1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned int xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags_on; 100 u16 lflags_off; 101 }; 102 103 struct ata_force_ent { 104 int port; 105 int device; 106 struct ata_force_param param; 107 }; 108 109 static struct ata_force_ent *ata_force_tbl; 110 static int ata_force_tbl_size; 111 112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 113 /* param_buf is thrown away after initialization, disallow read */ 114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 116 #endif 117 118 static int atapi_enabled = 1; 119 module_param(atapi_enabled, int, 0444); 120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 121 122 static int atapi_dmadir = 0; 123 module_param(atapi_dmadir, int, 0444); 124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 125 126 int atapi_passthru16 = 1; 127 module_param(atapi_passthru16, int, 0444); 128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 129 130 int libata_fua = 0; 131 module_param_named(fua, libata_fua, int, 0444); 132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 133 134 static int ata_ignore_hpa; 135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 137 138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 139 module_param_named(dma, libata_dma_mask, int, 0444); 140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 141 142 static int ata_probe_timeout; 143 module_param(ata_probe_timeout, int, 0444); 144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 145 146 int libata_noacpi = 0; 147 module_param_named(noacpi, libata_noacpi, int, 0444); 148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 149 150 int libata_allow_tpm = 0; 151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 153 154 static int atapi_an; 155 module_param(atapi_an, int, 0444); 156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 157 158 MODULE_AUTHOR("Jeff Garzik"); 159 MODULE_DESCRIPTION("Library module for ATA devices"); 160 MODULE_LICENSE("GPL"); 161 MODULE_VERSION(DRV_VERSION); 162 163 static inline bool ata_dev_print_info(struct ata_device *dev) 164 { 165 struct ata_eh_context *ehc = &dev->link->eh_context; 166 167 return ehc->i.flags & ATA_EHI_PRINTINFO; 168 } 169 170 static bool ata_sstatus_online(u32 sstatus) 171 { 172 return (sstatus & 0xf) == 0x3; 173 } 174 175 /** 176 * ata_link_next - link iteration helper 177 * @link: the previous link, NULL to start 178 * @ap: ATA port containing links to iterate 179 * @mode: iteration mode, one of ATA_LITER_* 180 * 181 * LOCKING: 182 * Host lock or EH context. 183 * 184 * RETURNS: 185 * Pointer to the next link. 186 */ 187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 188 enum ata_link_iter_mode mode) 189 { 190 BUG_ON(mode != ATA_LITER_EDGE && 191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 192 193 /* NULL link indicates start of iteration */ 194 if (!link) 195 switch (mode) { 196 case ATA_LITER_EDGE: 197 case ATA_LITER_PMP_FIRST: 198 if (sata_pmp_attached(ap)) 199 return ap->pmp_link; 200 fallthrough; 201 case ATA_LITER_HOST_FIRST: 202 return &ap->link; 203 } 204 205 /* we just iterated over the host link, what's next? */ 206 if (link == &ap->link) 207 switch (mode) { 208 case ATA_LITER_HOST_FIRST: 209 if (sata_pmp_attached(ap)) 210 return ap->pmp_link; 211 fallthrough; 212 case ATA_LITER_PMP_FIRST: 213 if (unlikely(ap->slave_link)) 214 return ap->slave_link; 215 fallthrough; 216 case ATA_LITER_EDGE: 217 return NULL; 218 } 219 220 /* slave_link excludes PMP */ 221 if (unlikely(link == ap->slave_link)) 222 return NULL; 223 224 /* we were over a PMP link */ 225 if (++link < ap->pmp_link + ap->nr_pmp_links) 226 return link; 227 228 if (mode == ATA_LITER_PMP_FIRST) 229 return &ap->link; 230 231 return NULL; 232 } 233 EXPORT_SYMBOL_GPL(ata_link_next); 234 235 /** 236 * ata_dev_next - device iteration helper 237 * @dev: the previous device, NULL to start 238 * @link: ATA link containing devices to iterate 239 * @mode: iteration mode, one of ATA_DITER_* 240 * 241 * LOCKING: 242 * Host lock or EH context. 243 * 244 * RETURNS: 245 * Pointer to the next device. 246 */ 247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 248 enum ata_dev_iter_mode mode) 249 { 250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 252 253 /* NULL dev indicates start of iteration */ 254 if (!dev) 255 switch (mode) { 256 case ATA_DITER_ENABLED: 257 case ATA_DITER_ALL: 258 dev = link->device; 259 goto check; 260 case ATA_DITER_ENABLED_REVERSE: 261 case ATA_DITER_ALL_REVERSE: 262 dev = link->device + ata_link_max_devices(link) - 1; 263 goto check; 264 } 265 266 next: 267 /* move to the next one */ 268 switch (mode) { 269 case ATA_DITER_ENABLED: 270 case ATA_DITER_ALL: 271 if (++dev < link->device + ata_link_max_devices(link)) 272 goto check; 273 return NULL; 274 case ATA_DITER_ENABLED_REVERSE: 275 case ATA_DITER_ALL_REVERSE: 276 if (--dev >= link->device) 277 goto check; 278 return NULL; 279 } 280 281 check: 282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 283 !ata_dev_enabled(dev)) 284 goto next; 285 return dev; 286 } 287 EXPORT_SYMBOL_GPL(ata_dev_next); 288 289 /** 290 * ata_dev_phys_link - find physical link for a device 291 * @dev: ATA device to look up physical link for 292 * 293 * Look up physical link which @dev is attached to. Note that 294 * this is different from @dev->link only when @dev is on slave 295 * link. For all other cases, it's the same as @dev->link. 296 * 297 * LOCKING: 298 * Don't care. 299 * 300 * RETURNS: 301 * Pointer to the found physical link. 302 */ 303 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 304 { 305 struct ata_port *ap = dev->link->ap; 306 307 if (!ap->slave_link) 308 return dev->link; 309 if (!dev->devno) 310 return &ap->link; 311 return ap->slave_link; 312 } 313 314 #ifdef CONFIG_ATA_FORCE 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags_on) { 391 link->flags |= fe->param.lflags_on; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags_on, link->flags); 395 } 396 if (fe->param.lflags_off) { 397 link->flags &= ~fe->param.lflags_off; 398 ata_link_notice(link, 399 "FORCE: link flag 0x%x cleared -> 0x%x\n", 400 fe->param.lflags_off, link->flags); 401 } 402 } 403 } 404 405 /** 406 * ata_force_xfermask - force xfermask according to libata.force 407 * @dev: ATA device of interest 408 * 409 * Force xfer_mask according to libata.force and whine about it. 410 * For consistency with link selection, device number 15 selects 411 * the first device connected to the host link. 412 * 413 * LOCKING: 414 * EH context. 415 */ 416 static void ata_force_xfermask(struct ata_device *dev) 417 { 418 int devno = dev->link->pmp + dev->devno; 419 int alt_devno = devno; 420 int i; 421 422 /* allow n.15/16 for devices attached to host port */ 423 if (ata_is_host_link(dev->link)) 424 alt_devno += 15; 425 426 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 427 const struct ata_force_ent *fe = &ata_force_tbl[i]; 428 unsigned int pio_mask, mwdma_mask, udma_mask; 429 430 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 431 continue; 432 433 if (fe->device != -1 && fe->device != devno && 434 fe->device != alt_devno) 435 continue; 436 437 if (!fe->param.xfer_mask) 438 continue; 439 440 ata_unpack_xfermask(fe->param.xfer_mask, 441 &pio_mask, &mwdma_mask, &udma_mask); 442 if (udma_mask) 443 dev->udma_mask = udma_mask; 444 else if (mwdma_mask) { 445 dev->udma_mask = 0; 446 dev->mwdma_mask = mwdma_mask; 447 } else { 448 dev->udma_mask = 0; 449 dev->mwdma_mask = 0; 450 dev->pio_mask = pio_mask; 451 } 452 453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 454 fe->param.name); 455 return; 456 } 457 } 458 459 /** 460 * ata_force_horkage - force horkage according to libata.force 461 * @dev: ATA device of interest 462 * 463 * Force horkage according to libata.force and whine about it. 464 * For consistency with link selection, device number 15 selects 465 * the first device connected to the host link. 466 * 467 * LOCKING: 468 * EH context. 469 */ 470 static void ata_force_horkage(struct ata_device *dev) 471 { 472 int devno = dev->link->pmp + dev->devno; 473 int alt_devno = devno; 474 int i; 475 476 /* allow n.15/16 for devices attached to host port */ 477 if (ata_is_host_link(dev->link)) 478 alt_devno += 15; 479 480 for (i = 0; i < ata_force_tbl_size; i++) { 481 const struct ata_force_ent *fe = &ata_force_tbl[i]; 482 483 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 484 continue; 485 486 if (fe->device != -1 && fe->device != devno && 487 fe->device != alt_devno) 488 continue; 489 490 if (!(~dev->horkage & fe->param.horkage_on) && 491 !(dev->horkage & fe->param.horkage_off)) 492 continue; 493 494 dev->horkage |= fe->param.horkage_on; 495 dev->horkage &= ~fe->param.horkage_off; 496 497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 498 fe->param.name); 499 } 500 } 501 #else 502 static inline void ata_force_link_limits(struct ata_link *link) { } 503 static inline void ata_force_xfermask(struct ata_device *dev) { } 504 static inline void ata_force_horkage(struct ata_device *dev) { } 505 #endif 506 507 /** 508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 509 * @opcode: SCSI opcode 510 * 511 * Determine ATAPI command type from @opcode. 512 * 513 * LOCKING: 514 * None. 515 * 516 * RETURNS: 517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 518 */ 519 int atapi_cmd_type(u8 opcode) 520 { 521 switch (opcode) { 522 case GPCMD_READ_10: 523 case GPCMD_READ_12: 524 return ATAPI_READ; 525 526 case GPCMD_WRITE_10: 527 case GPCMD_WRITE_12: 528 case GPCMD_WRITE_AND_VERIFY_10: 529 return ATAPI_WRITE; 530 531 case GPCMD_READ_CD: 532 case GPCMD_READ_CD_MSF: 533 return ATAPI_READ_CD; 534 535 case ATA_16: 536 case ATA_12: 537 if (atapi_passthru16) 538 return ATAPI_PASS_THRU; 539 fallthrough; 540 default: 541 return ATAPI_MISC; 542 } 543 } 544 EXPORT_SYMBOL_GPL(atapi_cmd_type); 545 546 static const u8 ata_rw_cmds[] = { 547 /* pio multi */ 548 ATA_CMD_READ_MULTI, 549 ATA_CMD_WRITE_MULTI, 550 ATA_CMD_READ_MULTI_EXT, 551 ATA_CMD_WRITE_MULTI_EXT, 552 0, 553 0, 554 0, 555 ATA_CMD_WRITE_MULTI_FUA_EXT, 556 /* pio */ 557 ATA_CMD_PIO_READ, 558 ATA_CMD_PIO_WRITE, 559 ATA_CMD_PIO_READ_EXT, 560 ATA_CMD_PIO_WRITE_EXT, 561 0, 562 0, 563 0, 564 0, 565 /* dma */ 566 ATA_CMD_READ, 567 ATA_CMD_WRITE, 568 ATA_CMD_READ_EXT, 569 ATA_CMD_WRITE_EXT, 570 0, 571 0, 572 0, 573 ATA_CMD_WRITE_FUA_EXT 574 }; 575 576 /** 577 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 578 * @tf: command to examine and configure 579 * @dev: device tf belongs to 580 * 581 * Examine the device configuration and tf->flags to calculate 582 * the proper read/write commands and protocol to use. 583 * 584 * LOCKING: 585 * caller. 586 */ 587 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 588 { 589 u8 cmd; 590 591 int index, fua, lba48, write; 592 593 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 594 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 595 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 596 597 if (dev->flags & ATA_DFLAG_PIO) { 598 tf->protocol = ATA_PROT_PIO; 599 index = dev->multi_count ? 0 : 8; 600 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 601 /* Unable to use DMA due to host limitation */ 602 tf->protocol = ATA_PROT_PIO; 603 index = dev->multi_count ? 0 : 8; 604 } else { 605 tf->protocol = ATA_PROT_DMA; 606 index = 16; 607 } 608 609 cmd = ata_rw_cmds[index + fua + lba48 + write]; 610 if (cmd) { 611 tf->command = cmd; 612 return 0; 613 } 614 return -1; 615 } 616 617 /** 618 * ata_tf_read_block - Read block address from ATA taskfile 619 * @tf: ATA taskfile of interest 620 * @dev: ATA device @tf belongs to 621 * 622 * LOCKING: 623 * None. 624 * 625 * Read block address from @tf. This function can handle all 626 * three address formats - LBA, LBA48 and CHS. tf->protocol and 627 * flags select the address format to use. 628 * 629 * RETURNS: 630 * Block address read from @tf. 631 */ 632 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 633 { 634 u64 block = 0; 635 636 if (tf->flags & ATA_TFLAG_LBA) { 637 if (tf->flags & ATA_TFLAG_LBA48) { 638 block |= (u64)tf->hob_lbah << 40; 639 block |= (u64)tf->hob_lbam << 32; 640 block |= (u64)tf->hob_lbal << 24; 641 } else 642 block |= (tf->device & 0xf) << 24; 643 644 block |= tf->lbah << 16; 645 block |= tf->lbam << 8; 646 block |= tf->lbal; 647 } else { 648 u32 cyl, head, sect; 649 650 cyl = tf->lbam | (tf->lbah << 8); 651 head = tf->device & 0xf; 652 sect = tf->lbal; 653 654 if (!sect) { 655 ata_dev_warn(dev, 656 "device reported invalid CHS sector 0\n"); 657 return U64_MAX; 658 } 659 660 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 661 } 662 663 return block; 664 } 665 666 /** 667 * ata_build_rw_tf - Build ATA taskfile for given read/write request 668 * @qc: Metadata associated with the taskfile to build 669 * @block: Block address 670 * @n_block: Number of blocks 671 * @tf_flags: RW/FUA etc... 672 * @class: IO priority class 673 * 674 * LOCKING: 675 * None. 676 * 677 * Build ATA taskfile for the command @qc for read/write request described 678 * by @block, @n_block, @tf_flags and @class. 679 * 680 * RETURNS: 681 * 682 * 0 on success, -ERANGE if the request is too large for @dev, 683 * -EINVAL if the request is invalid. 684 */ 685 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block, 686 unsigned int tf_flags, int class) 687 { 688 struct ata_taskfile *tf = &qc->tf; 689 struct ata_device *dev = qc->dev; 690 691 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 692 tf->flags |= tf_flags; 693 694 if (ata_ncq_enabled(dev)) { 695 /* yay, NCQ */ 696 if (!lba_48_ok(block, n_block)) 697 return -ERANGE; 698 699 tf->protocol = ATA_PROT_NCQ; 700 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 701 702 if (tf->flags & ATA_TFLAG_WRITE) 703 tf->command = ATA_CMD_FPDMA_WRITE; 704 else 705 tf->command = ATA_CMD_FPDMA_READ; 706 707 tf->nsect = qc->hw_tag << 3; 708 tf->hob_feature = (n_block >> 8) & 0xff; 709 tf->feature = n_block & 0xff; 710 711 tf->hob_lbah = (block >> 40) & 0xff; 712 tf->hob_lbam = (block >> 32) & 0xff; 713 tf->hob_lbal = (block >> 24) & 0xff; 714 tf->lbah = (block >> 16) & 0xff; 715 tf->lbam = (block >> 8) & 0xff; 716 tf->lbal = block & 0xff; 717 718 tf->device = ATA_LBA; 719 if (tf->flags & ATA_TFLAG_FUA) 720 tf->device |= 1 << 7; 721 722 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED && 723 class == IOPRIO_CLASS_RT) 724 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 725 } else if (dev->flags & ATA_DFLAG_LBA) { 726 tf->flags |= ATA_TFLAG_LBA; 727 728 if (lba_28_ok(block, n_block)) { 729 /* use LBA28 */ 730 tf->device |= (block >> 24) & 0xf; 731 } else if (lba_48_ok(block, n_block)) { 732 if (!(dev->flags & ATA_DFLAG_LBA48)) 733 return -ERANGE; 734 735 /* use LBA48 */ 736 tf->flags |= ATA_TFLAG_LBA48; 737 738 tf->hob_nsect = (n_block >> 8) & 0xff; 739 740 tf->hob_lbah = (block >> 40) & 0xff; 741 tf->hob_lbam = (block >> 32) & 0xff; 742 tf->hob_lbal = (block >> 24) & 0xff; 743 } else 744 /* request too large even for LBA48 */ 745 return -ERANGE; 746 747 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 748 return -EINVAL; 749 750 tf->nsect = n_block & 0xff; 751 752 tf->lbah = (block >> 16) & 0xff; 753 tf->lbam = (block >> 8) & 0xff; 754 tf->lbal = block & 0xff; 755 756 tf->device |= ATA_LBA; 757 } else { 758 /* CHS */ 759 u32 sect, head, cyl, track; 760 761 /* The request -may- be too large for CHS addressing. */ 762 if (!lba_28_ok(block, n_block)) 763 return -ERANGE; 764 765 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 766 return -EINVAL; 767 768 /* Convert LBA to CHS */ 769 track = (u32)block / dev->sectors; 770 cyl = track / dev->heads; 771 head = track % dev->heads; 772 sect = (u32)block % dev->sectors + 1; 773 774 /* Check whether the converted CHS can fit. 775 Cylinder: 0-65535 776 Head: 0-15 777 Sector: 1-255*/ 778 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 779 return -ERANGE; 780 781 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 782 tf->lbal = sect; 783 tf->lbam = cyl; 784 tf->lbah = cyl >> 8; 785 tf->device |= head; 786 } 787 788 return 0; 789 } 790 791 /** 792 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 793 * @pio_mask: pio_mask 794 * @mwdma_mask: mwdma_mask 795 * @udma_mask: udma_mask 796 * 797 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 798 * unsigned int xfer_mask. 799 * 800 * LOCKING: 801 * None. 802 * 803 * RETURNS: 804 * Packed xfer_mask. 805 */ 806 unsigned int ata_pack_xfermask(unsigned int pio_mask, 807 unsigned int mwdma_mask, 808 unsigned int udma_mask) 809 { 810 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 811 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 812 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 813 } 814 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 815 816 /** 817 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 818 * @xfer_mask: xfer_mask to unpack 819 * @pio_mask: resulting pio_mask 820 * @mwdma_mask: resulting mwdma_mask 821 * @udma_mask: resulting udma_mask 822 * 823 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 824 * Any NULL destination masks will be ignored. 825 */ 826 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, 827 unsigned int *mwdma_mask, unsigned int *udma_mask) 828 { 829 if (pio_mask) 830 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 831 if (mwdma_mask) 832 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 833 if (udma_mask) 834 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 835 } 836 837 static const struct ata_xfer_ent { 838 int shift, bits; 839 u8 base; 840 } ata_xfer_tbl[] = { 841 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 842 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 843 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 844 { -1, }, 845 }; 846 847 /** 848 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 849 * @xfer_mask: xfer_mask of interest 850 * 851 * Return matching XFER_* value for @xfer_mask. Only the highest 852 * bit of @xfer_mask is considered. 853 * 854 * LOCKING: 855 * None. 856 * 857 * RETURNS: 858 * Matching XFER_* value, 0xff if no match found. 859 */ 860 u8 ata_xfer_mask2mode(unsigned int xfer_mask) 861 { 862 int highbit = fls(xfer_mask) - 1; 863 const struct ata_xfer_ent *ent; 864 865 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 866 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 867 return ent->base + highbit - ent->shift; 868 return 0xff; 869 } 870 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 871 872 /** 873 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 874 * @xfer_mode: XFER_* of interest 875 * 876 * Return matching xfer_mask for @xfer_mode. 877 * 878 * LOCKING: 879 * None. 880 * 881 * RETURNS: 882 * Matching xfer_mask, 0 if no match found. 883 */ 884 unsigned int ata_xfer_mode2mask(u8 xfer_mode) 885 { 886 const struct ata_xfer_ent *ent; 887 888 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 889 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 890 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 891 & ~((1 << ent->shift) - 1); 892 return 0; 893 } 894 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 895 896 /** 897 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 898 * @xfer_mode: XFER_* of interest 899 * 900 * Return matching xfer_shift for @xfer_mode. 901 * 902 * LOCKING: 903 * None. 904 * 905 * RETURNS: 906 * Matching xfer_shift, -1 if no match found. 907 */ 908 int ata_xfer_mode2shift(u8 xfer_mode) 909 { 910 const struct ata_xfer_ent *ent; 911 912 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 913 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 914 return ent->shift; 915 return -1; 916 } 917 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 918 919 /** 920 * ata_mode_string - convert xfer_mask to string 921 * @xfer_mask: mask of bits supported; only highest bit counts. 922 * 923 * Determine string which represents the highest speed 924 * (highest bit in @modemask). 925 * 926 * LOCKING: 927 * None. 928 * 929 * RETURNS: 930 * Constant C string representing highest speed listed in 931 * @mode_mask, or the constant C string "<n/a>". 932 */ 933 const char *ata_mode_string(unsigned int xfer_mask) 934 { 935 static const char * const xfer_mode_str[] = { 936 "PIO0", 937 "PIO1", 938 "PIO2", 939 "PIO3", 940 "PIO4", 941 "PIO5", 942 "PIO6", 943 "MWDMA0", 944 "MWDMA1", 945 "MWDMA2", 946 "MWDMA3", 947 "MWDMA4", 948 "UDMA/16", 949 "UDMA/25", 950 "UDMA/33", 951 "UDMA/44", 952 "UDMA/66", 953 "UDMA/100", 954 "UDMA/133", 955 "UDMA7", 956 }; 957 int highbit; 958 959 highbit = fls(xfer_mask) - 1; 960 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 961 return xfer_mode_str[highbit]; 962 return "<n/a>"; 963 } 964 EXPORT_SYMBOL_GPL(ata_mode_string); 965 966 const char *sata_spd_string(unsigned int spd) 967 { 968 static const char * const spd_str[] = { 969 "1.5 Gbps", 970 "3.0 Gbps", 971 "6.0 Gbps", 972 }; 973 974 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 975 return "<unknown>"; 976 return spd_str[spd - 1]; 977 } 978 979 /** 980 * ata_dev_classify - determine device type based on ATA-spec signature 981 * @tf: ATA taskfile register set for device to be identified 982 * 983 * Determine from taskfile register contents whether a device is 984 * ATA or ATAPI, as per "Signature and persistence" section 985 * of ATA/PI spec (volume 1, sect 5.14). 986 * 987 * LOCKING: 988 * None. 989 * 990 * RETURNS: 991 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 992 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 993 */ 994 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 995 { 996 /* Apple's open source Darwin code hints that some devices only 997 * put a proper signature into the LBA mid/high registers, 998 * So, we only check those. It's sufficient for uniqueness. 999 * 1000 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1001 * signatures for ATA and ATAPI devices attached on SerialATA, 1002 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1003 * spec has never mentioned about using different signatures 1004 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1005 * Multiplier specification began to use 0x69/0x96 to identify 1006 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1007 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1008 * 0x69/0x96 shortly and described them as reserved for 1009 * SerialATA. 1010 * 1011 * We follow the current spec and consider that 0x69/0x96 1012 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1013 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1014 * SEMB signature. This is worked around in 1015 * ata_dev_read_id(). 1016 */ 1017 if (tf->lbam == 0 && tf->lbah == 0) 1018 return ATA_DEV_ATA; 1019 1020 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1021 return ATA_DEV_ATAPI; 1022 1023 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1024 return ATA_DEV_PMP; 1025 1026 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1027 return ATA_DEV_SEMB; 1028 1029 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1030 return ATA_DEV_ZAC; 1031 1032 return ATA_DEV_UNKNOWN; 1033 } 1034 EXPORT_SYMBOL_GPL(ata_dev_classify); 1035 1036 /** 1037 * ata_id_string - Convert IDENTIFY DEVICE page into string 1038 * @id: IDENTIFY DEVICE results we will examine 1039 * @s: string into which data is output 1040 * @ofs: offset into identify device page 1041 * @len: length of string to return. must be an even number. 