1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/driver-api/libata.rst 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/time.h> 54 #include <linux/interrupt.h> 55 #include <linux/completion.h> 56 #include <linux/suspend.h> 57 #include <linux/workqueue.h> 58 #include <linux/scatterlist.h> 59 #include <linux/io.h> 60 #include <linux/async.h> 61 #include <linux/log2.h> 62 #include <linux/slab.h> 63 #include <linux/glob.h> 64 #include <scsi/scsi.h> 65 #include <scsi/scsi_cmnd.h> 66 #include <scsi/scsi_host.h> 67 #include <linux/libata.h> 68 #include <asm/byteorder.h> 69 #include <asm/unaligned.h> 70 #include <linux/cdrom.h> 71 #include <linux/ratelimit.h> 72 #include <linux/leds.h> 73 #include <linux/pm_runtime.h> 74 #include <linux/platform_device.h> 75 76 #define CREATE_TRACE_POINTS 77 #include <trace/events/libata.h> 78 79 #include "libata.h" 80 #include "libata-transport.h" 81 82 /* debounce timing parameters in msecs { interval, duration, timeout } */ 83 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 84 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 85 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 86 87 const struct ata_port_operations ata_base_port_ops = { 88 .prereset = ata_std_prereset, 89 .postreset = ata_std_postreset, 90 .error_handler = ata_std_error_handler, 91 .sched_eh = ata_std_sched_eh, 92 .end_eh = ata_std_end_eh, 93 }; 94 95 const struct ata_port_operations sata_port_ops = { 96 .inherits = &ata_base_port_ops, 97 98 .qc_defer = ata_std_qc_defer, 99 .hardreset = sata_std_hardreset, 100 }; 101 102 static unsigned int ata_dev_init_params(struct ata_device *dev, 103 u16 heads, u16 sectors); 104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 105 static void ata_dev_xfermask(struct ata_device *dev); 106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 107 108 atomic_t ata_print_id = ATOMIC_INIT(0); 109 110 struct ata_force_param { 111 const char *name; 112 unsigned int cbl; 113 int spd_limit; 114 unsigned long xfer_mask; 115 unsigned int horkage_on; 116 unsigned int horkage_off; 117 unsigned int lflags; 118 }; 119 120 struct ata_force_ent { 121 int port; 122 int device; 123 struct ata_force_param param; 124 }; 125 126 static struct ata_force_ent *ata_force_tbl; 127 static int ata_force_tbl_size; 128 129 static char ata_force_param_buf[PAGE_SIZE] __initdata; 130 /* param_buf is thrown away after initialization, disallow read */ 131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 133 134 static int atapi_enabled = 1; 135 module_param(atapi_enabled, int, 0444); 136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 137 138 static int atapi_dmadir = 0; 139 module_param(atapi_dmadir, int, 0444); 140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 141 142 int atapi_passthru16 = 1; 143 module_param(atapi_passthru16, int, 0444); 144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 145 146 int libata_fua = 0; 147 module_param_named(fua, libata_fua, int, 0444); 148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 149 150 static int ata_ignore_hpa; 151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 153 154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 155 module_param_named(dma, libata_dma_mask, int, 0444); 156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 157 158 static int ata_probe_timeout; 159 module_param(ata_probe_timeout, int, 0444); 160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 161 162 int libata_noacpi = 0; 163 module_param_named(noacpi, libata_noacpi, int, 0444); 164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 165 166 int libata_allow_tpm = 0; 167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 169 170 static int atapi_an; 171 module_param(atapi_an, int, 0444); 172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 173 174 MODULE_AUTHOR("Jeff Garzik"); 175 MODULE_DESCRIPTION("Library module for ATA devices"); 176 MODULE_LICENSE("GPL"); 177 MODULE_VERSION(DRV_VERSION); 178 179 180 static bool ata_sstatus_online(u32 sstatus) 181 { 182 return (sstatus & 0xf) == 0x3; 183 } 184 185 /** 186 * ata_link_next - link iteration helper 187 * @link: the previous link, NULL to start 188 * @ap: ATA port containing links to iterate 189 * @mode: iteration mode, one of ATA_LITER_* 190 * 191 * LOCKING: 192 * Host lock or EH context. 193 * 194 * RETURNS: 195 * Pointer to the next link. 196 */ 197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 198 enum ata_link_iter_mode mode) 199 { 200 BUG_ON(mode != ATA_LITER_EDGE && 201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 202 203 /* NULL link indicates start of iteration */ 204 if (!link) 205 switch (mode) { 206 case ATA_LITER_EDGE: 207 case ATA_LITER_PMP_FIRST: 208 if (sata_pmp_attached(ap)) 209 return ap->pmp_link; 210 /* fall through */ 211 case ATA_LITER_HOST_FIRST: 212 return &ap->link; 213 } 214 215 /* we just iterated over the host link, what's next? */ 216 if (link == &ap->link) 217 switch (mode) { 218 case ATA_LITER_HOST_FIRST: 219 if (sata_pmp_attached(ap)) 220 return ap->pmp_link; 221 /* fall through */ 222 case ATA_LITER_PMP_FIRST: 223 if (unlikely(ap->slave_link)) 224 return ap->slave_link; 225 /* fall through */ 226 case ATA_LITER_EDGE: 227 return NULL; 228 } 229 230 /* slave_link excludes PMP */ 231 if (unlikely(link == ap->slave_link)) 232 return NULL; 233 234 /* we were over a PMP link */ 235 if (++link < ap->pmp_link + ap->nr_pmp_links) 236 return link; 237 238 if (mode == ATA_LITER_PMP_FIRST) 239 return &ap->link; 240 241 return NULL; 242 } 243 244 /** 245 * ata_dev_next - device iteration helper 246 * @dev: the previous device, NULL to start 247 * @link: ATA link containing devices to iterate 248 * @mode: iteration mode, one of ATA_DITER_* 249 * 250 * LOCKING: 251 * Host lock or EH context. 252 * 253 * RETURNS: 254 * Pointer to the next device. 255 */ 256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 257 enum ata_dev_iter_mode mode) 258 { 259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 261 262 /* NULL dev indicates start of iteration */ 263 if (!dev) 264 switch (mode) { 265 case ATA_DITER_ENABLED: 266 case ATA_DITER_ALL: 267 dev = link->device; 268 goto check; 269 case ATA_DITER_ENABLED_REVERSE: 270 case ATA_DITER_ALL_REVERSE: 271 dev = link->device + ata_link_max_devices(link) - 1; 272 goto check; 273 } 274 275 next: 276 /* move to the next one */ 277 switch (mode) { 278 case ATA_DITER_ENABLED: 279 case ATA_DITER_ALL: 280 if (++dev < link->device + ata_link_max_devices(link)) 281 goto check; 282 return NULL; 283 case ATA_DITER_ENABLED_REVERSE: 284 case ATA_DITER_ALL_REVERSE: 285 if (--dev >= link->device) 286 goto check; 287 return NULL; 288 } 289 290 check: 291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 292 !ata_dev_enabled(dev)) 293 goto next; 294 return dev; 295 } 296 297 /** 298 * ata_dev_phys_link - find physical link for a device 299 * @dev: ATA device to look up physical link for 300 * 301 * Look up physical link which @dev is attached to. Note that 302 * this is different from @dev->link only when @dev is on slave 303 * link. For all other cases, it's the same as @dev->link. 304 * 305 * LOCKING: 306 * Don't care. 307 * 308 * RETURNS: 309 * Pointer to the found physical link. 310 */ 311 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 312 { 313 struct ata_port *ap = dev->link->ap; 314 315 if (!ap->slave_link) 316 return dev->link; 317 if (!dev->devno) 318 return &ap->link; 319 return ap->slave_link; 320 } 321 322 /** 323 * ata_force_cbl - force cable type according to libata.force 324 * @ap: ATA port of interest 325 * 326 * Force cable type according to libata.force and whine about it. 327 * The last entry which has matching port number is used, so it 328 * can be specified as part of device force parameters. For 329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 330 * same effect. 331 * 332 * LOCKING: 333 * EH context. 334 */ 335 void ata_force_cbl(struct ata_port *ap) 336 { 337 int i; 338 339 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 340 const struct ata_force_ent *fe = &ata_force_tbl[i]; 341 342 if (fe->port != -1 && fe->port != ap->print_id) 343 continue; 344 345 if (fe->param.cbl == ATA_CBL_NONE) 346 continue; 347 348 ap->cbl = fe->param.cbl; 349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 350 return; 351 } 352 } 353 354 /** 355 * ata_force_link_limits - force link limits according to libata.force 356 * @link: ATA link of interest 357 * 358 * Force link flags and SATA spd limit according to libata.force 359 * and whine about it. When only the port part is specified 360 * (e.g. 1:), the limit applies to all links connected to both 361 * the host link and all fan-out ports connected via PMP. If the 362 * device part is specified as 0 (e.g. 1.00:), it specifies the 363 * first fan-out link not the host link. Device number 15 always 364 * points to the host link whether PMP is attached or not. If the 365 * controller has slave link, device number 16 points to it. 366 * 367 * LOCKING: 368 * EH context. 369 */ 370 static void ata_force_link_limits(struct ata_link *link) 371 { 372 bool did_spd = false; 373 int linkno = link->pmp; 374 int i; 375 376 if (ata_is_host_link(link)) 377 linkno += 15; 378 379 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 380 const struct ata_force_ent *fe = &ata_force_tbl[i]; 381 382 if (fe->port != -1 && fe->port != link->ap->print_id) 383 continue; 384 385 if (fe->device != -1 && fe->device != linkno) 386 continue; 387 388 /* only honor the first spd limit */ 389 if (!did_spd && fe->param.spd_limit) { 390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 392 fe->param.name); 393 did_spd = true; 394 } 395 396 /* let lflags stack */ 397 if (fe->param.lflags) { 398 link->flags |= fe->param.lflags; 399 ata_link_notice(link, 400 "FORCE: link flag 0x%x forced -> 0x%x\n", 401 fe->param.lflags, link->flags); 402 } 403 } 404 } 405 406 /** 407 * ata_force_xfermask - force xfermask according to libata.force 408 * @dev: ATA device of interest 409 * 410 * Force xfer_mask according to libata.force and whine about it. 411 * For consistency with link selection, device number 15 selects 412 * the first device connected to the host link. 413 * 414 * LOCKING: 415 * EH context. 416 */ 417 static void ata_force_xfermask(struct ata_device *dev) 418 { 419 int devno = dev->link->pmp + dev->devno; 420 int alt_devno = devno; 421 int i; 422 423 /* allow n.15/16 for devices attached to host port */ 424 if (ata_is_host_link(dev->link)) 425 alt_devno += 15; 426 427 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 428 const struct ata_force_ent *fe = &ata_force_tbl[i]; 429 unsigned long pio_mask, mwdma_mask, udma_mask; 430 431 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 432 continue; 433 434 if (fe->device != -1 && fe->device != devno && 435 fe->device != alt_devno) 436 continue; 437 438 if (!fe->param.xfer_mask) 439 continue; 440 441 ata_unpack_xfermask(fe->param.xfer_mask, 442 &pio_mask, &mwdma_mask, &udma_mask); 443 if (udma_mask) 444 dev->udma_mask = udma_mask; 445 else if (mwdma_mask) { 446 dev->udma_mask = 0; 447 dev->mwdma_mask = mwdma_mask; 448 } else { 449 dev->udma_mask = 0; 450 dev->mwdma_mask = 0; 451 dev->pio_mask = pio_mask; 452 } 453 454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 455 fe->param.name); 456 return; 457 } 458 } 459 460 /** 461 * ata_force_horkage - force horkage according to libata.force 462 * @dev: ATA device of interest 463 * 464 * Force horkage according to libata.force and whine about it. 465 * For consistency with link selection, device number 15 selects 466 * the first device connected to the host link. 467 * 468 * LOCKING: 469 * EH context. 470 */ 471 static void ata_force_horkage(struct ata_device *dev) 472 { 473 int devno = dev->link->pmp + dev->devno; 474 int alt_devno = devno; 475 int i; 476 477 /* allow n.15/16 for devices attached to host port */ 478 if (ata_is_host_link(dev->link)) 479 alt_devno += 15; 480 481 for (i = 0; i < ata_force_tbl_size; i++) { 482 const struct ata_force_ent *fe = &ata_force_tbl[i]; 483 484 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 485 continue; 486 487 if (fe->device != -1 && fe->device != devno && 488 fe->device != alt_devno) 489 continue; 490 491 if (!(~dev->horkage & fe->param.horkage_on) && 492 !(dev->horkage & fe->param.horkage_off)) 493 continue; 494 495 dev->horkage |= fe->param.horkage_on; 496 dev->horkage &= ~fe->param.horkage_off; 497 498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 499 fe->param.name); 500 } 501 } 502 503 /** 504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 505 * @opcode: SCSI opcode 506 * 507 * Determine ATAPI command type from @opcode. 508 * 509 * LOCKING: 510 * None. 511 * 512 * RETURNS: 513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 514 */ 515 int atapi_cmd_type(u8 opcode) 516 { 517 switch (opcode) { 518 case GPCMD_READ_10: 519 case GPCMD_READ_12: 520 return ATAPI_READ; 521 522 case GPCMD_WRITE_10: 523 case GPCMD_WRITE_12: 524 case GPCMD_WRITE_AND_VERIFY_10: 525 return ATAPI_WRITE; 526 527 case GPCMD_READ_CD: 528 case GPCMD_READ_CD_MSF: 529 return ATAPI_READ_CD; 530 531 case ATA_16: 532 case ATA_12: 533 if (atapi_passthru16) 534 return ATAPI_PASS_THRU; 535 /* fall thru */ 536 default: 537 return ATAPI_MISC; 538 } 539 } 540 541 /** 542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 543 * @tf: Taskfile to convert 544 * @pmp: Port multiplier port 545 * @is_cmd: This FIS is for command 546 * @fis: Buffer into which data will output 547 * 548 * Converts a standard ATA taskfile to a Serial ATA 549 * FIS structure (Register - Host to Device). 550 * 551 * LOCKING: 552 * Inherited from caller. 553 */ 554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 555 { 556 fis[0] = 0x27; /* Register - Host to Device FIS */ 557 fis[1] = pmp & 0xf; /* Port multiplier number*/ 558 if (is_cmd) 559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 560 561 fis[2] = tf->command; 562 fis[3] = tf->feature; 563 564 fis[4] = tf->lbal; 565 fis[5] = tf->lbam; 566 fis[6] = tf->lbah; 567 fis[7] = tf->device; 568 569 fis[8] = tf->hob_lbal; 570 fis[9] = tf->hob_lbam; 571 fis[10] = tf->hob_lbah; 572 fis[11] = tf->hob_feature; 573 574 fis[12] = tf->nsect; 575 fis[13] = tf->hob_nsect; 576 fis[14] = 0; 577 fis[15] = tf->ctl; 578 579 fis[16] = tf->auxiliary & 0xff; 580 fis[17] = (tf->auxiliary >> 8) & 0xff; 581 fis[18] = (tf->auxiliary >> 16) & 0xff; 582 fis[19] = (tf->auxiliary >> 24) & 0xff; 583 } 584 585 /** 586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 587 * @fis: Buffer from which data will be input 588 * @tf: Taskfile to output 589 * 590 * Converts a serial ATA FIS structure to a standard ATA taskfile. 591 * 592 * LOCKING: 593 * Inherited from caller. 594 */ 595 596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 597 { 598 tf->command = fis[2]; /* status */ 599 tf->feature = fis[3]; /* error */ 600 601 tf->lbal = fis[4]; 602 tf->lbam = fis[5]; 603 tf->lbah = fis[6]; 604 tf->device = fis[7]; 605 606 tf->hob_lbal = fis[8]; 607 tf->hob_lbam = fis[9]; 608 tf->hob_lbah = fis[10]; 609 610 tf->nsect = fis[12]; 611 tf->hob_nsect = fis[13]; 612 } 613 614 static const u8 ata_rw_cmds[] = { 615 /* pio multi */ 616 ATA_CMD_READ_MULTI, 617 ATA_CMD_WRITE_MULTI, 618 ATA_CMD_READ_MULTI_EXT, 619 ATA_CMD_WRITE_MULTI_EXT, 620 0, 621 0, 622 0, 623 ATA_CMD_WRITE_MULTI_FUA_EXT, 624 /* pio */ 625 ATA_CMD_PIO_READ, 626 ATA_CMD_PIO_WRITE, 627 ATA_CMD_PIO_READ_EXT, 628 ATA_CMD_PIO_WRITE_EXT, 629 0, 630 0, 631 0, 632 0, 633 /* dma */ 634 ATA_CMD_READ, 635 ATA_CMD_WRITE, 636 ATA_CMD_READ_EXT, 637 ATA_CMD_WRITE_EXT, 638 0, 639 0, 640 0, 641 ATA_CMD_WRITE_FUA_EXT 642 }; 643 644 /** 645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 646 * @tf: command to examine and configure 647 * @dev: device tf belongs to 648 * 649 * Examine the device configuration and tf->flags to calculate 650 * the proper read/write commands and protocol to use. 651 * 652 * LOCKING: 653 * caller. 654 */ 655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 656 { 657 u8 cmd; 658 659 int index, fua, lba48, write; 660 661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 664 665 if (dev->flags & ATA_DFLAG_PIO) { 666 tf->protocol = ATA_PROT_PIO; 667 index = dev->multi_count ? 0 : 8; 668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 669 /* Unable to use DMA due to host limitation */ 670 tf->protocol = ATA_PROT_PIO; 671 index = dev->multi_count ? 0 : 8; 672 } else { 673 tf->protocol = ATA_PROT_DMA; 674 index = 16; 675 } 676 677 cmd = ata_rw_cmds[index + fua + lba48 + write]; 678 if (cmd) { 679 tf->command = cmd; 680 return 0; 681 } 682 return -1; 683 } 684 685 /** 686 * ata_tf_read_block - Read block address from ATA taskfile 687 * @tf: ATA taskfile of interest 688 * @dev: ATA device @tf belongs to 689 * 690 * LOCKING: 691 * None. 692 * 693 * Read block address from @tf. This function can handle all 694 * three address formats - LBA, LBA48 and CHS. tf->protocol and 695 * flags select the address format to use. 696 * 697 * RETURNS: 698 * Block address read from @tf. 699 */ 700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 701 { 702 u64 block = 0; 703 704 if (tf->flags & ATA_TFLAG_LBA) { 705 if (tf->flags & ATA_TFLAG_LBA48) { 706 block |= (u64)tf->hob_lbah << 40; 707 block |= (u64)tf->hob_lbam << 32; 708 block |= (u64)tf->hob_lbal << 24; 709 } else 710 block |= (tf->device & 0xf) << 24; 711 712 block |= tf->lbah << 16; 713 block |= tf->lbam << 8; 714 block |= tf->lbal; 715 } else { 716 u32 cyl, head, sect; 717 718 cyl = tf->lbam | (tf->lbah << 8); 719 head = tf->device & 0xf; 720 sect = tf->lbal; 721 722 if (!sect) { 723 ata_dev_warn(dev, 724 "device reported invalid CHS sector 0\n"); 725 return U64_MAX; 726 } 727 728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 729 } 730 731 return block; 732 } 733 734 /** 735 * ata_build_rw_tf - Build ATA taskfile for given read/write request 736 * @tf: Target ATA taskfile 737 * @dev: ATA device @tf belongs to 738 * @block: Block address 739 * @n_block: Number of blocks 740 * @tf_flags: RW/FUA etc... 741 * @tag: tag 742 * @class: IO priority class 743 * 744 * LOCKING: 745 * None. 746 * 747 * Build ATA taskfile @tf for read/write request described by 748 * @block, @n_block, @tf_flags and @tag on @dev. 749 * 750 * RETURNS: 751 * 752 * 0 on success, -ERANGE if the request is too large for @dev, 753 * -EINVAL if the request is invalid. 754 */ 755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 756 u64 block, u32 n_block, unsigned int tf_flags, 757 unsigned int tag, int class) 758 { 759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 760 tf->flags |= tf_flags; 761 762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 763 /* yay, NCQ */ 764 if (!lba_48_ok(block, n_block)) 765 return -ERANGE; 766 767 tf->protocol = ATA_PROT_NCQ; 768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 769 770 if (tf->flags & ATA_TFLAG_WRITE) 771 tf->command = ATA_CMD_FPDMA_WRITE; 772 else 773 tf->command = ATA_CMD_FPDMA_READ; 774 775 tf->nsect = tag << 3; 776 tf->hob_feature = (n_block >> 8) & 0xff; 777 tf->feature = n_block & 0xff; 778 779 tf->hob_lbah = (block >> 40) & 0xff; 780 tf->hob_lbam = (block >> 32) & 0xff; 781 tf->hob_lbal = (block >> 24) & 0xff; 782 tf->lbah = (block >> 16) & 0xff; 783 tf->lbam = (block >> 8) & 0xff; 784 tf->lbal = block & 0xff; 785 786 tf->device = ATA_LBA; 787 if (tf->flags & ATA_TFLAG_FUA) 788 tf->device |= 1 << 7; 789 790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) { 791 if (class == IOPRIO_CLASS_RT) 792 tf->hob_nsect |= ATA_PRIO_HIGH << 793 ATA_SHIFT_PRIO; 794 } 795 } else if (dev->flags & ATA_DFLAG_LBA) { 796 tf->flags |= ATA_TFLAG_LBA; 797 798 if (lba_28_ok(block, n_block)) { 799 /* use LBA28 */ 800 tf->device |= (block >> 24) & 0xf; 801 } else if (lba_48_ok(block, n_block)) { 802 if (!(dev->flags & ATA_DFLAG_LBA48)) 803 return -ERANGE; 804 805 /* use LBA48 */ 806 tf->flags |= ATA_TFLAG_LBA48; 807 808 tf->hob_nsect = (n_block >> 8) & 0xff; 809 810 tf->hob_lbah = (block >> 40) & 0xff; 811 tf->hob_lbam = (block >> 32) & 0xff; 812 tf->hob_lbal = (block >> 24) & 0xff; 813 } else 814 /* request too large even for LBA48 */ 815 return -ERANGE; 816 817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 818 return -EINVAL; 819 820 tf->nsect = n_block & 0xff; 821 822 tf->lbah = (block >> 16) & 0xff; 823 tf->lbam = (block >> 8) & 0xff; 824 tf->lbal = block & 0xff; 825 826 tf->device |= ATA_LBA; 827 } else { 828 /* CHS */ 829 u32 sect, head, cyl, track; 830 831 /* The request -may- be too large for CHS addressing. */ 832 if (!lba_28_ok(block, n_block)) 833 return -ERANGE; 834 835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 836 return -EINVAL; 837 838 /* Convert LBA to CHS */ 839 track = (u32)block / dev->sectors; 840 cyl = track / dev->heads; 841 head = track % dev->heads; 842 sect = (u32)block % dev->sectors + 1; 843 844 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 845 (u32)block, track, cyl, head, sect); 846 847 /* Check whether the converted CHS can fit. 848 Cylinder: 0-65535 849 Head: 0-15 850 Sector: 1-255*/ 851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 852 return -ERANGE; 853 854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 855 tf->lbal = sect; 856 tf->lbam = cyl; 857 tf->lbah = cyl >> 8; 858 tf->device |= head; 859 } 860 861 return 0; 862 } 863 864 /** 865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 866 * @pio_mask: pio_mask 867 * @mwdma_mask: mwdma_mask 868 * @udma_mask: udma_mask 869 * 870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 871 * unsigned int xfer_mask. 872 * 873 * LOCKING: 874 * None. 875 * 876 * RETURNS: 877 * Packed xfer_mask. 878 */ 879 unsigned long ata_pack_xfermask(unsigned long pio_mask, 880 unsigned long mwdma_mask, 881 unsigned long udma_mask) 882 { 883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 886 } 887 888 /** 889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 890 * @xfer_mask: xfer_mask to unpack 891 * @pio_mask: resulting pio_mask 892 * @mwdma_mask: resulting mwdma_mask 893 * @udma_mask: resulting udma_mask 894 * 895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 896 * Any NULL destination masks will be ignored. 897 */ 898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 899 unsigned long *mwdma_mask, unsigned long *udma_mask) 900 { 901 if (pio_mask) 902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 903 if (mwdma_mask) 904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 905 if (udma_mask) 906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 907 } 908 909 static const struct ata_xfer_ent { 910 int shift, bits; 911 u8 base; 912 } ata_xfer_tbl[] = { 913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 916 { -1, }, 917 }; 918 919 /** 920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 921 * @xfer_mask: xfer_mask of interest 922 * 923 * Return matching XFER_* value for @xfer_mask. Only the highest 924 * bit of @xfer_mask is considered. 925 * 926 * LOCKING: 927 * None. 928 * 929 * RETURNS: 930 * Matching XFER_* value, 0xff if no match found. 931 */ 932 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 933 { 934 int highbit = fls(xfer_mask) - 1; 935 const struct ata_xfer_ent *ent; 936 937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 939 return ent->base + highbit - ent->shift; 940 return 0xff; 941 } 942 943 /** 944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 945 * @xfer_mode: XFER_* of interest 946 * 947 * Return matching xfer_mask for @xfer_mode. 948 * 949 * LOCKING: 950 * None. 951 * 952 * RETURNS: 953 * Matching xfer_mask, 0 if no match found. 954 */ 955 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 956 { 957 const struct ata_xfer_ent *ent; 958 959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 962 & ~((1 << ent->shift) - 1); 963 return 0; 964 } 965 966 /** 967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 968 * @xfer_mode: XFER_* of interest 969 * 970 * Return matching xfer_shift for @xfer_mode. 971 * 972 * LOCKING: 973 * None. 974 * 975 * RETURNS: 976 * Matching xfer_shift, -1 if no match found. 977 */ 978 int ata_xfer_mode2shift(unsigned long xfer_mode) 979 { 980 const struct ata_xfer_ent *ent; 981 982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 984 return ent->shift; 985 return -1; 986 } 987 988 /** 989 * ata_mode_string - convert xfer_mask to string 990 * @xfer_mask: mask of bits supported; only highest bit counts. 991 * 992 * Determine string which represents the highest speed 993 * (highest bit in @modemask). 994 * 995 * LOCKING: 996 * None. 997 * 998 * RETURNS: 999 * Constant C string representing highest speed listed in 1000 * @mode_mask, or the constant C string "<n/a>". 