1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <linux/glob.h> 63 #include <scsi/scsi.h> 64 #include <scsi/scsi_cmnd.h> 65 #include <scsi/scsi_host.h> 66 #include <linux/libata.h> 67 #include <asm/byteorder.h> 68 #include <linux/cdrom.h> 69 #include <linux/ratelimit.h> 70 #include <linux/pm_runtime.h> 71 #include <linux/platform_device.h> 72 73 #include "libata.h" 74 #include "libata-transport.h" 75 76 /* debounce timing parameters in msecs { interval, duration, timeout } */ 77 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 78 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 79 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 80 81 const struct ata_port_operations ata_base_port_ops = { 82 .prereset = ata_std_prereset, 83 .postreset = ata_std_postreset, 84 .error_handler = ata_std_error_handler, 85 .sched_eh = ata_std_sched_eh, 86 .end_eh = ata_std_end_eh, 87 }; 88 89 const struct ata_port_operations sata_port_ops = { 90 .inherits = &ata_base_port_ops, 91 92 .qc_defer = ata_std_qc_defer, 93 .hardreset = sata_std_hardreset, 94 }; 95 96 static unsigned int ata_dev_init_params(struct ata_device *dev, 97 u16 heads, u16 sectors); 98 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 99 static void ata_dev_xfermask(struct ata_device *dev); 100 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 101 102 atomic_t ata_print_id = ATOMIC_INIT(0); 103 104 struct ata_force_param { 105 const char *name; 106 unsigned int cbl; 107 int spd_limit; 108 unsigned long xfer_mask; 109 unsigned int horkage_on; 110 unsigned int horkage_off; 111 unsigned int lflags; 112 }; 113 114 struct ata_force_ent { 115 int port; 116 int device; 117 struct ata_force_param param; 118 }; 119 120 static struct ata_force_ent *ata_force_tbl; 121 static int ata_force_tbl_size; 122 123 static char ata_force_param_buf[PAGE_SIZE] __initdata; 124 /* param_buf is thrown away after initialization, disallow read */ 125 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 126 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 127 128 static int atapi_enabled = 1; 129 module_param(atapi_enabled, int, 0444); 130 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 131 132 static int atapi_dmadir = 0; 133 module_param(atapi_dmadir, int, 0444); 134 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 135 136 int atapi_passthru16 = 1; 137 module_param(atapi_passthru16, int, 0444); 138 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 139 140 int libata_fua = 0; 141 module_param_named(fua, libata_fua, int, 0444); 142 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 143 144 static int ata_ignore_hpa; 145 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 146 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 147 148 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 149 module_param_named(dma, libata_dma_mask, int, 0444); 150 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 151 152 static int ata_probe_timeout; 153 module_param(ata_probe_timeout, int, 0444); 154 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 155 156 int libata_noacpi = 0; 157 module_param_named(noacpi, libata_noacpi, int, 0444); 158 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 159 160 int libata_allow_tpm = 0; 161 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 162 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 163 164 static int atapi_an; 165 module_param(atapi_an, int, 0444); 166 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 167 168 MODULE_AUTHOR("Jeff Garzik"); 169 MODULE_DESCRIPTION("Library module for ATA devices"); 170 MODULE_LICENSE("GPL"); 171 MODULE_VERSION(DRV_VERSION); 172 173 174 static bool ata_sstatus_online(u32 sstatus) 175 { 176 return (sstatus & 0xf) == 0x3; 177 } 178 179 /** 180 * ata_link_next - link iteration helper 181 * @link: the previous link, NULL to start 182 * @ap: ATA port containing links to iterate 183 * @mode: iteration mode, one of ATA_LITER_* 184 * 185 * LOCKING: 186 * Host lock or EH context. 187 * 188 * RETURNS: 189 * Pointer to the next link. 190 */ 191 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 192 enum ata_link_iter_mode mode) 193 { 194 BUG_ON(mode != ATA_LITER_EDGE && 195 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 196 197 /* NULL link indicates start of iteration */ 198 if (!link) 199 switch (mode) { 200 case ATA_LITER_EDGE: 201 case ATA_LITER_PMP_FIRST: 202 if (sata_pmp_attached(ap)) 203 return ap->pmp_link; 204 /* fall through */ 205 case ATA_LITER_HOST_FIRST: 206 return &ap->link; 207 } 208 209 /* we just iterated over the host link, what's next? */ 210 if (link == &ap->link) 211 switch (mode) { 212 case ATA_LITER_HOST_FIRST: 213 if (sata_pmp_attached(ap)) 214 return ap->pmp_link; 215 /* fall through */ 216 case ATA_LITER_PMP_FIRST: 217 if (unlikely(ap->slave_link)) 218 return ap->slave_link; 219 /* fall through */ 220 case ATA_LITER_EDGE: 221 return NULL; 222 } 223 224 /* slave_link excludes PMP */ 225 if (unlikely(link == ap->slave_link)) 226 return NULL; 227 228 /* we were over a PMP link */ 229 if (++link < ap->pmp_link + ap->nr_pmp_links) 230 return link; 231 232 if (mode == ATA_LITER_PMP_FIRST) 233 return &ap->link; 234 235 return NULL; 236 } 237 238 /** 239 * ata_dev_next - device iteration helper 240 * @dev: the previous device, NULL to start 241 * @link: ATA link containing devices to iterate 242 * @mode: iteration mode, one of ATA_DITER_* 243 * 244 * LOCKING: 245 * Host lock or EH context. 246 * 247 * RETURNS: 248 * Pointer to the next device. 249 */ 250 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 251 enum ata_dev_iter_mode mode) 252 { 253 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 254 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 255 256 /* NULL dev indicates start of iteration */ 257 if (!dev) 258 switch (mode) { 259 case ATA_DITER_ENABLED: 260 case ATA_DITER_ALL: 261 dev = link->device; 262 goto check; 263 case ATA_DITER_ENABLED_REVERSE: 264 case ATA_DITER_ALL_REVERSE: 265 dev = link->device + ata_link_max_devices(link) - 1; 266 goto check; 267 } 268 269 next: 270 /* move to the next one */ 271 switch (mode) { 272 case ATA_DITER_ENABLED: 273 case ATA_DITER_ALL: 274 if (++dev < link->device + ata_link_max_devices(link)) 275 goto check; 276 return NULL; 277 case ATA_DITER_ENABLED_REVERSE: 278 case ATA_DITER_ALL_REVERSE: 279 if (--dev >= link->device) 280 goto check; 281 return NULL; 282 } 283 284 check: 285 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 286 !ata_dev_enabled(dev)) 287 goto next; 288 return dev; 289 } 290 291 /** 292 * ata_dev_phys_link - find physical link for a device 293 * @dev: ATA device to look up physical link for 294 * 295 * Look up physical link which @dev is attached to. Note that 296 * this is different from @dev->link only when @dev is on slave 297 * link. For all other cases, it's the same as @dev->link. 298 * 299 * LOCKING: 300 * Don't care. 301 * 302 * RETURNS: 303 * Pointer to the found physical link. 304 */ 305 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 306 { 307 struct ata_port *ap = dev->link->ap; 308 309 if (!ap->slave_link) 310 return dev->link; 311 if (!dev->devno) 312 return &ap->link; 313 return ap->slave_link; 314 } 315 316 /** 317 * ata_force_cbl - force cable type according to libata.force 318 * @ap: ATA port of interest 319 * 320 * Force cable type according to libata.force and whine about it. 321 * The last entry which has matching port number is used, so it 322 * can be specified as part of device force parameters. For 323 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 324 * same effect. 325 * 326 * LOCKING: 327 * EH context. 328 */ 329 void ata_force_cbl(struct ata_port *ap) 330 { 331 int i; 332 333 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 334 const struct ata_force_ent *fe = &ata_force_tbl[i]; 335 336 if (fe->port != -1 && fe->port != ap->print_id) 337 continue; 338 339 if (fe->param.cbl == ATA_CBL_NONE) 340 continue; 341 342 ap->cbl = fe->param.cbl; 343 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 344 return; 345 } 346 } 347 348 /** 349 * ata_force_link_limits - force link limits according to libata.force 350 * @link: ATA link of interest 351 * 352 * Force link flags and SATA spd limit according to libata.force 353 * and whine about it. When only the port part is specified 354 * (e.g. 1:), the limit applies to all links connected to both 355 * the host link and all fan-out ports connected via PMP. If the 356 * device part is specified as 0 (e.g. 1.00:), it specifies the 357 * first fan-out link not the host link. Device number 15 always 358 * points to the host link whether PMP is attached or not. If the 359 * controller has slave link, device number 16 points to it. 360 * 361 * LOCKING: 362 * EH context. 363 */ 364 static void ata_force_link_limits(struct ata_link *link) 365 { 366 bool did_spd = false; 367 int linkno = link->pmp; 368 int i; 369 370 if (ata_is_host_link(link)) 371 linkno += 15; 372 373 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 374 const struct ata_force_ent *fe = &ata_force_tbl[i]; 375 376 if (fe->port != -1 && fe->port != link->ap->print_id) 377 continue; 378 379 if (fe->device != -1 && fe->device != linkno) 380 continue; 381 382 /* only honor the first spd limit */ 383 if (!did_spd && fe->param.spd_limit) { 384 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 385 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 386 fe->param.name); 387 did_spd = true; 388 } 389 390 /* let lflags stack */ 391 if (fe->param.lflags) { 392 link->flags |= fe->param.lflags; 393 ata_link_notice(link, 394 "FORCE: link flag 0x%x forced -> 0x%x\n", 395 fe->param.lflags, link->flags); 396 } 397 } 398 } 399 400 /** 401 * ata_force_xfermask - force xfermask according to libata.force 402 * @dev: ATA device of interest 403 * 404 * Force xfer_mask according to libata.force and whine about it. 405 * For consistency with link selection, device number 15 selects 406 * the first device connected to the host link. 407 * 408 * LOCKING: 409 * EH context. 410 */ 411 static void ata_force_xfermask(struct ata_device *dev) 412 { 413 int devno = dev->link->pmp + dev->devno; 414 int alt_devno = devno; 415 int i; 416 417 /* allow n.15/16 for devices attached to host port */ 418 if (ata_is_host_link(dev->link)) 419 alt_devno += 15; 420 421 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 422 const struct ata_force_ent *fe = &ata_force_tbl[i]; 423 unsigned long pio_mask, mwdma_mask, udma_mask; 424 425 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 426 continue; 427 428 if (fe->device != -1 && fe->device != devno && 429 fe->device != alt_devno) 430 continue; 431 432 if (!fe->param.xfer_mask) 433 continue; 434 435 ata_unpack_xfermask(fe->param.xfer_mask, 436 &pio_mask, &mwdma_mask, &udma_mask); 437 if (udma_mask) 438 dev->udma_mask = udma_mask; 439 else if (mwdma_mask) { 440 dev->udma_mask = 0; 441 dev->mwdma_mask = mwdma_mask; 442 } else { 443 dev->udma_mask = 0; 444 dev->mwdma_mask = 0; 445 dev->pio_mask = pio_mask; 446 } 447 448 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 449 fe->param.name); 450 return; 451 } 452 } 453 454 /** 455 * ata_force_horkage - force horkage according to libata.force 456 * @dev: ATA device of interest 457 * 458 * Force horkage according to libata.force and whine about it. 459 * For consistency with link selection, device number 15 selects 460 * the first device connected to the host link. 461 * 462 * LOCKING: 463 * EH context. 464 */ 465 static void ata_force_horkage(struct ata_device *dev) 466 { 467 int devno = dev->link->pmp + dev->devno; 468 int alt_devno = devno; 469 int i; 470 471 /* allow n.15/16 for devices attached to host port */ 472 if (ata_is_host_link(dev->link)) 473 alt_devno += 15; 474 475 for (i = 0; i < ata_force_tbl_size; i++) { 476 const struct ata_force_ent *fe = &ata_force_tbl[i]; 477 478 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 479 continue; 480 481 if (fe->device != -1 && fe->device != devno && 482 fe->device != alt_devno) 483 continue; 484 485 if (!(~dev->horkage & fe->param.horkage_on) && 486 !(dev->horkage & fe->param.horkage_off)) 487 continue; 488 489 dev->horkage |= fe->param.horkage_on; 490 dev->horkage &= ~fe->param.horkage_off; 491 492 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 493 fe->param.name); 494 } 495 } 496 497 /** 498 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 499 * @opcode: SCSI opcode 500 * 501 * Determine ATAPI command type from @opcode. 502 * 503 * LOCKING: 504 * None. 505 * 506 * RETURNS: 507 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 508 */ 509 int atapi_cmd_type(u8 opcode) 510 { 511 switch (opcode) { 512 case GPCMD_READ_10: 513 case GPCMD_READ_12: 514 return ATAPI_READ; 515 516 case GPCMD_WRITE_10: 517 case GPCMD_WRITE_12: 518 case GPCMD_WRITE_AND_VERIFY_10: 519 return ATAPI_WRITE; 520 521 case GPCMD_READ_CD: 522 case GPCMD_READ_CD_MSF: 523 return ATAPI_READ_CD; 524 525 case ATA_16: 526 case ATA_12: 527 if (atapi_passthru16) 528 return ATAPI_PASS_THRU; 529 /* fall thru */ 530 default: 531 return ATAPI_MISC; 532 } 533 } 534 535 /** 536 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 537 * @tf: Taskfile to convert 538 * @pmp: Port multiplier port 539 * @is_cmd: This FIS is for command 540 * @fis: Buffer into which data will output 541 * 542 * Converts a standard ATA taskfile to a Serial ATA 543 * FIS structure (Register - Host to Device). 544 * 545 * LOCKING: 546 * Inherited from caller. 547 */ 548 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 549 { 550 fis[0] = 0x27; /* Register - Host to Device FIS */ 551 fis[1] = pmp & 0xf; /* Port multiplier number*/ 552 if (is_cmd) 553 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 554 555 fis[2] = tf->command; 556 fis[3] = tf->feature; 557 558 fis[4] = tf->lbal; 559 fis[5] = tf->lbam; 560 fis[6] = tf->lbah; 561 fis[7] = tf->device; 562 563 fis[8] = tf->hob_lbal; 564 fis[9] = tf->hob_lbam; 565 fis[10] = tf->hob_lbah; 566 fis[11] = tf->hob_feature; 567 568 fis[12] = tf->nsect; 569 fis[13] = tf->hob_nsect; 570 fis[14] = 0; 571 fis[15] = tf->ctl; 572 573 fis[16] = tf->auxiliary & 0xff; 574 fis[17] = (tf->auxiliary >> 8) & 0xff; 575 fis[18] = (tf->auxiliary >> 16) & 0xff; 576 fis[19] = (tf->auxiliary >> 24) & 0xff; 577 } 578 579 /** 580 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 581 * @fis: Buffer from which data will be input 582 * @tf: Taskfile to output 583 * 584 * Converts a serial ATA FIS structure to a standard ATA taskfile. 585 * 586 * LOCKING: 587 * Inherited from caller. 588 */ 589 590 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 591 { 592 tf->command = fis[2]; /* status */ 593 tf->feature = fis[3]; /* error */ 594 595 tf->lbal = fis[4]; 596 tf->lbam = fis[5]; 597 tf->lbah = fis[6]; 598 tf->device = fis[7]; 599 600 tf->hob_lbal = fis[8]; 601 tf->hob_lbam = fis[9]; 602 tf->hob_lbah = fis[10]; 603 604 tf->nsect = fis[12]; 605 tf->hob_nsect = fis[13]; 606 } 607 608 static const u8 ata_rw_cmds[] = { 609 /* pio multi */ 610 ATA_CMD_READ_MULTI, 611 ATA_CMD_WRITE_MULTI, 612 ATA_CMD_READ_MULTI_EXT, 613 ATA_CMD_WRITE_MULTI_EXT, 614 0, 615 0, 616 0, 617 ATA_CMD_WRITE_MULTI_FUA_EXT, 618 /* pio */ 619 ATA_CMD_PIO_READ, 620 ATA_CMD_PIO_WRITE, 621 ATA_CMD_PIO_READ_EXT, 622 ATA_CMD_PIO_WRITE_EXT, 623 0, 624 0, 625 0, 626 0, 627 /* dma */ 628 ATA_CMD_READ, 629 ATA_CMD_WRITE, 630 ATA_CMD_READ_EXT, 631 ATA_CMD_WRITE_EXT, 632 0, 633 0, 634 0, 635 ATA_CMD_WRITE_FUA_EXT 636 }; 637 638 /** 639 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 640 * @tf: command to examine and configure 641 * @dev: device tf belongs to 642 * 643 * Examine the device configuration and tf->flags to calculate 644 * the proper read/write commands and protocol to use. 645 * 646 * LOCKING: 647 * caller. 648 */ 649 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 650 { 651 u8 cmd; 652 653 int index, fua, lba48, write; 654 655 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 656 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 657 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 658 659 if (dev->flags & ATA_DFLAG_PIO) { 660 tf->protocol = ATA_PROT_PIO; 661 index = dev->multi_count ? 0 : 8; 662 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 663 /* Unable to use DMA due to host limitation */ 664 tf->protocol = ATA_PROT_PIO; 665 index = dev->multi_count ? 0 : 8; 666 } else { 667 tf->protocol = ATA_PROT_DMA; 668 index = 16; 669 } 670 671 cmd = ata_rw_cmds[index + fua + lba48 + write]; 672 if (cmd) { 673 tf->command = cmd; 674 return 0; 675 } 676 return -1; 677 } 678 679 /** 680 * ata_tf_read_block - Read block address from ATA taskfile 681 * @tf: ATA taskfile of interest 682 * @dev: ATA device @tf belongs to 683 * 684 * LOCKING: 685 * None. 686 * 687 * Read block address from @tf. This function can handle all 688 * three address formats - LBA, LBA48 and CHS. tf->protocol and 689 * flags select the address format to use. 690 * 691 * RETURNS: 692 * Block address read from @tf. 693 */ 694 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 695 { 696 u64 block = 0; 697 698 if (tf->flags & ATA_TFLAG_LBA) { 699 if (tf->flags & ATA_TFLAG_LBA48) { 700 block |= (u64)tf->hob_lbah << 40; 701 block |= (u64)tf->hob_lbam << 32; 702 block |= (u64)tf->hob_lbal << 24; 703 } else 704 block |= (tf->device & 0xf) << 24; 705 706 block |= tf->lbah << 16; 707 block |= tf->lbam << 8; 708 block |= tf->lbal; 709 } else { 710 u32 cyl, head, sect; 711 712 cyl = tf->lbam | (tf->lbah << 8); 713 head = tf->device & 0xf; 714 sect = tf->lbal; 715 716 if (!sect) { 717 ata_dev_warn(dev, 718 "device reported invalid CHS sector 0\n"); 719 sect = 1; /* oh well */ 720 } 721 722 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 723 } 724 725 return block; 726 } 727 728 /** 729 * ata_build_rw_tf - Build ATA taskfile for given read/write request 730 * @tf: Target ATA taskfile 731 * @dev: ATA device @tf belongs to 732 * @block: Block address 733 * @n_block: Number of blocks 734 * @tf_flags: RW/FUA etc... 735 * @tag: tag 736 * 737 * LOCKING: 738 * None. 739 * 740 * Build ATA taskfile @tf for read/write request described by 741 * @block, @n_block, @tf_flags and @tag on @dev. 742 * 743 * RETURNS: 744 * 745 * 0 on success, -ERANGE if the request is too large for @dev, 746 * -EINVAL if the request is invalid. 747 */ 748 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 749 u64 block, u32 n_block, unsigned int tf_flags, 750 unsigned int tag) 751 { 752 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 753 tf->flags |= tf_flags; 754 755 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 756 /* yay, NCQ */ 757 if (!lba_48_ok(block, n_block)) 758 return -ERANGE; 759 760 tf->protocol = ATA_PROT_NCQ; 761 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 762 763 if (tf->flags & ATA_TFLAG_WRITE) 764 tf->command = ATA_CMD_FPDMA_WRITE; 765 else 766 tf->command = ATA_CMD_FPDMA_READ; 767 768 tf->nsect = tag << 3; 769 tf->hob_feature = (n_block >> 8) & 0xff; 770 tf->feature = n_block & 0xff; 771 772 tf->hob_lbah = (block >> 40) & 0xff; 773 tf->hob_lbam = (block >> 32) & 0xff; 774 tf->hob_lbal = (block >> 24) & 0xff; 775 tf->lbah = (block >> 16) & 0xff; 776 tf->lbam = (block >> 8) & 0xff; 777 tf->lbal = block & 0xff; 778 779 tf->device = ATA_LBA; 780 if (tf->flags & ATA_TFLAG_FUA) 781 tf->device |= 1 << 7; 782 } else if (dev->flags & ATA_DFLAG_LBA) { 783 tf->flags |= ATA_TFLAG_LBA; 784 785 if (lba_28_ok(block, n_block)) { 786 /* use LBA28 */ 787 tf->device |= (block >> 24) & 0xf; 788 } else if (lba_48_ok(block, n_block)) { 789 if (!(dev->flags & ATA_DFLAG_LBA48)) 790 return -ERANGE; 791 792 /* use LBA48 */ 793 tf->flags |= ATA_TFLAG_LBA48; 794 795 tf->hob_nsect = (n_block >> 8) & 0xff; 796 797 tf->hob_lbah = (block >> 40) & 0xff; 798 tf->hob_lbam = (block >> 32) & 0xff; 799 tf->hob_lbal = (block >> 24) & 0xff; 800 } else 801 /* request too large even for LBA48 */ 802 return -ERANGE; 803 804 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 805 return -EINVAL; 806 807 tf->nsect = n_block & 0xff; 808 809 tf->lbah = (block >> 16) & 0xff; 810 tf->lbam = (block >> 8) & 0xff; 811 tf->lbal = block & 0xff; 812 813 tf->device |= ATA_LBA; 814 } else { 815 /* CHS */ 816 u32 sect, head, cyl, track; 817 818 /* The request -may- be too large for CHS addressing. */ 819 if (!lba_28_ok(block, n_block)) 820 return -ERANGE; 821 822 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 823 return -EINVAL; 824 825 /* Convert LBA to CHS */ 826 track = (u32)block / dev->sectors; 827 cyl = track / dev->heads; 828 head = track % dev->heads; 829 sect = (u32)block % dev->sectors + 1; 830 831 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 832 (u32)block, track, cyl, head, sect); 833 834 /* Check whether the converted CHS can fit. 835 Cylinder: 0-65535 836 Head: 0-15 837 Sector: 1-255*/ 838 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 839 return -ERANGE; 840 841 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 842 tf->lbal = sect; 843 tf->lbam = cyl; 844 tf->lbah = cyl >> 8; 845 tf->device |= head; 846 } 847 848 return 0; 849 } 850 851 /** 852 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 853 * @pio_mask: pio_mask 854 * @mwdma_mask: mwdma_mask 855 * @udma_mask: udma_mask 856 * 857 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 858 * unsigned int xfer_mask. 859 * 860 * LOCKING: 861 * None. 862 * 863 * RETURNS: 864 * Packed xfer_mask. 865 */ 866 unsigned long ata_pack_xfermask(unsigned long pio_mask, 867 unsigned long mwdma_mask, 868 unsigned long udma_mask) 869 { 870 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 871 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 872 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 873 } 874 875 /** 876 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 877 * @xfer_mask: xfer_mask to unpack 878 * @pio_mask: resulting pio_mask 879 * @mwdma_mask: resulting mwdma_mask 880 * @udma_mask: resulting udma_mask 881 * 882 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 883 * Any NULL distination masks will be ignored. 884 */ 885 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 886 unsigned long *mwdma_mask, unsigned long *udma_mask) 887 { 888 if (pio_mask) 889 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 890 if (mwdma_mask) 891 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 892 if (udma_mask) 893 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 894 } 895 896 static const struct ata_xfer_ent { 897 int shift, bits; 898 u8 base; 899 } ata_xfer_tbl[] = { 900 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 901 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 902 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 903 { -1, }, 904 }; 905 906 /** 907 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 908 * @xfer_mask: xfer_mask of interest 909 * 910 * Return matching XFER_* value for @xfer_mask. Only the highest 911 * bit of @xfer_mask is considered. 912 * 913 * LOCKING: 914 * None. 915 * 916 * RETURNS: 917 * Matching XFER_* value, 0xff if no match found. 918 */ 919 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 920 { 921 int highbit = fls(xfer_mask) - 1; 922 const struct ata_xfer_ent *ent; 923 924 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 925 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 926 return ent->base + highbit - ent->shift; 927 return 0xff; 928 } 929 930 /** 931 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 932 * @xfer_mode: XFER_* of interest 933 * 934 * Return matching xfer_mask for @xfer_mode. 935 * 936 * LOCKING: 937 * None. 938 * 939 * RETURNS: 940 * Matching xfer_mask, 0 if no match found. 941 */ 942 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 943 { 944 const struct ata_xfer_ent *ent; 945 946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 948 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 949 & ~((1 << ent->shift) - 1); 950 return 0; 951 } 952 953 /** 954 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 955 * @xfer_mode: XFER_* of interest 956 * 957 * Return matching xfer_shift for @xfer_mode. 958 * 959 * LOCKING: 960 * None. 961 * 962 * RETURNS: 963 * Matching xfer_shift, -1 if no match found. 964 */ 965 int ata_xfer_mode2shift(unsigned long xfer_mode) 966 { 967 const struct ata_xfer_ent *ent; 968 969 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 970 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 971 return ent->shift; 972 return -1; 973 } 974 975 /** 976 * ata_mode_string - convert xfer_mask to string 977 * @xfer_mask: mask of bits supported; only highest bit counts. 978 * 979 * Determine string which represents the highest speed 980 * (highest bit in @modemask). 981 * 982 * LOCKING: 983 * None. 984 * 985 * RETURNS: 986 * Constant C string representing highest speed listed in 987 * @mode_mask, or the constant C string "<n/a>". 