1042 * 1043 * The strings in the IDENTIFY DEVICE page are broken up into 1044 * 16-bit chunks. Run through the string, and output each 1045 * 8-bit chunk linearly, regardless of platform. 1046 * 1047 * LOCKING: 1048 * caller. 1049 */ 1050 1051 void ata_id_string(const u16 *id, unsigned char *s, 1052 unsigned int ofs, unsigned int len) 1053 { 1054 unsigned int c; 1055 1056 BUG_ON(len & 1); 1057 1058 while (len > 0) { 1059 c = id[ofs] >> 8; 1060 *s = c; 1061 s++; 1062 1063 c = id[ofs] & 0xff; 1064 *s = c; 1065 s++; 1066 1067 ofs++; 1068 len -= 2; 1069 } 1070 } 1071 EXPORT_SYMBOL_GPL(ata_id_string); 1072 1073 /** 1074 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1075 * @id: IDENTIFY DEVICE results we will examine 1076 * @s: string into which data is output 1077 * @ofs: offset into identify device page 1078 * @len: length of string to return. must be an odd number. 1079 * 1080 * This function is identical to ata_id_string except that it 1081 * trims trailing spaces and terminates the resulting string with 1082 * null. @len must be actual maximum length (even number) + 1. 1083 * 1084 * LOCKING: 1085 * caller. 1086 */ 1087 void ata_id_c_string(const u16 *id, unsigned char *s, 1088 unsigned int ofs, unsigned int len) 1089 { 1090 unsigned char *p; 1091 1092 ata_id_string(id, s, ofs, len - 1); 1093 1094 p = s + strnlen(s, len - 1); 1095 while (p > s && p[-1] == ' ') 1096 p--; 1097 *p = '\0'; 1098 } 1099 EXPORT_SYMBOL_GPL(ata_id_c_string); 1100 1101 static u64 ata_id_n_sectors(const u16 *id) 1102 { 1103 if (ata_id_has_lba(id)) { 1104 if (ata_id_has_lba48(id)) 1105 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1106 1107 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1108 } 1109 1110 if (ata_id_current_chs_valid(id)) 1111 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] * 1112 (u32)id[ATA_ID_CUR_SECTORS]; 1113 1114 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] * 1115 (u32)id[ATA_ID_SECTORS]; 1116 } 1117 1118 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1119 { 1120 u64 sectors = 0; 1121 1122 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1123 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1124 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1125 sectors |= (tf->lbah & 0xff) << 16; 1126 sectors |= (tf->lbam & 0xff) << 8; 1127 sectors |= (tf->lbal & 0xff); 1128 1129 return sectors; 1130 } 1131 1132 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1133 { 1134 u64 sectors = 0; 1135 1136 sectors |= (tf->device & 0x0f) << 24; 1137 sectors |= (tf->lbah & 0xff) << 16; 1138 sectors |= (tf->lbam & 0xff) << 8; 1139 sectors |= (tf->lbal & 0xff); 1140 1141 return sectors; 1142 } 1143 1144 /** 1145 * ata_read_native_max_address - Read native max address 1146 * @dev: target device 1147 * @max_sectors: out parameter for the result native max address 1148 * 1149 * Perform an LBA48 or LBA28 native size query upon the device in 1150 * question. 1151 * 1152 * RETURNS: 1153 * 0 on success, -EACCES if command is aborted by the drive. 1154 * -EIO on other errors. 1155 */ 1156 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1157 { 1158 unsigned int err_mask; 1159 struct ata_taskfile tf; 1160 int lba48 = ata_id_has_lba48(dev->id); 1161 1162 ata_tf_init(dev, &tf); 1163 1164 /* always clear all address registers */ 1165 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1166 1167 if (lba48) { 1168 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1169 tf.flags |= ATA_TFLAG_LBA48; 1170 } else 1171 tf.command = ATA_CMD_READ_NATIVE_MAX; 1172 1173 tf.protocol = ATA_PROT_NODATA; 1174 tf.device |= ATA_LBA; 1175 1176 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1177 if (err_mask) { 1178 ata_dev_warn(dev, 1179 "failed to read native max address (err_mask=0x%x)\n", 1180 err_mask); 1181 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 1182 return -EACCES; 1183 return -EIO; 1184 } 1185 1186 if (lba48) 1187 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1188 else 1189 *max_sectors = ata_tf_to_lba(&tf) + 1; 1190 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1191 (*max_sectors)--; 1192 return 0; 1193 } 1194 1195 /** 1196 * ata_set_max_sectors - Set max sectors 1197 * @dev: target device 1198 * @new_sectors: new max sectors value to set for the device 1199 * 1200 * Set max sectors of @dev to @new_sectors. 1201 * 1202 * RETURNS: 1203 * 0 on success, -EACCES if command is aborted or denied (due to 1204 * previous non-volatile SET_MAX) by the drive. -EIO on other 1205 * errors. 1206 */ 1207 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1208 { 1209 unsigned int err_mask; 1210 struct ata_taskfile tf; 1211 int lba48 = ata_id_has_lba48(dev->id); 1212 1213 new_sectors--; 1214 1215 ata_tf_init(dev, &tf); 1216 1217 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1218 1219 if (lba48) { 1220 tf.command = ATA_CMD_SET_MAX_EXT; 1221 tf.flags |= ATA_TFLAG_LBA48; 1222 1223 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1224 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1225 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1226 } else { 1227 tf.command = ATA_CMD_SET_MAX; 1228 1229 tf.device |= (new_sectors >> 24) & 0xf; 1230 } 1231 1232 tf.protocol = ATA_PROT_NODATA; 1233 tf.device |= ATA_LBA; 1234 1235 tf.lbal = (new_sectors >> 0) & 0xff; 1236 tf.lbam = (new_sectors >> 8) & 0xff; 1237 tf.lbah = (new_sectors >> 16) & 0xff; 1238 1239 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1240 if (err_mask) { 1241 ata_dev_warn(dev, 1242 "failed to set max address (err_mask=0x%x)\n", 1243 err_mask); 1244 if (err_mask == AC_ERR_DEV && 1245 (tf.error & (ATA_ABORTED | ATA_IDNF))) 1246 return -EACCES; 1247 return -EIO; 1248 } 1249 1250 return 0; 1251 } 1252 1253 /** 1254 * ata_hpa_resize - Resize a device with an HPA set 1255 * @dev: Device to resize 1256 * 1257 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1258 * it if required to the full size of the media. The caller must check 1259 * the drive has the HPA feature set enabled. 1260 * 1261 * RETURNS: 1262 * 0 on success, -errno on failure. 1263 */ 1264 static int ata_hpa_resize(struct ata_device *dev) 1265 { 1266 bool print_info = ata_dev_print_info(dev); 1267 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1268 u64 sectors = ata_id_n_sectors(dev->id); 1269 u64 native_sectors; 1270 int rc; 1271 1272 /* do we need to do it? */ 1273 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1274 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1275 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1276 return 0; 1277 1278 /* read native max address */ 1279 rc = ata_read_native_max_address(dev, &native_sectors); 1280 if (rc) { 1281 /* If device aborted the command or HPA isn't going to 1282 * be unlocked, skip HPA resizing. 1283 */ 1284 if (rc == -EACCES || !unlock_hpa) { 1285 ata_dev_warn(dev, 1286 "HPA support seems broken, skipping HPA handling\n"); 1287 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1288 1289 /* we can continue if device aborted the command */ 1290 if (rc == -EACCES) 1291 rc = 0; 1292 } 1293 1294 return rc; 1295 } 1296 dev->n_native_sectors = native_sectors; 1297 1298 /* nothing to do? */ 1299 if (native_sectors <= sectors || !unlock_hpa) { 1300 if (!print_info || native_sectors == sectors) 1301 return 0; 1302 1303 if (native_sectors > sectors) 1304 ata_dev_info(dev, 1305 "HPA detected: current %llu, native %llu\n", 1306 (unsigned long long)sectors, 1307 (unsigned long long)native_sectors); 1308 else if (native_sectors < sectors) 1309 ata_dev_warn(dev, 1310 "native sectors (%llu) is smaller than sectors (%llu)\n", 1311 (unsigned long long)native_sectors, 1312 (unsigned long long)sectors); 1313 return 0; 1314 } 1315 1316 /* let's unlock HPA */ 1317 rc = ata_set_max_sectors(dev, native_sectors); 1318 if (rc == -EACCES) { 1319 /* if device aborted the command, skip HPA resizing */ 1320 ata_dev_warn(dev, 1321 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1322 (unsigned long long)sectors, 1323 (unsigned long long)native_sectors); 1324 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1325 return 0; 1326 } else if (rc) 1327 return rc; 1328 1329 /* re-read IDENTIFY data */ 1330 rc = ata_dev_reread_id(dev, 0); 1331 if (rc) { 1332 ata_dev_err(dev, 1333 "failed to re-read IDENTIFY data after HPA resizing\n"); 1334 return rc; 1335 } 1336 1337 if (print_info) { 1338 u64 new_sectors = ata_id_n_sectors(dev->id); 1339 ata_dev_info(dev, 1340 "HPA unlocked: %llu -> %llu, native %llu\n", 1341 (unsigned long long)sectors, 1342 (unsigned long long)new_sectors, 1343 (unsigned long long)native_sectors); 1344 } 1345 1346 return 0; 1347 } 1348 1349 /** 1350 * ata_dump_id - IDENTIFY DEVICE info debugging output 1351 * @dev: device from which the information is fetched 1352 * @id: IDENTIFY DEVICE page to dump 1353 * 1354 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1355 * page. 1356 * 1357 * LOCKING: 1358 * caller. 1359 */ 1360 1361 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1362 { 1363 ata_dev_dbg(dev, 1364 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1365 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1366 "88==0x%04x 93==0x%04x\n", 1367 id[49], id[53], id[63], id[64], id[75], id[80], 1368 id[81], id[82], id[83], id[84], id[88], id[93]); 1369 } 1370 1371 /** 1372 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1373 * @id: IDENTIFY data to compute xfer mask from 1374 * 1375 * Compute the xfermask for this device. This is not as trivial 1376 * as it seems if we must consider early devices correctly. 1377 * 1378 * FIXME: pre IDE drive timing (do we care ?). 1379 * 1380 * LOCKING: 1381 * None. 1382 * 1383 * RETURNS: 1384 * Computed xfermask 1385 */ 1386 unsigned int ata_id_xfermask(const u16 *id) 1387 { 1388 unsigned int pio_mask, mwdma_mask, udma_mask; 1389 1390 /* Usual case. Word 53 indicates word 64 is valid */ 1391 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1392 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1393 pio_mask <<= 3; 1394 pio_mask |= 0x7; 1395 } else { 1396 /* If word 64 isn't valid then Word 51 high byte holds 1397 * the PIO timing number for the maximum. Turn it into 1398 * a mask. 1399 */ 1400 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1401 if (mode < 5) /* Valid PIO range */ 1402 pio_mask = (2 << mode) - 1; 1403 else 1404 pio_mask = 1; 1405 1406 /* But wait.. there's more. Design your standards by 1407 * committee and you too can get a free iordy field to 1408 * process. However it is the speeds not the modes that 1409 * are supported... Note drivers using the timing API 1410 * will get this right anyway 1411 */ 1412 } 1413 1414 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1415 1416 if (ata_id_is_cfa(id)) { 1417 /* 1418 * Process compact flash extended modes 1419 */ 1420 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1421 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1422 1423 if (pio) 1424 pio_mask |= (1 << 5); 1425 if (pio > 1) 1426 pio_mask |= (1 << 6); 1427 if (dma) 1428 mwdma_mask |= (1 << 3); 1429 if (dma > 1) 1430 mwdma_mask |= (1 << 4); 1431 } 1432 1433 udma_mask = 0; 1434 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1435 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1436 1437 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1438 } 1439 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1440 1441 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1442 { 1443 struct completion *waiting = qc->private_data; 1444 1445 complete(waiting); 1446 } 1447 1448 /** 1449 * ata_exec_internal_sg - execute libata internal command 1450 * @dev: Device to which the command is sent 1451 * @tf: Taskfile registers for the command and the result 1452 * @cdb: CDB for packet command 1453 * @dma_dir: Data transfer direction of the command 1454 * @sgl: sg list for the data buffer of the command 1455 * @n_elem: Number of sg entries 1456 * @timeout: Timeout in msecs (0 for default) 1457 * 1458 * Executes libata internal command with timeout. @tf contains 1459 * command on entry and result on return. Timeout and error 1460 * conditions are reported via return value. No recovery action 1461 * is taken after a command times out. It's caller's duty to 1462 * clean up after timeout. 1463 * 1464 * LOCKING: 1465 * None. Should be called with kernel context, might sleep. 1466 * 1467 * RETURNS: 1468 * Zero on success, AC_ERR_* mask on failure 1469 */ 1470 static unsigned ata_exec_internal_sg(struct ata_device *dev, 1471 struct ata_taskfile *tf, const u8 *cdb, 1472 int dma_dir, struct scatterlist *sgl, 1473 unsigned int n_elem, unsigned int timeout) 1474 { 1475 struct ata_link *link = dev->link; 1476 struct ata_port *ap = link->ap; 1477 u8 command = tf->command; 1478 int auto_timeout = 0; 1479 struct ata_queued_cmd *qc; 1480 unsigned int preempted_tag; 1481 u32 preempted_sactive; 1482 u64 preempted_qc_active; 1483 int preempted_nr_active_links; 1484 DECLARE_COMPLETION_ONSTACK(wait); 1485 unsigned long flags; 1486 unsigned int err_mask; 1487 int rc; 1488 1489 spin_lock_irqsave(ap->lock, flags); 1490 1491 /* no internal command while frozen */ 1492 if (ata_port_is_frozen(ap)) { 1493 spin_unlock_irqrestore(ap->lock, flags); 1494 return AC_ERR_SYSTEM; 1495 } 1496 1497 /* initialize internal qc */ 1498 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1499 1500 qc->tag = ATA_TAG_INTERNAL; 1501 qc->hw_tag = 0; 1502 qc->scsicmd = NULL; 1503 qc->ap = ap; 1504 qc->dev = dev; 1505 ata_qc_reinit(qc); 1506 1507 preempted_tag = link->active_tag; 1508 preempted_sactive = link->sactive; 1509 preempted_qc_active = ap->qc_active; 1510 preempted_nr_active_links = ap->nr_active_links; 1511 link->active_tag = ATA_TAG_POISON; 1512 link->sactive = 0; 1513 ap->qc_active = 0; 1514 ap->nr_active_links = 0; 1515 1516 /* prepare & issue qc */ 1517 qc->tf = *tf; 1518 if (cdb) 1519 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1520 1521 /* some SATA bridges need us to indicate data xfer direction */ 1522 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1523 dma_dir == DMA_FROM_DEVICE) 1524 qc->tf.feature |= ATAPI_DMADIR; 1525 1526 qc->flags |= ATA_QCFLAG_RESULT_TF; 1527 qc->dma_dir = dma_dir; 1528 if (dma_dir != DMA_NONE) { 1529 unsigned int i, buflen = 0; 1530 struct scatterlist *sg; 1531 1532 for_each_sg(sgl, sg, n_elem, i) 1533 buflen += sg->length; 1534 1535 ata_sg_init(qc, sgl, n_elem); 1536 qc->nbytes = buflen; 1537 } 1538 1539 qc->private_data = &wait; 1540 qc->complete_fn = ata_qc_complete_internal; 1541 1542 ata_qc_issue(qc); 1543 1544 spin_unlock_irqrestore(ap->lock, flags); 1545 1546 if (!timeout) { 1547 if (ata_probe_timeout) 1548 timeout = ata_probe_timeout * 1000; 1549 else { 1550 timeout = ata_internal_cmd_timeout(dev, command); 1551 auto_timeout = 1; 1552 } 1553 } 1554 1555 if (ap->ops->error_handler) 1556 ata_eh_release(ap); 1557 1558 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1559 1560 if (ap->ops->error_handler) 1561 ata_eh_acquire(ap); 1562 1563 ata_sff_flush_pio_task(ap); 1564 1565 if (!rc) { 1566 spin_lock_irqsave(ap->lock, flags); 1567 1568 /* We're racing with irq here. If we lose, the 1569 * following test prevents us from completing the qc 1570 * twice. If we win, the port is frozen and will be 1571 * cleaned up by ->post_internal_cmd(). 1572 */ 1573 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1574 qc->err_mask |= AC_ERR_TIMEOUT; 1575 1576 if (ap->ops->error_handler) 1577 ata_port_freeze(ap); 1578 else 1579 ata_qc_complete(qc); 1580 1581 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n", 1582 timeout, command); 1583 } 1584 1585 spin_unlock_irqrestore(ap->lock, flags); 1586 } 1587 1588 /* do post_internal_cmd */ 1589 if (ap->ops->post_internal_cmd) 1590 ap->ops->post_internal_cmd(qc); 1591 1592 /* perform minimal error analysis */ 1593 if (qc->flags & ATA_QCFLAG_FAILED) { 1594 if (qc->result_tf.status & (ATA_ERR | ATA_DF)) 1595 qc->err_mask |= AC_ERR_DEV; 1596 1597 if (!qc->err_mask) 1598 qc->err_mask |= AC_ERR_OTHER; 1599 1600 if (qc->err_mask & ~AC_ERR_OTHER) 1601 qc->err_mask &= ~AC_ERR_OTHER; 1602 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1603 qc->result_tf.status |= ATA_SENSE; 1604 } 1605 1606 /* finish up */ 1607 spin_lock_irqsave(ap->lock, flags); 1608 1609 *tf = qc->result_tf; 1610 err_mask = qc->err_mask; 1611 1612 ata_qc_free(qc); 1613 link->active_tag = preempted_tag; 1614 link->sactive = preempted_sactive; 1615 ap->qc_active = preempted_qc_active; 1616 ap->nr_active_links = preempted_nr_active_links; 1617 1618 spin_unlock_irqrestore(ap->lock, flags); 1619 1620 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1621 ata_internal_cmd_timed_out(dev, command); 1622 1623 return err_mask; 1624 } 1625 1626 /** 1627 * ata_exec_internal - execute libata internal command 1628 * @dev: Device to which the command is sent 1629 * @tf: Taskfile registers for the command and the result 1630 * @cdb: CDB for packet command 1631 * @dma_dir: Data transfer direction of the command 1632 * @buf: Data buffer of the command 1633 * @buflen: Length of data buffer 1634 * @timeout: Timeout in msecs (0 for default) 1635 * 1636 * Wrapper around ata_exec_internal_sg() which takes simple 1637 * buffer instead of sg list. 1638 * 1639 * LOCKING: 1640 * None. Should be called with kernel context, might sleep. 1641 * 1642 * RETURNS: 1643 * Zero on success, AC_ERR_* mask on failure 1644 */ 1645 unsigned ata_exec_internal(struct ata_device *dev, 1646 struct ata_taskfile *tf, const u8 *cdb, 1647 int dma_dir, void *buf, unsigned int buflen, 1648 unsigned int timeout) 1649 { 1650 struct scatterlist *psg = NULL, sg; 1651 unsigned int n_elem = 0; 1652 1653 if (dma_dir != DMA_NONE) { 1654 WARN_ON(!buf); 1655 sg_init_one(&sg, buf, buflen); 1656 psg = &sg; 1657 n_elem++; 1658 } 1659 1660 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1661 timeout); 1662 } 1663 1664 /** 1665 * ata_pio_need_iordy - check if iordy needed 1666 * @adev: ATA device 1667 * 1668 * Check if the current speed of the device requires IORDY. Used 1669 * by various controllers for chip configuration. 1670 */ 1671 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1672 { 1673 /* Don't set IORDY if we're preparing for reset. IORDY may 1674 * lead to controller lock up on certain controllers if the 1675 * port is not occupied. See bko#11703 for details. 1676 */ 1677 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1678 return 0; 1679 /* Controller doesn't support IORDY. Probably a pointless 1680 * check as the caller should know this. 1681 */ 1682 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1683 return 0; 1684 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1685 if (ata_id_is_cfa(adev->id) 1686 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1687 return 0; 1688 /* PIO3 and higher it is mandatory */ 1689 if (adev->pio_mode > XFER_PIO_2) 1690 return 1; 1691 /* We turn it on when possible */ 1692 if (ata_id_has_iordy(adev->id)) 1693 return 1; 1694 return 0; 1695 } 1696 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1697 1698 /** 1699 * ata_pio_mask_no_iordy - Return the non IORDY mask 1700 * @adev: ATA device 1701 * 1702 * Compute the highest mode possible if we are not using iordy. Return 1703 * -1 if no iordy mode is available. 1704 */ 1705 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1706 { 1707 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1708 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1709 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1710 /* Is the speed faster than the drive allows non IORDY ? */ 1711 if (pio) { 1712 /* This is cycle times not frequency - watch the logic! */ 1713 if (pio > 240) /* PIO2 is 240nS per cycle */ 1714 return 3 << ATA_SHIFT_PIO; 1715 return 7 << ATA_SHIFT_PIO; 1716 } 1717 } 1718 return 3 << ATA_SHIFT_PIO; 1719 } 1720 1721 /** 1722 * ata_do_dev_read_id - default ID read method 1723 * @dev: device 1724 * @tf: proposed taskfile 1725 * @id: data buffer 1726 * 1727 * Issue the identify taskfile and hand back the buffer containing 1728 * identify data. For some RAID controllers and for pre ATA devices 1729 * this function is wrapped or replaced by the driver 1730 */ 1731 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1732 struct ata_taskfile *tf, __le16 *id) 1733 { 1734 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1735 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1736 } 1737 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1738 1739 /** 1740 * ata_dev_read_id - Read ID data from the specified device 1741 * @dev: target device 1742 * @p_class: pointer to class of the target device (may be changed) 1743 * @flags: ATA_READID_* flags 1744 * @id: buffer to read IDENTIFY data into 1745 * 1746 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1747 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1748 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1749 * for pre-ATA4 drives. 1750 * 1751 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1752 * now we abort if we hit that case. 1753 * 1754 * LOCKING: 1755 * Kernel thread context (may sleep) 1756 * 1757 * RETURNS: 1758 * 0 on success, -errno otherwise. 1759 */ 1760 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1761 unsigned int flags, u16 *id) 1762 { 1763 struct ata_port *ap = dev->link->ap; 1764 unsigned int class = *p_class; 1765 struct ata_taskfile tf; 1766 unsigned int err_mask = 0; 1767 const char *reason; 1768 bool is_semb = class == ATA_DEV_SEMB; 1769 int may_fallback = 1, tried_spinup = 0; 1770 int rc; 1771 1772 retry: 1773 ata_tf_init(dev, &tf); 1774 1775 switch (class) { 1776 case ATA_DEV_SEMB: 1777 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1778 fallthrough; 1779 case ATA_DEV_ATA: 1780 case ATA_DEV_ZAC: 1781 tf.command = ATA_CMD_ID_ATA; 1782 break; 1783 case ATA_DEV_ATAPI: 1784 tf.command = ATA_CMD_ID_ATAPI; 1785 break; 1786 default: 1787 rc = -ENODEV; 1788 reason = "unsupported class"; 1789 goto err_out; 1790 } 1791 1792 tf.protocol = ATA_PROT_PIO; 1793 1794 /* Some devices choke if TF registers contain garbage. Make 1795 * sure those are properly initialized. 1796 */ 1797 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1798 1799 /* Device presence detection is unreliable on some 1800 * controllers. Always poll IDENTIFY if available. 1801 */ 1802 tf.flags |= ATA_TFLAG_POLLING; 1803 1804 if (ap->ops->read_id) 1805 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1806 else 1807 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1808 1809 if (err_mask) { 1810 if (err_mask & AC_ERR_NODEV_HINT) { 1811 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1812 return -ENOENT; 1813 } 1814 1815 if (is_semb) { 1816 ata_dev_info(dev, 1817 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1818 /* SEMB is not supported yet */ 1819 *p_class = ATA_DEV_SEMB_UNSUP; 1820 return 0; 1821 } 1822 1823 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) { 1824 /* Device or controller might have reported 1825 * the wrong device class. Give a shot at the 1826 * other IDENTIFY if the current one is 1827 * aborted by the device. 