2452 "applying bridge limits\n"); 2453 dev->udma_mask &= ATA_UDMA5; 2454 dev->max_sectors = ATA_MAX_SECTORS; 2455 } 2456 2457 if ((dev->class == ATA_DEV_ATAPI) && 2458 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2459 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2460 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2461 } 2462 2463 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2464 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2465 dev->max_sectors); 2466 2467 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2468 dev->horkage |= ATA_HORKAGE_IPM; 2469 2470 /* reset link pm_policy for this port to no pm */ 2471 ap->pm_policy = MAX_PERFORMANCE; 2472 } 2473 2474 if (ap->ops->dev_config) 2475 ap->ops->dev_config(dev); 2476 2477 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2478 /* Let the user know. We don't want to disallow opens for 2479 rescue purposes, or in case the vendor is just a blithering 2480 idiot. Do this after the dev_config call as some controllers 2481 with buggy firmware may want to avoid reporting false device 2482 bugs */ 2483 2484 if (print_info) { 2485 ata_dev_printk(dev, KERN_WARNING, 2486 "Drive reports diagnostics failure. This may indicate a drive\n"); 2487 ata_dev_printk(dev, KERN_WARNING, 2488 "fault or invalid emulation. Contact drive vendor for information.\n"); 2489 } 2490 } 2491 2492 return 0; 2493 2494 err_out_nosup: 2495 if (ata_msg_probe(ap)) 2496 ata_dev_printk(dev, KERN_DEBUG, 2497 "%s: EXIT, err\n", __func__); 2498 return rc; 2499 } 2500 2501 /** 2502 * ata_cable_40wire - return 40 wire cable type 2503 * @ap: port 2504 * 2505 * Helper method for drivers which want to hardwire 40 wire cable 2506 * detection. 2507 */ 2508 2509 int ata_cable_40wire(struct ata_port *ap) 2510 { 2511 return ATA_CBL_PATA40; 2512 } 2513 2514 /** 2515 * ata_cable_80wire - return 80 wire cable type 2516 * @ap: port 2517 * 2518 * Helper method for drivers which want to hardwire 80 wire cable 2519 * detection. 2520 */ 2521 2522 int ata_cable_80wire(struct ata_port *ap) 2523 { 2524 return ATA_CBL_PATA80; 2525 } 2526 2527 /** 2528 * ata_cable_unknown - return unknown PATA cable. 2529 * @ap: port 2530 * 2531 * Helper method for drivers which have no PATA cable detection. 2532 */ 2533 2534 int ata_cable_unknown(struct ata_port *ap) 2535 { 2536 return ATA_CBL_PATA_UNK; 2537 } 2538 2539 /** 2540 * ata_cable_ignore - return ignored PATA cable. 2541 * @ap: port 2542 * 2543 * Helper method for drivers which don't use cable type to limit 2544 * transfer mode. 2545 */ 2546 int ata_cable_ignore(struct ata_port *ap) 2547 { 2548 return ATA_CBL_PATA_IGN; 2549 } 2550 2551 /** 2552 * ata_cable_sata - return SATA cable type 2553 * @ap: port 2554 * 2555 * Helper method for drivers which have SATA cables 2556 */ 2557 2558 int ata_cable_sata(struct ata_port *ap) 2559 { 2560 return ATA_CBL_SATA; 2561 } 2562 2563 /** 2564 * ata_bus_probe - Reset and probe ATA bus 2565 * @ap: Bus to probe 2566 * 2567 * Master ATA bus probing function. Initiates a hardware-dependent 2568 * bus reset, then attempts to identify any devices found on 2569 * the bus. 2570 * 2571 * LOCKING: 2572 * PCI/etc. bus probe sem. 2573 * 2574 * RETURNS: 2575 * Zero on success, negative errno otherwise. 2576 */ 2577 2578 int ata_bus_probe(struct ata_port *ap) 2579 { 2580 unsigned int classes[ATA_MAX_DEVICES]; 2581 int tries[ATA_MAX_DEVICES]; 2582 int rc; 2583 struct ata_device *dev; 2584 2585 ata_port_probe(ap); 2586 2587 ata_link_for_each_dev(dev, &ap->link) 2588 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2589 2590 retry: 2591 ata_link_for_each_dev(dev, &ap->link) { 2592 /* If we issue an SRST then an ATA drive (not ATAPI) 2593 * may change configuration and be in PIO0 timing. If 2594 * we do a hard reset (or are coming from power on) 2595 * this is true for ATA or ATAPI. Until we've set a 2596 * suitable controller mode we should not touch the 2597 * bus as we may be talking too fast. 2598 */ 2599 dev->pio_mode = XFER_PIO_0; 2600 2601 /* If the controller has a pio mode setup function 2602 * then use it to set the chipset to rights. Don't 2603 * touch the DMA setup as that will be dealt with when 2604 * configuring devices. 2605 */ 2606 if (ap->ops->set_piomode) 2607 ap->ops->set_piomode(ap, dev); 2608 } 2609 2610 /* reset and determine device classes */ 2611 ap->ops->phy_reset(ap); 2612 2613 ata_link_for_each_dev(dev, &ap->link) { 2614 if (!(ap->flags & ATA_FLAG_DISABLED) && 2615 dev->class != ATA_DEV_UNKNOWN) 2616 classes[dev->devno] = dev->class; 2617 else 2618 classes[dev->devno] = ATA_DEV_NONE; 2619 2620 dev->class = ATA_DEV_UNKNOWN; 2621 } 2622 2623 ata_port_probe(ap); 2624 2625 /* read IDENTIFY page and configure devices. We have to do the identify 2626 specific sequence bass-ackwards so that PDIAG- is released by 2627 the slave device */ 2628 2629 ata_link_for_each_dev_reverse(dev, &ap->link) { 2630 if (tries[dev->devno]) 2631 dev->class = classes[dev->devno]; 2632 2633 if (!ata_dev_enabled(dev)) 2634 continue; 2635 2636 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2637 dev->id); 2638 if (rc) 2639 goto fail; 2640 } 2641 2642 /* Now ask for the cable type as PDIAG- should have been released */ 2643 if (ap->ops->cable_detect) 2644 ap->cbl = ap->ops->cable_detect(ap); 2645 2646 /* We may have SATA bridge glue hiding here irrespective of the 2647 reported cable types and sensed types */ 2648 ata_link_for_each_dev(dev, &ap->link) { 2649 if (!ata_dev_enabled(dev)) 2650 continue; 2651 /* SATA drives indicate we have a bridge. We don't know which 2652 end of the link the bridge is which is a problem */ 2653 if (ata_id_is_sata(dev->id)) 2654 ap->cbl = ATA_CBL_SATA; 2655 } 2656 2657 /* After the identify sequence we can now set up the devices. We do 2658 this in the normal order so that the user doesn't get confused */ 2659 2660 ata_link_for_each_dev(dev, &ap->link) { 2661 if (!ata_dev_enabled(dev)) 2662 continue; 2663 2664 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2665 rc = ata_dev_configure(dev); 2666 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2667 if (rc) 2668 goto fail; 2669 } 2670 2671 /* configure transfer mode */ 2672 rc = ata_set_mode(&ap->link, &dev); 2673 if (rc) 2674 goto fail; 2675 2676 ata_link_for_each_dev(dev, &ap->link) 2677 if (ata_dev_enabled(dev)) 2678 return 0; 2679 2680 /* no device present, disable port */ 2681 ata_port_disable(ap); 2682 return -ENODEV; 2683 2684 fail: 2685 tries[dev->devno]--; 2686 2687 switch (rc) { 2688 case -EINVAL: 2689 /* eeek, something went very wrong, give up */ 2690 tries[dev->devno] = 0; 2691 break; 2692 2693 case -ENODEV: 2694 /* give it just one more chance */ 2695 tries[dev->devno] = min(tries[dev->devno], 1); 2696 case -EIO: 2697 if (tries[dev->devno] == 1) { 2698 /* This is the last chance, better to slow 2699 * down than lose it. 2700 */ 2701 sata_down_spd_limit(&ap->link); 2702 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2703 } 2704 } 2705 2706 if (!tries[dev->devno]) 2707 ata_dev_disable(dev); 2708 2709 goto retry; 2710 } 2711 2712 /** 2713 * ata_port_probe - Mark port as enabled 2714 * @ap: Port for which we indicate enablement 2715 * 2716 * Modify @ap data structure such that the system 2717 * thinks that the entire port is enabled. 2718 * 2719 * LOCKING: host lock, or some other form of 2720 * serialization. 2721 */ 2722 2723 void ata_port_probe(struct ata_port *ap) 2724 { 2725 ap->flags &= ~ATA_FLAG_DISABLED; 2726 } 2727 2728 /** 2729 * sata_print_link_status - Print SATA link status 2730 * @link: SATA link to printk link status about 2731 * 2732 * This function prints link speed and status of a SATA link. 2733 * 2734 * LOCKING: 2735 * None. 2736 */ 2737 static void sata_print_link_status(struct ata_link *link) 2738 { 2739 u32 sstatus, scontrol, tmp; 2740 2741 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2742 return; 2743 sata_scr_read(link, SCR_CONTROL, &scontrol); 2744 2745 if (ata_phys_link_online(link)) { 2746 tmp = (sstatus >> 4) & 0xf; 2747 ata_link_printk(link, KERN_INFO, 2748 "SATA link up %s (SStatus %X SControl %X)\n", 2749 sata_spd_string(tmp), sstatus, scontrol); 2750 } else { 2751 ata_link_printk(link, KERN_INFO, 2752 "SATA link down (SStatus %X SControl %X)\n", 2753 sstatus, scontrol); 2754 } 2755 } 2756 2757 /** 2758 * ata_dev_pair - return other device on cable 2759 * @adev: device 2760 * 2761 * Obtain the other device on the same cable, or if none is 2762 * present NULL is returned 2763 */ 2764 2765 struct ata_device *ata_dev_pair(struct ata_device *adev) 2766 { 2767 struct ata_link *link = adev->link; 2768 struct ata_device *pair = &link->device[1 - adev->devno]; 2769 if (!ata_dev_enabled(pair)) 2770 return NULL; 2771 return pair; 2772 } 2773 2774 /** 2775 * ata_port_disable - Disable port. 2776 * @ap: Port to be disabled. 2777 * 2778 * Modify @ap data structure such that the system 2779 * thinks that the entire port is disabled, and should 2780 * never attempt to probe or communicate with devices 2781 * on this port. 2782 * 2783 * LOCKING: host lock, or some other form of 2784 * serialization. 2785 */ 2786 2787 void ata_port_disable(struct ata_port *ap) 2788 { 2789 ap->link.device[0].class = ATA_DEV_NONE; 2790 ap->link.device[1].class = ATA_DEV_NONE; 2791 ap->flags |= ATA_FLAG_DISABLED; 2792 } 2793 2794 /** 2795 * sata_down_spd_limit - adjust SATA spd limit downward 2796 * @link: Link to adjust SATA spd limit for 2797 * 2798 * Adjust SATA spd limit of @link downward. Note that this 2799 * function only adjusts the limit. The change must be applied 2800 * using sata_set_spd(). 2801 * 2802 * LOCKING: 2803 * Inherited from caller. 2804 * 2805 * RETURNS: 2806 * 0 on success, negative errno on failure 2807 */ 2808 int sata_down_spd_limit(struct ata_link *link) 2809 { 2810 u32 sstatus, spd, mask; 2811 int rc, highbit; 2812 2813 if (!sata_scr_valid(link)) 2814 return -EOPNOTSUPP; 2815 2816 /* If SCR can be read, use it to determine the current SPD. 2817 * If not, use cached value in link->sata_spd. 2818 */ 2819 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2820 if (rc == 0) 2821 spd = (sstatus >> 4) & 0xf; 2822 else 2823 spd = link->sata_spd; 2824 2825 mask = link->sata_spd_limit; 2826 if (mask <= 1) 2827 return -EINVAL; 2828 2829 /* unconditionally mask off the highest bit */ 2830 highbit = fls(mask) - 1; 2831 mask &= ~(1 << highbit); 2832 2833 /* Mask off all speeds higher than or equal to the current 2834 * one. Force 1.5Gbps if current SPD is not available. 2835 */ 2836 if (spd > 1) 2837 mask &= (1 << (spd - 1)) - 1; 2838 else 2839 mask &= 1; 2840 2841 /* were we already at the bottom? */ 2842 if (!mask) 2843 return -EINVAL; 2844 2845 link->sata_spd_limit = mask; 2846 2847 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2848 sata_spd_string(fls(mask))); 2849 2850 return 0; 2851 } 2852 2853 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2854 { 2855 struct ata_link *host_link = &link->ap->link; 2856 u32 limit, target, spd; 2857 2858 limit = link->sata_spd_limit; 2859 2860 /* Don't configure downstream link faster than upstream link. 2861 * It doesn't speed up anything and some PMPs choke on such 2862 * configuration. 2863 */ 2864 if (!ata_is_host_link(link) && host_link->sata_spd) 2865 limit &= (1 << host_link->sata_spd) - 1; 2866 2867 if (limit == UINT_MAX) 2868 target = 0; 2869 else 2870 target = fls(limit); 2871 2872 spd = (*scontrol >> 4) & 0xf; 2873 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2874 2875 return spd != target; 2876 } 2877 2878 /** 2879 * sata_set_spd_needed - is SATA spd configuration needed 2880 * @link: Link in question 2881 * 2882 * Test whether the spd limit in SControl matches 2883 * @link->sata_spd_limit. This function is used to determine 2884 * whether hardreset is necessary to apply SATA spd 2885 * configuration. 2886 * 2887 * LOCKING: 2888 * Inherited from caller. 2889 * 2890 * RETURNS: 2891 * 1 if SATA spd configuration is needed, 0 otherwise. 2892 */ 2893 static int sata_set_spd_needed(struct ata_link *link) 2894 { 2895 u32 scontrol; 2896 2897 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2898 return 1; 2899 2900 return __sata_set_spd_needed(link, &scontrol); 2901 } 2902 2903 /** 2904 * sata_set_spd - set SATA spd according to spd limit 2905 * @link: Link to set SATA spd for 2906 * 2907 * Set SATA spd of @link according to sata_spd_limit. 2908 * 2909 * LOCKING: 2910 * Inherited from caller. 2911 * 2912 * RETURNS: 2913 * 0 if spd doesn't need to be changed, 1 if spd has been 2914 * changed. Negative errno if SCR registers are inaccessible. 2915 */ 2916 int sata_set_spd(struct ata_link *link) 2917 { 2918 u32 scontrol; 2919 int rc; 2920 2921 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2922 return rc; 2923 2924 if (!__sata_set_spd_needed(link, &scontrol)) 2925 return 0; 2926 2927 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2928 return rc; 2929 2930 return 1; 2931 } 2932 2933 /* 2934 * This mode timing computation functionality is ported over from 2935 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2936 */ 2937 /* 2938 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2939 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2940 * for UDMA6, which is currently supported only by Maxtor drives. 2941 * 2942 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2943 */ 2944 2945 static const struct ata_timing ata_timing[] = { 2946 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2947 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2948 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2949 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2950 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2951 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2952 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2953 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2954 2955 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2956 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2957 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2958 2959 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2960 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2961 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2962 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2963 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2964 2965 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2966 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2967 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2968 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2969 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2970 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2971 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2972 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2973 2974 { 0xFF } 2975 }; 2976 2977 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2978 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2979 2980 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2981 { 2982 q->setup = EZ(t->setup * 1000, T); 2983 q->act8b = EZ(t->act8b * 1000, T); 2984 q->rec8b = EZ(t->rec8b * 1000, T); 2985 q->cyc8b = EZ(t->cyc8b * 1000, T); 2986 q->active = EZ(t->active * 1000, T); 2987 q->recover = EZ(t->recover * 1000, T); 2988 q->cycle = EZ(t->cycle * 1000, T); 2989 q->udma = EZ(t->udma * 1000, UT); 2990 } 2991 2992 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2993 struct ata_timing *m, unsigned int what) 2994 { 2995 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2996 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2997 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2998 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2999 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3000 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3001 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3002 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3003 } 3004 3005 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3006 { 3007 const struct ata_timing *t = ata_timing; 3008 3009 while (xfer_mode > t->mode) 3010 t++; 3011 3012 if (xfer_mode == t->mode) 3013 return t; 3014 return NULL; 3015 } 3016 3017 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3018 struct ata_timing *t, int T, int UT) 3019 { 3020 const struct ata_timing *s; 3021 struct ata_timing p; 3022 3023 /* 3024 * Find the mode. 3025 */ 3026 3027 if (!