1001 */ 1002 const char *ata_mode_string(unsigned long xfer_mask) 1003 { 1004 static const char * const xfer_mode_str[] = { 1005 "PIO0", 1006 "PIO1", 1007 "PIO2", 1008 "PIO3", 1009 "PIO4", 1010 "PIO5", 1011 "PIO6", 1012 "MWDMA0", 1013 "MWDMA1", 1014 "MWDMA2", 1015 "MWDMA3", 1016 "MWDMA4", 1017 "UDMA/16", 1018 "UDMA/25", 1019 "UDMA/33", 1020 "UDMA/44", 1021 "UDMA/66", 1022 "UDMA/100", 1023 "UDMA/133", 1024 "UDMA7", 1025 }; 1026 int highbit; 1027 1028 highbit = fls(xfer_mask) - 1; 1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1030 return xfer_mode_str[highbit]; 1031 return "<n/a>"; 1032 } 1033 1034 const char *sata_spd_string(unsigned int spd) 1035 { 1036 static const char * const spd_str[] = { 1037 "1.5 Gbps", 1038 "3.0 Gbps", 1039 "6.0 Gbps", 1040 }; 1041 1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1043 return "<unknown>"; 1044 return spd_str[spd - 1]; 1045 } 1046 1047 /** 1048 * ata_dev_classify - determine device type based on ATA-spec signature 1049 * @tf: ATA taskfile register set for device to be identified 1050 * 1051 * Determine from taskfile register contents whether a device is 1052 * ATA or ATAPI, as per "Signature and persistence" section 1053 * of ATA/PI spec (volume 1, sect 5.14). 1054 * 1055 * LOCKING: 1056 * None. 1057 * 1058 * RETURNS: 1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1061 */ 1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1063 { 1064 /* Apple's open source Darwin code hints that some devices only 1065 * put a proper signature into the LBA mid/high registers, 1066 * So, we only check those. It's sufficient for uniqueness. 1067 * 1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1069 * signatures for ATA and ATAPI devices attached on SerialATA, 1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1071 * spec has never mentioned about using different signatures 1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1073 * Multiplier specification began to use 0x69/0x96 to identify 1074 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1076 * 0x69/0x96 shortly and described them as reserved for 1077 * SerialATA. 1078 * 1079 * We follow the current spec and consider that 0x69/0x96 1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1082 * SEMB signature. This is worked around in 1083 * ata_dev_read_id(). 1084 */ 1085 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1086 DPRINTK("found ATA device by sig\n"); 1087 return ATA_DEV_ATA; 1088 } 1089 1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1091 DPRINTK("found ATAPI device by sig\n"); 1092 return ATA_DEV_ATAPI; 1093 } 1094 1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1096 DPRINTK("found PMP device by sig\n"); 1097 return ATA_DEV_PMP; 1098 } 1099 1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1101 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1102 return ATA_DEV_SEMB; 1103 } 1104 1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) { 1106 DPRINTK("found ZAC device by sig\n"); 1107 return ATA_DEV_ZAC; 1108 } 1109 1110 DPRINTK("unknown device\n"); 1111 return ATA_DEV_UNKNOWN; 1112 } 1113 1114 /** 1115 * ata_id_string - Convert IDENTIFY DEVICE page into string 1116 * @id: IDENTIFY DEVICE results we will examine 1117 * @s: string into which data is output 1118 * @ofs: offset into identify device page 1119 * @len: length of string to return. must be an even number. 1120 * 1121 * The strings in the IDENTIFY DEVICE page are broken up into 1122 * 16-bit chunks. Run through the string, and output each 1123 * 8-bit chunk linearly, regardless of platform. 1124 * 1125 * LOCKING: 1126 * caller. 1127 */ 1128 1129 void ata_id_string(const u16 *id, unsigned char *s, 1130 unsigned int ofs, unsigned int len) 1131 { 1132 unsigned int c; 1133 1134 BUG_ON(len & 1); 1135 1136 while (len > 0) { 1137 c = id[ofs] >> 8; 1138 *s = c; 1139 s++; 1140 1141 c = id[ofs] & 0xff; 1142 *s = c; 1143 s++; 1144 1145 ofs++; 1146 len -= 2; 1147 } 1148 } 1149 1150 /** 1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1152 * @id: IDENTIFY DEVICE results we will examine 1153 * @s: string into which data is output 1154 * @ofs: offset into identify device page 1155 * @len: length of string to return. must be an odd number. 1156 * 1157 * This function is identical to ata_id_string except that it 1158 * trims trailing spaces and terminates the resulting string with 1159 * null. @len must be actual maximum length (even number) + 1. 1160 * 1161 * LOCKING: 1162 * caller. 1163 */ 1164 void ata_id_c_string(const u16 *id, unsigned char *s, 1165 unsigned int ofs, unsigned int len) 1166 { 1167 unsigned char *p; 1168 1169 ata_id_string(id, s, ofs, len - 1); 1170 1171 p = s + strnlen(s, len - 1); 1172 while (p > s && p[-1] == ' ') 1173 p--; 1174 *p = '\0'; 1175 } 1176 1177 static u64 ata_id_n_sectors(const u16 *id) 1178 { 1179 if (ata_id_has_lba(id)) { 1180 if (ata_id_has_lba48(id)) 1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1182 else 1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1184 } else { 1185 if (ata_id_current_chs_valid(id)) 1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1187 id[ATA_ID_CUR_SECTORS]; 1188 else 1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1190 id[ATA_ID_SECTORS]; 1191 } 1192 } 1193 1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1195 { 1196 u64 sectors = 0; 1197 1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1201 sectors |= (tf->lbah & 0xff) << 16; 1202 sectors |= (tf->lbam & 0xff) << 8; 1203 sectors |= (tf->lbal & 0xff); 1204 1205 return sectors; 1206 } 1207 1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1209 { 1210 u64 sectors = 0; 1211 1212 sectors |= (tf->device & 0x0f) << 24; 1213 sectors |= (tf->lbah & 0xff) << 16; 1214 sectors |= (tf->lbam & 0xff) << 8; 1215 sectors |= (tf->lbal & 0xff); 1216 1217 return sectors; 1218 } 1219 1220 /** 1221 * ata_read_native_max_address - Read native max address 1222 * @dev: target device 1223 * @max_sectors: out parameter for the result native max address 1224 * 1225 * Perform an LBA48 or LBA28 native size query upon the device in 1226 * question. 1227 * 1228 * RETURNS: 1229 * 0 on success, -EACCES if command is aborted by the drive. 1230 * -EIO on other errors. 1231 */ 1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1233 { 1234 unsigned int err_mask; 1235 struct ata_taskfile tf; 1236 int lba48 = ata_id_has_lba48(dev->id); 1237 1238 ata_tf_init(dev, &tf); 1239 1240 /* always clear all address registers */ 1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1242 1243 if (lba48) { 1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1245 tf.flags |= ATA_TFLAG_LBA48; 1246 } else 1247 tf.command = ATA_CMD_READ_NATIVE_MAX; 1248 1249 tf.protocol = ATA_PROT_NODATA; 1250 tf.device |= ATA_LBA; 1251 1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1253 if (err_mask) { 1254 ata_dev_warn(dev, 1255 "failed to read native max address (err_mask=0x%x)\n", 1256 err_mask); 1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1258 return -EACCES; 1259 return -EIO; 1260 } 1261 1262 if (lba48) 1263 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1264 else 1265 *max_sectors = ata_tf_to_lba(&tf) + 1; 1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1267 (*max_sectors)--; 1268 return 0; 1269 } 1270 1271 /** 1272 * ata_set_max_sectors - Set max sectors 1273 * @dev: target device 1274 * @new_sectors: new max sectors value to set for the device 1275 * 1276 * Set max sectors of @dev to @new_sectors. 1277 * 1278 * RETURNS: 1279 * 0 on success, -EACCES if command is aborted or denied (due to 1280 * previous non-volatile SET_MAX) by the drive. -EIO on other 1281 * errors. 1282 */ 1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1284 { 1285 unsigned int err_mask; 1286 struct ata_taskfile tf; 1287 int lba48 = ata_id_has_lba48(dev->id); 1288 1289 new_sectors--; 1290 1291 ata_tf_init(dev, &tf); 1292 1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1294 1295 if (lba48) { 1296 tf.command = ATA_CMD_SET_MAX_EXT; 1297 tf.flags |= ATA_TFLAG_LBA48; 1298 1299 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1300 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1301 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1302 } else { 1303 tf.command = ATA_CMD_SET_MAX; 1304 1305 tf.device |= (new_sectors >> 24) & 0xf; 1306 } 1307 1308 tf.protocol = ATA_PROT_NODATA; 1309 tf.device |= ATA_LBA; 1310 1311 tf.lbal = (new_sectors >> 0) & 0xff; 1312 tf.lbam = (new_sectors >> 8) & 0xff; 1313 tf.lbah = (new_sectors >> 16) & 0xff; 1314 1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1316 if (err_mask) { 1317 ata_dev_warn(dev, 1318 "failed to set max address (err_mask=0x%x)\n", 1319 err_mask); 1320 if (err_mask == AC_ERR_DEV && 1321 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1322 return -EACCES; 1323 return -EIO; 1324 } 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * ata_hpa_resize - Resize a device with an HPA set 1331 * @dev: Device to resize 1332 * 1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1334 * it if required to the full size of the media. The caller must check 1335 * the drive has the HPA feature set enabled. 1336 * 1337 * RETURNS: 1338 * 0 on success, -errno on failure. 1339 */ 1340 static int ata_hpa_resize(struct ata_device *dev) 1341 { 1342 struct ata_eh_context *ehc = &dev->link->eh_context; 1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1345 u64 sectors = ata_id_n_sectors(dev->id); 1346 u64 native_sectors; 1347 int rc; 1348 1349 /* do we need to do it? */ 1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1353 return 0; 1354 1355 /* read native max address */ 1356 rc = ata_read_native_max_address(dev, &native_sectors); 1357 if (rc) { 1358 /* If device aborted the command or HPA isn't going to 1359 * be unlocked, skip HPA resizing. 1360 */ 1361 if (rc == -EACCES || !unlock_hpa) { 1362 ata_dev_warn(dev, 1363 "HPA support seems broken, skipping HPA handling\n"); 1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1365 1366 /* we can continue if device aborted the command */ 1367 if (rc == -EACCES) 1368 rc = 0; 1369 } 1370 1371 return rc; 1372 } 1373 dev->n_native_sectors = native_sectors; 1374 1375 /* nothing to do? */ 1376 if (native_sectors <= sectors || !unlock_hpa) { 1377 if (!print_info || native_sectors == sectors) 1378 return 0; 1379 1380 if (native_sectors > sectors) 1381 ata_dev_info(dev, 1382 "HPA detected: current %llu, native %llu\n", 1383 (unsigned long long)sectors, 1384 (unsigned long long)native_sectors); 1385 else if (native_sectors < sectors) 1386 ata_dev_warn(dev, 1387 "native sectors (%llu) is smaller than sectors (%llu)\n", 1388 (unsigned long long)native_sectors, 1389 (unsigned long long)sectors); 1390 return 0; 1391 } 1392 1393 /* let's unlock HPA */ 1394 rc = ata_set_max_sectors(dev, native_sectors); 1395 if (rc == -EACCES) { 1396 /* if device aborted the command, skip HPA resizing */ 1397 ata_dev_warn(dev, 1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1399 (unsigned long long)sectors, 1400 (unsigned long long)native_sectors); 1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1402 return 0; 1403 } else if (rc) 1404 return rc; 1405 1406 /* re-read IDENTIFY data */ 1407 rc = ata_dev_reread_id(dev, 0); 1408 if (rc) { 1409 ata_dev_err(dev, 1410 "failed to re-read IDENTIFY data after HPA resizing\n"); 1411 return rc; 1412 } 1413 1414 if (print_info) { 1415 u64 new_sectors = ata_id_n_sectors(dev->id); 1416 ata_dev_info(dev, 1417 "HPA unlocked: %llu -> %llu, native %llu\n", 1418 (unsigned long long)sectors, 1419 (unsigned long long)new_sectors, 1420 (unsigned long long)native_sectors); 1421 } 1422 1423 return 0; 1424 } 1425 1426 /** 1427 * ata_dump_id - IDENTIFY DEVICE info debugging output 1428 * @id: IDENTIFY DEVICE page to dump 1429 * 1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1431 * page. 1432 * 1433 * LOCKING: 1434 * caller. 1435 */ 1436 1437 static inline void ata_dump_id(const u16 *id) 1438 { 1439 DPRINTK("49==0x%04x " 1440 "53==0x%04x " 1441 "63==0x%04x " 1442 "64==0x%04x " 1443 "75==0x%04x \n", 1444 id[49], 1445 id[53], 1446 id[63], 1447 id[64], 1448 id[75]); 1449 DPRINTK("80==0x%04x " 1450 "81==0x%04x " 1451 "82==0x%04x " 1452 "83==0x%04x " 1453 "84==0x%04x \n", 1454 id[80], 1455 id[81], 1456 id[82], 1457 id[83], 1458 id[84]); 1459 DPRINTK("88==0x%04x " 1460 "93==0x%04x\n", 1461 id[88], 1462 id[93]); 1463 } 1464 1465 /** 1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1467 * @id: IDENTIFY data to compute xfer mask from 1468 * 1469 * Compute the xfermask for this device. This is not as trivial 1470 * as it seems if we must consider early devices correctly. 1471 * 1472 * FIXME: pre IDE drive timing (do we care ?). 1473 * 1474 * LOCKING: 1475 * None. 1476 * 1477 * RETURNS: 1478 * Computed xfermask 1479 */ 1480 unsigned long ata_id_xfermask(const u16 *id) 1481 { 1482 unsigned long pio_mask, mwdma_mask, udma_mask; 1483 1484 /* Usual case. Word 53 indicates word 64 is valid */ 1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1487 pio_mask <<= 3; 1488 pio_mask |= 0x7; 1489 } else { 1490 /* If word 64 isn't valid then Word 51 high byte holds 1491 * the PIO timing number for the maximum. Turn it into 1492 * a mask. 1493 */ 1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1495 if (mode < 5) /* Valid PIO range */ 1496 pio_mask = (2 << mode) - 1; 1497 else 1498 pio_mask = 1; 1499 1500 /* But wait.. there's more. Design your standards by 1501 * committee and you too can get a free iordy field to 1502 * process. However its the speeds not the modes that 1503 * are supported... Note drivers using the timing API 1504 * will get this right anyway 1505 */ 1506 } 1507 1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1509 1510 if (ata_id_is_cfa(id)) { 1511 /* 1512 * Process compact flash extended modes 1513 */ 1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1516 1517 if (pio) 1518 pio_mask |= (1 << 5); 1519 if (pio > 1) 1520 pio_mask |= (1 << 6); 1521 if (dma) 1522 mwdma_mask |= (1 << 3); 1523 if (dma > 1) 1524 mwdma_mask |= (1 << 4); 1525 } 1526 1527 udma_mask = 0; 1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1530 1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1532 } 1533 1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1535 { 1536 struct completion *waiting = qc->private_data; 1537 1538 complete(waiting); 1539 } 1540 1541 /** 1542 * ata_exec_internal_sg - execute libata internal command 1543 * @dev: Device to which the command is sent 1544 * @tf: Taskfile registers for the command and the result 1545 * @cdb: CDB for packet command 1546 * @dma_dir: Data transfer direction of the command 1547 * @sgl: sg list for the data buffer of the command 1548 * @n_elem: Number of sg entries 1549 * @timeout: Timeout in msecs (0 for default) 1550 * 1551 * Executes libata internal command with timeout. @tf contains 1552 * command on entry and result on return. Timeout and error 1553 * conditions are reported via return value. No recovery action 1554 * is taken after a command times out. It's caller's duty to 1555 * clean up after timeout. 1556 * 1557 * LOCKING: 1558 * None. Should be called with kernel context, might sleep. 1559 * 1560 * RETURNS: 1561 * Zero on success, AC_ERR_* mask on failure 1562 */ 1563 unsigned ata_exec_internal_sg(struct ata_device *dev, 1564 struct ata_taskfile *tf, const u8 *cdb, 1565 int dma_dir, struct scatterlist *sgl, 1566 unsigned int n_elem, unsigned long timeout) 1567 { 1568 struct ata_link *link = dev->link; 1569 struct ata_port *ap = link->ap; 1570 u8 command = tf->command; 1571 int auto_timeout = 0; 1572 struct ata_queued_cmd *qc; 1573 unsigned int tag, preempted_tag; 1574 u32 preempted_sactive, preempted_qc_active; 1575 int preempted_nr_active_links; 1576 DECLARE_COMPLETION_ONSTACK(wait); 1577 unsigned long flags; 1578 unsigned int err_mask; 1579 int rc; 1580 1581 spin_lock_irqsave(ap->lock, flags); 1582 1583 /* no internal command while frozen */ 1584 if (ap->pflags & ATA_PFLAG_FROZEN) { 1585 spin_unlock_irqrestore(ap->lock, flags); 1586 return AC_ERR_SYSTEM; 1587 } 1588 1589 /* initialize internal qc */ 1590 1591 /* XXX: Tag 0 is used for drivers with legacy EH as some 1592 * drivers choke if any other tag is given. This breaks 1593 * ata_tag_internal() test for those drivers. Don't use new 1594 * EH stuff without converting to it. 1595 */ 1596 if (ap->ops->error_handler) 1597 tag = ATA_TAG_INTERNAL; 1598 else 1599 tag = 0; 1600 1601 qc = __ata_qc_from_tag(ap, tag); 1602 1603 qc->tag = tag; 1604 qc->scsicmd = NULL; 1605 qc->ap = ap; 1606 qc->dev = dev; 1607 ata_qc_reinit(qc); 1608 1609 preempted_tag = link->active_tag; 1610 preempted_sactive = link->sactive; 1611 preempted_qc_active = ap->qc_active; 1612 preempted_nr_active_links = ap->nr_active_links; 1613 link->active_tag = ATA_TAG_POISON; 1614 link->sactive = 0; 1615 ap->qc_active = 0; 1616 ap->nr_active_links = 0; 1617 1618 /* prepare & issue qc */ 1619 qc->tf = *tf; 1620 if (cdb) 1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1622 1623 /* some SATA bridges need us to indicate data xfer direction */ 1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1625 dma_dir == DMA_FROM_DEVICE) 1626 qc->tf.feature |= ATAPI_DMADIR; 1627 1628 qc->flags |= ATA_QCFLAG_RESULT_TF; 1629 qc->dma_dir = dma_dir; 1630 if (dma_dir != DMA_NONE) { 1631 unsigned int i, buflen = 0; 1632 struct scatterlist *sg; 1633 1634 for_each_sg(sgl, sg, n_elem, i) 1635 buflen += sg->length; 1636 1637 ata_sg_init(qc, sgl, n_elem); 1638 qc->nbytes = buflen; 1639 } 1640 1641 qc->private_data = &wait; 1642 qc->complete_fn = ata_qc_complete_internal; 1643 1644 ata_qc_issue(qc); 1645 1646 spin_unlock_irqrestore(ap->lock, flags); 1647 1648 if (!timeout) { 1649 if (ata_probe_timeout) 1650 timeout = ata_probe_timeout * 1000; 1651 else { 1652 timeout = ata_internal_cmd_timeout(dev, command); 1653 auto_timeout = 1; 1654 } 1655 } 1656 1657 if (ap->ops->error_handler) 1658 ata_eh_release(ap); 1659 1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1661 1662 if (ap->ops->error_handler) 1663 ata_eh_acquire(ap); 1664 1665 ata_sff_flush_pio_task(ap); 1666 1667 if (!rc) { 1668 spin_lock_irqsave(ap->lock, flags); 1669 1670 /* We're racing with irq here. If we lose, the 1671 * following test prevents us from completing the qc 1672 * twice. If we win, the port is frozen and will be 1673 * cleaned up by ->post_internal_cmd(). 1674 */ 1675 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1676 qc->err_mask |= AC_ERR_TIMEOUT; 1677 1678 if (ap->ops->error_handler) 1679 ata_port_freeze(ap); 1680 else 1681 ata_qc_complete(qc); 1682 1683 if (ata_msg_warn(ap)) 1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1685 command); 1686 } 1687 1688 spin_unlock_irqrestore(ap->lock, flags); 1689 } 1690 1691 /* do post_internal_cmd */ 1692 if (ap->ops->post_internal_cmd) 1693 ap->ops->post_internal_cmd(qc); 1694 1695 /* perform minimal error analysis */ 1696 if (qc->flags & ATA_QCFLAG_FAILED) { 1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1698 qc->err_mask |= AC_ERR_DEV; 1699 1700 if (!qc->err_mask) 1701 qc->err_mask |= AC_ERR_OTHER; 1702 1703 if (qc->err_mask & ~AC_ERR_OTHER) 1704 qc->err_mask &= ~AC_ERR_OTHER; 1705 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1706 qc->result_tf.command |= ATA_SENSE; 1707 } 1708 1709 /* finish up */ 1710 spin_lock_irqsave(ap->lock, flags); 1711 1712 *tf = qc->result_tf; 1713 err_mask = qc->err_mask; 1714 1715 ata_qc_free(qc); 1716 link->active_tag = preempted_tag; 1717 link->sactive = preempted_sactive; 1718 ap->qc_active = preempted_qc_active; 1719 ap->nr_active_links = preempted_nr_active_links; 1720 1721 spin_unlock_irqrestore(ap->lock, flags); 1722 1723 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1724 ata_internal_cmd_timed_out(dev, command); 1725 1726 return err_mask; 1727 } 1728 1729 /** 1730 * ata_exec_internal - execute libata internal command 1731 * @dev: Device to which the command is sent 1732 * @tf: Taskfile registers for the command and the result 1733 * @cdb: CDB for packet command 1734 * @dma_dir: Data transfer direction of the command 1735 * @buf: Data buffer of the command 1736 * @buflen: Length of data buffer 1737 * @timeout: Timeout in msecs (0 for default) 1738 * 1739 * Wrapper around ata_exec_internal_sg() which takes simple 1740 * buffer instead of sg list. 1741 * 1742 * LOCKING: 1743 * None. Should be called with kernel context, might sleep. 1744 * 1745 * RETURNS: 1746 * Zero on success, AC_ERR_* mask on failure 1747 */ 1748 unsigned ata_exec_internal(struct ata_device *dev, 1749 struct ata_taskfile *tf, const u8 *cdb, 1750 int dma_dir, void *buf, unsigned int buflen, 1751 unsigned long timeout) 1752 { 1753 struct scatterlist *psg = NULL, sg; 1754 unsigned int n_elem = 0; 1755 1756 if (dma_dir != DMA_NONE) { 1757 WARN_ON(!buf); 1758 sg_init_one(&sg, buf, buflen); 1759 psg = &sg; 1760 n_elem++; 1761 } 1762 1763 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1764 timeout); 1765 } 1766 1767 /** 1768 * ata_pio_need_iordy - check if iordy needed 1769 * @adev: ATA device 1770 * 1771 * Check if the current speed of the device requires IORDY. Used 1772 * by various controllers for chip configuration. 1773 */ 1774 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1775 { 1776 /* Don't set IORDY if we're preparing for reset. IORDY may 1777 * lead to controller lock up on certain controllers if the 1778 * port is not occupied. See bko#11703 for details. 1779 */ 1780 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1781 return 0; 1782 /* Controller doesn't support IORDY. Probably a pointless 1783 * check as the caller should know this. 1784 */ 1785 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1786 return 0; 1787 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1788 if (ata_id_is_cfa(adev->id) 1789 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1790 return 0; 1791 /* PIO3 and higher it is mandatory */ 1792 if (adev->pio_mode > XFER_PIO_2) 1793 return 1; 1794 /* We turn it on when possible */ 1795 if (ata_id_has_iordy(adev->id)) 1796 return 1; 1797 return 0; 1798 } 1799 1800 /** 1801 * ata_pio_mask_no_iordy - Return the non IORDY mask 1802 * @adev: ATA device 1803 * 1804 * Compute the highest mode possible if we are not using iordy. Return 1805 * -1 if no iordy mode is available. 1806 */ 1807 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1808 { 1809 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1810 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1811 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1812 /* Is the speed faster than the drive allows non IORDY ? */ 1813 if (pio) { 1814 /* This is cycle times not frequency - watch the logic! */ 1815 if (pio > 240) /* PIO2 is 240nS per cycle */ 1816 return 3 << ATA_SHIFT_PIO; 1817 return 7 << ATA_SHIFT_PIO; 1818 } 1819 } 1820 return 3 << ATA_SHIFT_PIO; 1821 } 1822 1823 /** 1824 * ata_do_dev_read_id - default ID read method 1825 * @dev: device 1826 * @tf: proposed taskfile 1827 * @id: data buffer 1828 * 1829 * Issue the identify taskfile and hand back the buffer containing 1830 * identify data. For some RAID controllers and for pre ATA devices 1831 * this function is wrapped or replaced by the driver 1832 */ 1833 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1834 struct ata_taskfile *tf, u16 *id) 1835 { 1836 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1837 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1838 } 1839 1840 /** 1841 * ata_dev_read_id - Read ID data from the specified device 1842 * @dev: target device 1843 * @p_class: pointer to class of the target device (may be changed) 1844 * @flags: ATA_READID_* flags 1845 * @id: buffer to read IDENTIFY data into 1846 * 1847 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1848 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1849 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1850 * for pre-ATA4 drives. 1851 * 1852 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1853 * now we abort if we hit that case. 1854 * 1855 * LOCKING: 1856 * Kernel thread context (may sleep) 1857 * 1858 * RETURNS: 1859 * 0 on success, -errno otherwise. 1860 */ 1861 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1862 unsigned int flags, u16 *id) 1863 { 1864 struct ata_port *ap = dev->link->ap; 1865 unsigned int class = *p_class; 1866 struct ata_taskfile tf; 1867 unsigned int err_mask = 0; 1868 const char *reason; 1869 bool is_semb = class == ATA_DEV_SEMB; 1870 int may_fallback = 1, tried_spinup = 0; 1871 int rc; 1872 1873 if (ata_msg_ctl(ap)) 1874 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1875 1876 retry: 1877 ata_tf_init(dev, &tf); 1878 1879 switch (class) { 1880 case ATA_DEV_SEMB: 1881 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1882 /* fall through */ 1883 case ATA_DEV_ATA: 1884 case ATA_DEV_ZAC: 1885 tf.command = ATA_CMD_ID_ATA; 1886 break; 1887 case ATA_DEV_ATAPI: 1888 tf.command = ATA_CMD_ID_ATAPI; 1889 break; 1890 default: 1891 rc = -ENODEV; 1892 reason = "unsupported class"; 1893 goto err_out; 1894 } 1895 1896 tf.protocol = ATA_PROT_PIO; 1897 1898 /* Some devices choke if TF registers contain garbage. Make 1899 * sure those are properly initialized. 