988 */ 989 const char *ata_mode_string(unsigned long xfer_mask) 990 { 991 static const char * const xfer_mode_str[] = { 992 "PIO0", 993 "PIO1", 994 "PIO2", 995 "PIO3", 996 "PIO4", 997 "PIO5", 998 "PIO6", 999 "MWDMA0", 1000 "MWDMA1", 1001 "MWDMA2", 1002 "MWDMA3", 1003 "MWDMA4", 1004 "UDMA/16", 1005 "UDMA/25", 1006 "UDMA/33", 1007 "UDMA/44", 1008 "UDMA/66", 1009 "UDMA/100", 1010 "UDMA/133", 1011 "UDMA7", 1012 }; 1013 int highbit; 1014 1015 highbit = fls(xfer_mask) - 1; 1016 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1017 return xfer_mode_str[highbit]; 1018 return "<n/a>"; 1019 } 1020 1021 const char *sata_spd_string(unsigned int spd) 1022 { 1023 static const char * const spd_str[] = { 1024 "1.5 Gbps", 1025 "3.0 Gbps", 1026 "6.0 Gbps", 1027 }; 1028 1029 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1030 return "<unknown>"; 1031 return spd_str[spd - 1]; 1032 } 1033 1034 /** 1035 * ata_dev_classify - determine device type based on ATA-spec signature 1036 * @tf: ATA taskfile register set for device to be identified 1037 * 1038 * Determine from taskfile register contents whether a device is 1039 * ATA or ATAPI, as per "Signature and persistence" section 1040 * of ATA/PI spec (volume 1, sect 5.14). 1041 * 1042 * LOCKING: 1043 * None. 1044 * 1045 * RETURNS: 1046 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1047 * %ATA_DEV_UNKNOWN the event of failure. 1048 */ 1049 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1050 { 1051 /* Apple's open source Darwin code hints that some devices only 1052 * put a proper signature into the LBA mid/high registers, 1053 * So, we only check those. It's sufficient for uniqueness. 1054 * 1055 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1056 * signatures for ATA and ATAPI devices attached on SerialATA, 1057 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1058 * spec has never mentioned about using different signatures 1059 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1060 * Multiplier specification began to use 0x69/0x96 to identify 1061 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1062 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1063 * 0x69/0x96 shortly and described them as reserved for 1064 * SerialATA. 1065 * 1066 * We follow the current spec and consider that 0x69/0x96 1067 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1068 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1069 * SEMB signature. This is worked around in 1070 * ata_dev_read_id(). 1071 */ 1072 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1073 DPRINTK("found ATA device by sig\n"); 1074 return ATA_DEV_ATA; 1075 } 1076 1077 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1078 DPRINTK("found ATAPI device by sig\n"); 1079 return ATA_DEV_ATAPI; 1080 } 1081 1082 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1083 DPRINTK("found PMP device by sig\n"); 1084 return ATA_DEV_PMP; 1085 } 1086 1087 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1088 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1089 return ATA_DEV_SEMB; 1090 } 1091 1092 DPRINTK("unknown device\n"); 1093 return ATA_DEV_UNKNOWN; 1094 } 1095 1096 /** 1097 * ata_id_string - Convert IDENTIFY DEVICE page into string 1098 * @id: IDENTIFY DEVICE results we will examine 1099 * @s: string into which data is output 1100 * @ofs: offset into identify device page 1101 * @len: length of string to return. must be an even number. 1102 * 1103 * The strings in the IDENTIFY DEVICE page are broken up into 1104 * 16-bit chunks. Run through the string, and output each 1105 * 8-bit chunk linearly, regardless of platform. 1106 * 1107 * LOCKING: 1108 * caller. 1109 */ 1110 1111 void ata_id_string(const u16 *id, unsigned char *s, 1112 unsigned int ofs, unsigned int len) 1113 { 1114 unsigned int c; 1115 1116 BUG_ON(len & 1); 1117 1118 while (len > 0) { 1119 c = id[ofs] >> 8; 1120 *s = c; 1121 s++; 1122 1123 c = id[ofs] & 0xff; 1124 *s = c; 1125 s++; 1126 1127 ofs++; 1128 len -= 2; 1129 } 1130 } 1131 1132 /** 1133 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1134 * @id: IDENTIFY DEVICE results we will examine 1135 * @s: string into which data is output 1136 * @ofs: offset into identify device page 1137 * @len: length of string to return. must be an odd number. 1138 * 1139 * This function is identical to ata_id_string except that it 1140 * trims trailing spaces and terminates the resulting string with 1141 * null. @len must be actual maximum length (even number) + 1. 1142 * 1143 * LOCKING: 1144 * caller. 1145 */ 1146 void ata_id_c_string(const u16 *id, unsigned char *s, 1147 unsigned int ofs, unsigned int len) 1148 { 1149 unsigned char *p; 1150 1151 ata_id_string(id, s, ofs, len - 1); 1152 1153 p = s + strnlen(s, len - 1); 1154 while (p > s && p[-1] == ' ') 1155 p--; 1156 *p = '\0'; 1157 } 1158 1159 static u64 ata_id_n_sectors(const u16 *id) 1160 { 1161 if (ata_id_has_lba(id)) { 1162 if (ata_id_has_lba48(id)) 1163 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1164 else 1165 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1166 } else { 1167 if (ata_id_current_chs_valid(id)) 1168 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1169 id[ATA_ID_CUR_SECTORS]; 1170 else 1171 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1172 id[ATA_ID_SECTORS]; 1173 } 1174 } 1175 1176 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1177 { 1178 u64 sectors = 0; 1179 1180 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1181 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1182 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1183 sectors |= (tf->lbah & 0xff) << 16; 1184 sectors |= (tf->lbam & 0xff) << 8; 1185 sectors |= (tf->lbal & 0xff); 1186 1187 return sectors; 1188 } 1189 1190 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1191 { 1192 u64 sectors = 0; 1193 1194 sectors |= (tf->device & 0x0f) << 24; 1195 sectors |= (tf->lbah & 0xff) << 16; 1196 sectors |= (tf->lbam & 0xff) << 8; 1197 sectors |= (tf->lbal & 0xff); 1198 1199 return sectors; 1200 } 1201 1202 /** 1203 * ata_read_native_max_address - Read native max address 1204 * @dev: target device 1205 * @max_sectors: out parameter for the result native max address 1206 * 1207 * Perform an LBA48 or LBA28 native size query upon the device in 1208 * question. 1209 * 1210 * RETURNS: 1211 * 0 on success, -EACCES if command is aborted by the drive. 1212 * -EIO on other errors. 1213 */ 1214 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1215 { 1216 unsigned int err_mask; 1217 struct ata_taskfile tf; 1218 int lba48 = ata_id_has_lba48(dev->id); 1219 1220 ata_tf_init(dev, &tf); 1221 1222 /* always clear all address registers */ 1223 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1224 1225 if (lba48) { 1226 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1227 tf.flags |= ATA_TFLAG_LBA48; 1228 } else 1229 tf.command = ATA_CMD_READ_NATIVE_MAX; 1230 1231 tf.protocol |= ATA_PROT_NODATA; 1232 tf.device |= ATA_LBA; 1233 1234 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1235 if (err_mask) { 1236 ata_dev_warn(dev, 1237 "failed to read native max address (err_mask=0x%x)\n", 1238 err_mask); 1239 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1240 return -EACCES; 1241 return -EIO; 1242 } 1243 1244 if (lba48) 1245 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1246 else 1247 *max_sectors = ata_tf_to_lba(&tf) + 1; 1248 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1249 (*max_sectors)--; 1250 return 0; 1251 } 1252 1253 /** 1254 * ata_set_max_sectors - Set max sectors 1255 * @dev: target device 1256 * @new_sectors: new max sectors value to set for the device 1257 * 1258 * Set max sectors of @dev to @new_sectors. 1259 * 1260 * RETURNS: 1261 * 0 on success, -EACCES if command is aborted or denied (due to 1262 * previous non-volatile SET_MAX) by the drive. -EIO on other 1263 * errors. 1264 */ 1265 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1266 { 1267 unsigned int err_mask; 1268 struct ata_taskfile tf; 1269 int lba48 = ata_id_has_lba48(dev->id); 1270 1271 new_sectors--; 1272 1273 ata_tf_init(dev, &tf); 1274 1275 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1276 1277 if (lba48) { 1278 tf.command = ATA_CMD_SET_MAX_EXT; 1279 tf.flags |= ATA_TFLAG_LBA48; 1280 1281 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1282 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1283 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1284 } else { 1285 tf.command = ATA_CMD_SET_MAX; 1286 1287 tf.device |= (new_sectors >> 24) & 0xf; 1288 } 1289 1290 tf.protocol |= ATA_PROT_NODATA; 1291 tf.device |= ATA_LBA; 1292 1293 tf.lbal = (new_sectors >> 0) & 0xff; 1294 tf.lbam = (new_sectors >> 8) & 0xff; 1295 tf.lbah = (new_sectors >> 16) & 0xff; 1296 1297 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1298 if (err_mask) { 1299 ata_dev_warn(dev, 1300 "failed to set max address (err_mask=0x%x)\n", 1301 err_mask); 1302 if (err_mask == AC_ERR_DEV && 1303 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1304 return -EACCES; 1305 return -EIO; 1306 } 1307 1308 return 0; 1309 } 1310 1311 /** 1312 * ata_hpa_resize - Resize a device with an HPA set 1313 * @dev: Device to resize 1314 * 1315 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1316 * it if required to the full size of the media. The caller must check 1317 * the drive has the HPA feature set enabled. 1318 * 1319 * RETURNS: 1320 * 0 on success, -errno on failure. 1321 */ 1322 static int ata_hpa_resize(struct ata_device *dev) 1323 { 1324 struct ata_eh_context *ehc = &dev->link->eh_context; 1325 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1326 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1327 u64 sectors = ata_id_n_sectors(dev->id); 1328 u64 native_sectors; 1329 int rc; 1330 1331 /* do we need to do it? */ 1332 if (dev->class != ATA_DEV_ATA || 1333 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1334 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1335 return 0; 1336 1337 /* read native max address */ 1338 rc = ata_read_native_max_address(dev, &native_sectors); 1339 if (rc) { 1340 /* If device aborted the command or HPA isn't going to 1341 * be unlocked, skip HPA resizing. 1342 */ 1343 if (rc == -EACCES || !unlock_hpa) { 1344 ata_dev_warn(dev, 1345 "HPA support seems broken, skipping HPA handling\n"); 1346 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1347 1348 /* we can continue if device aborted the command */ 1349 if (rc == -EACCES) 1350 rc = 0; 1351 } 1352 1353 return rc; 1354 } 1355 dev->n_native_sectors = native_sectors; 1356 1357 /* nothing to do? */ 1358 if (native_sectors <= sectors || !unlock_hpa) { 1359 if (!print_info || native_sectors == sectors) 1360 return 0; 1361 1362 if (native_sectors > sectors) 1363 ata_dev_info(dev, 1364 "HPA detected: current %llu, native %llu\n", 1365 (unsigned long long)sectors, 1366 (unsigned long long)native_sectors); 1367 else if (native_sectors < sectors) 1368 ata_dev_warn(dev, 1369 "native sectors (%llu) is smaller than sectors (%llu)\n", 1370 (unsigned long long)native_sectors, 1371 (unsigned long long)sectors); 1372 return 0; 1373 } 1374 1375 /* let's unlock HPA */ 1376 rc = ata_set_max_sectors(dev, native_sectors); 1377 if (rc == -EACCES) { 1378 /* if device aborted the command, skip HPA resizing */ 1379 ata_dev_warn(dev, 1380 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1381 (unsigned long long)sectors, 1382 (unsigned long long)native_sectors); 1383 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1384 return 0; 1385 } else if (rc) 1386 return rc; 1387 1388 /* re-read IDENTIFY data */ 1389 rc = ata_dev_reread_id(dev, 0); 1390 if (rc) { 1391 ata_dev_err(dev, 1392 "failed to re-read IDENTIFY data after HPA resizing\n"); 1393 return rc; 1394 } 1395 1396 if (print_info) { 1397 u64 new_sectors = ata_id_n_sectors(dev->id); 1398 ata_dev_info(dev, 1399 "HPA unlocked: %llu -> %llu, native %llu\n", 1400 (unsigned long long)sectors, 1401 (unsigned long long)new_sectors, 1402 (unsigned long long)native_sectors); 1403 } 1404 1405 return 0; 1406 } 1407 1408 /** 1409 * ata_dump_id - IDENTIFY DEVICE info debugging output 1410 * @id: IDENTIFY DEVICE page to dump 1411 * 1412 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1413 * page. 1414 * 1415 * LOCKING: 1416 * caller. 1417 */ 1418 1419 static inline void ata_dump_id(const u16 *id) 1420 { 1421 DPRINTK("49==0x%04x " 1422 "53==0x%04x " 1423 "63==0x%04x " 1424 "64==0x%04x " 1425 "75==0x%04x \n", 1426 id[49], 1427 id[53], 1428 id[63], 1429 id[64], 1430 id[75]); 1431 DPRINTK("80==0x%04x " 1432 "81==0x%04x " 1433 "82==0x%04x " 1434 "83==0x%04x " 1435 "84==0x%04x \n", 1436 id[80], 1437 id[81], 1438 id[82], 1439 id[83], 1440 id[84]); 1441 DPRINTK("88==0x%04x " 1442 "93==0x%04x\n", 1443 id[88], 1444 id[93]); 1445 } 1446 1447 /** 1448 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1449 * @id: IDENTIFY data to compute xfer mask from 1450 * 1451 * Compute the xfermask for this device. This is not as trivial 1452 * as it seems if we must consider early devices correctly. 1453 * 1454 * FIXME: pre IDE drive timing (do we care ?). 1455 * 1456 * LOCKING: 1457 * None. 1458 * 1459 * RETURNS: 1460 * Computed xfermask 1461 */ 1462 unsigned long ata_id_xfermask(const u16 *id) 1463 { 1464 unsigned long pio_mask, mwdma_mask, udma_mask; 1465 1466 /* Usual case. Word 53 indicates word 64 is valid */ 1467 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1468 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1469 pio_mask <<= 3; 1470 pio_mask |= 0x7; 1471 } else { 1472 /* If word 64 isn't valid then Word 51 high byte holds 1473 * the PIO timing number for the maximum. Turn it into 1474 * a mask. 1475 */ 1476 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1477 if (mode < 5) /* Valid PIO range */ 1478 pio_mask = (2 << mode) - 1; 1479 else 1480 pio_mask = 1; 1481 1482 /* But wait.. there's more. Design your standards by 1483 * committee and you too can get a free iordy field to 1484 * process. However its the speeds not the modes that 1485 * are supported... Note drivers using the timing API 1486 * will get this right anyway 1487 */ 1488 } 1489 1490 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1491 1492 if (ata_id_is_cfa(id)) { 1493 /* 1494 * Process compact flash extended modes 1495 */ 1496 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1497 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1498 1499 if (pio) 1500 pio_mask |= (1 << 5); 1501 if (pio > 1) 1502 pio_mask |= (1 << 6); 1503 if (dma) 1504 mwdma_mask |= (1 << 3); 1505 if (dma > 1) 1506 mwdma_mask |= (1 << 4); 1507 } 1508 1509 udma_mask = 0; 1510 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1511 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1512 1513 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1514 } 1515 1516 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1517 { 1518 struct completion *waiting = qc->private_data; 1519 1520 complete(waiting); 1521 } 1522 1523 /** 1524 * ata_exec_internal_sg - execute libata internal command 1525 * @dev: Device to which the command is sent 1526 * @tf: Taskfile registers for the command and the result 1527 * @cdb: CDB for packet command 1528 * @dma_dir: Data transfer direction of the command 1529 * @sgl: sg list for the data buffer of the command 1530 * @n_elem: Number of sg entries 1531 * @timeout: Timeout in msecs (0 for default) 1532 * 1533 * Executes libata internal command with timeout. @tf contains 1534 * command on entry and result on return. Timeout and error 1535 * conditions are reported via return value. No recovery action 1536 * is taken after a command times out. It's caller's duty to 1537 * clean up after timeout. 1538 * 1539 * LOCKING: 1540 * None. Should be called with kernel context, might sleep. 1541 * 1542 * RETURNS: 1543 * Zero on success, AC_ERR_* mask on failure 1544 */ 1545 unsigned ata_exec_internal_sg(struct ata_device *dev, 1546 struct ata_taskfile *tf, const u8 *cdb, 1547 int dma_dir, struct scatterlist *sgl, 1548 unsigned int n_elem, unsigned long timeout) 1549 { 1550 struct ata_link *link = dev->link; 1551 struct ata_port *ap = link->ap; 1552 u8 command = tf->command; 1553 int auto_timeout = 0; 1554 struct ata_queued_cmd *qc; 1555 unsigned int tag, preempted_tag; 1556 u32 preempted_sactive, preempted_qc_active; 1557 int preempted_nr_active_links; 1558 DECLARE_COMPLETION_ONSTACK(wait); 1559 unsigned long flags; 1560 unsigned int err_mask; 1561 int rc; 1562 1563 spin_lock_irqsave(ap->lock, flags); 1564 1565 /* no internal command while frozen */ 1566 if (ap->pflags & ATA_PFLAG_FROZEN) { 1567 spin_unlock_irqrestore(ap->lock, flags); 1568 return AC_ERR_SYSTEM; 1569 } 1570 1571 /* initialize internal qc */ 1572 1573 /* XXX: Tag 0 is used for drivers with legacy EH as some 1574 * drivers choke if any other tag is given. This breaks 1575 * ata_tag_internal() test for those drivers. Don't use new 1576 * EH stuff without converting to it. 1577 */ 1578 if (ap->ops->error_handler) 1579 tag = ATA_TAG_INTERNAL; 1580 else 1581 tag = 0; 1582 1583 if (test_and_set_bit(tag, &ap->qc_allocated)) 1584 BUG(); 1585 qc = __ata_qc_from_tag(ap, tag); 1586 1587 qc->tag = tag; 1588 qc->scsicmd = NULL; 1589 qc->ap = ap; 1590 qc->dev = dev; 1591 ata_qc_reinit(qc); 1592 1593 preempted_tag = link->active_tag; 1594 preempted_sactive = link->sactive; 1595 preempted_qc_active = ap->qc_active; 1596 preempted_nr_active_links = ap->nr_active_links; 1597 link->active_tag = ATA_TAG_POISON; 1598 link->sactive = 0; 1599 ap->qc_active = 0; 1600 ap->nr_active_links = 0; 1601 1602 /* prepare & issue qc */ 1603 qc->tf = *tf; 1604 if (cdb) 1605 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1606 1607 /* some SATA bridges need us to indicate data xfer direction */ 1608 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1609 dma_dir == DMA_FROM_DEVICE) 1610 qc->tf.feature |= ATAPI_DMADIR; 1611 1612 qc->flags |= ATA_QCFLAG_RESULT_TF; 1613 qc->dma_dir = dma_dir; 1614 if (dma_dir != DMA_NONE) { 1615 unsigned int i, buflen = 0; 1616 struct scatterlist *sg; 1617 1618 for_each_sg(sgl, sg, n_elem, i) 1619 buflen += sg->length; 1620 1621 ata_sg_init(qc, sgl, n_elem); 1622 qc->nbytes = buflen; 1623 } 1624 1625 qc->private_data = &wait; 1626 qc->complete_fn = ata_qc_complete_internal; 1627 1628 ata_qc_issue(qc); 1629 1630 spin_unlock_irqrestore(ap->lock, flags); 1631 1632 if (!timeout) { 1633 if (ata_probe_timeout) 1634 timeout = ata_probe_timeout * 1000; 1635 else { 1636 timeout = ata_internal_cmd_timeout(dev, command); 1637 auto_timeout = 1; 1638 } 1639 } 1640 1641 if (ap->ops->error_handler) 1642 ata_eh_release(ap); 1643 1644 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1645 1646 if (ap->ops->error_handler) 1647 ata_eh_acquire(ap); 1648 1649 ata_sff_flush_pio_task(ap); 1650 1651 if (!rc) { 1652 spin_lock_irqsave(ap->lock, flags); 1653 1654 /* We're racing with irq here. If we lose, the 1655 * following test prevents us from completing the qc 1656 * twice. If we win, the port is frozen and will be 1657 * cleaned up by ->post_internal_cmd(). 1658 */ 1659 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1660 qc->err_mask |= AC_ERR_TIMEOUT; 1661 1662 if (ap->ops->error_handler) 1663 ata_port_freeze(ap); 1664 else 1665 ata_qc_complete(qc); 1666 1667 if (ata_msg_warn(ap)) 1668 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1669 command); 1670 } 1671 1672 spin_unlock_irqrestore(ap->lock, flags); 1673 } 1674 1675 /* do post_internal_cmd */ 1676 if (ap->ops->post_internal_cmd) 1677 ap->ops->post_internal_cmd(qc); 1678 1679 /* perform minimal error analysis */ 1680 if (qc->flags & ATA_QCFLAG_FAILED) { 1681 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1682 qc->err_mask |= AC_ERR_DEV; 1683 1684 if (!qc->err_mask) 1685 qc->err_mask |= AC_ERR_OTHER; 1686 1687 if (qc->err_mask & ~AC_ERR_OTHER) 1688 qc->err_mask &= ~AC_ERR_OTHER; 1689 } 1690 1691 /* finish up */ 1692 spin_lock_irqsave(ap->lock, flags); 1693 1694 *tf = qc->result_tf; 1695 err_mask = qc->err_mask; 1696 1697 ata_qc_free(qc); 1698 link->active_tag = preempted_tag; 1699 link->sactive = preempted_sactive; 1700 ap->qc_active = preempted_qc_active; 1701 ap->nr_active_links = preempted_nr_active_links; 1702 1703 spin_unlock_irqrestore(ap->lock, flags); 1704 1705 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1706 ata_internal_cmd_timed_out(dev, command); 1707 1708 return err_mask; 1709 } 1710 1711 /** 1712 * ata_exec_internal - execute libata internal command 1713 * @dev: Device to which the command is sent 1714 * @tf: Taskfile registers for the command and the result 1715 * @cdb: CDB for packet command 1716 * @dma_dir: Data transfer direction of the command 1717 * @buf: Data buffer of the command 1718 * @buflen: Length of data buffer 1719 * @timeout: Timeout in msecs (0 for default) 1720 * 1721 * Wrapper around ata_exec_internal_sg() which takes simple 1722 * buffer instead of sg list. 1723 * 1724 * LOCKING: 1725 * None. Should be called with kernel context, might sleep. 1726 * 1727 * RETURNS: 1728 * Zero on success, AC_ERR_* mask on failure 1729 */ 1730 unsigned ata_exec_internal(struct ata_device *dev, 1731 struct ata_taskfile *tf, const u8 *cdb, 1732 int dma_dir, void *buf, unsigned int buflen, 1733 unsigned long timeout) 1734 { 1735 struct scatterlist *psg = NULL, sg; 1736 unsigned int n_elem = 0; 1737 1738 if (dma_dir != DMA_NONE) { 1739 WARN_ON(!buf); 1740 sg_init_one(&sg, buf, buflen); 1741 psg = &sg; 1742 n_elem++; 1743 } 1744 1745 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1746 timeout); 1747 } 1748 1749 /** 1750 * ata_do_simple_cmd - execute simple internal command 1751 * @dev: Device to which the command is sent 1752 * @cmd: Opcode to execute 1753 * 1754 * Execute a 'simple' command, that only consists of the opcode 1755 * 'cmd' itself, without filling any other registers 1756 * 1757 * LOCKING: 1758 * Kernel thread context (may sleep). 1759 * 1760 * RETURNS: 1761 * Zero on success, AC_ERR_* mask on failure 1762 */ 1763 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1764 { 1765 struct ata_taskfile tf; 1766 1767 ata_tf_init(dev, &tf); 1768 1769 tf.command = cmd; 1770 tf.flags |= ATA_TFLAG_DEVICE; 1771 tf.protocol = ATA_PROT_NODATA; 1772 1773 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1774 } 1775 1776 /** 1777 * ata_pio_need_iordy - check if iordy needed 1778 * @adev: ATA device 1779 * 1780 * Check if the current speed of the device requires IORDY. Used 1781 * by various controllers for chip configuration. 1782 */ 1783 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1784 { 1785 /* Don't set IORDY if we're preparing for reset. IORDY may 1786 * lead to controller lock up on certain controllers if the 1787 * port is not occupied. See bko#11703 for details. 1788 */ 1789 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1790 return 0; 1791 /* Controller doesn't support IORDY. Probably a pointless 1792 * check as the caller should know this. 1793 */ 1794 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1795 return 0; 1796 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1797 if (ata_id_is_cfa(adev->id) 1798 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1799 return 0; 1800 /* PIO3 and higher it is mandatory */ 1801 if (adev->pio_mode > XFER_PIO_2) 1802 return 1; 1803 /* We turn it on when possible */ 1804 if (ata_id_has_iordy(adev->id)) 1805 return 1; 1806 return 0; 1807 } 1808 1809 /** 1810 * ata_pio_mask_no_iordy - Return the non IORDY mask 1811 * @adev: ATA device 1812 * 1813 * Compute the highest mode possible if we are not using iordy. Return 1814 * -1 if no iordy mode is available. 1815 */ 1816 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1817 { 1818 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1819 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1820 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1821 /* Is the speed faster than the drive allows non IORDY ? */ 1822 if (pio) { 1823 /* This is cycle times not frequency - watch the logic! */ 1824 if (pio > 240) /* PIO2 is 240nS per cycle */ 1825 return 3 << ATA_SHIFT_PIO; 1826 return 7 << ATA_SHIFT_PIO; 1827 } 1828 } 1829 return 3 << ATA_SHIFT_PIO; 1830 } 1831 1832 /** 1833 * ata_do_dev_read_id - default ID read method 1834 * @dev: device 1835 * @tf: proposed taskfile 1836 * @id: data buffer 1837 * 1838 * Issue the identify taskfile and hand back the buffer containing 1839 * identify data. For some RAID controllers and for pre ATA devices 1840 * this function is wrapped or replaced by the driver 1841 */ 1842 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1843 struct ata_taskfile *tf, u16 *id) 1844 { 1845 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1846 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1847 } 1848 1849 /** 1850 * ata_dev_read_id - Read ID data from the specified device 1851 * @dev: target device 1852 * @p_class: pointer to class of the target device (may be changed) 1853 * @flags: ATA_READID_* flags 1854 * @id: buffer to read IDENTIFY data into 1855 * 1856 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1857 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1858 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1859 * for pre-ATA4 drives. 1860 * 1861 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1862 * now we abort if we hit that case. 1863 * 1864 * LOCKING: 1865 * Kernel thread context (may sleep) 1866 * 1867 * RETURNS: 1868 * 0 on success, -errno otherwise. 