1828 */ 1829 if (may_fallback) { 1830 may_fallback = 0; 1831 1832 if (class == ATA_DEV_ATA) 1833 class = ATA_DEV_ATAPI; 1834 else 1835 class = ATA_DEV_ATA; 1836 goto retry; 1837 } 1838 1839 /* Control reaches here iff the device aborted 1840 * both flavors of IDENTIFYs which happens 1841 * sometimes with phantom devices. 1842 */ 1843 ata_dev_dbg(dev, 1844 "both IDENTIFYs aborted, assuming NODEV\n"); 1845 return -ENOENT; 1846 } 1847 1848 rc = -EIO; 1849 reason = "I/O error"; 1850 goto err_out; 1851 } 1852 1853 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1854 ata_dev_info(dev, "dumping IDENTIFY data, " 1855 "class=%d may_fallback=%d tried_spinup=%d\n", 1856 class, may_fallback, tried_spinup); 1857 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1858 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1859 } 1860 1861 /* Falling back doesn't make sense if ID data was read 1862 * successfully at least once. 1863 */ 1864 may_fallback = 0; 1865 1866 swap_buf_le16(id, ATA_ID_WORDS); 1867 1868 /* sanity check */ 1869 rc = -EINVAL; 1870 reason = "device reports invalid type"; 1871 1872 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1873 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1874 goto err_out; 1875 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1876 ata_id_is_ata(id)) { 1877 ata_dev_dbg(dev, 1878 "host indicates ignore ATA devices, ignored\n"); 1879 return -ENOENT; 1880 } 1881 } else { 1882 if (ata_id_is_ata(id)) 1883 goto err_out; 1884 } 1885 1886 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1887 tried_spinup = 1; 1888 /* 1889 * Drive powered-up in standby mode, and requires a specific 1890 * SET_FEATURES spin-up subcommand before it will accept 1891 * anything other than the original IDENTIFY command. 1892 */ 1893 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1894 if (err_mask && id[2] != 0x738c) { 1895 rc = -EIO; 1896 reason = "SPINUP failed"; 1897 goto err_out; 1898 } 1899 /* 1900 * If the drive initially returned incomplete IDENTIFY info, 1901 * we now must reissue the IDENTIFY command. 1902 */ 1903 if (id[2] == 0x37c8) 1904 goto retry; 1905 } 1906 1907 if ((flags & ATA_READID_POSTRESET) && 1908 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1909 /* 1910 * The exact sequence expected by certain pre-ATA4 drives is: 1911 * SRST RESET 1912 * IDENTIFY (optional in early ATA) 1913 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1914 * anything else.. 1915 * Some drives were very specific about that exact sequence. 1916 * 1917 * Note that ATA4 says lba is mandatory so the second check 1918 * should never trigger. 1919 */ 1920 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1921 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1922 if (err_mask) { 1923 rc = -EIO; 1924 reason = "INIT_DEV_PARAMS failed"; 1925 goto err_out; 1926 } 1927 1928 /* current CHS translation info (id[53-58]) might be 1929 * changed. reread the identify device info. 1930 */ 1931 flags &= ~ATA_READID_POSTRESET; 1932 goto retry; 1933 } 1934 } 1935 1936 *p_class = class; 1937 1938 return 0; 1939 1940 err_out: 1941 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1942 reason, err_mask); 1943 return rc; 1944 } 1945 1946 /** 1947 * ata_read_log_page - read a specific log page 1948 * @dev: target device 1949 * @log: log to read 1950 * @page: page to read 1951 * @buf: buffer to store read page 1952 * @sectors: number of sectors to read 1953 * 1954 * Read log page using READ_LOG_EXT command. 1955 * 1956 * LOCKING: 1957 * Kernel thread context (may sleep). 1958 * 1959 * RETURNS: 1960 * 0 on success, AC_ERR_* mask otherwise. 1961 */ 1962 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 1963 u8 page, void *buf, unsigned int sectors) 1964 { 1965 unsigned long ap_flags = dev->link->ap->flags; 1966 struct ata_taskfile tf; 1967 unsigned int err_mask; 1968 bool dma = false; 1969 1970 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 1971 1972 /* 1973 * Return error without actually issuing the command on controllers 1974 * which e.g. lockup on a read log page. 1975 */ 1976 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 1977 return AC_ERR_DEV; 1978 1979 retry: 1980 ata_tf_init(dev, &tf); 1981 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 1982 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 1983 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 1984 tf.protocol = ATA_PROT_DMA; 1985 dma = true; 1986 } else { 1987 tf.command = ATA_CMD_READ_LOG_EXT; 1988 tf.protocol = ATA_PROT_PIO; 1989 dma = false; 1990 } 1991 tf.lbal = log; 1992 tf.lbam = page; 1993 tf.nsect = sectors; 1994 tf.hob_nsect = sectors >> 8; 1995 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 1996 1997 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 1998 buf, sectors * ATA_SECT_SIZE, 0); 1999 2000 if (err_mask) { 2001 if (dma) { 2002 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2003 if (!ata_port_is_frozen(dev->link->ap)) 2004 goto retry; 2005 } 2006 ata_dev_err(dev, 2007 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2008 (unsigned int)log, (unsigned int)page, err_mask); 2009 } 2010 2011 return err_mask; 2012 } 2013 2014 static int ata_log_supported(struct ata_device *dev, u8 log) 2015 { 2016 struct ata_port *ap = dev->link->ap; 2017 2018 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR) 2019 return 0; 2020 2021 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2022 return 0; 2023 return get_unaligned_le16(&ap->sector_buf[log * 2]); 2024 } 2025 2026 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2027 { 2028 struct ata_port *ap = dev->link->ap; 2029 unsigned int err, i; 2030 2031 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG) 2032 return false; 2033 2034 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2035 /* 2036 * IDENTIFY DEVICE data log is defined as mandatory starting 2037 * with ACS-3 (ATA version 10). Warn about the missing log 2038 * for drives which implement this ATA level or above. 2039 */ 2040 if (ata_id_major_version(dev->id) >= 10) 2041 ata_dev_warn(dev, 2042 "ATA Identify Device Log not supported\n"); 2043 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG; 2044 return false; 2045 } 2046 2047 /* 2048 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2049 * supported. 2050 */ 2051 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2052 1); 2053 if (err) 2054 return false; 2055 2056 for (i = 0; i < ap->sector_buf[8]; i++) { 2057 if (ap->sector_buf[9 + i] == page) 2058 return true; 2059 } 2060 2061 return false; 2062 } 2063 2064 static int ata_do_link_spd_horkage(struct ata_device *dev) 2065 { 2066 struct ata_link *plink = ata_dev_phys_link(dev); 2067 u32 target, target_limit; 2068 2069 if (!sata_scr_valid(plink)) 2070 return 0; 2071 2072 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2073 target = 1; 2074 else 2075 return 0; 2076 2077 target_limit = (1 << target) - 1; 2078 2079 /* if already on stricter limit, no need to push further */ 2080 if (plink->sata_spd_limit <= target_limit) 2081 return 0; 2082 2083 plink->sata_spd_limit = target_limit; 2084 2085 /* Request another EH round by returning -EAGAIN if link is 2086 * going faster than the target speed. Forward progress is 2087 * guaranteed by setting sata_spd_limit to target_limit above. 2088 */ 2089 if (plink->sata_spd > target) { 2090 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2091 sata_spd_string(target)); 2092 return -EAGAIN; 2093 } 2094 return 0; 2095 } 2096 2097 static inline u8 ata_dev_knobble(struct ata_device *dev) 2098 { 2099 struct ata_port *ap = dev->link->ap; 2100 2101 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2102 return 0; 2103 2104 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2105 } 2106 2107 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2108 { 2109 struct ata_port *ap = dev->link->ap; 2110 unsigned int err_mask; 2111 2112 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2113 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2114 return; 2115 } 2116 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2117 0, ap->sector_buf, 1); 2118 if (!err_mask) { 2119 u8 *cmds = dev->ncq_send_recv_cmds; 2120 2121 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2122 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2123 2124 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2125 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2126 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2127 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2128 } 2129 } 2130 } 2131 2132 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2133 { 2134 struct ata_port *ap = dev->link->ap; 2135 unsigned int err_mask; 2136 2137 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2138 ata_dev_warn(dev, 2139 "NCQ Send/Recv Log not supported\n"); 2140 return; 2141 } 2142 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2143 0, ap->sector_buf, 1); 2144 if (!err_mask) { 2145 u8 *cmds = dev->ncq_non_data_cmds; 2146 2147 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2148 } 2149 } 2150 2151 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2152 { 2153 struct ata_port *ap = dev->link->ap; 2154 unsigned int err_mask; 2155 2156 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2157 return; 2158 2159 err_mask = ata_read_log_page(dev, 2160 ATA_LOG_IDENTIFY_DEVICE, 2161 ATA_LOG_SATA_SETTINGS, 2162 ap->sector_buf, 2163 1); 2164 if (err_mask) 2165 goto not_supported; 2166 2167 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2168 goto not_supported; 2169 2170 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2171 2172 return; 2173 2174 not_supported: 2175 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED; 2176 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2177 } 2178 2179 static bool ata_dev_check_adapter(struct ata_device *dev, 2180 unsigned short vendor_id) 2181 { 2182 struct pci_dev *pcidev = NULL; 2183 struct device *parent_dev = NULL; 2184 2185 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2186 parent_dev = parent_dev->parent) { 2187 if (dev_is_pci(parent_dev)) { 2188 pcidev = to_pci_dev(parent_dev); 2189 if (pcidev->vendor == vendor_id) 2190 return true; 2191 break; 2192 } 2193 } 2194 2195 return false; 2196 } 2197 2198 static int ata_dev_config_ncq(struct ata_device *dev, 2199 char *desc, size_t desc_sz) 2200 { 2201 struct ata_port *ap = dev->link->ap; 2202 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2203 unsigned int err_mask; 2204 char *aa_desc = ""; 2205 2206 if (!ata_id_has_ncq(dev->id)) { 2207 desc[0] = '\0'; 2208 return 0; 2209 } 2210 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2211 return 0; 2212 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2213 snprintf(desc, desc_sz, "NCQ (not used)"); 2214 return 0; 2215 } 2216 2217 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2218 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2219 snprintf(desc, desc_sz, "NCQ (not used)"); 2220 return 0; 2221 } 2222 2223 if (ap->flags & ATA_FLAG_NCQ) { 2224 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2225 dev->flags |= ATA_DFLAG_NCQ; 2226 } 2227 2228 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2229 (ap->flags & ATA_FLAG_FPDMA_AA) && 2230 ata_id_has_fpdma_aa(dev->id)) { 2231 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2232 SATA_FPDMA_AA); 2233 if (err_mask) { 2234 ata_dev_err(dev, 2235 "failed to enable AA (error_mask=0x%x)\n", 2236 err_mask); 2237 if (err_mask != AC_ERR_DEV) { 2238 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2239 return -EIO; 2240 } 2241 } else 2242 aa_desc = ", AA"; 2243 } 2244 2245 if (hdepth >= ddepth) 2246 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2247 else 2248 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2249 ddepth, aa_desc); 2250 2251 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2252 if (ata_id_has_ncq_send_and_recv(dev->id)) 2253 ata_dev_config_ncq_send_recv(dev); 2254 if (ata_id_has_ncq_non_data(dev->id)) 2255 ata_dev_config_ncq_non_data(dev); 2256 if (ata_id_has_ncq_prio(dev->id)) 2257 ata_dev_config_ncq_prio(dev); 2258 } 2259 2260 return 0; 2261 } 2262 2263 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2264 { 2265 unsigned int err_mask; 2266 2267 if (!ata_id_has_sense_reporting(dev->id)) 2268 return; 2269 2270 if (ata_id_sense_reporting_enabled(dev->id)) 2271 return; 2272 2273 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2274 if (err_mask) { 2275 ata_dev_dbg(dev, 2276 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2277 err_mask); 2278 } 2279 } 2280 2281 static void ata_dev_config_zac(struct ata_device *dev) 2282 { 2283 struct ata_port *ap = dev->link->ap; 2284 unsigned int err_mask; 2285 u8 *identify_buf = ap->sector_buf; 2286 2287 dev->zac_zones_optimal_open = U32_MAX; 2288 dev->zac_zones_optimal_nonseq = U32_MAX; 2289 dev->zac_zones_max_open = U32_MAX; 2290 2291 /* 2292 * Always set the 'ZAC' flag for Host-managed devices. 2293 */ 2294 if (dev->class == ATA_DEV_ZAC) 2295 dev->flags |= ATA_DFLAG_ZAC; 2296 else if (ata_id_zoned_cap(dev->id) == 0x01) 2297 /* 2298 * Check for host-aware devices. 2299 */ 2300 dev->flags |= ATA_DFLAG_ZAC; 2301 2302 if (!(dev->flags & ATA_DFLAG_ZAC)) 2303 return; 2304 2305 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2306 ata_dev_warn(dev, 2307 "ATA Zoned Information Log not supported\n"); 2308 return; 2309 } 2310 2311 /* 2312 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2313 */ 2314 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2315 ATA_LOG_ZONED_INFORMATION, 2316 identify_buf, 1); 2317 if (!err_mask) { 2318 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2319 2320 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2321 if ((zoned_cap >> 63)) 2322 dev->zac_zoned_cap = (zoned_cap & 1); 2323 opt_open = get_unaligned_le64(&identify_buf[24]); 2324 if ((opt_open >> 63)) 2325 dev->zac_zones_optimal_open = (u32)opt_open; 2326 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2327 if ((opt_nonseq >> 63)) 2328 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2329 max_open = get_unaligned_le64(&identify_buf[40]); 2330 if ((max_open >> 63)) 2331 dev->zac_zones_max_open = (u32)max_open; 2332 } 2333 } 2334 2335 static void ata_dev_config_trusted(struct ata_device *dev) 2336 { 2337 struct ata_port *ap = dev->link->ap; 2338 u64 trusted_cap; 2339 unsigned int err; 2340 2341 if (!ata_id_has_trusted(dev->id)) 2342 return; 2343 2344 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2345 ata_dev_warn(dev, 2346 "Security Log not supported\n"); 2347 return; 2348 } 2349 2350 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2351 ap->sector_buf, 1); 2352 if (err) 2353 return; 2354 2355 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2356 if (!(trusted_cap & (1ULL << 63))) { 2357 ata_dev_dbg(dev, 2358 "Trusted Computing capability qword not valid!\n"); 2359 return; 2360 } 2361 2362 if (trusted_cap & (1 << 0)) 2363 dev->flags |= ATA_DFLAG_TRUSTED; 2364 } 2365 2366 static int ata_dev_config_lba(struct ata_device *dev) 2367 { 2368 const u16 *id = dev->id; 2369 const char *lba_desc; 2370 char ncq_desc[24]; 2371 int ret; 2372 2373 dev->flags |= ATA_DFLAG_LBA; 2374 2375 if (ata_id_has_lba48(id)) { 2376 lba_desc = "LBA48"; 2377 dev->flags |= ATA_DFLAG_LBA48; 2378 if (dev->n_sectors >= (1UL << 28) && 2379 ata_id_has_flush_ext(id)) 2380 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2381 } else { 2382 lba_desc = "LBA"; 2383 } 2384 2385 /* config NCQ */ 2386 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2387 2388 /* print device info to dmesg */ 2389 if (ata_dev_print_info(dev)) 2390 ata_dev_info(dev, 2391 "%llu sectors, multi %u: %s %s\n", 2392 (unsigned long long)dev->n_sectors, 2393 dev->multi_count, lba_desc, ncq_desc); 2394 2395 return ret; 2396 } 2397 2398 static void ata_dev_config_chs(struct ata_device *dev) 2399 { 2400 const u16 *id = dev->id; 2401 2402 if (ata_id_current_chs_valid(id)) { 2403 /* Current CHS translation is valid. */ 2404 dev->cylinders = id[54]; 2405 dev->heads = id[55]; 2406 dev->sectors = id[56]; 2407 } else { 2408 /* Default translation */ 2409 dev->cylinders = id[1]; 2410 dev->heads = id[3]; 2411 dev->sectors = id[6]; 2412 } 2413 2414 /* print device info to dmesg */ 2415 if (ata_dev_print_info(dev)) 2416 ata_dev_info(dev, 2417 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2418 (unsigned long long)dev->n_sectors, 2419 dev->multi_count, dev->cylinders, 2420 dev->heads, dev->sectors); 2421 } 2422 2423 static void ata_dev_config_devslp(struct ata_device *dev) 2424 { 2425 u8 *sata_setting = dev->link->ap->sector_buf; 2426 unsigned int err_mask; 2427 int i, j; 2428 2429 /* 2430 * Check device sleep capability. Get DevSlp timing variables 2431 * from SATA Settings page of Identify Device Data Log. 2432 */ 2433 if (!ata_id_has_devslp(dev->id) || 2434 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2435 return; 2436 2437 err_mask = ata_read_log_page(dev, 2438 ATA_LOG_IDENTIFY_DEVICE, 2439 ATA_LOG_SATA_SETTINGS, 2440 sata_setting, 1); 2441 if (err_mask) 2442 return; 2443 2444 dev->flags |= ATA_DFLAG_DEVSLP; 2445 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2446 j = ATA_LOG_DEVSLP_OFFSET + i; 2447 dev->devslp_timing[i] = sata_setting[j]; 2448 } 2449 } 2450 2451 static void ata_dev_config_cpr(struct ata_device *dev) 2452 { 2453 unsigned int err_mask; 2454 size_t buf_len; 2455 int i, nr_cpr = 0; 2456 struct ata_cpr_log *cpr_log = NULL; 2457 u8 *desc, *buf = NULL; 2458 2459 if (ata_id_major_version(dev->id) < 11) 2460 goto out; 2461 2462 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES); 2463 if (buf_len == 0) 2464 goto out; 2465 2466 /* 2467 * Read the concurrent positioning ranges log (0x47). We can have at 2468 * most 255 32B range descriptors plus a 64B header. This log varies in 2469 * size, so use the size reported in the GPL directory. Reading beyond 2470 * the supported length will result in an error. 2471 */ 2472 buf_len <<= 9; 2473 buf = kzalloc(buf_len, GFP_KERNEL); 2474 if (!buf) 2475 goto out; 2476 2477 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2478 0, buf, buf_len >> 9); 2479 if (err_mask) 2480 goto out; 2481 2482 nr_cpr = buf[0]; 2483 if (!nr_cpr) 2484 goto out; 2485 2486 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2487 if (!cpr_log) 2488 goto out; 2489 2490 cpr_log->nr_cpr = nr_cpr; 2491 desc = &buf[64]; 2492 for (i = 0; i < nr_cpr; i++, desc += 32) { 2493 cpr_log->cpr[i].num = desc[0]; 2494 cpr_log->cpr[i].num_storage_elements = desc[1]; 2495 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2496 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2497 } 2498 2499 out: 2500 swap(dev->cpr_log, cpr_log); 2501 kfree(cpr_log); 2502 kfree(buf); 2503 } 2504 2505 static void ata_dev_print_features(struct ata_device *dev) 2506 { 2507 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2508 return; 2509 2510 ata_dev_info(dev, 2511 "Features:%s%s%s%s%s%s\n", 2512 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2513 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2514 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2515 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2516 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2517 dev->cpr_log ? " CPR" : ""); 2518 } 2519 2520 /** 2521 * ata_dev_configure - Configure the specified ATA/ATAPI device 2522 * @dev: Target device to configure 2523 * 2524 * Configure @dev according to @dev->id. Generic and low-level 2525 * driver specific fixups are also applied. 