1900 */ 1901 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1902 1903 /* Device presence detection is unreliable on some 1904 * controllers. Always poll IDENTIFY if available. 1905 */ 1906 tf.flags |= ATA_TFLAG_POLLING; 1907 1908 if (ap->ops->read_id) 1909 err_mask = ap->ops->read_id(dev, &tf, id); 1910 else 1911 err_mask = ata_do_dev_read_id(dev, &tf, id); 1912 1913 if (err_mask) { 1914 if (err_mask & AC_ERR_NODEV_HINT) { 1915 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1916 return -ENOENT; 1917 } 1918 1919 if (is_semb) { 1920 ata_dev_info(dev, 1921 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1922 /* SEMB is not supported yet */ 1923 *p_class = ATA_DEV_SEMB_UNSUP; 1924 return 0; 1925 } 1926 1927 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1928 /* Device or controller might have reported 1929 * the wrong device class. Give a shot at the 1930 * other IDENTIFY if the current one is 1931 * aborted by the device. 1932 */ 1933 if (may_fallback) { 1934 may_fallback = 0; 1935 1936 if (class == ATA_DEV_ATA) 1937 class = ATA_DEV_ATAPI; 1938 else 1939 class = ATA_DEV_ATA; 1940 goto retry; 1941 } 1942 1943 /* Control reaches here iff the device aborted 1944 * both flavors of IDENTIFYs which happens 1945 * sometimes with phantom devices. 1946 */ 1947 ata_dev_dbg(dev, 1948 "both IDENTIFYs aborted, assuming NODEV\n"); 1949 return -ENOENT; 1950 } 1951 1952 rc = -EIO; 1953 reason = "I/O error"; 1954 goto err_out; 1955 } 1956 1957 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1958 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1959 "class=%d may_fallback=%d tried_spinup=%d\n", 1960 class, may_fallback, tried_spinup); 1961 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1962 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1963 } 1964 1965 /* Falling back doesn't make sense if ID data was read 1966 * successfully at least once. 1967 */ 1968 may_fallback = 0; 1969 1970 swap_buf_le16(id, ATA_ID_WORDS); 1971 1972 /* sanity check */ 1973 rc = -EINVAL; 1974 reason = "device reports invalid type"; 1975 1976 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1977 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1978 goto err_out; 1979 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1980 ata_id_is_ata(id)) { 1981 ata_dev_dbg(dev, 1982 "host indicates ignore ATA devices, ignored\n"); 1983 return -ENOENT; 1984 } 1985 } else { 1986 if (ata_id_is_ata(id)) 1987 goto err_out; 1988 } 1989 1990 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1991 tried_spinup = 1; 1992 /* 1993 * Drive powered-up in standby mode, and requires a specific 1994 * SET_FEATURES spin-up subcommand before it will accept 1995 * anything other than the original IDENTIFY command. 1996 */ 1997 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1998 if (err_mask && id[2] != 0x738c) { 1999 rc = -EIO; 2000 reason = "SPINUP failed"; 2001 goto err_out; 2002 } 2003 /* 2004 * If the drive initially returned incomplete IDENTIFY info, 2005 * we now must reissue the IDENTIFY command. 2006 */ 2007 if (id[2] == 0x37c8) 2008 goto retry; 2009 } 2010 2011 if ((flags & ATA_READID_POSTRESET) && 2012 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 2013 /* 2014 * The exact sequence expected by certain pre-ATA4 drives is: 2015 * SRST RESET 2016 * IDENTIFY (optional in early ATA) 2017 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2018 * anything else.. 2019 * Some drives were very specific about that exact sequence. 2020 * 2021 * Note that ATA4 says lba is mandatory so the second check 2022 * should never trigger. 2023 */ 2024 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2025 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2026 if (err_mask) { 2027 rc = -EIO; 2028 reason = "INIT_DEV_PARAMS failed"; 2029 goto err_out; 2030 } 2031 2032 /* current CHS translation info (id[53-58]) might be 2033 * changed. reread the identify device info. 2034 */ 2035 flags &= ~ATA_READID_POSTRESET; 2036 goto retry; 2037 } 2038 } 2039 2040 *p_class = class; 2041 2042 return 0; 2043 2044 err_out: 2045 if (ata_msg_warn(ap)) 2046 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2047 reason, err_mask); 2048 return rc; 2049 } 2050 2051 /** 2052 * ata_read_log_page - read a specific log page 2053 * @dev: target device 2054 * @log: log to read 2055 * @page: page to read 2056 * @buf: buffer to store read page 2057 * @sectors: number of sectors to read 2058 * 2059 * Read log page using READ_LOG_EXT command. 2060 * 2061 * LOCKING: 2062 * Kernel thread context (may sleep). 2063 * 2064 * RETURNS: 2065 * 0 on success, AC_ERR_* mask otherwise. 2066 */ 2067 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 2068 u8 page, void *buf, unsigned int sectors) 2069 { 2070 unsigned long ap_flags = dev->link->ap->flags; 2071 struct ata_taskfile tf; 2072 unsigned int err_mask; 2073 bool dma = false; 2074 2075 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page); 2076 2077 /* 2078 * Return error without actually issuing the command on controllers 2079 * which e.g. lockup on a read log page. 2080 */ 2081 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2082 return AC_ERR_DEV; 2083 2084 retry: 2085 ata_tf_init(dev, &tf); 2086 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) && 2087 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2088 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2089 tf.protocol = ATA_PROT_DMA; 2090 dma = true; 2091 } else { 2092 tf.command = ATA_CMD_READ_LOG_EXT; 2093 tf.protocol = ATA_PROT_PIO; 2094 dma = false; 2095 } 2096 tf.lbal = log; 2097 tf.lbam = page; 2098 tf.nsect = sectors; 2099 tf.hob_nsect = sectors >> 8; 2100 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2101 2102 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2103 buf, sectors * ATA_SECT_SIZE, 0); 2104 2105 if (err_mask && dma) { 2106 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2107 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n"); 2108 goto retry; 2109 } 2110 2111 DPRINTK("EXIT, err_mask=%x\n", err_mask); 2112 return err_mask; 2113 } 2114 2115 static bool ata_log_supported(struct ata_device *dev, u8 log) 2116 { 2117 struct ata_port *ap = dev->link->ap; 2118 2119 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2120 return false; 2121 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false; 2122 } 2123 2124 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2125 { 2126 struct ata_port *ap = dev->link->ap; 2127 unsigned int err, i; 2128 2129 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2130 ata_dev_warn(dev, "ATA Identify Device Log not supported\n"); 2131 return false; 2132 } 2133 2134 /* 2135 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2136 * supported. 2137 */ 2138 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2139 1); 2140 if (err) { 2141 ata_dev_info(dev, 2142 "failed to get Device Identify Log Emask 0x%x\n", 2143 err); 2144 return false; 2145 } 2146 2147 for (i = 0; i < ap->sector_buf[8]; i++) { 2148 if (ap->sector_buf[9 + i] == page) 2149 return true; 2150 } 2151 2152 return false; 2153 } 2154 2155 static int ata_do_link_spd_horkage(struct ata_device *dev) 2156 { 2157 struct ata_link *plink = ata_dev_phys_link(dev); 2158 u32 target, target_limit; 2159 2160 if (!sata_scr_valid(plink)) 2161 return 0; 2162 2163 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2164 target = 1; 2165 else 2166 return 0; 2167 2168 target_limit = (1 << target) - 1; 2169 2170 /* if already on stricter limit, no need to push further */ 2171 if (plink->sata_spd_limit <= target_limit) 2172 return 0; 2173 2174 plink->sata_spd_limit = target_limit; 2175 2176 /* Request another EH round by returning -EAGAIN if link is 2177 * going faster than the target speed. Forward progress is 2178 * guaranteed by setting sata_spd_limit to target_limit above. 2179 */ 2180 if (plink->sata_spd > target) { 2181 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2182 sata_spd_string(target)); 2183 return -EAGAIN; 2184 } 2185 return 0; 2186 } 2187 2188 static inline u8 ata_dev_knobble(struct ata_device *dev) 2189 { 2190 struct ata_port *ap = dev->link->ap; 2191 2192 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2193 return 0; 2194 2195 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2196 } 2197 2198 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2199 { 2200 struct ata_port *ap = dev->link->ap; 2201 unsigned int err_mask; 2202 2203 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2204 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2205 return; 2206 } 2207 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2208 0, ap->sector_buf, 1); 2209 if (err_mask) { 2210 ata_dev_dbg(dev, 2211 "failed to get NCQ Send/Recv Log Emask 0x%x\n", 2212 err_mask); 2213 } else { 2214 u8 *cmds = dev->ncq_send_recv_cmds; 2215 2216 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2217 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2218 2219 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2220 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2221 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2222 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2223 } 2224 } 2225 } 2226 2227 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2228 { 2229 struct ata_port *ap = dev->link->ap; 2230 unsigned int err_mask; 2231 2232 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2233 ata_dev_warn(dev, 2234 "NCQ Send/Recv Log not supported\n"); 2235 return; 2236 } 2237 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2238 0, ap->sector_buf, 1); 2239 if (err_mask) { 2240 ata_dev_dbg(dev, 2241 "failed to get NCQ Non-Data Log Emask 0x%x\n", 2242 err_mask); 2243 } else { 2244 u8 *cmds = dev->ncq_non_data_cmds; 2245 2246 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2247 } 2248 } 2249 2250 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2251 { 2252 struct ata_port *ap = dev->link->ap; 2253 unsigned int err_mask; 2254 2255 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) { 2256 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2257 return; 2258 } 2259 2260 err_mask = ata_read_log_page(dev, 2261 ATA_LOG_IDENTIFY_DEVICE, 2262 ATA_LOG_SATA_SETTINGS, 2263 ap->sector_buf, 2264 1); 2265 if (err_mask) { 2266 ata_dev_dbg(dev, 2267 "failed to get Identify Device data, Emask 0x%x\n", 2268 err_mask); 2269 return; 2270 } 2271 2272 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) { 2273 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2274 } else { 2275 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2276 ata_dev_dbg(dev, "SATA page does not support priority\n"); 2277 } 2278 2279 } 2280 2281 static int ata_dev_config_ncq(struct ata_device *dev, 2282 char *desc, size_t desc_sz) 2283 { 2284 struct ata_port *ap = dev->link->ap; 2285 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2286 unsigned int err_mask; 2287 char *aa_desc = ""; 2288 2289 if (!ata_id_has_ncq(dev->id)) { 2290 desc[0] = '\0'; 2291 return 0; 2292 } 2293 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2294 snprintf(desc, desc_sz, "NCQ (not used)"); 2295 return 0; 2296 } 2297 if (ap->flags & ATA_FLAG_NCQ) { 2298 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2299 dev->flags |= ATA_DFLAG_NCQ; 2300 } 2301 2302 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2303 (ap->flags & ATA_FLAG_FPDMA_AA) && 2304 ata_id_has_fpdma_aa(dev->id)) { 2305 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2306 SATA_FPDMA_AA); 2307 if (err_mask) { 2308 ata_dev_err(dev, 2309 "failed to enable AA (error_mask=0x%x)\n", 2310 err_mask); 2311 if (err_mask != AC_ERR_DEV) { 2312 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2313 return -EIO; 2314 } 2315 } else 2316 aa_desc = ", AA"; 2317 } 2318 2319 if (hdepth >= ddepth) 2320 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2321 else 2322 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2323 ddepth, aa_desc); 2324 2325 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2326 if (ata_id_has_ncq_send_and_recv(dev->id)) 2327 ata_dev_config_ncq_send_recv(dev); 2328 if (ata_id_has_ncq_non_data(dev->id)) 2329 ata_dev_config_ncq_non_data(dev); 2330 if (ata_id_has_ncq_prio(dev->id)) 2331 ata_dev_config_ncq_prio(dev); 2332 } 2333 2334 return 0; 2335 } 2336 2337 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2338 { 2339 unsigned int err_mask; 2340 2341 if (!ata_id_has_sense_reporting(dev->id)) 2342 return; 2343 2344 if (ata_id_sense_reporting_enabled(dev->id)) 2345 return; 2346 2347 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2348 if (err_mask) { 2349 ata_dev_dbg(dev, 2350 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2351 err_mask); 2352 } 2353 } 2354 2355 static void ata_dev_config_zac(struct ata_device *dev) 2356 { 2357 struct ata_port *ap = dev->link->ap; 2358 unsigned int err_mask; 2359 u8 *identify_buf = ap->sector_buf; 2360 2361 dev->zac_zones_optimal_open = U32_MAX; 2362 dev->zac_zones_optimal_nonseq = U32_MAX; 2363 dev->zac_zones_max_open = U32_MAX; 2364 2365 /* 2366 * Always set the 'ZAC' flag for Host-managed devices. 2367 */ 2368 if (dev->class == ATA_DEV_ZAC) 2369 dev->flags |= ATA_DFLAG_ZAC; 2370 else if (ata_id_zoned_cap(dev->id) == 0x01) 2371 /* 2372 * Check for host-aware devices. 2373 */ 2374 dev->flags |= ATA_DFLAG_ZAC; 2375 2376 if (!(dev->flags & ATA_DFLAG_ZAC)) 2377 return; 2378 2379 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2380 ata_dev_warn(dev, 2381 "ATA Zoned Information Log not supported\n"); 2382 return; 2383 } 2384 2385 /* 2386 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2387 */ 2388 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2389 ATA_LOG_ZONED_INFORMATION, 2390 identify_buf, 1); 2391 if (!err_mask) { 2392 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2393 2394 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2395 if ((zoned_cap >> 63)) 2396 dev->zac_zoned_cap = (zoned_cap & 1); 2397 opt_open = get_unaligned_le64(&identify_buf[24]); 2398 if ((opt_open >> 63)) 2399 dev->zac_zones_optimal_open = (u32)opt_open; 2400 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2401 if ((opt_nonseq >> 63)) 2402 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2403 max_open = get_unaligned_le64(&identify_buf[40]); 2404 if ((max_open >> 63)) 2405 dev->zac_zones_max_open = (u32)max_open; 2406 } 2407 } 2408 2409 static void ata_dev_config_trusted(struct ata_device *dev) 2410 { 2411 struct ata_port *ap = dev->link->ap; 2412 u64 trusted_cap; 2413 unsigned int err; 2414 2415 if (!ata_id_has_trusted(dev->id)) 2416 return; 2417 2418 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2419 ata_dev_warn(dev, 2420 "Security Log not supported\n"); 2421 return; 2422 } 2423 2424 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2425 ap->sector_buf, 1); 2426 if (err) { 2427 ata_dev_dbg(dev, 2428 "failed to read Security Log, Emask 0x%x\n", err); 2429 return; 2430 } 2431 2432 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2433 if (!(trusted_cap & (1ULL << 63))) { 2434 ata_dev_dbg(dev, 2435 "Trusted Computing capability qword not valid!\n"); 2436 return; 2437 } 2438 2439 if (trusted_cap & (1 << 0)) 2440 dev->flags |= ATA_DFLAG_TRUSTED; 2441 } 2442 2443 /** 2444 * ata_dev_configure - Configure the specified ATA/ATAPI device 2445 * @dev: Target device to configure 2446 * 2447 * Configure @dev according to @dev->id. Generic and low-level 2448 * driver specific fixups are also applied. 2449 * 2450 * LOCKING: 2451 * Kernel thread context (may sleep) 2452 * 2453 * RETURNS: 2454 * 0 on success, -errno otherwise 2455 */ 2456 int ata_dev_configure(struct ata_device *dev) 2457 { 2458 struct ata_port *ap = dev->link->ap; 2459 struct ata_eh_context *ehc = &dev->link->eh_context; 2460 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2461 const u16 *id = dev->id; 2462 unsigned long xfer_mask; 2463 unsigned int err_mask; 2464 char revbuf[7]; /* XYZ-99\0 */ 2465 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2466 char modelbuf[ATA_ID_PROD_LEN+1]; 2467 int rc; 2468 2469 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2470 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2471 return 0; 2472 } 2473 2474 if (ata_msg_probe(ap)) 2475 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2476 2477 /* set horkage */ 2478 dev->horkage |= ata_dev_blacklisted(dev); 2479 ata_force_horkage(dev); 2480 2481 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2482 ata_dev_info(dev, "unsupported device, disabling\n"); 2483 ata_dev_disable(dev); 2484 return 0; 2485 } 2486 2487 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2488 dev->class == ATA_DEV_ATAPI) { 2489 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2490 atapi_enabled ? "not supported with this driver" 2491 : "disabled"); 2492 ata_dev_disable(dev); 2493 return 0; 2494 } 2495 2496 rc = ata_do_link_spd_horkage(dev); 2497 if (rc) 2498 return rc; 2499 2500 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2501 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2502 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2503 dev->horkage |= ATA_HORKAGE_NOLPM; 2504 2505 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2506 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2507 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2508 } 2509 2510 /* let ACPI work its magic */ 2511 rc = ata_acpi_on_devcfg(dev); 2512 if (rc) 2513 return rc; 2514 2515 /* massage HPA, do it early as it might change IDENTIFY data */ 2516 rc = ata_hpa_resize(dev); 2517 if (rc) 2518 return rc; 2519 2520 /* print device capabilities */ 2521 if (ata_msg_probe(ap)) 2522 ata_dev_dbg(dev, 2523 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2524 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2525 __func__, 2526 id[49], id[82], id[83], id[84], 2527 id[85], id[86], id[87], id[88]); 2528 2529 /* initialize to-be-configured parameters */ 2530 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2531 dev->max_sectors = 0; 2532 dev->cdb_len = 0; 2533 dev->n_sectors = 0; 2534 dev->cylinders = 0; 2535 dev->heads = 0; 2536 dev->sectors = 0; 2537 dev->multi_count = 0; 2538 2539 /* 2540 * common ATA, ATAPI feature tests 2541 */ 2542 2543 /* find max transfer mode; for printk only */ 2544 xfer_mask = ata_id_xfermask(id); 2545 2546 if (ata_msg_probe(ap)) 2547 ata_dump_id(id); 2548 2549 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2550 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2551 sizeof(fwrevbuf)); 2552 2553 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2554 sizeof(modelbuf)); 2555 2556 /* ATA-specific feature tests */ 2557 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2558 if (ata_id_is_cfa(id)) { 2559 /* CPRM may make this media unusable */ 2560 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2561 ata_dev_warn(dev, 2562 "supports DRM functions and may not be fully accessible\n"); 2563 snprintf(revbuf, 7, "CFA"); 2564 } else { 2565 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2566 /* Warn the user if the device has TPM extensions */ 2567 if (ata_id_has_tpm(id)) 2568 ata_dev_warn(dev, 2569 "supports DRM functions and may not be fully accessible\n"); 2570 } 2571 2572 dev->n_sectors = ata_id_n_sectors(id); 2573 2574 /* get current R/W Multiple count setting */ 2575 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2576 unsigned int max = dev->id[47] & 0xff; 2577 unsigned int cnt = dev->id[59] & 0xff; 2578 /* only recognize/allow powers of two here */ 2579 if (is_power_of_2(max) && is_power_of_2(cnt)) 2580 if (cnt <= max) 2581 dev->multi_count = cnt; 2582 } 2583 2584 if (ata_id_has_lba(id)) { 2585 const char *lba_desc; 2586 char ncq_desc[24]; 2587 2588 lba_desc = "LBA"; 2589 dev->flags |= ATA_DFLAG_LBA; 2590 if (ata_id_has_lba48(id)) { 2591 dev->flags |= ATA_DFLAG_LBA48; 2592 lba_desc = "LBA48"; 2593 2594 if (dev->n_sectors >= (1UL << 28) && 2595 ata_id_has_flush_ext(id)) 2596 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2597 } 2598 2599 /* config NCQ */ 2600 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2601 if (rc) 2602 return rc; 2603 2604 /* print device info to dmesg */ 2605 if (ata_msg_drv(ap) && print_info) { 2606 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2607 revbuf, modelbuf, fwrevbuf, 2608 ata_mode_string(xfer_mask)); 2609 ata_dev_info(dev, 2610 "%llu sectors, multi %u: %s %s\n", 2611 (unsigned long long)dev->n_sectors, 2612 dev->multi_count, lba_desc, ncq_desc); 2613 } 2614 } else { 2615 /* CHS */ 2616 2617 /* Default translation */ 2618 dev->cylinders = id[1]; 2619 dev->heads = id[3]; 2620 dev->sectors = id[6]; 2621 2622 if (ata_id_current_chs_valid(id)) { 2623 /* Current CHS translation is valid. */ 2624 dev->cylinders = id[54]; 2625 dev->heads = id[55]; 2626 dev->sectors = id[56]; 2627 } 2628 2629 /* print device info to dmesg */ 2630 if (ata_msg_drv(ap) && print_info) { 2631 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2632 revbuf, modelbuf, fwrevbuf, 2633 ata_mode_string(xfer_mask)); 2634 ata_dev_info(dev, 2635 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2636 (unsigned long long)dev->n_sectors, 2637 dev->multi_count, dev->cylinders, 2638 dev->heads, dev->sectors); 2639 } 2640 } 2641 2642 /* Check and mark DevSlp capability. Get DevSlp timing variables 2643 * from SATA Settings page of Identify Device Data Log. 2644 */ 2645 if (ata_id_has_devslp(dev->id)) { 2646 u8 *sata_setting = ap->sector_buf; 2647 int i, j; 2648 2649 dev->flags |= ATA_DFLAG_DEVSLP; 2650 err_mask = ata_read_log_page(dev, 2651 ATA_LOG_IDENTIFY_DEVICE, 2652 ATA_LOG_SATA_SETTINGS, 2653 sata_setting, 2654 1); 2655 if (err_mask) 2656 ata_dev_dbg(dev, 2657 "failed to get Identify Device Data, Emask 0x%x\n", 2658 err_mask); 2659 else 2660 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2661 j = ATA_LOG_DEVSLP_OFFSET + i; 2662 dev->devslp_timing[i] = sata_setting[j]; 2663 } 2664 } 2665 ata_dev_config_sense_reporting(dev); 2666 ata_dev_config_zac(dev); 2667 ata_dev_config_trusted(dev); 2668 dev->cdb_len = 32; 2669 } 2670 2671 /* ATAPI-specific feature tests */ 2672 else if (dev->class == ATA_DEV_ATAPI) { 2673 const char *cdb_intr_string = ""; 2674 const char *atapi_an_string = ""; 2675 const char *dma_dir_string = ""; 2676 u32 sntf; 2677 2678 rc = atapi_cdb_len(id); 2679 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2680 if (ata_msg_warn(ap)) 2681 ata_dev_warn(dev, "unsupported CDB len\n"); 2682 rc = -EINVAL; 2683 goto err_out_nosup; 2684 } 2685 dev->cdb_len = (unsigned int) rc; 2686 2687 /* Enable ATAPI AN if both the host and device have 2688 * the support. If PMP is attached, SNTF is required 2689 * to enable ATAPI AN to discern between PHY status 2690 * changed notifications and ATAPI ANs. 2691 */ 2692 if (atapi_an && 2693 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2694 (!sata_pmp_attached(ap) || 2695 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2696 /* issue SET feature command to turn this on */ 2697 err_mask = ata_dev_set_feature(dev, 2698 SETFEATURES_SATA_ENABLE, SATA_AN); 2699 if (err_mask) 2700 ata_dev_err(dev, 2701 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2702 err_mask); 2703 else { 2704 dev->flags |= ATA_DFLAG_AN; 2705 atapi_an_string = ", ATAPI AN"; 2706 } 2707 } 2708 2709 if (ata_id_cdb_intr(dev->id)) { 2710 dev->flags |= ATA_DFLAG_CDB_INTR; 2711 cdb_intr_string = ", CDB intr"; 2712 } 2713 2714 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2715 dev->flags |= ATA_DFLAG_DMADIR; 2716 dma_dir_string = ", DMADIR"; 2717 } 2718 2719 if (ata_id_has_da(dev->id)) { 2720 dev->flags |= ATA_DFLAG_DA; 2721 zpodd_init(dev); 2722 } 2723 2724 /* print device info to dmesg */ 2725 if (ata_msg_drv(ap) && print_info) 2726 ata_dev_info(dev, 2727 "ATAPI: %s, %s, max %s%s%s%s\n", 2728 modelbuf, fwrevbuf, 2729 ata_mode_string(xfer_mask), 2730 cdb_intr_string, atapi_an_string, 2731 dma_dir_string); 2732 } 2733 2734 /* determine max_sectors */ 2735 dev->max_sectors = ATA_MAX_SECTORS; 2736 if (dev->flags & ATA_DFLAG_LBA48) 2737 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2738 2739 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2740 200 sectors */ 2741 if (ata_dev_knobble(dev)) { 2742 if (ata_msg_drv(ap) && print_info) 2743 ata_dev_info(dev, "applying bridge limits\n"); 2744 dev->udma_mask &= ATA_UDMA5; 2745 dev->max_sectors = ATA_MAX_SECTORS; 2746 } 2747 2748 if ((dev->class == ATA_DEV_ATAPI) && 2749 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2750 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2751 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2752 } 2753 2754 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2755 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2756 dev->max_sectors); 2757 2758 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2759 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2760 dev->max_sectors); 2761 2762 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2763 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2764 2765 if (ap->ops->dev_config) 2766 ap->ops->dev_config(dev); 2767 2768 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2769 /* Let the user know. We don't want to disallow opens for 2770 rescue purposes, or in case the vendor is just a blithering 2771 idiot. Do this after the dev_config call as some controllers 2772 with buggy firmware may want to avoid reporting false device 2773 bugs */ 2774 2775 if (print_info) { 2776 ata_dev_warn(dev, 2777 "Drive reports diagnostics failure. This may indicate a drive\n"); 2778 ata_dev_warn(dev, 2779 "fault or invalid emulation. Contact drive vendor for information.