1869 */ 1870 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1871 unsigned int flags, u16 *id) 1872 { 1873 struct ata_port *ap = dev->link->ap; 1874 unsigned int class = *p_class; 1875 struct ata_taskfile tf; 1876 unsigned int err_mask = 0; 1877 const char *reason; 1878 bool is_semb = class == ATA_DEV_SEMB; 1879 int may_fallback = 1, tried_spinup = 0; 1880 int rc; 1881 1882 if (ata_msg_ctl(ap)) 1883 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1884 1885 retry: 1886 ata_tf_init(dev, &tf); 1887 1888 switch (class) { 1889 case ATA_DEV_SEMB: 1890 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1891 case ATA_DEV_ATA: 1892 tf.command = ATA_CMD_ID_ATA; 1893 break; 1894 case ATA_DEV_ATAPI: 1895 tf.command = ATA_CMD_ID_ATAPI; 1896 break; 1897 default: 1898 rc = -ENODEV; 1899 reason = "unsupported class"; 1900 goto err_out; 1901 } 1902 1903 tf.protocol = ATA_PROT_PIO; 1904 1905 /* Some devices choke if TF registers contain garbage. Make 1906 * sure those are properly initialized. 1907 */ 1908 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1909 1910 /* Device presence detection is unreliable on some 1911 * controllers. Always poll IDENTIFY if available. 1912 */ 1913 tf.flags |= ATA_TFLAG_POLLING; 1914 1915 if (ap->ops->read_id) 1916 err_mask = ap->ops->read_id(dev, &tf, id); 1917 else 1918 err_mask = ata_do_dev_read_id(dev, &tf, id); 1919 1920 if (err_mask) { 1921 if (err_mask & AC_ERR_NODEV_HINT) { 1922 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1923 return -ENOENT; 1924 } 1925 1926 if (is_semb) { 1927 ata_dev_info(dev, 1928 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1929 /* SEMB is not supported yet */ 1930 *p_class = ATA_DEV_SEMB_UNSUP; 1931 return 0; 1932 } 1933 1934 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1935 /* Device or controller might have reported 1936 * the wrong device class. Give a shot at the 1937 * other IDENTIFY if the current one is 1938 * aborted by the device. 1939 */ 1940 if (may_fallback) { 1941 may_fallback = 0; 1942 1943 if (class == ATA_DEV_ATA) 1944 class = ATA_DEV_ATAPI; 1945 else 1946 class = ATA_DEV_ATA; 1947 goto retry; 1948 } 1949 1950 /* Control reaches here iff the device aborted 1951 * both flavors of IDENTIFYs which happens 1952 * sometimes with phantom devices. 1953 */ 1954 ata_dev_dbg(dev, 1955 "both IDENTIFYs aborted, assuming NODEV\n"); 1956 return -ENOENT; 1957 } 1958 1959 rc = -EIO; 1960 reason = "I/O error"; 1961 goto err_out; 1962 } 1963 1964 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1965 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1966 "class=%d may_fallback=%d tried_spinup=%d\n", 1967 class, may_fallback, tried_spinup); 1968 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1969 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1970 } 1971 1972 /* Falling back doesn't make sense if ID data was read 1973 * successfully at least once. 1974 */ 1975 may_fallback = 0; 1976 1977 swap_buf_le16(id, ATA_ID_WORDS); 1978 1979 /* sanity check */ 1980 rc = -EINVAL; 1981 reason = "device reports invalid type"; 1982 1983 if (class == ATA_DEV_ATA) { 1984 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1985 goto err_out; 1986 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1987 ata_id_is_ata(id)) { 1988 ata_dev_dbg(dev, 1989 "host indicates ignore ATA devices, ignored\n"); 1990 return -ENOENT; 1991 } 1992 } else { 1993 if (ata_id_is_ata(id)) 1994 goto err_out; 1995 } 1996 1997 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1998 tried_spinup = 1; 1999 /* 2000 * Drive powered-up in standby mode, and requires a specific 2001 * SET_FEATURES spin-up subcommand before it will accept 2002 * anything other than the original IDENTIFY command. 2003 */ 2004 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2005 if (err_mask && id[2] != 0x738c) { 2006 rc = -EIO; 2007 reason = "SPINUP failed"; 2008 goto err_out; 2009 } 2010 /* 2011 * If the drive initially returned incomplete IDENTIFY info, 2012 * we now must reissue the IDENTIFY command. 2013 */ 2014 if (id[2] == 0x37c8) 2015 goto retry; 2016 } 2017 2018 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2019 /* 2020 * The exact sequence expected by certain pre-ATA4 drives is: 2021 * SRST RESET 2022 * IDENTIFY (optional in early ATA) 2023 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2024 * anything else.. 2025 * Some drives were very specific about that exact sequence. 2026 * 2027 * Note that ATA4 says lba is mandatory so the second check 2028 * should never trigger. 2029 */ 2030 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2031 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2032 if (err_mask) { 2033 rc = -EIO; 2034 reason = "INIT_DEV_PARAMS failed"; 2035 goto err_out; 2036 } 2037 2038 /* current CHS translation info (id[53-58]) might be 2039 * changed. reread the identify device info. 2040 */ 2041 flags &= ~ATA_READID_POSTRESET; 2042 goto retry; 2043 } 2044 } 2045 2046 *p_class = class; 2047 2048 return 0; 2049 2050 err_out: 2051 if (ata_msg_warn(ap)) 2052 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2053 reason, err_mask); 2054 return rc; 2055 } 2056 2057 static int ata_do_link_spd_horkage(struct ata_device *dev) 2058 { 2059 struct ata_link *plink = ata_dev_phys_link(dev); 2060 u32 target, target_limit; 2061 2062 if (!sata_scr_valid(plink)) 2063 return 0; 2064 2065 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2066 target = 1; 2067 else 2068 return 0; 2069 2070 target_limit = (1 << target) - 1; 2071 2072 /* if already on stricter limit, no need to push further */ 2073 if (plink->sata_spd_limit <= target_limit) 2074 return 0; 2075 2076 plink->sata_spd_limit = target_limit; 2077 2078 /* Request another EH round by returning -EAGAIN if link is 2079 * going faster than the target speed. Forward progress is 2080 * guaranteed by setting sata_spd_limit to target_limit above. 2081 */ 2082 if (plink->sata_spd > target) { 2083 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2084 sata_spd_string(target)); 2085 return -EAGAIN; 2086 } 2087 return 0; 2088 } 2089 2090 static inline u8 ata_dev_knobble(struct ata_device *dev) 2091 { 2092 struct ata_port *ap = dev->link->ap; 2093 2094 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2095 return 0; 2096 2097 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2098 } 2099 2100 static int ata_dev_config_ncq(struct ata_device *dev, 2101 char *desc, size_t desc_sz) 2102 { 2103 struct ata_port *ap = dev->link->ap; 2104 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2105 unsigned int err_mask; 2106 char *aa_desc = ""; 2107 2108 if (!ata_id_has_ncq(dev->id)) { 2109 desc[0] = '\0'; 2110 return 0; 2111 } 2112 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2113 snprintf(desc, desc_sz, "NCQ (not used)"); 2114 return 0; 2115 } 2116 if (ap->flags & ATA_FLAG_NCQ) { 2117 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2118 dev->flags |= ATA_DFLAG_NCQ; 2119 } 2120 2121 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2122 (ap->flags & ATA_FLAG_FPDMA_AA) && 2123 ata_id_has_fpdma_aa(dev->id)) { 2124 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2125 SATA_FPDMA_AA); 2126 if (err_mask) { 2127 ata_dev_err(dev, 2128 "failed to enable AA (error_mask=0x%x)\n", 2129 err_mask); 2130 if (err_mask != AC_ERR_DEV) { 2131 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2132 return -EIO; 2133 } 2134 } else 2135 aa_desc = ", AA"; 2136 } 2137 2138 if (hdepth >= ddepth) 2139 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2140 else 2141 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2142 ddepth, aa_desc); 2143 2144 if ((ap->flags & ATA_FLAG_FPDMA_AUX) && 2145 ata_id_has_ncq_send_and_recv(dev->id)) { 2146 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2147 0, ap->sector_buf, 1); 2148 if (err_mask) { 2149 ata_dev_dbg(dev, 2150 "failed to get NCQ Send/Recv Log Emask 0x%x\n", 2151 err_mask); 2152 } else { 2153 u8 *cmds = dev->ncq_send_recv_cmds; 2154 2155 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2156 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2157 2158 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2159 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2160 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2161 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2162 } 2163 } 2164 } 2165 2166 return 0; 2167 } 2168 2169 /** 2170 * ata_dev_configure - Configure the specified ATA/ATAPI device 2171 * @dev: Target device to configure 2172 * 2173 * Configure @dev according to @dev->id. Generic and low-level 2174 * driver specific fixups are also applied. 2175 * 2176 * LOCKING: 2177 * Kernel thread context (may sleep) 2178 * 2179 * RETURNS: 2180 * 0 on success, -errno otherwise 2181 */ 2182 int ata_dev_configure(struct ata_device *dev) 2183 { 2184 struct ata_port *ap = dev->link->ap; 2185 struct ata_eh_context *ehc = &dev->link->eh_context; 2186 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2187 const u16 *id = dev->id; 2188 unsigned long xfer_mask; 2189 unsigned int err_mask; 2190 char revbuf[7]; /* XYZ-99\0 */ 2191 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2192 char modelbuf[ATA_ID_PROD_LEN+1]; 2193 int rc; 2194 2195 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2196 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2197 return 0; 2198 } 2199 2200 if (ata_msg_probe(ap)) 2201 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2202 2203 /* set horkage */ 2204 dev->horkage |= ata_dev_blacklisted(dev); 2205 ata_force_horkage(dev); 2206 2207 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2208 ata_dev_info(dev, "unsupported device, disabling\n"); 2209 ata_dev_disable(dev); 2210 return 0; 2211 } 2212 2213 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2214 dev->class == ATA_DEV_ATAPI) { 2215 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2216 atapi_enabled ? "not supported with this driver" 2217 : "disabled"); 2218 ata_dev_disable(dev); 2219 return 0; 2220 } 2221 2222 rc = ata_do_link_spd_horkage(dev); 2223 if (rc) 2224 return rc; 2225 2226 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2227 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2228 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2229 dev->horkage |= ATA_HORKAGE_NOLPM; 2230 2231 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2232 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2233 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2234 } 2235 2236 /* let ACPI work its magic */ 2237 rc = ata_acpi_on_devcfg(dev); 2238 if (rc) 2239 return rc; 2240 2241 /* massage HPA, do it early as it might change IDENTIFY data */ 2242 rc = ata_hpa_resize(dev); 2243 if (rc) 2244 return rc; 2245 2246 /* print device capabilities */ 2247 if (ata_msg_probe(ap)) 2248 ata_dev_dbg(dev, 2249 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2250 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2251 __func__, 2252 id[49], id[82], id[83], id[84], 2253 id[85], id[86], id[87], id[88]); 2254 2255 /* initialize to-be-configured parameters */ 2256 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2257 dev->max_sectors = 0; 2258 dev->cdb_len = 0; 2259 dev->n_sectors = 0; 2260 dev->cylinders = 0; 2261 dev->heads = 0; 2262 dev->sectors = 0; 2263 dev->multi_count = 0; 2264 2265 /* 2266 * common ATA, ATAPI feature tests 2267 */ 2268 2269 /* find max transfer mode; for printk only */ 2270 xfer_mask = ata_id_xfermask(id); 2271 2272 if (ata_msg_probe(ap)) 2273 ata_dump_id(id); 2274 2275 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2276 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2277 sizeof(fwrevbuf)); 2278 2279 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2280 sizeof(modelbuf)); 2281 2282 /* ATA-specific feature tests */ 2283 if (dev->class == ATA_DEV_ATA) { 2284 if (ata_id_is_cfa(id)) { 2285 /* CPRM may make this media unusable */ 2286 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2287 ata_dev_warn(dev, 2288 "supports DRM functions and may not be fully accessible\n"); 2289 snprintf(revbuf, 7, "CFA"); 2290 } else { 2291 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2292 /* Warn the user if the device has TPM extensions */ 2293 if (ata_id_has_tpm(id)) 2294 ata_dev_warn(dev, 2295 "supports DRM functions and may not be fully accessible\n"); 2296 } 2297 2298 dev->n_sectors = ata_id_n_sectors(id); 2299 2300 /* get current R/W Multiple count setting */ 2301 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2302 unsigned int max = dev->id[47] & 0xff; 2303 unsigned int cnt = dev->id[59] & 0xff; 2304 /* only recognize/allow powers of two here */ 2305 if (is_power_of_2(max) && is_power_of_2(cnt)) 2306 if (cnt <= max) 2307 dev->multi_count = cnt; 2308 } 2309 2310 if (ata_id_has_lba(id)) { 2311 const char *lba_desc; 2312 char ncq_desc[24]; 2313 2314 lba_desc = "LBA"; 2315 dev->flags |= ATA_DFLAG_LBA; 2316 if (ata_id_has_lba48(id)) { 2317 dev->flags |= ATA_DFLAG_LBA48; 2318 lba_desc = "LBA48"; 2319 2320 if (dev->n_sectors >= (1UL << 28) && 2321 ata_id_has_flush_ext(id)) 2322 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2323 } 2324 2325 /* config NCQ */ 2326 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2327 if (rc) 2328 return rc; 2329 2330 /* print device info to dmesg */ 2331 if (ata_msg_drv(ap) && print_info) { 2332 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2333 revbuf, modelbuf, fwrevbuf, 2334 ata_mode_string(xfer_mask)); 2335 ata_dev_info(dev, 2336 "%llu sectors, multi %u: %s %s\n", 2337 (unsigned long long)dev->n_sectors, 2338 dev->multi_count, lba_desc, ncq_desc); 2339 } 2340 } else { 2341 /* CHS */ 2342 2343 /* Default translation */ 2344 dev->cylinders = id[1]; 2345 dev->heads = id[3]; 2346 dev->sectors = id[6]; 2347 2348 if (ata_id_current_chs_valid(id)) { 2349 /* Current CHS translation is valid. */ 2350 dev->cylinders = id[54]; 2351 dev->heads = id[55]; 2352 dev->sectors = id[56]; 2353 } 2354 2355 /* print device info to dmesg */ 2356 if (ata_msg_drv(ap) && print_info) { 2357 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2358 revbuf, modelbuf, fwrevbuf, 2359 ata_mode_string(xfer_mask)); 2360 ata_dev_info(dev, 2361 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2362 (unsigned long long)dev->n_sectors, 2363 dev->multi_count, dev->cylinders, 2364 dev->heads, dev->sectors); 2365 } 2366 } 2367 2368 /* Check and mark DevSlp capability. Get DevSlp timing variables 2369 * from SATA Settings page of Identify Device Data Log. 2370 */ 2371 if (ata_id_has_devslp(dev->id)) { 2372 u8 *sata_setting = ap->sector_buf; 2373 int i, j; 2374 2375 dev->flags |= ATA_DFLAG_DEVSLP; 2376 err_mask = ata_read_log_page(dev, 2377 ATA_LOG_SATA_ID_DEV_DATA, 2378 ATA_LOG_SATA_SETTINGS, 2379 sata_setting, 2380 1); 2381 if (err_mask) 2382 ata_dev_dbg(dev, 2383 "failed to get Identify Device Data, Emask 0x%x\n", 2384 err_mask); 2385 else 2386 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2387 j = ATA_LOG_DEVSLP_OFFSET + i; 2388 dev->devslp_timing[i] = sata_setting[j]; 2389 } 2390 } 2391 2392 dev->cdb_len = 16; 2393 } 2394 2395 /* ATAPI-specific feature tests */ 2396 else if (dev->class == ATA_DEV_ATAPI) { 2397 const char *cdb_intr_string = ""; 2398 const char *atapi_an_string = ""; 2399 const char *dma_dir_string = ""; 2400 u32 sntf; 2401 2402 rc = atapi_cdb_len(id); 2403 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2404 if (ata_msg_warn(ap)) 2405 ata_dev_warn(dev, "unsupported CDB len\n"); 2406 rc = -EINVAL; 2407 goto err_out_nosup; 2408 } 2409 dev->cdb_len = (unsigned int) rc; 2410 2411 /* Enable ATAPI AN if both the host and device have 2412 * the support. If PMP is attached, SNTF is required 2413 * to enable ATAPI AN to discern between PHY status 2414 * changed notifications and ATAPI ANs. 2415 */ 2416 if (atapi_an && 2417 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2418 (!sata_pmp_attached(ap) || 2419 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2420 /* issue SET feature command to turn this on */ 2421 err_mask = ata_dev_set_feature(dev, 2422 SETFEATURES_SATA_ENABLE, SATA_AN); 2423 if (err_mask) 2424 ata_dev_err(dev, 2425 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2426 err_mask); 2427 else { 2428 dev->flags |= ATA_DFLAG_AN; 2429 atapi_an_string = ", ATAPI AN"; 2430 } 2431 } 2432 2433 if (ata_id_cdb_intr(dev->id)) { 2434 dev->flags |= ATA_DFLAG_CDB_INTR; 2435 cdb_intr_string = ", CDB intr"; 2436 } 2437 2438 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2439 dev->flags |= ATA_DFLAG_DMADIR; 2440 dma_dir_string = ", DMADIR"; 2441 } 2442 2443 if (ata_id_has_da(dev->id)) { 2444 dev->flags |= ATA_DFLAG_DA; 2445 zpodd_init(dev); 2446 } 2447 2448 /* print device info to dmesg */ 2449 if (ata_msg_drv(ap) && print_info) 2450 ata_dev_info(dev, 2451 "ATAPI: %s, %s, max %s%s%s%s\n", 2452 modelbuf, fwrevbuf, 2453 ata_mode_string(xfer_mask), 2454 cdb_intr_string, atapi_an_string, 2455 dma_dir_string); 2456 } 2457 2458 /* determine max_sectors */ 2459 dev->max_sectors = ATA_MAX_SECTORS; 2460 if (dev->flags & ATA_DFLAG_LBA48) 2461 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2462 2463 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2464 200 sectors */ 2465 if (ata_dev_knobble(dev)) { 2466 if (ata_msg_drv(ap) && print_info) 2467 ata_dev_info(dev, "applying bridge limits\n"); 2468 dev->udma_mask &= ATA_UDMA5; 2469 dev->max_sectors = ATA_MAX_SECTORS; 2470 } 2471 2472 if ((dev->class == ATA_DEV_ATAPI) && 2473 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2474 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2475 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2476 } 2477 2478 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2479 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2480 dev->max_sectors); 2481 2482 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2483 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2484 2485 if (ap->ops->dev_config) 2486 ap->ops->dev_config(dev); 2487 2488 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2489 /* Let the user know. We don't want to disallow opens for 2490 rescue purposes, or in case the vendor is just a blithering 2491 idiot. Do this after the dev_config call as some controllers 2492 with buggy firmware may want to avoid reporting false device 2493 bugs */ 2494 2495 if (print_info) { 2496 ata_dev_warn(dev, 2497 "Drive reports diagnostics failure. This may indicate a drive\n"); 2498 ata_dev_warn(dev, 2499 "fault or invalid emulation. Contact drive vendor for information.\n"); 2500 } 2501 } 2502 2503 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2504 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2505 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2506 } 2507 2508 return 0; 2509 2510 err_out_nosup: 2511 if (ata_msg_probe(ap)) 2512 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2513 return rc; 2514 } 2515 2516 /** 2517 * ata_cable_40wire - return 40 wire cable type 2518 * @ap: port 2519 * 2520 * Helper method for drivers which want to hardwire 40 wire cable 2521 * detection. 2522 */ 2523 2524 int ata_cable_40wire(struct ata_port *ap) 2525 { 2526 return ATA_CBL_PATA40; 2527 } 2528 2529 /** 2530 * ata_cable_80wire - return 80 wire cable type 2531 * @ap: port 2532 * 2533 * Helper method for drivers which want to hardwire 80 wire cable 2534 * detection. 2535 */ 2536 2537 int ata_cable_80wire(struct ata_port *ap) 2538 { 2539 return ATA_CBL_PATA80; 2540 } 2541 2542 /** 2543 * ata_cable_unknown - return unknown PATA cable. 2544 * @ap: port 2545 * 2546 * Helper method for drivers which have no PATA cable detection. 2547 */ 2548 2549 int ata_cable_unknown(struct ata_port *ap) 2550 { 2551 return ATA_CBL_PATA_UNK; 2552 } 2553 2554 /** 2555 * ata_cable_ignore - return ignored PATA cable. 2556 * @ap: port 2557 * 2558 * Helper method for drivers which don't use cable type to limit 2559 * transfer mode. 2560 */ 2561 int ata_cable_ignore(struct ata_port *ap) 2562 { 2563 return ATA_CBL_PATA_IGN; 2564 } 2565 2566 /** 2567 * ata_cable_sata - return SATA cable type 2568 * @ap: port 2569 * 2570 * Helper method for drivers which have SATA cables 2571 */ 2572 2573 int ata_cable_sata(struct ata_port *ap) 2574 { 2575 return ATA_CBL_SATA; 2576 } 2577 2578 /** 2579 * ata_bus_probe - Reset and probe ATA bus 2580 * @ap: Bus to probe 2581 * 2582 * Master ATA bus probing function. Initiates a hardware-dependent 2583 * bus reset, then attempts to identify any devices found on 2584 * the bus. 2585 * 2586 * LOCKING: 2587 * PCI/etc. bus probe sem. 2588 * 2589 * RETURNS: 2590 * Zero on success, negative errno otherwise. 2591 */ 2592 2593 int ata_bus_probe(struct ata_port *ap) 2594 { 2595 unsigned int classes[ATA_MAX_DEVICES]; 2596 int tries[ATA_MAX_DEVICES]; 2597 int rc; 2598 struct ata_device *dev; 2599 2600 ata_for_each_dev(dev, &ap->link, ALL) 2601 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2602 2603 retry: 2604 ata_for_each_dev(dev, &ap->link, ALL) { 2605 /* If we issue an SRST then an ATA drive (not ATAPI) 2606 * may change configuration and be in PIO0 timing. If 2607 * we do a hard reset (or are coming from power on) 2608 * this is true for ATA or ATAPI. Until we've set a 2609 * suitable controller mode we should not touch the 2610 * bus as we may be talking too fast. 2611 */ 2612 dev->pio_mode = XFER_PIO_0; 2613 dev->dma_mode = 0xff; 2614 2615 /* If the controller has a pio mode setup function 2616 * then use it to set the chipset to rights. Don't 2617 * touch the DMA setup as that will be dealt with when 2618 * configuring devices. 2619 */ 2620 if (ap->ops->set_piomode) 2621 ap->ops->set_piomode(ap, dev); 2622 } 2623 2624 /* reset and determine device classes */ 2625 ap->ops->phy_reset(ap); 2626 2627 ata_for_each_dev(dev, &ap->link, ALL) { 2628 if (dev->class != ATA_DEV_UNKNOWN) 2629 classes[dev->devno] = dev->class; 2630 else 2631 classes[dev->devno] = ATA_DEV_NONE; 2632 2633 dev->class = ATA_DEV_UNKNOWN; 2634 } 2635 2636 /* read IDENTIFY page and configure devices. We have to do the identify 2637 specific sequence bass-ackwards so that PDIAG- is released by 2638 the slave device */ 2639 2640 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2641 if (tries[dev->devno]) 2642 dev->class = classes[dev->devno]; 2643 2644 if (!ata_dev_enabled(dev)) 2645 continue; 2646 2647 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2648 dev->id); 2649 if (rc) 2650 goto fail; 2651 } 2652 2653 /* Now ask for the cable type as PDIAG- should have been released */ 2654 if (ap->ops->cable_detect) 2655 ap->cbl = ap->ops->cable_detect(ap); 2656 2657 /* We may have SATA bridge glue hiding here irrespective of 2658 * the reported cable types and sensed types. When SATA 2659 * drives indicate we have a bridge, we don't know which end 2660 * of the link the bridge is which is a problem. 2661 */ 2662 ata_for_each_dev(dev, &ap->link, ENABLED) 2663 if (ata_id_is_sata(dev->id)) 2664 ap->cbl = ATA_CBL_SATA; 2665 2666 /* After the identify sequence we can now set up the devices. We do 2667 this in the normal order so that the user doesn't get confused */ 2668 2669 ata_for_each_dev(dev, &ap->link, ENABLED) { 2670 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2671 rc = ata_dev_configure(dev); 2672 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2673 if (rc) 2674 goto fail; 2675 } 2676 2677 /* configure transfer mode */ 2678 rc = ata_set_mode(&ap->link, &dev); 2679 if (rc) 2680 goto fail; 2681 2682 ata_for_each_dev(dev, &ap->link, ENABLED) 2683 return 0; 2684 2685 return -ENODEV; 2686 2687 fail: 2688 tries[dev->devno]--; 2689 2690 switch (rc) { 2691 case -EINVAL: 2692 /* eeek, something went very wrong, give up */ 2693 tries[dev->devno] = 0; 2694 break; 2695 2696 case -ENODEV: 2697 /* give it just one more chance */ 2698 tries[dev->devno] = min(tries[dev->devno], 1); 2699 case -EIO: 2700 if (tries[dev->devno] == 1) { 2701 /* This is the last chance, better to slow 2702 * down than lose it. 2703 */ 2704 sata_down_spd_limit(&ap->link, 0); 2705 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2706 } 2707 } 2708 2709 if (!tries[dev->devno]) 2710 ata_dev_disable(dev); 2711 2712 goto retry; 2713 } 2714 2715 /** 2716 * sata_print_link_status - Print SATA link status 2717 * @link: SATA link to printk link status about 2718 * 2719 * This function prints link speed and status of a SATA link. 2720 * 2721 * LOCKING: 2722 * None. 2723 */ 2724 static void sata_print_link_status(struct ata_link *link) 2725 { 2726 u32 sstatus, scontrol, tmp; 2727 2728 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2729 return; 2730 sata_scr_read(link, SCR_CONTROL, &scontrol); 2731 2732 if (ata_phys_link_online(link)) { 2733 tmp = (sstatus >> 4) & 0xf; 2734 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2735 sata_spd_string(tmp), sstatus, scontrol); 2736 } else { 2737 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2738 sstatus, scontrol); 2739 } 2740 } 2741 2742 /** 2743 * ata_dev_pair - return other device on cable 2744 * @adev: device 2745 * 2746 * Obtain the other device on the same cable, or if none is 2747 * present NULL is returned 2748 */ 2749 2750 struct ata_device *ata_dev_pair(struct ata_device *adev) 2751 { 2752 struct ata_link *link = adev->link; 2753 struct ata_device *pair = &link->device[1 - adev->devno]; 2754 if (!ata_dev_enabled(pair)) 2755 return NULL; 2756 return pair; 2757 } 2758 2759 /** 2760 * sata_down_spd_limit - adjust SATA spd limit downward 2761 * @link: Link to adjust SATA spd limit for 2762 * @spd_limit: Additional limit 2763 * 2764 * Adjust SATA spd limit of @link downward. Note that this 2765 * function only adjusts the limit. The change must be applied 2766 * using sata_set_spd(). 