2526 * 2527 * LOCKING: 2528 * Kernel thread context (may sleep) 2529 * 2530 * RETURNS: 2531 * 0 on success, -errno otherwise 2532 */ 2533 int ata_dev_configure(struct ata_device *dev) 2534 { 2535 struct ata_port *ap = dev->link->ap; 2536 bool print_info = ata_dev_print_info(dev); 2537 const u16 *id = dev->id; 2538 unsigned int xfer_mask; 2539 unsigned int err_mask; 2540 char revbuf[7]; /* XYZ-99\0 */ 2541 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2542 char modelbuf[ATA_ID_PROD_LEN+1]; 2543 int rc; 2544 2545 if (!ata_dev_enabled(dev)) { 2546 ata_dev_dbg(dev, "no device\n"); 2547 return 0; 2548 } 2549 2550 /* set horkage */ 2551 dev->horkage |= ata_dev_blacklisted(dev); 2552 ata_force_horkage(dev); 2553 2554 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2555 ata_dev_info(dev, "unsupported device, disabling\n"); 2556 ata_dev_disable(dev); 2557 return 0; 2558 } 2559 2560 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2561 dev->class == ATA_DEV_ATAPI) { 2562 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2563 atapi_enabled ? "not supported with this driver" 2564 : "disabled"); 2565 ata_dev_disable(dev); 2566 return 0; 2567 } 2568 2569 rc = ata_do_link_spd_horkage(dev); 2570 if (rc) 2571 return rc; 2572 2573 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2574 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2575 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2576 dev->horkage |= ATA_HORKAGE_NOLPM; 2577 2578 if (ap->flags & ATA_FLAG_NO_LPM) 2579 dev->horkage |= ATA_HORKAGE_NOLPM; 2580 2581 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2582 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2583 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2584 } 2585 2586 /* let ACPI work its magic */ 2587 rc = ata_acpi_on_devcfg(dev); 2588 if (rc) 2589 return rc; 2590 2591 /* massage HPA, do it early as it might change IDENTIFY data */ 2592 rc = ata_hpa_resize(dev); 2593 if (rc) 2594 return rc; 2595 2596 /* print device capabilities */ 2597 ata_dev_dbg(dev, 2598 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2599 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2600 __func__, 2601 id[49], id[82], id[83], id[84], 2602 id[85], id[86], id[87], id[88]); 2603 2604 /* initialize to-be-configured parameters */ 2605 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2606 dev->max_sectors = 0; 2607 dev->cdb_len = 0; 2608 dev->n_sectors = 0; 2609 dev->cylinders = 0; 2610 dev->heads = 0; 2611 dev->sectors = 0; 2612 dev->multi_count = 0; 2613 2614 /* 2615 * common ATA, ATAPI feature tests 2616 */ 2617 2618 /* find max transfer mode; for printk only */ 2619 xfer_mask = ata_id_xfermask(id); 2620 2621 ata_dump_id(dev, id); 2622 2623 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2624 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2625 sizeof(fwrevbuf)); 2626 2627 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2628 sizeof(modelbuf)); 2629 2630 /* ATA-specific feature tests */ 2631 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2632 if (ata_id_is_cfa(id)) { 2633 /* CPRM may make this media unusable */ 2634 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2635 ata_dev_warn(dev, 2636 "supports DRM functions and may not be fully accessible\n"); 2637 snprintf(revbuf, 7, "CFA"); 2638 } else { 2639 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2640 /* Warn the user if the device has TPM extensions */ 2641 if (ata_id_has_tpm(id)) 2642 ata_dev_warn(dev, 2643 "supports DRM functions and may not be fully accessible\n"); 2644 } 2645 2646 dev->n_sectors = ata_id_n_sectors(id); 2647 2648 /* get current R/W Multiple count setting */ 2649 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2650 unsigned int max = dev->id[47] & 0xff; 2651 unsigned int cnt = dev->id[59] & 0xff; 2652 /* only recognize/allow powers of two here */ 2653 if (is_power_of_2(max) && is_power_of_2(cnt)) 2654 if (cnt <= max) 2655 dev->multi_count = cnt; 2656 } 2657 2658 /* print device info to dmesg */ 2659 if (print_info) 2660 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2661 revbuf, modelbuf, fwrevbuf, 2662 ata_mode_string(xfer_mask)); 2663 2664 if (ata_id_has_lba(id)) { 2665 rc = ata_dev_config_lba(dev); 2666 if (rc) 2667 return rc; 2668 } else { 2669 ata_dev_config_chs(dev); 2670 } 2671 2672 ata_dev_config_devslp(dev); 2673 ata_dev_config_sense_reporting(dev); 2674 ata_dev_config_zac(dev); 2675 ata_dev_config_trusted(dev); 2676 ata_dev_config_cpr(dev); 2677 dev->cdb_len = 32; 2678 2679 if (print_info) 2680 ata_dev_print_features(dev); 2681 } 2682 2683 /* ATAPI-specific feature tests */ 2684 else if (dev->class == ATA_DEV_ATAPI) { 2685 const char *cdb_intr_string = ""; 2686 const char *atapi_an_string = ""; 2687 const char *dma_dir_string = ""; 2688 u32 sntf; 2689 2690 rc = atapi_cdb_len(id); 2691 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2692 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 2693 rc = -EINVAL; 2694 goto err_out_nosup; 2695 } 2696 dev->cdb_len = (unsigned int) rc; 2697 2698 /* Enable ATAPI AN if both the host and device have 2699 * the support. If PMP is attached, SNTF is required 2700 * to enable ATAPI AN to discern between PHY status 2701 * changed notifications and ATAPI ANs. 2702 */ 2703 if (atapi_an && 2704 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2705 (!sata_pmp_attached(ap) || 2706 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2707 /* issue SET feature command to turn this on */ 2708 err_mask = ata_dev_set_feature(dev, 2709 SETFEATURES_SATA_ENABLE, SATA_AN); 2710 if (err_mask) 2711 ata_dev_err(dev, 2712 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2713 err_mask); 2714 else { 2715 dev->flags |= ATA_DFLAG_AN; 2716 atapi_an_string = ", ATAPI AN"; 2717 } 2718 } 2719 2720 if (ata_id_cdb_intr(dev->id)) { 2721 dev->flags |= ATA_DFLAG_CDB_INTR; 2722 cdb_intr_string = ", CDB intr"; 2723 } 2724 2725 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2726 dev->flags |= ATA_DFLAG_DMADIR; 2727 dma_dir_string = ", DMADIR"; 2728 } 2729 2730 if (ata_id_has_da(dev->id)) { 2731 dev->flags |= ATA_DFLAG_DA; 2732 zpodd_init(dev); 2733 } 2734 2735 /* print device info to dmesg */ 2736 if (print_info) 2737 ata_dev_info(dev, 2738 "ATAPI: %s, %s, max %s%s%s%s\n", 2739 modelbuf, fwrevbuf, 2740 ata_mode_string(xfer_mask), 2741 cdb_intr_string, atapi_an_string, 2742 dma_dir_string); 2743 } 2744 2745 /* determine max_sectors */ 2746 dev->max_sectors = ATA_MAX_SECTORS; 2747 if (dev->flags & ATA_DFLAG_LBA48) 2748 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2749 2750 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2751 200 sectors */ 2752 if (ata_dev_knobble(dev)) { 2753 if (print_info) 2754 ata_dev_info(dev, "applying bridge limits\n"); 2755 dev->udma_mask &= ATA_UDMA5; 2756 dev->max_sectors = ATA_MAX_SECTORS; 2757 } 2758 2759 if ((dev->class == ATA_DEV_ATAPI) && 2760 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2761 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2762 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2763 } 2764 2765 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2766 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2767 dev->max_sectors); 2768 2769 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2770 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2771 dev->max_sectors); 2772 2773 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2774 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2775 2776 if (ap->ops->dev_config) 2777 ap->ops->dev_config(dev); 2778 2779 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2780 /* Let the user know. We don't want to disallow opens for 2781 rescue purposes, or in case the vendor is just a blithering 2782 idiot. Do this after the dev_config call as some controllers 2783 with buggy firmware may want to avoid reporting false device 2784 bugs */ 2785 2786 if (print_info) { 2787 ata_dev_warn(dev, 2788 "Drive reports diagnostics failure. This may indicate a drive\n"); 2789 ata_dev_warn(dev, 2790 "fault or invalid emulation. Contact drive vendor for information.\n"); 2791 } 2792 } 2793 2794 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2795 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2796 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2797 } 2798 2799 return 0; 2800 2801 err_out_nosup: 2802 return rc; 2803 } 2804 2805 /** 2806 * ata_cable_40wire - return 40 wire cable type 2807 * @ap: port 2808 * 2809 * Helper method for drivers which want to hardwire 40 wire cable 2810 * detection. 2811 */ 2812 2813 int ata_cable_40wire(struct ata_port *ap) 2814 { 2815 return ATA_CBL_PATA40; 2816 } 2817 EXPORT_SYMBOL_GPL(ata_cable_40wire); 2818 2819 /** 2820 * ata_cable_80wire - return 80 wire cable type 2821 * @ap: port 2822 * 2823 * Helper method for drivers which want to hardwire 80 wire cable 2824 * detection. 2825 */ 2826 2827 int ata_cable_80wire(struct ata_port *ap) 2828 { 2829 return ATA_CBL_PATA80; 2830 } 2831 EXPORT_SYMBOL_GPL(ata_cable_80wire); 2832 2833 /** 2834 * ata_cable_unknown - return unknown PATA cable. 2835 * @ap: port 2836 * 2837 * Helper method for drivers which have no PATA cable detection. 2838 */ 2839 2840 int ata_cable_unknown(struct ata_port *ap) 2841 { 2842 return ATA_CBL_PATA_UNK; 2843 } 2844 EXPORT_SYMBOL_GPL(ata_cable_unknown); 2845 2846 /** 2847 * ata_cable_ignore - return ignored PATA cable. 2848 * @ap: port 2849 * 2850 * Helper method for drivers which don't use cable type to limit 2851 * transfer mode. 2852 */ 2853 int ata_cable_ignore(struct ata_port *ap) 2854 { 2855 return ATA_CBL_PATA_IGN; 2856 } 2857 EXPORT_SYMBOL_GPL(ata_cable_ignore); 2858 2859 /** 2860 * ata_cable_sata - return SATA cable type 2861 * @ap: port 2862 * 2863 * Helper method for drivers which have SATA cables 2864 */ 2865 2866 int ata_cable_sata(struct ata_port *ap) 2867 { 2868 return ATA_CBL_SATA; 2869 } 2870 EXPORT_SYMBOL_GPL(ata_cable_sata); 2871 2872 /** 2873 * ata_bus_probe - Reset and probe ATA bus 2874 * @ap: Bus to probe 2875 * 2876 * Master ATA bus probing function. Initiates a hardware-dependent 2877 * bus reset, then attempts to identify any devices found on 2878 * the bus. 2879 * 2880 * LOCKING: 2881 * PCI/etc. bus probe sem. 2882 * 2883 * RETURNS: 2884 * Zero on success, negative errno otherwise. 2885 */ 2886 2887 int ata_bus_probe(struct ata_port *ap) 2888 { 2889 unsigned int classes[ATA_MAX_DEVICES]; 2890 int tries[ATA_MAX_DEVICES]; 2891 int rc; 2892 struct ata_device *dev; 2893 2894 ata_for_each_dev(dev, &ap->link, ALL) 2895 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2896 2897 retry: 2898 ata_for_each_dev(dev, &ap->link, ALL) { 2899 /* If we issue an SRST then an ATA drive (not ATAPI) 2900 * may change configuration and be in PIO0 timing. If 2901 * we do a hard reset (or are coming from power on) 2902 * this is true for ATA or ATAPI. Until we've set a 2903 * suitable controller mode we should not touch the 2904 * bus as we may be talking too fast. 2905 */ 2906 dev->pio_mode = XFER_PIO_0; 2907 dev->dma_mode = 0xff; 2908 2909 /* If the controller has a pio mode setup function 2910 * then use it to set the chipset to rights. Don't 2911 * touch the DMA setup as that will be dealt with when 2912 * configuring devices. 2913 */ 2914 if (ap->ops->set_piomode) 2915 ap->ops->set_piomode(ap, dev); 2916 } 2917 2918 /* reset and determine device classes */ 2919 ap->ops->phy_reset(ap); 2920 2921 ata_for_each_dev(dev, &ap->link, ALL) { 2922 if (dev->class != ATA_DEV_UNKNOWN) 2923 classes[dev->devno] = dev->class; 2924 else 2925 classes[dev->devno] = ATA_DEV_NONE; 2926 2927 dev->class = ATA_DEV_UNKNOWN; 2928 } 2929 2930 /* read IDENTIFY page and configure devices. We have to do the identify 2931 specific sequence bass-ackwards so that PDIAG- is released by 2932 the slave device */ 2933 2934 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2935 if (tries[dev->devno]) 2936 dev->class = classes[dev->devno]; 2937 2938 if (!ata_dev_enabled(dev)) 2939 continue; 2940 2941 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2942 dev->id); 2943 if (rc) 2944 goto fail; 2945 } 2946 2947 /* Now ask for the cable type as PDIAG- should have been released */ 2948 if (ap->ops->cable_detect) 2949 ap->cbl = ap->ops->cable_detect(ap); 2950 2951 /* We may have SATA bridge glue hiding here irrespective of 2952 * the reported cable types and sensed types. When SATA 2953 * drives indicate we have a bridge, we don't know which end 2954 * of the link the bridge is which is a problem. 2955 */ 2956 ata_for_each_dev(dev, &ap->link, ENABLED) 2957 if (ata_id_is_sata(dev->id)) 2958 ap->cbl = ATA_CBL_SATA; 2959 2960 /* After the identify sequence we can now set up the devices. We do 2961 this in the normal order so that the user doesn't get confused */ 2962 2963 ata_for_each_dev(dev, &ap->link, ENABLED) { 2964 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2965 rc = ata_dev_configure(dev); 2966 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2967 if (rc) 2968 goto fail; 2969 } 2970 2971 /* configure transfer mode */ 2972 rc = ata_set_mode(&ap->link, &dev); 2973 if (rc) 2974 goto fail; 2975 2976 ata_for_each_dev(dev, &ap->link, ENABLED) 2977 return 0; 2978 2979 return -ENODEV; 2980 2981 fail: 2982 tries[dev->devno]--; 2983 2984 switch (rc) { 2985 case -EINVAL: 2986 /* eeek, something went very wrong, give up */ 2987 tries[dev->devno] = 0; 2988 break; 2989 2990 case -ENODEV: 2991 /* give it just one more chance */ 2992 tries[dev->devno] = min(tries[dev->devno], 1); 2993 fallthrough; 2994 case -EIO: 2995 if (tries[dev->devno] == 1) { 2996 /* This is the last chance, better to slow 2997 * down than lose it. 2998 */ 2999 sata_down_spd_limit(&ap->link, 0); 3000 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 3001 } 3002 } 3003 3004 if (!tries[dev->devno]) 3005 ata_dev_disable(dev); 3006 3007 goto retry; 3008 } 3009 3010 /** 3011 * sata_print_link_status - Print SATA link status 3012 * @link: SATA link to printk link status about 3013 * 3014 * This function prints link speed and status of a SATA link. 3015 * 3016 * LOCKING: 3017 * None. 3018 */ 3019 static void sata_print_link_status(struct ata_link *link) 3020 { 3021 u32 sstatus, scontrol, tmp; 3022 3023 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3024 return; 3025 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3026 return; 3027 3028 if (ata_phys_link_online(link)) { 3029 tmp = (sstatus >> 4) & 0xf; 3030 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3031 sata_spd_string(tmp), sstatus, scontrol); 3032 } else { 3033 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3034 sstatus, scontrol); 3035 } 3036 } 3037 3038 /** 3039 * ata_dev_pair - return other device on cable 3040 * @adev: device 3041 * 3042 * Obtain the other device on the same cable, or if none is 3043 * present NULL is returned 3044 */ 3045 3046 struct ata_device *ata_dev_pair(struct ata_device *adev) 3047 { 3048 struct ata_link *link = adev->link; 3049 struct ata_device *pair = &link->device[1 - adev->devno]; 3050 if (!ata_dev_enabled(pair)) 3051 return NULL; 3052 return pair; 3053 } 3054 EXPORT_SYMBOL_GPL(ata_dev_pair); 3055 3056 /** 3057 * sata_down_spd_limit - adjust SATA spd limit downward 3058 * @link: Link to adjust SATA spd limit for 3059 * @spd_limit: Additional limit 3060 * 3061 * Adjust SATA spd limit of @link downward. Note that this 3062 * function only adjusts the limit. The change must be applied 3063 * using sata_set_spd(). 3064 * 3065 * If @spd_limit is non-zero, the speed is limited to equal to or 3066 * lower than @spd_limit if such speed is supported. If 3067 * @spd_limit is slower than any supported speed, only the lowest 3068 * supported speed is allowed. 3069 * 3070 * LOCKING: 3071 * Inherited from caller. 3072 * 3073 * RETURNS: 3074 * 0 on success, negative errno on failure 3075 */ 3076 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3077 { 3078 u32 sstatus, spd, mask; 3079 int rc, bit; 3080 3081 if (!sata_scr_valid(link)) 3082 return -EOPNOTSUPP; 3083 3084 /* If SCR can be read, use it to determine the current SPD. 3085 * If not, use cached value in link->sata_spd. 3086 */ 3087 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3088 if (rc == 0 && ata_sstatus_online(sstatus)) 3089 spd = (sstatus >> 4) & 0xf; 3090 else 3091 spd = link->sata_spd; 3092 3093 mask = link->sata_spd_limit; 3094 if (mask <= 1) 3095 return -EINVAL; 3096 3097 /* unconditionally mask off the highest bit */ 3098 bit = fls(mask) - 1; 3099 mask &= ~(1 << bit); 3100 3101 /* 3102 * Mask off all speeds higher than or equal to the current one. At 3103 * this point, if current SPD is not available and we previously 3104 * recorded the link speed from SStatus, the driver has already 3105 * masked off the highest bit so mask should already be 1 or 0. 3106 * Otherwise, we should not force 1.5Gbps on a link where we have 3107 * not previously recorded speed from SStatus. Just return in this 3108 * case. 3109 */ 3110 if (spd > 1) 3111 mask &= (1 << (spd - 1)) - 1; 3112 else if (link->sata_spd) 3113 return -EINVAL; 3114 3115 /* were we already at the bottom? */ 3116 if (!mask) 3117 return -EINVAL; 3118 3119 if (spd_limit) { 3120 if (mask & ((1 << spd_limit) - 1)) 3121 mask &= (1 << spd_limit) - 1; 3122 else { 3123 bit = ffs(mask) - 1; 3124 mask = 1 << bit; 3125 } 3126 } 3127 3128 link->sata_spd_limit = mask; 3129 3130 ata_link_warn(link, "limiting SATA link speed to %s\n", 3131 sata_spd_string(fls(mask))); 3132 3133 return 0; 3134 } 3135 3136 #ifdef CONFIG_ATA_ACPI 3137 /** 3138 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3139 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3140 * @cycle: cycle duration in ns 3141 * 3142 * Return matching xfer mode for @cycle. The returned mode is of 3143 * the transfer type specified by @xfer_shift. If @cycle is too 3144 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3145 * than the fastest known mode, the fasted mode is returned. 3146 * 3147 * LOCKING: 3148 * None. 3149 * 3150 * RETURNS: 3151 * Matching xfer_mode, 0xff if no match found. 3152 */ 3153 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3154 { 3155 u8 base_mode = 0xff, last_mode = 0xff; 3156 const struct ata_xfer_ent *ent; 3157 const struct ata_timing *t; 3158 3159 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3160 if (ent->shift == xfer_shift) 3161 base_mode = ent->base; 3162 3163 for (t = ata_timing_find_mode(base_mode); 3164 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3165 unsigned short this_cycle; 3166 3167 switch (xfer_shift) { 3168 case ATA_SHIFT_PIO: 3169 case ATA_SHIFT_MWDMA: 3170 this_cycle = t->cycle; 3171 break; 3172 case ATA_SHIFT_UDMA: 3173 this_cycle = t->udma; 3174 break; 3175 default: 3176 return 0xff; 3177 } 3178 3179 if (cycle > this_cycle) 3180 break; 3181 3182 last_mode = t->mode; 3183 } 3184 3185 return last_mode; 3186 } 3187 #endif 3188 3189 /** 3190 * ata_down_xfermask_limit - adjust dev xfer masks downward 3191 * @dev: Device to adjust xfer masks 3192 * @sel: ATA_DNXFER_* selector 3193 * 3194 * Adjust xfer masks of @dev downward. Note that this function 3195 * does not apply the change. Invoking ata_set_mode() afterwards 3196 * will apply the limit. 3197 * 3198 * LOCKING: 3199 * Inherited from caller. 3200 * 3201 * RETURNS: 3202 * 0 on success, negative errno on failure 3203 */ 3204 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3205 { 3206 char buf[32]; 3207 unsigned int orig_mask, xfer_mask; 3208 unsigned int pio_mask, mwdma_mask, udma_mask; 3209 int quiet, highbit; 3210 3211 quiet = !!(sel & ATA_DNXFER_QUIET); 3212 sel &= ~ATA_DNXFER_QUIET; 3213 3214 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3215 dev->mwdma_mask, 3216 dev->udma_mask); 3217 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3218 3219 switch (sel) { 3220 case ATA_DNXFER_PIO: 3221 highbit = fls(pio_mask) - 1; 3222 pio_mask &= ~(1 << highbit); 3223 break; 3224 3225 case ATA_DNXFER_DMA: 3226 if (udma_mask) { 3227 highbit = fls(udma_mask) - 1; 3228 udma_mask &= ~(1 << highbit); 3229 if (!udma_mask) 3230 return -ENOENT; 3231 } else if (mwdma_mask) { 3232 highbit = fls(mwdma_mask) - 1; 3233 mwdma_mask &= ~(1 << highbit); 3234 if (!mwdma_mask) 3235 return -ENOENT; 3236 } 3237 break; 3238 3239 case ATA_DNXFER_40C: 3240 udma_mask &= ATA_UDMA_MASK_40C; 3241 break; 3242 3243 case ATA_DNXFER_FORCE_PIO0: 3244 pio_mask &= 1; 3245 fallthrough; 3246 case ATA_DNXFER_FORCE_PIO: 3247 mwdma_mask = 0; 3248 udma_mask = 0; 3249 break; 3250 3251 default: 3252 BUG(); 3253 } 3254 3255 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3256 3257 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3258 return -ENOENT; 3259 3260 if (!quiet) { 3261 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3262 snprintf(buf, sizeof(buf), "%s:%s", 3263 ata_mode_string(xfer_mask), 3264 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3265 else 3266 snprintf(buf, sizeof(buf), "%s", 3267 ata_mode_string(xfer_mask)); 3268 3269 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3270 } 3271 3272 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3273 &dev->udma_mask); 3274 3275 return 0; 3276 } 3277 3278 static int ata_dev_set_mode(struct ata_device *dev) 3279 { 3280 struct ata_port *ap = dev->link->ap; 3281 struct ata_eh_context *ehc = &dev->link->eh_context; 3282 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3283 const char *dev_err_whine = ""; 3284 int ign_dev_err = 0; 3285 unsigned int err_mask = 0; 3286 int rc; 3287 3288 dev->flags &= ~ATA_DFLAG_PIO; 3289 if (dev->xfer_shift == ATA_SHIFT_PIO) 3290 dev->flags |= ATA_DFLAG_PIO; 3291 3292 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3293 dev_err_whine = " (SET_XFERMODE skipped)"; 3294 else { 3295 if (nosetxfer) 3296 ata_dev_warn(dev, 3297 "NOSETXFER but PATA detected - can't " 3298 "skip SETXFER, might malfunction\n"); 3299 err_mask = ata_dev_set_xfermode(dev); 3300 } 3301 3302 if (err_mask & ~AC_ERR_DEV) 3303 goto fail; 3304 3305 /* revalidate */ 3306 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3307 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3308 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3309 if (rc) 3310 return rc; 3311 3312 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3313 /* Old CFA may refuse this command, which is just fine */ 3314 if (ata_id_is_cfa(dev->id)) 3315 ign_dev_err = 1; 3316 /* Catch several broken garbage emulations plus some pre 3317 ATA devices */ 3318 if (ata_id_major_version(dev->id) == 0 && 3319 dev->pio_mode <= XFER_PIO_2) 3320 ign_dev_err = 1; 3321 /* Some very old devices and some bad newer ones fail 3322 any kind of SET_XFERMODE request but support PIO0-2 3323 timings and no IORDY */ 3324 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3325 ign_dev_err = 1; 3326 } 3327 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3328 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3329 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3330 dev->dma_mode == XFER_MW_DMA_0 && 3331 (dev->id[63] >> 8) & 1) 3332 ign_dev_err = 1; 3333 3334 /* if the device is actually configured correctly, ignore dev err */ 3335 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3336 ign_dev_err = 1; 3337 3338 if (err_mask & AC_ERR_DEV) { 3339 if (!ign_dev_err) 3340 goto fail; 3341 else 3342 dev_err_whine = " (device error ignored)"; 3343 } 3344 3345 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3346 dev->xfer_shift, (int)dev->xfer_mode); 3347 3348 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3349 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3350 ata_dev_info(dev, "configured for %s%s\n", 3351 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3352 dev_err_whine); 3353 3354 return 0; 3355 3356 fail: 3357 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3358 return -EIO; 3359 } 3360 3361 /** 3362 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3363 * @link: link on which timings will be programmed 3364 * @r_failed_dev: out parameter for failed device 3365 * 3366 * Standard implementation of the function used to tune and set 3367 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3368 * ata_dev_set_mode() fails, pointer to the failing device is 3369 * returned in @r_failed_dev. 3370 * 3371 * LOCKING: 3372 * PCI/etc. bus probe sem. 3373 * 3374 * RETURNS: 3375 * 0 on success, negative errno otherwise 3376 */ 3377 3378 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3379 { 3380 struct ata_port *ap = link->ap; 3381 struct ata_device *dev; 3382 int rc = 0, used_dma = 0, found = 0; 3383 3384 /* step 1: calculate xfer_mask */ 3385 ata_for_each_dev(dev, link, ENABLED) { 3386 unsigned int pio_mask, dma_mask; 3387 unsigned int mode_mask; 3388 3389 mode_mask = ATA_DMA_MASK_ATA; 3390 if (dev->class == ATA_DEV_ATAPI) 3391 mode_mask = ATA_DMA_MASK_ATAPI; 3392 else if (ata_id_is_cfa(dev->id)) 3393 mode_mask = ATA_DMA_MASK_CFA; 3394 3395 ata_dev_xfermask(dev); 3396 ata_force_xfermask(dev); 3397 3398 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3399 3400 if (libata_dma_mask & mode_mask) 3401 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3402 dev->udma_mask); 3403 else 3404 dma_mask = 0; 3405 3406 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3407 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3408 3409 found = 1; 3410 if (ata_dma_enabled(dev)) 3411 used_dma = 1; 3412 } 3413 if (!found) 3414 goto out; 3415 3416 /* step 2: always set host PIO timings */ 3417 ata_for_each_dev(dev, link, ENABLED) { 3418 if (dev->pio_mode == 0xff) { 3419 ata_dev_warn(dev, "no PIO support\n"); 3420 rc = -EINVAL; 3421 goto out; 3422 } 3423 3424 dev->xfer_mode = dev->pio_mode; 3425 dev->xfer_shift = ATA_SHIFT_PIO; 3426 if (ap->ops->set_piomode) 3427 ap->ops->set_piomode(ap, dev); 3428 } 3429 3430 /* step 3: set host DMA timings */ 3431 ata_for_each_dev(dev, link, ENABLED) { 3432 if (!ata_dma_enabled(dev)) 3433 continue; 3434 3435 dev->xfer_mode = dev->dma_mode; 3436 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3437 if (ap->ops->set_dmamode) 3438 ap->ops->set_dmamode(ap, dev); 3439 } 3440 3441 /* step 4: update devices' xfer mode */ 3442 ata_for_each_dev(dev, link, ENABLED) { 3443 rc = ata_dev_set_mode(dev); 3444 if (rc) 3445 goto out; 3446 } 3447 3448 /* Record simplex status. If we selected DMA then the other 3449 * host channels are not permitted to do so. 3450 */ 3451 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3452 ap->host->simplex_claimed = ap; 3453 3454 out: 3455 if (rc) 3456 *r_failed_dev = dev; 3457 return rc; 3458 } 3459 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3460 3461 /** 3462 * ata_wait_ready - wait for link to become ready 3463 * @link: link to be waited on 3464 * @deadline: deadline jiffies for the operation 3465 * @check_ready: callback to check link readiness 3466 * 3467 * Wait for @link to become ready. @check_ready should return 3468 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3469 * link doesn't seem to be occupied, other errno for other error 3470 * conditions. 