(s = ata_timing_find_mode(speed))) 3028 return -EINVAL; 3029 3030 memcpy(t, s, sizeof(*s)); 3031 3032 /* 3033 * If the drive is an EIDE drive, it can tell us it needs extended 3034 * PIO/MW_DMA cycle timing. 3035 */ 3036 3037 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3038 memset(&p, 0, sizeof(p)); 3039 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 3040 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 3041 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 3042 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 3043 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 3044 } 3045 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3046 } 3047 3048 /* 3049 * Convert the timing to bus clock counts. 3050 */ 3051 3052 ata_timing_quantize(t, t, T, UT); 3053 3054 /* 3055 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3056 * S.M.A.R.T * and some other commands. We have to ensure that the 3057 * DMA cycle timing is slower/equal than the fastest PIO timing. 3058 */ 3059 3060 if (speed > XFER_PIO_6) { 3061 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3062 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3063 } 3064 3065 /* 3066 * Lengthen active & recovery time so that cycle time is correct. 3067 */ 3068 3069 if (t->act8b + t->rec8b < t->cyc8b) { 3070 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3071 t->rec8b = t->cyc8b - t->act8b; 3072 } 3073 3074 if (t->active + t->recover < t->cycle) { 3075 t->active += (t->cycle - (t->active + t->recover)) / 2; 3076 t->recover = t->cycle - t->active; 3077 } 3078 3079 /* In a few cases quantisation may produce enough errors to 3080 leave t->cycle too low for the sum of active and recovery 3081 if so we must correct this */ 3082 if (t->active + t->recover > t->cycle) 3083 t->cycle = t->active + t->recover; 3084 3085 return 0; 3086 } 3087 3088 /** 3089 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3090 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3091 * @cycle: cycle duration in ns 3092 * 3093 * Return matching xfer mode for @cycle. The returned mode is of 3094 * the transfer type specified by @xfer_shift. If @cycle is too 3095 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3096 * than the fastest known mode, the fasted mode is returned. 3097 * 3098 * LOCKING: 3099 * None. 3100 * 3101 * RETURNS: 3102 * Matching xfer_mode, 0xff if no match found. 3103 */ 3104 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3105 { 3106 u8 base_mode = 0xff, last_mode = 0xff; 3107 const struct ata_xfer_ent *ent; 3108 const struct ata_timing *t; 3109 3110 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3111 if (ent->shift == xfer_shift) 3112 base_mode = ent->base; 3113 3114 for (t = ata_timing_find_mode(base_mode); 3115 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3116 unsigned short this_cycle; 3117 3118 switch (xfer_shift) { 3119 case ATA_SHIFT_PIO: 3120 case ATA_SHIFT_MWDMA: 3121 this_cycle = t->cycle; 3122 break; 3123 case ATA_SHIFT_UDMA: 3124 this_cycle = t->udma; 3125 break; 3126 default: 3127 return 0xff; 3128 } 3129 3130 if (cycle > this_cycle) 3131 break; 3132 3133 last_mode = t->mode; 3134 } 3135 3136 return last_mode; 3137 } 3138 3139 /** 3140 * ata_down_xfermask_limit - adjust dev xfer masks downward 3141 * @dev: Device to adjust xfer masks 3142 * @sel: ATA_DNXFER_* selector 3143 * 3144 * Adjust xfer masks of @dev downward. Note that this function 3145 * does not apply the change. Invoking ata_set_mode() afterwards 3146 * will apply the limit. 3147 * 3148 * LOCKING: 3149 * Inherited from caller. 3150 * 3151 * RETURNS: 3152 * 0 on success, negative errno on failure 3153 */ 3154 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3155 { 3156 char buf[32]; 3157 unsigned long orig_mask, xfer_mask; 3158 unsigned long pio_mask, mwdma_mask, udma_mask; 3159 int quiet, highbit; 3160 3161 quiet = !!(sel & ATA_DNXFER_QUIET); 3162 sel &= ~ATA_DNXFER_QUIET; 3163 3164 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3165 dev->mwdma_mask, 3166 dev->udma_mask); 3167 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3168 3169 switch (sel) { 3170 case ATA_DNXFER_PIO: 3171 highbit = fls(pio_mask) - 1; 3172 pio_mask &= ~(1 << highbit); 3173 break; 3174 3175 case ATA_DNXFER_DMA: 3176 if (udma_mask) { 3177 highbit = fls(udma_mask) - 1; 3178 udma_mask &= ~(1 << highbit); 3179 if (!udma_mask) 3180 return -ENOENT; 3181 } else if (mwdma_mask) { 3182 highbit = fls(mwdma_mask) - 1; 3183 mwdma_mask &= ~(1 << highbit); 3184 if (!mwdma_mask) 3185 return -ENOENT; 3186 } 3187 break; 3188 3189 case ATA_DNXFER_40C: 3190 udma_mask &= ATA_UDMA_MASK_40C; 3191 break; 3192 3193 case ATA_DNXFER_FORCE_PIO0: 3194 pio_mask &= 1; 3195 case ATA_DNXFER_FORCE_PIO: 3196 mwdma_mask = 0; 3197 udma_mask = 0; 3198 break; 3199 3200 default: 3201 BUG(); 3202 } 3203 3204 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3205 3206 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3207 return -ENOENT; 3208 3209 if (!quiet) { 3210 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3211 snprintf(buf, sizeof(buf), "%s:%s", 3212 ata_mode_string(xfer_mask), 3213 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3214 else 3215 snprintf(buf, sizeof(buf), "%s", 3216 ata_mode_string(xfer_mask)); 3217 3218 ata_dev_printk(dev, KERN_WARNING, 3219 "limiting speed to %s\n", buf); 3220 } 3221 3222 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3223 &dev->udma_mask); 3224 3225 return 0; 3226 } 3227 3228 static int ata_dev_set_mode(struct ata_device *dev) 3229 { 3230 struct ata_eh_context *ehc = &dev->link->eh_context; 3231 const char *dev_err_whine = ""; 3232 int ign_dev_err = 0; 3233 unsigned int err_mask; 3234 int rc; 3235 3236 dev->flags &= ~ATA_DFLAG_PIO; 3237 if (dev->xfer_shift == ATA_SHIFT_PIO) 3238 dev->flags |= ATA_DFLAG_PIO; 3239 3240 err_mask = ata_dev_set_xfermode(dev); 3241 3242 if (err_mask & ~AC_ERR_DEV) 3243 goto fail; 3244 3245 /* revalidate */ 3246 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3247 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3248 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3249 if (rc) 3250 return rc; 3251 3252 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3253 /* Old CFA may refuse this command, which is just fine */ 3254 if (ata_id_is_cfa(dev->id)) 3255 ign_dev_err = 1; 3256 /* Catch several broken garbage emulations plus some pre 3257 ATA devices */ 3258 if (ata_id_major_version(dev->id) == 0 && 3259 dev->pio_mode <= XFER_PIO_2) 3260 ign_dev_err = 1; 3261 /* Some very old devices and some bad newer ones fail 3262 any kind of SET_XFERMODE request but support PIO0-2 3263 timings and no IORDY */ 3264 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3265 ign_dev_err = 1; 3266 } 3267 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3268 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3269 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3270 dev->dma_mode == XFER_MW_DMA_0 && 3271 (dev->id[63] >> 8) & 1) 3272 ign_dev_err = 1; 3273 3274 /* if the device is actually configured correctly, ignore dev err */ 3275 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3276 ign_dev_err = 1; 3277 3278 if (err_mask & AC_ERR_DEV) { 3279 if (!ign_dev_err) 3280 goto fail; 3281 else 3282 dev_err_whine = " (device error ignored)"; 3283 } 3284 3285 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3286 dev->xfer_shift, (int)dev->xfer_mode); 3287 3288 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3289 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3290 dev_err_whine); 3291 3292 return 0; 3293 3294 fail: 3295 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3296 "(err_mask=0x%x)\n", err_mask); 3297 return -EIO; 3298 } 3299 3300 /** 3301 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3302 * @link: link on which timings will be programmed 3303 * @r_failed_dev: out parameter for failed device 3304 * 3305 * Standard implementation of the function used to tune and set 3306 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3307 * ata_dev_set_mode() fails, pointer to the failing device is 3308 * returned in @r_failed_dev. 3309 * 3310 * LOCKING: 3311 * PCI/etc. bus probe sem. 3312 * 3313 * RETURNS: 3314 * 0 on success, negative errno otherwise 3315 */ 3316 3317 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3318 { 3319 struct ata_port *ap = link->ap; 3320 struct ata_device *dev; 3321 int rc = 0, used_dma = 0, found = 0; 3322 3323 /* step 1: calculate xfer_mask */ 3324 ata_link_for_each_dev(dev, link) { 3325 unsigned long pio_mask, dma_mask; 3326 unsigned int mode_mask; 3327 3328 if (!ata_dev_enabled(dev)) 3329 continue; 3330 3331 mode_mask = ATA_DMA_MASK_ATA; 3332 if (dev->class == ATA_DEV_ATAPI) 3333 mode_mask = ATA_DMA_MASK_ATAPI; 3334 else if (ata_id_is_cfa(dev->id)) 3335 mode_mask = ATA_DMA_MASK_CFA; 3336 3337 ata_dev_xfermask(dev); 3338 ata_force_xfermask(dev); 3339 3340 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3341 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3342 3343 if (libata_dma_mask & mode_mask) 3344 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3345 else 3346 dma_mask = 0; 3347 3348 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3349 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3350 3351 found = 1; 3352 if (ata_dma_enabled(dev)) 3353 used_dma = 1; 3354 } 3355 if (!found) 3356 goto out; 3357 3358 /* step 2: always set host PIO timings */ 3359 ata_link_for_each_dev(dev, link) { 3360 if (!ata_dev_enabled(dev)) 3361 continue; 3362 3363 if (dev->pio_mode == 0xff) { 3364 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3365 rc = -EINVAL; 3366 goto out; 3367 } 3368 3369 dev->xfer_mode = dev->pio_mode; 3370 dev->xfer_shift = ATA_SHIFT_PIO; 3371 if (ap->ops->set_piomode) 3372 ap->ops->set_piomode(ap, dev); 3373 } 3374 3375 /* step 3: set host DMA timings */ 3376 ata_link_for_each_dev(dev, link) { 3377 if (!ata_dev_enabled(dev) || !ata_dma_enabled(dev)) 3378 continue; 3379 3380 dev->xfer_mode = dev->dma_mode; 3381 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3382 if (ap->ops->set_dmamode) 3383 ap->ops->set_dmamode(ap, dev); 3384 } 3385 3386 /* step 4: update devices' xfer mode */ 3387 ata_link_for_each_dev(dev, link) { 3388 /* don't update suspended devices' xfer mode */ 3389 if (!ata_dev_enabled(dev)) 3390 continue; 3391 3392 rc = ata_dev_set_mode(dev); 3393 if (rc) 3394 goto out; 3395 } 3396 3397 /* Record simplex status. If we selected DMA then the other 3398 * host channels are not permitted to do so. 3399 */ 3400 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3401 ap->host->simplex_claimed = ap; 3402 3403 out: 3404 if (rc) 3405 *r_failed_dev = dev; 3406 return rc; 3407 } 3408 3409 /** 3410 * ata_wait_ready - wait for link to become ready 3411 * @link: link to be waited on 3412 * @deadline: deadline jiffies for the operation 3413 * @check_ready: callback to check link readiness 3414 * 3415 * Wait for @link to become ready. @check_ready should return 3416 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3417 * link doesn't seem to be occupied, other errno for other error 3418 * conditions. 3419 * 3420 * Transient -ENODEV conditions are allowed for 3421 * ATA_TMOUT_FF_WAIT. 3422 * 3423 * LOCKING: 3424 * EH context. 3425 * 3426 * RETURNS: 3427 * 0 if @linke is ready before @deadline; otherwise, -errno. 3428 */ 3429 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3430 int (*check_ready)(struct ata_link *link)) 3431 { 3432 unsigned long start = jiffies; 3433 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3434 int warned = 0; 3435 3436 /* Slave readiness can't be tested separately from master. On 3437 * M/S emulation configuration, this function should be called 3438 * only on the master and it will handle both master and slave. 3439 */ 3440 WARN_ON(link == link->ap->slave_link); 3441 3442 if (time_after(nodev_deadline, deadline)) 3443 nodev_deadline = deadline; 3444 3445 while (1) { 3446 unsigned long now = jiffies; 3447 int ready, tmp; 3448 3449 ready = tmp = check_ready(link); 3450 if (ready > 0) 3451 return 0; 3452 3453 /* -ENODEV could be transient. Ignore -ENODEV if link 3454 * is online. Also, some SATA devices take a long 3455 * time to clear 0xff after reset. For example, 3456 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum 3457 * GoVault needs even more than that. Wait for 3458 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline. 3459 * 3460 * Note that some PATA controllers (pata_ali) explode 3461 * if status register is read more than once when 3462 * there's no device attached. 3463 */ 3464 if (ready == -ENODEV) { 3465 if (ata_link_online(link)) 3466 ready = 0; 3467 else if ((link->ap->flags & ATA_FLAG_SATA) && 3468 !ata_link_offline(link) && 3469 time_before(now, nodev_deadline)) 3470 ready = 0; 3471 } 3472 3473 if (ready) 3474 return ready; 3475 if (time_after(now, deadline)) 3476 return -EBUSY; 3477 3478 if (!warned && time_after(now, start + 5 * HZ) && 3479 (deadline - now > 3 * HZ)) { 3480 ata_link_printk(link, KERN_WARNING, 3481 "link is slow to respond, please be patient " 3482 "(ready=%d)\n", tmp); 3483 warned = 1; 3484 } 3485 3486 msleep(50); 3487 } 3488 } 3489 3490 /** 3491 * ata_wait_after_reset - wait for link to become ready after reset 3492 * @link: link to be waited on 3493 * @deadline: deadline jiffies for the operation 3494 * @check_ready: callback to check link readiness 3495 * 3496 * Wait for @link to become ready after reset. 3497 * 3498 * LOCKING: 3499 * EH context. 3500 * 3501 * RETURNS: 3502 * 0 if @linke is ready before @deadline; otherwise, -errno. 