\n"); 2780 } 2781 } 2782 2783 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2784 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2785 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2786 } 2787 2788 return 0; 2789 2790 err_out_nosup: 2791 if (ata_msg_probe(ap)) 2792 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2793 return rc; 2794 } 2795 2796 /** 2797 * ata_cable_40wire - return 40 wire cable type 2798 * @ap: port 2799 * 2800 * Helper method for drivers which want to hardwire 40 wire cable 2801 * detection. 2802 */ 2803 2804 int ata_cable_40wire(struct ata_port *ap) 2805 { 2806 return ATA_CBL_PATA40; 2807 } 2808 2809 /** 2810 * ata_cable_80wire - return 80 wire cable type 2811 * @ap: port 2812 * 2813 * Helper method for drivers which want to hardwire 80 wire cable 2814 * detection. 2815 */ 2816 2817 int ata_cable_80wire(struct ata_port *ap) 2818 { 2819 return ATA_CBL_PATA80; 2820 } 2821 2822 /** 2823 * ata_cable_unknown - return unknown PATA cable. 2824 * @ap: port 2825 * 2826 * Helper method for drivers which have no PATA cable detection. 2827 */ 2828 2829 int ata_cable_unknown(struct ata_port *ap) 2830 { 2831 return ATA_CBL_PATA_UNK; 2832 } 2833 2834 /** 2835 * ata_cable_ignore - return ignored PATA cable. 2836 * @ap: port 2837 * 2838 * Helper method for drivers which don't use cable type to limit 2839 * transfer mode. 2840 */ 2841 int ata_cable_ignore(struct ata_port *ap) 2842 { 2843 return ATA_CBL_PATA_IGN; 2844 } 2845 2846 /** 2847 * ata_cable_sata - return SATA cable type 2848 * @ap: port 2849 * 2850 * Helper method for drivers which have SATA cables 2851 */ 2852 2853 int ata_cable_sata(struct ata_port *ap) 2854 { 2855 return ATA_CBL_SATA; 2856 } 2857 2858 /** 2859 * ata_bus_probe - Reset and probe ATA bus 2860 * @ap: Bus to probe 2861 * 2862 * Master ATA bus probing function. Initiates a hardware-dependent 2863 * bus reset, then attempts to identify any devices found on 2864 * the bus. 2865 * 2866 * LOCKING: 2867 * PCI/etc. bus probe sem. 2868 * 2869 * RETURNS: 2870 * Zero on success, negative errno otherwise. 2871 */ 2872 2873 int ata_bus_probe(struct ata_port *ap) 2874 { 2875 unsigned int classes[ATA_MAX_DEVICES]; 2876 int tries[ATA_MAX_DEVICES]; 2877 int rc; 2878 struct ata_device *dev; 2879 2880 ata_for_each_dev(dev, &ap->link, ALL) 2881 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2882 2883 retry: 2884 ata_for_each_dev(dev, &ap->link, ALL) { 2885 /* If we issue an SRST then an ATA drive (not ATAPI) 2886 * may change configuration and be in PIO0 timing. If 2887 * we do a hard reset (or are coming from power on) 2888 * this is true for ATA or ATAPI. Until we've set a 2889 * suitable controller mode we should not touch the 2890 * bus as we may be talking too fast. 2891 */ 2892 dev->pio_mode = XFER_PIO_0; 2893 dev->dma_mode = 0xff; 2894 2895 /* If the controller has a pio mode setup function 2896 * then use it to set the chipset to rights. Don't 2897 * touch the DMA setup as that will be dealt with when 2898 * configuring devices. 2899 */ 2900 if (ap->ops->set_piomode) 2901 ap->ops->set_piomode(ap, dev); 2902 } 2903 2904 /* reset and determine device classes */ 2905 ap->ops->phy_reset(ap); 2906 2907 ata_for_each_dev(dev, &ap->link, ALL) { 2908 if (dev->class != ATA_DEV_UNKNOWN) 2909 classes[dev->devno] = dev->class; 2910 else 2911 classes[dev->devno] = ATA_DEV_NONE; 2912 2913 dev->class = ATA_DEV_UNKNOWN; 2914 } 2915 2916 /* read IDENTIFY page and configure devices. We have to do the identify 2917 specific sequence bass-ackwards so that PDIAG- is released by 2918 the slave device */ 2919 2920 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2921 if (tries[dev->devno]) 2922 dev->class = classes[dev->devno]; 2923 2924 if (!ata_dev_enabled(dev)) 2925 continue; 2926 2927 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2928 dev->id); 2929 if (rc) 2930 goto fail; 2931 } 2932 2933 /* Now ask for the cable type as PDIAG- should have been released */ 2934 if (ap->ops->cable_detect) 2935 ap->cbl = ap->ops->cable_detect(ap); 2936 2937 /* We may have SATA bridge glue hiding here irrespective of 2938 * the reported cable types and sensed types. When SATA 2939 * drives indicate we have a bridge, we don't know which end 2940 * of the link the bridge is which is a problem. 2941 */ 2942 ata_for_each_dev(dev, &ap->link, ENABLED) 2943 if (ata_id_is_sata(dev->id)) 2944 ap->cbl = ATA_CBL_SATA; 2945 2946 /* After the identify sequence we can now set up the devices. We do 2947 this in the normal order so that the user doesn't get confused */ 2948 2949 ata_for_each_dev(dev, &ap->link, ENABLED) { 2950 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2951 rc = ata_dev_configure(dev); 2952 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2953 if (rc) 2954 goto fail; 2955 } 2956 2957 /* configure transfer mode */ 2958 rc = ata_set_mode(&ap->link, &dev); 2959 if (rc) 2960 goto fail; 2961 2962 ata_for_each_dev(dev, &ap->link, ENABLED) 2963 return 0; 2964 2965 return -ENODEV; 2966 2967 fail: 2968 tries[dev->devno]--; 2969 2970 switch (rc) { 2971 case -EINVAL: 2972 /* eeek, something went very wrong, give up */ 2973 tries[dev->devno] = 0; 2974 break; 2975 2976 case -ENODEV: 2977 /* give it just one more chance */ 2978 tries[dev->devno] = min(tries[dev->devno], 1); 2979 /* fall through */ 2980 case -EIO: 2981 if (tries[dev->devno] == 1) { 2982 /* This is the last chance, better to slow 2983 * down than lose it. 2984 */ 2985 sata_down_spd_limit(&ap->link, 0); 2986 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2987 } 2988 } 2989 2990 if (!tries[dev->devno]) 2991 ata_dev_disable(dev); 2992 2993 goto retry; 2994 } 2995 2996 /** 2997 * sata_print_link_status - Print SATA link status 2998 * @link: SATA link to printk link status about 2999 * 3000 * This function prints link speed and status of a SATA link. 3001 * 3002 * LOCKING: 3003 * None. 3004 */ 3005 static void sata_print_link_status(struct ata_link *link) 3006 { 3007 u32 sstatus, scontrol, tmp; 3008 3009 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3010 return; 3011 sata_scr_read(link, SCR_CONTROL, &scontrol); 3012 3013 if (ata_phys_link_online(link)) { 3014 tmp = (sstatus >> 4) & 0xf; 3015 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3016 sata_spd_string(tmp), sstatus, scontrol); 3017 } else { 3018 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3019 sstatus, scontrol); 3020 } 3021 } 3022 3023 /** 3024 * ata_dev_pair - return other device on cable 3025 * @adev: device 3026 * 3027 * Obtain the other device on the same cable, or if none is 3028 * present NULL is returned 3029 */ 3030 3031 struct ata_device *ata_dev_pair(struct ata_device *adev) 3032 { 3033 struct ata_link *link = adev->link; 3034 struct ata_device *pair = &link->device[1 - adev->devno]; 3035 if (!ata_dev_enabled(pair)) 3036 return NULL; 3037 return pair; 3038 } 3039 3040 /** 3041 * sata_down_spd_limit - adjust SATA spd limit downward 3042 * @link: Link to adjust SATA spd limit for 3043 * @spd_limit: Additional limit 3044 * 3045 * Adjust SATA spd limit of @link downward. Note that this 3046 * function only adjusts the limit. The change must be applied 3047 * using sata_set_spd(). 3048 * 3049 * If @spd_limit is non-zero, the speed is limited to equal to or 3050 * lower than @spd_limit if such speed is supported. If 3051 * @spd_limit is slower than any supported speed, only the lowest 3052 * supported speed is allowed. 3053 * 3054 * LOCKING: 3055 * Inherited from caller. 3056 * 3057 * RETURNS: 3058 * 0 on success, negative errno on failure 3059 */ 3060 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3061 { 3062 u32 sstatus, spd, mask; 3063 int rc, bit; 3064 3065 if (!sata_scr_valid(link)) 3066 return -EOPNOTSUPP; 3067 3068 /* If SCR can be read, use it to determine the current SPD. 3069 * If not, use cached value in link->sata_spd. 3070 */ 3071 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3072 if (rc == 0 && ata_sstatus_online(sstatus)) 3073 spd = (sstatus >> 4) & 0xf; 3074 else 3075 spd = link->sata_spd; 3076 3077 mask = link->sata_spd_limit; 3078 if (mask <= 1) 3079 return -EINVAL; 3080 3081 /* unconditionally mask off the highest bit */ 3082 bit = fls(mask) - 1; 3083 mask &= ~(1 << bit); 3084 3085 /* 3086 * Mask off all speeds higher than or equal to the current one. At 3087 * this point, if current SPD is not available and we previously 3088 * recorded the link speed from SStatus, the driver has already 3089 * masked off the highest bit so mask should already be 1 or 0. 3090 * Otherwise, we should not force 1.5Gbps on a link where we have 3091 * not previously recorded speed from SStatus. Just return in this 3092 * case. 3093 */ 3094 if (spd > 1) 3095 mask &= (1 << (spd - 1)) - 1; 3096 else 3097 return -EINVAL; 3098 3099 /* were we already at the bottom? */ 3100 if (!mask) 3101 return -EINVAL; 3102 3103 if (spd_limit) { 3104 if (mask & ((1 << spd_limit) - 1)) 3105 mask &= (1 << spd_limit) - 1; 3106 else { 3107 bit = ffs(mask) - 1; 3108 mask = 1 << bit; 3109 } 3110 } 3111 3112 link->sata_spd_limit = mask; 3113 3114 ata_link_warn(link, "limiting SATA link speed to %s\n", 3115 sata_spd_string(fls(mask))); 3116 3117 return 0; 3118 } 3119 3120 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 3121 { 3122 struct ata_link *host_link = &link->ap->link; 3123 u32 limit, target, spd; 3124 3125 limit = link->sata_spd_limit; 3126 3127 /* Don't configure downstream link faster than upstream link. 3128 * It doesn't speed up anything and some PMPs choke on such 3129 * configuration. 3130 */ 3131 if (!ata_is_host_link(link) && host_link->sata_spd) 3132 limit &= (1 << host_link->sata_spd) - 1; 3133 3134 if (limit == UINT_MAX) 3135 target = 0; 3136 else 3137 target = fls(limit); 3138 3139 spd = (*scontrol >> 4) & 0xf; 3140 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 3141 3142 return spd != target; 3143 } 3144 3145 /** 3146 * sata_set_spd_needed - is SATA spd configuration needed 3147 * @link: Link in question 3148 * 3149 * Test whether the spd limit in SControl matches 3150 * @link->sata_spd_limit. This function is used to determine 3151 * whether hardreset is necessary to apply SATA spd 3152 * configuration. 3153 * 3154 * LOCKING: 3155 * Inherited from caller. 3156 * 3157 * RETURNS: 3158 * 1 if SATA spd configuration is needed, 0 otherwise. 3159 */ 3160 static int sata_set_spd_needed(struct ata_link *link) 3161 { 3162 u32 scontrol; 3163 3164 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3165 return 1; 3166 3167 return __sata_set_spd_needed(link, &scontrol); 3168 } 3169 3170 /** 3171 * sata_set_spd - set SATA spd according to spd limit 3172 * @link: Link to set SATA spd for 3173 * 3174 * Set SATA spd of @link according to sata_spd_limit. 3175 * 3176 * LOCKING: 3177 * Inherited from caller. 3178 * 3179 * RETURNS: 3180 * 0 if spd doesn't need to be changed, 1 if spd has been 3181 * changed. Negative errno if SCR registers are inaccessible. 3182 */ 3183 int sata_set_spd(struct ata_link *link) 3184 { 3185 u32 scontrol; 3186 int rc; 3187 3188 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3189 return rc; 3190 3191 if (!__sata_set_spd_needed(link, &scontrol)) 3192 return 0; 3193 3194 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3195 return rc; 3196 3197 return 1; 3198 } 3199 3200 /* 3201 * This mode timing computation functionality is ported over from 3202 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 3203 */ 3204 /* 3205 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 3206 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 3207 * for UDMA6, which is currently supported only by Maxtor drives. 3208 * 3209 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 3210 */ 3211 3212 static const struct ata_timing ata_timing[] = { 3213 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 3214 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 3215 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 3216 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 3217 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 3218 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 3219 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 3220 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 3221 3222 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 3223 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 3224 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 3225 3226 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 3227 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 3228 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 3229 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 3230 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 3231 3232 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 3233 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 3234 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 3235 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 3236 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 3237 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 3238 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 3239 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 3240 3241 { 0xFF } 3242 }; 3243 3244 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 3245 #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0) 3246 3247 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 3248 { 3249 q->setup = EZ(t->setup, T); 3250 q->act8b = EZ(t->act8b, T); 3251 q->rec8b = EZ(t->rec8b, T); 3252 q->cyc8b = EZ(t->cyc8b, T); 3253 q->active = EZ(t->active, T); 3254 q->recover = EZ(t->recover, T); 3255 q->dmack_hold = EZ(t->dmack_hold, T); 3256 q->cycle = EZ(t->cycle, T); 3257 q->udma = EZ(t->udma, UT); 3258 } 3259 3260 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 3261 struct ata_timing *m, unsigned int what) 3262 { 3263 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 3264 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 3265 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 3266 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 3267 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 3268 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 3269 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 3270 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 3271 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 3272 } 3273 3274 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 3275 { 3276 const struct ata_timing *t = ata_timing; 3277 3278 while (xfer_mode > t->mode) 3279 t++; 3280 3281 if (xfer_mode == t->mode) 3282 return t; 3283 3284 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 3285 __func__, xfer_mode); 3286 3287 return NULL; 3288 } 3289 3290 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 3291 struct ata_timing *t, int T, int UT) 3292 { 3293 const u16 *id = adev->id; 3294 const struct ata_timing *s; 3295 struct ata_timing p; 3296 3297 /* 3298 * Find the mode. 3299 */ 3300 3301 if (!(s = ata_timing_find_mode(speed))) 3302 return -EINVAL; 3303 3304 memcpy(t, s, sizeof(*s)); 3305 3306 /* 3307 * If the drive is an EIDE drive, it can tell us it needs extended 3308 * PIO/MW_DMA cycle timing. 3309 */ 3310 3311 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 3312 memset(&p, 0, sizeof(p)); 3313 3314 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 3315 if (speed <= XFER_PIO_2) 3316 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 3317 else if ((speed <= XFER_PIO_4) || 3318 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 3319 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 3320 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 3321 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 3322 3323 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 3324 } 3325 3326 /* 3327 * Convert the timing to bus clock counts. 3328 */ 3329 3330 ata_timing_quantize(t, t, T, UT); 3331 3332 /* 3333 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 3334 * S.M.A.R.T * and some other commands. We have to ensure that the 3335 * DMA cycle timing is slower/equal than the fastest PIO timing. 3336 */ 3337 3338 if (speed > XFER_PIO_6) { 3339 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3340 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3341 } 3342 3343 /* 3344 * Lengthen active & recovery time so that cycle time is correct. 3345 */ 3346 3347 if (t->act8b + t->rec8b < t->cyc8b) { 3348 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3349 t->rec8b = t->cyc8b - t->act8b; 3350 } 3351 3352 if (t->active + t->recover < t->cycle) { 3353 t->active += (t->cycle - (t->active + t->recover)) / 2; 3354 t->recover = t->cycle - t->active; 3355 } 3356 3357 /* In a few cases quantisation may produce enough errors to 3358 leave t->cycle too low for the sum of active and recovery 3359 if so we must correct this */ 3360 if (t->active + t->recover > t->cycle) 3361 t->cycle = t->active + t->recover; 3362 3363 return 0; 3364 } 3365 3366 /** 3367 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3368 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3369 * @cycle: cycle duration in ns 3370 * 3371 * Return matching xfer mode for @cycle. The returned mode is of 3372 * the transfer type specified by @xfer_shift. If @cycle is too 3373 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3374 * than the fastest known mode, the fasted mode is returned. 3375 * 3376 * LOCKING: 3377 * None. 3378 * 3379 * RETURNS: 3380 * Matching xfer_mode, 0xff if no match found. 3381 */ 3382 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3383 { 3384 u8 base_mode = 0xff, last_mode = 0xff; 3385 const struct ata_xfer_ent *ent; 3386 const struct ata_timing *t; 3387 3388 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3389 if (ent->shift == xfer_shift) 3390 base_mode = ent->base; 3391 3392 for (t = ata_timing_find_mode(base_mode); 3393 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3394 unsigned short this_cycle; 3395 3396 switch (xfer_shift) { 3397 case ATA_SHIFT_PIO: 3398 case ATA_SHIFT_MWDMA: 3399 this_cycle = t->cycle; 3400 break; 3401 case ATA_SHIFT_UDMA: 3402 this_cycle = t->udma; 3403 break; 3404 default: 3405 return 0xff; 3406 } 3407 3408 if (cycle > this_cycle) 3409 break; 3410 3411 last_mode = t->mode; 3412 } 3413 3414 return last_mode; 3415 } 3416 3417 /** 3418 * ata_down_xfermask_limit - adjust dev xfer masks downward 3419 * @dev: Device to adjust xfer masks 3420 * @sel: ATA_DNXFER_* selector 3421 * 3422 * Adjust xfer masks of @dev downward. Note that this function 3423 * does not apply the change. Invoking ata_set_mode() afterwards 3424 * will apply the limit. 3425 * 3426 * LOCKING: 3427 * Inherited from caller. 3428 * 3429 * RETURNS: 3430 * 0 on success, negative errno on failure 3431 */ 3432 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3433 { 3434 char buf[32]; 3435 unsigned long orig_mask, xfer_mask; 3436 unsigned long pio_mask, mwdma_mask, udma_mask; 3437 int quiet, highbit; 3438 3439 quiet = !!(sel & ATA_DNXFER_QUIET); 3440 sel &= ~ATA_DNXFER_QUIET; 3441 3442 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3443 dev->mwdma_mask, 3444 dev->udma_mask); 3445 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3446 3447 switch (sel) { 3448 case ATA_DNXFER_PIO: 3449 highbit = fls(pio_mask) - 1; 3450 pio_mask &= ~(1 << highbit); 3451 break; 3452 3453 case ATA_DNXFER_DMA: 3454 if (udma_mask) { 3455 highbit = fls(udma_mask) - 1; 3456 udma_mask &= ~(1 << highbit); 3457 if (!udma_mask) 3458 return -ENOENT; 3459 } else if (mwdma_mask) { 3460 highbit = fls(mwdma_mask) - 1; 3461 mwdma_mask &= ~(1 << highbit); 3462 if (!mwdma_mask) 3463 return -ENOENT; 3464 } 3465 break; 3466 3467 case ATA_DNXFER_40C: 3468 udma_mask &= ATA_UDMA_MASK_40C; 3469 break; 3470 3471 case ATA_DNXFER_FORCE_PIO0: 3472 pio_mask &= 1; 3473 /* fall through */ 3474 case ATA_DNXFER_FORCE_PIO: 3475 mwdma_mask = 0; 3476 udma_mask = 0; 3477 break; 3478 3479 default: 3480 BUG(); 3481 } 3482 3483 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3484 3485 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3486 return -ENOENT; 3487 3488 if (!quiet) { 3489 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3490 snprintf(buf, sizeof(buf), "%s:%s", 3491 ata_mode_string(xfer_mask), 3492 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3493 else 3494 snprintf(buf, sizeof(buf), "%s", 3495 ata_mode_string(xfer_mask)); 3496 3497 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3498 } 3499 3500 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3501 &dev->udma_mask); 3502 3503 return 0; 3504 } 3505 3506 static int ata_dev_set_mode(struct ata_device *dev) 3507 { 3508 struct ata_port *ap = dev->link->ap; 3509 struct ata_eh_context *ehc = &dev->link->eh_context; 3510 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3511 const char *dev_err_whine = ""; 3512 int ign_dev_err = 0; 3513 unsigned int err_mask = 0; 3514 int rc; 3515 3516 dev->flags &= ~ATA_DFLAG_PIO; 3517 if (dev->xfer_shift == ATA_SHIFT_PIO) 3518 dev->flags |= ATA_DFLAG_PIO; 3519 3520 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3521 dev_err_whine = " (SET_XFERMODE skipped)"; 3522 else { 3523 if (nosetxfer) 3524 ata_dev_warn(dev, 3525 "NOSETXFER but PATA detected - can't " 3526 "skip SETXFER, might malfunction\n"); 3527 err_mask = ata_dev_set_xfermode(dev); 3528 } 3529 3530 if (err_mask & ~AC_ERR_DEV) 3531 goto fail; 3532 3533 /* revalidate */ 3534 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3535 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3536 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3537 if (rc) 3538 return rc; 3539 3540 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3541 /* Old CFA may refuse this command, which is just fine */ 3542 if (ata_id_is_cfa(dev->id)) 3543 ign_dev_err = 1; 3544 /* Catch several broken garbage emulations plus some pre 3545 ATA devices */ 3546 if (ata_id_major_version(dev->id) == 0 && 3547 dev->pio_mode <= XFER_PIO_2) 3548 ign_dev_err = 1; 3549 /* Some very old devices and some bad newer ones fail 3550 any kind of SET_XFERMODE request but support PIO0-2 3551 timings and no IORDY */ 3552 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3553 ign_dev_err = 1; 3554 } 3555 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3556 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3557 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3558 dev->dma_mode == XFER_MW_DMA_0 && 3559 (dev->id[63] >> 8) & 1) 3560 ign_dev_err = 1; 3561 3562 /* if the device is actually configured correctly, ignore dev err */ 3563 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3564 ign_dev_err = 1; 3565 3566 if (err_mask & AC_ERR_DEV) { 3567 if (!ign_dev_err) 3568 goto fail; 3569 else 3570 dev_err_whine = " (device error ignored)"; 3571 } 3572 3573 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3574 dev->xfer_shift, (int)dev->xfer_mode); 3575 3576 ata_dev_info(dev, "configured for %s%s\n", 3577 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3578 dev_err_whine); 3579 3580 return 0; 3581 3582 fail: 3583 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3584 return -EIO; 3585 } 3586 3587 /** 3588 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3589 * @link: link on which timings will be programmed 3590 * @r_failed_dev: out parameter for failed device 3591 * 3592 * Standard implementation of the function used to tune and set 3593 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3594 * ata_dev_set_mode() fails, pointer to the failing device is 3595 * returned in @r_failed_dev. 3596 * 3597 * LOCKING: 3598 * PCI/etc. bus probe sem. 3599 * 3600 * RETURNS: 3601 * 0 on success, negative errno otherwise 3602 */ 3603 3604 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3605 { 3606 struct ata_port *ap = link->ap; 3607 struct ata_device *dev; 3608 int rc = 0, used_dma = 0, found = 0; 3609 3610 /* step 1: calculate xfer_mask */ 3611 ata_for_each_dev(dev, link, ENABLED) { 3612 unsigned long pio_mask, dma_mask; 3613 unsigned int mode_mask; 3614 3615 mode_mask = ATA_DMA_MASK_ATA; 3616 if (dev->class == ATA_DEV_ATAPI) 3617 mode_mask = ATA_DMA_MASK_ATAPI; 3618 else if (ata_id_is_cfa(dev->id)) 3619 mode_mask = ATA_DMA_MASK_CFA; 3620 3621 ata_dev_xfermask(dev); 3622 ata_force_xfermask(dev); 3623 3624 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3625 3626 if (libata_dma_mask & mode_mask) 3627 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3628 dev->udma_mask); 3629 else 3630 dma_mask = 0; 3631 3632 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3633 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3634 3635 found = 1; 3636 if (ata_dma_enabled(dev)) 3637 used_dma = 1; 3638 } 3639 if (!found) 3640 goto out; 3641 3642 /* step 2: always set host PIO timings */ 3643 ata_for_each_dev(dev, link, ENABLED) { 3644 if (dev->pio_mode == 0xff) { 3645 ata_dev_warn(dev, "no PIO support\n"); 3646 rc = -EINVAL; 3647 goto out; 3648 } 3649 3650 dev->xfer_mode = dev->pio_mode; 3651 dev->xfer_shift = ATA_SHIFT_PIO; 3652 if (ap->ops->set_piomode) 3653 ap->ops->set_piomode(ap, dev); 3654 } 3655 3656 /* step 3: set host DMA timings */ 3657 ata_for_each_dev(dev, link, ENABLED) { 3658 if (!ata_dma_enabled(dev)) 3659 continue; 3660 3661 dev->xfer_mode = dev->dma_mode; 3662 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3663 if (ap->ops->set_dmamode) 3664 ap->ops->set_dmamode(ap, dev); 3665 } 3666 3667 /* step 4: update devices' xfer mode */ 3668 ata_for_each_dev(dev, link, ENABLED) { 3669 rc = ata_dev_set_mode(dev); 3670 if (rc) 3671 goto out; 3672 } 3673 3674 /* Record simplex status. If we selected DMA then the other 3675 * host channels are not permitted to do so. 3676 */ 3677 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3678 ap->host->simplex_claimed = ap; 3679 3680 out: 3681 if (rc) 3682 *r_failed_dev = dev; 3683 return rc; 3684 } 3685 3686 /** 3687 * ata_wait_ready - wait for link to become ready 3688 * @link: link to be waited on 3689 * @deadline: deadline jiffies for the operation 3690 * @check_ready: callback to check link readiness 3691 * 3692 * Wait for @link to become ready. @check_ready should return 3693 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3694 * link doesn't seem to be occupied, other errno for other error 3695 * conditions. 