3471 * 3472 * Transient -ENODEV conditions are allowed for 3473 * ATA_TMOUT_FF_WAIT. 3474 * 3475 * LOCKING: 3476 * EH context. 3477 * 3478 * RETURNS: 3479 * 0 if @link is ready before @deadline; otherwise, -errno. 3480 */ 3481 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3482 int (*check_ready)(struct ata_link *link)) 3483 { 3484 unsigned long start = jiffies; 3485 unsigned long nodev_deadline; 3486 int warned = 0; 3487 3488 /* choose which 0xff timeout to use, read comment in libata.h */ 3489 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3490 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3491 else 3492 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3493 3494 /* Slave readiness can't be tested separately from master. On 3495 * M/S emulation configuration, this function should be called 3496 * only on the master and it will handle both master and slave. 3497 */ 3498 WARN_ON(link == link->ap->slave_link); 3499 3500 if (time_after(nodev_deadline, deadline)) 3501 nodev_deadline = deadline; 3502 3503 while (1) { 3504 unsigned long now = jiffies; 3505 int ready, tmp; 3506 3507 ready = tmp = check_ready(link); 3508 if (ready > 0) 3509 return 0; 3510 3511 /* 3512 * -ENODEV could be transient. Ignore -ENODEV if link 3513 * is online. Also, some SATA devices take a long 3514 * time to clear 0xff after reset. Wait for 3515 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3516 * offline. 3517 * 3518 * Note that some PATA controllers (pata_ali) explode 3519 * if status register is read more than once when 3520 * there's no device attached. 3521 */ 3522 if (ready == -ENODEV) { 3523 if (ata_link_online(link)) 3524 ready = 0; 3525 else if ((link->ap->flags & ATA_FLAG_SATA) && 3526 !ata_link_offline(link) && 3527 time_before(now, nodev_deadline)) 3528 ready = 0; 3529 } 3530 3531 if (ready) 3532 return ready; 3533 if (time_after(now, deadline)) 3534 return -EBUSY; 3535 3536 if (!warned && time_after(now, start + 5 * HZ) && 3537 (deadline - now > 3 * HZ)) { 3538 ata_link_warn(link, 3539 "link is slow to respond, please be patient " 3540 "(ready=%d)\n", tmp); 3541 warned = 1; 3542 } 3543 3544 ata_msleep(link->ap, 50); 3545 } 3546 } 3547 3548 /** 3549 * ata_wait_after_reset - wait for link to become ready after reset 3550 * @link: link to be waited on 3551 * @deadline: deadline jiffies for the operation 3552 * @check_ready: callback to check link readiness 3553 * 3554 * Wait for @link to become ready after reset. 3555 * 3556 * LOCKING: 3557 * EH context. 3558 * 3559 * RETURNS: 3560 * 0 if @link is ready before @deadline; otherwise, -errno. 3561 */ 3562 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3563 int (*check_ready)(struct ata_link *link)) 3564 { 3565 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3566 3567 return ata_wait_ready(link, deadline, check_ready); 3568 } 3569 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3570 3571 /** 3572 * ata_std_prereset - prepare for reset 3573 * @link: ATA link to be reset 3574 * @deadline: deadline jiffies for the operation 3575 * 3576 * @link is about to be reset. Initialize it. Failure from 3577 * prereset makes libata abort whole reset sequence and give up 3578 * that port, so prereset should be best-effort. It does its 3579 * best to prepare for reset sequence but if things go wrong, it 3580 * should just whine, not fail. 3581 * 3582 * LOCKING: 3583 * Kernel thread context (may sleep) 3584 * 3585 * RETURNS: 3586 * Always 0. 3587 */ 3588 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3589 { 3590 struct ata_port *ap = link->ap; 3591 struct ata_eh_context *ehc = &link->eh_context; 3592 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3593 int rc; 3594 3595 /* if we're about to do hardreset, nothing more to do */ 3596 if (ehc->i.action & ATA_EH_HARDRESET) 3597 return 0; 3598 3599 /* if SATA, resume link */ 3600 if (ap->flags & ATA_FLAG_SATA) { 3601 rc = sata_link_resume(link, timing, deadline); 3602 /* whine about phy resume failure but proceed */ 3603 if (rc && rc != -EOPNOTSUPP) 3604 ata_link_warn(link, 3605 "failed to resume link for reset (errno=%d)\n", 3606 rc); 3607 } 3608 3609 /* no point in trying softreset on offline link */ 3610 if (ata_phys_link_offline(link)) 3611 ehc->i.action &= ~ATA_EH_SOFTRESET; 3612 3613 return 0; 3614 } 3615 EXPORT_SYMBOL_GPL(ata_std_prereset); 3616 3617 /** 3618 * sata_std_hardreset - COMRESET w/o waiting or classification 3619 * @link: link to reset 3620 * @class: resulting class of attached device 3621 * @deadline: deadline jiffies for the operation 3622 * 3623 * Standard SATA COMRESET w/o waiting or classification. 3624 * 3625 * LOCKING: 3626 * Kernel thread context (may sleep) 3627 * 3628 * RETURNS: 3629 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3630 */ 3631 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3632 unsigned long deadline) 3633 { 3634 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3635 bool online; 3636 int rc; 3637 3638 /* do hardreset */ 3639 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3640 return online ? -EAGAIN : rc; 3641 } 3642 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3643 3644 /** 3645 * ata_std_postreset - standard postreset callback 3646 * @link: the target ata_link 3647 * @classes: classes of attached devices 3648 * 3649 * This function is invoked after a successful reset. Note that 3650 * the device might have been reset more than once using 3651 * different reset methods before postreset is invoked. 3652 * 3653 * LOCKING: 3654 * Kernel thread context (may sleep) 3655 */ 3656 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3657 { 3658 u32 serror; 3659 3660 /* reset complete, clear SError */ 3661 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3662 sata_scr_write(link, SCR_ERROR, serror); 3663 3664 /* print link status */ 3665 sata_print_link_status(link); 3666 } 3667 EXPORT_SYMBOL_GPL(ata_std_postreset); 3668 3669 /** 3670 * ata_dev_same_device - Determine whether new ID matches configured device 3671 * @dev: device to compare against 3672 * @new_class: class of the new device 3673 * @new_id: IDENTIFY page of the new device 3674 * 3675 * Compare @new_class and @new_id against @dev and determine 3676 * whether @dev is the device indicated by @new_class and 3677 * @new_id. 3678 * 3679 * LOCKING: 3680 * None. 3681 * 3682 * RETURNS: 3683 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3684 */ 3685 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3686 const u16 *new_id) 3687 { 3688 const u16 *old_id = dev->id; 3689 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3690 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3691 3692 if (dev->class != new_class) { 3693 ata_dev_info(dev, "class mismatch %d != %d\n", 3694 dev->class, new_class); 3695 return 0; 3696 } 3697 3698 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3699 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3700 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3701 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3702 3703 if (strcmp(model[0], model[1])) { 3704 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3705 model[0], model[1]); 3706 return 0; 3707 } 3708 3709 if (strcmp(serial[0], serial[1])) { 3710 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3711 serial[0], serial[1]); 3712 return 0; 3713 } 3714 3715 return 1; 3716 } 3717 3718 /** 3719 * ata_dev_reread_id - Re-read IDENTIFY data 3720 * @dev: target ATA device 3721 * @readid_flags: read ID flags 3722 * 3723 * Re-read IDENTIFY page and make sure @dev is still attached to 3724 * the port. 3725 * 3726 * LOCKING: 3727 * Kernel thread context (may sleep) 3728 * 3729 * RETURNS: 3730 * 0 on success, negative errno otherwise 3731 */ 3732 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3733 { 3734 unsigned int class = dev->class; 3735 u16 *id = (void *)dev->link->ap->sector_buf; 3736 int rc; 3737 3738 /* read ID data */ 3739 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3740 if (rc) 3741 return rc; 3742 3743 /* is the device still there? */ 3744 if (!ata_dev_same_device(dev, class, id)) 3745 return -ENODEV; 3746 3747 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3748 return 0; 3749 } 3750 3751 /** 3752 * ata_dev_revalidate - Revalidate ATA device 3753 * @dev: device to revalidate 3754 * @new_class: new class code 3755 * @readid_flags: read ID flags 3756 * 3757 * Re-read IDENTIFY page, make sure @dev is still attached to the 3758 * port and reconfigure it according to the new IDENTIFY page. 3759 * 3760 * LOCKING: 3761 * Kernel thread context (may sleep) 3762 * 3763 * RETURNS: 3764 * 0 on success, negative errno otherwise 3765 */ 3766 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3767 unsigned int readid_flags) 3768 { 3769 u64 n_sectors = dev->n_sectors; 3770 u64 n_native_sectors = dev->n_native_sectors; 3771 int rc; 3772 3773 if (!ata_dev_enabled(dev)) 3774 return -ENODEV; 3775 3776 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3777 if (ata_class_enabled(new_class) && 3778 new_class != ATA_DEV_ATA && 3779 new_class != ATA_DEV_ATAPI && 3780 new_class != ATA_DEV_ZAC && 3781 new_class != ATA_DEV_SEMB) { 3782 ata_dev_info(dev, "class mismatch %u != %u\n", 3783 dev->class, new_class); 3784 rc = -ENODEV; 3785 goto fail; 3786 } 3787 3788 /* re-read ID */ 3789 rc = ata_dev_reread_id(dev, readid_flags); 3790 if (rc) 3791 goto fail; 3792 3793 /* configure device according to the new ID */ 3794 rc = ata_dev_configure(dev); 3795 if (rc) 3796 goto fail; 3797 3798 /* verify n_sectors hasn't changed */ 3799 if (dev->class != ATA_DEV_ATA || !n_sectors || 3800 dev->n_sectors == n_sectors) 3801 return 0; 3802 3803 /* n_sectors has changed */ 3804 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3805 (unsigned long long)n_sectors, 3806 (unsigned long long)dev->n_sectors); 3807 3808 /* 3809 * Something could have caused HPA to be unlocked 3810 * involuntarily. If n_native_sectors hasn't changed and the 3811 * new size matches it, keep the device. 3812 */ 3813 if (dev->n_native_sectors == n_native_sectors && 3814 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3815 ata_dev_warn(dev, 3816 "new n_sectors matches native, probably " 3817 "late HPA unlock, n_sectors updated\n"); 3818 /* use the larger n_sectors */ 3819 return 0; 3820 } 3821 3822 /* 3823 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3824 * unlocking HPA in those cases. 3825 * 3826 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3827 */ 3828 if (dev->n_native_sectors == n_native_sectors && 3829 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3830 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 3831 ata_dev_warn(dev, 3832 "old n_sectors matches native, probably " 3833 "late HPA lock, will try to unlock HPA\n"); 3834 /* try unlocking HPA */ 3835 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3836 rc = -EIO; 3837 } else 3838 rc = -ENODEV; 3839 3840 /* restore original n_[native_]sectors and fail */ 3841 dev->n_native_sectors = n_native_sectors; 3842 dev->n_sectors = n_sectors; 3843 fail: 3844 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3845 return rc; 3846 } 3847 3848 struct ata_blacklist_entry { 3849 const char *model_num; 3850 const char *model_rev; 3851 unsigned long horkage; 3852 }; 3853 3854 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3855 /* Devices with DMA related problems under Linux */ 3856 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3857 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3858 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3859 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3860 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3861 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3862 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3863 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3864 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3865 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 3866 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3867 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3868 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3869 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3870 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3871 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 3872 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3873 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3874 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3875 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3876 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3877 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3878 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3879 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3880 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3881 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3882 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3883 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3884 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 3885 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 3886 /* Odd clown on sil3726/4726 PMPs */ 3887 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3888 /* Similar story with ASMedia 1092 */ 3889 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE }, 3890 3891 /* Weird ATAPI devices */ 3892 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3893 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 3894 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3895 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3896 3897 /* 3898 * Causes silent data corruption with higher max sects. 3899 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 3900 */ 3901 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 3902 3903 /* 3904 * These devices time out with higher max sects. 3905 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 3906 */ 3907 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3908 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3909 3910 /* Devices we expect to fail diagnostics */ 3911 3912 /* Devices where NCQ should be avoided */ 3913 /* NCQ is slow */ 3914 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3915 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ }, 3916 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3917 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3918 /* NCQ is broken */ 3919 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3920 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3921 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3922 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3923 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 3924 3925 /* Seagate NCQ + FLUSH CACHE firmware bug */ 3926 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3927 ATA_HORKAGE_FIRMWARE_WARN }, 3928 3929 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3930 ATA_HORKAGE_FIRMWARE_WARN }, 3931 3932 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3933 ATA_HORKAGE_FIRMWARE_WARN }, 3934 3935 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3936 ATA_HORKAGE_FIRMWARE_WARN }, 3937 3938 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 3939 the ST disks also have LPM issues */ 3940 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 3941 ATA_HORKAGE_NOLPM }, 3942 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 3943 3944 /* Blacklist entries taken from Silicon Image 3124/3132 3945 Windows driver .inf file - also several Linux problem reports */ 3946 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ }, 3947 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ }, 3948 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ }, 3949 3950 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 3951 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ }, 3952 3953 /* Sandisk SD7/8/9s lock up hard on large trims */ 3954 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M }, 3955 3956 /* devices which puke on READ_NATIVE_MAX */ 3957 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA }, 3958 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3959 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3960 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3961 3962 /* this one allows HPA unlocking but fails IOs on the area */ 3963 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 3964 3965 /* Devices which report 1 sector over size HPA */ 3966 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE }, 3967 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE }, 3968 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE }, 3969 3970 /* Devices which get the IVB wrong */ 3971 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB }, 3972 /* Maybe we should just blacklist TSSTcorp... */ 3973 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB }, 3974 3975 /* Devices that do not need bridging limits applied */ 3976 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK }, 3977 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK }, 3978 3979 /* Devices which aren't very happy with higher link speeds */ 3980 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS }, 3981 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS }, 3982 3983 /* 3984 * Devices which choke on SETXFER. Applies only if both the 3985 * device and controller are SATA. 3986 */ 3987 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 3988 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 3989 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 3990 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 3991 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 3992 3993 /* These specific Pioneer models have LPM issues */ 3994 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM }, 3995 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM }, 3996 3997 /* Crucial BX100 SSD 500GB has broken LPM support */ 3998 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 3999 4000 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4001 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4002 ATA_HORKAGE_ZERO_AFTER_TRIM | 4003 ATA_HORKAGE_NOLPM }, 4004 /* 512GB MX100 with newer firmware has only LPM issues */ 4005 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 4006 ATA_HORKAGE_NOLPM }, 4007 4008 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4009 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4010 ATA_HORKAGE_ZERO_AFTER_TRIM | 4011 ATA_HORKAGE_NOLPM }, 4012 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4013 ATA_HORKAGE_ZERO_AFTER_TRIM | 4014 ATA_HORKAGE_NOLPM }, 4015 4016 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4017 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM }, 4018 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM }, 4019 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM }, 4020 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM }, 4021 4022 /* devices that don't properly handle queued TRIM commands */ 4023 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4024 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4025 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4026 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4027 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4028 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4029 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4030 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4031 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4032 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4033 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4034 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4035 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4036 ATA_HORKAGE_NO_DMA_LOG | 4037 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4038 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4039 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4040 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4041 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4042 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4043 ATA_HORKAGE_ZERO_AFTER_TRIM | 4044 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4045 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4046 ATA_HORKAGE_ZERO_AFTER_TRIM | 4047 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4048 { "SAMSUNG*MZ7LH*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4049 ATA_HORKAGE_ZERO_AFTER_TRIM | 4050 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4051 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4052 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4053 4054 /* devices that don't properly handle TRIM commands */ 4055 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM }, 4056 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM }, 4057 4058 /* 4059 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4060 * (Return Zero After Trim) flags in the ATA Command Set are 4061 * unreliable in the sense that they only define what happens if 4062 * the device successfully executed the DSM TRIM command. TRIM 4063 * is only advisory, however, and the device is free to silently 4064 * ignore all or parts of the request. 4065 * 4066 * Whitelist drives that are known to reliably return zeroes 4067 * after TRIM. 4068 */ 4069 4070 /* 4071 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4072 * that model before whitelisting all other intel SSDs. 4073 */ 4074 { "INTEL*SSDSC2MH*", NULL, 0 }, 4075 4076 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4077 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4078 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4079 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4080 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4081 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4082 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4083 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4084 4085 /* 4086 * Some WD SATA-I drives spin up and down erratically when the link 4087 * is put into the slumber mode. We don't have full list of the 4088 * affected devices. Disable LPM if the device matches one of the 4089 * known prefixes and is SATA-1. As a side effect LPM partial is 4090 * lost too. 4091 * 4092 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4093 */ 4094 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4095 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4096 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4097 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4098 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4099 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4100 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4101 4102 /* 4103 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4104 * log page is accessed. Ensure we never ask for this log page with 4105 * these devices. 