3503 */ 3504 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3505 int (*check_ready)(struct ata_link *link)) 3506 { 3507 msleep(ATA_WAIT_AFTER_RESET); 3508 3509 return ata_wait_ready(link, deadline, check_ready); 3510 } 3511 3512 /** 3513 * sata_link_debounce - debounce SATA phy status 3514 * @link: ATA link to debounce SATA phy status for 3515 * @params: timing parameters { interval, duratinon, timeout } in msec 3516 * @deadline: deadline jiffies for the operation 3517 * 3518 * Make sure SStatus of @link reaches stable state, determined by 3519 * holding the same value where DET is not 1 for @duration polled 3520 * every @interval, before @timeout. Timeout constraints the 3521 * beginning of the stable state. Because DET gets stuck at 1 on 3522 * some controllers after hot unplugging, this functions waits 3523 * until timeout then returns 0 if DET is stable at 1. 3524 * 3525 * @timeout is further limited by @deadline. The sooner of the 3526 * two is used. 3527 * 3528 * LOCKING: 3529 * Kernel thread context (may sleep) 3530 * 3531 * RETURNS: 3532 * 0 on success, -errno on failure. 3533 */ 3534 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3535 unsigned long deadline) 3536 { 3537 unsigned long interval = params[0]; 3538 unsigned long duration = params[1]; 3539 unsigned long last_jiffies, t; 3540 u32 last, cur; 3541 int rc; 3542 3543 t = ata_deadline(jiffies, params[2]); 3544 if (time_before(t, deadline)) 3545 deadline = t; 3546 3547 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3548 return rc; 3549 cur &= 0xf; 3550 3551 last = cur; 3552 last_jiffies = jiffies; 3553 3554 while (1) { 3555 msleep(interval); 3556 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3557 return rc; 3558 cur &= 0xf; 3559 3560 /* DET stable? */ 3561 if (cur == last) { 3562 if (cur == 1 && time_before(jiffies, deadline)) 3563 continue; 3564 if (time_after(jiffies, 3565 ata_deadline(last_jiffies, duration))) 3566 return 0; 3567 continue; 3568 } 3569 3570 /* unstable, start over */ 3571 last = cur; 3572 last_jiffies = jiffies; 3573 3574 /* Check deadline. If debouncing failed, return 3575 * -EPIPE to tell upper layer to lower link speed. 3576 */ 3577 if (time_after(jiffies, deadline)) 3578 return -EPIPE; 3579 } 3580 } 3581 3582 /** 3583 * sata_link_resume - resume SATA link 3584 * @link: ATA link to resume SATA 3585 * @params: timing parameters { interval, duratinon, timeout } in msec 3586 * @deadline: deadline jiffies for the operation 3587 * 3588 * Resume SATA phy @link and debounce it. 3589 * 3590 * LOCKING: 3591 * Kernel thread context (may sleep) 3592 * 3593 * RETURNS: 3594 * 0 on success, -errno on failure. 3595 */ 3596 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3597 unsigned long deadline) 3598 { 3599 u32 scontrol, serror; 3600 int rc; 3601 3602 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3603 return rc; 3604 3605 scontrol = (scontrol & 0x0f0) | 0x300; 3606 3607 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3608 return rc; 3609 3610 /* Some PHYs react badly if SStatus is pounded immediately 3611 * after resuming. Delay 200ms before debouncing. 3612 */ 3613 msleep(200); 3614 3615 if ((rc = sata_link_debounce(link, params, deadline))) 3616 return rc; 3617 3618 /* clear SError, some PHYs require this even for SRST to work */ 3619 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3620 rc = sata_scr_write(link, SCR_ERROR, serror); 3621 3622 return rc != -EINVAL ? rc : 0; 3623 } 3624 3625 /** 3626 * ata_std_prereset - prepare for reset 3627 * @link: ATA link to be reset 3628 * @deadline: deadline jiffies for the operation 3629 * 3630 * @link is about to be reset. Initialize it. Failure from 3631 * prereset makes libata abort whole reset sequence and give up 3632 * that port, so prereset should be best-effort. It does its 3633 * best to prepare for reset sequence but if things go wrong, it 3634 * should just whine, not fail. 3635 * 3636 * LOCKING: 3637 * Kernel thread context (may sleep) 3638 * 3639 * RETURNS: 3640 * 0 on success, -errno otherwise. 3641 */ 3642 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3643 { 3644 struct ata_port *ap = link->ap; 3645 struct ata_eh_context *ehc = &link->eh_context; 3646 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3647 int rc; 3648 3649 /* if we're about to do hardreset, nothing more to do */ 3650 if (ehc->i.action & ATA_EH_HARDRESET) 3651 return 0; 3652 3653 /* if SATA, resume link */ 3654 if (ap->flags & ATA_FLAG_SATA) { 3655 rc = sata_link_resume(link, timing, deadline); 3656 /* whine about phy resume failure but proceed */ 3657 if (rc && rc != -EOPNOTSUPP) 3658 ata_link_printk(link, KERN_WARNING, "failed to resume " 3659 "link for reset (errno=%d)\n", rc); 3660 } 3661 3662 /* no point in trying softreset on offline link */ 3663 if (ata_phys_link_offline(link)) 3664 ehc->i.action &= ~ATA_EH_SOFTRESET; 3665 3666 return 0; 3667 } 3668 3669 /** 3670 * sata_link_hardreset - reset link via SATA phy reset 3671 * @link: link to reset 3672 * @timing: timing parameters { interval, duratinon, timeout } in msec 3673 * @deadline: deadline jiffies for the operation 3674 * @online: optional out parameter indicating link onlineness 3675 * @check_ready: optional callback to check link readiness 3676 * 3677 * SATA phy-reset @link using DET bits of SControl register. 3678 * After hardreset, link readiness is waited upon using 3679 * ata_wait_ready() if @check_ready is specified. LLDs are 3680 * allowed to not specify @check_ready and wait itself after this 3681 * function returns. Device classification is LLD's 3682 * responsibility. 3683 * 3684 * *@online is set to one iff reset succeeded and @link is online 3685 * after reset. 3686 * 3687 * LOCKING: 3688 * Kernel thread context (may sleep) 3689 * 3690 * RETURNS: 3691 * 0 on success, -errno otherwise. 3692 */ 3693 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3694 unsigned long deadline, 3695 bool *online, int (*check_ready)(struct ata_link *)) 3696 { 3697 u32 scontrol; 3698 int rc; 3699 3700 DPRINTK("ENTER\n"); 3701 3702 if (online) 3703 *online = false; 3704 3705 if (sata_set_spd_needed(link)) { 3706 /* SATA spec says nothing about how to reconfigure 3707 * spd. To be on the safe side, turn off phy during 3708 * reconfiguration. This works for at least ICH7 AHCI 3709 * and Sil3124. 3710 */ 3711 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3712 goto out; 3713 3714 scontrol = (scontrol & 0x0f0) | 0x304; 3715 3716 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3717 goto out; 3718 3719 sata_set_spd(link); 3720 } 3721 3722 /* issue phy wake/reset */ 3723 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3724 goto out; 3725 3726 scontrol = (scontrol & 0x0f0) | 0x301; 3727 3728 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3729 goto out; 3730 3731 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3732 * 10.4.2 says at least 1 ms. 3733 */ 3734 msleep(1); 3735 3736 /* bring link back */ 3737 rc = sata_link_resume(link, timing, deadline); 3738 if (rc) 3739 goto out; 3740 /* if link is offline nothing more to do */ 3741 if (ata_phys_link_offline(link)) 3742 goto out; 3743 3744 /* Link is online. From this point, -ENODEV too is an error. */ 3745 if (online) 3746 *online = true; 3747 3748 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3749 /* If PMP is supported, we have to do follow-up SRST. 3750 * Some PMPs don't send D2H Reg FIS after hardreset if 3751 * the first port is empty. Wait only for 3752 * ATA_TMOUT_PMP_SRST_WAIT. 3753 */ 3754 if (check_ready) { 3755 unsigned long pmp_deadline; 3756 3757 pmp_deadline = ata_deadline(jiffies, 3758 ATA_TMOUT_PMP_SRST_WAIT); 3759 if (time_after(pmp_deadline, deadline)) 3760 pmp_deadline = deadline; 3761 ata_wait_ready(link, pmp_deadline, check_ready); 3762 } 3763 rc = -EAGAIN; 3764 goto out; 3765 } 3766 3767 rc = 0; 3768 if (check_ready) 3769 rc = ata_wait_ready(link, deadline, check_ready); 3770 out: 3771 if (rc && rc != -EAGAIN) { 3772 /* online is set iff link is online && reset succeeded */ 3773 if (online) 3774 *online = false; 3775 ata_link_printk(link, KERN_ERR, 3776 "COMRESET failed (errno=%d)\n", rc); 3777 } 3778 DPRINTK("EXIT, rc=%d\n", rc); 3779 return rc; 3780 } 3781 3782 /** 3783 * sata_std_hardreset - COMRESET w/o waiting or classification 3784 * @link: link to reset 3785 * @class: resulting class of attached device 3786 * @deadline: deadline jiffies for the operation 3787 * 3788 * Standard SATA COMRESET w/o waiting or classification. 3789 * 3790 * LOCKING: 3791 * Kernel thread context (may sleep) 3792 * 3793 * RETURNS: 3794 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3795 */ 3796 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3797 unsigned long deadline) 3798 { 3799 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3800 bool online; 3801 int rc; 3802 3803 /* do hardreset */ 3804 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3805 return online ? -EAGAIN : rc; 3806 } 3807 3808 /** 3809 * ata_std_postreset - standard postreset callback 3810 * @link: the target ata_link 3811 * @classes: classes of attached devices 3812 * 3813 * This function is invoked after a successful reset. Note that 3814 * the device might have been reset more than once using 3815 * different reset methods before postreset is invoked. 3816 * 3817 * LOCKING: 3818 * Kernel thread context (may sleep) 3819 */ 3820 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3821 { 3822 u32 serror; 3823 3824 DPRINTK("ENTER\n"); 3825 3826 /* reset complete, clear SError */ 3827 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3828 sata_scr_write(link, SCR_ERROR, serror); 3829 3830 /* print link status */ 3831 sata_print_link_status(link); 3832 3833 DPRINTK("EXIT\n"); 3834 } 3835 3836 /** 3837 * ata_dev_same_device - Determine whether new ID matches configured device 3838 * @dev: device to compare against 3839 * @new_class: class of the new device 3840 * @new_id: IDENTIFY page of the new device 3841 * 3842 * Compare @new_class and @new_id against @dev and determine 3843 * whether @dev is the device indicated by @new_class and 3844 * @new_id. 3845 * 3846 * LOCKING: 3847 * None. 3848 * 3849 * RETURNS: 3850 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3851 */ 3852 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3853 const u16 *new_id) 3854 { 3855 const u16 *old_id = dev->id; 3856 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3857 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3858 3859 if (dev->class != new_class) { 3860 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3861 dev->class, new_class); 3862 return 0; 3863 } 3864 3865 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3866 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3867 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3868 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3869 3870 if (strcmp(model[0], model[1])) { 3871 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3872 "'%s' != '%s'\n", model[0], model[1]); 3873 return 0; 3874 } 3875 3876 if (strcmp(serial[0], serial[1])) { 3877 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3878 "'%s' != '%s'\n", serial[0], serial[1]); 3879 return 0; 3880 } 3881 3882 return 1; 3883 } 3884 3885 /** 3886 * ata_dev_reread_id - Re-read IDENTIFY data 3887 * @dev: target ATA device 3888 * @readid_flags: read ID flags 3889 * 3890 * Re-read IDENTIFY page and make sure @dev is still attached to 3891 * the port. 3892 * 3893 * LOCKING: 3894 * Kernel thread context (may sleep) 3895 * 3896 * RETURNS: 3897 * 0 on success, negative errno otherwise 3898 */ 3899 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3900 { 3901 unsigned int class = dev->class; 3902 u16 *id = (void *)dev->link->ap->sector_buf; 3903 int rc; 3904 3905 /* read ID data */ 3906 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3907 if (rc) 3908 return rc; 3909 3910 /* is the device still there? */ 3911 if (!ata_dev_same_device(dev, class, id)) 3912 return -ENODEV; 3913 3914 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3915 return 0; 3916 } 3917 3918 /** 3919 * ata_dev_revalidate - Revalidate ATA device 3920 * @dev: device to revalidate 3921 * @new_class: new class code 3922 * @readid_flags: read ID flags 3923 * 3924 * Re-read IDENTIFY page, make sure @dev is still attached to the 3925 * port and reconfigure it according to the new IDENTIFY page. 3926 * 3927 * LOCKING: 3928 * Kernel thread context (may sleep) 3929 * 3930 * RETURNS: 3931 * 0 on success, negative errno otherwise 3932 */ 3933 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3934 unsigned int readid_flags) 3935 { 3936 u64 n_sectors = dev->n_sectors; 3937 int rc; 3938 3939 if (!ata_dev_enabled(dev)) 3940 return -ENODEV; 3941 3942 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3943 if (ata_class_enabled(new_class) && 3944 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) { 3945 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 3946 dev->class, new_class); 3947 rc = -ENODEV; 3948 goto fail; 3949 } 3950 3951 /* re-read ID */ 3952 rc = ata_dev_reread_id(dev, readid_flags); 3953 if (rc) 3954 goto fail; 3955 3956 /* configure device according to the new ID */ 3957 rc = ata_dev_configure(dev); 3958 if (rc) 3959 goto fail; 3960 3961 /* verify n_sectors hasn't changed */ 3962 if (dev->class == ATA_DEV_ATA && n_sectors && 3963 dev->n_sectors != n_sectors) { 3964 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3965 "%llu != %llu\n", 3966 (unsigned long long)n_sectors, 3967 (unsigned long long)dev->n_sectors); 3968 3969 /* restore original n_sectors */ 3970 dev->n_sectors = n_sectors; 3971 3972 rc = -ENODEV; 3973 goto fail; 3974 } 3975 3976 return 0; 3977 3978 fail: 3979 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3980 return rc; 3981 } 3982 3983 struct ata_blacklist_entry { 3984 const char *model_num; 3985 const char *model_rev; 3986 unsigned long horkage; 3987 }; 3988 3989 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3990 /* Devices with DMA related problems under Linux */ 3991 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3992 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3993 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3994 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3995 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3996 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3997 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3998 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3999 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4000 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 4001 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 4002 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4003 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4004 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4005 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4006 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4007 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 4008 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 4009 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4010 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4011 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4012 