3696 * 3697 * Transient -ENODEV conditions are allowed for 3698 * ATA_TMOUT_FF_WAIT. 3699 * 3700 * LOCKING: 3701 * EH context. 3702 * 3703 * RETURNS: 3704 * 0 if @link is ready before @deadline; otherwise, -errno. 3705 */ 3706 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3707 int (*check_ready)(struct ata_link *link)) 3708 { 3709 unsigned long start = jiffies; 3710 unsigned long nodev_deadline; 3711 int warned = 0; 3712 3713 /* choose which 0xff timeout to use, read comment in libata.h */ 3714 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3715 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3716 else 3717 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3718 3719 /* Slave readiness can't be tested separately from master. On 3720 * M/S emulation configuration, this function should be called 3721 * only on the master and it will handle both master and slave. 3722 */ 3723 WARN_ON(link == link->ap->slave_link); 3724 3725 if (time_after(nodev_deadline, deadline)) 3726 nodev_deadline = deadline; 3727 3728 while (1) { 3729 unsigned long now = jiffies; 3730 int ready, tmp; 3731 3732 ready = tmp = check_ready(link); 3733 if (ready > 0) 3734 return 0; 3735 3736 /* 3737 * -ENODEV could be transient. Ignore -ENODEV if link 3738 * is online. Also, some SATA devices take a long 3739 * time to clear 0xff after reset. Wait for 3740 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3741 * offline. 3742 * 3743 * Note that some PATA controllers (pata_ali) explode 3744 * if status register is read more than once when 3745 * there's no device attached. 3746 */ 3747 if (ready == -ENODEV) { 3748 if (ata_link_online(link)) 3749 ready = 0; 3750 else if ((link->ap->flags & ATA_FLAG_SATA) && 3751 !ata_link_offline(link) && 3752 time_before(now, nodev_deadline)) 3753 ready = 0; 3754 } 3755 3756 if (ready) 3757 return ready; 3758 if (time_after(now, deadline)) 3759 return -EBUSY; 3760 3761 if (!warned && time_after(now, start + 5 * HZ) && 3762 (deadline - now > 3 * HZ)) { 3763 ata_link_warn(link, 3764 "link is slow to respond, please be patient " 3765 "(ready=%d)\n", tmp); 3766 warned = 1; 3767 } 3768 3769 ata_msleep(link->ap, 50); 3770 } 3771 } 3772 3773 /** 3774 * ata_wait_after_reset - wait for link to become ready after reset 3775 * @link: link to be waited on 3776 * @deadline: deadline jiffies for the operation 3777 * @check_ready: callback to check link readiness 3778 * 3779 * Wait for @link to become ready after reset. 3780 * 3781 * LOCKING: 3782 * EH context. 3783 * 3784 * RETURNS: 3785 * 0 if @link is ready before @deadline; otherwise, -errno. 3786 */ 3787 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3788 int (*check_ready)(struct ata_link *link)) 3789 { 3790 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3791 3792 return ata_wait_ready(link, deadline, check_ready); 3793 } 3794 3795 /** 3796 * sata_link_debounce - debounce SATA phy status 3797 * @link: ATA link to debounce SATA phy status for 3798 * @params: timing parameters { interval, duration, timeout } in msec 3799 * @deadline: deadline jiffies for the operation 3800 * 3801 * Make sure SStatus of @link reaches stable state, determined by 3802 * holding the same value where DET is not 1 for @duration polled 3803 * every @interval, before @timeout. Timeout constraints the 3804 * beginning of the stable state. Because DET gets stuck at 1 on 3805 * some controllers after hot unplugging, this functions waits 3806 * until timeout then returns 0 if DET is stable at 1. 3807 * 3808 * @timeout is further limited by @deadline. The sooner of the 3809 * two is used. 3810 * 3811 * LOCKING: 3812 * Kernel thread context (may sleep) 3813 * 3814 * RETURNS: 3815 * 0 on success, -errno on failure. 3816 */ 3817 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3818 unsigned long deadline) 3819 { 3820 unsigned long interval = params[0]; 3821 unsigned long duration = params[1]; 3822 unsigned long last_jiffies, t; 3823 u32 last, cur; 3824 int rc; 3825 3826 t = ata_deadline(jiffies, params[2]); 3827 if (time_before(t, deadline)) 3828 deadline = t; 3829 3830 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3831 return rc; 3832 cur &= 0xf; 3833 3834 last = cur; 3835 last_jiffies = jiffies; 3836 3837 while (1) { 3838 ata_msleep(link->ap, interval); 3839 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3840 return rc; 3841 cur &= 0xf; 3842 3843 /* DET stable? */ 3844 if (cur == last) { 3845 if (cur == 1 && time_before(jiffies, deadline)) 3846 continue; 3847 if (time_after(jiffies, 3848 ata_deadline(last_jiffies, duration))) 3849 return 0; 3850 continue; 3851 } 3852 3853 /* unstable, start over */ 3854 last = cur; 3855 last_jiffies = jiffies; 3856 3857 /* Check deadline. If debouncing failed, return 3858 * -EPIPE to tell upper layer to lower link speed. 3859 */ 3860 if (time_after(jiffies, deadline)) 3861 return -EPIPE; 3862 } 3863 } 3864 3865 /** 3866 * sata_link_resume - resume SATA link 3867 * @link: ATA link to resume SATA 3868 * @params: timing parameters { interval, duration, timeout } in msec 3869 * @deadline: deadline jiffies for the operation 3870 * 3871 * Resume SATA phy @link and debounce it. 3872 * 3873 * LOCKING: 3874 * Kernel thread context (may sleep) 3875 * 3876 * RETURNS: 3877 * 0 on success, -errno on failure. 3878 */ 3879 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3880 unsigned long deadline) 3881 { 3882 int tries = ATA_LINK_RESUME_TRIES; 3883 u32 scontrol, serror; 3884 int rc; 3885 3886 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3887 return rc; 3888 3889 /* 3890 * Writes to SControl sometimes get ignored under certain 3891 * controllers (ata_piix SIDPR). Make sure DET actually is 3892 * cleared. 3893 */ 3894 do { 3895 scontrol = (scontrol & 0x0f0) | 0x300; 3896 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3897 return rc; 3898 /* 3899 * Some PHYs react badly if SStatus is pounded 3900 * immediately after resuming. Delay 200ms before 3901 * debouncing. 3902 */ 3903 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY)) 3904 ata_msleep(link->ap, 200); 3905 3906 /* is SControl restored correctly? */ 3907 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3908 return rc; 3909 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3910 3911 if ((scontrol & 0xf0f) != 0x300) { 3912 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3913 scontrol); 3914 return 0; 3915 } 3916 3917 if (tries < ATA_LINK_RESUME_TRIES) 3918 ata_link_warn(link, "link resume succeeded after %d retries\n", 3919 ATA_LINK_RESUME_TRIES - tries); 3920 3921 if ((rc = sata_link_debounce(link, params, deadline))) 3922 return rc; 3923 3924 /* clear SError, some PHYs require this even for SRST to work */ 3925 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3926 rc = sata_scr_write(link, SCR_ERROR, serror); 3927 3928 return rc != -EINVAL ? rc : 0; 3929 } 3930 3931 /** 3932 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3933 * @link: ATA link to manipulate SControl for 3934 * @policy: LPM policy to configure 3935 * @spm_wakeup: initiate LPM transition to active state 3936 * 3937 * Manipulate the IPM field of the SControl register of @link 3938 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3939 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3940 * the link. This function also clears PHYRDY_CHG before 3941 * returning. 3942 * 3943 * LOCKING: 3944 * EH context. 3945 * 3946 * RETURNS: 3947 * 0 on success, -errno otherwise. 3948 */ 3949 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3950 bool spm_wakeup) 3951 { 3952 struct ata_eh_context *ehc = &link->eh_context; 3953 bool woken_up = false; 3954 u32 scontrol; 3955 int rc; 3956 3957 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3958 if (rc) 3959 return rc; 3960 3961 switch (policy) { 3962 case ATA_LPM_MAX_POWER: 3963 /* disable all LPM transitions */ 3964 scontrol |= (0x7 << 8); 3965 /* initiate transition to active state */ 3966 if (spm_wakeup) { 3967 scontrol |= (0x4 << 12); 3968 woken_up = true; 3969 } 3970 break; 3971 case ATA_LPM_MED_POWER: 3972 /* allow LPM to PARTIAL */ 3973 scontrol &= ~(0x1 << 8); 3974 scontrol |= (0x6 << 8); 3975 break; 3976 case ATA_LPM_MED_POWER_WITH_DIPM: 3977 case ATA_LPM_MIN_POWER: 3978 if (ata_link_nr_enabled(link) > 0) 3979 /* no restrictions on LPM transitions */ 3980 scontrol &= ~(0x7 << 8); 3981 else { 3982 /* empty port, power off */ 3983 scontrol &= ~0xf; 3984 scontrol |= (0x1 << 2); 3985 } 3986 break; 3987 default: 3988 WARN_ON(1); 3989 } 3990 3991 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3992 if (rc) 3993 return rc; 3994 3995 /* give the link time to transit out of LPM state */ 3996 if (woken_up) 3997 msleep(10); 3998 3999 /* clear PHYRDY_CHG from SError */ 4000 ehc->i.serror &= ~SERR_PHYRDY_CHG; 4001 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 4002 } 4003 4004 /** 4005 * ata_std_prereset - prepare for reset 4006 * @link: ATA link to be reset 4007 * @deadline: deadline jiffies for the operation 4008 * 4009 * @link is about to be reset. Initialize it. Failure from 4010 * prereset makes libata abort whole reset sequence and give up 4011 * that port, so prereset should be best-effort. It does its 4012 * best to prepare for reset sequence but if things go wrong, it 4013 * should just whine, not fail. 4014 * 4015 * LOCKING: 4016 * Kernel thread context (may sleep) 4017 * 4018 * RETURNS: 4019 * 0 on success, -errno otherwise. 4020 */ 4021 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 4022 { 4023 struct ata_port *ap = link->ap; 4024 struct ata_eh_context *ehc = &link->eh_context; 4025 const unsigned long *timing = sata_ehc_deb_timing(ehc); 4026 int rc; 4027 4028 /* if we're about to do hardreset, nothing more to do */ 4029 if (ehc->i.action & ATA_EH_HARDRESET) 4030 return 0; 4031 4032 /* if SATA, resume link */ 4033 if (ap->flags & ATA_FLAG_SATA) { 4034 rc = sata_link_resume(link, timing, deadline); 4035 /* whine about phy resume failure but proceed */ 4036 if (rc && rc != -EOPNOTSUPP) 4037 ata_link_warn(link, 4038 "failed to resume link for reset (errno=%d)\n", 4039 rc); 4040 } 4041 4042 /* no point in trying softreset on offline link */ 4043 if (ata_phys_link_offline(link)) 4044 ehc->i.action &= ~ATA_EH_SOFTRESET; 4045 4046 return 0; 4047 } 4048 4049 /** 4050 * sata_link_hardreset - reset link via SATA phy reset 4051 * @link: link to reset 4052 * @timing: timing parameters { interval, duration, timeout } in msec 4053 * @deadline: deadline jiffies for the operation 4054 * @online: optional out parameter indicating link onlineness 4055 * @check_ready: optional callback to check link readiness 4056 * 4057 * SATA phy-reset @link using DET bits of SControl register. 4058 * After hardreset, link readiness is waited upon using 4059 * ata_wait_ready() if @check_ready is specified. LLDs are 4060 * allowed to not specify @check_ready and wait itself after this 4061 * function returns. Device classification is LLD's 4062 * responsibility. 4063 * 4064 * *@online is set to one iff reset succeeded and @link is online 4065 * after reset. 4066 * 4067 * LOCKING: 4068 * Kernel thread context (may sleep) 4069 * 4070 * RETURNS: 4071 * 0 on success, -errno otherwise. 4072 */ 4073 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 4074 unsigned long deadline, 4075 bool *online, int (*check_ready)(struct ata_link *)) 4076 { 4077 u32 scontrol; 4078 int rc; 4079 4080 DPRINTK("ENTER\n"); 4081 4082 if (online) 4083 *online = false; 4084 4085 if (sata_set_spd_needed(link)) { 4086 /* SATA spec says nothing about how to reconfigure 4087 * spd. To be on the safe side, turn off phy during 4088 * reconfiguration. This works for at least ICH7 AHCI 4089 * and Sil3124. 4090 */ 4091 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 4092 goto out; 4093 4094 scontrol = (scontrol & 0x0f0) | 0x304; 4095 4096 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 4097 goto out; 4098 4099 sata_set_spd(link); 4100 } 4101 4102 /* issue phy wake/reset */ 4103 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 4104 goto out; 4105 4106 scontrol = (scontrol & 0x0f0) | 0x301; 4107 4108 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 4109 goto out; 4110 4111 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 4112 * 10.4.2 says at least 1 ms. 4113 */ 4114 ata_msleep(link->ap, 1); 4115 4116 /* bring link back */ 4117 rc = sata_link_resume(link, timing, deadline); 4118 if (rc) 4119 goto out; 4120 /* if link is offline nothing more to do */ 4121 if (ata_phys_link_offline(link)) 4122 goto out; 4123 4124 /* Link is online. From this point, -ENODEV too is an error. */ 4125 if (online) 4126 *online = true; 4127 4128 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 4129 /* If PMP is supported, we have to do follow-up SRST. 4130 * Some PMPs don't send D2H Reg FIS after hardreset if 4131 * the first port is empty. Wait only for 4132 * ATA_TMOUT_PMP_SRST_WAIT. 4133 */ 4134 if (check_ready) { 4135 unsigned long pmp_deadline; 4136 4137 pmp_deadline = ata_deadline(jiffies, 4138 ATA_TMOUT_PMP_SRST_WAIT); 4139 if (time_after(pmp_deadline, deadline)) 4140 pmp_deadline = deadline; 4141 ata_wait_ready(link, pmp_deadline, check_ready); 4142 } 4143 rc = -EAGAIN; 4144 goto out; 4145 } 4146 4147 rc = 0; 4148 if (check_ready) 4149 rc = ata_wait_ready(link, deadline, check_ready); 4150 out: 4151 if (rc && rc != -EAGAIN) { 4152 /* online is set iff link is online && reset succeeded */ 4153 if (online) 4154 *online = false; 4155 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 4156 } 4157 DPRINTK("EXIT, rc=%d\n", rc); 4158 return rc; 4159 } 4160 4161 /** 4162 * sata_std_hardreset - COMRESET w/o waiting or classification 4163 * @link: link to reset 4164 * @class: resulting class of attached device 4165 * @deadline: deadline jiffies for the operation 4166 * 4167 * Standard SATA COMRESET w/o waiting or classification. 4168 * 4169 * LOCKING: 4170 * Kernel thread context (may sleep) 4171 * 4172 * RETURNS: 4173 * 0 if link offline, -EAGAIN if link online, -errno on errors. 4174 */ 4175 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 4176 unsigned long deadline) 4177 { 4178 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 4179 bool online; 4180 int rc; 4181 4182 /* do hardreset */ 4183 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 4184 return online ? -EAGAIN : rc; 4185 } 4186 4187 /** 4188 * ata_std_postreset - standard postreset callback 4189 * @link: the target ata_link 4190 * @classes: classes of attached devices 4191 * 4192 * This function is invoked after a successful reset. Note that 4193 * the device might have been reset more than once using 4194 * different reset methods before postreset is invoked. 4195 * 4196 * LOCKING: 4197 * Kernel thread context (may sleep) 4198 */ 4199 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 4200 { 4201 u32 serror; 4202 4203 DPRINTK("ENTER\n"); 4204 4205 /* reset complete, clear SError */ 4206 if (!sata_scr_read(link, SCR_ERROR, &serror)) 4207 sata_scr_write(link, SCR_ERROR, serror); 4208 4209 /* print link status */ 4210 sata_print_link_status(link); 4211 4212 DPRINTK("EXIT\n"); 4213 } 4214 4215 /** 4216 * ata_dev_same_device - Determine whether new ID matches configured device 4217 * @dev: device to compare against 4218 * @new_class: class of the new device 4219 * @new_id: IDENTIFY page of the new device 4220 * 4221 * Compare @new_class and @new_id against @dev and determine 4222 * whether @dev is the device indicated by @new_class and 4223 * @new_id. 4224 * 4225 * LOCKING: 4226 * None. 4227 * 4228 * RETURNS: 4229 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 4230 */ 4231 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 4232 const u16 *new_id) 4233 { 4234 const u16 *old_id = dev->id; 4235 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 4236 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 4237 4238 if (dev->class != new_class) { 4239 ata_dev_info(dev, "class mismatch %d != %d\n", 4240 dev->class, new_class); 4241 return 0; 4242 } 4243 4244 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 4245 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 4246 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 4247 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 4248 4249 if (strcmp(model[0], model[1])) { 4250 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 4251 model[0], model[1]); 4252 return 0; 4253 } 4254 4255 if (strcmp(serial[0], serial[1])) { 4256 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 4257 serial[0], serial[1]); 4258 return 0; 4259 } 4260 4261 return 1; 4262 } 4263 4264 /** 4265 * ata_dev_reread_id - Re-read IDENTIFY data 4266 * @dev: target ATA device 4267 * @readid_flags: read ID flags 4268 * 4269 * Re-read IDENTIFY page and make sure @dev is still attached to 4270 * the port. 4271 * 4272 * LOCKING: 4273 * Kernel thread context (may sleep) 4274 * 4275 * RETURNS: 4276 * 0 on success, negative errno otherwise 4277 */ 4278 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 4279 { 4280 unsigned int class = dev->class; 4281 u16 *id = (void *)dev->link->ap->sector_buf; 4282 int rc; 4283 4284 /* read ID data */ 4285 rc = ata_dev_read_id(dev, &class, readid_flags, id); 4286 if (rc) 4287 return rc; 4288 4289 /* is the device still there? */ 4290 if (!ata_dev_same_device(dev, class, id)) 4291 return -ENODEV; 4292 4293 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 4294 return 0; 4295 } 4296 4297 /** 4298 * ata_dev_revalidate - Revalidate ATA device 4299 * @dev: device to revalidate 4300 * @new_class: new class code 4301 * @readid_flags: read ID flags 4302 * 4303 * Re-read IDENTIFY page, make sure @dev is still attached to the 4304 * port and reconfigure it according to the new IDENTIFY page. 4305 * 4306 * LOCKING: 4307 * Kernel thread context (may sleep) 4308 * 4309 * RETURNS: 4310 * 0 on success, negative errno otherwise 4311 */ 4312 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 4313 unsigned int readid_flags) 4314 { 4315 u64 n_sectors = dev->n_sectors; 4316 u64 n_native_sectors = dev->n_native_sectors; 4317 int rc; 4318 4319 if (!ata_dev_enabled(dev)) 4320 return -ENODEV; 4321 4322 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 4323 if (ata_class_enabled(new_class) && 4324 new_class != ATA_DEV_ATA && 4325 new_class != ATA_DEV_ATAPI && 4326 new_class != ATA_DEV_ZAC && 4327 new_class != ATA_DEV_SEMB) { 4328 ata_dev_info(dev, "class mismatch %u != %u\n", 4329 dev->class, new_class); 4330 rc = -ENODEV; 4331 goto fail; 4332 } 4333 4334 /* re-read ID */ 4335 rc = ata_dev_reread_id(dev, readid_flags); 4336 if (rc) 4337 goto fail; 4338 4339 /* configure device according to the new ID */ 4340 rc = ata_dev_configure(dev); 4341 if (rc) 4342 goto fail; 4343 4344 /* verify n_sectors hasn't changed */ 4345 if (dev->class != ATA_DEV_ATA || !n_sectors || 4346 dev->n_sectors == n_sectors) 4347 return 0; 4348 4349 /* n_sectors has changed */ 4350 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4351 (unsigned long long)n_sectors, 4352 (unsigned long long)dev->n_sectors); 4353 4354 /* 4355 * Something could have caused HPA to be unlocked 4356 * involuntarily. If n_native_sectors hasn't changed and the 4357 * new size matches it, keep the device. 4358 */ 4359 if (dev->n_native_sectors == n_native_sectors && 4360 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4361 ata_dev_warn(dev, 4362 "new n_sectors matches native, probably " 4363 "late HPA unlock, n_sectors updated\n"); 4364 /* use the larger n_sectors */ 4365 return 0; 4366 } 4367 4368 /* 4369 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4370 * unlocking HPA in those cases. 4371 * 4372 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4373 */ 4374 if (dev->n_native_sectors == n_native_sectors && 4375 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4376 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4377 ata_dev_warn(dev, 4378 "old n_sectors matches native, probably " 4379 "late HPA lock, will try to unlock HPA\n"); 4380 /* try unlocking HPA */ 4381 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4382 rc = -EIO; 4383 } else 4384 rc = -ENODEV; 4385 4386 /* restore original n_[native_]sectors and fail */ 4387 dev->n_native_sectors = n_native_sectors; 4388 dev->n_sectors = n_sectors; 4389 fail: 4390 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4391 return rc; 4392 } 4393 4394 struct ata_blacklist_entry { 4395 const char *model_num; 4396 const char *model_rev; 4397 unsigned long horkage; 4398 }; 4399 4400 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4401 /* Devices with DMA related problems under Linux */ 4402 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4403 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4404 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4405 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4406 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4407 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4408 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4409 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4410 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4411 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4412 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4413 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4414 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4415 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4416 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4417 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4418 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4419 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4420 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4421 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4422 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4423 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4424 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4425 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4426 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4427 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4428 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4429 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4430 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4431 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 4432 /* Odd clown on sil3726/4726 PMPs */ 4433 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4434 4435 /* Weird ATAPI devices */ 4436 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4437 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4438 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4439 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4440 4441 /* 4442 * Causes silent data corruption with higher max sects. 