4106 */ 4107 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR }, 4108 4109 /* End Marker */ 4110 { } 4111 }; 4112 4113 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4114 { 4115 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4116 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4117 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4118 4119 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4120 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4121 4122 while (ad->model_num) { 4123 if (glob_match(ad->model_num, model_num)) { 4124 if (ad->model_rev == NULL) 4125 return ad->horkage; 4126 if (glob_match(ad->model_rev, model_rev)) 4127 return ad->horkage; 4128 } 4129 ad++; 4130 } 4131 return 0; 4132 } 4133 4134 static int ata_dma_blacklisted(const struct ata_device *dev) 4135 { 4136 /* We don't support polling DMA. 4137 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4138 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4139 */ 4140 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4141 (dev->flags & ATA_DFLAG_CDB_INTR)) 4142 return 1; 4143 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4144 } 4145 4146 /** 4147 * ata_is_40wire - check drive side detection 4148 * @dev: device 4149 * 4150 * Perform drive side detection decoding, allowing for device vendors 4151 * who can't follow the documentation. 4152 */ 4153 4154 static int ata_is_40wire(struct ata_device *dev) 4155 { 4156 if (dev->horkage & ATA_HORKAGE_IVB) 4157 return ata_drive_40wire_relaxed(dev->id); 4158 return ata_drive_40wire(dev->id); 4159 } 4160 4161 /** 4162 * cable_is_40wire - 40/80/SATA decider 4163 * @ap: port to consider 4164 * 4165 * This function encapsulates the policy for speed management 4166 * in one place. At the moment we don't cache the result but 4167 * there is a good case for setting ap->cbl to the result when 4168 * we are called with unknown cables (and figuring out if it 4169 * impacts hotplug at all). 4170 * 4171 * Return 1 if the cable appears to be 40 wire. 4172 */ 4173 4174 static int cable_is_40wire(struct ata_port *ap) 4175 { 4176 struct ata_link *link; 4177 struct ata_device *dev; 4178 4179 /* If the controller thinks we are 40 wire, we are. */ 4180 if (ap->cbl == ATA_CBL_PATA40) 4181 return 1; 4182 4183 /* If the controller thinks we are 80 wire, we are. */ 4184 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4185 return 0; 4186 4187 /* If the system is known to be 40 wire short cable (eg 4188 * laptop), then we allow 80 wire modes even if the drive 4189 * isn't sure. 4190 */ 4191 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4192 return 0; 4193 4194 /* If the controller doesn't know, we scan. 4195 * 4196 * Note: We look for all 40 wire detects at this point. Any 4197 * 80 wire detect is taken to be 80 wire cable because 4198 * - in many setups only the one drive (slave if present) will 4199 * give a valid detect 4200 * - if you have a non detect capable drive you don't want it 4201 * to colour the choice 4202 */ 4203 ata_for_each_link(link, ap, EDGE) { 4204 ata_for_each_dev(dev, link, ENABLED) { 4205 if (!ata_is_40wire(dev)) 4206 return 0; 4207 } 4208 } 4209 return 1; 4210 } 4211 4212 /** 4213 * ata_dev_xfermask - Compute supported xfermask of the given device 4214 * @dev: Device to compute xfermask for 4215 * 4216 * Compute supported xfermask of @dev and store it in 4217 * dev->*_mask. This function is responsible for applying all 4218 * known limits including host controller limits, device 4219 * blacklist, etc... 4220 * 4221 * LOCKING: 4222 * None. 4223 */ 4224 static void ata_dev_xfermask(struct ata_device *dev) 4225 { 4226 struct ata_link *link = dev->link; 4227 struct ata_port *ap = link->ap; 4228 struct ata_host *host = ap->host; 4229 unsigned int xfer_mask; 4230 4231 /* controller modes available */ 4232 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4233 ap->mwdma_mask, ap->udma_mask); 4234 4235 /* drive modes available */ 4236 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4237 dev->mwdma_mask, dev->udma_mask); 4238 xfer_mask &= ata_id_xfermask(dev->id); 4239 4240 /* 4241 * CFA Advanced TrueIDE timings are not allowed on a shared 4242 * cable 4243 */ 4244 if (ata_dev_pair(dev)) { 4245 /* No PIO5 or PIO6 */ 4246 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4247 /* No MWDMA3 or MWDMA 4 */ 4248 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4249 } 4250 4251 if (ata_dma_blacklisted(dev)) { 4252 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4253 ata_dev_warn(dev, 4254 "device is on DMA blacklist, disabling DMA\n"); 4255 } 4256 4257 if ((host->flags & ATA_HOST_SIMPLEX) && 4258 host->simplex_claimed && host->simplex_claimed != ap) { 4259 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4260 ata_dev_warn(dev, 4261 "simplex DMA is claimed by other device, disabling DMA\n"); 4262 } 4263 4264 if (ap->flags & ATA_FLAG_NO_IORDY) 4265 xfer_mask &= ata_pio_mask_no_iordy(dev); 4266 4267 if (ap->ops->mode_filter) 4268 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4269 4270 /* Apply cable rule here. Don't apply it early because when 4271 * we handle hot plug the cable type can itself change. 4272 * Check this last so that we know if the transfer rate was 4273 * solely limited by the cable. 4274 * Unknown or 80 wire cables reported host side are checked 4275 * drive side as well. Cases where we know a 40wire cable 4276 * is used safely for 80 are not checked here. 4277 */ 4278 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4279 /* UDMA/44 or higher would be available */ 4280 if (cable_is_40wire(ap)) { 4281 ata_dev_warn(dev, 4282 "limited to UDMA/33 due to 40-wire cable\n"); 4283 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4284 } 4285 4286 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4287 &dev->mwdma_mask, &dev->udma_mask); 4288 } 4289 4290 /** 4291 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4292 * @dev: Device to which command will be sent 4293 * 4294 * Issue SET FEATURES - XFER MODE command to device @dev 4295 * on port @ap. 4296 * 4297 * LOCKING: 4298 * PCI/etc. bus probe sem. 4299 * 4300 * RETURNS: 4301 * 0 on success, AC_ERR_* mask otherwise. 4302 */ 4303 4304 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4305 { 4306 struct ata_taskfile tf; 4307 4308 /* set up set-features taskfile */ 4309 ata_dev_dbg(dev, "set features - xfer mode\n"); 4310 4311 /* Some controllers and ATAPI devices show flaky interrupt 4312 * behavior after setting xfer mode. Use polling instead. 4313 */ 4314 ata_tf_init(dev, &tf); 4315 tf.command = ATA_CMD_SET_FEATURES; 4316 tf.feature = SETFEATURES_XFER; 4317 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4318 tf.protocol = ATA_PROT_NODATA; 4319 /* If we are using IORDY we must send the mode setting command */ 4320 if (ata_pio_need_iordy(dev)) 4321 tf.nsect = dev->xfer_mode; 4322 /* If the device has IORDY and the controller does not - turn it off */ 4323 else if (ata_id_has_iordy(dev->id)) 4324 tf.nsect = 0x01; 4325 else /* In the ancient relic department - skip all of this */ 4326 return 0; 4327 4328 /* 4329 * On some disks, this command causes spin-up, so we need longer 4330 * timeout. 4331 */ 4332 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4333 } 4334 4335 /** 4336 * ata_dev_set_feature - Issue SET FEATURES 4337 * @dev: Device to which command will be sent 4338 * @subcmd: The SET FEATURES subcommand to be sent 4339 * @action: The sector count represents a subcommand specific action 4340 * 4341 * Issue SET FEATURES command to device @dev on port @ap with sector count 4342 * 4343 * LOCKING: 4344 * PCI/etc. bus probe sem. 4345 * 4346 * RETURNS: 4347 * 0 on success, AC_ERR_* mask otherwise. 4348 */ 4349 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action) 4350 { 4351 struct ata_taskfile tf; 4352 unsigned int timeout = 0; 4353 4354 /* set up set-features taskfile */ 4355 ata_dev_dbg(dev, "set features\n"); 4356 4357 ata_tf_init(dev, &tf); 4358 tf.command = ATA_CMD_SET_FEATURES; 4359 tf.feature = subcmd; 4360 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4361 tf.protocol = ATA_PROT_NODATA; 4362 tf.nsect = action; 4363 4364 if (subcmd == SETFEATURES_SPINUP) 4365 timeout = ata_probe_timeout ? 4366 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4367 4368 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4369 } 4370 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4371 4372 /** 4373 * ata_dev_init_params - Issue INIT DEV PARAMS command 4374 * @dev: Device to which command will be sent 4375 * @heads: Number of heads (taskfile parameter) 4376 * @sectors: Number of sectors (taskfile parameter) 4377 * 4378 * LOCKING: 4379 * Kernel thread context (may sleep) 4380 * 4381 * RETURNS: 4382 * 0 on success, AC_ERR_* mask otherwise. 4383 */ 4384 static unsigned int ata_dev_init_params(struct ata_device *dev, 4385 u16 heads, u16 sectors) 4386 { 4387 struct ata_taskfile tf; 4388 unsigned int err_mask; 4389 4390 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4391 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4392 return AC_ERR_INVALID; 4393 4394 /* set up init dev params taskfile */ 4395 ata_dev_dbg(dev, "init dev params \n"); 4396 4397 ata_tf_init(dev, &tf); 4398 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4399 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4400 tf.protocol = ATA_PROT_NODATA; 4401 tf.nsect = sectors; 4402 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4403 4404 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4405 /* A clean abort indicates an original or just out of spec drive 4406 and we should continue as we issue the setup based on the 4407 drive reported working geometry */ 4408 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 4409 err_mask = 0; 4410 4411 return err_mask; 4412 } 4413 4414 /** 4415 * atapi_check_dma - Check whether ATAPI DMA can be supported 4416 * @qc: Metadata associated with taskfile to check 4417 * 4418 * Allow low-level driver to filter ATA PACKET commands, returning 4419 * a status indicating whether or not it is OK to use DMA for the 4420 * supplied PACKET command. 4421 * 4422 * LOCKING: 4423 * spin_lock_irqsave(host lock) 4424 * 4425 * RETURNS: 0 when ATAPI DMA can be used 4426 * nonzero otherwise 4427 */ 4428 int atapi_check_dma(struct ata_queued_cmd *qc) 4429 { 4430 struct ata_port *ap = qc->ap; 4431 4432 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4433 * few ATAPI devices choke on such DMA requests. 4434 */ 4435 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4436 unlikely(qc->nbytes & 15)) 4437 return 1; 4438 4439 if (ap->ops->check_atapi_dma) 4440 return ap->ops->check_atapi_dma(qc); 4441 4442 return 0; 4443 } 4444 4445 /** 4446 * ata_std_qc_defer - Check whether a qc needs to be deferred 4447 * @qc: ATA command in question 4448 * 4449 * Non-NCQ commands cannot run with any other command, NCQ or 4450 * not. As upper layer only knows the queue depth, we are 4451 * responsible for maintaining exclusion. This function checks 4452 * whether a new command @qc can be issued. 4453 * 4454 * LOCKING: 4455 * spin_lock_irqsave(host lock) 4456 * 4457 * RETURNS: 4458 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4459 */ 4460 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4461 { 4462 struct ata_link *link = qc->dev->link; 4463 4464 if (ata_is_ncq(qc->tf.protocol)) { 4465 if (!ata_tag_valid(link->active_tag)) 4466 return 0; 4467 } else { 4468 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4469 return 0; 4470 } 4471 4472 return ATA_DEFER_LINK; 4473 } 4474 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4475 4476 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4477 { 4478 return AC_ERR_OK; 4479 } 4480 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4481 4482 /** 4483 * ata_sg_init - Associate command with scatter-gather table. 4484 * @qc: Command to be associated 4485 * @sg: Scatter-gather table. 4486 * @n_elem: Number of elements in s/g table. 4487 * 4488 * Initialize the data-related elements of queued_cmd @qc 4489 * to point to a scatter-gather table @sg, containing @n_elem 4490 * elements. 4491 * 4492 * LOCKING: 4493 * spin_lock_irqsave(host lock) 4494 */ 4495 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4496 unsigned int n_elem) 4497 { 4498 qc->sg = sg; 4499 qc->n_elem = n_elem; 4500 qc->cursg = qc->sg; 4501 } 4502 4503 #ifdef CONFIG_HAS_DMA 4504 4505 /** 4506 * ata_sg_clean - Unmap DMA memory associated with command 4507 * @qc: Command containing DMA memory to be released 4508 * 4509 * Unmap all mapped DMA memory associated with this command. 4510 * 4511 * LOCKING: 4512 * spin_lock_irqsave(host lock) 4513 */ 4514 static void ata_sg_clean(struct ata_queued_cmd *qc) 4515 { 4516 struct ata_port *ap = qc->ap; 4517 struct scatterlist *sg = qc->sg; 4518 int dir = qc->dma_dir; 4519 4520 WARN_ON_ONCE(sg == NULL); 4521 4522 if (qc->n_elem) 4523 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4524 4525 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4526 qc->sg = NULL; 4527 } 4528 4529 /** 4530 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4531 * @qc: Command with scatter-gather table to be mapped. 4532 * 4533 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4534 * 4535 * LOCKING: 4536 * spin_lock_irqsave(host lock) 4537 * 4538 * RETURNS: 4539 * Zero on success, negative on error. 4540 * 4541 */ 4542 static int ata_sg_setup(struct ata_queued_cmd *qc) 4543 { 4544 struct ata_port *ap = qc->ap; 4545 unsigned int n_elem; 4546 4547 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4548 if (n_elem < 1) 4549 return -1; 4550 4551 qc->orig_n_elem = qc->n_elem; 4552 qc->n_elem = n_elem; 4553 qc->flags |= ATA_QCFLAG_DMAMAP; 4554 4555 return 0; 4556 } 4557 4558 #else /* !CONFIG_HAS_DMA */ 4559 4560 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4561 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4562 4563 #endif /* !CONFIG_HAS_DMA */ 4564 4565 /** 4566 * swap_buf_le16 - swap halves of 16-bit words in place 4567 * @buf: Buffer to swap 4568 * @buf_words: Number of 16-bit words in buffer. 4569 * 4570 * Swap halves of 16-bit words if needed to convert from 4571 * little-endian byte order to native cpu byte order, or 4572 * vice-versa. 4573 * 4574 * LOCKING: 4575 * Inherited from caller. 4576 */ 4577 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4578 { 4579 #ifdef __BIG_ENDIAN 4580 unsigned int i; 4581 4582 for (i = 0; i < buf_words; i++) 4583 buf[i] = le16_to_cpu(buf[i]); 4584 #endif /* __BIG_ENDIAN */ 4585 } 4586 4587 /** 4588 * ata_qc_free - free unused ata_queued_cmd 4589 * @qc: Command to complete 4590 * 4591 * Designed to free unused ata_queued_cmd object 4592 * in case something prevents using it. 4593 * 4594 * LOCKING: 4595 * spin_lock_irqsave(host lock) 4596 */ 4597 void ata_qc_free(struct ata_queued_cmd *qc) 4598 { 4599 qc->flags = 0; 4600 if (ata_tag_valid(qc->tag)) 4601 qc->tag = ATA_TAG_POISON; 4602 } 4603 4604 void __ata_qc_complete(struct ata_queued_cmd *qc) 4605 { 4606 struct ata_port *ap; 4607 struct ata_link *link; 4608 4609 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4610 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4611 ap = qc->ap; 4612 link = qc->dev->link; 4613 4614 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4615 ata_sg_clean(qc); 4616 4617 /* command should be marked inactive atomically with qc completion */ 4618 if (ata_is_ncq(qc->tf.protocol)) { 4619 link->sactive &= ~(1 << qc->hw_tag); 4620 if (!link->sactive) 4621 ap->nr_active_links--; 4622 } else { 4623 link->active_tag = ATA_TAG_POISON; 4624 ap->nr_active_links--; 4625 } 4626 4627 /* clear exclusive status */ 4628 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4629 ap->excl_link == link)) 4630 ap->excl_link = NULL; 4631 4632 /* atapi: mark qc as inactive to prevent the interrupt handler 4633 * from completing the command twice later, before the error handler 4634 * is called. (when rc != 0 and atapi request sense is needed) 4635 */ 4636 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4637 ap->qc_active &= ~(1ULL << qc->tag); 4638 4639 /* call completion callback */ 4640 qc->complete_fn(qc); 4641 } 4642 4643 static void fill_result_tf(struct ata_queued_cmd *qc) 4644 { 4645 struct ata_port *ap = qc->ap; 4646 4647 qc->result_tf.flags = qc->tf.flags; 4648 ap->ops->qc_fill_rtf(qc); 4649 } 4650 4651 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4652 { 4653 struct ata_device *dev = qc->dev; 4654 4655 if (!ata_is_data(qc->tf.protocol)) 4656 return; 4657 4658 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4659 return; 4660 4661 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4662 } 4663 4664 /** 4665 * ata_qc_complete - Complete an active ATA command 4666 * @qc: Command to complete 4667 * 4668 * Indicate to the mid and upper layers that an ATA command has 4669 * completed, with either an ok or not-ok status. 4670 * 4671 * Refrain from calling this function multiple times when 4672 * successfully completing multiple NCQ commands. 4673 * ata_qc_complete_multiple() should be used instead, which will 4674 * properly update IRQ expect state. 4675 * 4676 * LOCKING: 4677 * spin_lock_irqsave(host lock) 4678 */ 4679 void ata_qc_complete(struct ata_queued_cmd *qc) 4680 { 4681 struct ata_port *ap = qc->ap; 4682 4683 /* Trigger the LED (if available) */ 4684 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4685 4686 /* XXX: New EH and old EH use different mechanisms to 4687 * synchronize EH with regular execution path. 4688 * 4689 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4690 * Normal execution path is responsible for not accessing a 4691 * failed qc. libata core enforces the rule by returning NULL 4692 * from ata_qc_from_tag() for failed qcs. 4693 * 4694 * Old EH depends on ata_qc_complete() nullifying completion 4695 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4696 * not synchronize with interrupt handler. Only PIO task is 4697 * taken care of. 4698 */ 4699 if (ap->ops->error_handler) { 4700 struct ata_device *dev = qc->dev; 4701 struct ata_eh_info *ehi = &dev->link->eh_info; 4702 4703 if (unlikely(qc->err_mask)) 4704 qc->flags |= ATA_QCFLAG_FAILED; 4705 4706 /* 4707 * Finish internal commands without any further processing 4708 * and always with the result TF filled. 4709 */ 4710 if (unlikely(ata_tag_internal(qc->tag))) { 4711 fill_result_tf(qc); 4712 trace_ata_qc_complete_internal(qc); 4713 __ata_qc_complete(qc); 4714 return; 4715 } 4716 4717 /* 4718 * Non-internal qc has failed. Fill the result TF and 4719 * summon EH. 4720 */ 4721 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4722 fill_result_tf(qc); 4723 trace_ata_qc_complete_failed(qc); 4724 ata_qc_schedule_eh(qc); 4725 return; 4726 } 4727 4728 WARN_ON_ONCE(ata_port_is_frozen(ap)); 4729 4730 /* read result TF if requested */ 4731 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4732 fill_result_tf(qc); 4733 4734 trace_ata_qc_complete_done(qc); 4735 /* Some commands need post-processing after successful 4736 * completion. 4737 */ 4738 switch (qc->tf.command) { 4739 case ATA_CMD_SET_FEATURES: 4740 if (qc->tf.feature != SETFEATURES_WC_ON && 4741 qc->tf.feature != SETFEATURES_WC_OFF && 4742 qc->tf.feature != SETFEATURES_RA_ON && 4743 qc->tf.feature != SETFEATURES_RA_OFF) 4744 break; 4745 fallthrough; 4746 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4747 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4748 /* revalidate device */ 4749 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4750 ata_port_schedule_eh(ap); 4751 break; 4752 4753 case ATA_CMD_SLEEP: 4754 dev->flags |= ATA_DFLAG_SLEEPING; 4755 break; 4756 } 4757 4758 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4759 ata_verify_xfer(qc); 4760 4761 __ata_qc_complete(qc); 4762 } else { 4763 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4764 return; 4765 4766 /* read result TF if failed or requested */ 4767 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4768 fill_result_tf(qc); 4769 4770 __ata_qc_complete(qc); 4771 } 4772 } 4773 EXPORT_SYMBOL_GPL(ata_qc_complete); 4774 4775 /** 4776 * ata_qc_get_active - get bitmask of active qcs 4777 * @ap: port in question 4778 * 4779 * LOCKING: 4780 * spin_lock_irqsave(host lock) 4781 * 4782 * RETURNS: 4783 * Bitmask of active qcs 4784 */ 4785 u64 ata_qc_get_active(struct ata_port *ap) 4786 { 4787 u64 qc_active = ap->qc_active; 4788 4789 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4790 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4791 qc_active |= (1 << 0); 4792 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4793 } 4794 4795 return qc_active; 4796 } 4797 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4798 4799 /** 4800 * ata_qc_issue - issue taskfile to device 4801 * @qc: command to issue to device 4802 * 4803 * Prepare an ATA command to submission to device. 4804 * This includes mapping the data into a DMA-able 4805 * area, filling in the S/G table, and finally 4806 * writing the taskfile to hardware, starting the command. 4807 * 4808 * LOCKING: 4809 * spin_lock_irqsave(host lock) 4810 */ 4811 void ata_qc_issue(struct ata_queued_cmd *qc) 4812 { 4813 struct ata_port *ap = qc->ap; 4814 struct ata_link *link = qc->dev->link; 4815 u8 prot = qc->tf.protocol; 4816 4817 /* Make sure only one non-NCQ command is outstanding. The 4818 * check is skipped for old EH because it reuses active qc to 4819 * request ATAPI sense. 4820 */ 4821 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4822 4823 if (ata_is_ncq(prot)) { 4824 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4825 4826 if (!link->sactive) 4827 ap->nr_active_links++; 4828 link->sactive |= 1 << qc->hw_tag; 4829 } else { 4830 WARN_ON_ONCE(link->sactive); 4831 4832 ap->nr_active_links++; 4833 link->active_tag = qc->tag; 4834 } 4835 4836 qc->flags |= ATA_QCFLAG_ACTIVE; 4837 ap->qc_active |= 1ULL << qc->tag; 4838 4839 /* 4840 * We guarantee to LLDs that they will have at least one 4841 * non-zero sg if the command is a data command. 4842 */ 4843 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4844 goto sys_err; 4845 4846 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4847 (ap->flags & ATA_FLAG_PIO_DMA))) 4848 if (ata_sg_setup(qc)) 4849 goto sys_err; 4850 4851 /* if device is sleeping, schedule reset and abort the link */ 4852 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4853 link->eh_info.action |= ATA_EH_RESET; 4854 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4855 ata_link_abort(link); 4856 return; 4857 } 4858 4859 trace_ata_qc_prep(qc); 4860 qc->err_mask |= ap->ops->qc_prep(qc); 4861 if (unlikely(qc->err_mask)) 4862 goto err; 4863 trace_ata_qc_issue(qc); 4864 qc->err_mask |= ap->ops->qc_issue(qc); 4865 if (unlikely(qc->err_mask)) 4866 goto err; 4867 return; 4868 4869 sys_err: 4870 qc->err_mask |= AC_ERR_SYSTEM; 4871 err: 4872 ata_qc_complete(qc); 4873 } 4874 4875 /** 4876 * ata_phys_link_online - test whether the given link is online 4877 * @link: ATA link to test 4878 * 4879 * Test whether @link is online. Note that this function returns 4880 * 0 if online status of @link cannot be obtained, so 4881 * ata_link_online(link) != !ata_link_offline(link). 