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4013 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4014 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4015 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4016 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4017 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4018 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4019 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4020 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4021 /* Odd clown on sil3726/4726 PMPs */ 4022 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4023 4024 /* Weird ATAPI devices */ 4025 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4026 4027 /* Devices we expect to fail diagnostics */ 4028 4029 /* Devices where NCQ should be avoided */ 4030 /* NCQ is slow */ 4031 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4032 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4033 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4034 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4035 /* NCQ is broken */ 4036 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4037 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4038 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4039 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4040 4041 /* Blacklist entries taken from Silicon Image 3124/3132 4042 Windows driver .inf file - also several Linux problem reports */ 4043 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4044 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4045 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4046 4047 /* devices which puke on READ_NATIVE_MAX */ 4048 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4049 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4050 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4051 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4052 4053 /* Devices which report 1 sector over size HPA */ 4054 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4055 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4056 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4057 4058 /* Devices which get the IVB wrong */ 4059 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4060 /* Maybe we should just blacklist TSSTcorp... */ 4061 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 4062 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 4063 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 4064 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 4065 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 4066 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 4067 4068 /* End Marker */ 4069 { } 4070 }; 4071 4072 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 4073 { 4074 const char *p; 4075 int len; 4076 4077 /* 4078 * check for trailing wildcard: *\0 4079 */ 4080 p = strchr(patt, wildchar); 4081 if (p && ((*(p + 1)) == 0)) 4082 len = p - patt; 4083 else { 4084 len = strlen(name); 4085 if (!len) { 4086 if (!*patt) 4087 return 0; 4088 return -1; 4089 } 4090 } 4091 4092 return strncmp(patt, name, len); 4093 } 4094 4095 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4096 { 4097 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4098 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4099 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4100 4101 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4102 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4103 4104 while (ad->model_num) { 4105 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 4106 if (ad->model_rev == NULL) 4107 return ad->horkage; 4108 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 4109 return ad->horkage; 4110 } 4111 ad++; 4112 } 4113 return 0; 4114 } 4115 4116 static int ata_dma_blacklisted(const struct ata_device *dev) 4117 { 4118 /* We don't support polling DMA. 4119 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4120 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4121 */ 4122 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4123 (dev->flags & ATA_DFLAG_CDB_INTR)) 4124 return 1; 4125 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4126 } 4127 4128 /** 4129 * ata_is_40wire - check drive side detection 4130 * @dev: device 4131 * 4132 * Perform drive side detection decoding, allowing for device vendors 4133 * who can't follow the documentation. 4134 */ 4135 4136 static int ata_is_40wire(struct ata_device *dev) 4137 { 4138 if (dev->horkage & ATA_HORKAGE_IVB) 4139 return ata_drive_40wire_relaxed(dev->id); 4140 return ata_drive_40wire(dev->id); 4141 } 4142 4143 /** 4144 * cable_is_40wire - 40/80/SATA decider 4145 * @ap: port to consider 4146 * 4147 * This function encapsulates the policy for speed management 4148 * in one place. At the moment we don't cache the result but 4149 * there is a good case for setting ap->cbl to the result when 4150 * we are called with unknown cables (and figuring out if it 4151 * impacts hotplug at all). 4152 * 4153 * Return 1 if the cable appears to be 40 wire. 4154 */ 4155 4156 static int cable_is_40wire(struct ata_port *ap) 4157 { 4158 struct ata_link *link; 4159 struct ata_device *dev; 4160 4161 /* If the controller thinks we are 40 wire, we are */ 4162 if (ap->cbl == ATA_CBL_PATA40) 4163 return 1; 4164 /* If the controller thinks we are 80 wire, we are */ 4165 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4166 return 0; 4167 /* If the system is known to be 40 wire short cable (eg laptop), 4168 then we allow 80 wire modes even if the drive isn't sure */ 4169 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4170 return 0; 4171 /* If the controller doesn't know we scan 4172 4173 - Note: We look for all 40 wire detects at this point. 4174 Any 80 wire detect is taken to be 80 wire cable 4175 because 4176 - In many setups only the one drive (slave if present) 4177 will give a valid detect 4178 - If you have a non detect capable drive you don't 4179 want it to colour the choice 4180 */ 4181 ata_port_for_each_link(link, ap) { 4182 ata_link_for_each_dev(dev, link) { 4183 if (!ata_is_40wire(dev)) 4184 return 0; 4185 } 4186 } 4187 return 1; 4188 } 4189 4190 /** 4191 * ata_dev_xfermask - Compute supported xfermask of the given device 4192 * @dev: Device to compute xfermask for 4193 * 4194 * Compute supported xfermask of @dev and store it in 4195 * dev->*_mask. This function is responsible for applying all 4196 * known limits including host controller limits, device 4197 * blacklist, etc... 4198 * 4199 * LOCKING: 4200 * None. 4201 */ 4202 static void ata_dev_xfermask(struct ata_device *dev) 4203 { 4204 struct ata_link *link = dev->link; 4205 struct ata_port *ap = link->ap; 4206 struct ata_host *host = ap->host; 4207 unsigned long xfer_mask; 4208 4209 /* controller modes available */ 4210 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4211 ap->mwdma_mask, ap->udma_mask); 4212 4213 /* drive modes available */ 4214 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4215 dev->mwdma_mask, dev->udma_mask); 4216 xfer_mask &= ata_id_xfermask(dev->id); 4217 4218 /* 4219 * CFA Advanced TrueIDE timings are not allowed on a shared 4220 * cable 4221 */ 4222 if (ata_dev_pair(dev)) { 4223 /* No PIO5 or PIO6 */ 4224 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4225 /* No MWDMA3 or MWDMA 4 */ 4226 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4227 } 4228 4229 if (ata_dma_blacklisted(dev)) { 4230 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4231 ata_dev_printk(dev, KERN_WARNING, 4232 "device is on DMA blacklist, disabling DMA\n"); 4233 } 4234 4235 if ((host->flags & ATA_HOST_SIMPLEX) && 4236 host->simplex_claimed && host->simplex_claimed != ap) { 4237 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4238 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4239 "other device, disabling DMA\n"); 4240 } 4241 4242 if (ap->flags & ATA_FLAG_NO_IORDY) 4243 xfer_mask &= ata_pio_mask_no_iordy(dev); 4244 4245 if (ap->ops->mode_filter) 4246 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4247 4248 /* Apply cable rule here. Don't apply it early because when 4249 * we handle hot plug the cable type can itself change. 4250 * Check this last so that we know if the transfer rate was 4251 * solely limited by the cable. 4252 * Unknown or 80 wire cables reported host side are checked 4253 * drive side as well. Cases where we know a 40wire cable 4254 * is used safely for 80 are not checked here. 4255 */ 4256 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4257 /* UDMA/44 or higher would be available */ 4258 if (cable_is_40wire(ap)) { 4259 ata_dev_printk(dev, KERN_WARNING, 4260 "limited to UDMA/33 due to 40-wire cable\n"); 4261 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4262 } 4263 4264 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4265 &dev->mwdma_mask, &dev->udma_mask); 4266 } 4267 4268 /** 4269 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4270 * @dev: Device to which command will be sent 4271 * 4272 * Issue SET FEATURES - XFER MODE command to device @dev 4273 * on port @ap. 4274 * 4275 * LOCKING: 4276 * PCI/etc. bus probe sem. 4277 * 4278 * RETURNS: 4279 * 0 on success, AC_ERR_* mask otherwise. 4280 */ 4281 4282 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4283 { 4284 struct ata_taskfile tf; 4285 unsigned int err_mask; 4286 4287 /* set up set-features taskfile */ 4288 DPRINTK("set features - xfer mode\n"); 4289 4290 /* Some controllers and ATAPI devices show flaky interrupt 4291 * behavior after setting xfer mode. Use polling instead. 4292 */ 4293 ata_tf_init(dev, &tf); 4294 tf.command = ATA_CMD_SET_FEATURES; 4295 tf.feature = SETFEATURES_XFER; 4296 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4297 tf.protocol = ATA_PROT_NODATA; 4298 /* If we are using IORDY we must send the mode setting command */ 4299 if (ata_pio_need_iordy(dev)) 4300 tf.nsect = dev->xfer_mode; 4301 /* If the device has IORDY and the controller does not - turn it off */ 4302 else if (ata_id_has_iordy(dev->id)) 4303 tf.nsect = 0x01; 4304 else /* In the ancient relic department - skip all of this */ 4305 return 0; 4306 4307 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4308 4309 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4310 return err_mask; 4311 } 4312 /** 4313 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4314 * @dev: Device to which command will be sent 4315 * @enable: Whether to enable or disable the feature 4316 * @feature: The sector count represents the feature to set 4317 * 4318 * Issue SET FEATURES - SATA FEATURES command to device @dev 4319 * on port @ap with sector count 4320 * 4321 * LOCKING: 4322 * PCI/etc. bus probe sem. 4323 * 4324 * RETURNS: 4325 * 0 on success, AC_ERR_* mask otherwise. 4326 */ 4327 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4328 u8 feature) 4329 { 4330 struct ata_taskfile tf; 4331 unsigned int err_mask; 4332 4333 /* set up set-features taskfile */ 4334 DPRINTK("set features - SATA features\n"); 4335 4336 ata_tf_init(dev, &tf); 4337 tf.command = ATA_CMD_SET_FEATURES; 4338 tf.feature = enable; 4339 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4340 tf.protocol = ATA_PROT_NODATA; 4341 tf.nsect = feature; 4342 4343 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4344 4345 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4346 return err_mask; 4347 } 4348 4349 /** 4350 * ata_dev_init_params - Issue INIT DEV PARAMS command 4351 * @dev: Device to which command will be sent 4352 * @heads: Number of heads (taskfile parameter) 4353 * @sectors: Number of sectors (taskfile parameter) 4354 * 4355 * LOCKING: 4356 * Kernel thread context (may sleep) 4357 * 4358 * RETURNS: 4359 * 0 on success, AC_ERR_* mask otherwise. 4360 */ 4361 static unsigned int ata_dev_init_params(struct ata_device *dev, 4362 u16 heads, u16 sectors) 4363 { 4364 struct ata_taskfile tf; 4365 unsigned int err_mask; 4366 4367 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4368 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4369 return AC_ERR_INVALID; 4370 4371 /* set up init dev params taskfile */ 4372 DPRINTK("init dev params \n"); 4373 4374 ata_tf_init(dev, &tf); 4375 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4376 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4377 tf.protocol = ATA_PROT_NODATA; 4378 tf.nsect = sectors; 4379 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4380 4381 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4382 /* A clean abort indicates an original or just out of spec drive 4383 and we should continue as we issue the setup based on the 4384 drive reported working geometry */ 4385 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4386 err_mask = 0; 4387 4388 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4389 return err_mask; 4390 } 4391 4392 /** 4393 * ata_sg_clean - Unmap DMA memory associated with command 4394 * @qc: Command containing DMA memory to be released 4395 * 4396 * Unmap all mapped DMA memory associated with this command. 4397 * 4398 * LOCKING: 4399 * spin_lock_irqsave(host lock) 4400 */ 4401 void ata_sg_clean(struct ata_queued_cmd *qc) 4402 { 4403 struct ata_port *ap = qc->ap; 4404 struct scatterlist *sg = qc->sg; 4405 int dir = qc->dma_dir; 4406 4407 WARN_ON(sg == NULL); 4408 4409 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4410 4411 if (qc->n_elem) 4412 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 4413 4414 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4415 qc->sg = NULL; 4416 } 4417 4418 /** 4419 * atapi_check_dma - Check whether ATAPI DMA can be supported 4420 * @qc: Metadata associated with taskfile to check 4421 * 4422 * Allow low-level driver to filter ATA PACKET commands, returning 4423 * a status indicating whether or not it is OK to use DMA for the 4424 * supplied PACKET command. 4425 * 4426 * LOCKING: 4427 * spin_lock_irqsave(host lock) 4428 * 4429 * RETURNS: 0 when ATAPI DMA can be used 4430 * nonzero otherwise 4431 */ 4432 int atapi_check_dma(struct ata_queued_cmd *qc) 4433 { 4434 struct ata_port *ap = qc->ap; 4435 4436 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4437 * few ATAPI devices choke on such DMA requests. 4438 */ 4439 if (unlikely(qc->nbytes & 15)) 4440 return 1; 4441 4442 if (ap->ops->check_atapi_dma) 4443 return ap->ops->check_atapi_dma(qc); 4444 4445 return 0; 4446 } 4447 4448 /** 4449 * ata_std_qc_defer - Check whether a qc needs to be deferred 4450 * @qc: ATA command in question 4451 * 4452 * Non-NCQ commands cannot run with any other command, NCQ or 4453 * not. As upper layer only knows the queue depth, we are 4454 * responsible for maintaining exclusion. This function checks 4455 * whether a new command @qc can be issued. 4456 * 4457 * LOCKING: 4458 * spin_lock_irqsave(host lock) 4459 * 4460 * RETURNS: 4461 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4462 */ 4463 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4464 { 4465 struct ata_link *link = qc->dev->link; 4466 4467 if (qc->tf.protocol == ATA_PROT_NCQ) { 4468 if (!ata_tag_valid(link->active_tag)) 4469 return 0; 4470 } else { 4471 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4472 return 0; 4473 } 4474 4475 return ATA_DEFER_LINK; 4476 } 4477 4478 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4479 4480 /** 4481 * ata_sg_init - Associate command with scatter-gather table. 