4443 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 4444 */ 4445 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 4446 4447 /* 4448 * These devices time out with higher max sects. 4449 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 4450 */ 4451 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4452 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4453 4454 /* Devices we expect to fail diagnostics */ 4455 4456 /* Devices where NCQ should be avoided */ 4457 /* NCQ is slow */ 4458 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4459 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4460 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4461 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4462 /* NCQ is broken */ 4463 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4464 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4465 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4466 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4467 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4468 4469 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4470 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4471 ATA_HORKAGE_FIRMWARE_WARN }, 4472 4473 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4474 ATA_HORKAGE_FIRMWARE_WARN }, 4475 4476 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4477 ATA_HORKAGE_FIRMWARE_WARN }, 4478 4479 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4480 ATA_HORKAGE_FIRMWARE_WARN }, 4481 4482 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */ 4483 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4484 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4485 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4486 4487 /* Blacklist entries taken from Silicon Image 3124/3132 4488 Windows driver .inf file - also several Linux problem reports */ 4489 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4490 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4491 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4492 4493 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4494 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4495 4496 /* devices which puke on READ_NATIVE_MAX */ 4497 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4498 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4499 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4500 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4501 4502 /* this one allows HPA unlocking but fails IOs on the area */ 4503 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4504 4505 /* Devices which report 1 sector over size HPA */ 4506 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4507 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4508 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4509 4510 /* Devices which get the IVB wrong */ 4511 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4512 /* Maybe we should just blacklist TSSTcorp... */ 4513 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4514 4515 /* Devices that do not need bridging limits applied */ 4516 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4517 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4518 4519 /* Devices which aren't very happy with higher link speeds */ 4520 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4521 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4522 4523 /* 4524 * Devices which choke on SETXFER. Applies only if both the 4525 * device and controller are SATA. 4526 */ 4527 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4528 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4529 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4530 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4531 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4532 4533 /* Crucial BX100 SSD 500GB has broken LPM support */ 4534 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 4535 4536 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4537 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4538 ATA_HORKAGE_ZERO_AFTER_TRIM | 4539 ATA_HORKAGE_NOLPM, }, 4540 /* 512GB MX100 with newer firmware has only LPM issues */ 4541 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 4542 ATA_HORKAGE_NOLPM, }, 4543 4544 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4545 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4546 ATA_HORKAGE_ZERO_AFTER_TRIM | 4547 ATA_HORKAGE_NOLPM, }, 4548 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4549 ATA_HORKAGE_ZERO_AFTER_TRIM | 4550 ATA_HORKAGE_NOLPM, }, 4551 4552 /* devices that don't properly handle queued TRIM commands */ 4553 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4554 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4555 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4556 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4557 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4558 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4559 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4560 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4561 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4562 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4563 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4564 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4565 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4566 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4567 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4568 ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4569 4570 /* devices that don't properly handle TRIM commands */ 4571 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, }, 4572 4573 /* 4574 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4575 * (Return Zero After Trim) flags in the ATA Command Set are 4576 * unreliable in the sense that they only define what happens if 4577 * the device successfully executed the DSM TRIM command. TRIM 4578 * is only advisory, however, and the device is free to silently 4579 * ignore all or parts of the request. 4580 * 4581 * Whitelist drives that are known to reliably return zeroes 4582 * after TRIM. 4583 */ 4584 4585 /* 4586 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4587 * that model before whitelisting all other intel SSDs. 4588 */ 4589 { "INTEL*SSDSC2MH*", NULL, 0, }, 4590 4591 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4592 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4593 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4594 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4595 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4596 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4597 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, }, 4598 4599 /* 4600 * Some WD SATA-I drives spin up and down erratically when the link 4601 * is put into the slumber mode. We don't have full list of the 4602 * affected devices. Disable LPM if the device matches one of the 4603 * known prefixes and is SATA-1. As a side effect LPM partial is 4604 * lost too. 4605 * 4606 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4607 */ 4608 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4609 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4610 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4611 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4612 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4613 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4614 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4615 4616 /* End Marker */ 4617 { } 4618 }; 4619 4620 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4621 { 4622 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4623 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4624 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4625 4626 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4627 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4628 4629 while (ad->model_num) { 4630 if (glob_match(ad->model_num, model_num)) { 4631 if (ad->model_rev == NULL) 4632 return ad->horkage; 4633 if (glob_match(ad->model_rev, model_rev)) 4634 return ad->horkage; 4635 } 4636 ad++; 4637 } 4638 return 0; 4639 } 4640 4641 static int ata_dma_blacklisted(const struct ata_device *dev) 4642 { 4643 /* We don't support polling DMA. 4644 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4645 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4646 */ 4647 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4648 (dev->flags & ATA_DFLAG_CDB_INTR)) 4649 return 1; 4650 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4651 } 4652 4653 /** 4654 * ata_is_40wire - check drive side detection 4655 * @dev: device 4656 * 4657 * Perform drive side detection decoding, allowing for device vendors 4658 * who can't follow the documentation. 4659 */ 4660 4661 static int ata_is_40wire(struct ata_device *dev) 4662 { 4663 if (dev->horkage & ATA_HORKAGE_IVB) 4664 return ata_drive_40wire_relaxed(dev->id); 4665 return ata_drive_40wire(dev->id); 4666 } 4667 4668 /** 4669 * cable_is_40wire - 40/80/SATA decider 4670 * @ap: port to consider 4671 * 4672 * This function encapsulates the policy for speed management 4673 * in one place. At the moment we don't cache the result but 4674 * there is a good case for setting ap->cbl to the result when 4675 * we are called with unknown cables (and figuring out if it 4676 * impacts hotplug at all). 4677 * 4678 * Return 1 if the cable appears to be 40 wire. 4679 */ 4680 4681 static int cable_is_40wire(struct ata_port *ap) 4682 { 4683 struct ata_link *link; 4684 struct ata_device *dev; 4685 4686 /* If the controller thinks we are 40 wire, we are. */ 4687 if (ap->cbl == ATA_CBL_PATA40) 4688 return 1; 4689 4690 /* If the controller thinks we are 80 wire, we are. */ 4691 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4692 return 0; 4693 4694 /* If the system is known to be 40 wire short cable (eg 4695 * laptop), then we allow 80 wire modes even if the drive 4696 * isn't sure. 4697 */ 4698 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4699 return 0; 4700 4701 /* If the controller doesn't know, we scan. 4702 * 4703 * Note: We look for all 40 wire detects at this point. Any 4704 * 80 wire detect is taken to be 80 wire cable because 4705 * - in many setups only the one drive (slave if present) will 4706 * give a valid detect 4707 * - if you have a non detect capable drive you don't want it 4708 * to colour the choice 4709 */ 4710 ata_for_each_link(link, ap, EDGE) { 4711 ata_for_each_dev(dev, link, ENABLED) { 4712 if (!ata_is_40wire(dev)) 4713 return 0; 4714 } 4715 } 4716 return 1; 4717 } 4718 4719 /** 4720 * ata_dev_xfermask - Compute supported xfermask of the given device 4721 * @dev: Device to compute xfermask for 4722 * 4723 * Compute supported xfermask of @dev and store it in 4724 * dev->*_mask. This function is responsible for applying all 4725 * known limits including host controller limits, device 4726 * blacklist, etc... 4727 * 4728 * LOCKING: 4729 * None. 4730 */ 4731 static void ata_dev_xfermask(struct ata_device *dev) 4732 { 4733 struct ata_link *link = dev->link; 4734 struct ata_port *ap = link->ap; 4735 struct ata_host *host = ap->host; 4736 unsigned long xfer_mask; 4737 4738 /* controller modes available */ 4739 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4740 ap->mwdma_mask, ap->udma_mask); 4741 4742 /* drive modes available */ 4743 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4744 dev->mwdma_mask, dev->udma_mask); 4745 xfer_mask &= ata_id_xfermask(dev->id); 4746 4747 /* 4748 * CFA Advanced TrueIDE timings are not allowed on a shared 4749 * cable 4750 */ 4751 if (ata_dev_pair(dev)) { 4752 /* No PIO5 or PIO6 */ 4753 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4754 /* No MWDMA3 or MWDMA 4 */ 4755 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4756 } 4757 4758 if (ata_dma_blacklisted(dev)) { 4759 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4760 ata_dev_warn(dev, 4761 "device is on DMA blacklist, disabling DMA\n"); 4762 } 4763 4764 if ((host->flags & ATA_HOST_SIMPLEX) && 4765 host->simplex_claimed && host->simplex_claimed != ap) { 4766 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4767 ata_dev_warn(dev, 4768 "simplex DMA is claimed by other device, disabling DMA\n"); 4769 } 4770 4771 if (ap->flags & ATA_FLAG_NO_IORDY) 4772 xfer_mask &= ata_pio_mask_no_iordy(dev); 4773 4774 if (ap->ops->mode_filter) 4775 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4776 4777 /* Apply cable rule here. Don't apply it early because when 4778 * we handle hot plug the cable type can itself change. 4779 * Check this last so that we know if the transfer rate was 4780 * solely limited by the cable. 4781 * Unknown or 80 wire cables reported host side are checked 4782 * drive side as well. Cases where we know a 40wire cable 4783 * is used safely for 80 are not checked here. 4784 */ 4785 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4786 /* UDMA/44 or higher would be available */ 4787 if (cable_is_40wire(ap)) { 4788 ata_dev_warn(dev, 4789 "limited to UDMA/33 due to 40-wire cable\n"); 4790 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4791 } 4792 4793 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4794 &dev->mwdma_mask, &dev->udma_mask); 4795 } 4796 4797 /** 4798 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4799 * @dev: Device to which command will be sent 4800 * 4801 * Issue SET FEATURES - XFER MODE command to device @dev 4802 * on port @ap. 4803 * 4804 * LOCKING: 4805 * PCI/etc. bus probe sem. 4806 * 4807 * RETURNS: 4808 * 0 on success, AC_ERR_* mask otherwise. 4809 */ 4810 4811 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4812 { 4813 struct ata_taskfile tf; 4814 unsigned int err_mask; 4815 4816 /* set up set-features taskfile */ 4817 DPRINTK("set features - xfer mode\n"); 4818 4819 /* Some controllers and ATAPI devices show flaky interrupt 4820 * behavior after setting xfer mode. Use polling instead. 4821 */ 4822 ata_tf_init(dev, &tf); 4823 tf.command = ATA_CMD_SET_FEATURES; 4824 tf.feature = SETFEATURES_XFER; 4825 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4826 tf.protocol = ATA_PROT_NODATA; 4827 /* If we are using IORDY we must send the mode setting command */ 4828 if (ata_pio_need_iordy(dev)) 4829 tf.nsect = dev->xfer_mode; 4830 /* If the device has IORDY and the controller does not - turn it off */ 4831 else if (ata_id_has_iordy(dev->id)) 4832 tf.nsect = 0x01; 4833 else /* In the ancient relic department - skip all of this */ 4834 return 0; 4835 4836 /* On some disks, this command causes spin-up, so we need longer timeout */ 4837 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4838 4839 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4840 return err_mask; 4841 } 4842 4843 /** 4844 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4845 * @dev: Device to which command will be sent 4846 * @enable: Whether to enable or disable the feature 4847 * @feature: The sector count represents the feature to set 4848 * 4849 * Issue SET FEATURES - SATA FEATURES command to device @dev 4850 * on port @ap with sector count 4851 * 4852 * LOCKING: 4853 * PCI/etc. bus probe sem. 4854 * 4855 * RETURNS: 4856 * 0 on success, AC_ERR_* mask otherwise. 4857 */ 4858 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4859 { 4860 struct ata_taskfile tf; 4861 unsigned int err_mask; 4862 unsigned long timeout = 0; 4863 4864 /* set up set-features taskfile */ 4865 DPRINTK("set features - SATA features\n"); 4866 4867 ata_tf_init(dev, &tf); 4868 tf.command = ATA_CMD_SET_FEATURES; 4869 tf.feature = enable; 4870 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4871 tf.protocol = ATA_PROT_NODATA; 4872 tf.nsect = feature; 4873 4874 if (enable == SETFEATURES_SPINUP) 4875 timeout = ata_probe_timeout ? 4876 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4877 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4878 4879 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4880 return err_mask; 4881 } 4882 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4883 4884 /** 4885 * ata_dev_init_params - Issue INIT DEV PARAMS command 4886 * @dev: Device to which command will be sent 4887 * @heads: Number of heads (taskfile parameter) 4888 * @sectors: Number of sectors (taskfile parameter) 4889 * 4890 * LOCKING: 4891 * Kernel thread context (may sleep) 4892 * 4893 * RETURNS: 4894 * 0 on success, AC_ERR_* mask otherwise. 4895 */ 4896 static unsigned int ata_dev_init_params(struct ata_device *dev, 4897 u16 heads, u16 sectors) 4898 { 4899 struct ata_taskfile tf; 4900 unsigned int err_mask; 4901 4902 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4903 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4904 return AC_ERR_INVALID; 4905 4906 /* set up init dev params taskfile */ 4907 DPRINTK("init dev params \n"); 4908 4909 ata_tf_init(dev, &tf); 4910 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4911 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4912 tf.protocol = ATA_PROT_NODATA; 4913 tf.nsect = sectors; 4914 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4915 4916 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4917 /* A clean abort indicates an original or just out of spec drive 4918 and we should continue as we issue the setup based on the 4919 drive reported working geometry */ 4920 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4921 err_mask = 0; 4922 4923 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4924 return err_mask; 4925 } 4926 4927 /** 4928 * atapi_check_dma - Check whether ATAPI DMA can be supported 4929 * @qc: Metadata associated with taskfile to check 4930 * 4931 * Allow low-level driver to filter ATA PACKET commands, returning 4932 * a status indicating whether or not it is OK to use DMA for the 4933 * supplied PACKET command. 4934 * 4935 * LOCKING: 4936 * spin_lock_irqsave(host lock) 4937 * 4938 * RETURNS: 0 when ATAPI DMA can be used 4939 * nonzero otherwise 4940 */ 4941 int atapi_check_dma(struct ata_queued_cmd *qc) 4942 { 4943 struct ata_port *ap = qc->ap; 4944 4945 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4946 * few ATAPI devices choke on such DMA requests. 4947 */ 4948 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4949 unlikely(qc->nbytes & 15)) 4950 return 1; 4951 4952 if (ap->ops->check_atapi_dma) 4953 return ap->ops->check_atapi_dma(qc); 4954 4955 return 0; 4956 } 4957 4958 /** 4959 * ata_std_qc_defer - Check whether a qc needs to be deferred 4960 * @qc: ATA command in question 4961 * 4962 * Non-NCQ commands cannot run with any other command, NCQ or 4963 * not. As upper layer only knows the queue depth, we are 4964 * responsible for maintaining exclusion. This function checks 4965 * whether a new command @qc can be issued. 4966 * 4967 * LOCKING: 4968 * spin_lock_irqsave(host lock) 4969 * 4970 * RETURNS: 4971 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4972 */ 4973 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4974 { 4975 struct ata_link *link = qc->dev->link; 4976 4977 if (ata_is_ncq(qc->tf.protocol)) { 4978 if (!ata_tag_valid(link->active_tag)) 4979 return 0; 4980 } else { 4981 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4982 return 0; 4983 } 4984 4985 return ATA_DEFER_LINK; 4986 } 4987 4988 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4989 4990 /** 4991 * ata_sg_init - Associate command with scatter-gather table. 4992 * @qc: Command to be associated 4993 * @sg: Scatter-gather table. 4994 * @n_elem: Number of elements in s/g table. 4995 * 4996 * Initialize the data-related elements of queued_cmd @qc 4997 * to point to a scatter-gather table @sg, containing @n_elem 4998 * elements. 4999 * 5000 * LOCKING: 5001 * spin_lock_irqsave(host lock) 5002 */ 5003 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 5004 unsigned int n_elem) 5005 { 5006 qc->sg = sg; 5007 qc->n_elem = n_elem; 5008 qc->cursg = qc->sg; 5009 } 5010 5011 #ifdef CONFIG_HAS_DMA 5012 5013 /** 5014 * ata_sg_clean - Unmap DMA memory associated with command 5015 * @qc: Command containing DMA memory to be released 5016 * 5017 * Unmap all mapped DMA memory associated with this command. 5018 * 5019 * LOCKING: 5020 * spin_lock_irqsave(host lock) 5021 */ 5022 static void ata_sg_clean(struct ata_queued_cmd *qc) 5023 { 5024 struct ata_port *ap = qc->ap; 5025 struct scatterlist *sg = qc->sg; 5026 int dir = qc->dma_dir; 5027 5028 WARN_ON_ONCE(sg == NULL); 5029 5030 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 5031 5032 if (qc->n_elem) 5033 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 5034 5035 qc->flags &= ~ATA_QCFLAG_DMAMAP; 5036 qc->sg = NULL; 5037 } 5038 5039 /** 5040 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 5041 * @qc: Command with scatter-gather table to be mapped. 5042 * 5043 * DMA-map the scatter-gather table associated with queued_cmd @qc. 5044 * 5045 * LOCKING: 5046 * spin_lock_irqsave(host lock) 5047 * 5048 * RETURNS: 5049 * Zero on success, negative on error. 5050 * 5051 */ 5052 static int ata_sg_setup(struct ata_queued_cmd *qc) 5053 { 5054 struct ata_port *ap = qc->ap; 5055 unsigned int n_elem; 5056 5057 VPRINTK("ENTER, ata%u\n", ap->print_id); 5058 5059 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 5060 if (n_elem < 1) 5061 return -1; 5062 5063 DPRINTK("%d sg elements mapped\n", n_elem); 5064 qc->orig_n_elem = qc->n_elem; 5065 qc->n_elem = n_elem; 5066 qc->flags |= ATA_QCFLAG_DMAMAP; 5067 5068 return 0; 5069 } 5070 5071 #else /* !CONFIG_HAS_DMA */ 5072 5073 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 5074 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 5075 5076 #endif /* !CONFIG_HAS_DMA */ 5077 5078 /** 5079 * swap_buf_le16 - swap halves of 16-bit words in place 5080 * @buf: Buffer to swap 5081 * @buf_words: Number of 16-bit words in buffer. 5082 * 5083 * Swap halves of 16-bit words if needed to convert from 5084 * little-endian byte order to native cpu byte order, or 5085 * vice-versa. 5086 * 5087 * LOCKING: 5088 * Inherited from caller. 