4882 * 4883 * LOCKING: 4884 * None. 4885 * 4886 * RETURNS: 4887 * True if the port online status is available and online. 4888 */ 4889 bool ata_phys_link_online(struct ata_link *link) 4890 { 4891 u32 sstatus; 4892 4893 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4894 ata_sstatus_online(sstatus)) 4895 return true; 4896 return false; 4897 } 4898 4899 /** 4900 * ata_phys_link_offline - test whether the given link is offline 4901 * @link: ATA link to test 4902 * 4903 * Test whether @link is offline. Note that this function 4904 * returns 0 if offline status of @link cannot be obtained, so 4905 * ata_link_online(link) != !ata_link_offline(link). 4906 * 4907 * LOCKING: 4908 * None. 4909 * 4910 * RETURNS: 4911 * True if the port offline status is available and offline. 4912 */ 4913 bool ata_phys_link_offline(struct ata_link *link) 4914 { 4915 u32 sstatus; 4916 4917 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4918 !ata_sstatus_online(sstatus)) 4919 return true; 4920 return false; 4921 } 4922 4923 /** 4924 * ata_link_online - test whether the given link is online 4925 * @link: ATA link to test 4926 * 4927 * Test whether @link is online. This is identical to 4928 * ata_phys_link_online() when there's no slave link. When 4929 * there's a slave link, this function should only be called on 4930 * the master link and will return true if any of M/S links is 4931 * online. 4932 * 4933 * LOCKING: 4934 * None. 4935 * 4936 * RETURNS: 4937 * True if the port online status is available and online. 4938 */ 4939 bool ata_link_online(struct ata_link *link) 4940 { 4941 struct ata_link *slave = link->ap->slave_link; 4942 4943 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4944 4945 return ata_phys_link_online(link) || 4946 (slave && ata_phys_link_online(slave)); 4947 } 4948 EXPORT_SYMBOL_GPL(ata_link_online); 4949 4950 /** 4951 * ata_link_offline - test whether the given link is offline 4952 * @link: ATA link to test 4953 * 4954 * Test whether @link is offline. This is identical to 4955 * ata_phys_link_offline() when there's no slave link. When 4956 * there's a slave link, this function should only be called on 4957 * the master link and will return true if both M/S links are 4958 * offline. 4959 * 4960 * LOCKING: 4961 * None. 4962 * 4963 * RETURNS: 4964 * True if the port offline status is available and offline. 4965 */ 4966 bool ata_link_offline(struct ata_link *link) 4967 { 4968 struct ata_link *slave = link->ap->slave_link; 4969 4970 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4971 4972 return ata_phys_link_offline(link) && 4973 (!slave || ata_phys_link_offline(slave)); 4974 } 4975 EXPORT_SYMBOL_GPL(ata_link_offline); 4976 4977 #ifdef CONFIG_PM 4978 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 4979 unsigned int action, unsigned int ehi_flags, 4980 bool async) 4981 { 4982 struct ata_link *link; 4983 unsigned long flags; 4984 4985 /* Previous resume operation might still be in 4986 * progress. Wait for PM_PENDING to clear. 4987 */ 4988 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 4989 ata_port_wait_eh(ap); 4990 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 4991 } 4992 4993 /* request PM ops to EH */ 4994 spin_lock_irqsave(ap->lock, flags); 4995 4996 ap->pm_mesg = mesg; 4997 ap->pflags |= ATA_PFLAG_PM_PENDING; 4998 ata_for_each_link(link, ap, HOST_FIRST) { 4999 link->eh_info.action |= action; 5000 link->eh_info.flags |= ehi_flags; 5001 } 5002 5003 ata_port_schedule_eh(ap); 5004 5005 spin_unlock_irqrestore(ap->lock, flags); 5006 5007 if (!async) { 5008 ata_port_wait_eh(ap); 5009 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5010 } 5011 } 5012 5013 /* 5014 * On some hardware, device fails to respond after spun down for suspend. As 5015 * the device won't be used before being resumed, we don't need to touch the 5016 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5017 * 5018 * http://thread.gmane.org/gmane.linux.ide/46764 5019 */ 5020 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5021 | ATA_EHI_NO_AUTOPSY 5022 | ATA_EHI_NO_RECOVERY; 5023 5024 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5025 { 5026 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5027 } 5028 5029 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5030 { 5031 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5032 } 5033 5034 static int ata_port_pm_suspend(struct device *dev) 5035 { 5036 struct ata_port *ap = to_ata_port(dev); 5037 5038 if (pm_runtime_suspended(dev)) 5039 return 0; 5040 5041 ata_port_suspend(ap, PMSG_SUSPEND); 5042 return 0; 5043 } 5044 5045 static int ata_port_pm_freeze(struct device *dev) 5046 { 5047 struct ata_port *ap = to_ata_port(dev); 5048 5049 if (pm_runtime_suspended(dev)) 5050 return 0; 5051 5052 ata_port_suspend(ap, PMSG_FREEZE); 5053 return 0; 5054 } 5055 5056 static int ata_port_pm_poweroff(struct device *dev) 5057 { 5058 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5059 return 0; 5060 } 5061 5062 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5063 | ATA_EHI_QUIET; 5064 5065 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5066 { 5067 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5068 } 5069 5070 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5071 { 5072 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5073 } 5074 5075 static int ata_port_pm_resume(struct device *dev) 5076 { 5077 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5078 pm_runtime_disable(dev); 5079 pm_runtime_set_active(dev); 5080 pm_runtime_enable(dev); 5081 return 0; 5082 } 5083 5084 /* 5085 * For ODDs, the upper layer will poll for media change every few seconds, 5086 * which will make it enter and leave suspend state every few seconds. And 5087 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5088 * is very little and the ODD may malfunction after constantly being reset. 5089 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5090 * ODD is attached to the port. 5091 */ 5092 static int ata_port_runtime_idle(struct device *dev) 5093 { 5094 struct ata_port *ap = to_ata_port(dev); 5095 struct ata_link *link; 5096 struct ata_device *adev; 5097 5098 ata_for_each_link(link, ap, HOST_FIRST) { 5099 ata_for_each_dev(adev, link, ENABLED) 5100 if (adev->class == ATA_DEV_ATAPI && 5101 !zpodd_dev_enabled(adev)) 5102 return -EBUSY; 5103 } 5104 5105 return 0; 5106 } 5107 5108 static int ata_port_runtime_suspend(struct device *dev) 5109 { 5110 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5111 return 0; 5112 } 5113 5114 static int ata_port_runtime_resume(struct device *dev) 5115 { 5116 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5117 return 0; 5118 } 5119 5120 static const struct dev_pm_ops ata_port_pm_ops = { 5121 .suspend = ata_port_pm_suspend, 5122 .resume = ata_port_pm_resume, 5123 .freeze = ata_port_pm_freeze, 5124 .thaw = ata_port_pm_resume, 5125 .poweroff = ata_port_pm_poweroff, 5126 .restore = ata_port_pm_resume, 5127 5128 .runtime_suspend = ata_port_runtime_suspend, 5129 .runtime_resume = ata_port_runtime_resume, 5130 .runtime_idle = ata_port_runtime_idle, 5131 }; 5132 5133 /* sas ports don't participate in pm runtime management of ata_ports, 5134 * and need to resume ata devices at the domain level, not the per-port 5135 * level. sas suspend/resume is async to allow parallel port recovery 5136 * since sas has multiple ata_port instances per Scsi_Host. 5137 */ 5138 void ata_sas_port_suspend(struct ata_port *ap) 5139 { 5140 ata_port_suspend_async(ap, PMSG_SUSPEND); 5141 } 5142 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5143 5144 void ata_sas_port_resume(struct ata_port *ap) 5145 { 5146 ata_port_resume_async(ap, PMSG_RESUME); 5147 } 5148 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5149 5150 /** 5151 * ata_host_suspend - suspend host 5152 * @host: host to suspend 5153 * @mesg: PM message 5154 * 5155 * Suspend @host. Actual operation is performed by port suspend. 5156 */ 5157 void ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5158 { 5159 host->dev->power.power_state = mesg; 5160 } 5161 EXPORT_SYMBOL_GPL(ata_host_suspend); 5162 5163 /** 5164 * ata_host_resume - resume host 5165 * @host: host to resume 5166 * 5167 * Resume @host. Actual operation is performed by port resume. 5168 */ 5169 void ata_host_resume(struct ata_host *host) 5170 { 5171 host->dev->power.power_state = PMSG_ON; 5172 } 5173 EXPORT_SYMBOL_GPL(ata_host_resume); 5174 #endif 5175 5176 const struct device_type ata_port_type = { 5177 .name = "ata_port", 5178 #ifdef CONFIG_PM 5179 .pm = &ata_port_pm_ops, 5180 #endif 5181 }; 5182 5183 /** 5184 * ata_dev_init - Initialize an ata_device structure 5185 * @dev: Device structure to initialize 5186 * 5187 * Initialize @dev in preparation for probing. 5188 * 5189 * LOCKING: 5190 * Inherited from caller. 5191 */ 5192 void ata_dev_init(struct ata_device *dev) 5193 { 5194 struct ata_link *link = ata_dev_phys_link(dev); 5195 struct ata_port *ap = link->ap; 5196 unsigned long flags; 5197 5198 /* SATA spd limit is bound to the attached device, reset together */ 5199 link->sata_spd_limit = link->hw_sata_spd_limit; 5200 link->sata_spd = 0; 5201 5202 /* High bits of dev->flags are used to record warm plug 5203 * requests which occur asynchronously. Synchronize using 5204 * host lock. 5205 */ 5206 spin_lock_irqsave(ap->lock, flags); 5207 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5208 dev->horkage = 0; 5209 spin_unlock_irqrestore(ap->lock, flags); 5210 5211 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5212 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5213 dev->pio_mask = UINT_MAX; 5214 dev->mwdma_mask = UINT_MAX; 5215 dev->udma_mask = UINT_MAX; 5216 } 5217 5218 /** 5219 * ata_link_init - Initialize an ata_link structure 5220 * @ap: ATA port link is attached to 5221 * @link: Link structure to initialize 5222 * @pmp: Port multiplier port number 5223 * 5224 * Initialize @link. 5225 * 5226 * LOCKING: 5227 * Kernel thread context (may sleep) 5228 */ 5229 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5230 { 5231 int i; 5232 5233 /* clear everything except for devices */ 5234 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5235 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5236 5237 link->ap = ap; 5238 link->pmp = pmp; 5239 link->active_tag = ATA_TAG_POISON; 5240 link->hw_sata_spd_limit = UINT_MAX; 5241 5242 /* can't use iterator, ap isn't initialized yet */ 5243 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5244 struct ata_device *dev = &link->device[i]; 5245 5246 dev->link = link; 5247 dev->devno = dev - link->device; 5248 #ifdef CONFIG_ATA_ACPI 5249 dev->gtf_filter = ata_acpi_gtf_filter; 5250 #endif 5251 ata_dev_init(dev); 5252 } 5253 } 5254 5255 /** 5256 * sata_link_init_spd - Initialize link->sata_spd_limit 5257 * @link: Link to configure sata_spd_limit for 5258 * 5259 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5260 * configured value. 5261 * 5262 * LOCKING: 5263 * Kernel thread context (may sleep). 5264 * 5265 * RETURNS: 5266 * 0 on success, -errno on failure. 5267 */ 5268 int sata_link_init_spd(struct ata_link *link) 5269 { 5270 u8 spd; 5271 int rc; 5272 5273 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5274 if (rc) 5275 return rc; 5276 5277 spd = (link->saved_scontrol >> 4) & 0xf; 5278 if (spd) 5279 link->hw_sata_spd_limit &= (1 << spd) - 1; 5280 5281 ata_force_link_limits(link); 5282 5283 link->sata_spd_limit = link->hw_sata_spd_limit; 5284 5285 return 0; 5286 } 5287 5288 /** 5289 * ata_port_alloc - allocate and initialize basic ATA port resources 5290 * @host: ATA host this allocated port belongs to 5291 * 5292 * Allocate and initialize basic ATA port resources. 5293 * 5294 * RETURNS: 5295 * Allocate ATA port on success, NULL on failure. 5296 * 5297 * LOCKING: 5298 * Inherited from calling layer (may sleep). 5299 */ 5300 struct ata_port *ata_port_alloc(struct ata_host *host) 5301 { 5302 struct ata_port *ap; 5303 5304 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5305 if (!ap) 5306 return NULL; 5307 5308 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5309 ap->lock = &host->lock; 5310 ap->print_id = -1; 5311 ap->local_port_no = -1; 5312 ap->host = host; 5313 ap->dev = host->dev; 5314 5315 mutex_init(&ap->scsi_scan_mutex); 5316 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5317 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5318 INIT_LIST_HEAD(&ap->eh_done_q); 5319 init_waitqueue_head(&ap->eh_wait_q); 5320 init_completion(&ap->park_req_pending); 5321 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5322 TIMER_DEFERRABLE); 5323 5324 ap->cbl = ATA_CBL_NONE; 5325 5326 ata_link_init(ap, &ap->link, 0); 5327 5328 #ifdef ATA_IRQ_TRAP 5329 ap->stats.unhandled_irq = 1; 5330 ap->stats.idle_irq = 1; 5331 #endif 5332 ata_sff_port_init(ap); 5333 5334 return ap; 5335 } 5336 5337 static void ata_devres_release(struct device *gendev, void *res) 5338 { 5339 struct ata_host *host = dev_get_drvdata(gendev); 5340 int i; 5341 5342 for (i = 0; i < host->n_ports; i++) { 5343 struct ata_port *ap = host->ports[i]; 5344 5345 if (!ap) 5346 continue; 5347 5348 if (ap->scsi_host) 5349 scsi_host_put(ap->scsi_host); 5350 5351 } 5352 5353 dev_set_drvdata(gendev, NULL); 5354 ata_host_put(host); 5355 } 5356 5357 static void ata_host_release(struct kref *kref) 5358 { 5359 struct ata_host *host = container_of(kref, struct ata_host, kref); 5360 int i; 5361 5362 for (i = 0; i < host->n_ports; i++) { 5363 struct ata_port *ap = host->ports[i]; 5364 5365 kfree(ap->pmp_link); 5366 kfree(ap->slave_link); 5367 kfree(ap); 5368 host->ports[i] = NULL; 5369 } 5370 kfree(host); 5371 } 5372 5373 void ata_host_get(struct ata_host *host) 5374 { 5375 kref_get(&host->kref); 5376 } 5377 5378 void ata_host_put(struct ata_host *host) 5379 { 5380 kref_put(&host->kref, ata_host_release); 5381 } 5382 EXPORT_SYMBOL_GPL(ata_host_put); 5383 5384 /** 5385 * ata_host_alloc - allocate and init basic ATA host resources 5386 * @dev: generic device this host is associated with 5387 * @max_ports: maximum number of ATA ports associated with this host 5388 * 5389 * Allocate and initialize basic ATA host resources. LLD calls 5390 * this function to allocate a host, initializes it fully and 5391 * attaches it using ata_host_register(). 5392 * 5393 * @max_ports ports are allocated and host->n_ports is 5394 * initialized to @max_ports. The caller is allowed to decrease 5395 * host->n_ports before calling ata_host_register(). The unused 5396 * ports will be automatically freed on registration. 5397 * 5398 * RETURNS: 5399 * Allocate ATA host on success, NULL on failure. 5400 * 5401 * LOCKING: 5402 * Inherited from calling layer (may sleep). 5403 */ 5404 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5405 { 5406 struct ata_host *host; 5407 size_t sz; 5408 int i; 5409 void *dr; 5410 5411 /* alloc a container for our list of ATA ports (buses) */ 5412 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5413 host = kzalloc(sz, GFP_KERNEL); 5414 if (!host) 5415 return NULL; 5416 5417 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5418 goto err_free; 5419 5420 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5421 if (!dr) 5422 goto err_out; 5423 5424 devres_add(dev, dr); 5425 dev_set_drvdata(dev, host); 5426 5427 spin_lock_init(&host->lock); 5428 mutex_init(&host->eh_mutex); 5429 host->dev = dev; 5430 host->n_ports = max_ports; 5431 kref_init(&host->kref); 5432 5433 /* allocate ports bound to this host */ 5434 for (i = 0; i < max_ports; i++) { 5435 struct ata_port *ap; 5436 5437 ap = ata_port_alloc(host); 5438 if (!ap) 5439 goto err_out; 5440 5441 ap->port_no = i; 5442 host->ports[i] = ap; 5443 } 5444 5445 devres_remove_group(dev, NULL); 5446 return host; 5447 5448 err_out: 5449 devres_release_group(dev, NULL); 5450 err_free: 5451 kfree(host); 5452 return NULL; 5453 } 5454 EXPORT_SYMBOL_GPL(ata_host_alloc); 5455 5456 /** 5457 * ata_host_alloc_pinfo - alloc host and init with port_info array 5458 * @dev: generic device this host is associated with 5459 * @ppi: array of ATA port_info to initialize host with 5460 * @n_ports: number of ATA ports attached to this host 5461 * 5462 * Allocate ATA host and initialize with info from @ppi. If NULL 5463 * terminated, @ppi may contain fewer entries than @n_ports. The 5464 * last entry will be used for the remaining ports. 5465 * 5466 * RETURNS: 5467 * Allocate ATA host on success, NULL on failure. 5468 * 5469 * LOCKING: 5470 * Inherited from calling layer (may sleep). 5471 */ 5472 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5473 const struct ata_port_info * const * ppi, 5474 int n_ports) 5475 { 5476 const struct ata_port_info *pi = &ata_dummy_port_info; 5477 struct ata_host *host; 5478 int i, j; 5479 5480 host = ata_host_alloc(dev, n_ports); 5481 if (!host) 5482 return NULL; 5483 5484 for (i = 0, j = 0; i < host->n_ports; i++) { 5485 struct ata_port *ap = host->ports[i]; 5486 5487 if (ppi[j]) 5488 pi = ppi[j++]; 5489 5490 ap->pio_mask = pi->pio_mask; 5491 ap->mwdma_mask = pi->mwdma_mask; 5492 ap->udma_mask = pi->udma_mask; 5493 ap->flags |= pi->flags; 5494 ap->link.flags |= pi->link_flags; 5495 ap->ops = pi->port_ops; 5496 5497 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5498 host->ops = pi->port_ops; 5499 } 5500 5501 return host; 5502 } 5503 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5504 5505 static void ata_host_stop(struct device *gendev, void *res) 5506 { 5507 struct ata_host *host = dev_get_drvdata(gendev); 5508 int i; 5509 5510 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5511 5512 for (i = 0; i < host->n_ports; i++) { 5513 struct ata_port *ap = host->ports[i]; 5514 5515 if (ap->ops->port_stop) 5516 ap->ops->port_stop(ap); 5517 } 5518 5519 if (host->ops->host_stop) 5520 host->ops->host_stop(host); 5521 } 5522 5523 /** 5524 * ata_finalize_port_ops - finalize ata_port_operations 5525 * @ops: ata_port_operations to finalize 5526 * 5527 * An ata_port_operations can inherit from another ops and that 5528 * ops can again inherit from another. This can go on as many 5529 * times as necessary as long as there is no loop in the 5530 * inheritance chain. 5531 * 5532 * Ops tables are finalized when the host is started. NULL or 5533 * unspecified entries are inherited from the closet ancestor 5534 * which has the method and the entry is populated with it. 5535 * After finalization, the ops table directly points to all the 5536 * methods and ->inherits is no longer necessary and cleared. 5537 * 5538 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5539 * 5540 * LOCKING: 5541 * None. 5542 */ 5543 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5544 { 5545 static DEFINE_SPINLOCK(lock); 5546 const struct ata_port_operations *cur; 5547 void **begin = (void **)ops; 5548 void **end = (void **)&ops->inherits; 5549 void **pp; 5550 5551 if (!ops || !ops->inherits) 5552 return; 5553 5554 spin_lock(&lock); 5555 5556 for (cur = ops->inherits; cur; cur = cur->inherits) { 5557 void **inherit = (void **)cur; 5558 5559 for (pp = begin; pp < end; pp++, inherit++) 5560 if (!*pp) 5561 *pp = *inherit; 5562 } 5563 5564 for (pp = begin; pp < end; pp++) 5565 if (IS_ERR(*pp)) 5566 *pp = NULL; 5567 5568 ops->inherits = NULL; 5569 5570 spin_unlock(&lock); 5571 } 5572 5573 /** 5574 * ata_host_start - start and freeze ports of an ATA host 5575 * @host: ATA host to start ports for 5576 * 5577 * Start and then freeze ports of @host. Started status is 5578 * recorded in host->flags, so this function can be called 5579 * multiple times. Ports are guaranteed to get started only 5580 * once. If host->ops is not initialized yet, it is set to the 5581 * first non-dummy port ops. 5582 * 5583 * LOCKING: 5584 * Inherited from calling layer (may sleep). 5585 * 5586 * RETURNS: 5587 * 0 if all ports are started successfully, -errno otherwise. 5588 */ 5589 int ata_host_start(struct ata_host *host) 5590 { 5591 int have_stop = 0; 5592 void *start_dr = NULL; 5593 int i, rc; 5594 5595 if (host->flags & ATA_HOST_STARTED) 5596 return 0; 5597 5598 ata_finalize_port_ops(host->ops); 5599 5600 for (i = 0; i < host->n_ports; i++) { 5601 struct ata_port *ap = host->ports[i]; 5602 5603 ata_finalize_port_ops(ap->ops); 5604 5605 if (!host->ops && !ata_port_is_dummy(ap)) 5606 host->ops = ap->ops; 5607 5608 if (ap->ops->port_stop) 5609 have_stop = 1; 5610 } 5611 5612 if (host->ops && host->ops->host_stop) 5613 have_stop = 1; 5614 5615 if (have_stop) { 5616 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5617 if (!start_dr) 5618 return -ENOMEM; 5619 } 5620 5621 for (i = 0; i < host->n_ports; i++) { 5622 struct ata_port *ap = host->ports[i]; 5623 5624 if (ap->ops->port_start) { 5625 rc = ap->ops->port_start(ap); 5626 if (rc) { 5627 if (rc != -ENODEV) 5628 dev_err(host->dev, 5629 "failed to start port %d (errno=%d)\n", 5630 i, rc); 5631 goto err_out; 5632 } 5633 } 5634 ata_eh_freeze_port(ap); 5635 } 5636 5637 if (start_dr) 5638 devres_add(host->dev, start_dr); 5639 host->flags |= ATA_HOST_STARTED; 5640 return 0; 5641 5642 err_out: 5643 while (--i >= 0) { 5644 struct ata_port *ap = host->ports[i]; 5645 5646 if (ap->ops->port_stop) 5647 ap->ops->port_stop(ap); 5648 } 5649 devres_free(start_dr); 5650 return rc; 5651 } 5652 EXPORT_SYMBOL_GPL(ata_host_start); 5653 5654 /** 5655 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5656 * @host: host to initialize 5657 * @dev: device host is attached to 5658 * @ops: port_ops 5659 * 5660 */ 5661 void ata_host_init(struct ata_host *host, struct device *dev, 5662 struct ata_port_operations *ops) 5663 { 5664 spin_lock_init(&host->lock); 5665 mutex_init(&host->eh_mutex); 5666 host->n_tags = ATA_MAX_QUEUE; 5667 host->dev = dev; 5668 host->ops = ops; 5669 kref_init(&host->kref); 5670 } 5671 EXPORT_SYMBOL_GPL(ata_host_init); 5672 5673 void __ata_port_probe(struct ata_port *ap) 5674 { 5675 struct ata_eh_info *ehi = &ap->link.eh_info; 5676 unsigned long flags; 5677 5678 /* kick EH for boot probing */ 5679 spin_lock_irqsave(ap->lock, flags); 5680 5681 ehi->probe_mask |= ATA_ALL_DEVICES; 5682 ehi->action |= ATA_EH_RESET; 5683 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5684 5685 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5686 ap->pflags |= ATA_PFLAG_LOADING; 5687 ata_port_schedule_eh(ap); 5688 5689 spin_unlock_irqrestore(ap->lock, flags); 5690 } 5691 5692 int ata_port_probe(struct ata_port *ap) 5693 { 5694 int rc = 0; 5695 5696 if (ap->ops->error_handler) { 5697 __ata_port_probe(ap); 5698 ata_port_wait_eh(ap); 5699 } else { 5700 rc = ata_bus_probe(ap); 5701 } 5702 return rc; 5703 } 5704 5705 5706 static void async_port_probe(void *data, async_cookie_t cookie) 5707 { 5708 struct ata_port *ap = data; 5709 5710 /* 5711 * If we're not allowed to scan this host in parallel, 5712 * we need to wait until all previous scans have completed 5713 * before going further. 