4482 * @qc: Command to be associated 4483 * @sg: Scatter-gather table. 4484 * @n_elem: Number of elements in s/g table. 4485 * 4486 * Initialize the data-related elements of queued_cmd @qc 4487 * to point to a scatter-gather table @sg, containing @n_elem 4488 * elements. 4489 * 4490 * LOCKING: 4491 * spin_lock_irqsave(host lock) 4492 */ 4493 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4494 unsigned int n_elem) 4495 { 4496 qc->sg = sg; 4497 qc->n_elem = n_elem; 4498 qc->cursg = qc->sg; 4499 } 4500 4501 /** 4502 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4503 * @qc: Command with scatter-gather table to be mapped. 4504 * 4505 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4506 * 4507 * LOCKING: 4508 * spin_lock_irqsave(host lock) 4509 * 4510 * RETURNS: 4511 * Zero on success, negative on error. 4512 * 4513 */ 4514 static int ata_sg_setup(struct ata_queued_cmd *qc) 4515 { 4516 struct ata_port *ap = qc->ap; 4517 unsigned int n_elem; 4518 4519 VPRINTK("ENTER, ata%u\n", ap->print_id); 4520 4521 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4522 if (n_elem < 1) 4523 return -1; 4524 4525 DPRINTK("%d sg elements mapped\n", n_elem); 4526 4527 qc->n_elem = n_elem; 4528 qc->flags |= ATA_QCFLAG_DMAMAP; 4529 4530 return 0; 4531 } 4532 4533 /** 4534 * swap_buf_le16 - swap halves of 16-bit words in place 4535 * @buf: Buffer to swap 4536 * @buf_words: Number of 16-bit words in buffer. 4537 * 4538 * Swap halves of 16-bit words if needed to convert from 4539 * little-endian byte order to native cpu byte order, or 4540 * vice-versa. 4541 * 4542 * LOCKING: 4543 * Inherited from caller. 4544 */ 4545 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4546 { 4547 #ifdef __BIG_ENDIAN 4548 unsigned int i; 4549 4550 for (i = 0; i < buf_words; i++) 4551 buf[i] = le16_to_cpu(buf[i]); 4552 #endif /* __BIG_ENDIAN */ 4553 } 4554 4555 /** 4556 * ata_qc_new - Request an available ATA command, for queueing 4557 * @ap: Port associated with device @dev 4558 * @dev: Device from whom we request an available command structure 4559 * 4560 * LOCKING: 4561 * None. 4562 */ 4563 4564 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4565 { 4566 struct ata_queued_cmd *qc = NULL; 4567 unsigned int i; 4568 4569 /* no command while frozen */ 4570 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4571 return NULL; 4572 4573 /* the last tag is reserved for internal command. */ 4574 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4575 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4576 qc = __ata_qc_from_tag(ap, i); 4577 break; 4578 } 4579 4580 if (qc) 4581 qc->tag = i; 4582 4583 return qc; 4584 } 4585 4586 /** 4587 * ata_qc_new_init - Request an available ATA command, and initialize it 4588 * @dev: Device from whom we request an available command structure 4589 * 4590 * LOCKING: 4591 * None. 4592 */ 4593 4594 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4595 { 4596 struct ata_port *ap = dev->link->ap; 4597 struct ata_queued_cmd *qc; 4598 4599 qc = ata_qc_new(ap); 4600 if (qc) { 4601 qc->scsicmd = NULL; 4602 qc->ap = ap; 4603 qc->dev = dev; 4604 4605 ata_qc_reinit(qc); 4606 } 4607 4608 return qc; 4609 } 4610 4611 /** 4612 * ata_qc_free - free unused ata_queued_cmd 4613 * @qc: Command to complete 4614 * 4615 * Designed to free unused ata_queued_cmd object 4616 * in case something prevents using it. 4617 * 4618 * LOCKING: 4619 * spin_lock_irqsave(host lock) 4620 */ 4621 void ata_qc_free(struct ata_queued_cmd *qc) 4622 { 4623 struct ata_port *ap = qc->ap; 4624 unsigned int tag; 4625 4626 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4627 4628 qc->flags = 0; 4629 tag = qc->tag; 4630 if (likely(ata_tag_valid(tag))) { 4631 qc->tag = ATA_TAG_POISON; 4632 clear_bit(tag, &ap->qc_allocated); 4633 } 4634 } 4635 4636 void __ata_qc_complete(struct ata_queued_cmd *qc) 4637 { 4638 struct ata_port *ap = qc->ap; 4639 struct ata_link *link = qc->dev->link; 4640 4641 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4642 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4643 4644 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4645 ata_sg_clean(qc); 4646 4647 /* command should be marked inactive atomically with qc completion */ 4648 if (qc->tf.protocol == ATA_PROT_NCQ) { 4649 link->sactive &= ~(1 << qc->tag); 4650 if (!link->sactive) 4651 ap->nr_active_links--; 4652 } else { 4653 link->active_tag = ATA_TAG_POISON; 4654 ap->nr_active_links--; 4655 } 4656 4657 /* clear exclusive status */ 4658 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4659 ap->excl_link == link)) 4660 ap->excl_link = NULL; 4661 4662 /* atapi: mark qc as inactive to prevent the interrupt handler 4663 * from completing the command twice later, before the error handler 4664 * is called. (when rc != 0 and atapi request sense is needed) 4665 */ 4666 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4667 ap->qc_active &= ~(1 << qc->tag); 4668 4669 /* call completion callback */ 4670 qc->complete_fn(qc); 4671 } 4672 4673 static void fill_result_tf(struct ata_queued_cmd *qc) 4674 { 4675 struct ata_port *ap = qc->ap; 4676 4677 qc->result_tf.flags = qc->tf.flags; 4678 ap->ops->qc_fill_rtf(qc); 4679 } 4680 4681 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4682 { 4683 struct ata_device *dev = qc->dev; 4684 4685 if (ata_tag_internal(qc->tag)) 4686 return; 4687 4688 if (ata_is_nodata(qc->tf.protocol)) 4689 return; 4690 4691 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4692 return; 4693 4694 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4695 } 4696 4697 /** 4698 * ata_qc_complete - Complete an active ATA command 4699 * @qc: Command to complete 4700 * @err_mask: ATA Status register contents 4701 * 4702 * Indicate to the mid and upper layers that an ATA 4703 * command has completed, with either an ok or not-ok status. 4704 * 4705 * LOCKING: 4706 * spin_lock_irqsave(host lock) 4707 */ 4708 void ata_qc_complete(struct ata_queued_cmd *qc) 4709 { 4710 struct ata_port *ap = qc->ap; 4711 4712 /* XXX: New EH and old EH use different mechanisms to 4713 * synchronize EH with regular execution path. 4714 * 4715 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4716 * Normal execution path is responsible for not accessing a 4717 * failed qc. libata core enforces the rule by returning NULL 4718 * from ata_qc_from_tag() for failed qcs. 4719 * 4720 * Old EH depends on ata_qc_complete() nullifying completion 4721 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4722 * not synchronize with interrupt handler. Only PIO task is 4723 * taken care of. 4724 */ 4725 if (ap->ops->error_handler) { 4726 struct ata_device *dev = qc->dev; 4727 struct ata_eh_info *ehi = &dev->link->eh_info; 4728 4729 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 4730 4731 if (unlikely(qc->err_mask)) 4732 qc->flags |= ATA_QCFLAG_FAILED; 4733 4734 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4735 if (!ata_tag_internal(qc->tag)) { 4736 /* always fill result TF for failed qc */ 4737 fill_result_tf(qc); 4738 ata_qc_schedule_eh(qc); 4739 return; 4740 } 4741 } 4742 4743 /* read result TF if requested */ 4744 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4745 fill_result_tf(qc); 4746 4747 /* Some commands need post-processing after successful 4748 * completion. 4749 */ 4750 switch (qc->tf.command) { 4751 case ATA_CMD_SET_FEATURES: 4752 if (qc->tf.feature != SETFEATURES_WC_ON && 4753 qc->tf.feature != SETFEATURES_WC_OFF) 4754 break; 4755 /* fall through */ 4756 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4757 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4758 /* revalidate device */ 4759 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4760 ata_port_schedule_eh(ap); 4761 break; 4762 4763 case ATA_CMD_SLEEP: 4764 dev->flags |= ATA_DFLAG_SLEEPING; 4765 break; 4766 } 4767 4768 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4769 ata_verify_xfer(qc); 4770 4771 __ata_qc_complete(qc); 4772 } else { 4773 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4774 return; 4775 4776 /* read result TF if failed or requested */ 4777 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4778 fill_result_tf(qc); 4779 4780 __ata_qc_complete(qc); 4781 } 4782 } 4783 4784 /** 4785 * ata_qc_complete_multiple - Complete multiple qcs successfully 4786 * @ap: port in question 4787 * @qc_active: new qc_active mask 4788 * 4789 * Complete in-flight commands. This functions is meant to be 4790 * called from low-level driver's interrupt routine to complete 4791 * requests normally. ap->qc_active and @qc_active is compared 4792 * and commands are completed accordingly. 4793 * 4794 * LOCKING: 4795 * spin_lock_irqsave(host lock) 4796 * 4797 * RETURNS: 4798 * Number of completed commands on success, -errno otherwise. 4799 */ 4800 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4801 { 4802 int nr_done = 0; 4803 u32 done_mask; 4804 int i; 4805 4806 done_mask = ap->qc_active ^ qc_active; 4807 4808 if (unlikely(done_mask & qc_active)) { 4809 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 4810 "(%08x->%08x)\n", ap->qc_active, qc_active); 4811 return -EINVAL; 4812 } 4813 4814 for (i = 0; i < ATA_MAX_QUEUE; i++) { 4815 struct ata_queued_cmd *qc; 4816 4817 if (!(done_mask & (1 << i))) 4818 continue; 4819 4820 if ((qc = ata_qc_from_tag(ap, i))) { 4821 ata_qc_complete(qc); 4822 nr_done++; 4823 } 4824 } 4825 4826 return nr_done; 4827 } 4828 4829 /** 4830 * ata_qc_issue - issue taskfile to device 4831 * @qc: command to issue to device 4832 * 4833 * Prepare an ATA command to submission to device. 4834 * This includes mapping the data into a DMA-able 4835 * area, filling in the S/G table, and finally 4836 * writing the taskfile to hardware, starting the command. 4837 * 4838 * LOCKING: 4839 * spin_lock_irqsave(host lock) 4840 */ 4841 void ata_qc_issue(struct ata_queued_cmd *qc) 4842 { 4843 struct ata_port *ap = qc->ap; 4844 struct ata_link *link = qc->dev->link; 4845 u8 prot = qc->tf.protocol; 4846 4847 /* Make sure only one non-NCQ command is outstanding. The 4848 * check is skipped for old EH because it reuses active qc to 4849 * request ATAPI sense. 4850 */ 4851 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4852 4853 if (ata_is_ncq(prot)) { 4854 WARN_ON(link->sactive & (1 << qc->tag)); 4855 4856 if (!link->sactive) 4857 ap->nr_active_links++; 4858 link->sactive |= 1 << qc->tag; 4859 } else { 4860 WARN_ON(link->sactive); 4861 4862 ap->nr_active_links++; 4863 link->active_tag = qc->tag; 4864 } 4865 4866 qc->flags |= ATA_QCFLAG_ACTIVE; 4867 ap->qc_active |= 1 << qc->tag; 4868 4869 /* We guarantee to LLDs that they will have at least one 4870 * non-zero sg if the command is a data command. 4871 */ 4872 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 4873 4874 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4875 (ap->flags & ATA_FLAG_PIO_DMA))) 4876 if (ata_sg_setup(qc)) 4877 goto sg_err; 4878 4879 /* if device is sleeping, schedule reset and abort the link */ 4880 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4881 link->eh_info.action |= ATA_EH_RESET; 4882 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4883 ata_link_abort(link); 4884 return; 4885 } 4886 4887 ap->ops->qc_prep(qc); 4888 4889 qc->err_mask |= ap->ops->qc_issue(qc); 4890 if (unlikely(qc->err_mask)) 4891 goto err; 4892 return; 4893 4894 sg_err: 4895 qc->err_mask |= AC_ERR_SYSTEM; 4896 err: 4897 ata_qc_complete(qc); 4898 } 4899 4900 /** 4901 * sata_scr_valid - test whether SCRs are accessible 4902 * @link: ATA link to test SCR accessibility for 4903 * 4904 * Test whether SCRs are accessible for @link. 4905 * 4906 * LOCKING: 4907 * None. 4908 * 4909 * RETURNS: 4910 * 1 if SCRs are accessible, 0 otherwise. 4911 */ 4912 int sata_scr_valid(struct ata_link *link) 4913 { 4914 struct ata_port *ap = link->ap; 4915 4916 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 4917 } 4918 4919 /** 4920 * sata_scr_read - read SCR register of the specified port 4921 * @link: ATA link to read SCR for 4922 * @reg: SCR to read 4923 * @val: Place to store read value 4924 * 4925 * Read SCR register @reg of @link into *@val. This function is 4926 * guaranteed to succeed if @link is ap->link, the cable type of 4927 * the port is SATA and the port implements ->scr_read. 4928 * 4929 * LOCKING: 4930 * None if @link is ap->link. Kernel thread context otherwise. 4931 * 4932 * RETURNS: 4933 * 0 on success, negative errno on failure. 4934 */ 4935 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 4936 { 4937 if (ata_is_host_link(link)) { 4938 if (sata_scr_valid(link)) 4939 return link->ap->ops->scr_read(link, reg, val); 4940 return -EOPNOTSUPP; 4941 } 4942 4943 return sata_pmp_scr_read(link, reg, val); 4944 } 4945 4946 /** 4947 * sata_scr_write - write SCR register of the specified port 4948 * @link: ATA link to write SCR for 4949 * @reg: SCR to write 4950 * @val: value to write 4951 * 4952 * Write @val to SCR register @reg of @link. This function is 4953 * guaranteed to succeed if @link is ap->link, the cable type of 4954 * the port is SATA and the port implements ->scr_read. 4955 * 4956 * LOCKING: 4957 * None if @link is ap->link. Kernel thread context otherwise. 4958 * 4959 * RETURNS: 4960 * 0 on success, negative errno on failure. 4961 */ 4962 int sata_scr_write(struct ata_link *link, int reg, u32 val) 4963 { 4964 if (ata_is_host_link(link)) { 4965 if (sata_scr_valid(link)) 4966 return link->ap->ops->scr_write(link, reg, val); 4967 return -EOPNOTSUPP; 4968 } 4969 4970 return sata_pmp_scr_write(link, reg, val); 4971 } 4972 4973 /** 4974 * sata_scr_write_flush - write SCR register of the specified port and flush 4975 * @link: ATA link to write SCR for 4976 * @reg: SCR to write 4977 * @val: value to write 4978 * 4979 * This function is identical to sata_scr_write() except that this 4980 * function performs flush after writing to the register. 4981 * 4982 * LOCKING: 4983 * None if @link is ap->link. Kernel thread context otherwise. 4984 * 4985 * RETURNS: 4986 * 0 on success, negative errno on failure. 4987 */ 4988 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 4989 { 4990 if (ata_is_host_link(link)) { 4991 int rc; 4992 4993 if (sata_scr_valid(link)) { 4994 rc = link->ap->ops->scr_write(link, reg, val); 4995 if (rc == 0) 4996 rc = link->ap->ops->scr_read(link, reg, &val); 4997 return rc; 4998 } 4999 return -EOPNOTSUPP; 5000 } 5001 5002 return sata_pmp_scr_write(link, reg, val); 5003 } 5004 5005 /** 5006 * ata_phys_link_online - test whether the given link is online 5007 * @link: ATA link to test 5008 * 5009 * Test whether @link is online. Note that this function returns 5010 * 0 if online status of @link cannot be obtained, so 5011 * ata_link_online(link) != !ata_link_offline(link). 5012 * 5013 * LOCKING: 5014 * None. 5015 * 5016 * RETURNS: 5017 * True if the port online status is available and online. 