2767 * 2768 * If @spd_limit is non-zero, the speed is limited to equal to or 2769 * lower than @spd_limit if such speed is supported. If 2770 * @spd_limit is slower than any supported speed, only the lowest 2771 * supported speed is allowed. 2772 * 2773 * LOCKING: 2774 * Inherited from caller. 2775 * 2776 * RETURNS: 2777 * 0 on success, negative errno on failure 2778 */ 2779 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2780 { 2781 u32 sstatus, spd, mask; 2782 int rc, bit; 2783 2784 if (!sata_scr_valid(link)) 2785 return -EOPNOTSUPP; 2786 2787 /* If SCR can be read, use it to determine the current SPD. 2788 * If not, use cached value in link->sata_spd. 2789 */ 2790 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2791 if (rc == 0 && ata_sstatus_online(sstatus)) 2792 spd = (sstatus >> 4) & 0xf; 2793 else 2794 spd = link->sata_spd; 2795 2796 mask = link->sata_spd_limit; 2797 if (mask <= 1) 2798 return -EINVAL; 2799 2800 /* unconditionally mask off the highest bit */ 2801 bit = fls(mask) - 1; 2802 mask &= ~(1 << bit); 2803 2804 /* Mask off all speeds higher than or equal to the current 2805 * one. Force 1.5Gbps if current SPD is not available. 2806 */ 2807 if (spd > 1) 2808 mask &= (1 << (spd - 1)) - 1; 2809 else 2810 mask &= 1; 2811 2812 /* were we already at the bottom? */ 2813 if (!mask) 2814 return -EINVAL; 2815 2816 if (spd_limit) { 2817 if (mask & ((1 << spd_limit) - 1)) 2818 mask &= (1 << spd_limit) - 1; 2819 else { 2820 bit = ffs(mask) - 1; 2821 mask = 1 << bit; 2822 } 2823 } 2824 2825 link->sata_spd_limit = mask; 2826 2827 ata_link_warn(link, "limiting SATA link speed to %s\n", 2828 sata_spd_string(fls(mask))); 2829 2830 return 0; 2831 } 2832 2833 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2834 { 2835 struct ata_link *host_link = &link->ap->link; 2836 u32 limit, target, spd; 2837 2838 limit = link->sata_spd_limit; 2839 2840 /* Don't configure downstream link faster than upstream link. 2841 * It doesn't speed up anything and some PMPs choke on such 2842 * configuration. 2843 */ 2844 if (!ata_is_host_link(link) && host_link->sata_spd) 2845 limit &= (1 << host_link->sata_spd) - 1; 2846 2847 if (limit == UINT_MAX) 2848 target = 0; 2849 else 2850 target = fls(limit); 2851 2852 spd = (*scontrol >> 4) & 0xf; 2853 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2854 2855 return spd != target; 2856 } 2857 2858 /** 2859 * sata_set_spd_needed - is SATA spd configuration needed 2860 * @link: Link in question 2861 * 2862 * Test whether the spd limit in SControl matches 2863 * @link->sata_spd_limit. This function is used to determine 2864 * whether hardreset is necessary to apply SATA spd 2865 * configuration. 2866 * 2867 * LOCKING: 2868 * Inherited from caller. 2869 * 2870 * RETURNS: 2871 * 1 if SATA spd configuration is needed, 0 otherwise. 2872 */ 2873 static int sata_set_spd_needed(struct ata_link *link) 2874 { 2875 u32 scontrol; 2876 2877 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2878 return 1; 2879 2880 return __sata_set_spd_needed(link, &scontrol); 2881 } 2882 2883 /** 2884 * sata_set_spd - set SATA spd according to spd limit 2885 * @link: Link to set SATA spd for 2886 * 2887 * Set SATA spd of @link according to sata_spd_limit. 2888 * 2889 * LOCKING: 2890 * Inherited from caller. 2891 * 2892 * RETURNS: 2893 * 0 if spd doesn't need to be changed, 1 if spd has been 2894 * changed. Negative errno if SCR registers are inaccessible. 2895 */ 2896 int sata_set_spd(struct ata_link *link) 2897 { 2898 u32 scontrol; 2899 int rc; 2900 2901 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2902 return rc; 2903 2904 if (!__sata_set_spd_needed(link, &scontrol)) 2905 return 0; 2906 2907 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2908 return rc; 2909 2910 return 1; 2911 } 2912 2913 /* 2914 * This mode timing computation functionality is ported over from 2915 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2916 */ 2917 /* 2918 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2919 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2920 * for UDMA6, which is currently supported only by Maxtor drives. 2921 * 2922 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2923 */ 2924 2925 static const struct ata_timing ata_timing[] = { 2926 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2927 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2928 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2929 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2930 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2931 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2932 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2933 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2934 2935 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2936 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2937 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2938 2939 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2940 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2941 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2942 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2943 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2944 2945 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2946 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2947 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2948 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2949 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2950 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2951 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2952 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2953 2954 { 0xFF } 2955 }; 2956 2957 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2958 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2959 2960 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2961 { 2962 q->setup = EZ(t->setup * 1000, T); 2963 q->act8b = EZ(t->act8b * 1000, T); 2964 q->rec8b = EZ(t->rec8b * 1000, T); 2965 q->cyc8b = EZ(t->cyc8b * 1000, T); 2966 q->active = EZ(t->active * 1000, T); 2967 q->recover = EZ(t->recover * 1000, T); 2968 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2969 q->cycle = EZ(t->cycle * 1000, T); 2970 q->udma = EZ(t->udma * 1000, UT); 2971 } 2972 2973 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2974 struct ata_timing *m, unsigned int what) 2975 { 2976 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2977 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2978 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2979 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2980 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2981 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2982 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2983 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2984 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2985 } 2986 2987 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2988 { 2989 const struct ata_timing *t = ata_timing; 2990 2991 while (xfer_mode > t->mode) 2992 t++; 2993 2994 if (xfer_mode == t->mode) 2995 return t; 2996 2997 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 2998 __func__, xfer_mode); 2999 3000 return NULL; 3001 } 3002 3003 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3004 struct ata_timing *t, int T, int UT) 3005 { 3006 const u16 *id = adev->id; 3007 const struct ata_timing *s; 3008 struct ata_timing p; 3009 3010 /* 3011 * Find the mode. 3012 */ 3013 3014 if (!(s = ata_timing_find_mode(speed))) 3015 return -EINVAL; 3016 3017 memcpy(t, s, sizeof(*s)); 3018 3019 /* 3020 * If the drive is an EIDE drive, it can tell us it needs extended 3021 * PIO/MW_DMA cycle timing. 3022 */ 3023 3024 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3025 memset(&p, 0, sizeof(p)); 3026 3027 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 3028 if (speed <= XFER_PIO_2) 3029 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3030 else if ((speed <= XFER_PIO_4) || 3031 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3032 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3033 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3034 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3035 3036 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3037 } 3038 3039 /* 3040 * Convert the timing to bus clock counts. 3041 */ 3042 3043 ata_timing_quantize(t, t, T, UT); 3044 3045 /* 3046 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3047 * S.M.A.R.T * and some other commands. We have to ensure that the 3048 * DMA cycle timing is slower/equal than the fastest PIO timing. 3049 */ 3050 3051 if (speed > XFER_PIO_6) { 3052 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3053 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3054 } 3055 3056 /* 3057 * Lengthen active & recovery time so that cycle time is correct. 3058 */ 3059 3060 if (t->act8b + t->rec8b < t->cyc8b) { 3061 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3062 t->rec8b = t->cyc8b - t->act8b; 3063 } 3064 3065 if (t->active + t->recover < t->cycle) { 3066 t->active += (t->cycle - (t->active + t->recover)) / 2; 3067 t->recover = t->cycle - t->active; 3068 } 3069 3070 /* In a few cases quantisation may produce enough errors to 3071 leave t->cycle too low for the sum of active and recovery 3072 if so we must correct this */ 3073 if (t->active + t->recover > t->cycle) 3074 t->cycle = t->active + t->recover; 3075 3076 return 0; 3077 } 3078 3079 /** 3080 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3081 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3082 * @cycle: cycle duration in ns 3083 * 3084 * Return matching xfer mode for @cycle. The returned mode is of 3085 * the transfer type specified by @xfer_shift. If @cycle is too 3086 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3087 * than the fastest known mode, the fasted mode is returned. 3088 * 3089 * LOCKING: 3090 * None. 3091 * 3092 * RETURNS: 3093 * Matching xfer_mode, 0xff if no match found. 3094 */ 3095 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3096 { 3097 u8 base_mode = 0xff, last_mode = 0xff; 3098 const struct ata_xfer_ent *ent; 3099 const struct ata_timing *t; 3100 3101 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3102 if (ent->shift == xfer_shift) 3103 base_mode = ent->base; 3104 3105 for (t = ata_timing_find_mode(base_mode); 3106 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3107 unsigned short this_cycle; 3108 3109 switch (xfer_shift) { 3110 case ATA_SHIFT_PIO: 3111 case ATA_SHIFT_MWDMA: 3112 this_cycle = t->cycle; 3113 break; 3114 case ATA_SHIFT_UDMA: 3115 this_cycle = t->udma; 3116 break; 3117 default: 3118 return 0xff; 3119 } 3120 3121 if (cycle > this_cycle) 3122 break; 3123 3124 last_mode = t->mode; 3125 } 3126 3127 return last_mode; 3128 } 3129 3130 /** 3131 * ata_down_xfermask_limit - adjust dev xfer masks downward 3132 * @dev: Device to adjust xfer masks 3133 * @sel: ATA_DNXFER_* selector 3134 * 3135 * Adjust xfer masks of @dev downward. Note that this function 3136 * does not apply the change. Invoking ata_set_mode() afterwards 3137 * will apply the limit. 3138 * 3139 * LOCKING: 3140 * Inherited from caller. 3141 * 3142 * RETURNS: 3143 * 0 on success, negative errno on failure 3144 */ 3145 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3146 { 3147 char buf[32]; 3148 unsigned long orig_mask, xfer_mask; 3149 unsigned long pio_mask, mwdma_mask, udma_mask; 3150 int quiet, highbit; 3151 3152 quiet = !!(sel & ATA_DNXFER_QUIET); 3153 sel &= ~ATA_DNXFER_QUIET; 3154 3155 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3156 dev->mwdma_mask, 3157 dev->udma_mask); 3158 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3159 3160 switch (sel) { 3161 case ATA_DNXFER_PIO: 3162 highbit = fls(pio_mask) - 1; 3163 pio_mask &= ~(1 << highbit); 3164 break; 3165 3166 case ATA_DNXFER_DMA: 3167 if (udma_mask) { 3168 highbit = fls(udma_mask) - 1; 3169 udma_mask &= ~(1 << highbit); 3170 if (!udma_mask) 3171 return -ENOENT; 3172 } else if (mwdma_mask) { 3173 highbit = fls(mwdma_mask) - 1; 3174 mwdma_mask &= ~(1 << highbit); 3175 if (!mwdma_mask) 3176 return -ENOENT; 3177 } 3178 break; 3179 3180 case ATA_DNXFER_40C: 3181 udma_mask &= ATA_UDMA_MASK_40C; 3182 break; 3183 3184 case ATA_DNXFER_FORCE_PIO0: 3185 pio_mask &= 1; 3186 case ATA_DNXFER_FORCE_PIO: 3187 mwdma_mask = 0; 3188 udma_mask = 0; 3189 break; 3190 3191 default: 3192 BUG(); 3193 } 3194 3195 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3196 3197 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3198 return -ENOENT; 3199 3200 if (!quiet) { 3201 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3202 snprintf(buf, sizeof(buf), "%s:%s", 3203 ata_mode_string(xfer_mask), 3204 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3205 else 3206 snprintf(buf, sizeof(buf), "%s", 3207 ata_mode_string(xfer_mask)); 3208 3209 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3210 } 3211 3212 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3213 &dev->udma_mask); 3214 3215 return 0; 3216 } 3217 3218 static int ata_dev_set_mode(struct ata_device *dev) 3219 { 3220 struct ata_port *ap = dev->link->ap; 3221 struct ata_eh_context *ehc = &dev->link->eh_context; 3222 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3223 const char *dev_err_whine = ""; 3224 int ign_dev_err = 0; 3225 unsigned int err_mask = 0; 3226 int rc; 3227 3228 dev->flags &= ~ATA_DFLAG_PIO; 3229 if (dev->xfer_shift == ATA_SHIFT_PIO) 3230 dev->flags |= ATA_DFLAG_PIO; 3231 3232 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3233 dev_err_whine = " (SET_XFERMODE skipped)"; 3234 else { 3235 if (nosetxfer) 3236 ata_dev_warn(dev, 3237 "NOSETXFER but PATA detected - can't " 3238 "skip SETXFER, might malfunction\n"); 3239 err_mask = ata_dev_set_xfermode(dev); 3240 } 3241 3242 if (err_mask & ~AC_ERR_DEV) 3243 goto fail; 3244 3245 /* revalidate */ 3246 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3247 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3248 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3249 if (rc) 3250 return rc; 3251 3252 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3253 /* Old CFA may refuse this command, which is just fine */ 3254 if (ata_id_is_cfa(dev->id)) 3255 ign_dev_err = 1; 3256 /* Catch several broken garbage emulations plus some pre 3257 ATA devices */ 3258 if (ata_id_major_version(dev->id) == 0 && 3259 dev->pio_mode <= XFER_PIO_2) 3260 ign_dev_err = 1; 3261 /* Some very old devices and some bad newer ones fail 3262 any kind of SET_XFERMODE request but support PIO0-2 3263 timings and no IORDY */ 3264 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3265 ign_dev_err = 1; 3266 } 3267 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3268 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3269 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3270 dev->dma_mode == XFER_MW_DMA_0 && 3271 (dev->id[63] >> 8) & 1) 3272 ign_dev_err = 1; 3273 3274 /* if the device is actually configured correctly, ignore dev err */ 3275 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3276 ign_dev_err = 1; 3277 3278 if (err_mask & AC_ERR_DEV) { 3279 if (!ign_dev_err) 3280 goto fail; 3281 else 3282 dev_err_whine = " (device error ignored)"; 3283 } 3284 3285 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3286 dev->xfer_shift, (int)dev->xfer_mode); 3287 3288 ata_dev_info(dev, "configured for %s%s\n", 3289 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3290 dev_err_whine); 3291 3292 return 0; 3293 3294 fail: 3295 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3296 return -EIO; 3297 } 3298 3299 /** 3300 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3301 * @link: link on which timings will be programmed 3302 * @r_failed_dev: out parameter for failed device 3303 * 3304 * Standard implementation of the function used to tune and set 3305 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3306 * ata_dev_set_mode() fails, pointer to the failing device is 3307 * returned in @r_failed_dev. 3308 * 3309 * LOCKING: 3310 * PCI/etc. bus probe sem. 3311 * 3312 * RETURNS: 3313 * 0 on success, negative errno otherwise 3314 */ 3315 3316 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3317 { 3318 struct ata_port *ap = link->ap; 3319 struct ata_device *dev; 3320 int rc = 0, used_dma = 0, found = 0; 3321 3322 /* step 1: calculate xfer_mask */ 3323 ata_for_each_dev(dev, link, ENABLED) { 3324 unsigned long pio_mask, dma_mask; 3325 unsigned int mode_mask; 3326 3327 mode_mask = ATA_DMA_MASK_ATA; 3328 if (dev->class == ATA_DEV_ATAPI) 3329 mode_mask = ATA_DMA_MASK_ATAPI; 3330 else if (ata_id_is_cfa(dev->id)) 3331 mode_mask = ATA_DMA_MASK_CFA; 3332 3333 ata_dev_xfermask(dev); 3334 ata_force_xfermask(dev); 3335 3336 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3337 3338 if (libata_dma_mask & mode_mask) 3339 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3340 dev->udma_mask); 3341 else 3342 dma_mask = 0; 3343 3344 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3345 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3346 3347 found = 1; 3348 if (ata_dma_enabled(dev)) 3349 used_dma = 1; 3350 } 3351 if (!found) 3352 goto out; 3353 3354 /* step 2: always set host PIO timings */ 3355 ata_for_each_dev(dev, link, ENABLED) { 3356 if (dev->pio_mode == 0xff) { 3357 ata_dev_warn(dev, "no PIO support\n"); 3358 rc = -EINVAL; 3359 goto out; 3360 } 3361 3362 dev->xfer_mode = dev->pio_mode; 3363 dev->xfer_shift = ATA_SHIFT_PIO; 3364 if (ap->ops->set_piomode) 3365 ap->ops->set_piomode(ap, dev); 3366 } 3367 3368 /* step 3: set host DMA timings */ 3369 ata_for_each_dev(dev, link, ENABLED) { 3370 if (!ata_dma_enabled(dev)) 3371 continue; 3372 3373 dev->xfer_mode = dev->dma_mode; 3374 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3375 if (ap->ops->set_dmamode) 3376 ap->ops->set_dmamode(ap, dev); 3377 } 3378 3379 /* step 4: update devices' xfer mode */ 3380 ata_for_each_dev(dev, link, ENABLED) { 3381 rc = ata_dev_set_mode(dev); 3382 if (rc) 3383 goto out; 3384 } 3385 3386 /* Record simplex status. If we selected DMA then the other 3387 * host channels are not permitted to do so. 3388 */ 3389 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3390 ap->host->simplex_claimed = ap; 3391 3392 out: 3393 if (rc) 3394 *r_failed_dev = dev; 3395 return rc; 3396 } 3397 3398 /** 3399 * ata_wait_ready - wait for link to become ready 3400 * @link: link to be waited on 3401 * @deadline: deadline jiffies for the operation 3402 * @check_ready: callback to check link readiness 3403 * 3404 * Wait for @link to become ready. @check_ready should return 3405 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3406 * link doesn't seem to be occupied, other errno for other error 3407 * conditions. 3408 * 3409 * Transient -ENODEV conditions are allowed for 3410 * ATA_TMOUT_FF_WAIT. 3411 * 3412 * LOCKING: 3413 * EH context. 3414 * 3415 * RETURNS: 3416 * 0 if @linke is ready before @deadline; otherwise, -errno. 3417 */ 3418 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3419 int (*check_ready)(struct ata_link *link)) 3420 { 3421 unsigned long start = jiffies; 3422 unsigned long nodev_deadline; 3423 int warned = 0; 3424 3425 /* choose which 0xff timeout to use, read comment in libata.h */ 3426 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3427 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3428 else 3429 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3430 3431 /* Slave readiness can't be tested separately from master. On 3432 * M/S emulation configuration, this function should be called 3433 * only on the master and it will handle both master and slave. 3434 */ 3435 WARN_ON(link == link->ap->slave_link); 3436 3437 if (time_after(nodev_deadline, deadline)) 3438 nodev_deadline = deadline; 3439 3440 while (1) { 3441 unsigned long now = jiffies; 3442 int ready, tmp; 3443 3444 ready = tmp = check_ready(link); 3445 if (ready > 0) 3446 return 0; 3447 3448 /* 3449 * -ENODEV could be transient. Ignore -ENODEV if link 3450 * is online. Also, some SATA devices take a long 3451 * time to clear 0xff after reset. Wait for 3452 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3453 * offline. 3454 * 3455 * Note that some PATA controllers (pata_ali) explode 3456 * if status register is read more than once when 3457 * there's no device attached. 3458 */ 3459 if (ready == -ENODEV) { 3460 if (ata_link_online(link)) 3461 ready = 0; 3462 else if ((link->ap->flags & ATA_FLAG_SATA) && 3463 !ata_link_offline(link) && 3464 time_before(now, nodev_deadline)) 3465 ready = 0; 3466 } 3467 3468 if (ready) 3469 return ready; 3470 if (time_after(now, deadline)) 3471 return -EBUSY; 3472 3473 if (!warned && time_after(now, start + 5 * HZ) && 3474 (deadline - now > 3 * HZ)) { 3475 ata_link_warn(link, 3476 "link is slow to respond, please be patient " 3477 "(ready=%d)\n", tmp); 3478 warned = 1; 3479 } 3480 3481 ata_msleep(link->ap, 50); 3482 } 3483 } 3484 3485 /** 3486 * ata_wait_after_reset - wait for link to become ready after reset 3487 * @link: link to be waited on 3488 * @deadline: deadline jiffies for the operation 3489 * @check_ready: callback to check link readiness 3490 * 3491 * Wait for @link to become ready after reset. 3492 * 3493 * LOCKING: 3494 * EH context. 3495 * 3496 * RETURNS: 3497 * 0 if @linke is ready before @deadline; otherwise, -errno. 3498 */ 3499 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3500 int (*check_ready)(struct ata_link *link)) 3501 { 3502 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3503 3504 return ata_wait_ready(link, deadline, check_ready); 3505 } 3506 3507 /** 3508 * sata_link_debounce - debounce SATA phy status 3509 * @link: ATA link to debounce SATA phy status for 3510 * @params: timing parameters { interval, duratinon, timeout } in msec 3511 * @deadline: deadline jiffies for the operation 3512 * 3513 * Make sure SStatus of @link reaches stable state, determined by 3514 * holding the same value where DET is not 1 for @duration polled 3515 * every @interval, before @timeout. Timeout constraints the 3516 * beginning of the stable state. Because DET gets stuck at 1 on 3517 * some controllers after hot unplugging, this functions waits 3518 * until timeout then returns 0 if DET is stable at 1. 3519 * 3520 * @timeout is further limited by @deadline. The sooner of the 3521 * two is used. 3522 * 3523 * LOCKING: 3524 * Kernel thread context (may sleep) 3525 * 3526 * RETURNS: 3527 * 0 on success, -errno on failure. 3528 */ 3529 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3530 unsigned long deadline) 3531 { 3532 unsigned long interval = params[0]; 3533 unsigned long duration = params[1]; 3534 unsigned long last_jiffies, t; 3535 u32 last, cur; 3536 int rc; 3537 3538 t = ata_deadline(jiffies, params[2]); 3539 if (time_before(t, deadline)) 3540 deadline = t; 3541 3542 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3543 return rc; 3544 cur &= 0xf; 3545 3546 last = cur; 3547 last_jiffies = jiffies; 3548 3549 while (1) { 3550 ata_msleep(link->ap, interval); 3551 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3552 return rc; 3553 cur &= 0xf; 3554 3555 /* DET stable? */ 3556 if (cur == last) { 3557 if (cur == 1 && time_before(jiffies, deadline)) 3558 continue; 3559 if (time_after(jiffies, 3560 ata_deadline(last_jiffies, duration))) 3561 return 0; 3562 continue; 3563 } 3564 3565 /* unstable, start over */ 3566 last = cur; 3567 last_jiffies = jiffies; 3568 3569 /* Check deadline. If debouncing failed, return 3570 * -EPIPE to tell upper layer to lower link speed. 3571 */ 3572 if (time_after(jiffies, deadline)) 3573 return -EPIPE; 3574 } 3575 } 3576 3577 /** 3578 * sata_link_resume - resume SATA link 3579 * @link: ATA link to resume SATA 3580 * @params: timing parameters { interval, duratinon, timeout } in msec 3581 * @deadline: deadline jiffies for the operation 3582 * 3583 * Resume SATA phy @link and debounce it. 3584 * 3585 * LOCKING: 3586 * Kernel thread context (may sleep) 3587 * 3588 * RETURNS: 3589 * 0 on success, -errno on failure. 3590 */ 3591 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3592 unsigned long deadline) 3593 { 3594 int tries = ATA_LINK_RESUME_TRIES; 3595 u32 scontrol, serror; 3596 int rc; 3597 3598 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3599 return rc; 3600 3601 /* 3602 * Writes to SControl sometimes get ignored under certain 3603 * controllers (ata_piix SIDPR). Make sure DET actually is 3604 * cleared. 3605 */ 3606 do { 3607 scontrol = (scontrol & 0x0f0) | 0x300; 3608 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3609 return rc; 3610 /* 3611 * Some PHYs react badly if SStatus is pounded 3612 * immediately after resuming. Delay 200ms before 3613 * debouncing. 