5089 */ 5090 void swap_buf_le16(u16 *buf, unsigned int buf_words) 5091 { 5092 #ifdef __BIG_ENDIAN 5093 unsigned int i; 5094 5095 for (i = 0; i < buf_words; i++) 5096 buf[i] = le16_to_cpu(buf[i]); 5097 #endif /* __BIG_ENDIAN */ 5098 } 5099 5100 /** 5101 * ata_qc_new_init - Request an available ATA command, and initialize it 5102 * @dev: Device from whom we request an available command structure 5103 * @tag: tag 5104 * 5105 * LOCKING: 5106 * None. 5107 */ 5108 5109 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag) 5110 { 5111 struct ata_port *ap = dev->link->ap; 5112 struct ata_queued_cmd *qc; 5113 5114 /* no command while frozen */ 5115 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 5116 return NULL; 5117 5118 /* libsas case */ 5119 if (ap->flags & ATA_FLAG_SAS_HOST) { 5120 tag = ata_sas_allocate_tag(ap); 5121 if (tag < 0) 5122 return NULL; 5123 } 5124 5125 qc = __ata_qc_from_tag(ap, tag); 5126 qc->tag = tag; 5127 qc->scsicmd = NULL; 5128 qc->ap = ap; 5129 qc->dev = dev; 5130 5131 ata_qc_reinit(qc); 5132 5133 return qc; 5134 } 5135 5136 /** 5137 * ata_qc_free - free unused ata_queued_cmd 5138 * @qc: Command to complete 5139 * 5140 * Designed to free unused ata_queued_cmd object 5141 * in case something prevents using it. 5142 * 5143 * LOCKING: 5144 * spin_lock_irqsave(host lock) 5145 */ 5146 void ata_qc_free(struct ata_queued_cmd *qc) 5147 { 5148 struct ata_port *ap; 5149 unsigned int tag; 5150 5151 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5152 ap = qc->ap; 5153 5154 qc->flags = 0; 5155 tag = qc->tag; 5156 if (likely(ata_tag_valid(tag))) { 5157 qc->tag = ATA_TAG_POISON; 5158 if (ap->flags & ATA_FLAG_SAS_HOST) 5159 ata_sas_free_tag(tag, ap); 5160 } 5161 } 5162 5163 void __ata_qc_complete(struct ata_queued_cmd *qc) 5164 { 5165 struct ata_port *ap; 5166 struct ata_link *link; 5167 5168 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 5169 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 5170 ap = qc->ap; 5171 link = qc->dev->link; 5172 5173 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 5174 ata_sg_clean(qc); 5175 5176 /* command should be marked inactive atomically with qc completion */ 5177 if (ata_is_ncq(qc->tf.protocol)) { 5178 link->sactive &= ~(1 << qc->tag); 5179 if (!link->sactive) 5180 ap->nr_active_links--; 5181 } else { 5182 link->active_tag = ATA_TAG_POISON; 5183 ap->nr_active_links--; 5184 } 5185 5186 /* clear exclusive status */ 5187 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 5188 ap->excl_link == link)) 5189 ap->excl_link = NULL; 5190 5191 /* atapi: mark qc as inactive to prevent the interrupt handler 5192 * from completing the command twice later, before the error handler 5193 * is called. (when rc != 0 and atapi request sense is needed) 5194 */ 5195 qc->flags &= ~ATA_QCFLAG_ACTIVE; 5196 ap->qc_active &= ~(1 << qc->tag); 5197 5198 /* call completion callback */ 5199 qc->complete_fn(qc); 5200 } 5201 5202 static void fill_result_tf(struct ata_queued_cmd *qc) 5203 { 5204 struct ata_port *ap = qc->ap; 5205 5206 qc->result_tf.flags = qc->tf.flags; 5207 ap->ops->qc_fill_rtf(qc); 5208 } 5209 5210 static void ata_verify_xfer(struct ata_queued_cmd *qc) 5211 { 5212 struct ata_device *dev = qc->dev; 5213 5214 if (!ata_is_data(qc->tf.protocol)) 5215 return; 5216 5217 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 5218 return; 5219 5220 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 5221 } 5222 5223 /** 5224 * ata_qc_complete - Complete an active ATA command 5225 * @qc: Command to complete 5226 * 5227 * Indicate to the mid and upper layers that an ATA command has 5228 * completed, with either an ok or not-ok status. 5229 * 5230 * Refrain from calling this function multiple times when 5231 * successfully completing multiple NCQ commands. 5232 * ata_qc_complete_multiple() should be used instead, which will 5233 * properly update IRQ expect state. 5234 * 5235 * LOCKING: 5236 * spin_lock_irqsave(host lock) 5237 */ 5238 void ata_qc_complete(struct ata_queued_cmd *qc) 5239 { 5240 struct ata_port *ap = qc->ap; 5241 5242 /* Trigger the LED (if available) */ 5243 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 5244 5245 /* XXX: New EH and old EH use different mechanisms to 5246 * synchronize EH with regular execution path. 5247 * 5248 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 5249 * Normal execution path is responsible for not accessing a 5250 * failed qc. libata core enforces the rule by returning NULL 5251 * from ata_qc_from_tag() for failed qcs. 5252 * 5253 * Old EH depends on ata_qc_complete() nullifying completion 5254 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 5255 * not synchronize with interrupt handler. Only PIO task is 5256 * taken care of. 5257 */ 5258 if (ap->ops->error_handler) { 5259 struct ata_device *dev = qc->dev; 5260 struct ata_eh_info *ehi = &dev->link->eh_info; 5261 5262 if (unlikely(qc->err_mask)) 5263 qc->flags |= ATA_QCFLAG_FAILED; 5264 5265 /* 5266 * Finish internal commands without any further processing 5267 * and always with the result TF filled. 5268 */ 5269 if (unlikely(ata_tag_internal(qc->tag))) { 5270 fill_result_tf(qc); 5271 trace_ata_qc_complete_internal(qc); 5272 __ata_qc_complete(qc); 5273 return; 5274 } 5275 5276 /* 5277 * Non-internal qc has failed. Fill the result TF and 5278 * summon EH. 5279 */ 5280 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 5281 fill_result_tf(qc); 5282 trace_ata_qc_complete_failed(qc); 5283 ata_qc_schedule_eh(qc); 5284 return; 5285 } 5286 5287 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 5288 5289 /* read result TF if requested */ 5290 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5291 fill_result_tf(qc); 5292 5293 trace_ata_qc_complete_done(qc); 5294 /* Some commands need post-processing after successful 5295 * completion. 5296 */ 5297 switch (qc->tf.command) { 5298 case ATA_CMD_SET_FEATURES: 5299 if (qc->tf.feature != SETFEATURES_WC_ON && 5300 qc->tf.feature != SETFEATURES_WC_OFF && 5301 qc->tf.feature != SETFEATURES_RA_ON && 5302 qc->tf.feature != SETFEATURES_RA_OFF) 5303 break; 5304 /* fall through */ 5305 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 5306 case ATA_CMD_SET_MULTI: /* multi_count changed */ 5307 /* revalidate device */ 5308 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 5309 ata_port_schedule_eh(ap); 5310 break; 5311 5312 case ATA_CMD_SLEEP: 5313 dev->flags |= ATA_DFLAG_SLEEPING; 5314 break; 5315 } 5316 5317 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 5318 ata_verify_xfer(qc); 5319 5320 __ata_qc_complete(qc); 5321 } else { 5322 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 5323 return; 5324 5325 /* read result TF if failed or requested */ 5326 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 5327 fill_result_tf(qc); 5328 5329 __ata_qc_complete(qc); 5330 } 5331 } 5332 5333 /** 5334 * ata_qc_complete_multiple - Complete multiple qcs successfully 5335 * @ap: port in question 5336 * @qc_active: new qc_active mask 5337 * 5338 * Complete in-flight commands. This functions is meant to be 5339 * called from low-level driver's interrupt routine to complete 5340 * requests normally. ap->qc_active and @qc_active is compared 5341 * and commands are completed accordingly. 5342 * 5343 * Always use this function when completing multiple NCQ commands 5344 * from IRQ handlers instead of calling ata_qc_complete() 5345 * multiple times to keep IRQ expect status properly in sync. 5346 * 5347 * LOCKING: 5348 * spin_lock_irqsave(host lock) 5349 * 5350 * RETURNS: 5351 * Number of completed commands on success, -errno otherwise. 5352 */ 5353 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 5354 { 5355 int nr_done = 0; 5356 u32 done_mask; 5357 5358 done_mask = ap->qc_active ^ qc_active; 5359 5360 if (unlikely(done_mask & qc_active)) { 5361 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 5362 ap->qc_active, qc_active); 5363 return -EINVAL; 5364 } 5365 5366 while (done_mask) { 5367 struct ata_queued_cmd *qc; 5368 unsigned int tag = __ffs(done_mask); 5369 5370 qc = ata_qc_from_tag(ap, tag); 5371 if (qc) { 5372 ata_qc_complete(qc); 5373 nr_done++; 5374 } 5375 done_mask &= ~(1 << tag); 5376 } 5377 5378 return nr_done; 5379 } 5380 5381 /** 5382 * ata_qc_issue - issue taskfile to device 5383 * @qc: command to issue to device 5384 * 5385 * Prepare an ATA command to submission to device. 5386 * This includes mapping the data into a DMA-able 5387 * area, filling in the S/G table, and finally 5388 * writing the taskfile to hardware, starting the command. 5389 * 5390 * LOCKING: 5391 * spin_lock_irqsave(host lock) 5392 */ 5393 void ata_qc_issue(struct ata_queued_cmd *qc) 5394 { 5395 struct ata_port *ap = qc->ap; 5396 struct ata_link *link = qc->dev->link; 5397 u8 prot = qc->tf.protocol; 5398 5399 /* Make sure only one non-NCQ command is outstanding. The 5400 * check is skipped for old EH because it reuses active qc to 5401 * request ATAPI sense. 5402 */ 5403 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5404 5405 if (ata_is_ncq(prot)) { 5406 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5407 5408 if (!link->sactive) 5409 ap->nr_active_links++; 5410 link->sactive |= 1 << qc->tag; 5411 } else { 5412 WARN_ON_ONCE(link->sactive); 5413 5414 ap->nr_active_links++; 5415 link->active_tag = qc->tag; 5416 } 5417 5418 qc->flags |= ATA_QCFLAG_ACTIVE; 5419 ap->qc_active |= 1 << qc->tag; 5420 5421 /* 5422 * We guarantee to LLDs that they will have at least one 5423 * non-zero sg if the command is a data command. 5424 */ 5425 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 5426 goto sys_err; 5427 5428 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5429 (ap->flags & ATA_FLAG_PIO_DMA))) 5430 if (ata_sg_setup(qc)) 5431 goto sys_err; 5432 5433 /* if device is sleeping, schedule reset and abort the link */ 5434 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5435 link->eh_info.action |= ATA_EH_RESET; 5436 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5437 ata_link_abort(link); 5438 return; 5439 } 5440 5441 ap->ops->qc_prep(qc); 5442 trace_ata_qc_issue(qc); 5443 qc->err_mask |= ap->ops->qc_issue(qc); 5444 if (unlikely(qc->err_mask)) 5445 goto err; 5446 return; 5447 5448 sys_err: 5449 qc->err_mask |= AC_ERR_SYSTEM; 5450 err: 5451 ata_qc_complete(qc); 5452 } 5453 5454 /** 5455 * sata_scr_valid - test whether SCRs are accessible 5456 * @link: ATA link to test SCR accessibility for 5457 * 5458 * Test whether SCRs are accessible for @link. 5459 * 5460 * LOCKING: 5461 * None. 5462 * 5463 * RETURNS: 5464 * 1 if SCRs are accessible, 0 otherwise. 5465 */ 5466 int sata_scr_valid(struct ata_link *link) 5467 { 5468 struct ata_port *ap = link->ap; 5469 5470 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5471 } 5472 5473 /** 5474 * sata_scr_read - read SCR register of the specified port 5475 * @link: ATA link to read SCR for 5476 * @reg: SCR to read 5477 * @val: Place to store read value 5478 * 5479 * Read SCR register @reg of @link into *@val. This function is 5480 * guaranteed to succeed if @link is ap->link, the cable type of 5481 * the port is SATA and the port implements ->scr_read. 5482 * 5483 * LOCKING: 5484 * None if @link is ap->link. Kernel thread context otherwise. 5485 * 5486 * RETURNS: 5487 * 0 on success, negative errno on failure. 5488 */ 5489 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5490 { 5491 if (ata_is_host_link(link)) { 5492 if (sata_scr_valid(link)) 5493 return link->ap->ops->scr_read(link, reg, val); 5494 return -EOPNOTSUPP; 5495 } 5496 5497 return sata_pmp_scr_read(link, reg, val); 5498 } 5499 5500 /** 5501 * sata_scr_write - write SCR register of the specified port 5502 * @link: ATA link to write SCR for 5503 * @reg: SCR to write 5504 * @val: value to write 5505 * 5506 * Write @val to SCR register @reg of @link. This function is 5507 * guaranteed to succeed if @link is ap->link, the cable type of 5508 * the port is SATA and the port implements ->scr_read. 5509 * 5510 * LOCKING: 5511 * None if @link is ap->link. Kernel thread context otherwise. 5512 * 5513 * RETURNS: 5514 * 0 on success, negative errno on failure. 5515 */ 5516 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5517 { 5518 if (ata_is_host_link(link)) { 5519 if (sata_scr_valid(link)) 5520 return link->ap->ops->scr_write(link, reg, val); 5521 return -EOPNOTSUPP; 5522 } 5523 5524 return sata_pmp_scr_write(link, reg, val); 5525 } 5526 5527 /** 5528 * sata_scr_write_flush - write SCR register of the specified port and flush 5529 * @link: ATA link to write SCR for 5530 * @reg: SCR to write 5531 * @val: value to write 5532 * 5533 * This function is identical to sata_scr_write() except that this 5534 * function performs flush after writing to the register. 5535 * 5536 * LOCKING: 5537 * None if @link is ap->link. Kernel thread context otherwise. 5538 * 5539 * RETURNS: 5540 * 0 on success, negative errno on failure. 5541 */ 5542 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5543 { 5544 if (ata_is_host_link(link)) { 5545 int rc; 5546 5547 if (sata_scr_valid(link)) { 5548 rc = link->ap->ops->scr_write(link, reg, val); 5549 if (rc == 0) 5550 rc = link->ap->ops->scr_read(link, reg, &val); 5551 return rc; 5552 } 5553 return -EOPNOTSUPP; 5554 } 5555 5556 return sata_pmp_scr_write(link, reg, val); 5557 } 5558 5559 /** 5560 * ata_phys_link_online - test whether the given link is online 5561 * @link: ATA link to test 5562 * 5563 * Test whether @link is online. Note that this function returns 5564 * 0 if online status of @link cannot be obtained, so 5565 * ata_link_online(link) != !ata_link_offline(link). 5566 * 5567 * LOCKING: 5568 * None. 5569 * 5570 * RETURNS: 5571 * True if the port online status is available and online. 5572 */ 5573 bool ata_phys_link_online(struct ata_link *link) 5574 { 5575 u32 sstatus; 5576 5577 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5578 ata_sstatus_online(sstatus)) 5579 return true; 5580 return false; 5581 } 5582 5583 /** 5584 * ata_phys_link_offline - test whether the given link is offline 5585 * @link: ATA link to test 5586 * 5587 * Test whether @link is offline. Note that this function 5588 * returns 0 if offline status of @link cannot be obtained, so 5589 * ata_link_online(link) != !ata_link_offline(link). 5590 * 5591 * LOCKING: 5592 * None. 5593 * 5594 * RETURNS: 5595 * True if the port offline status is available and offline. 5596 */ 5597 bool ata_phys_link_offline(struct ata_link *link) 5598 { 5599 u32 sstatus; 5600 5601 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5602 !ata_sstatus_online(sstatus)) 5603 return true; 5604 return false; 5605 } 5606 5607 /** 5608 * ata_link_online - test whether the given link is online 5609 * @link: ATA link to test 5610 * 5611 * Test whether @link is online. This is identical to 5612 * ata_phys_link_online() when there's no slave link. When 5613 * there's a slave link, this function should only be called on 5614 * the master link and will return true if any of M/S links is 5615 * online. 5616 * 5617 * LOCKING: 5618 * None. 5619 * 5620 * RETURNS: 5621 * True if the port online status is available and online. 5622 */ 5623 bool ata_link_online(struct ata_link *link) 5624 { 5625 struct ata_link *slave = link->ap->slave_link; 5626 5627 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5628 5629 return ata_phys_link_online(link) || 5630 (slave && ata_phys_link_online(slave)); 5631 } 5632 5633 /** 5634 * ata_link_offline - test whether the given link is offline 5635 * @link: ATA link to test 5636 * 5637 * Test whether @link is offline. This is identical to 5638 * ata_phys_link_offline() when there's no slave link. When 5639 * there's a slave link, this function should only be called on 5640 * the master link and will return true if both M/S links are 5641 * offline. 5642 * 5643 * LOCKING: 5644 * None. 5645 * 5646 * RETURNS: 5647 * True if the port offline status is available and offline. 5648 */ 5649 bool ata_link_offline(struct ata_link *link) 5650 { 5651 struct ata_link *slave = link->ap->slave_link; 5652 5653 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5654 5655 return ata_phys_link_offline(link) && 5656 (!slave || ata_phys_link_offline(slave)); 5657 } 5658 5659 #ifdef CONFIG_PM 5660 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5661 unsigned int action, unsigned int ehi_flags, 5662 bool async) 5663 { 5664 struct ata_link *link; 5665 unsigned long flags; 5666 5667 /* Previous resume operation might still be in 5668 * progress. Wait for PM_PENDING to clear. 5669 */ 5670 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5671 ata_port_wait_eh(ap); 5672 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5673 } 5674 5675 /* request PM ops to EH */ 5676 spin_lock_irqsave(ap->lock, flags); 5677 5678 ap->pm_mesg = mesg; 5679 ap->pflags |= ATA_PFLAG_PM_PENDING; 5680 ata_for_each_link(link, ap, HOST_FIRST) { 5681 link->eh_info.action |= action; 5682 link->eh_info.flags |= ehi_flags; 5683 } 5684 5685 ata_port_schedule_eh(ap); 5686 5687 spin_unlock_irqrestore(ap->lock, flags); 5688 5689 if (!async) { 5690 ata_port_wait_eh(ap); 5691 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5692 } 5693 } 5694 5695 /* 5696 * On some hardware, device fails to respond after spun down for suspend. As 5697 * the device won't be used before being resumed, we don't need to touch the 5698 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5699 * 5700 * http://thread.gmane.org/gmane.linux.ide/46764 5701 */ 5702 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5703 | ATA_EHI_NO_AUTOPSY 5704 | ATA_EHI_NO_RECOVERY; 5705 5706 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5707 { 5708 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5709 } 5710 5711 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5712 { 5713 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5714 } 5715 5716 static int ata_port_pm_suspend(struct device *dev) 5717 { 5718 struct ata_port *ap = to_ata_port(dev); 5719 5720 if (pm_runtime_suspended(dev)) 5721 return 0; 5722 5723 ata_port_suspend(ap, PMSG_SUSPEND); 5724 return 0; 5725 } 5726 5727 static int ata_port_pm_freeze(struct device *dev) 5728 { 5729 struct ata_port *ap = to_ata_port(dev); 5730 5731 if (pm_runtime_suspended(dev)) 5732 return 0; 5733 5734 ata_port_suspend(ap, PMSG_FREEZE); 5735 return 0; 5736 } 5737 5738 static int ata_port_pm_poweroff(struct device *dev) 5739 { 5740 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5741 return 0; 5742 } 5743 5744 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5745 | ATA_EHI_QUIET; 5746 5747 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5748 { 5749 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5750 } 5751 5752 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5753 { 5754 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5755 } 5756 5757 static int ata_port_pm_resume(struct device *dev) 5758 { 5759 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5760 pm_runtime_disable(dev); 5761 pm_runtime_set_active(dev); 5762 pm_runtime_enable(dev); 5763 return 0; 5764 } 5765 5766 /* 5767 * For ODDs, the upper layer will poll for media change every few seconds, 5768 * which will make it enter and leave suspend state every few seconds. And 5769 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5770 * is very little and the ODD may malfunction after constantly being reset. 5771 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5772 * ODD is attached to the port. 5773 */ 5774 static int ata_port_runtime_idle(struct device *dev) 5775 { 5776 struct ata_port *ap = to_ata_port(dev); 5777 struct ata_link *link; 5778 struct ata_device *adev; 5779 5780 ata_for_each_link(link, ap, HOST_FIRST) { 5781 ata_for_each_dev(adev, link, ENABLED) 5782 if (adev->class == ATA_DEV_ATAPI && 5783 !zpodd_dev_enabled(adev)) 5784 return -EBUSY; 5785 } 5786 5787 return 0; 5788 } 5789 5790 static int ata_port_runtime_suspend(struct device *dev) 5791 { 5792 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5793 return 0; 5794 } 5795 5796 static int ata_port_runtime_resume(struct device *dev) 5797 { 5798 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5799 return 0; 5800 } 5801 5802 static const struct dev_pm_ops ata_port_pm_ops = { 5803 .suspend = ata_port_pm_suspend, 5804 .resume = ata_port_pm_resume, 5805 .freeze = ata_port_pm_freeze, 5806 .thaw = ata_port_pm_resume, 5807 .poweroff = ata_port_pm_poweroff, 5808 .restore = ata_port_pm_resume, 5809 5810 .runtime_suspend = ata_port_runtime_suspend, 5811 .runtime_resume = ata_port_runtime_resume, 5812 .runtime_idle = ata_port_runtime_idle, 5813 }; 5814 5815 /* sas ports don't participate in pm runtime management of ata_ports, 5816 * and need to resume ata devices at the domain level, not the per-port 5817 * level. sas suspend/resume is async to allow parallel port recovery 5818 * since sas has multiple ata_port instances per Scsi_Host. 5819 */ 5820 void ata_sas_port_suspend(struct ata_port *ap) 5821 { 5822 ata_port_suspend_async(ap, PMSG_SUSPEND); 5823 } 5824 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5825 5826 void ata_sas_port_resume(struct ata_port *ap) 5827 { 5828 ata_port_resume_async(ap, PMSG_RESUME); 5829 } 5830 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5831 5832 /** 5833 * ata_host_suspend - suspend host 5834 * @host: host to suspend 5835 * @mesg: PM message 5836 * 5837 * Suspend @host. Actual operation is performed by port suspend. 5838 */ 5839 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5840 { 5841 host->dev->power.power_state = mesg; 5842 return 0; 5843 } 5844 5845 /** 5846 * ata_host_resume - resume host 5847 * @host: host to resume 5848 * 5849 * Resume @host. Actual operation is performed by port resume. 5850 */ 5851 void ata_host_resume(struct ata_host *host) 5852 { 5853 host->dev->power.power_state = PMSG_ON; 5854 } 5855 #endif 5856 5857 const struct device_type ata_port_type = { 5858 .name = "ata_port", 5859 #ifdef CONFIG_PM 5860 .pm = &ata_port_pm_ops, 5861 #endif 5862 }; 5863 5864 /** 5865 * ata_dev_init - Initialize an ata_device structure 5866 * @dev: Device structure to initialize 5867 * 5868 * Initialize @dev in preparation for probing. 5869 * 5870 * LOCKING: 5871 * Inherited from caller. 5872 */ 5873 void ata_dev_init(struct ata_device *dev) 5874 { 5875 struct ata_link *link = ata_dev_phys_link(dev); 5876 struct ata_port *ap = link->ap; 5877 unsigned long flags; 5878 5879 /* SATA spd limit is bound to the attached device, reset together */ 5880 link->sata_spd_limit = link->hw_sata_spd_limit; 5881 link->sata_spd = 0; 5882 5883 /* High bits of dev->flags are used to record warm plug 5884 * requests which occur asynchronously. Synchronize using 5885 * host lock. 5886 */ 5887 spin_lock_irqsave(ap->lock, flags); 5888 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5889 dev->horkage = 0; 5890 spin_unlock_irqrestore(ap->lock, flags); 5891 5892 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5893 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5894 dev->pio_mask = UINT_MAX; 5895 dev->mwdma_mask = UINT_MAX; 5896 dev->udma_mask = UINT_MAX; 5897 } 5898 5899 /** 5900 * ata_link_init - Initialize an ata_link structure 5901 * @ap: ATA port link is attached to 5902 * @link: Link structure to initialize 5903 * @pmp: Port multiplier port number 5904 * 5905 * Initialize @link. 5906 * 5907 * LOCKING: 5908 * Kernel thread context (may sleep) 5909 */ 5910 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5911 { 5912 int i; 5913 5914 /* clear everything except for devices */ 5915 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5916 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5917 5918 link->ap = ap; 5919 link->pmp = pmp; 5920 link->active_tag = ATA_TAG_POISON; 5921 link->hw_sata_spd_limit = UINT_MAX; 5922 5923 /* can't use iterator, ap isn't initialized yet */ 5924 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5925 struct ata_device *dev = &link->device[i]; 5926 5927 dev->link = link; 5928 dev->devno = dev - link->device; 5929 #ifdef CONFIG_ATA_ACPI 5930 dev->gtf_filter = ata_acpi_gtf_filter; 5931 #endif 5932 ata_dev_init(dev); 5933 } 5934 } 5935 5936 /** 5937 * sata_link_init_spd - Initialize link->sata_spd_limit 5938 * @link: Link to configure sata_spd_limit for 5939 * 5940 * Initialize @link->[hw_]sata_spd_limit to the currently 5941 * configured value. 5942 * 5943 * LOCKING: 5944 * Kernel thread context (may sleep). 5945 * 5946 * RETURNS: 5947 * 0 on success, -errno on failure. 5948 */ 5949 int sata_link_init_spd(struct ata_link *link) 5950 { 5951 u8 spd; 5952 int rc; 5953 5954 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5955 if (rc) 5956 return rc; 5957 5958 spd = (link->saved_scontrol >> 4) & 0xf; 5959 if (spd) 5960 link->hw_sata_spd_limit &= (1 << spd) - 1; 5961 5962 ata_force_link_limits(link); 5963 5964 link->sata_spd_limit = link->hw_sata_spd_limit; 5965 5966 return 0; 5967 } 5968 5969 /** 5970 * ata_port_alloc - allocate and initialize basic ATA port resources 5971 * @host: ATA host this allocated port belongs to 5972 * 5973 * Allocate and initialize basic ATA port resources. 5974 * 5975 * RETURNS: 5976 * Allocate ATA port on success, NULL on failure. 5977 * 5978 * LOCKING: 5979 * Inherited from calling layer (may sleep). 