5018 */ 5019 bool ata_phys_link_online(struct ata_link *link) 5020 { 5021 u32 sstatus; 5022 5023 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5024 (sstatus & 0xf) == 0x3) 5025 return true; 5026 return false; 5027 } 5028 5029 /** 5030 * ata_phys_link_offline - test whether the given link is offline 5031 * @link: ATA link to test 5032 * 5033 * Test whether @link is offline. Note that this function 5034 * returns 0 if offline status of @link cannot be obtained, so 5035 * ata_link_online(link) != !ata_link_offline(link). 5036 * 5037 * LOCKING: 5038 * None. 5039 * 5040 * RETURNS: 5041 * True if the port offline status is available and offline. 5042 */ 5043 bool ata_phys_link_offline(struct ata_link *link) 5044 { 5045 u32 sstatus; 5046 5047 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5048 (sstatus & 0xf) != 0x3) 5049 return true; 5050 return false; 5051 } 5052 5053 /** 5054 * ata_link_online - test whether the given link is online 5055 * @link: ATA link to test 5056 * 5057 * Test whether @link is online. This is identical to 5058 * ata_phys_link_online() when there's no slave link. When 5059 * there's a slave link, this function should only be called on 5060 * the master link and will return true if any of M/S links is 5061 * online. 5062 * 5063 * LOCKING: 5064 * None. 5065 * 5066 * RETURNS: 5067 * True if the port online status is available and online. 5068 */ 5069 bool ata_link_online(struct ata_link *link) 5070 { 5071 struct ata_link *slave = link->ap->slave_link; 5072 5073 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5074 5075 return ata_phys_link_online(link) || 5076 (slave && ata_phys_link_online(slave)); 5077 } 5078 5079 /** 5080 * ata_link_offline - test whether the given link is offline 5081 * @link: ATA link to test 5082 * 5083 * Test whether @link is offline. This is identical to 5084 * ata_phys_link_offline() when there's no slave link. When 5085 * there's a slave link, this function should only be called on 5086 * the master link and will return true if both M/S links are 5087 * offline. 5088 * 5089 * LOCKING: 5090 * None. 5091 * 5092 * RETURNS: 5093 * True if the port offline status is available and offline. 5094 */ 5095 bool ata_link_offline(struct ata_link *link) 5096 { 5097 struct ata_link *slave = link->ap->slave_link; 5098 5099 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5100 5101 return ata_phys_link_offline(link) && 5102 (!slave || ata_phys_link_offline(slave)); 5103 } 5104 5105 #ifdef CONFIG_PM 5106 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 5107 unsigned int action, unsigned int ehi_flags, 5108 int wait) 5109 { 5110 unsigned long flags; 5111 int i, rc; 5112 5113 for (i = 0; i < host->n_ports; i++) { 5114 struct ata_port *ap = host->ports[i]; 5115 struct ata_link *link; 5116 5117 /* Previous resume operation might still be in 5118 * progress. Wait for PM_PENDING to clear. 5119 */ 5120 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5121 ata_port_wait_eh(ap); 5122 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5123 } 5124 5125 /* request PM ops to EH */ 5126 spin_lock_irqsave(ap->lock, flags); 5127 5128 ap->pm_mesg = mesg; 5129 if (wait) { 5130 rc = 0; 5131 ap->pm_result = &rc; 5132 } 5133 5134 ap->pflags |= ATA_PFLAG_PM_PENDING; 5135 __ata_port_for_each_link(link, ap) { 5136 link->eh_info.action |= action; 5137 link->eh_info.flags |= ehi_flags; 5138 } 5139 5140 ata_port_schedule_eh(ap); 5141 5142 spin_unlock_irqrestore(ap->lock, flags); 5143 5144 /* wait and check result */ 5145 if (wait) { 5146 ata_port_wait_eh(ap); 5147 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5148 if (rc) 5149 return rc; 5150 } 5151 } 5152 5153 return 0; 5154 } 5155 5156 /** 5157 * ata_host_suspend - suspend host 5158 * @host: host to suspend 5159 * @mesg: PM message 5160 * 5161 * Suspend @host. Actual operation is performed by EH. This 5162 * function requests EH to perform PM operations and waits for EH 5163 * to finish. 5164 * 5165 * LOCKING: 5166 * Kernel thread context (may sleep). 5167 * 5168 * RETURNS: 5169 * 0 on success, -errno on failure. 5170 */ 5171 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5172 { 5173 int rc; 5174 5175 /* 5176 * disable link pm on all ports before requesting 5177 * any pm activity 5178 */ 5179 ata_lpm_enable(host); 5180 5181 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5182 if (rc == 0) 5183 host->dev->power.power_state = mesg; 5184 return rc; 5185 } 5186 5187 /** 5188 * ata_host_resume - resume host 5189 * @host: host to resume 5190 * 5191 * Resume @host. Actual operation is performed by EH. This 5192 * function requests EH to perform PM operations and returns. 5193 * Note that all resume operations are performed parallely. 5194 * 5195 * LOCKING: 5196 * Kernel thread context (may sleep). 5197 */ 5198 void ata_host_resume(struct ata_host *host) 5199 { 5200 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5201 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5202 host->dev->power.power_state = PMSG_ON; 5203 5204 /* reenable link pm */ 5205 ata_lpm_disable(host); 5206 } 5207 #endif 5208 5209 /** 5210 * ata_port_start - Set port up for dma. 5211 * @ap: Port to initialize 5212 * 5213 * Called just after data structures for each port are 5214 * initialized. Allocates space for PRD table. 5215 * 5216 * May be used as the port_start() entry in ata_port_operations. 5217 * 5218 * LOCKING: 5219 * Inherited from caller. 5220 */ 5221 int ata_port_start(struct ata_port *ap) 5222 { 5223 struct device *dev = ap->dev; 5224 5225 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5226 GFP_KERNEL); 5227 if (!ap->prd) 5228 return -ENOMEM; 5229 5230 return 0; 5231 } 5232 5233 /** 5234 * ata_dev_init - Initialize an ata_device structure 5235 * @dev: Device structure to initialize 5236 * 5237 * Initialize @dev in preparation for probing. 5238 * 5239 * LOCKING: 5240 * Inherited from caller. 5241 */ 5242 void ata_dev_init(struct ata_device *dev) 5243 { 5244 struct ata_link *link = ata_dev_phys_link(dev); 5245 struct ata_port *ap = link->ap; 5246 unsigned long flags; 5247 5248 /* SATA spd limit is bound to the attached device, reset together */ 5249 link->sata_spd_limit = link->hw_sata_spd_limit; 5250 link->sata_spd = 0; 5251 5252 /* High bits of dev->flags are used to record warm plug 5253 * requests which occur asynchronously. Synchronize using 5254 * host lock. 5255 */ 5256 spin_lock_irqsave(ap->lock, flags); 5257 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5258 dev->horkage = 0; 5259 spin_unlock_irqrestore(ap->lock, flags); 5260 5261 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 5262 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 5263 dev->pio_mask = UINT_MAX; 5264 dev->mwdma_mask = UINT_MAX; 5265 dev->udma_mask = UINT_MAX; 5266 } 5267 5268 /** 5269 * ata_link_init - Initialize an ata_link structure 5270 * @ap: ATA port link is attached to 5271 * @link: Link structure to initialize 5272 * @pmp: Port multiplier port number 5273 * 5274 * Initialize @link. 5275 * 5276 * LOCKING: 5277 * Kernel thread context (may sleep) 5278 */ 5279 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5280 { 5281 int i; 5282 5283 /* clear everything except for devices */ 5284 memset(link, 0, offsetof(struct ata_link, device[0])); 5285 5286 link->ap = ap; 5287 link->pmp = pmp; 5288 link->active_tag = ATA_TAG_POISON; 5289 link->hw_sata_spd_limit = UINT_MAX; 5290 5291 /* can't use iterator, ap isn't initialized yet */ 5292 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5293 struct ata_device *dev = &link->device[i]; 5294 5295 dev->link = link; 5296 dev->devno = dev - link->device; 5297 ata_dev_init(dev); 5298 } 5299 } 5300 5301 /** 5302 * sata_link_init_spd - Initialize link->sata_spd_limit 5303 * @link: Link to configure sata_spd_limit for 5304 * 5305 * Initialize @link->[hw_]sata_spd_limit to the currently 5306 * configured value. 5307 * 5308 * LOCKING: 5309 * Kernel thread context (may sleep). 5310 * 5311 * RETURNS: 5312 * 0 on success, -errno on failure. 5313 */ 5314 int sata_link_init_spd(struct ata_link *link) 5315 { 5316 u8 spd; 5317 int rc; 5318 5319 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5320 if (rc) 5321 return rc; 5322 5323 spd = (link->saved_scontrol >> 4) & 0xf; 5324 if (spd) 5325 link->hw_sata_spd_limit &= (1 << spd) - 1; 5326 5327 ata_force_link_limits(link); 5328 5329 link->sata_spd_limit = link->hw_sata_spd_limit; 5330 5331 return 0; 5332 } 5333 5334 /** 5335 * ata_port_alloc - allocate and initialize basic ATA port resources 5336 * @host: ATA host this allocated port belongs to 5337 * 5338 * Allocate and initialize basic ATA port resources. 5339 * 5340 * RETURNS: 5341 * Allocate ATA port on success, NULL on failure. 5342 * 5343 * LOCKING: 5344 * Inherited from calling layer (may sleep). 5345 */ 5346 struct ata_port *ata_port_alloc(struct ata_host *host) 5347 { 5348 struct ata_port *ap; 5349 5350 DPRINTK("ENTER\n"); 5351 5352 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5353 if (!ap) 5354 return NULL; 5355 5356 ap->pflags |= ATA_PFLAG_INITIALIZING; 5357 ap->lock = &host->lock; 5358 ap->flags = ATA_FLAG_DISABLED; 5359 ap->print_id = -1; 5360 ap->ctl = ATA_DEVCTL_OBS; 5361 ap->host = host; 5362 ap->dev = host->dev; 5363 ap->last_ctl = 0xFF; 5364 5365 #if defined(ATA_VERBOSE_DEBUG) 5366 /* turn on all debugging levels */ 5367 ap->msg_enable = 0x00FF; 5368 #elif defined(ATA_DEBUG) 5369 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5370 #else 5371 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5372 #endif 5373 5374 #ifdef CONFIG_ATA_SFF 5375 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task); 5376 #endif 5377 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5378 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5379 INIT_LIST_HEAD(&ap->eh_done_q); 5380 init_waitqueue_head(&ap->eh_wait_q); 5381 init_completion(&ap->park_req_pending); 5382 init_timer_deferrable(&ap->fastdrain_timer); 5383 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5384 ap->fastdrain_timer.data = (unsigned long)ap; 5385 5386 ap->cbl = ATA_CBL_NONE; 5387 5388 ata_link_init(ap, &ap->link, 0); 5389 5390 #ifdef ATA_IRQ_TRAP 5391 ap->stats.unhandled_irq = 1; 5392 ap->stats.idle_irq = 1; 5393 #endif 5394 return ap; 5395 } 5396 5397 static void ata_host_release(struct device *gendev, void *res) 5398 { 5399 struct ata_host *host = dev_get_drvdata(gendev); 5400 int i; 5401 5402 for (i = 0; i < host->n_ports; i++) { 5403 struct ata_port *ap = host->ports[i]; 5404 5405 if (!ap) 5406 continue; 5407 5408 if (ap->scsi_host) 5409 scsi_host_put(ap->scsi_host); 5410 5411 kfree(ap->pmp_link); 5412 kfree(ap->slave_link); 5413 kfree(ap); 5414 host->ports[i] = NULL; 5415 } 5416 5417 dev_set_drvdata(gendev, NULL); 5418 } 5419 5420 /** 5421 * ata_host_alloc - allocate and init basic ATA host resources 5422 * @dev: generic device this host is associated with 5423 * @max_ports: maximum number of ATA ports associated with this host 5424 * 5425 * Allocate and initialize basic ATA host resources. LLD calls 5426 * this function to allocate a host, initializes it fully and 5427 * attaches it using ata_host_register(). 5428 * 5429 * @max_ports ports are allocated and host->n_ports is 5430 * initialized to @max_ports. The caller is allowed to decrease 5431 * host->n_ports before calling ata_host_register(). The unused 5432 * ports will be automatically freed on registration. 5433 * 5434 * RETURNS: 5435 * Allocate ATA host on success, NULL on failure. 5436 * 5437 * LOCKING: 5438 * Inherited from calling layer (may sleep). 5439 */ 5440 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5441 { 5442 struct ata_host *host; 5443 size_t sz; 5444 int i; 5445 5446 DPRINTK("ENTER\n"); 5447 5448 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5449 return NULL; 5450 5451 /* alloc a container for our list of ATA ports (buses) */ 5452 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5453 /* alloc a container for our list of ATA ports (buses) */ 5454 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5455 if (!host) 5456 goto err_out; 5457 5458 devres_add(dev, host); 5459 dev_set_drvdata(dev, host); 5460 5461 spin_lock_init(&host->lock); 5462 host->dev = dev; 5463 host->n_ports = max_ports; 5464 5465 /* allocate ports bound to this host */ 5466 for (i = 0; i < max_ports; i++) { 5467 struct ata_port *ap; 5468 5469 ap = ata_port_alloc(host); 5470 if (!ap) 5471 goto err_out; 5472 5473 ap->port_no = i; 5474 host->ports[i] = ap; 5475 } 5476 5477 devres_remove_group(dev, NULL); 5478 return host; 5479 5480 err_out: 5481 devres_release_group(dev, NULL); 5482 return NULL; 5483 } 5484 5485 /** 5486 * ata_host_alloc_pinfo - alloc host and init with port_info array 5487 * @dev: generic device this host is associated with 5488 * @ppi: array of ATA port_info to initialize host with 5489 * @n_ports: number of ATA ports attached to this host 5490 * 5491 * Allocate ATA host and initialize with info from @ppi. If NULL 5492 * terminated, @ppi may contain fewer entries than @n_ports. The 5493 * last entry will be used for the remaining ports. 5494 * 5495 * RETURNS: 5496 * Allocate ATA host on success, NULL on failure. 5497 * 5498 * LOCKING: 5499 * Inherited from calling layer (may sleep). 5500 */ 5501 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5502 const struct ata_port_info * const * ppi, 5503 int n_ports) 5504 { 5505 const struct ata_port_info *pi; 5506 struct ata_host *host; 5507 int i, j; 5508 5509 host = ata_host_alloc(dev, n_ports); 5510 if (!host) 5511 return NULL; 5512 5513 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5514 struct ata_port *ap = host->ports[i]; 5515 5516 if (ppi[j]) 5517 pi = ppi[j++]; 5518 5519 ap->pio_mask = pi->pio_mask; 5520 ap->mwdma_mask = pi->mwdma_mask; 5521 ap->udma_mask = pi->udma_mask; 5522 ap->flags |= pi->flags; 5523 ap->link.flags |= pi->link_flags; 5524 ap->ops = pi->port_ops; 5525 5526 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5527 host->ops = pi->port_ops; 5528 } 5529 5530 return host; 5531 } 5532 5533 /** 5534 * ata_slave_link_init - initialize slave link 5535 * @ap: port to initialize slave link for 5536 * 5537 * Create and initialize slave link for @ap. This enables slave 5538 * link handling on the port. 5539 * 5540 * In libata, a port contains links and a link contains devices. 5541 * There is single host link but if a PMP is attached to it, 5542 * there can be multiple fan-out links. On SATA, there's usually 5543 * a single device connected to a link but PATA and SATA 5544 * controllers emulating TF based interface can have two - master 5545 * and slave. 5546 * 5547 * However, there are a few controllers which don't fit into this 5548 * abstraction too well - SATA controllers which emulate TF 5549 * interface with both master and slave devices but also have 5550 * separate SCR register sets for each device. These controllers 5551 * need separate links for physical link handling 5552 * (e.g. onlineness, link speed) but should be treated like a 5553 * traditional M/S controller for everything else (e.g. command 5554 * issue, softreset). 