3614 */ 3615 ata_msleep(link->ap, 200); 3616 3617 /* is SControl restored correctly? */ 3618 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3619 return rc; 3620 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3621 3622 if ((scontrol & 0xf0f) != 0x300) { 3623 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3624 scontrol); 3625 return 0; 3626 } 3627 3628 if (tries < ATA_LINK_RESUME_TRIES) 3629 ata_link_warn(link, "link resume succeeded after %d retries\n", 3630 ATA_LINK_RESUME_TRIES - tries); 3631 3632 if ((rc = sata_link_debounce(link, params, deadline))) 3633 return rc; 3634 3635 /* clear SError, some PHYs require this even for SRST to work */ 3636 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3637 rc = sata_scr_write(link, SCR_ERROR, serror); 3638 3639 return rc != -EINVAL ? rc : 0; 3640 } 3641 3642 /** 3643 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3644 * @link: ATA link to manipulate SControl for 3645 * @policy: LPM policy to configure 3646 * @spm_wakeup: initiate LPM transition to active state 3647 * 3648 * Manipulate the IPM field of the SControl register of @link 3649 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3650 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3651 * the link. This function also clears PHYRDY_CHG before 3652 * returning. 3653 * 3654 * LOCKING: 3655 * EH context. 3656 * 3657 * RETURNS: 3658 * 0 on succes, -errno otherwise. 3659 */ 3660 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3661 bool spm_wakeup) 3662 { 3663 struct ata_eh_context *ehc = &link->eh_context; 3664 bool woken_up = false; 3665 u32 scontrol; 3666 int rc; 3667 3668 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3669 if (rc) 3670 return rc; 3671 3672 switch (policy) { 3673 case ATA_LPM_MAX_POWER: 3674 /* disable all LPM transitions */ 3675 scontrol |= (0x7 << 8); 3676 /* initiate transition to active state */ 3677 if (spm_wakeup) { 3678 scontrol |= (0x4 << 12); 3679 woken_up = true; 3680 } 3681 break; 3682 case ATA_LPM_MED_POWER: 3683 /* allow LPM to PARTIAL */ 3684 scontrol &= ~(0x1 << 8); 3685 scontrol |= (0x6 << 8); 3686 break; 3687 case ATA_LPM_MIN_POWER: 3688 if (ata_link_nr_enabled(link) > 0) 3689 /* no restrictions on LPM transitions */ 3690 scontrol &= ~(0x7 << 8); 3691 else { 3692 /* empty port, power off */ 3693 scontrol &= ~0xf; 3694 scontrol |= (0x1 << 2); 3695 } 3696 break; 3697 default: 3698 WARN_ON(1); 3699 } 3700 3701 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3702 if (rc) 3703 return rc; 3704 3705 /* give the link time to transit out of LPM state */ 3706 if (woken_up) 3707 msleep(10); 3708 3709 /* clear PHYRDY_CHG from SError */ 3710 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3711 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3712 } 3713 3714 /** 3715 * ata_std_prereset - prepare for reset 3716 * @link: ATA link to be reset 3717 * @deadline: deadline jiffies for the operation 3718 * 3719 * @link is about to be reset. Initialize it. Failure from 3720 * prereset makes libata abort whole reset sequence and give up 3721 * that port, so prereset should be best-effort. It does its 3722 * best to prepare for reset sequence but if things go wrong, it 3723 * should just whine, not fail. 3724 * 3725 * LOCKING: 3726 * Kernel thread context (may sleep) 3727 * 3728 * RETURNS: 3729 * 0 on success, -errno otherwise. 3730 */ 3731 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3732 { 3733 struct ata_port *ap = link->ap; 3734 struct ata_eh_context *ehc = &link->eh_context; 3735 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3736 int rc; 3737 3738 /* if we're about to do hardreset, nothing more to do */ 3739 if (ehc->i.action & ATA_EH_HARDRESET) 3740 return 0; 3741 3742 /* if SATA, resume link */ 3743 if (ap->flags & ATA_FLAG_SATA) { 3744 rc = sata_link_resume(link, timing, deadline); 3745 /* whine about phy resume failure but proceed */ 3746 if (rc && rc != -EOPNOTSUPP) 3747 ata_link_warn(link, 3748 "failed to resume link for reset (errno=%d)\n", 3749 rc); 3750 } 3751 3752 /* no point in trying softreset on offline link */ 3753 if (ata_phys_link_offline(link)) 3754 ehc->i.action &= ~ATA_EH_SOFTRESET; 3755 3756 return 0; 3757 } 3758 3759 /** 3760 * sata_link_hardreset - reset link via SATA phy reset 3761 * @link: link to reset 3762 * @timing: timing parameters { interval, duratinon, timeout } in msec 3763 * @deadline: deadline jiffies for the operation 3764 * @online: optional out parameter indicating link onlineness 3765 * @check_ready: optional callback to check link readiness 3766 * 3767 * SATA phy-reset @link using DET bits of SControl register. 3768 * After hardreset, link readiness is waited upon using 3769 * ata_wait_ready() if @check_ready is specified. LLDs are 3770 * allowed to not specify @check_ready and wait itself after this 3771 * function returns. Device classification is LLD's 3772 * responsibility. 3773 * 3774 * *@online is set to one iff reset succeeded and @link is online 3775 * after reset. 3776 * 3777 * LOCKING: 3778 * Kernel thread context (may sleep) 3779 * 3780 * RETURNS: 3781 * 0 on success, -errno otherwise. 3782 */ 3783 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3784 unsigned long deadline, 3785 bool *online, int (*check_ready)(struct ata_link *)) 3786 { 3787 u32 scontrol; 3788 int rc; 3789 3790 DPRINTK("ENTER\n"); 3791 3792 if (online) 3793 *online = false; 3794 3795 if (sata_set_spd_needed(link)) { 3796 /* SATA spec says nothing about how to reconfigure 3797 * spd. To be on the safe side, turn off phy during 3798 * reconfiguration. This works for at least ICH7 AHCI 3799 * and Sil3124. 3800 */ 3801 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3802 goto out; 3803 3804 scontrol = (scontrol & 0x0f0) | 0x304; 3805 3806 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3807 goto out; 3808 3809 sata_set_spd(link); 3810 } 3811 3812 /* issue phy wake/reset */ 3813 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3814 goto out; 3815 3816 scontrol = (scontrol & 0x0f0) | 0x301; 3817 3818 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3819 goto out; 3820 3821 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3822 * 10.4.2 says at least 1 ms. 3823 */ 3824 ata_msleep(link->ap, 1); 3825 3826 /* bring link back */ 3827 rc = sata_link_resume(link, timing, deadline); 3828 if (rc) 3829 goto out; 3830 /* if link is offline nothing more to do */ 3831 if (ata_phys_link_offline(link)) 3832 goto out; 3833 3834 /* Link is online. From this point, -ENODEV too is an error. */ 3835 if (online) 3836 *online = true; 3837 3838 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3839 /* If PMP is supported, we have to do follow-up SRST. 3840 * Some PMPs don't send D2H Reg FIS after hardreset if 3841 * the first port is empty. Wait only for 3842 * ATA_TMOUT_PMP_SRST_WAIT. 3843 */ 3844 if (check_ready) { 3845 unsigned long pmp_deadline; 3846 3847 pmp_deadline = ata_deadline(jiffies, 3848 ATA_TMOUT_PMP_SRST_WAIT); 3849 if (time_after(pmp_deadline, deadline)) 3850 pmp_deadline = deadline; 3851 ata_wait_ready(link, pmp_deadline, check_ready); 3852 } 3853 rc = -EAGAIN; 3854 goto out; 3855 } 3856 3857 rc = 0; 3858 if (check_ready) 3859 rc = ata_wait_ready(link, deadline, check_ready); 3860 out: 3861 if (rc && rc != -EAGAIN) { 3862 /* online is set iff link is online && reset succeeded */ 3863 if (online) 3864 *online = false; 3865 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3866 } 3867 DPRINTK("EXIT, rc=%d\n", rc); 3868 return rc; 3869 } 3870 3871 /** 3872 * sata_std_hardreset - COMRESET w/o waiting or classification 3873 * @link: link to reset 3874 * @class: resulting class of attached device 3875 * @deadline: deadline jiffies for the operation 3876 * 3877 * Standard SATA COMRESET w/o waiting or classification. 3878 * 3879 * LOCKING: 3880 * Kernel thread context (may sleep) 3881 * 3882 * RETURNS: 3883 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3884 */ 3885 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3886 unsigned long deadline) 3887 { 3888 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3889 bool online; 3890 int rc; 3891 3892 /* do hardreset */ 3893 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3894 return online ? -EAGAIN : rc; 3895 } 3896 3897 /** 3898 * ata_std_postreset - standard postreset callback 3899 * @link: the target ata_link 3900 * @classes: classes of attached devices 3901 * 3902 * This function is invoked after a successful reset. Note that 3903 * the device might have been reset more than once using 3904 * different reset methods before postreset is invoked. 3905 * 3906 * LOCKING: 3907 * Kernel thread context (may sleep) 3908 */ 3909 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3910 { 3911 u32 serror; 3912 3913 DPRINTK("ENTER\n"); 3914 3915 /* reset complete, clear SError */ 3916 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3917 sata_scr_write(link, SCR_ERROR, serror); 3918 3919 /* print link status */ 3920 sata_print_link_status(link); 3921 3922 DPRINTK("EXIT\n"); 3923 } 3924 3925 /** 3926 * ata_dev_same_device - Determine whether new ID matches configured device 3927 * @dev: device to compare against 3928 * @new_class: class of the new device 3929 * @new_id: IDENTIFY page of the new device 3930 * 3931 * Compare @new_class and @new_id against @dev and determine 3932 * whether @dev is the device indicated by @new_class and 3933 * @new_id. 3934 * 3935 * LOCKING: 3936 * None. 3937 * 3938 * RETURNS: 3939 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3940 */ 3941 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3942 const u16 *new_id) 3943 { 3944 const u16 *old_id = dev->id; 3945 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3946 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3947 3948 if (dev->class != new_class) { 3949 ata_dev_info(dev, "class mismatch %d != %d\n", 3950 dev->class, new_class); 3951 return 0; 3952 } 3953 3954 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3955 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3956 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3957 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3958 3959 if (strcmp(model[0], model[1])) { 3960 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3961 model[0], model[1]); 3962 return 0; 3963 } 3964 3965 if (strcmp(serial[0], serial[1])) { 3966 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3967 serial[0], serial[1]); 3968 return 0; 3969 } 3970 3971 return 1; 3972 } 3973 3974 /** 3975 * ata_dev_reread_id - Re-read IDENTIFY data 3976 * @dev: target ATA device 3977 * @readid_flags: read ID flags 3978 * 3979 * Re-read IDENTIFY page and make sure @dev is still attached to 3980 * the port. 3981 * 3982 * LOCKING: 3983 * Kernel thread context (may sleep) 3984 * 3985 * RETURNS: 3986 * 0 on success, negative errno otherwise 3987 */ 3988 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3989 { 3990 unsigned int class = dev->class; 3991 u16 *id = (void *)dev->link->ap->sector_buf; 3992 int rc; 3993 3994 /* read ID data */ 3995 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3996 if (rc) 3997 return rc; 3998 3999 /* is the device still there? */ 4000 if (!ata_dev_same_device(dev, class, id)) 4001 return -ENODEV; 4002 4003 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4004 return 0; 4005 } 4006 4007 /** 4008 * ata_dev_revalidate - Revalidate ATA device 4009 * @dev: device to revalidate 4010 * @new_class: new class code 4011 * @readid_flags: read ID flags 4012 * 4013 * Re-read IDENTIFY page, make sure @dev is still attached to the 4014 * port and reconfigure it according to the new IDENTIFY page. 4015 * 4016 * LOCKING: 4017 * Kernel thread context (may sleep) 4018 * 4019 * RETURNS: 4020 * 0 on success, negative errno otherwise 4021 */ 4022 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4023 unsigned int readid_flags) 4024 { 4025 u64 n_sectors = dev->n_sectors; 4026 u64 n_native_sectors = dev->n_native_sectors; 4027 int rc; 4028 4029 if (!ata_dev_enabled(dev)) 4030 return -ENODEV; 4031 4032 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4033 if (ata_class_enabled(new_class) && 4034 new_class != ATA_DEV_ATA && 4035 new_class != ATA_DEV_ATAPI && 4036 new_class != ATA_DEV_SEMB) { 4037 ata_dev_info(dev, "class mismatch %u != %u\n", 4038 dev->class, new_class); 4039 rc = -ENODEV; 4040 goto fail; 4041 } 4042 4043 /* re-read ID */ 4044 rc = ata_dev_reread_id(dev, readid_flags); 4045 if (rc) 4046 goto fail; 4047 4048 /* configure device according to the new ID */ 4049 rc = ata_dev_configure(dev); 4050 if (rc) 4051 goto fail; 4052 4053 /* verify n_sectors hasn't changed */ 4054 if (dev->class != ATA_DEV_ATA || !n_sectors || 4055 dev->n_sectors == n_sectors) 4056 return 0; 4057 4058 /* n_sectors has changed */ 4059 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4060 (unsigned long long)n_sectors, 4061 (unsigned long long)dev->n_sectors); 4062 4063 /* 4064 * Something could have caused HPA to be unlocked 4065 * involuntarily. If n_native_sectors hasn't changed and the 4066 * new size matches it, keep the device. 4067 */ 4068 if (dev->n_native_sectors == n_native_sectors && 4069 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4070 ata_dev_warn(dev, 4071 "new n_sectors matches native, probably " 4072 "late HPA unlock, n_sectors updated\n"); 4073 /* use the larger n_sectors */ 4074 return 0; 4075 } 4076 4077 /* 4078 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4079 * unlocking HPA in those cases. 4080 * 4081 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4082 */ 4083 if (dev->n_native_sectors == n_native_sectors && 4084 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4085 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4086 ata_dev_warn(dev, 4087 "old n_sectors matches native, probably " 4088 "late HPA lock, will try to unlock HPA\n"); 4089 /* try unlocking HPA */ 4090 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4091 rc = -EIO; 4092 } else 4093 rc = -ENODEV; 4094 4095 /* restore original n_[native_]sectors and fail */ 4096 dev->n_native_sectors = n_native_sectors; 4097 dev->n_sectors = n_sectors; 4098 fail: 4099 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4100 return rc; 4101 } 4102 4103 struct ata_blacklist_entry { 4104 const char *model_num; 4105 const char *model_rev; 4106 unsigned long horkage; 4107 }; 4108 4109 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4110 /* Devices with DMA related problems under Linux */ 4111 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4112 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4113 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4114 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4115 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4116 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4117 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4118 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4119 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4120 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4121 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4122 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4123 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4124 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4125 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4126 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4127 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4128 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4129 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4130 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4131 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4132 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4133 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4134 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4135 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4136 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4137 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4138 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4139 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4140 /* Odd clown on sil3726/4726 PMPs */ 4141 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4142 4143 /* Weird ATAPI devices */ 4144 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4145 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4146 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4147 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4148 4149 /* Devices we expect to fail diagnostics */ 4150 4151 /* Devices where NCQ should be avoided */ 4152 /* NCQ is slow */ 4153 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4154 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4155 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4156 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4157 /* NCQ is broken */ 4158 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4159 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4160 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4161 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4162 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4163 4164 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4165 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4166 ATA_HORKAGE_FIRMWARE_WARN }, 4167 4168 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4169 ATA_HORKAGE_FIRMWARE_WARN }, 4170 4171 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4172 ATA_HORKAGE_FIRMWARE_WARN }, 4173 4174 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4175 ATA_HORKAGE_FIRMWARE_WARN }, 4176 4177 /* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */ 4178 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4179 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4180 4181 /* Blacklist entries taken from Silicon Image 3124/3132 4182 Windows driver .inf file - also several Linux problem reports */ 4183 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4184 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4185 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4186 4187 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4188 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4189 4190 /* devices which puke on READ_NATIVE_MAX */ 4191 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4192 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4193 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4194 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4195 4196 /* this one allows HPA unlocking but fails IOs on the area */ 4197 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4198 4199 /* Devices which report 1 sector over size HPA */ 4200 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4201 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4202 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4203 4204 /* Devices which get the IVB wrong */ 4205 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4206 /* Maybe we should just blacklist TSSTcorp... */ 4207 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4208 4209 /* Devices that do not need bridging limits applied */ 4210 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4211 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4212 4213 /* Devices which aren't very happy with higher link speeds */ 4214 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4215 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4216 4217 /* 4218 * Devices which choke on SETXFER. Applies only if both the 4219 * device and controller are SATA. 4220 */ 4221 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4222 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4223 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4224 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4225 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4226 4227 /* devices that don't properly handle queued TRIM commands */ 4228 { "Micron_M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, }, 4229 { "Crucial_CT???M500SSD*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, }, 4230 { "Micron_M550*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, }, 4231 { "Crucial_CT*M550SSD*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, }, 4232 4233 /* 4234 * Some WD SATA-I drives spin up and down erratically when the link 4235 * is put into the slumber mode. We don't have full list of the 4236 * affected devices. Disable LPM if the device matches one of the 4237 * known prefixes and is SATA-1. As a side effect LPM partial is 4238 * lost too. 4239 * 4240 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4241 */ 4242 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4243 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4244 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4245 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4246 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4247 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4248 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4249 4250 /* End Marker */ 4251 { } 4252 }; 4253 4254 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4255 { 4256 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4257 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4258 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4259 4260 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4261 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4262 4263 while (ad->model_num) { 4264 if (glob_match(model_num, ad->model_num)) { 4265 if (ad->model_rev == NULL) 4266 return ad->horkage; 4267 if (glob_match(model_rev, ad->model_rev)) 4268 return ad->horkage; 4269 } 4270 ad++; 4271 } 4272 return 0; 4273 } 4274 4275 static int ata_dma_blacklisted(const struct ata_device *dev) 4276 { 4277 /* We don't support polling DMA. 4278 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4279 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4280 */ 4281 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4282 (dev->flags & ATA_DFLAG_CDB_INTR)) 4283 return 1; 4284 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4285 } 4286 4287 /** 4288 * ata_is_40wire - check drive side detection 4289 * @dev: device 4290 * 4291 * Perform drive side detection decoding, allowing for device vendors 4292 * who can't follow the documentation. 4293 */ 4294 4295 static int ata_is_40wire(struct ata_device *dev) 4296 { 4297 if (dev->horkage & ATA_HORKAGE_IVB) 4298 return ata_drive_40wire_relaxed(dev->id); 4299 return ata_drive_40wire(dev->id); 4300 } 4301 4302 /** 4303 * cable_is_40wire - 40/80/SATA decider 4304 * @ap: port to consider 4305 * 4306 * This function encapsulates the policy for speed management 4307 * in one place. At the moment we don't cache the result but 4308 * there is a good case for setting ap->cbl to the result when 4309 * we are called with unknown cables (and figuring out if it 4310 * impacts hotplug at all). 4311 * 4312 * Return 1 if the cable appears to be 40 wire. 4313 */ 4314 4315 static int cable_is_40wire(struct ata_port *ap) 4316 { 4317 struct ata_link *link; 4318 struct ata_device *dev; 4319 4320 /* If the controller thinks we are 40 wire, we are. */ 4321 if (ap->cbl == ATA_CBL_PATA40) 4322 return 1; 4323 4324 /* If the controller thinks we are 80 wire, we are. */ 4325 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4326 return 0; 4327 4328 /* If the system is known to be 40 wire short cable (eg 4329 * laptop), then we allow 80 wire modes even if the drive 4330 * isn't sure. 4331 */ 4332 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4333 return 0; 4334 4335 /* If the controller doesn't know, we scan. 4336 * 4337 * Note: We look for all 40 wire detects at this point. Any 4338 * 80 wire detect is taken to be 80 wire cable because 4339 * - in many setups only the one drive (slave if present) will 4340 * give a valid detect 4341 * - if you have a non detect capable drive you don't want it 4342 * to colour the choice 4343 */ 4344 ata_for_each_link(link, ap, EDGE) { 4345 ata_for_each_dev(dev, link, ENABLED) { 4346 if (!ata_is_40wire(dev)) 4347 return 0; 4348 } 4349 } 4350 return 1; 4351 } 4352 4353 /** 4354 * ata_dev_xfermask - Compute supported xfermask of the given device 4355 * @dev: Device to compute xfermask for 4356 * 4357 * Compute supported xfermask of @dev and store it in 4358 * dev->*_mask. This function is responsible for applying all 4359 * known limits including host controller limits, device 4360 * blacklist, etc... 4361 * 4362 * LOCKING: 4363 * None. 4364 */ 4365 static void ata_dev_xfermask(struct ata_device *dev) 4366 { 4367 struct ata_link *link = dev->link; 4368 struct ata_port *ap = link->ap; 4369 struct ata_host *host = ap->host; 4370 unsigned long xfer_mask; 4371 4372 /* controller modes available */ 4373 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4374 ap->mwdma_mask, ap->udma_mask); 4375 4376 /* drive modes available */ 4377 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4378 dev->mwdma_mask, dev->udma_mask); 4379 xfer_mask &= ata_id_xfermask(dev->id); 4380 4381 /* 4382 * CFA Advanced TrueIDE timings are not allowed on a shared 4383 * cable 4384 */ 4385 if (ata_dev_pair(dev)) { 4386 /* No PIO5 or PIO6 */ 4387 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4388 /* No MWDMA3 or MWDMA 4 */ 4389 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4390 } 4391 4392 if (ata_dma_blacklisted(dev)) { 4393 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4394 ata_dev_warn(dev, 4395 "device is on DMA blacklist, disabling DMA\n"); 4396 } 4397 4398 if ((host->flags & ATA_HOST_SIMPLEX) && 4399 host->simplex_claimed && host->simplex_claimed != ap) { 4400 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4401 ata_dev_warn(dev, 4402 "simplex DMA is claimed by other device, disabling DMA\n"); 4403 } 4404 4405 if (ap->flags & ATA_FLAG_NO_IORDY) 4406 xfer_mask &= ata_pio_mask_no_iordy(dev); 4407 4408 if (ap->ops->mode_filter) 4409 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4410 4411 /* Apply cable rule here. Don't apply it early because when 4412 * we handle hot plug the cable type can itself change. 