5714 * Jeff Garzik says this is only within a controller, so we 5715 * don't need to wait for port 0, only for later ports. 5716 */ 5717 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5718 async_synchronize_cookie(cookie); 5719 5720 (void)ata_port_probe(ap); 5721 5722 /* in order to keep device order, we need to synchronize at this point */ 5723 async_synchronize_cookie(cookie); 5724 5725 ata_scsi_scan_host(ap, 1); 5726 } 5727 5728 /** 5729 * ata_host_register - register initialized ATA host 5730 * @host: ATA host to register 5731 * @sht: template for SCSI host 5732 * 5733 * Register initialized ATA host. @host is allocated using 5734 * ata_host_alloc() and fully initialized by LLD. This function 5735 * starts ports, registers @host with ATA and SCSI layers and 5736 * probe registered devices. 5737 * 5738 * LOCKING: 5739 * Inherited from calling layer (may sleep). 5740 * 5741 * RETURNS: 5742 * 0 on success, -errno otherwise. 5743 */ 5744 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5745 { 5746 int i, rc; 5747 5748 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5749 5750 /* host must have been started */ 5751 if (!(host->flags & ATA_HOST_STARTED)) { 5752 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5753 WARN_ON(1); 5754 return -EINVAL; 5755 } 5756 5757 /* Blow away unused ports. This happens when LLD can't 5758 * determine the exact number of ports to allocate at 5759 * allocation time. 5760 */ 5761 for (i = host->n_ports; host->ports[i]; i++) 5762 kfree(host->ports[i]); 5763 5764 /* give ports names and add SCSI hosts */ 5765 for (i = 0; i < host->n_ports; i++) { 5766 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5767 host->ports[i]->local_port_no = i + 1; 5768 } 5769 5770 /* Create associated sysfs transport objects */ 5771 for (i = 0; i < host->n_ports; i++) { 5772 rc = ata_tport_add(host->dev,host->ports[i]); 5773 if (rc) { 5774 goto err_tadd; 5775 } 5776 } 5777 5778 rc = ata_scsi_add_hosts(host, sht); 5779 if (rc) 5780 goto err_tadd; 5781 5782 /* set cable, sata_spd_limit and report */ 5783 for (i = 0; i < host->n_ports; i++) { 5784 struct ata_port *ap = host->ports[i]; 5785 unsigned int xfer_mask; 5786 5787 /* set SATA cable type if still unset */ 5788 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5789 ap->cbl = ATA_CBL_SATA; 5790 5791 /* init sata_spd_limit to the current value */ 5792 sata_link_init_spd(&ap->link); 5793 if (ap->slave_link) 5794 sata_link_init_spd(ap->slave_link); 5795 5796 /* print per-port info to dmesg */ 5797 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5798 ap->udma_mask); 5799 5800 if (!ata_port_is_dummy(ap)) { 5801 ata_port_info(ap, "%cATA max %s %s\n", 5802 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5803 ata_mode_string(xfer_mask), 5804 ap->link.eh_info.desc); 5805 ata_ehi_clear_desc(&ap->link.eh_info); 5806 } else 5807 ata_port_info(ap, "DUMMY\n"); 5808 } 5809 5810 /* perform each probe asynchronously */ 5811 for (i = 0; i < host->n_ports; i++) { 5812 struct ata_port *ap = host->ports[i]; 5813 ap->cookie = async_schedule(async_port_probe, ap); 5814 } 5815 5816 return 0; 5817 5818 err_tadd: 5819 while (--i >= 0) { 5820 ata_tport_delete(host->ports[i]); 5821 } 5822 return rc; 5823 5824 } 5825 EXPORT_SYMBOL_GPL(ata_host_register); 5826 5827 /** 5828 * ata_host_activate - start host, request IRQ and register it 5829 * @host: target ATA host 5830 * @irq: IRQ to request 5831 * @irq_handler: irq_handler used when requesting IRQ 5832 * @irq_flags: irq_flags used when requesting IRQ 5833 * @sht: scsi_host_template to use when registering the host 5834 * 5835 * After allocating an ATA host and initializing it, most libata 5836 * LLDs perform three steps to activate the host - start host, 5837 * request IRQ and register it. This helper takes necessary 5838 * arguments and performs the three steps in one go. 5839 * 5840 * An invalid IRQ skips the IRQ registration and expects the host to 5841 * have set polling mode on the port. In this case, @irq_handler 5842 * should be NULL. 5843 * 5844 * LOCKING: 5845 * Inherited from calling layer (may sleep). 5846 * 5847 * RETURNS: 5848 * 0 on success, -errno otherwise. 5849 */ 5850 int ata_host_activate(struct ata_host *host, int irq, 5851 irq_handler_t irq_handler, unsigned long irq_flags, 5852 struct scsi_host_template *sht) 5853 { 5854 int i, rc; 5855 char *irq_desc; 5856 5857 rc = ata_host_start(host); 5858 if (rc) 5859 return rc; 5860 5861 /* Special case for polling mode */ 5862 if (!irq) { 5863 WARN_ON(irq_handler); 5864 return ata_host_register(host, sht); 5865 } 5866 5867 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 5868 dev_driver_string(host->dev), 5869 dev_name(host->dev)); 5870 if (!irq_desc) 5871 return -ENOMEM; 5872 5873 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5874 irq_desc, host); 5875 if (rc) 5876 return rc; 5877 5878 for (i = 0; i < host->n_ports; i++) 5879 ata_port_desc(host->ports[i], "irq %d", irq); 5880 5881 rc = ata_host_register(host, sht); 5882 /* if failed, just free the IRQ and leave ports alone */ 5883 if (rc) 5884 devm_free_irq(host->dev, irq, host); 5885 5886 return rc; 5887 } 5888 EXPORT_SYMBOL_GPL(ata_host_activate); 5889 5890 /** 5891 * ata_port_detach - Detach ATA port in preparation of device removal 5892 * @ap: ATA port to be detached 5893 * 5894 * Detach all ATA devices and the associated SCSI devices of @ap; 5895 * then, remove the associated SCSI host. @ap is guaranteed to 5896 * be quiescent on return from this function. 5897 * 5898 * LOCKING: 5899 * Kernel thread context (may sleep). 5900 */ 5901 static void ata_port_detach(struct ata_port *ap) 5902 { 5903 unsigned long flags; 5904 struct ata_link *link; 5905 struct ata_device *dev; 5906 5907 if (!ap->ops->error_handler) 5908 goto skip_eh; 5909 5910 /* tell EH we're leaving & flush EH */ 5911 spin_lock_irqsave(ap->lock, flags); 5912 ap->pflags |= ATA_PFLAG_UNLOADING; 5913 ata_port_schedule_eh(ap); 5914 spin_unlock_irqrestore(ap->lock, flags); 5915 5916 /* wait till EH commits suicide */ 5917 ata_port_wait_eh(ap); 5918 5919 /* it better be dead now */ 5920 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 5921 5922 cancel_delayed_work_sync(&ap->hotplug_task); 5923 5924 skip_eh: 5925 /* clean up zpodd on port removal */ 5926 ata_for_each_link(link, ap, HOST_FIRST) { 5927 ata_for_each_dev(dev, link, ALL) { 5928 if (zpodd_dev_enabled(dev)) 5929 zpodd_exit(dev); 5930 } 5931 } 5932 if (ap->pmp_link) { 5933 int i; 5934 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 5935 ata_tlink_delete(&ap->pmp_link[i]); 5936 } 5937 /* remove the associated SCSI host */ 5938 scsi_remove_host(ap->scsi_host); 5939 ata_tport_delete(ap); 5940 } 5941 5942 /** 5943 * ata_host_detach - Detach all ports of an ATA host 5944 * @host: Host to detach 5945 * 5946 * Detach all ports of @host. 5947 * 5948 * LOCKING: 5949 * Kernel thread context (may sleep). 5950 */ 5951 void ata_host_detach(struct ata_host *host) 5952 { 5953 int i; 5954 5955 for (i = 0; i < host->n_ports; i++) { 5956 /* Ensure ata_port probe has completed */ 5957 async_synchronize_cookie(host->ports[i]->cookie + 1); 5958 ata_port_detach(host->ports[i]); 5959 } 5960 5961 /* the host is dead now, dissociate ACPI */ 5962 ata_acpi_dissociate(host); 5963 } 5964 EXPORT_SYMBOL_GPL(ata_host_detach); 5965 5966 #ifdef CONFIG_PCI 5967 5968 /** 5969 * ata_pci_remove_one - PCI layer callback for device removal 5970 * @pdev: PCI device that was removed 5971 * 5972 * PCI layer indicates to libata via this hook that hot-unplug or 5973 * module unload event has occurred. Detach all ports. Resource 5974 * release is handled via devres. 5975 * 5976 * LOCKING: 5977 * Inherited from PCI layer (may sleep). 5978 */ 5979 void ata_pci_remove_one(struct pci_dev *pdev) 5980 { 5981 struct ata_host *host = pci_get_drvdata(pdev); 5982 5983 ata_host_detach(host); 5984 } 5985 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 5986 5987 void ata_pci_shutdown_one(struct pci_dev *pdev) 5988 { 5989 struct ata_host *host = pci_get_drvdata(pdev); 5990 int i; 5991 5992 for (i = 0; i < host->n_ports; i++) { 5993 struct ata_port *ap = host->ports[i]; 5994 5995 ap->pflags |= ATA_PFLAG_FROZEN; 5996 5997 /* Disable port interrupts */ 5998 if (ap->ops->freeze) 5999 ap->ops->freeze(ap); 6000 6001 /* Stop the port DMA engines */ 6002 if (ap->ops->port_stop) 6003 ap->ops->port_stop(ap); 6004 } 6005 } 6006 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6007 6008 /* move to PCI subsystem */ 6009 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6010 { 6011 unsigned long tmp = 0; 6012 6013 switch (bits->width) { 6014 case 1: { 6015 u8 tmp8 = 0; 6016 pci_read_config_byte(pdev, bits->reg, &tmp8); 6017 tmp = tmp8; 6018 break; 6019 } 6020 case 2: { 6021 u16 tmp16 = 0; 6022 pci_read_config_word(pdev, bits->reg, &tmp16); 6023 tmp = tmp16; 6024 break; 6025 } 6026 case 4: { 6027 u32 tmp32 = 0; 6028 pci_read_config_dword(pdev, bits->reg, &tmp32); 6029 tmp = tmp32; 6030 break; 6031 } 6032 6033 default: 6034 return -EINVAL; 6035 } 6036 6037 tmp &= bits->mask; 6038 6039 return (tmp == bits->val) ? 1 : 0; 6040 } 6041 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6042 6043 #ifdef CONFIG_PM 6044 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6045 { 6046 pci_save_state(pdev); 6047 pci_disable_device(pdev); 6048 6049 if (mesg.event & PM_EVENT_SLEEP) 6050 pci_set_power_state(pdev, PCI_D3hot); 6051 } 6052 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6053 6054 int ata_pci_device_do_resume(struct pci_dev *pdev) 6055 { 6056 int rc; 6057 6058 pci_set_power_state(pdev, PCI_D0); 6059 pci_restore_state(pdev); 6060 6061 rc = pcim_enable_device(pdev); 6062 if (rc) { 6063 dev_err(&pdev->dev, 6064 "failed to enable device after resume (%d)\n", rc); 6065 return rc; 6066 } 6067 6068 pci_set_master(pdev); 6069 return 0; 6070 } 6071 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6072 6073 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6074 { 6075 struct ata_host *host = pci_get_drvdata(pdev); 6076 6077 ata_host_suspend(host, mesg); 6078 6079 ata_pci_device_do_suspend(pdev, mesg); 6080 6081 return 0; 6082 } 6083 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6084 6085 int ata_pci_device_resume(struct pci_dev *pdev) 6086 { 6087 struct ata_host *host = pci_get_drvdata(pdev); 6088 int rc; 6089 6090 rc = ata_pci_device_do_resume(pdev); 6091 if (rc == 0) 6092 ata_host_resume(host); 6093 return rc; 6094 } 6095 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6096 #endif /* CONFIG_PM */ 6097 #endif /* CONFIG_PCI */ 6098 6099 /** 6100 * ata_platform_remove_one - Platform layer callback for device removal 6101 * @pdev: Platform device that was removed 6102 * 6103 * Platform layer indicates to libata via this hook that hot-unplug or 6104 * module unload event has occurred. Detach all ports. Resource 6105 * release is handled via devres. 6106 * 6107 * LOCKING: 6108 * Inherited from platform layer (may sleep). 6109 */ 6110 int ata_platform_remove_one(struct platform_device *pdev) 6111 { 6112 struct ata_host *host = platform_get_drvdata(pdev); 6113 6114 ata_host_detach(host); 6115 6116 return 0; 6117 } 6118 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6119 6120 #ifdef CONFIG_ATA_FORCE 6121 6122 #define force_cbl(name, flag) \ 6123 { #name, .cbl = (flag) } 6124 6125 #define force_spd_limit(spd, val) \ 6126 { #spd, .spd_limit = (val) } 6127 6128 #define force_xfer(mode, shift) \ 6129 { #mode, .xfer_mask = (1UL << (shift)) } 6130 6131 #define force_lflag_on(name, flags) \ 6132 { #name, .lflags_on = (flags) } 6133 6134 #define force_lflag_onoff(name, flags) \ 6135 { "no" #name, .lflags_on = (flags) }, \ 6136 { #name, .lflags_off = (flags) } 6137 6138 #define force_horkage_on(name, flag) \ 6139 { #name, .horkage_on = (flag) } 6140 6141 #define force_horkage_onoff(name, flag) \ 6142 { "no" #name, .horkage_on = (flag) }, \ 6143 { #name, .horkage_off = (flag) } 6144 6145 static const struct ata_force_param force_tbl[] __initconst = { 6146 force_cbl(40c, ATA_CBL_PATA40), 6147 force_cbl(80c, ATA_CBL_PATA80), 6148 force_cbl(short40c, ATA_CBL_PATA40_SHORT), 6149 force_cbl(unk, ATA_CBL_PATA_UNK), 6150 force_cbl(ign, ATA_CBL_PATA_IGN), 6151 force_cbl(sata, ATA_CBL_SATA), 6152 6153 force_spd_limit(1.5Gbps, 1), 6154 force_spd_limit(3.0Gbps, 2), 6155 6156 force_xfer(pio0, ATA_SHIFT_PIO + 0), 6157 force_xfer(pio1, ATA_SHIFT_PIO + 1), 6158 force_xfer(pio2, ATA_SHIFT_PIO + 2), 6159 force_xfer(pio3, ATA_SHIFT_PIO + 3), 6160 force_xfer(pio4, ATA_SHIFT_PIO + 4), 6161 force_xfer(pio5, ATA_SHIFT_PIO + 5), 6162 force_xfer(pio6, ATA_SHIFT_PIO + 6), 6163 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0), 6164 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1), 6165 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2), 6166 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3), 6167 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4), 6168 force_xfer(udma0, ATA_SHIFT_UDMA + 0), 6169 force_xfer(udma16, ATA_SHIFT_UDMA + 0), 6170 force_xfer(udma/16, ATA_SHIFT_UDMA + 0), 6171 force_xfer(udma1, ATA_SHIFT_UDMA + 1), 6172 force_xfer(udma25, ATA_SHIFT_UDMA + 1), 6173 force_xfer(udma/25, ATA_SHIFT_UDMA + 1), 6174 force_xfer(udma2, ATA_SHIFT_UDMA + 2), 6175 force_xfer(udma33, ATA_SHIFT_UDMA + 2), 6176 force_xfer(udma/33, ATA_SHIFT_UDMA + 2), 6177 force_xfer(udma3, ATA_SHIFT_UDMA + 3), 6178 force_xfer(udma44, ATA_SHIFT_UDMA + 3), 6179 force_xfer(udma/44, ATA_SHIFT_UDMA + 3), 6180 force_xfer(udma4, ATA_SHIFT_UDMA + 4), 6181 force_xfer(udma66, ATA_SHIFT_UDMA + 4), 6182 force_xfer(udma/66, ATA_SHIFT_UDMA + 4), 6183 force_xfer(udma5, ATA_SHIFT_UDMA + 5), 6184 force_xfer(udma100, ATA_SHIFT_UDMA + 5), 6185 force_xfer(udma/100, ATA_SHIFT_UDMA + 5), 6186 force_xfer(udma6, ATA_SHIFT_UDMA + 6), 6187 force_xfer(udma133, ATA_SHIFT_UDMA + 6), 6188 force_xfer(udma/133, ATA_SHIFT_UDMA + 6), 6189 force_xfer(udma7, ATA_SHIFT_UDMA + 7), 6190 6191 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST), 6192 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST), 6193 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST), 6194 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE), 6195 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY), 6196 6197 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ), 6198 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM), 6199 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI), 6200 6201 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM), 6202 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM), 6203 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M), 6204 6205 force_horkage_onoff(dma, ATA_HORKAGE_NODMA), 6206 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR), 6207 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA), 6208 6209 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG), 6210 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG), 6211 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR), 6212 6213 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128), 6214 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024), 6215 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48), 6216 6217 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM), 6218 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER), 6219 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID), 6220 6221 force_horkage_on(disable, ATA_HORKAGE_DISABLE), 6222 }; 6223 6224 static int __init ata_parse_force_one(char **cur, 6225 struct ata_force_ent *force_ent, 6226 const char **reason) 6227 { 6228 char *start = *cur, *p = *cur; 6229 char *id, *val, *endp; 6230 const struct ata_force_param *match_fp = NULL; 6231 int nr_matches = 0, i; 6232 6233 /* find where this param ends and update *cur */ 6234 while (*p != '\0' && *p != ',') 6235 p++; 6236 6237 if (*p == '\0') 6238 *cur = p; 6239 else 6240 *cur = p + 1; 6241 6242 *p = '\0'; 6243 6244 /* parse */ 6245 p = strchr(start, ':'); 6246 if (!p) { 6247 val = strstrip(start); 6248 goto parse_val; 6249 } 6250 *p = '\0'; 6251 6252 id = strstrip(start); 6253 val = strstrip(p + 1); 6254 6255 /* parse id */ 6256 p = strchr(id, '.'); 6257 if (p) { 6258 *p++ = '\0'; 6259 force_ent->device = simple_strtoul(p, &endp, 10); 6260 if (p == endp || *endp != '\0') { 6261 *reason = "invalid device"; 6262 return -EINVAL; 6263 } 6264 } 6265 6266 force_ent->port = simple_strtoul(id, &endp, 10); 6267 if (id == endp || *endp != '\0') { 6268 *reason = "invalid port/link"; 6269 return -EINVAL; 6270 } 6271 6272 parse_val: 6273 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6274 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6275 const struct ata_force_param *fp = &force_tbl[i]; 6276 6277 if (strncasecmp(val, fp->name, strlen(val))) 6278 continue; 6279 6280 nr_matches++; 6281 match_fp = fp; 6282 6283 if (strcasecmp(val, fp->name) == 0) { 6284 nr_matches = 1; 6285 break; 6286 } 6287 } 6288 6289 if (!nr_matches) { 6290 *reason = "unknown value"; 6291 return -EINVAL; 6292 } 6293 if (nr_matches > 1) { 6294 *reason = "ambiguous value"; 6295 return -EINVAL; 6296 } 6297 6298 force_ent->param = *match_fp; 6299 6300 return 0; 6301 } 6302 6303 static void __init ata_parse_force_param(void) 6304 { 6305 int idx = 0, size = 1; 6306 int last_port = -1, last_device = -1; 6307 char *p, *cur, *next; 6308 6309 /* Calculate maximum number of params and allocate ata_force_tbl */ 6310 for (p = ata_force_param_buf; *p; p++) 6311 if (*p == ',') 6312 size++; 6313 6314 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6315 if (!ata_force_tbl) { 6316 printk(KERN_WARNING "ata: failed to extend force table, " 6317 "libata.force ignored\n"); 6318 return; 6319 } 6320 6321 /* parse and populate the table */ 6322 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6323 const char *reason = ""; 6324 struct ata_force_ent te = { .port = -1, .device = -1 }; 6325 6326 next = cur; 6327 if (ata_parse_force_one(&next, &te, &reason)) { 6328 printk(KERN_WARNING "ata: failed to parse force " 6329 "parameter \"%s\" (%s)\n", 6330 cur, reason); 6331 continue; 6332 } 6333 6334 if (te.port == -1) { 6335 te.port = last_port; 6336 te.device = last_device; 6337 } 6338 6339 ata_force_tbl[idx++] = te; 6340 6341 last_port = te.port; 6342 last_device = te.device; 6343 } 6344 6345 ata_force_tbl_size = idx; 6346 } 6347 6348 static void ata_free_force_param(void) 6349 { 6350 kfree(ata_force_tbl); 6351 } 6352 #else 6353 static inline void ata_parse_force_param(void) { } 6354 static inline void ata_free_force_param(void) { } 6355 #endif 6356 6357 static int __init ata_init(void) 6358 { 6359 int rc; 6360 6361 ata_parse_force_param(); 6362 6363 rc = ata_sff_init(); 6364 if (rc) { 6365 ata_free_force_param(); 6366 return rc; 6367 } 6368 6369 libata_transport_init(); 6370 ata_scsi_transport_template = ata_attach_transport(); 6371 if (!ata_scsi_transport_template) { 6372 ata_sff_exit(); 6373 rc = -ENOMEM; 6374 goto err_out; 6375 } 6376 6377 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6378 return 0; 6379 6380 err_out: 6381 return rc; 6382 } 6383 6384 static void __exit ata_exit(void) 6385 { 6386 ata_release_transport(ata_scsi_transport_template); 6387 libata_transport_exit(); 6388 ata_sff_exit(); 6389 ata_free_force_param(); 6390 } 6391 6392 subsys_initcall(ata_init); 6393 module_exit(ata_exit); 6394 6395 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6396 6397 int ata_ratelimit(void) 6398 { 6399 return __ratelimit(&ratelimit); 6400 } 6401 EXPORT_SYMBOL_GPL(ata_ratelimit); 6402 6403 /** 6404 * ata_msleep - ATA EH owner aware msleep 6405 * @ap: ATA port to attribute the sleep to 6406 * @msecs: duration to sleep in milliseconds 6407 * 6408 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6409 * ownership is released before going to sleep and reacquired 6410 * after the sleep is complete. IOW, other ports sharing the 6411 * @ap->host will be allowed to own the EH while this task is 6412 * sleeping. 6413 * 6414 * LOCKING: 6415 * Might sleep. 6416 */ 6417 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6418 { 6419 bool owns_eh = ap && ap->host->eh_owner == current; 6420 6421 if (owns_eh) 6422 ata_eh_release(ap); 6423 6424 if (msecs < 20) { 6425 unsigned long usecs = msecs * USEC_PER_MSEC; 6426 usleep_range(usecs, usecs + 50); 6427 } else { 6428 msleep(msecs); 6429 } 6430 6431 if (owns_eh) 6432 ata_eh_acquire(ap); 6433 } 6434 EXPORT_SYMBOL_GPL(ata_msleep); 6435 6436 /** 6437 * ata_wait_register - wait until register value changes 6438 * @ap: ATA port to wait register for, can be NULL 6439 * @reg: IO-mapped register 6440 * @mask: Mask to apply to read register value 6441 * @val: Wait condition 6442 * @interval: polling interval in milliseconds 6443 * @timeout: timeout in milliseconds 6444 * 6445 * Waiting for some bits of register to change is a common 6446 * operation for ATA controllers. This function reads 32bit LE 6447 * IO-mapped register @reg and tests for the following condition. 6448 * 6449 * (*@reg & mask) != val 6450 * 6451 * If the condition is met, it returns; otherwise, the process is 6452 * repeated after @interval_msec until timeout. 6453 * 6454 * LOCKING: 6455 * Kernel thread context (may sleep) 6456 * 6457 * RETURNS: 6458 * The final register value. 6459 */ 6460 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6461 unsigned long interval, unsigned long timeout) 6462 { 6463 unsigned long deadline; 6464 u32 tmp; 6465 6466 tmp = ioread32(reg); 6467 6468 /* Calculate timeout _after_ the first read to make sure 6469 * preceding writes reach the controller before starting to 6470 * eat away the timeout. 6471 */ 6472 deadline = ata_deadline(jiffies, timeout); 6473 6474 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6475 ata_msleep(ap, interval); 6476 tmp = ioread32(reg); 6477 } 6478 6479 return tmp; 6480 } 6481 EXPORT_SYMBOL_GPL(ata_wait_register); 6482 6483 /* 6484 * Dummy port_ops 6485 */ 6486 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6487 { 6488 return AC_ERR_SYSTEM; 6489 } 6490 6491 static void ata_dummy_error_handler(struct ata_port *ap) 6492 { 6493 /* truly dummy */ 6494 } 6495 6496 struct ata_port_operations ata_dummy_port_ops = { 6497 .qc_prep = ata_noop_qc_prep, 6498 .qc_issue = ata_dummy_qc_issue, 6499 .error_handler = ata_dummy_error_handler, 6500 .sched_eh = ata_std_sched_eh, 6501 .end_eh = ata_std_end_eh, 6502 }; 6503 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6504 6505 const struct ata_port_info ata_dummy_port_info = { 6506 .port_ops = &ata_dummy_port_ops, 6507 }; 6508 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6509 6510 void ata_print_version(const struct device *dev, const char *version) 6511 { 6512 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6513 } 6514 EXPORT_SYMBOL(ata_print_version); 6515 6516 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6517 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6518 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6519 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6520 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6521