5555 * 5556 * slave_link is libata's way of handling this class of 5557 * controllers without impacting core layer too much. For 5558 * anything other than physical link handling, the default host 5559 * link is used for both master and slave. For physical link 5560 * handling, separate @ap->slave_link is used. All dirty details 5561 * are implemented inside libata core layer. From LLD's POV, the 5562 * only difference is that prereset, hardreset and postreset are 5563 * called once more for the slave link, so the reset sequence 5564 * looks like the following. 5565 * 5566 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5567 * softreset(M) -> postreset(M) -> postreset(S) 5568 * 5569 * Note that softreset is called only for the master. Softreset 5570 * resets both M/S by definition, so SRST on master should handle 5571 * both (the standard method will work just fine). 5572 * 5573 * LOCKING: 5574 * Should be called before host is registered. 5575 * 5576 * RETURNS: 5577 * 0 on success, -errno on failure. 5578 */ 5579 int ata_slave_link_init(struct ata_port *ap) 5580 { 5581 struct ata_link *link; 5582 5583 WARN_ON(ap->slave_link); 5584 WARN_ON(ap->flags & ATA_FLAG_PMP); 5585 5586 link = kzalloc(sizeof(*link), GFP_KERNEL); 5587 if (!link) 5588 return -ENOMEM; 5589 5590 ata_link_init(ap, link, 1); 5591 ap->slave_link = link; 5592 return 0; 5593 } 5594 5595 static void ata_host_stop(struct device *gendev, void *res) 5596 { 5597 struct ata_host *host = dev_get_drvdata(gendev); 5598 int i; 5599 5600 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5601 5602 for (i = 0; i < host->n_ports; i++) { 5603 struct ata_port *ap = host->ports[i]; 5604 5605 if (ap->ops->port_stop) 5606 ap->ops->port_stop(ap); 5607 } 5608 5609 if (host->ops->host_stop) 5610 host->ops->host_stop(host); 5611 } 5612 5613 /** 5614 * ata_finalize_port_ops - finalize ata_port_operations 5615 * @ops: ata_port_operations to finalize 5616 * 5617 * An ata_port_operations can inherit from another ops and that 5618 * ops can again inherit from another. This can go on as many 5619 * times as necessary as long as there is no loop in the 5620 * inheritance chain. 5621 * 5622 * Ops tables are finalized when the host is started. NULL or 5623 * unspecified entries are inherited from the closet ancestor 5624 * which has the method and the entry is populated with it. 5625 * After finalization, the ops table directly points to all the 5626 * methods and ->inherits is no longer necessary and cleared. 5627 * 5628 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5629 * 5630 * LOCKING: 5631 * None. 5632 */ 5633 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5634 { 5635 static DEFINE_SPINLOCK(lock); 5636 const struct ata_port_operations *cur; 5637 void **begin = (void **)ops; 5638 void **end = (void **)&ops->inherits; 5639 void **pp; 5640 5641 if (!ops || !ops->inherits) 5642 return; 5643 5644 spin_lock(&lock); 5645 5646 for (cur = ops->inherits; cur; cur = cur->inherits) { 5647 void **inherit = (void **)cur; 5648 5649 for (pp = begin; pp < end; pp++, inherit++) 5650 if (!*pp) 5651 *pp = *inherit; 5652 } 5653 5654 for (pp = begin; pp < end; pp++) 5655 if (IS_ERR(*pp)) 5656 *pp = NULL; 5657 5658 ops->inherits = NULL; 5659 5660 spin_unlock(&lock); 5661 } 5662 5663 /** 5664 * ata_host_start - start and freeze ports of an ATA host 5665 * @host: ATA host to start ports for 5666 * 5667 * Start and then freeze ports of @host. Started status is 5668 * recorded in host->flags, so this function can be called 5669 * multiple times. Ports are guaranteed to get started only 5670 * once. If host->ops isn't initialized yet, its set to the 5671 * first non-dummy port ops. 5672 * 5673 * LOCKING: 5674 * Inherited from calling layer (may sleep). 5675 * 5676 * RETURNS: 5677 * 0 if all ports are started successfully, -errno otherwise. 5678 */ 5679 int ata_host_start(struct ata_host *host) 5680 { 5681 int have_stop = 0; 5682 void *start_dr = NULL; 5683 int i, rc; 5684 5685 if (host->flags & ATA_HOST_STARTED) 5686 return 0; 5687 5688 ata_finalize_port_ops(host->ops); 5689 5690 for (i = 0; i < host->n_ports; i++) { 5691 struct ata_port *ap = host->ports[i]; 5692 5693 ata_finalize_port_ops(ap->ops); 5694 5695 if (!host->ops && !ata_port_is_dummy(ap)) 5696 host->ops = ap->ops; 5697 5698 if (ap->ops->port_stop) 5699 have_stop = 1; 5700 } 5701 5702 if (host->ops->host_stop) 5703 have_stop = 1; 5704 5705 if (have_stop) { 5706 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5707 if (!start_dr) 5708 return -ENOMEM; 5709 } 5710 5711 for (i = 0; i < host->n_ports; i++) { 5712 struct ata_port *ap = host->ports[i]; 5713 5714 if (ap->ops->port_start) { 5715 rc = ap->ops->port_start(ap); 5716 if (rc) { 5717 if (rc != -ENODEV) 5718 dev_printk(KERN_ERR, host->dev, 5719 "failed to start port %d " 5720 "(errno=%d)\n", i, rc); 5721 goto err_out; 5722 } 5723 } 5724 ata_eh_freeze_port(ap); 5725 } 5726 5727 if (start_dr) 5728 devres_add(host->dev, start_dr); 5729 host->flags |= ATA_HOST_STARTED; 5730 return 0; 5731 5732 err_out: 5733 while (--i >= 0) { 5734 struct ata_port *ap = host->ports[i]; 5735 5736 if (ap->ops->port_stop) 5737 ap->ops->port_stop(ap); 5738 } 5739 devres_free(start_dr); 5740 return rc; 5741 } 5742 5743 /** 5744 * ata_sas_host_init - Initialize a host struct 5745 * @host: host to initialize 5746 * @dev: device host is attached to 5747 * @flags: host flags 5748 * @ops: port_ops 5749 * 5750 * LOCKING: 5751 * PCI/etc. bus probe sem. 5752 * 5753 */ 5754 /* KILLME - the only user left is ipr */ 5755 void ata_host_init(struct ata_host *host, struct device *dev, 5756 unsigned long flags, struct ata_port_operations *ops) 5757 { 5758 spin_lock_init(&host->lock); 5759 host->dev = dev; 5760 host->flags = flags; 5761 host->ops = ops; 5762 } 5763 5764 /** 5765 * ata_host_register - register initialized ATA host 5766 * @host: ATA host to register 5767 * @sht: template for SCSI host 5768 * 5769 * Register initialized ATA host. @host is allocated using 5770 * ata_host_alloc() and fully initialized by LLD. This function 5771 * starts ports, registers @host with ATA and SCSI layers and 5772 * probe registered devices. 5773 * 5774 * LOCKING: 5775 * Inherited from calling layer (may sleep). 5776 * 5777 * RETURNS: 5778 * 0 on success, -errno otherwise. 5779 */ 5780 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5781 { 5782 int i, rc; 5783 5784 /* host must have been started */ 5785 if (!(host->flags & ATA_HOST_STARTED)) { 5786 dev_printk(KERN_ERR, host->dev, 5787 "BUG: trying to register unstarted host\n"); 5788 WARN_ON(1); 5789 return -EINVAL; 5790 } 5791 5792 /* Blow away unused ports. This happens when LLD can't 5793 * determine the exact number of ports to allocate at 5794 * allocation time. 5795 */ 5796 for (i = host->n_ports; host->ports[i]; i++) 5797 kfree(host->ports[i]); 5798 5799 /* give ports names and add SCSI hosts */ 5800 for (i = 0; i < host->n_ports; i++) 5801 host->ports[i]->print_id = ata_print_id++; 5802 5803 rc = ata_scsi_add_hosts(host, sht); 5804 if (rc) 5805 return rc; 5806 5807 /* associate with ACPI nodes */ 5808 ata_acpi_associate(host); 5809 5810 /* set cable, sata_spd_limit and report */ 5811 for (i = 0; i < host->n_ports; i++) { 5812 struct ata_port *ap = host->ports[i]; 5813 unsigned long xfer_mask; 5814 5815 /* set SATA cable type if still unset */ 5816 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5817 ap->cbl = ATA_CBL_SATA; 5818 5819 /* init sata_spd_limit to the current value */ 5820 sata_link_init_spd(&ap->link); 5821 if (ap->slave_link) 5822 sata_link_init_spd(ap->slave_link); 5823 5824 /* print per-port info to dmesg */ 5825 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5826 ap->udma_mask); 5827 5828 if (!ata_port_is_dummy(ap)) { 5829 ata_port_printk(ap, KERN_INFO, 5830 "%cATA max %s %s\n", 5831 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5832 ata_mode_string(xfer_mask), 5833 ap->link.eh_info.desc); 5834 ata_ehi_clear_desc(&ap->link.eh_info); 5835 } else 5836 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 5837 } 5838 5839 /* perform each probe synchronously */ 5840 DPRINTK("probe begin\n"); 5841 for (i = 0; i < host->n_ports; i++) { 5842 struct ata_port *ap = host->ports[i]; 5843 5844 /* probe */ 5845 if (ap->ops->error_handler) { 5846 struct ata_eh_info *ehi = &ap->link.eh_info; 5847 unsigned long flags; 5848 5849 ata_port_probe(ap); 5850 5851 /* kick EH for boot probing */ 5852 spin_lock_irqsave(ap->lock, flags); 5853 5854 ehi->probe_mask |= ATA_ALL_DEVICES; 5855 ehi->action |= ATA_EH_RESET | ATA_EH_LPM; 5856 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5857 5858 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5859 ap->pflags |= ATA_PFLAG_LOADING; 5860 ata_port_schedule_eh(ap); 5861 5862 spin_unlock_irqrestore(ap->lock, flags); 5863 5864 /* wait for EH to finish */ 5865 ata_port_wait_eh(ap); 5866 } else { 5867 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5868 rc = ata_bus_probe(ap); 5869 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5870 5871 if (rc) { 5872 /* FIXME: do something useful here? 5873 * Current libata behavior will 5874 * tear down everything when 5875 * the module is removed 5876 * or the h/w is unplugged. 5877 */ 5878 } 5879 } 5880 } 5881 5882 /* probes are done, now scan each port's disk(s) */ 5883 DPRINTK("host probe begin\n"); 5884 for (i = 0; i < host->n_ports; i++) { 5885 struct ata_port *ap = host->ports[i]; 5886 5887 ata_scsi_scan_host(ap, 1); 5888 } 5889 5890 return 0; 5891 } 5892 5893 /** 5894 * ata_host_activate - start host, request IRQ and register it 5895 * @host: target ATA host 5896 * @irq: IRQ to request 5897 * @irq_handler: irq_handler used when requesting IRQ 5898 * @irq_flags: irq_flags used when requesting IRQ 5899 * @sht: scsi_host_template to use when registering the host 5900 * 5901 * After allocating an ATA host and initializing it, most libata 5902 * LLDs perform three steps to activate the host - start host, 5903 * request IRQ and register it. This helper takes necessasry 5904 * arguments and performs the three steps in one go. 5905 * 5906 * An invalid IRQ skips the IRQ registration and expects the host to 5907 * have set polling mode on the port. In this case, @irq_handler 5908 * should be NULL. 5909 * 5910 * LOCKING: 5911 * Inherited from calling layer (may sleep). 5912 * 5913 * RETURNS: 5914 * 0 on success, -errno otherwise. 5915 */ 5916 int ata_host_activate(struct ata_host *host, int irq, 5917 irq_handler_t irq_handler, unsigned long irq_flags, 5918 struct scsi_host_template *sht) 5919 { 5920 int i, rc; 5921 5922 rc = ata_host_start(host); 5923 if (rc) 5924 return rc; 5925 5926 /* Special case for polling mode */ 5927 if (!irq) { 5928 WARN_ON(irq_handler); 5929 return ata_host_register(host, sht); 5930 } 5931 5932 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5933 dev_driver_string(host->dev), host); 5934 if (rc) 5935 return rc; 5936 5937 for (i = 0; i < host->n_ports; i++) 5938 ata_port_desc(host->ports[i], "irq %d", irq); 5939 5940 rc = ata_host_register(host, sht); 5941 /* if failed, just free the IRQ and leave ports alone */ 5942 if (rc) 5943 devm_free_irq(host->dev, irq, host); 5944 5945 return rc; 5946 } 5947 5948 /** 5949 * ata_port_detach - Detach ATA port in prepration of device removal 5950 * @ap: ATA port to be detached 5951 * 5952 * Detach all ATA devices and the associated SCSI devices of @ap; 5953 * then, remove the associated SCSI host. @ap is guaranteed to 5954 * be quiescent on return from this function. 5955 * 5956 * LOCKING: 5957 * Kernel thread context (may sleep). 5958 */ 5959 static void ata_port_detach(struct ata_port *ap) 5960 { 5961 unsigned long flags; 5962 struct ata_link *link; 5963 struct ata_device *dev; 5964 5965 if (!ap->ops->error_handler) 5966 goto skip_eh; 5967 5968 /* tell EH we're leaving & flush EH */ 5969 spin_lock_irqsave(ap->lock, flags); 5970 ap->pflags |= ATA_PFLAG_UNLOADING; 5971 spin_unlock_irqrestore(ap->lock, flags); 5972 5973 ata_port_wait_eh(ap); 5974 5975 /* EH is now guaranteed to see UNLOADING - EH context belongs 5976 * to us. Restore SControl and disable all existing devices. 5977 */ 5978 __ata_port_for_each_link(link, ap) { 5979 sata_scr_write(link, SCR_CONTROL, link->saved_scontrol); 5980 ata_link_for_each_dev(dev, link) 5981 ata_dev_disable(dev); 5982 } 5983 5984 /* Final freeze & EH. All in-flight commands are aborted. EH 5985 * will be skipped and retrials will be terminated with bad 5986 * target. 5987 */ 5988 spin_lock_irqsave(ap->lock, flags); 5989 ata_port_freeze(ap); /* won't be thawed */ 5990 spin_unlock_irqrestore(ap->lock, flags); 5991 5992 ata_port_wait_eh(ap); 5993 cancel_rearming_delayed_work(&ap->hotplug_task); 5994 5995 skip_eh: 5996 /* remove the associated SCSI host */ 5997 scsi_remove_host(ap->scsi_host); 5998 } 5999 6000 /** 6001 * ata_host_detach - Detach all ports of an ATA host 6002 * @host: Host to detach 6003 * 6004 * Detach all ports of @host. 6005 * 6006 * LOCKING: 6007 * Kernel thread context (may sleep). 6008 */ 6009 void ata_host_detach(struct ata_host *host) 6010 { 6011 int i; 6012 6013 for (i = 0; i < host->n_ports; i++) 6014 ata_port_detach(host->ports[i]); 6015 6016 /* the host is dead now, dissociate ACPI */ 6017 ata_acpi_dissociate(host); 6018 } 6019 6020 #ifdef CONFIG_PCI 6021 6022 /** 6023 * ata_pci_remove_one - PCI layer callback for device removal 6024 * @pdev: PCI device that was removed 6025 * 6026 * PCI layer indicates to libata via this hook that hot-unplug or 6027 * module unload event has occurred. Detach all ports. Resource 6028 * release is handled via devres. 6029 * 6030 * LOCKING: 6031 * Inherited from PCI layer (may sleep). 6032 */ 6033 void ata_pci_remove_one(struct pci_dev *pdev) 6034 { 6035 struct device *dev = &pdev->dev; 6036 struct ata_host *host = dev_get_drvdata(dev); 6037 6038 ata_host_detach(host); 6039 } 6040 6041 /* move to PCI subsystem */ 6042 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6043 { 6044 unsigned long tmp = 0; 6045 6046 switch (bits->width) { 6047 case 1: { 6048 u8 tmp8 = 0; 6049 pci_read_config_byte(pdev, bits->reg, &tmp8); 6050 tmp = tmp8; 6051 break; 6052 } 6053 case 2: { 6054 u16 tmp16 = 0; 6055 pci_read_config_word(pdev, bits->reg, &tmp16); 6056 tmp = tmp16; 6057 break; 6058 } 6059 case 4: { 6060 u32 tmp32 = 0; 6061 pci_read_config_dword(pdev, bits->reg, &tmp32); 6062 tmp = tmp32; 6063 break; 6064 } 6065 6066 default: 6067 return -EINVAL; 6068 } 6069 6070 tmp &= bits->mask; 6071 6072 return (tmp == bits->val) ? 