4413 * Check this last so that we know if the transfer rate was 4414 * solely limited by the cable. 4415 * Unknown or 80 wire cables reported host side are checked 4416 * drive side as well. Cases where we know a 40wire cable 4417 * is used safely for 80 are not checked here. 4418 */ 4419 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4420 /* UDMA/44 or higher would be available */ 4421 if (cable_is_40wire(ap)) { 4422 ata_dev_warn(dev, 4423 "limited to UDMA/33 due to 40-wire cable\n"); 4424 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4425 } 4426 4427 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4428 &dev->mwdma_mask, &dev->udma_mask); 4429 } 4430 4431 /** 4432 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4433 * @dev: Device to which command will be sent 4434 * 4435 * Issue SET FEATURES - XFER MODE command to device @dev 4436 * on port @ap. 4437 * 4438 * LOCKING: 4439 * PCI/etc. bus probe sem. 4440 * 4441 * RETURNS: 4442 * 0 on success, AC_ERR_* mask otherwise. 4443 */ 4444 4445 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4446 { 4447 struct ata_taskfile tf; 4448 unsigned int err_mask; 4449 4450 /* set up set-features taskfile */ 4451 DPRINTK("set features - xfer mode\n"); 4452 4453 /* Some controllers and ATAPI devices show flaky interrupt 4454 * behavior after setting xfer mode. Use polling instead. 4455 */ 4456 ata_tf_init(dev, &tf); 4457 tf.command = ATA_CMD_SET_FEATURES; 4458 tf.feature = SETFEATURES_XFER; 4459 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4460 tf.protocol = ATA_PROT_NODATA; 4461 /* If we are using IORDY we must send the mode setting command */ 4462 if (ata_pio_need_iordy(dev)) 4463 tf.nsect = dev->xfer_mode; 4464 /* If the device has IORDY and the controller does not - turn it off */ 4465 else if (ata_id_has_iordy(dev->id)) 4466 tf.nsect = 0x01; 4467 else /* In the ancient relic department - skip all of this */ 4468 return 0; 4469 4470 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4471 4472 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4473 return err_mask; 4474 } 4475 4476 /** 4477 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4478 * @dev: Device to which command will be sent 4479 * @enable: Whether to enable or disable the feature 4480 * @feature: The sector count represents the feature to set 4481 * 4482 * Issue SET FEATURES - SATA FEATURES command to device @dev 4483 * on port @ap with sector count 4484 * 4485 * LOCKING: 4486 * PCI/etc. bus probe sem. 4487 * 4488 * RETURNS: 4489 * 0 on success, AC_ERR_* mask otherwise. 4490 */ 4491 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4492 { 4493 struct ata_taskfile tf; 4494 unsigned int err_mask; 4495 4496 /* set up set-features taskfile */ 4497 DPRINTK("set features - SATA features\n"); 4498 4499 ata_tf_init(dev, &tf); 4500 tf.command = ATA_CMD_SET_FEATURES; 4501 tf.feature = enable; 4502 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4503 tf.protocol = ATA_PROT_NODATA; 4504 tf.nsect = feature; 4505 4506 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4507 4508 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4509 return err_mask; 4510 } 4511 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4512 4513 /** 4514 * ata_dev_init_params - Issue INIT DEV PARAMS command 4515 * @dev: Device to which command will be sent 4516 * @heads: Number of heads (taskfile parameter) 4517 * @sectors: Number of sectors (taskfile parameter) 4518 * 4519 * LOCKING: 4520 * Kernel thread context (may sleep) 4521 * 4522 * RETURNS: 4523 * 0 on success, AC_ERR_* mask otherwise. 4524 */ 4525 static unsigned int ata_dev_init_params(struct ata_device *dev, 4526 u16 heads, u16 sectors) 4527 { 4528 struct ata_taskfile tf; 4529 unsigned int err_mask; 4530 4531 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4532 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4533 return AC_ERR_INVALID; 4534 4535 /* set up init dev params taskfile */ 4536 DPRINTK("init dev params \n"); 4537 4538 ata_tf_init(dev, &tf); 4539 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4540 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4541 tf.protocol = ATA_PROT_NODATA; 4542 tf.nsect = sectors; 4543 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4544 4545 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4546 /* A clean abort indicates an original or just out of spec drive 4547 and we should continue as we issue the setup based on the 4548 drive reported working geometry */ 4549 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4550 err_mask = 0; 4551 4552 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4553 return err_mask; 4554 } 4555 4556 /** 4557 * ata_sg_clean - Unmap DMA memory associated with command 4558 * @qc: Command containing DMA memory to be released 4559 * 4560 * Unmap all mapped DMA memory associated with this command. 4561 * 4562 * LOCKING: 4563 * spin_lock_irqsave(host lock) 4564 */ 4565 void ata_sg_clean(struct ata_queued_cmd *qc) 4566 { 4567 struct ata_port *ap = qc->ap; 4568 struct scatterlist *sg = qc->sg; 4569 int dir = qc->dma_dir; 4570 4571 WARN_ON_ONCE(sg == NULL); 4572 4573 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4574 4575 if (qc->n_elem) 4576 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4577 4578 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4579 qc->sg = NULL; 4580 } 4581 4582 /** 4583 * atapi_check_dma - Check whether ATAPI DMA can be supported 4584 * @qc: Metadata associated with taskfile to check 4585 * 4586 * Allow low-level driver to filter ATA PACKET commands, returning 4587 * a status indicating whether or not it is OK to use DMA for the 4588 * supplied PACKET command. 4589 * 4590 * LOCKING: 4591 * spin_lock_irqsave(host lock) 4592 * 4593 * RETURNS: 0 when ATAPI DMA can be used 4594 * nonzero otherwise 4595 */ 4596 int atapi_check_dma(struct ata_queued_cmd *qc) 4597 { 4598 struct ata_port *ap = qc->ap; 4599 4600 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4601 * few ATAPI devices choke on such DMA requests. 4602 */ 4603 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4604 unlikely(qc->nbytes & 15)) 4605 return 1; 4606 4607 if (ap->ops->check_atapi_dma) 4608 return ap->ops->check_atapi_dma(qc); 4609 4610 return 0; 4611 } 4612 4613 /** 4614 * ata_std_qc_defer - Check whether a qc needs to be deferred 4615 * @qc: ATA command in question 4616 * 4617 * Non-NCQ commands cannot run with any other command, NCQ or 4618 * not. As upper layer only knows the queue depth, we are 4619 * responsible for maintaining exclusion. This function checks 4620 * whether a new command @qc can be issued. 4621 * 4622 * LOCKING: 4623 * spin_lock_irqsave(host lock) 4624 * 4625 * RETURNS: 4626 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4627 */ 4628 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4629 { 4630 struct ata_link *link = qc->dev->link; 4631 4632 if (qc->tf.protocol == ATA_PROT_NCQ) { 4633 if (!ata_tag_valid(link->active_tag)) 4634 return 0; 4635 } else { 4636 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4637 return 0; 4638 } 4639 4640 return ATA_DEFER_LINK; 4641 } 4642 4643 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4644 4645 /** 4646 * ata_sg_init - Associate command with scatter-gather table. 4647 * @qc: Command to be associated 4648 * @sg: Scatter-gather table. 4649 * @n_elem: Number of elements in s/g table. 4650 * 4651 * Initialize the data-related elements of queued_cmd @qc 4652 * to point to a scatter-gather table @sg, containing @n_elem 4653 * elements. 4654 * 4655 * LOCKING: 4656 * spin_lock_irqsave(host lock) 4657 */ 4658 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4659 unsigned int n_elem) 4660 { 4661 qc->sg = sg; 4662 qc->n_elem = n_elem; 4663 qc->cursg = qc->sg; 4664 } 4665 4666 /** 4667 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4668 * @qc: Command with scatter-gather table to be mapped. 4669 * 4670 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4671 * 4672 * LOCKING: 4673 * spin_lock_irqsave(host lock) 4674 * 4675 * RETURNS: 4676 * Zero on success, negative on error. 4677 * 4678 */ 4679 static int ata_sg_setup(struct ata_queued_cmd *qc) 4680 { 4681 struct ata_port *ap = qc->ap; 4682 unsigned int n_elem; 4683 4684 VPRINTK("ENTER, ata%u\n", ap->print_id); 4685 4686 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4687 if (n_elem < 1) 4688 return -1; 4689 4690 DPRINTK("%d sg elements mapped\n", n_elem); 4691 qc->orig_n_elem = qc->n_elem; 4692 qc->n_elem = n_elem; 4693 qc->flags |= ATA_QCFLAG_DMAMAP; 4694 4695 return 0; 4696 } 4697 4698 /** 4699 * swap_buf_le16 - swap halves of 16-bit words in place 4700 * @buf: Buffer to swap 4701 * @buf_words: Number of 16-bit words in buffer. 4702 * 4703 * Swap halves of 16-bit words if needed to convert from 4704 * little-endian byte order to native cpu byte order, or 4705 * vice-versa. 4706 * 4707 * LOCKING: 4708 * Inherited from caller. 4709 */ 4710 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4711 { 4712 #ifdef __BIG_ENDIAN 4713 unsigned int i; 4714 4715 for (i = 0; i < buf_words; i++) 4716 buf[i] = le16_to_cpu(buf[i]); 4717 #endif /* __BIG_ENDIAN */ 4718 } 4719 4720 /** 4721 * ata_qc_new - Request an available ATA command, for queueing 4722 * @ap: target port 4723 * 4724 * Some ATA host controllers may implement a queue depth which is less 4725 * than ATA_MAX_QUEUE. So we shouldn't allocate a tag which is beyond 4726 * the hardware limitation. 4727 * 4728 * LOCKING: 4729 * None. 4730 */ 4731 4732 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4733 { 4734 struct ata_queued_cmd *qc = NULL; 4735 unsigned int max_queue = ap->host->n_tags; 4736 unsigned int i, tag; 4737 4738 /* no command while frozen */ 4739 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4740 return NULL; 4741 4742 for (i = 0, tag = ap->last_tag + 1; i < max_queue; i++, tag++) { 4743 tag = tag < max_queue ? tag : 0; 4744 4745 /* the last tag is reserved for internal command. */ 4746 if (tag == ATA_TAG_INTERNAL) 4747 continue; 4748 4749 if (!test_and_set_bit(tag, &ap->qc_allocated)) { 4750 qc = __ata_qc_from_tag(ap, tag); 4751 qc->tag = tag; 4752 ap->last_tag = tag; 4753 break; 4754 } 4755 } 4756 4757 return qc; 4758 } 4759 4760 /** 4761 * ata_qc_new_init - Request an available ATA command, and initialize it 4762 * @dev: Device from whom we request an available command structure 4763 * 4764 * LOCKING: 4765 * None. 4766 */ 4767 4768 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4769 { 4770 struct ata_port *ap = dev->link->ap; 4771 struct ata_queued_cmd *qc; 4772 4773 qc = ata_qc_new(ap); 4774 if (qc) { 4775 qc->scsicmd = NULL; 4776 qc->ap = ap; 4777 qc->dev = dev; 4778 4779 ata_qc_reinit(qc); 4780 } 4781 4782 return qc; 4783 } 4784 4785 /** 4786 * ata_qc_free - free unused ata_queued_cmd 4787 * @qc: Command to complete 4788 * 4789 * Designed to free unused ata_queued_cmd object 4790 * in case something prevents using it. 4791 * 4792 * LOCKING: 4793 * spin_lock_irqsave(host lock) 4794 */ 4795 void ata_qc_free(struct ata_queued_cmd *qc) 4796 { 4797 struct ata_port *ap; 4798 unsigned int tag; 4799 4800 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4801 ap = qc->ap; 4802 4803 qc->flags = 0; 4804 tag = qc->tag; 4805 if (likely(ata_tag_valid(tag))) { 4806 qc->tag = ATA_TAG_POISON; 4807 clear_bit(tag, &ap->qc_allocated); 4808 } 4809 } 4810 4811 void __ata_qc_complete(struct ata_queued_cmd *qc) 4812 { 4813 struct ata_port *ap; 4814 struct ata_link *link; 4815 4816 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4817 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4818 ap = qc->ap; 4819 link = qc->dev->link; 4820 4821 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4822 ata_sg_clean(qc); 4823 4824 /* command should be marked inactive atomically with qc completion */ 4825 if (qc->tf.protocol == ATA_PROT_NCQ) { 4826 link->sactive &= ~(1 << qc->tag); 4827 if (!link->sactive) 4828 ap->nr_active_links--; 4829 } else { 4830 link->active_tag = ATA_TAG_POISON; 4831 ap->nr_active_links--; 4832 } 4833 4834 /* clear exclusive status */ 4835 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4836 ap->excl_link == link)) 4837 ap->excl_link = NULL; 4838 4839 /* atapi: mark qc as inactive to prevent the interrupt handler 4840 * from completing the command twice later, before the error handler 4841 * is called. (when rc != 0 and atapi request sense is needed) 4842 */ 4843 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4844 ap->qc_active &= ~(1 << qc->tag); 4845 4846 /* call completion callback */ 4847 qc->complete_fn(qc); 4848 } 4849 4850 static void fill_result_tf(struct ata_queued_cmd *qc) 4851 { 4852 struct ata_port *ap = qc->ap; 4853 4854 qc->result_tf.flags = qc->tf.flags; 4855 ap->ops->qc_fill_rtf(qc); 4856 } 4857 4858 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4859 { 4860 struct ata_device *dev = qc->dev; 4861 4862 if (ata_is_nodata(qc->tf.protocol)) 4863 return; 4864 4865 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4866 return; 4867 4868 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4869 } 4870 4871 /** 4872 * ata_qc_complete - Complete an active ATA command 4873 * @qc: Command to complete 4874 * 4875 * Indicate to the mid and upper layers that an ATA command has 4876 * completed, with either an ok or not-ok status. 4877 * 4878 * Refrain from calling this function multiple times when 4879 * successfully completing multiple NCQ commands. 4880 * ata_qc_complete_multiple() should be used instead, which will 4881 * properly update IRQ expect state. 4882 * 4883 * LOCKING: 4884 * spin_lock_irqsave(host lock) 4885 */ 4886 void ata_qc_complete(struct ata_queued_cmd *qc) 4887 { 4888 struct ata_port *ap = qc->ap; 4889 4890 /* XXX: New EH and old EH use different mechanisms to 4891 * synchronize EH with regular execution path. 4892 * 4893 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4894 * Normal execution path is responsible for not accessing a 4895 * failed qc. libata core enforces the rule by returning NULL 4896 * from ata_qc_from_tag() for failed qcs. 4897 * 4898 * Old EH depends on ata_qc_complete() nullifying completion 4899 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4900 * not synchronize with interrupt handler. Only PIO task is 4901 * taken care of. 4902 */ 4903 if (ap->ops->error_handler) { 4904 struct ata_device *dev = qc->dev; 4905 struct ata_eh_info *ehi = &dev->link->eh_info; 4906 4907 if (unlikely(qc->err_mask)) 4908 qc->flags |= ATA_QCFLAG_FAILED; 4909 4910 /* 4911 * Finish internal commands without any further processing 4912 * and always with the result TF filled. 4913 */ 4914 if (unlikely(ata_tag_internal(qc->tag))) { 4915 fill_result_tf(qc); 4916 __ata_qc_complete(qc); 4917 return; 4918 } 4919 4920 /* 4921 * Non-internal qc has failed. Fill the result TF and 4922 * summon EH. 4923 */ 4924 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4925 fill_result_tf(qc); 4926 ata_qc_schedule_eh(qc); 4927 return; 4928 } 4929 4930 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4931 4932 /* read result TF if requested */ 4933 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4934 fill_result_tf(qc); 4935 4936 /* Some commands need post-processing after successful 4937 * completion. 4938 */ 4939 switch (qc->tf.command) { 4940 case ATA_CMD_SET_FEATURES: 4941 if (qc->tf.feature != SETFEATURES_WC_ON && 4942 qc->tf.feature != SETFEATURES_WC_OFF) 4943 break; 4944 /* fall through */ 4945 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4946 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4947 /* revalidate device */ 4948 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4949 ata_port_schedule_eh(ap); 4950 break; 4951 4952 case ATA_CMD_SLEEP: 4953 dev->flags |= ATA_DFLAG_SLEEPING; 4954 break; 4955 } 4956 4957 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4958 ata_verify_xfer(qc); 4959 4960 __ata_qc_complete(qc); 4961 } else { 4962 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4963 return; 4964 4965 /* read result TF if failed or requested */ 4966 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4967 fill_result_tf(qc); 4968 4969 __ata_qc_complete(qc); 4970 } 4971 } 4972 4973 /** 4974 * ata_qc_complete_multiple - Complete multiple qcs successfully 4975 * @ap: port in question 4976 * @qc_active: new qc_active mask 4977 * 4978 * Complete in-flight commands. This functions is meant to be 4979 * called from low-level driver's interrupt routine to complete 4980 * requests normally. ap->qc_active and @qc_active is compared 4981 * and commands are completed accordingly. 4982 * 4983 * Always use this function when completing multiple NCQ commands 4984 * from IRQ handlers instead of calling ata_qc_complete() 4985 * multiple times to keep IRQ expect status properly in sync. 4986 * 4987 * LOCKING: 4988 * spin_lock_irqsave(host lock) 4989 * 4990 * RETURNS: 4991 * Number of completed commands on success, -errno otherwise. 4992 */ 4993 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4994 { 4995 int nr_done = 0; 4996 u32 done_mask; 4997 4998 done_mask = ap->qc_active ^ qc_active; 4999 5000 if (unlikely(done_mask & qc_active)) { 5001 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 5002 ap->qc_active, qc_active); 5003 return -EINVAL; 5004 } 5005 5006 while (done_mask) { 5007 struct ata_queued_cmd *qc; 5008 unsigned int tag = __ffs(done_mask); 5009 5010 qc = ata_qc_from_tag(ap, tag); 5011 if (qc) { 5012 ata_qc_complete(qc); 5013 nr_done++; 5014 } 5015 done_mask &= ~(1 << tag); 5016 } 5017 5018 return nr_done; 5019 } 5020 5021 /** 5022 * ata_qc_issue - issue taskfile to device 5023 * @qc: command to issue to device 5024 * 5025 * Prepare an ATA command to submission to device. 5026 * This includes mapping the data into a DMA-able 5027 * area, filling in the S/G table, and finally 5028 * writing the taskfile to hardware, starting the command. 5029 * 5030 * LOCKING: 5031 * spin_lock_irqsave(host lock) 5032 */ 5033 void ata_qc_issue(struct ata_queued_cmd *qc) 5034 { 5035 struct ata_port *ap = qc->ap; 5036 struct ata_link *link = qc->dev->link; 5037 u8 prot = qc->tf.protocol; 5038 5039 /* Make sure only one non-NCQ command is outstanding. The 5040 * check is skipped for old EH because it reuses active qc to 5041 * request ATAPI sense. 5042 */ 5043 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5044 5045 if (ata_is_ncq(prot)) { 5046 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5047 5048 if (!link->sactive) 5049 ap->nr_active_links++; 5050 link->sactive |= 1 << qc->tag; 5051 } else { 5052 WARN_ON_ONCE(link->sactive); 5053 5054 ap->nr_active_links++; 5055 link->active_tag = qc->tag; 5056 } 5057 5058 qc->flags |= ATA_QCFLAG_ACTIVE; 5059 ap->qc_active |= 1 << qc->tag; 5060 5061 /* 5062 * We guarantee to LLDs that they will have at least one 5063 * non-zero sg if the command is a data command. 5064 */ 5065 if (WARN_ON_ONCE(ata_is_data(prot) && 5066 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5067 goto sys_err; 5068 5069 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5070 (ap->flags & ATA_FLAG_PIO_DMA))) 5071 if (ata_sg_setup(qc)) 5072 goto sys_err; 5073 5074 /* if device is sleeping, schedule reset and abort the link */ 5075 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5076 link->eh_info.action |= ATA_EH_RESET; 5077 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5078 ata_link_abort(link); 5079 return; 5080 } 5081 5082 ap->ops->qc_prep(qc); 5083 5084 qc->err_mask |= ap->ops->qc_issue(qc); 5085 if (unlikely(qc->err_mask)) 5086 goto err; 5087 return; 5088 5089 sys_err: 5090 qc->err_mask |= AC_ERR_SYSTEM; 5091 err: 5092 ata_qc_complete(qc); 5093 } 5094 5095 /** 5096 * sata_scr_valid - test whether SCRs are accessible 5097 * @link: ATA link to test SCR accessibility for 5098 * 5099 * Test whether SCRs are accessible for @link. 5100 * 5101 * LOCKING: 5102 * None. 5103 * 5104 * RETURNS: 5105 * 1 if SCRs are accessible, 0 otherwise. 5106 */ 5107 int sata_scr_valid(struct ata_link *link) 5108 { 5109 struct ata_port *ap = link->ap; 5110 5111 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5112 } 5113 5114 /** 5115 * sata_scr_read - read SCR register of the specified port 5116 * @link: ATA link to read SCR for 5117 * @reg: SCR to read 5118 * @val: Place to store read value 5119 * 5120 * Read SCR register @reg of @link into *@val. This function is 5121 * guaranteed to succeed if @link is ap->link, the cable type of 5122 * the port is SATA and the port implements ->scr_read. 5123 * 5124 * LOCKING: 5125 * None if @link is ap->link. Kernel thread context otherwise. 5126 * 5127 * RETURNS: 5128 * 0 on success, negative errno on failure. 5129 */ 5130 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5131 { 5132 if (ata_is_host_link(link)) { 5133 if (sata_scr_valid(link)) 5134 return link->ap->ops->scr_read(link, reg, val); 5135 return -EOPNOTSUPP; 5136 } 5137 5138 return sata_pmp_scr_read(link, reg, val); 5139 } 5140 5141 /** 5142 * sata_scr_write - write SCR register of the specified port 5143 * @link: ATA link to write SCR for 5144 * @reg: SCR to write 5145 * @val: value to write 5146 * 5147 * Write @val to SCR register @reg of @link. This function is 5148 * guaranteed to succeed if @link is ap->link, the cable type of 5149 * the port is SATA and the port implements ->scr_read. 5150 * 5151 * LOCKING: 5152 * None if @link is ap->link. Kernel thread context otherwise. 5153 * 5154 * RETURNS: 5155 * 0 on success, negative errno on failure. 5156 */ 5157 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5158 { 5159 if (ata_is_host_link(link)) { 5160 if (sata_scr_valid(link)) 5161 return link->ap->ops->scr_write(link, reg, val); 5162 return -EOPNOTSUPP; 5163 } 5164 5165 return sata_pmp_scr_write(link, reg, val); 5166 } 5167 5168 /** 5169 * sata_scr_write_flush - write SCR register of the specified port and flush 5170 * @link: ATA link to write SCR for 5171 * @reg: SCR to write 5172 * @val: value to write 5173 * 5174 * This function is identical to sata_scr_write() except that this 5175 * function performs flush after writing to the register. 5176 * 5177 * LOCKING: 5178 * None if @link is ap->link. Kernel thread context otherwise. 5179 * 5180 * RETURNS: 5181 * 0 on success, negative errno on failure. 5182 */ 5183 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5184 { 5185 if (ata_is_host_link(link)) { 5186 int rc; 5187 5188 if (sata_scr_valid(link)) { 5189 rc = link->ap->ops->scr_write(link, reg, val); 5190 if (rc == 0) 5191 rc = link->ap->ops->scr_read(link, reg, &val); 5192 return rc; 5193 } 5194 return -EOPNOTSUPP; 5195 } 5196 5197 return sata_pmp_scr_write(link, reg, val); 5198 } 5199 5200 /** 5201 * ata_phys_link_online - test whether the given link is online 5202 * @link: ATA link to test 5203 * 5204 * Test whether @link is online. Note that this function returns 5205 * 0 if online status of @link cannot be obtained, so 5206 * ata_link_online(link) != !ata_link_offline(link). 5207 * 5208 * LOCKING: 5209 * None. 5210 * 5211 * RETURNS: 5212 * True if the port online status is available and online. 5213 */ 5214 bool ata_phys_link_online(struct ata_link *link) 5215 { 5216 u32 sstatus; 5217 5218 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5219 ata_sstatus_online(sstatus)) 5220 return true; 5221 return false; 5222 } 5223 5224 /** 5225 * ata_phys_link_offline - test whether the given link is offline 5226 * @link: ATA link to test 5227 * 5228 * Test whether @link is offline. Note that this function 5229 * returns 0 if offline status of @link cannot be obtained, so 5230 * ata_link_online(link) != !ata_link_offline(link). 5231 * 5232 * LOCKING: 5233 * None. 5234 * 5235 * RETURNS: 5236 * True if the port offline status is available and offline. 5237 */ 5238 bool ata_phys_link_offline(struct ata_link *link) 5239 { 5240 u32 sstatus; 5241 5242 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5243 !ata_sstatus_online(sstatus)) 5244 return true; 5245 return false; 5246 } 5247 5248 /** 5249 * ata_link_online - test whether the given link is online 5250 * @link: ATA link to test 5251 * 5252 * Test whether @link is online. This is identical to 5253 * ata_phys_link_online() when there's no slave link. When 5254 * there's a slave link, this function should only be called on 5255 * the master link and will return true if any of M/S links is 5256 * online. 