1 : 0; 6073 } 6074 6075 #ifdef CONFIG_PM 6076 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6077 { 6078 pci_save_state(pdev); 6079 pci_disable_device(pdev); 6080 6081 if (mesg.event & PM_EVENT_SLEEP) 6082 pci_set_power_state(pdev, PCI_D3hot); 6083 } 6084 6085 int ata_pci_device_do_resume(struct pci_dev *pdev) 6086 { 6087 int rc; 6088 6089 pci_set_power_state(pdev, PCI_D0); 6090 pci_restore_state(pdev); 6091 6092 rc = pcim_enable_device(pdev); 6093 if (rc) { 6094 dev_printk(KERN_ERR, &pdev->dev, 6095 "failed to enable device after resume (%d)\n", rc); 6096 return rc; 6097 } 6098 6099 pci_set_master(pdev); 6100 return 0; 6101 } 6102 6103 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6104 { 6105 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6106 int rc = 0; 6107 6108 rc = ata_host_suspend(host, mesg); 6109 if (rc) 6110 return rc; 6111 6112 ata_pci_device_do_suspend(pdev, mesg); 6113 6114 return 0; 6115 } 6116 6117 int ata_pci_device_resume(struct pci_dev *pdev) 6118 { 6119 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6120 int rc; 6121 6122 rc = ata_pci_device_do_resume(pdev); 6123 if (rc == 0) 6124 ata_host_resume(host); 6125 return rc; 6126 } 6127 #endif /* CONFIG_PM */ 6128 6129 #endif /* CONFIG_PCI */ 6130 6131 static int __init ata_parse_force_one(char **cur, 6132 struct ata_force_ent *force_ent, 6133 const char **reason) 6134 { 6135 /* FIXME: Currently, there's no way to tag init const data and 6136 * using __initdata causes build failure on some versions of 6137 * gcc. Once __initdataconst is implemented, add const to the 6138 * following structure. 6139 */ 6140 static struct ata_force_param force_tbl[] __initdata = { 6141 { "40c", .cbl = ATA_CBL_PATA40 }, 6142 { "80c", .cbl = ATA_CBL_PATA80 }, 6143 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6144 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6145 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6146 { "sata", .cbl = ATA_CBL_SATA }, 6147 { "1.5Gbps", .spd_limit = 1 }, 6148 { "3.0Gbps", .spd_limit = 2 }, 6149 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6150 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6151 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6152 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6153 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6154 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6155 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6156 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6157 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6158 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6159 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6160 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6161 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6162 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6163 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6164 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6165 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6166 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6167 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6168 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6169 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6170 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6171 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6172 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6173 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6174 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6175 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6176 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6177 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6178 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6179 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6180 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6181 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6182 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6183 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6184 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6185 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6186 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6187 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6188 }; 6189 char *start = *cur, *p = *cur; 6190 char *id, *val, *endp; 6191 const struct ata_force_param *match_fp = NULL; 6192 int nr_matches = 0, i; 6193 6194 /* find where this param ends and update *cur */ 6195 while (*p != '\0' && *p != ',') 6196 p++; 6197 6198 if (*p == '\0') 6199 *cur = p; 6200 else 6201 *cur = p + 1; 6202 6203 *p = '\0'; 6204 6205 /* parse */ 6206 p = strchr(start, ':'); 6207 if (!p) { 6208 val = strstrip(start); 6209 goto parse_val; 6210 } 6211 *p = '\0'; 6212 6213 id = strstrip(start); 6214 val = strstrip(p + 1); 6215 6216 /* parse id */ 6217 p = strchr(id, '.'); 6218 if (p) { 6219 *p++ = '\0'; 6220 force_ent->device = simple_strtoul(p, &endp, 10); 6221 if (p == endp || *endp != '\0') { 6222 *reason = "invalid device"; 6223 return -EINVAL; 6224 } 6225 } 6226 6227 force_ent->port = simple_strtoul(id, &endp, 10); 6228 if (p == endp || *endp != '\0') { 6229 *reason = "invalid port/link"; 6230 return -EINVAL; 6231 } 6232 6233 parse_val: 6234 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6235 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6236 const struct ata_force_param *fp = &force_tbl[i]; 6237 6238 if (strncasecmp(val, fp->name, strlen(val))) 6239 continue; 6240 6241 nr_matches++; 6242 match_fp = fp; 6243 6244 if (strcasecmp(val, fp->name) == 0) { 6245 nr_matches = 1; 6246 break; 6247 } 6248 } 6249 6250 if (!nr_matches) { 6251 *reason = "unknown value"; 6252 return -EINVAL; 6253 } 6254 if (nr_matches > 1) { 6255 *reason = "ambigious value"; 6256 return -EINVAL; 6257 } 6258 6259 force_ent->param = *match_fp; 6260 6261 return 0; 6262 } 6263 6264 static void __init ata_parse_force_param(void) 6265 { 6266 int idx = 0, size = 1; 6267 int last_port = -1, last_device = -1; 6268 char *p, *cur, *next; 6269 6270 /* calculate maximum number of params and allocate force_tbl */ 6271 for (p = ata_force_param_buf; *p; p++) 6272 if (*p == ',') 6273 size++; 6274 6275 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6276 if (!ata_force_tbl) { 6277 printk(KERN_WARNING "ata: failed to extend force table, " 6278 "libata.force ignored\n"); 6279 return; 6280 } 6281 6282 /* parse and populate the table */ 6283 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6284 const char *reason = ""; 6285 struct ata_force_ent te = { .port = -1, .device = -1 }; 6286 6287 next = cur; 6288 if (ata_parse_force_one(&next, &te, &reason)) { 6289 printk(KERN_WARNING "ata: failed to parse force " 6290 "parameter \"%s\" (%s)\n", 6291 cur, reason); 6292 continue; 6293 } 6294 6295 if (te.port == -1) { 6296 te.port = last_port; 6297 te.device = last_device; 6298 } 6299 6300 ata_force_tbl[idx++] = te; 6301 6302 last_port = te.port; 6303 last_device = te.device; 6304 } 6305 6306 ata_force_tbl_size = idx; 6307 } 6308 6309 static int __init ata_init(void) 6310 { 6311 ata_parse_force_param(); 6312 6313 ata_wq = create_workqueue("ata"); 6314 if (!ata_wq) 6315 goto free_force_tbl; 6316 6317 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6318 if (!ata_aux_wq) 6319 goto free_wq; 6320 6321 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6322 return 0; 6323 6324 free_wq: 6325 destroy_workqueue(ata_wq); 6326 free_force_tbl: 6327 kfree(ata_force_tbl); 6328 return -ENOMEM; 6329 } 6330 6331 static void __exit ata_exit(void) 6332 { 6333 kfree(ata_force_tbl); 6334 destroy_workqueue(ata_wq); 6335 destroy_workqueue(ata_aux_wq); 6336 } 6337 6338 subsys_initcall(ata_init); 6339 module_exit(ata_exit); 6340 6341 static unsigned long ratelimit_time; 6342 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6343 6344 int ata_ratelimit(void) 6345 { 6346 int rc; 6347 unsigned long flags; 6348 6349 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6350 6351 if (time_after(jiffies, ratelimit_time)) { 6352 rc = 1; 6353 ratelimit_time = jiffies + (HZ/5); 6354 } else 6355 rc = 0; 6356 6357 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6358 6359 return rc; 6360 } 6361 6362 /** 6363 * ata_wait_register - wait until register value changes 6364 * @reg: IO-mapped register 6365 * @mask: Mask to apply to read register value 6366 * @val: Wait condition 6367 * @interval: polling interval in milliseconds 6368 * @timeout: timeout in milliseconds 6369 * 6370 * Waiting for some bits of register to change is a common 6371 * operation for ATA controllers. This function reads 32bit LE 6372 * IO-mapped register @reg and tests for the following condition. 6373 * 6374 * (*@reg & mask) != val 6375 * 6376 * If the condition is met, it returns; otherwise, the process is 6377 * repeated after @interval_msec until timeout. 6378 * 6379 * LOCKING: 6380 * Kernel thread context (may sleep) 6381 * 6382 * RETURNS: 6383 * The final register value. 6384 */ 6385 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6386 unsigned long interval, unsigned long timeout) 6387 { 6388 unsigned long deadline; 6389 u32 tmp; 6390 6391 tmp = ioread32(reg); 6392 6393 /* Calculate timeout _after_ the first read to make sure 6394 * preceding writes reach the controller before starting to 6395 * eat away the timeout. 6396 */ 6397 deadline = ata_deadline(jiffies, timeout); 6398 6399 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6400 msleep(interval); 6401 tmp = ioread32(reg); 6402 } 6403 6404 return tmp; 6405 } 6406 6407 /* 6408 * Dummy port_ops 6409 */ 6410 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6411 { 6412 return AC_ERR_SYSTEM; 6413 } 6414 6415 static void ata_dummy_error_handler(struct ata_port *ap) 6416 { 6417 /* truly dummy */ 6418 } 6419 6420 struct ata_port_operations ata_dummy_port_ops = { 6421 .qc_prep = ata_noop_qc_prep, 6422 .qc_issue = ata_dummy_qc_issue, 6423 .error_handler = ata_dummy_error_handler, 6424 }; 6425 6426 const struct ata_port_info ata_dummy_port_info = { 6427 .port_ops = &ata_dummy_port_ops, 6428 }; 6429 6430 /* 6431 * libata is essentially a library of internal helper functions for 6432 * low-level ATA host controller drivers. As such, the API/ABI is 6433 * likely to change as new drivers are added and updated. 6434 * Do not depend on ABI/API stability. 6435 */ 6436 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6437 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6438 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6439 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6440 EXPORT_SYMBOL_GPL(sata_port_ops); 6441 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6442 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6443 EXPORT_SYMBOL_GPL(__ata_port_next_link); 6444 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6445 EXPORT_SYMBOL_GPL(ata_host_init); 6446 EXPORT_SYMBOL_GPL(ata_host_alloc); 6447 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6448 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6449 EXPORT_SYMBOL_GPL(ata_host_start); 6450 EXPORT_SYMBOL_GPL(ata_host_register); 6451 EXPORT_SYMBOL_GPL(ata_host_activate); 6452 EXPORT_SYMBOL_GPL(ata_host_detach); 6453 EXPORT_SYMBOL_GPL(ata_sg_init); 6454 EXPORT_SYMBOL_GPL(ata_qc_complete); 6455 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6456 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6457 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6458 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6459 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6460 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6461 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6462 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6463 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6464 EXPORT_SYMBOL_GPL(ata_mode_string); 6465 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6466 EXPORT_SYMBOL_GPL(ata_port_start); 6467 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6468 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6469 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6470 EXPORT_SYMBOL_GPL(ata_port_probe); 6471 EXPORT_SYMBOL_GPL(ata_dev_disable); 6472 EXPORT_SYMBOL_GPL(sata_set_spd); 6473 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6474 EXPORT_SYMBOL_GPL(sata_link_debounce); 6475 EXPORT_SYMBOL_GPL(sata_link_resume); 6476 EXPORT_SYMBOL_GPL(ata_std_prereset); 6477 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6478 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6479 EXPORT_SYMBOL_GPL(ata_std_postreset); 6480 EXPORT_SYMBOL_GPL(ata_dev_classify); 6481 EXPORT_SYMBOL_GPL(ata_dev_pair); 6482 EXPORT_SYMBOL_GPL(ata_port_disable); 6483 EXPORT_SYMBOL_GPL(ata_ratelimit); 6484 EXPORT_SYMBOL_GPL(ata_wait_register); 6485 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6486 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6487 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6488 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6489 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6490 EXPORT_SYMBOL_GPL(sata_scr_valid); 6491 EXPORT_SYMBOL_GPL(sata_scr_read); 6492 EXPORT_SYMBOL_GPL(sata_scr_write); 6493 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6494 EXPORT_SYMBOL_GPL(ata_link_online); 6495 EXPORT_SYMBOL_GPL(ata_link_offline); 6496 #ifdef CONFIG_PM 6497 EXPORT_SYMBOL_GPL(ata_host_suspend); 6498 EXPORT_SYMBOL_GPL(ata_host_resume); 6499 #endif /* CONFIG_PM */ 6500 EXPORT_SYMBOL_GPL(ata_id_string); 6501 EXPORT_SYMBOL_GPL(ata_id_c_string); 6502 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6503 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6504 6505 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6506 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6507 EXPORT_SYMBOL_GPL(ata_timing_compute); 6508 EXPORT_SYMBOL_GPL(ata_timing_merge); 6509 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6510 6511 #ifdef CONFIG_PCI 6512 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6513 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6514 #ifdef CONFIG_PM 6515 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6516 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6517 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6518 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6519 #endif /* CONFIG_PM */ 6520 #endif /* CONFIG_PCI */ 6521 6522 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6523 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6524 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6525 EXPORT_SYMBOL_GPL(ata_port_desc); 6526 #ifdef CONFIG_PCI 6527 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6528 #endif /* CONFIG_PCI */ 6529 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6530 EXPORT_SYMBOL_GPL(ata_link_abort); 6531 EXPORT_SYMBOL_GPL(ata_port_abort); 6532 EXPORT_SYMBOL_GPL(ata_port_freeze); 6533 EXPORT_SYMBOL_GPL(sata_async_notification); 6534 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6535 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6536 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6537 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6538 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6539 EXPORT_SYMBOL_GPL(ata_do_eh); 6540 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6541 6542 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6543 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6544 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6545 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6546 EXPORT_SYMBOL_GPL(ata_cable_sata); 6547