5257 * 5258 * LOCKING: 5259 * None. 5260 * 5261 * RETURNS: 5262 * True if the port online status is available and online. 5263 */ 5264 bool ata_link_online(struct ata_link *link) 5265 { 5266 struct ata_link *slave = link->ap->slave_link; 5267 5268 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5269 5270 return ata_phys_link_online(link) || 5271 (slave && ata_phys_link_online(slave)); 5272 } 5273 5274 /** 5275 * ata_link_offline - test whether the given link is offline 5276 * @link: ATA link to test 5277 * 5278 * Test whether @link is offline. This is identical to 5279 * ata_phys_link_offline() when there's no slave link. When 5280 * there's a slave link, this function should only be called on 5281 * the master link and will return true if both M/S links are 5282 * offline. 5283 * 5284 * LOCKING: 5285 * None. 5286 * 5287 * RETURNS: 5288 * True if the port offline status is available and offline. 5289 */ 5290 bool ata_link_offline(struct ata_link *link) 5291 { 5292 struct ata_link *slave = link->ap->slave_link; 5293 5294 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5295 5296 return ata_phys_link_offline(link) && 5297 (!slave || ata_phys_link_offline(slave)); 5298 } 5299 5300 #ifdef CONFIG_PM 5301 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5302 unsigned int action, unsigned int ehi_flags, 5303 bool async) 5304 { 5305 struct ata_link *link; 5306 unsigned long flags; 5307 5308 /* Previous resume operation might still be in 5309 * progress. Wait for PM_PENDING to clear. 5310 */ 5311 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5312 ata_port_wait_eh(ap); 5313 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5314 } 5315 5316 /* request PM ops to EH */ 5317 spin_lock_irqsave(ap->lock, flags); 5318 5319 ap->pm_mesg = mesg; 5320 ap->pflags |= ATA_PFLAG_PM_PENDING; 5321 ata_for_each_link(link, ap, HOST_FIRST) { 5322 link->eh_info.action |= action; 5323 link->eh_info.flags |= ehi_flags; 5324 } 5325 5326 ata_port_schedule_eh(ap); 5327 5328 spin_unlock_irqrestore(ap->lock, flags); 5329 5330 if (!async) { 5331 ata_port_wait_eh(ap); 5332 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5333 } 5334 } 5335 5336 /* 5337 * On some hardware, device fails to respond after spun down for suspend. As 5338 * the device won't be used before being resumed, we don't need to touch the 5339 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5340 * 5341 * http://thread.gmane.org/gmane.linux.ide/46764 5342 */ 5343 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5344 | ATA_EHI_NO_AUTOPSY 5345 | ATA_EHI_NO_RECOVERY; 5346 5347 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5348 { 5349 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5350 } 5351 5352 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5353 { 5354 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5355 } 5356 5357 static int ata_port_pm_suspend(struct device *dev) 5358 { 5359 struct ata_port *ap = to_ata_port(dev); 5360 5361 if (pm_runtime_suspended(dev)) 5362 return 0; 5363 5364 ata_port_suspend(ap, PMSG_SUSPEND); 5365 return 0; 5366 } 5367 5368 static int ata_port_pm_freeze(struct device *dev) 5369 { 5370 struct ata_port *ap = to_ata_port(dev); 5371 5372 if (pm_runtime_suspended(dev)) 5373 return 0; 5374 5375 ata_port_suspend(ap, PMSG_FREEZE); 5376 return 0; 5377 } 5378 5379 static int ata_port_pm_poweroff(struct device *dev) 5380 { 5381 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5382 return 0; 5383 } 5384 5385 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5386 | ATA_EHI_QUIET; 5387 5388 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5389 { 5390 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5391 } 5392 5393 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5394 { 5395 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5396 } 5397 5398 static int ata_port_pm_resume(struct device *dev) 5399 { 5400 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5401 pm_runtime_disable(dev); 5402 pm_runtime_set_active(dev); 5403 pm_runtime_enable(dev); 5404 return 0; 5405 } 5406 5407 /* 5408 * For ODDs, the upper layer will poll for media change every few seconds, 5409 * which will make it enter and leave suspend state every few seconds. And 5410 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5411 * is very little and the ODD may malfunction after constantly being reset. 5412 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5413 * ODD is attached to the port. 5414 */ 5415 static int ata_port_runtime_idle(struct device *dev) 5416 { 5417 struct ata_port *ap = to_ata_port(dev); 5418 struct ata_link *link; 5419 struct ata_device *adev; 5420 5421 ata_for_each_link(link, ap, HOST_FIRST) { 5422 ata_for_each_dev(adev, link, ENABLED) 5423 if (adev->class == ATA_DEV_ATAPI && 5424 !zpodd_dev_enabled(adev)) 5425 return -EBUSY; 5426 } 5427 5428 return 0; 5429 } 5430 5431 static int ata_port_runtime_suspend(struct device *dev) 5432 { 5433 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5434 return 0; 5435 } 5436 5437 static int ata_port_runtime_resume(struct device *dev) 5438 { 5439 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5440 return 0; 5441 } 5442 5443 static const struct dev_pm_ops ata_port_pm_ops = { 5444 .suspend = ata_port_pm_suspend, 5445 .resume = ata_port_pm_resume, 5446 .freeze = ata_port_pm_freeze, 5447 .thaw = ata_port_pm_resume, 5448 .poweroff = ata_port_pm_poweroff, 5449 .restore = ata_port_pm_resume, 5450 5451 .runtime_suspend = ata_port_runtime_suspend, 5452 .runtime_resume = ata_port_runtime_resume, 5453 .runtime_idle = ata_port_runtime_idle, 5454 }; 5455 5456 /* sas ports don't participate in pm runtime management of ata_ports, 5457 * and need to resume ata devices at the domain level, not the per-port 5458 * level. sas suspend/resume is async to allow parallel port recovery 5459 * since sas has multiple ata_port instances per Scsi_Host. 5460 */ 5461 void ata_sas_port_suspend(struct ata_port *ap) 5462 { 5463 ata_port_suspend_async(ap, PMSG_SUSPEND); 5464 } 5465 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5466 5467 void ata_sas_port_resume(struct ata_port *ap) 5468 { 5469 ata_port_resume_async(ap, PMSG_RESUME); 5470 } 5471 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5472 5473 /** 5474 * ata_host_suspend - suspend host 5475 * @host: host to suspend 5476 * @mesg: PM message 5477 * 5478 * Suspend @host. Actual operation is performed by port suspend. 5479 */ 5480 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5481 { 5482 host->dev->power.power_state = mesg; 5483 return 0; 5484 } 5485 5486 /** 5487 * ata_host_resume - resume host 5488 * @host: host to resume 5489 * 5490 * Resume @host. Actual operation is performed by port resume. 5491 */ 5492 void ata_host_resume(struct ata_host *host) 5493 { 5494 host->dev->power.power_state = PMSG_ON; 5495 } 5496 #endif 5497 5498 struct device_type ata_port_type = { 5499 .name = "ata_port", 5500 #ifdef CONFIG_PM 5501 .pm = &ata_port_pm_ops, 5502 #endif 5503 }; 5504 5505 /** 5506 * ata_dev_init - Initialize an ata_device structure 5507 * @dev: Device structure to initialize 5508 * 5509 * Initialize @dev in preparation for probing. 5510 * 5511 * LOCKING: 5512 * Inherited from caller. 5513 */ 5514 void ata_dev_init(struct ata_device *dev) 5515 { 5516 struct ata_link *link = ata_dev_phys_link(dev); 5517 struct ata_port *ap = link->ap; 5518 unsigned long flags; 5519 5520 /* SATA spd limit is bound to the attached device, reset together */ 5521 link->sata_spd_limit = link->hw_sata_spd_limit; 5522 link->sata_spd = 0; 5523 5524 /* High bits of dev->flags are used to record warm plug 5525 * requests which occur asynchronously. Synchronize using 5526 * host lock. 5527 */ 5528 spin_lock_irqsave(ap->lock, flags); 5529 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5530 dev->horkage = 0; 5531 spin_unlock_irqrestore(ap->lock, flags); 5532 5533 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5534 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5535 dev->pio_mask = UINT_MAX; 5536 dev->mwdma_mask = UINT_MAX; 5537 dev->udma_mask = UINT_MAX; 5538 } 5539 5540 /** 5541 * ata_link_init - Initialize an ata_link structure 5542 * @ap: ATA port link is attached to 5543 * @link: Link structure to initialize 5544 * @pmp: Port multiplier port number 5545 * 5546 * Initialize @link. 5547 * 5548 * LOCKING: 5549 * Kernel thread context (may sleep) 5550 */ 5551 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5552 { 5553 int i; 5554 5555 /* clear everything except for devices */ 5556 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5557 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5558 5559 link->ap = ap; 5560 link->pmp = pmp; 5561 link->active_tag = ATA_TAG_POISON; 5562 link->hw_sata_spd_limit = UINT_MAX; 5563 5564 /* can't use iterator, ap isn't initialized yet */ 5565 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5566 struct ata_device *dev = &link->device[i]; 5567 5568 dev->link = link; 5569 dev->devno = dev - link->device; 5570 #ifdef CONFIG_ATA_ACPI 5571 dev->gtf_filter = ata_acpi_gtf_filter; 5572 #endif 5573 ata_dev_init(dev); 5574 } 5575 } 5576 5577 /** 5578 * sata_link_init_spd - Initialize link->sata_spd_limit 5579 * @link: Link to configure sata_spd_limit for 5580 * 5581 * Initialize @link->[hw_]sata_spd_limit to the currently 5582 * configured value. 5583 * 5584 * LOCKING: 5585 * Kernel thread context (may sleep). 5586 * 5587 * RETURNS: 5588 * 0 on success, -errno on failure. 5589 */ 5590 int sata_link_init_spd(struct ata_link *link) 5591 { 5592 u8 spd; 5593 int rc; 5594 5595 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5596 if (rc) 5597 return rc; 5598 5599 spd = (link->saved_scontrol >> 4) & 0xf; 5600 if (spd) 5601 link->hw_sata_spd_limit &= (1 << spd) - 1; 5602 5603 ata_force_link_limits(link); 5604 5605 link->sata_spd_limit = link->hw_sata_spd_limit; 5606 5607 return 0; 5608 } 5609 5610 /** 5611 * ata_port_alloc - allocate and initialize basic ATA port resources 5612 * @host: ATA host this allocated port belongs to 5613 * 5614 * Allocate and initialize basic ATA port resources. 5615 * 5616 * RETURNS: 5617 * Allocate ATA port on success, NULL on failure. 5618 * 5619 * LOCKING: 5620 * Inherited from calling layer (may sleep). 5621 */ 5622 struct ata_port *ata_port_alloc(struct ata_host *host) 5623 { 5624 struct ata_port *ap; 5625 5626 DPRINTK("ENTER\n"); 5627 5628 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5629 if (!ap) 5630 return NULL; 5631 5632 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5633 ap->lock = &host->lock; 5634 ap->print_id = -1; 5635 ap->local_port_no = -1; 5636 ap->host = host; 5637 ap->dev = host->dev; 5638 5639 #if defined(ATA_VERBOSE_DEBUG) 5640 /* turn on all debugging levels */ 5641 ap->msg_enable = 0x00FF; 5642 #elif defined(ATA_DEBUG) 5643 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5644 #else 5645 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5646 #endif 5647 5648 mutex_init(&ap->scsi_scan_mutex); 5649 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5650 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5651 INIT_LIST_HEAD(&ap->eh_done_q); 5652 init_waitqueue_head(&ap->eh_wait_q); 5653 init_completion(&ap->park_req_pending); 5654 init_timer_deferrable(&ap->fastdrain_timer); 5655 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5656 ap->fastdrain_timer.data = (unsigned long)ap; 5657 5658 ap->cbl = ATA_CBL_NONE; 5659 5660 ata_link_init(ap, &ap->link, 0); 5661 5662 #ifdef ATA_IRQ_TRAP 5663 ap->stats.unhandled_irq = 1; 5664 ap->stats.idle_irq = 1; 5665 #endif 5666 ata_sff_port_init(ap); 5667 5668 return ap; 5669 } 5670 5671 static void ata_host_release(struct device *gendev, void *res) 5672 { 5673 struct ata_host *host = dev_get_drvdata(gendev); 5674 int i; 5675 5676 for (i = 0; i < host->n_ports; i++) { 5677 struct ata_port *ap = host->ports[i]; 5678 5679 if (!ap) 5680 continue; 5681 5682 if (ap->scsi_host) 5683 scsi_host_put(ap->scsi_host); 5684 5685 kfree(ap->pmp_link); 5686 kfree(ap->slave_link); 5687 kfree(ap); 5688 host->ports[i] = NULL; 5689 } 5690 5691 dev_set_drvdata(gendev, NULL); 5692 } 5693 5694 /** 5695 * ata_host_alloc - allocate and init basic ATA host resources 5696 * @dev: generic device this host is associated with 5697 * @max_ports: maximum number of ATA ports associated with this host 5698 * 5699 * Allocate and initialize basic ATA host resources. LLD calls 5700 * this function to allocate a host, initializes it fully and 5701 * attaches it using ata_host_register(). 5702 * 5703 * @max_ports ports are allocated and host->n_ports is 5704 * initialized to @max_ports. The caller is allowed to decrease 5705 * host->n_ports before calling ata_host_register(). The unused 5706 * ports will be automatically freed on registration. 5707 * 5708 * RETURNS: 5709 * Allocate ATA host on success, NULL on failure. 5710 * 5711 * LOCKING: 5712 * Inherited from calling layer (may sleep). 5713 */ 5714 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5715 { 5716 struct ata_host *host; 5717 size_t sz; 5718 int i; 5719 5720 DPRINTK("ENTER\n"); 5721 5722 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5723 return NULL; 5724 5725 /* alloc a container for our list of ATA ports (buses) */ 5726 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5727 /* alloc a container for our list of ATA ports (buses) */ 5728 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5729 if (!host) 5730 goto err_out; 5731 5732 devres_add(dev, host); 5733 dev_set_drvdata(dev, host); 5734 5735 spin_lock_init(&host->lock); 5736 mutex_init(&host->eh_mutex); 5737 host->dev = dev; 5738 host->n_ports = max_ports; 5739 5740 /* allocate ports bound to this host */ 5741 for (i = 0; i < max_ports; i++) { 5742 struct ata_port *ap; 5743 5744 ap = ata_port_alloc(host); 5745 if (!ap) 5746 goto err_out; 5747 5748 ap->port_no = i; 5749 host->ports[i] = ap; 5750 } 5751 5752 devres_remove_group(dev, NULL); 5753 return host; 5754 5755 err_out: 5756 devres_release_group(dev, NULL); 5757 return NULL; 5758 } 5759 5760 /** 5761 * ata_host_alloc_pinfo - alloc host and init with port_info array 5762 * @dev: generic device this host is associated with 5763 * @ppi: array of ATA port_info to initialize host with 5764 * @n_ports: number of ATA ports attached to this host 5765 * 5766 * Allocate ATA host and initialize with info from @ppi. If NULL 5767 * terminated, @ppi may contain fewer entries than @n_ports. The 5768 * last entry will be used for the remaining ports. 5769 * 5770 * RETURNS: 5771 * Allocate ATA host on success, NULL on failure. 5772 * 5773 * LOCKING: 5774 * Inherited from calling layer (may sleep). 5775 */ 5776 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5777 const struct ata_port_info * const * ppi, 5778 int n_ports) 5779 { 5780 const struct ata_port_info *pi; 5781 struct ata_host *host; 5782 int i, j; 5783 5784 host = ata_host_alloc(dev, n_ports); 5785 if (!host) 5786 return NULL; 5787 5788 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5789 struct ata_port *ap = host->ports[i]; 5790 5791 if (ppi[j]) 5792 pi = ppi[j++]; 5793 5794 ap->pio_mask = pi->pio_mask; 5795 ap->mwdma_mask = pi->mwdma_mask; 5796 ap->udma_mask = pi->udma_mask; 5797 ap->flags |= pi->flags; 5798 ap->link.flags |= pi->link_flags; 5799 ap->ops = pi->port_ops; 5800 5801 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5802 host->ops = pi->port_ops; 5803 } 5804 5805 return host; 5806 } 5807 5808 /** 5809 * ata_slave_link_init - initialize slave link 5810 * @ap: port to initialize slave link for 5811 * 5812 * Create and initialize slave link for @ap. This enables slave 5813 * link handling on the port. 5814 * 5815 * In libata, a port contains links and a link contains devices. 5816 * There is single host link but if a PMP is attached to it, 5817 * there can be multiple fan-out links. On SATA, there's usually 5818 * a single device connected to a link but PATA and SATA 5819 * controllers emulating TF based interface can have two - master 5820 * and slave. 5821 * 5822 * However, there are a few controllers which don't fit into this 5823 * abstraction too well - SATA controllers which emulate TF 5824 * interface with both master and slave devices but also have 5825 * separate SCR register sets for each device. These controllers 5826 * need separate links for physical link handling 5827 * (e.g. onlineness, link speed) but should be treated like a 5828 * traditional M/S controller for everything else (e.g. command 5829 * issue, softreset). 5830 * 5831 * slave_link is libata's way of handling this class of 5832 * controllers without impacting core layer too much. For 5833 * anything other than physical link handling, the default host 5834 * link is used for both master and slave. For physical link 5835 * handling, separate @ap->slave_link is used. All dirty details 5836 * are implemented inside libata core layer. From LLD's POV, the 5837 * only difference is that prereset, hardreset and postreset are 5838 * called once more for the slave link, so the reset sequence 5839 * looks like the following. 5840 * 5841 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5842 * softreset(M) -> postreset(M) -> postreset(S) 5843 * 5844 * Note that softreset is called only for the master. Softreset 5845 * resets both M/S by definition, so SRST on master should handle 5846 * both (the standard method will work just fine). 5847 * 5848 * LOCKING: 5849 * Should be called before host is registered. 5850 * 5851 * RETURNS: 5852 * 0 on success, -errno on failure. 5853 */ 5854 int ata_slave_link_init(struct ata_port *ap) 5855 { 5856 struct ata_link *link; 5857 5858 WARN_ON(ap->slave_link); 5859 WARN_ON(ap->flags & ATA_FLAG_PMP); 5860 5861 link = kzalloc(sizeof(*link), GFP_KERNEL); 5862 if (!link) 5863 return -ENOMEM; 5864 5865 ata_link_init(ap, link, 1); 5866 ap->slave_link = link; 5867 return 0; 5868 } 5869 5870 static void ata_host_stop(struct device *gendev, void *res) 5871 { 5872 struct ata_host *host = dev_get_drvdata(gendev); 5873 int i; 5874 5875 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5876 5877 for (i = 0; i < host->n_ports; i++) { 5878 struct ata_port *ap = host->ports[i]; 5879 5880 if (ap->ops->port_stop) 5881 ap->ops->port_stop(ap); 5882 } 5883 5884 if (host->ops->host_stop) 5885 host->ops->host_stop(host); 5886 } 5887 5888 /** 5889 * ata_finalize_port_ops - finalize ata_port_operations 5890 * @ops: ata_port_operations to finalize 5891 * 5892 * An ata_port_operations can inherit from another ops and that 5893 * ops can again inherit from another. This can go on as many 5894 * times as necessary as long as there is no loop in the 5895 * inheritance chain. 5896 * 5897 * Ops tables are finalized when the host is started. NULL or 5898 * unspecified entries are inherited from the closet ancestor 5899 * which has the method and the entry is populated with it. 5900 * After finalization, the ops table directly points to all the 5901 * methods and ->inherits is no longer necessary and cleared. 5902 * 5903 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5904 * 5905 * LOCKING: 5906 * None. 5907 */ 5908 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5909 { 5910 static DEFINE_SPINLOCK(lock); 5911 const struct ata_port_operations *cur; 5912 void **begin = (void **)ops; 5913 void **end = (void **)&ops->inherits; 5914 void **pp; 5915 5916 if (!ops || !ops->inherits) 5917 return; 5918 5919 spin_lock(&lock); 5920 5921 for (cur = ops->inherits; cur; cur = cur->inherits) { 5922 void **inherit = (void **)cur; 5923 5924 for (pp = begin; pp < end; pp++, inherit++) 5925 if (!*pp) 5926 *pp = *inherit; 5927 } 5928 5929 for (pp = begin; pp < end; pp++) 5930 if (IS_ERR(*pp)) 5931 *pp = NULL; 5932 5933 ops->inherits = NULL; 5934 5935 spin_unlock(&lock); 5936 } 5937 5938 /** 5939 * ata_host_start - start and freeze ports of an ATA host 5940 * @host: ATA host to start ports for 5941 * 5942 * Start and then freeze ports of @host. Started status is 5943 * recorded in host->flags, so this function can be called 5944 * multiple times. Ports are guaranteed to get started only 5945 * once. If host->ops isn't initialized yet, its set to the 5946 * first non-dummy port ops. 5947 * 5948 * LOCKING: 5949 * Inherited from calling layer (may sleep). 5950 * 5951 * RETURNS: 5952 * 0 if all ports are started successfully, -errno otherwise. 5953 */ 5954 int ata_host_start(struct ata_host *host) 5955 { 5956 int have_stop = 0; 5957 void *start_dr = NULL; 5958 int i, rc; 5959 5960 if (host->flags & ATA_HOST_STARTED) 5961 return 0; 5962 5963 ata_finalize_port_ops(host->ops); 5964 5965 for (i = 0; i < host->n_ports; i++) { 5966 struct ata_port *ap = host->ports[i]; 5967 5968 ata_finalize_port_ops(ap->ops); 5969 5970 if (!host->ops && !ata_port_is_dummy(ap)) 5971 host->ops = ap->ops; 5972 5973 if (ap->ops->port_stop) 5974 have_stop = 1; 5975 } 5976 5977 if (host->ops->host_stop) 5978 have_stop = 1; 5979 5980 if (have_stop) { 5981 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5982 if (!start_dr) 5983 return -ENOMEM; 5984 } 5985 5986 for (i = 0; i < host->n_ports; i++) { 5987 struct ata_port *ap = host->ports[i]; 5988 5989 if (ap->ops->port_start) { 5990 rc = ap->ops->port_start(ap); 5991 if (rc) { 5992 if (rc != -ENODEV) 5993 dev_err(host->dev, 5994 "failed to start port %d (errno=%d)\n", 5995 i, rc); 5996 goto err_out; 5997 } 5998 } 5999 ata_eh_freeze_port(ap); 6000 } 6001 6002 if (start_dr) 6003 devres_add(host->dev, start_dr); 6004 host->flags |= ATA_HOST_STARTED; 6005 return 0; 6006 6007 err_out: 6008 while (--i >= 0) { 6009 struct ata_port *ap = host->ports[i]; 6010 6011 if (ap->ops->port_stop) 6012 ap->ops->port_stop(ap); 6013 } 6014 devres_free(start_dr); 6015 return rc; 6016 } 6017 6018 /** 6019 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 6020 * @host: host to initialize 6021 * @dev: device host is attached to 6022 * @ops: port_ops 6023 * 6024 */ 6025 void ata_host_init(struct ata_host *host, struct device *dev, 6026 struct ata_port_operations *ops) 6027 { 6028 spin_lock_init(&host->lock); 6029 mutex_init(&host->eh_mutex); 6030 host->n_tags = ATA_MAX_QUEUE - 1; 6031 host->dev = dev; 6032 host->ops = ops; 6033 } 6034 6035 void __ata_port_probe(struct ata_port *ap) 6036 { 6037 struct ata_eh_info *ehi = &ap->link.eh_info; 6038 unsigned long flags; 6039 6040 /* kick EH for boot probing */ 6041 spin_lock_irqsave(ap->lock, flags); 6042 6043 ehi->probe_mask |= ATA_ALL_DEVICES; 6044 ehi->action |= ATA_EH_RESET; 6045 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6046 6047 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6048 ap->pflags |= ATA_PFLAG_LOADING; 6049 ata_port_schedule_eh(ap); 6050 6051 spin_unlock_irqrestore(ap->lock, flags); 6052 } 6053 6054 int ata_port_probe(struct ata_port *ap) 6055 { 6056 int rc = 0; 6057 6058 if (ap->ops->error_handler) { 6059 __ata_port_probe(ap); 6060 ata_port_wait_eh(ap); 6061 } else { 6062 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6063 rc = ata_bus_probe(ap); 6064 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6065 } 6066 return rc; 6067 } 6068 6069 6070 static void async_port_probe(void *data, async_cookie_t cookie) 6071 { 6072 struct ata_port *ap = data; 6073 6074 /* 6075 * If we're not allowed to scan this host in parallel, 6076 * we need to wait until all previous scans have completed 6077 * before going further. 6078 * Jeff Garzik says this is only within a controller, so we 6079 * don't need to wait for port 0, only for later ports. 6080 */ 6081 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6082 async_synchronize_cookie(cookie); 6083 6084 (void)ata_port_probe(ap); 6085 6086 /* in order to keep device order, we need to synchronize at this point */ 6087 async_synchronize_cookie(cookie); 6088 6089 ata_scsi_scan_host(ap, 1); 6090 } 6091 6092 /** 6093 * ata_host_register - register initialized ATA host 6094 * @host: ATA host to register 6095 * @sht: template for SCSI host 6096 * 6097 * Register initialized ATA host. @host is allocated using 6098 * ata_host_alloc() and fully initialized by LLD. This function 6099 * starts ports, registers @host with ATA and SCSI layers and 6100 * probe registered devices. 6101 * 6102 * LOCKING: 6103 * Inherited from calling layer (may sleep). 6104 * 6105 * RETURNS: 6106 * 0 on success, -errno otherwise. 6107 */ 6108 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6109 { 6110 int i, rc; 6111 6112 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1); 6113 6114 /* host must have been started */ 6115 if (!(host->flags & ATA_HOST_STARTED)) { 6116 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6117 WARN_ON(1); 6118 return -EINVAL; 6119 } 6120 6121 /* Blow away unused ports. This happens when LLD can't 6122 * determine the exact number of ports to allocate at 6123 * allocation time. 6124 */ 6125 for (i = host->n_ports; host->ports[i]; i++) 6126 kfree(host->ports[i]); 6127 6128 /* give ports names and add SCSI hosts */ 6129 for (i = 0; i < host->n_ports; i++) { 6130 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6131 host->ports[i]->local_port_no = i + 1; 6132 } 6133 6134 /* Create associated sysfs transport objects */ 6135 for (i = 0; i < host->n_ports; i++) { 6136 rc = ata_tport_add(host->dev,host->ports[i]); 6137 if (rc) { 6138 goto err_tadd; 6139 } 6140 } 6141 6142 rc = ata_scsi_add_hosts(host, sht); 6143 if (rc) 6144 goto err_tadd; 6145 6146 /* set cable, sata_spd_limit and report */ 6147 for (i = 0; i < host->n_ports; i++) { 6148 struct ata_port *ap = host->ports[i]; 6149 unsigned long xfer_mask; 6150 6151 /* set SATA cable type if still unset */ 6152 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6153 ap->cbl = ATA_CBL_SATA; 6154 6155 /* init sata_spd_limit to the current value */ 6156 sata_link_init_spd(&ap->link); 6157 if (ap->slave_link) 6158 sata_link_init_spd(ap->slave_link); 6159 6160 /* print per-port info to dmesg */ 6161 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6162 ap->udma_mask); 6163 6164 if (!ata_port_is_dummy(ap)) { 6165 ata_port_info(ap, "%cATA max %s %s\n", 6166 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6167 ata_mode_string(xfer_mask), 6168 ap->link.eh_info.desc); 6169 ata_ehi_clear_desc(&ap->link.eh_info); 6170 } else 6171 ata_port_info(ap, "DUMMY\n"); 6172 } 6173 6174 /* perform each probe asynchronously */ 6175 for (i = 0; i < host->n_ports; i++) { 6176 struct ata_port *ap = host->ports[i]; 6177 async_schedule(async_port_probe, ap); 6178 } 6179 6180 return 0; 6181 6182 err_tadd: 6183 while (--i >= 0) { 6184 ata_tport_delete(host->ports[i]); 6185 } 6186 return rc; 6187 6188 } 6189 6190 /** 6191 * ata_host_activate - start host, request IRQ and register it 6192 * @host: target ATA host 6193 * @irq: IRQ to request 6194 * @irq_handler: irq_handler used when requesting IRQ 6195 * @irq_flags: irq_flags used when requesting IRQ 6196 * @sht: scsi_host_template to use when registering the host 6197 * 6198 * After allocating an ATA host and initializing it, most libata 6199 * LLDs perform three steps to activate the host - start host, 6200 * request IRQ and register it. This helper takes necessasry 6201 * arguments and performs the three steps in one go. 6202 * 6203 * An invalid IRQ skips the IRQ registration and expects the host to 6204 * have set polling mode on the port. In this case, @irq_handler 6205 * should be NULL. 6206 * 6207 * LOCKING: 6208 * Inherited from calling layer (may sleep). 6209 * 6210 * RETURNS: 6211 * 0 on success, -errno otherwise. 6212 */ 6213 int ata_host_activate(struct ata_host *host, int irq, 6214 irq_handler_t irq_handler, unsigned long irq_flags, 6215 struct scsi_host_template *sht) 6216 { 6217 int i, rc; 6218 6219 rc = ata_host_start(host); 6220 if (rc) 6221 return rc; 6222 6223 /* Special case for polling mode */ 6224 if (!irq) { 6225 WARN_ON(irq_handler); 6226 return ata_host_register(host, sht); 6227 } 6228 6229 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6230 dev_driver_string(host->dev), host); 6231 if (rc) 6232 return rc; 6233 6234 for (i = 0; i < host->n_ports; i++) 6235 ata_port_desc(host->ports[i], "irq %d", irq); 6236 6237 rc = ata_host_register(host, sht); 6238 /* if failed, just free the IRQ and leave ports alone */ 6239 if (rc) 6240 devm_free_irq(host->dev, irq, host); 6241 6242 return rc; 6243 } 6244 6245 /** 6246 * ata_port_detach - Detach ATA port in prepration of device removal 6247 * @ap: ATA port to be detached 6248 * 6249 * Detach all ATA devices and the associated SCSI devices of @ap; 6250 * then, remove the associated SCSI host. @ap is guaranteed to 6251 * be quiescent on return from this function. 6252 * 6253 * LOCKING: 6254 * Kernel thread context (may sleep). 6255 */ 6256 static void ata_port_detach(struct ata_port *ap) 6257 { 6258 unsigned long flags; 6259 struct ata_link *link; 6260 struct ata_device *dev; 6261 6262 if (!ap->ops->error_handler) 6263 goto skip_eh; 6264 6265 /* tell EH we're leaving & flush EH */ 6266 spin_lock_irqsave(ap->lock, flags); 6267 ap->pflags |= ATA_PFLAG_UNLOADING; 6268 ata_port_schedule_eh(ap); 6269 spin_unlock_irqrestore(ap->lock, flags); 6270 6271 /* wait till EH commits suicide */ 6272 ata_port_wait_eh(ap); 6273 6274 /* it better be dead now */ 6275 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6276 6277 cancel_delayed_work_sync(&ap->hotplug_task); 6278 6279 skip_eh: 6280 /* clean up zpodd on port removal */ 6281 ata_for_each_link(link, ap, HOST_FIRST) { 6282 ata_for_each_dev(dev, link, ALL) { 6283 if (zpodd_dev_enabled(dev)) 6284 zpodd_exit(dev); 6285 } 6286 } 6287 if (ap->pmp_link) { 6288 int i; 6289 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6290 ata_tlink_delete(&ap->pmp_link[i]); 6291 } 6292 /* remove the associated SCSI host */ 6293 scsi_remove_host(ap->scsi_host); 6294 ata_tport_delete(ap); 6295 } 6296 6297 /** 6298 * ata_host_detach - Detach all ports of an ATA host 6299 * @host: Host to detach 6300 * 6301 * Detach all ports of @host. 6302 * 6303 * LOCKING: 6304 * Kernel thread context (may sleep). 6305 */ 6306 void ata_host_detach(struct ata_host *host) 6307 { 6308 int i; 6309 6310 for (i = 0; i < host->n_ports; i++) 6311 ata_port_detach(host->ports[i]); 6312 6313 /* the host is dead now, dissociate ACPI */ 6314 ata_acpi_dissociate(host); 6315 } 6316 6317 #ifdef CONFIG_PCI 6318 6319 /** 6320 * ata_pci_remove_one - PCI layer callback for device removal 6321 * @pdev: PCI device that was removed 6322 * 6323 * PCI layer indicates to libata via this hook that hot-unplug or 6324 * module unload event has occurred. Detach all ports. Resource 6325 * release is handled via devres. 6326 * 6327 * LOCKING: 6328 * Inherited from PCI layer (may sleep). 6329 */ 6330 void ata_pci_remove_one(struct pci_dev *pdev) 6331 { 6332 struct ata_host *host = pci_get_drvdata(pdev); 6333 6334 ata_host_detach(host); 6335 } 6336 6337 /* move to PCI subsystem */ 6338 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6339 { 6340 unsigned long tmp = 0; 6341 6342 switch (bits->width) { 6343 case 1: { 6344 u8 tmp8 = 0; 6345 pci_read_config_byte(pdev, bits->reg, &tmp8); 6346 tmp = tmp8; 6347 break; 6348 } 6349 case 2: { 6350 u16 tmp16 = 0; 6351 pci_read_config_word(pdev, bits->reg, &tmp16); 6352 tmp = tmp16; 6353 break; 6354 } 6355 case 4: { 6356 u32 tmp32 = 0; 6357 pci_read_config_dword(pdev, bits->reg, &tmp32); 6358 tmp = tmp32; 6359 break; 6360 } 6361 6362 default: 6363 return -EINVAL; 6364 } 6365 6366 tmp &= bits->mask; 6367 6368 return (tmp == bits->val) ? 1 : 0; 6369 } 6370 6371 #ifdef CONFIG_PM 6372 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6373 { 6374 pci_save_state(pdev); 6375 pci_disable_device(pdev); 6376 6377 if (mesg.event & PM_EVENT_SLEEP) 6378 pci_set_power_state(pdev, PCI_D3hot); 6379 } 6380 6381 int ata_pci_device_do_resume(struct pci_dev *pdev) 6382 { 6383 int rc; 6384 6385 pci_set_power_state(pdev, PCI_D0); 6386 pci_restore_state(pdev); 6387 6388 rc = pcim_enable_device(pdev); 6389 if (rc) { 6390 dev_err(&pdev->dev, 6391 "failed to enable device after resume (%d)\n", rc); 6392 return rc; 6393 } 6394 6395 pci_set_master(pdev); 6396 return 0; 6397 } 6398 6399 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6400 { 6401 struct ata_host *host = pci_get_drvdata(pdev); 6402 int rc = 0; 6403 6404 rc = ata_host_suspend(host, mesg); 6405 if (rc) 6406 return rc; 6407 6408 ata_pci_device_do_suspend(pdev, mesg); 6409 6410 return 0; 6411 } 6412 6413 int ata_pci_device_resume(struct pci_dev *pdev) 6414 { 6415 struct ata_host *host = pci_get_drvdata(pdev); 6416 int rc; 6417 6418 rc = ata_pci_device_do_resume(pdev); 6419 if (rc == 0) 6420 ata_host_resume(host); 6421 return rc; 6422 } 6423 #endif /* CONFIG_PM */ 6424 6425 #endif /* CONFIG_PCI */ 6426 6427 /** 6428 * ata_platform_remove_one - Platform layer callback for device removal 6429 * @pdev: Platform device that was removed 6430 * 6431 * Platform layer indicates to libata via this hook that hot-unplug or 6432 * module unload event has occurred. Detach all ports. Resource 6433 * release is handled via devres. 6434 * 6435 * LOCKING: 6436 * Inherited from platform layer (may sleep). 6437 */ 6438 int ata_platform_remove_one(struct platform_device *pdev) 6439 { 6440 struct ata_host *host = platform_get_drvdata(pdev); 6441 6442 ata_host_detach(host); 6443 6444 return 0; 6445 } 6446 6447 static int __init ata_parse_force_one(char **cur, 6448 struct ata_force_ent *force_ent, 6449 const char **reason) 6450 { 6451 /* FIXME: Currently, there's no way to tag init const data and 6452 * using __initdata causes build failure on some versions of 6453 * gcc. Once __initdataconst is implemented, add const to the 6454 * following structure. 6455 */ 6456 static struct ata_force_param force_tbl[] __initdata = { 6457 { "40c", .cbl = ATA_CBL_PATA40 }, 6458 { "80c", .cbl = ATA_CBL_PATA80 }, 6459 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6460 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6461 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6462 { "sata", .cbl = ATA_CBL_SATA }, 6463 { "1.5Gbps", .spd_limit = 1 }, 6464 { "3.0Gbps", .spd_limit = 2 }, 6465 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6466 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6467 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6468 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6469 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6470 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6471 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6472 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6473 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6474 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6475 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6476 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6477 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6478 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6479 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6480 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6481 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6482 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6483 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6484 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6485 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6486 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6487 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6488 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6489 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6490 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6491 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6492 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6493 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6494 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6495 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6496 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6497 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6498 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6499 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6500 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6501 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6502 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6503 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6504 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6505 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6506 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6507 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6508 }; 6509 char *start = *cur, *p = *cur; 6510 char *id, *val, *endp; 6511 const struct ata_force_param *match_fp = NULL; 6512 int nr_matches = 0, i; 6513 6514 /* find where this param ends and update *cur */ 6515 while (*p != '\0' && *p != ',') 6516 p++; 6517 6518 if (*p == '\0') 6519 *cur = p; 6520 else 6521 *cur = p + 1; 6522 6523 *p = '\0'; 6524 6525 /* parse */ 6526 p = strchr(start, ':'); 6527 if (!p) { 6528 val = strstrip(start); 6529 goto parse_val; 6530 } 6531 *p = '\0'; 6532 6533 id = strstrip(start); 6534 val = strstrip(p + 1); 6535 6536 /* parse id */ 6537 p = strchr(id, '.'); 6538 if (p) { 6539 *p++ = '\0'; 6540 force_ent->device = simple_strtoul(p, &endp, 10); 6541 if (p == endp || *endp != '\0') { 6542 *reason = "invalid device"; 6543 return -EINVAL; 6544 } 6545 } 6546 6547 force_ent->port = simple_strtoul(id, &endp, 10); 6548 if (p == endp || *endp != '\0') { 6549 *reason = "invalid port/link"; 6550 return -EINVAL; 6551 } 6552 6553 parse_val: 6554 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6555 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6556 const struct ata_force_param *fp = &force_tbl[i]; 6557 6558 if (strncasecmp(val, fp->name, strlen(val))) 6559 continue; 6560 6561 nr_matches++; 6562 match_fp = fp; 6563 6564 if (strcasecmp(val, fp->name) == 0) { 6565 nr_matches = 1; 6566 break; 6567 } 6568 } 6569 6570 if (!nr_matches) { 6571 *reason = "unknown value"; 6572 return -EINVAL; 6573 } 6574 if (nr_matches > 1) { 6575 *reason = "ambigious value"; 6576 return -EINVAL; 6577 } 6578 6579 force_ent->param = *match_fp; 6580 6581 return 0; 6582 } 6583 6584 static void __init ata_parse_force_param(void) 6585 { 6586 int idx = 0, size = 1; 6587 int last_port = -1, last_device = -1; 6588 char *p, *cur, *next; 6589 6590 /* calculate maximum number of params and allocate force_tbl */ 6591 for (p = ata_force_param_buf; *p; p++) 6592 if (*p == ',') 6593 size++; 6594 6595 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6596 if (!ata_force_tbl) { 6597 printk(KERN_WARNING "ata: failed to extend force table, " 6598 "libata.force ignored\n"); 6599 return; 6600 } 6601 6602 /* parse and populate the table */ 6603 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6604 const char *reason = ""; 6605 struct ata_force_ent te = { .port = -1, .device = -1 }; 6606 6607 next = cur; 6608 if (ata_parse_force_one(&next, &te, &reason)) { 6609 printk(KERN_WARNING "ata: failed to parse force " 6610 "parameter \"%s\" (%s)\n", 6611 cur, reason); 6612 continue; 6613 } 6614 6615 if (te.port == -1) { 6616 te.port = last_port; 6617 te.device = last_device; 6618 } 6619 6620 ata_force_tbl[idx++] = te; 6621 6622 last_port = te.port; 6623 last_device = te.device; 6624 } 6625 6626 ata_force_tbl_size = idx; 6627 } 6628 6629 static int __init ata_init(void) 6630 { 6631 int rc; 6632 6633 ata_parse_force_param(); 6634 6635 rc = ata_sff_init(); 6636 if (rc) { 6637 kfree(ata_force_tbl); 6638 return rc; 6639 } 6640 6641 libata_transport_init(); 6642 ata_scsi_transport_template = ata_attach_transport(); 6643 if (!ata_scsi_transport_template) { 6644 ata_sff_exit(); 6645 rc = -ENOMEM; 6646 goto err_out; 6647 } 6648 6649 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6650 return 0; 6651 6652 err_out: 6653 return rc; 6654 } 6655 6656 static void __exit ata_exit(void) 6657 { 6658 ata_release_transport(ata_scsi_transport_template); 6659 libata_transport_exit(); 6660 ata_sff_exit(); 6661 kfree(ata_force_tbl); 6662 } 6663 6664 subsys_initcall(ata_init); 6665 module_exit(ata_exit); 6666 6667 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6668 6669 int ata_ratelimit(void) 6670 { 6671 return __ratelimit(&ratelimit); 6672 } 6673 6674 /** 6675 * ata_msleep - ATA EH owner aware msleep 6676 * @ap: ATA port to attribute the sleep to 6677 * @msecs: duration to sleep in milliseconds 6678 * 6679 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6680 * ownership is released before going to sleep and reacquired 6681 * after the sleep is complete. IOW, other ports sharing the 6682 * @ap->host will be allowed to own the EH while this task is 6683 * sleeping. 6684 * 6685 * LOCKING: 6686 * Might sleep. 6687 */ 6688 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6689 { 6690 bool owns_eh = ap && ap->host->eh_owner == current; 6691 6692 if (owns_eh) 6693 ata_eh_release(ap); 6694 6695 msleep(msecs); 6696 6697 if (owns_eh) 6698 ata_eh_acquire(ap); 6699 } 6700 6701 /** 6702 * ata_wait_register - wait until register value changes 6703 * @ap: ATA port to wait register for, can be NULL 6704 * @reg: IO-mapped register 6705 * @mask: Mask to apply to read register value 6706 * @val: Wait condition 6707 * @interval: polling interval in milliseconds 6708 * @timeout: timeout in milliseconds 6709 * 6710 * Waiting for some bits of register to change is a common 6711 * operation for ATA controllers. This function reads 32bit LE 6712 * IO-mapped register @reg and tests for the following condition. 6713 * 6714 * (*@reg & mask) != val 6715 * 6716 * If the condition is met, it returns; otherwise, the process is 6717 * repeated after @interval_msec until timeout. 6718 * 6719 * LOCKING: 6720 * Kernel thread context (may sleep) 6721 * 6722 * RETURNS: 6723 * The final register value. 6724 */ 6725 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6726 unsigned long interval, unsigned long timeout) 6727 { 6728 unsigned long deadline; 6729 u32 tmp; 6730 6731 tmp = ioread32(reg); 6732 6733 /* Calculate timeout _after_ the first read to make sure 6734 * preceding writes reach the controller before starting to 6735 * eat away the timeout. 6736 */ 6737 deadline = ata_deadline(jiffies, timeout); 6738 6739 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6740 ata_msleep(ap, interval); 6741 tmp = ioread32(reg); 6742 } 6743 6744 return tmp; 6745 } 6746 6747 /* 6748 * Dummy port_ops 6749 */ 6750 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6751 { 6752 return AC_ERR_SYSTEM; 6753 } 6754 6755 static void ata_dummy_error_handler(struct ata_port *ap) 6756 { 6757 /* truly dummy */ 6758 } 6759 6760 struct ata_port_operations ata_dummy_port_ops = { 6761 .qc_prep = ata_noop_qc_prep, 6762 .qc_issue = ata_dummy_qc_issue, 6763 .error_handler = ata_dummy_error_handler, 6764 .sched_eh = ata_std_sched_eh, 6765 .end_eh = ata_std_end_eh, 6766 }; 6767 6768 const struct ata_port_info ata_dummy_port_info = { 6769 .port_ops = &ata_dummy_port_ops, 6770 }; 6771 6772 /* 6773 * Utility print functions 6774 */ 6775 int ata_port_printk(const struct ata_port *ap, const char *level, 6776 const char *fmt, ...) 6777 { 6778 struct va_format vaf; 6779 va_list args; 6780 int r; 6781 6782 va_start(args, fmt); 6783 6784 vaf.fmt = fmt; 6785 vaf.va = &args; 6786 6787 r = printk("%sata%u: %pV", level, ap->print_id, &vaf); 6788 6789 va_end(args); 6790 6791 return r; 6792 } 6793 EXPORT_SYMBOL(ata_port_printk); 6794 6795 int ata_link_printk(const struct ata_link *link, const char *level, 6796 const char *fmt, ...) 6797 { 6798 struct va_format vaf; 6799 va_list args; 6800 int r; 6801 6802 va_start(args, fmt); 6803 6804 vaf.fmt = fmt; 6805 vaf.va = &args; 6806 6807 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6808 r = printk("%sata%u.%02u: %pV", 6809 level, link->ap->print_id, link->pmp, &vaf); 6810 else 6811 r = printk("%sata%u: %pV", 6812 level, link->ap->print_id, &vaf); 6813 6814 va_end(args); 6815 6816 return r; 6817 } 6818 EXPORT_SYMBOL(ata_link_printk); 6819 6820 int ata_dev_printk(const struct ata_device *dev, const char *level, 6821 const char *fmt, ...) 6822 { 6823 struct va_format vaf; 6824 va_list args; 6825 int r; 6826 6827 va_start(args, fmt); 6828 6829 vaf.fmt = fmt; 6830 vaf.va = &args; 6831 6832 r = printk("%sata%u.%02u: %pV", 6833 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6834 &vaf); 6835 6836 va_end(args); 6837 6838 return r; 6839 } 6840 EXPORT_SYMBOL(ata_dev_printk); 6841 6842 void ata_print_version(const struct device *dev, const char *version) 6843 { 6844 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6845 } 6846 EXPORT_SYMBOL(ata_print_version); 6847 6848 /* 6849 * libata is essentially a library of internal helper functions for 6850 * low-level ATA host controller drivers. As such, the API/ABI is 6851 * likely to change as new drivers are added and updated. 6852 * Do not depend on ABI/API stability. 6853 */ 6854 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6855 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6856 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6857 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6858 EXPORT_SYMBOL_GPL(sata_port_ops); 6859 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6860 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6861 EXPORT_SYMBOL_GPL(ata_link_next); 6862 EXPORT_SYMBOL_GPL(ata_dev_next); 6863 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6864 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6865 EXPORT_SYMBOL_GPL(ata_host_init); 6866 EXPORT_SYMBOL_GPL(ata_host_alloc); 6867 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6868 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6869 EXPORT_SYMBOL_GPL(ata_host_start); 6870 EXPORT_SYMBOL_GPL(ata_host_register); 6871 EXPORT_SYMBOL_GPL(ata_host_activate); 6872 EXPORT_SYMBOL_GPL(ata_host_detach); 6873 EXPORT_SYMBOL_GPL(ata_sg_init); 6874 EXPORT_SYMBOL_GPL(ata_qc_complete); 6875 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6876 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6877 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6878 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6879 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6880 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6881 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6882 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6883 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6884 EXPORT_SYMBOL_GPL(ata_mode_string); 6885 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6886 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6887 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6888 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6889 EXPORT_SYMBOL_GPL(ata_dev_disable); 6890 EXPORT_SYMBOL_GPL(sata_set_spd); 6891 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6892 EXPORT_SYMBOL_GPL(sata_link_debounce); 6893 EXPORT_SYMBOL_GPL(sata_link_resume); 6894 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6895 EXPORT_SYMBOL_GPL(ata_std_prereset); 6896 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6897 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6898 EXPORT_SYMBOL_GPL(ata_std_postreset); 6899 EXPORT_SYMBOL_GPL(ata_dev_classify); 6900 EXPORT_SYMBOL_GPL(ata_dev_pair); 6901 EXPORT_SYMBOL_GPL(ata_ratelimit); 6902 EXPORT_SYMBOL_GPL(ata_msleep); 6903 EXPORT_SYMBOL_GPL(ata_wait_register); 6904 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6905 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6906 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6907 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6908 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6909 EXPORT_SYMBOL_GPL(sata_scr_valid); 6910 EXPORT_SYMBOL_GPL(sata_scr_read); 6911 EXPORT_SYMBOL_GPL(sata_scr_write); 6912 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6913 EXPORT_SYMBOL_GPL(ata_link_online); 6914 EXPORT_SYMBOL_GPL(ata_link_offline); 6915 #ifdef CONFIG_PM 6916 EXPORT_SYMBOL_GPL(ata_host_suspend); 6917 EXPORT_SYMBOL_GPL(ata_host_resume); 6918 #endif /* CONFIG_PM */ 6919 EXPORT_SYMBOL_GPL(ata_id_string); 6920 EXPORT_SYMBOL_GPL(ata_id_c_string); 6921 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6922 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6923 6924 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6925 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6926 EXPORT_SYMBOL_GPL(ata_timing_compute); 6927 EXPORT_SYMBOL_GPL(ata_timing_merge); 6928 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6929 6930 #ifdef CONFIG_PCI 6931 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6932 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6933 #ifdef CONFIG_PM 6934 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6935 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6936 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6937 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6938 #endif /* CONFIG_PM */ 6939 #endif /* CONFIG_PCI */ 6940 6941 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6942 6943 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6944 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6945 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6946 EXPORT_SYMBOL_GPL(ata_port_desc); 6947 #ifdef CONFIG_PCI 6948 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6949 #endif /* CONFIG_PCI */ 6950 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6951 EXPORT_SYMBOL_GPL(ata_link_abort); 6952 EXPORT_SYMBOL_GPL(ata_port_abort); 6953 EXPORT_SYMBOL_GPL(ata_port_freeze); 6954 EXPORT_SYMBOL_GPL(sata_async_notification); 6955 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6956 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6957 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6958 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6959 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6960 EXPORT_SYMBOL_GPL(ata_do_eh); 6961 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6962 6963 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6964 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6965 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6966 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6967 EXPORT_SYMBOL_GPL(ata_cable_sata); 6968