5980 */ 5981 struct ata_port *ata_port_alloc(struct ata_host *host) 5982 { 5983 struct ata_port *ap; 5984 5985 DPRINTK("ENTER\n"); 5986 5987 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5988 if (!ap) 5989 return NULL; 5990 5991 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5992 ap->lock = &host->lock; 5993 ap->print_id = -1; 5994 ap->local_port_no = -1; 5995 ap->host = host; 5996 ap->dev = host->dev; 5997 5998 #if defined(ATA_VERBOSE_DEBUG) 5999 /* turn on all debugging levels */ 6000 ap->msg_enable = 0x00FF; 6001 #elif defined(ATA_DEBUG) 6002 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 6003 #else 6004 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 6005 #endif 6006 6007 mutex_init(&ap->scsi_scan_mutex); 6008 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 6009 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 6010 INIT_LIST_HEAD(&ap->eh_done_q); 6011 init_waitqueue_head(&ap->eh_wait_q); 6012 init_completion(&ap->park_req_pending); 6013 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 6014 TIMER_DEFERRABLE); 6015 6016 ap->cbl = ATA_CBL_NONE; 6017 6018 ata_link_init(ap, &ap->link, 0); 6019 6020 #ifdef ATA_IRQ_TRAP 6021 ap->stats.unhandled_irq = 1; 6022 ap->stats.idle_irq = 1; 6023 #endif 6024 ata_sff_port_init(ap); 6025 6026 return ap; 6027 } 6028 6029 static void ata_devres_release(struct device *gendev, void *res) 6030 { 6031 struct ata_host *host = dev_get_drvdata(gendev); 6032 int i; 6033 6034 for (i = 0; i < host->n_ports; i++) { 6035 struct ata_port *ap = host->ports[i]; 6036 6037 if (!ap) 6038 continue; 6039 6040 if (ap->scsi_host) 6041 scsi_host_put(ap->scsi_host); 6042 6043 } 6044 6045 dev_set_drvdata(gendev, NULL); 6046 ata_host_put(host); 6047 } 6048 6049 static void ata_host_release(struct kref *kref) 6050 { 6051 struct ata_host *host = container_of(kref, struct ata_host, kref); 6052 int i; 6053 6054 for (i = 0; i < host->n_ports; i++) { 6055 struct ata_port *ap = host->ports[i]; 6056 6057 kfree(ap->pmp_link); 6058 kfree(ap->slave_link); 6059 kfree(ap); 6060 host->ports[i] = NULL; 6061 } 6062 kfree(host); 6063 } 6064 6065 void ata_host_get(struct ata_host *host) 6066 { 6067 kref_get(&host->kref); 6068 } 6069 6070 void ata_host_put(struct ata_host *host) 6071 { 6072 kref_put(&host->kref, ata_host_release); 6073 } 6074 6075 /** 6076 * ata_host_alloc - allocate and init basic ATA host resources 6077 * @dev: generic device this host is associated with 6078 * @max_ports: maximum number of ATA ports associated with this host 6079 * 6080 * Allocate and initialize basic ATA host resources. LLD calls 6081 * this function to allocate a host, initializes it fully and 6082 * attaches it using ata_host_register(). 6083 * 6084 * @max_ports ports are allocated and host->n_ports is 6085 * initialized to @max_ports. The caller is allowed to decrease 6086 * host->n_ports before calling ata_host_register(). The unused 6087 * ports will be automatically freed on registration. 6088 * 6089 * RETURNS: 6090 * Allocate ATA host on success, NULL on failure. 6091 * 6092 * LOCKING: 6093 * Inherited from calling layer (may sleep). 6094 */ 6095 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 6096 { 6097 struct ata_host *host; 6098 size_t sz; 6099 int i; 6100 void *dr; 6101 6102 DPRINTK("ENTER\n"); 6103 6104 /* alloc a container for our list of ATA ports (buses) */ 6105 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 6106 host = kzalloc(sz, GFP_KERNEL); 6107 if (!host) 6108 return NULL; 6109 6110 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 6111 goto err_free; 6112 6113 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 6114 if (!dr) 6115 goto err_out; 6116 6117 devres_add(dev, dr); 6118 dev_set_drvdata(dev, host); 6119 6120 spin_lock_init(&host->lock); 6121 mutex_init(&host->eh_mutex); 6122 host->dev = dev; 6123 host->n_ports = max_ports; 6124 kref_init(&host->kref); 6125 6126 /* allocate ports bound to this host */ 6127 for (i = 0; i < max_ports; i++) { 6128 struct ata_port *ap; 6129 6130 ap = ata_port_alloc(host); 6131 if (!ap) 6132 goto err_out; 6133 6134 ap->port_no = i; 6135 host->ports[i] = ap; 6136 } 6137 6138 devres_remove_group(dev, NULL); 6139 return host; 6140 6141 err_out: 6142 devres_release_group(dev, NULL); 6143 err_free: 6144 kfree(host); 6145 return NULL; 6146 } 6147 6148 /** 6149 * ata_host_alloc_pinfo - alloc host and init with port_info array 6150 * @dev: generic device this host is associated with 6151 * @ppi: array of ATA port_info to initialize host with 6152 * @n_ports: number of ATA ports attached to this host 6153 * 6154 * Allocate ATA host and initialize with info from @ppi. If NULL 6155 * terminated, @ppi may contain fewer entries than @n_ports. The 6156 * last entry will be used for the remaining ports. 6157 * 6158 * RETURNS: 6159 * Allocate ATA host on success, NULL on failure. 6160 * 6161 * LOCKING: 6162 * Inherited from calling layer (may sleep). 6163 */ 6164 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 6165 const struct ata_port_info * const * ppi, 6166 int n_ports) 6167 { 6168 const struct ata_port_info *pi; 6169 struct ata_host *host; 6170 int i, j; 6171 6172 host = ata_host_alloc(dev, n_ports); 6173 if (!host) 6174 return NULL; 6175 6176 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 6177 struct ata_port *ap = host->ports[i]; 6178 6179 if (ppi[j]) 6180 pi = ppi[j++]; 6181 6182 ap->pio_mask = pi->pio_mask; 6183 ap->mwdma_mask = pi->mwdma_mask; 6184 ap->udma_mask = pi->udma_mask; 6185 ap->flags |= pi->flags; 6186 ap->link.flags |= pi->link_flags; 6187 ap->ops = pi->port_ops; 6188 6189 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 6190 host->ops = pi->port_ops; 6191 } 6192 6193 return host; 6194 } 6195 6196 /** 6197 * ata_slave_link_init - initialize slave link 6198 * @ap: port to initialize slave link for 6199 * 6200 * Create and initialize slave link for @ap. This enables slave 6201 * link handling on the port. 6202 * 6203 * In libata, a port contains links and a link contains devices. 6204 * There is single host link but if a PMP is attached to it, 6205 * there can be multiple fan-out links. On SATA, there's usually 6206 * a single device connected to a link but PATA and SATA 6207 * controllers emulating TF based interface can have two - master 6208 * and slave. 6209 * 6210 * However, there are a few controllers which don't fit into this 6211 * abstraction too well - SATA controllers which emulate TF 6212 * interface with both master and slave devices but also have 6213 * separate SCR register sets for each device. These controllers 6214 * need separate links for physical link handling 6215 * (e.g. onlineness, link speed) but should be treated like a 6216 * traditional M/S controller for everything else (e.g. command 6217 * issue, softreset). 6218 * 6219 * slave_link is libata's way of handling this class of 6220 * controllers without impacting core layer too much. For 6221 * anything other than physical link handling, the default host 6222 * link is used for both master and slave. For physical link 6223 * handling, separate @ap->slave_link is used. All dirty details 6224 * are implemented inside libata core layer. From LLD's POV, the 6225 * only difference is that prereset, hardreset and postreset are 6226 * called once more for the slave link, so the reset sequence 6227 * looks like the following. 6228 * 6229 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 6230 * softreset(M) -> postreset(M) -> postreset(S) 6231 * 6232 * Note that softreset is called only for the master. Softreset 6233 * resets both M/S by definition, so SRST on master should handle 6234 * both (the standard method will work just fine). 6235 * 6236 * LOCKING: 6237 * Should be called before host is registered. 6238 * 6239 * RETURNS: 6240 * 0 on success, -errno on failure. 6241 */ 6242 int ata_slave_link_init(struct ata_port *ap) 6243 { 6244 struct ata_link *link; 6245 6246 WARN_ON(ap->slave_link); 6247 WARN_ON(ap->flags & ATA_FLAG_PMP); 6248 6249 link = kzalloc(sizeof(*link), GFP_KERNEL); 6250 if (!link) 6251 return -ENOMEM; 6252 6253 ata_link_init(ap, link, 1); 6254 ap->slave_link = link; 6255 return 0; 6256 } 6257 6258 static void ata_host_stop(struct device *gendev, void *res) 6259 { 6260 struct ata_host *host = dev_get_drvdata(gendev); 6261 int i; 6262 6263 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 6264 6265 for (i = 0; i < host->n_ports; i++) { 6266 struct ata_port *ap = host->ports[i]; 6267 6268 if (ap->ops->port_stop) 6269 ap->ops->port_stop(ap); 6270 } 6271 6272 if (host->ops->host_stop) 6273 host->ops->host_stop(host); 6274 } 6275 6276 /** 6277 * ata_finalize_port_ops - finalize ata_port_operations 6278 * @ops: ata_port_operations to finalize 6279 * 6280 * An ata_port_operations can inherit from another ops and that 6281 * ops can again inherit from another. This can go on as many 6282 * times as necessary as long as there is no loop in the 6283 * inheritance chain. 6284 * 6285 * Ops tables are finalized when the host is started. NULL or 6286 * unspecified entries are inherited from the closet ancestor 6287 * which has the method and the entry is populated with it. 6288 * After finalization, the ops table directly points to all the 6289 * methods and ->inherits is no longer necessary and cleared. 6290 * 6291 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 6292 * 6293 * LOCKING: 6294 * None. 6295 */ 6296 static void ata_finalize_port_ops(struct ata_port_operations *ops) 6297 { 6298 static DEFINE_SPINLOCK(lock); 6299 const struct ata_port_operations *cur; 6300 void **begin = (void **)ops; 6301 void **end = (void **)&ops->inherits; 6302 void **pp; 6303 6304 if (!ops || !ops->inherits) 6305 return; 6306 6307 spin_lock(&lock); 6308 6309 for (cur = ops->inherits; cur; cur = cur->inherits) { 6310 void **inherit = (void **)cur; 6311 6312 for (pp = begin; pp < end; pp++, inherit++) 6313 if (!*pp) 6314 *pp = *inherit; 6315 } 6316 6317 for (pp = begin; pp < end; pp++) 6318 if (IS_ERR(*pp)) 6319 *pp = NULL; 6320 6321 ops->inherits = NULL; 6322 6323 spin_unlock(&lock); 6324 } 6325 6326 /** 6327 * ata_host_start - start and freeze ports of an ATA host 6328 * @host: ATA host to start ports for 6329 * 6330 * Start and then freeze ports of @host. Started status is 6331 * recorded in host->flags, so this function can be called 6332 * multiple times. Ports are guaranteed to get started only 6333 * once. If host->ops isn't initialized yet, its set to the 6334 * first non-dummy port ops. 6335 * 6336 * LOCKING: 6337 * Inherited from calling layer (may sleep). 6338 * 6339 * RETURNS: 6340 * 0 if all ports are started successfully, -errno otherwise. 6341 */ 6342 int ata_host_start(struct ata_host *host) 6343 { 6344 int have_stop = 0; 6345 void *start_dr = NULL; 6346 int i, rc; 6347 6348 if (host->flags & ATA_HOST_STARTED) 6349 return 0; 6350 6351 ata_finalize_port_ops(host->ops); 6352 6353 for (i = 0; i < host->n_ports; i++) { 6354 struct ata_port *ap = host->ports[i]; 6355 6356 ata_finalize_port_ops(ap->ops); 6357 6358 if (!host->ops && !ata_port_is_dummy(ap)) 6359 host->ops = ap->ops; 6360 6361 if (ap->ops->port_stop) 6362 have_stop = 1; 6363 } 6364 6365 if (host->ops->host_stop) 6366 have_stop = 1; 6367 6368 if (have_stop) { 6369 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 6370 if (!start_dr) 6371 return -ENOMEM; 6372 } 6373 6374 for (i = 0; i < host->n_ports; i++) { 6375 struct ata_port *ap = host->ports[i]; 6376 6377 if (ap->ops->port_start) { 6378 rc = ap->ops->port_start(ap); 6379 if (rc) { 6380 if (rc != -ENODEV) 6381 dev_err(host->dev, 6382 "failed to start port %d (errno=%d)\n", 6383 i, rc); 6384 goto err_out; 6385 } 6386 } 6387 ata_eh_freeze_port(ap); 6388 } 6389 6390 if (start_dr) 6391 devres_add(host->dev, start_dr); 6392 host->flags |= ATA_HOST_STARTED; 6393 return 0; 6394 6395 err_out: 6396 while (--i >= 0) { 6397 struct ata_port *ap = host->ports[i]; 6398 6399 if (ap->ops->port_stop) 6400 ap->ops->port_stop(ap); 6401 } 6402 devres_free(start_dr); 6403 return rc; 6404 } 6405 6406 /** 6407 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 6408 * @host: host to initialize 6409 * @dev: device host is attached to 6410 * @ops: port_ops 6411 * 6412 */ 6413 void ata_host_init(struct ata_host *host, struct device *dev, 6414 struct ata_port_operations *ops) 6415 { 6416 spin_lock_init(&host->lock); 6417 mutex_init(&host->eh_mutex); 6418 host->n_tags = ATA_MAX_QUEUE - 1; 6419 host->dev = dev; 6420 host->ops = ops; 6421 } 6422 6423 void __ata_port_probe(struct ata_port *ap) 6424 { 6425 struct ata_eh_info *ehi = &ap->link.eh_info; 6426 unsigned long flags; 6427 6428 /* kick EH for boot probing */ 6429 spin_lock_irqsave(ap->lock, flags); 6430 6431 ehi->probe_mask |= ATA_ALL_DEVICES; 6432 ehi->action |= ATA_EH_RESET; 6433 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6434 6435 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6436 ap->pflags |= ATA_PFLAG_LOADING; 6437 ata_port_schedule_eh(ap); 6438 6439 spin_unlock_irqrestore(ap->lock, flags); 6440 } 6441 6442 int ata_port_probe(struct ata_port *ap) 6443 { 6444 int rc = 0; 6445 6446 if (ap->ops->error_handler) { 6447 __ata_port_probe(ap); 6448 ata_port_wait_eh(ap); 6449 } else { 6450 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6451 rc = ata_bus_probe(ap); 6452 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6453 } 6454 return rc; 6455 } 6456 6457 6458 static void async_port_probe(void *data, async_cookie_t cookie) 6459 { 6460 struct ata_port *ap = data; 6461 6462 /* 6463 * If we're not allowed to scan this host in parallel, 6464 * we need to wait until all previous scans have completed 6465 * before going further. 6466 * Jeff Garzik says this is only within a controller, so we 6467 * don't need to wait for port 0, only for later ports. 6468 */ 6469 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6470 async_synchronize_cookie(cookie); 6471 6472 (void)ata_port_probe(ap); 6473 6474 /* in order to keep device order, we need to synchronize at this point */ 6475 async_synchronize_cookie(cookie); 6476 6477 ata_scsi_scan_host(ap, 1); 6478 } 6479 6480 /** 6481 * ata_host_register - register initialized ATA host 6482 * @host: ATA host to register 6483 * @sht: template for SCSI host 6484 * 6485 * Register initialized ATA host. @host is allocated using 6486 * ata_host_alloc() and fully initialized by LLD. This function 6487 * starts ports, registers @host with ATA and SCSI layers and 6488 * probe registered devices. 6489 * 6490 * LOCKING: 6491 * Inherited from calling layer (may sleep). 6492 * 6493 * RETURNS: 6494 * 0 on success, -errno otherwise. 6495 */ 6496 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6497 { 6498 int i, rc; 6499 6500 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1); 6501 6502 /* host must have been started */ 6503 if (!(host->flags & ATA_HOST_STARTED)) { 6504 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6505 WARN_ON(1); 6506 return -EINVAL; 6507 } 6508 6509 /* Blow away unused ports. This happens when LLD can't 6510 * determine the exact number of ports to allocate at 6511 * allocation time. 6512 */ 6513 for (i = host->n_ports; host->ports[i]; i++) 6514 kfree(host->ports[i]); 6515 6516 /* give ports names and add SCSI hosts */ 6517 for (i = 0; i < host->n_ports; i++) { 6518 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6519 host->ports[i]->local_port_no = i + 1; 6520 } 6521 6522 /* Create associated sysfs transport objects */ 6523 for (i = 0; i < host->n_ports; i++) { 6524 rc = ata_tport_add(host->dev,host->ports[i]); 6525 if (rc) { 6526 goto err_tadd; 6527 } 6528 } 6529 6530 rc = ata_scsi_add_hosts(host, sht); 6531 if (rc) 6532 goto err_tadd; 6533 6534 /* set cable, sata_spd_limit and report */ 6535 for (i = 0; i < host->n_ports; i++) { 6536 struct ata_port *ap = host->ports[i]; 6537 unsigned long xfer_mask; 6538 6539 /* set SATA cable type if still unset */ 6540 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6541 ap->cbl = ATA_CBL_SATA; 6542 6543 /* init sata_spd_limit to the current value */ 6544 sata_link_init_spd(&ap->link); 6545 if (ap->slave_link) 6546 sata_link_init_spd(ap->slave_link); 6547 6548 /* print per-port info to dmesg */ 6549 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6550 ap->udma_mask); 6551 6552 if (!ata_port_is_dummy(ap)) { 6553 ata_port_info(ap, "%cATA max %s %s\n", 6554 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6555 ata_mode_string(xfer_mask), 6556 ap->link.eh_info.desc); 6557 ata_ehi_clear_desc(&ap->link.eh_info); 6558 } else 6559 ata_port_info(ap, "DUMMY\n"); 6560 } 6561 6562 /* perform each probe asynchronously */ 6563 for (i = 0; i < host->n_ports; i++) { 6564 struct ata_port *ap = host->ports[i]; 6565 async_schedule(async_port_probe, ap); 6566 } 6567 6568 return 0; 6569 6570 err_tadd: 6571 while (--i >= 0) { 6572 ata_tport_delete(host->ports[i]); 6573 } 6574 return rc; 6575 6576 } 6577 6578 /** 6579 * ata_host_activate - start host, request IRQ and register it 6580 * @host: target ATA host 6581 * @irq: IRQ to request 6582 * @irq_handler: irq_handler used when requesting IRQ 6583 * @irq_flags: irq_flags used when requesting IRQ 6584 * @sht: scsi_host_template to use when registering the host 6585 * 6586 * After allocating an ATA host and initializing it, most libata 6587 * LLDs perform three steps to activate the host - start host, 6588 * request IRQ and register it. This helper takes necessary 6589 * arguments and performs the three steps in one go. 6590 * 6591 * An invalid IRQ skips the IRQ registration and expects the host to 6592 * have set polling mode on the port. In this case, @irq_handler 6593 * should be NULL. 6594 * 6595 * LOCKING: 6596 * Inherited from calling layer (may sleep). 6597 * 6598 * RETURNS: 6599 * 0 on success, -errno otherwise. 6600 */ 6601 int ata_host_activate(struct ata_host *host, int irq, 6602 irq_handler_t irq_handler, unsigned long irq_flags, 6603 struct scsi_host_template *sht) 6604 { 6605 int i, rc; 6606 char *irq_desc; 6607 6608 rc = ata_host_start(host); 6609 if (rc) 6610 return rc; 6611 6612 /* Special case for polling mode */ 6613 if (!irq) { 6614 WARN_ON(irq_handler); 6615 return ata_host_register(host, sht); 6616 } 6617 6618 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 6619 dev_driver_string(host->dev), 6620 dev_name(host->dev)); 6621 if (!irq_desc) 6622 return -ENOMEM; 6623 6624 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6625 irq_desc, host); 6626 if (rc) 6627 return rc; 6628 6629 for (i = 0; i < host->n_ports; i++) 6630 ata_port_desc(host->ports[i], "irq %d", irq); 6631 6632 rc = ata_host_register(host, sht); 6633 /* if failed, just free the IRQ and leave ports alone */ 6634 if (rc) 6635 devm_free_irq(host->dev, irq, host); 6636 6637 return rc; 6638 } 6639 6640 /** 6641 * ata_port_detach - Detach ATA port in preparation of device removal 6642 * @ap: ATA port to be detached 6643 * 6644 * Detach all ATA devices and the associated SCSI devices of @ap; 6645 * then, remove the associated SCSI host. @ap is guaranteed to 6646 * be quiescent on return from this function. 6647 * 6648 * LOCKING: 6649 * Kernel thread context (may sleep). 6650 */ 6651 static void ata_port_detach(struct ata_port *ap) 6652 { 6653 unsigned long flags; 6654 struct ata_link *link; 6655 struct ata_device *dev; 6656 6657 if (!ap->ops->error_handler) 6658 goto skip_eh; 6659 6660 /* tell EH we're leaving & flush EH */ 6661 spin_lock_irqsave(ap->lock, flags); 6662 ap->pflags |= ATA_PFLAG_UNLOADING; 6663 ata_port_schedule_eh(ap); 6664 spin_unlock_irqrestore(ap->lock, flags); 6665 6666 /* wait till EH commits suicide */ 6667 ata_port_wait_eh(ap); 6668 6669 /* it better be dead now */ 6670 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6671 6672 cancel_delayed_work_sync(&ap->hotplug_task); 6673 6674 skip_eh: 6675 /* clean up zpodd on port removal */ 6676 ata_for_each_link(link, ap, HOST_FIRST) { 6677 ata_for_each_dev(dev, link, ALL) { 6678 if (zpodd_dev_enabled(dev)) 6679 zpodd_exit(dev); 6680 } 6681 } 6682 if (ap->pmp_link) { 6683 int i; 6684 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6685 ata_tlink_delete(&ap->pmp_link[i]); 6686 } 6687 /* remove the associated SCSI host */ 6688 scsi_remove_host(ap->scsi_host); 6689 ata_tport_delete(ap); 6690 } 6691 6692 /** 6693 * ata_host_detach - Detach all ports of an ATA host 6694 * @host: Host to detach 6695 * 6696 * Detach all ports of @host. 6697 * 6698 * LOCKING: 6699 * Kernel thread context (may sleep). 6700 */ 6701 void ata_host_detach(struct ata_host *host) 6702 { 6703 int i; 6704 6705 for (i = 0; i < host->n_ports; i++) 6706 ata_port_detach(host->ports[i]); 6707 6708 /* the host is dead now, dissociate ACPI */ 6709 ata_acpi_dissociate(host); 6710 } 6711 6712 #ifdef CONFIG_PCI 6713 6714 /** 6715 * ata_pci_remove_one - PCI layer callback for device removal 6716 * @pdev: PCI device that was removed 6717 * 6718 * PCI layer indicates to libata via this hook that hot-unplug or 6719 * module unload event has occurred. Detach all ports. Resource 6720 * release is handled via devres. 6721 * 6722 * LOCKING: 6723 * Inherited from PCI layer (may sleep). 6724 */ 6725 void ata_pci_remove_one(struct pci_dev *pdev) 6726 { 6727 struct ata_host *host = pci_get_drvdata(pdev); 6728 6729 ata_host_detach(host); 6730 } 6731 6732 /* move to PCI subsystem */ 6733 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6734 { 6735 unsigned long tmp = 0; 6736 6737 switch (bits->width) { 6738 case 1: { 6739 u8 tmp8 = 0; 6740 pci_read_config_byte(pdev, bits->reg, &tmp8); 6741 tmp = tmp8; 6742 break; 6743 } 6744 case 2: { 6745 u16 tmp16 = 0; 6746 pci_read_config_word(pdev, bits->reg, &tmp16); 6747 tmp = tmp16; 6748 break; 6749 } 6750 case 4: { 6751 u32 tmp32 = 0; 6752 pci_read_config_dword(pdev, bits->reg, &tmp32); 6753 tmp = tmp32; 6754 break; 6755 } 6756 6757 default: 6758 return -EINVAL; 6759 } 6760 6761 tmp &= bits->mask; 6762 6763 return (tmp == bits->val) ? 1 : 0; 6764 } 6765 6766 #ifdef CONFIG_PM 6767 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6768 { 6769 pci_save_state(pdev); 6770 pci_disable_device(pdev); 6771 6772 if (mesg.event & PM_EVENT_SLEEP) 6773 pci_set_power_state(pdev, PCI_D3hot); 6774 } 6775 6776 int ata_pci_device_do_resume(struct pci_dev *pdev) 6777 { 6778 int rc; 6779 6780 pci_set_power_state(pdev, PCI_D0); 6781 pci_restore_state(pdev); 6782 6783 rc = pcim_enable_device(pdev); 6784 if (rc) { 6785 dev_err(&pdev->dev, 6786 "failed to enable device after resume (%d)\n", rc); 6787 return rc; 6788 } 6789 6790 pci_set_master(pdev); 6791 return 0; 6792 } 6793 6794 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6795 { 6796 struct ata_host *host = pci_get_drvdata(pdev); 6797 int rc = 0; 6798 6799 rc = ata_host_suspend(host, mesg); 6800 if (rc) 6801 return rc; 6802 6803 ata_pci_device_do_suspend(pdev, mesg); 6804 6805 return 0; 6806 } 6807 6808 int ata_pci_device_resume(struct pci_dev *pdev) 6809 { 6810 struct ata_host *host = pci_get_drvdata(pdev); 6811 int rc; 6812 6813 rc = ata_pci_device_do_resume(pdev); 6814 if (rc == 0) 6815 ata_host_resume(host); 6816 return rc; 6817 } 6818 #endif /* CONFIG_PM */ 6819 6820 #endif /* CONFIG_PCI */ 6821 6822 /** 6823 * ata_platform_remove_one - Platform layer callback for device removal 6824 * @pdev: Platform device that was removed 6825 * 6826 * Platform layer indicates to libata via this hook that hot-unplug or 6827 * module unload event has occurred. Detach all ports. Resource 6828 * release is handled via devres. 6829 * 6830 * LOCKING: 6831 * Inherited from platform layer (may sleep). 6832 */ 6833 int ata_platform_remove_one(struct platform_device *pdev) 6834 { 6835 struct ata_host *host = platform_get_drvdata(pdev); 6836 6837 ata_host_detach(host); 6838 6839 return 0; 6840 } 6841 6842 static int __init ata_parse_force_one(char **cur, 6843 struct ata_force_ent *force_ent, 6844 const char **reason) 6845 { 6846 static const struct ata_force_param force_tbl[] __initconst = { 6847 { "40c", .cbl = ATA_CBL_PATA40 }, 6848 { "80c", .cbl = ATA_CBL_PATA80 }, 6849 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6850 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6851 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6852 { "sata", .cbl = ATA_CBL_SATA }, 6853 { "1.5Gbps", .spd_limit = 1 }, 6854 { "3.0Gbps", .spd_limit = 2 }, 6855 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6856 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6857 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM }, 6858 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM }, 6859 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6860 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6861 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6862 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6863 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6864 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6865 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6866 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6867 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6868 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6869 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6870 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6871 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6872 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6873 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6874 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6875 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6876 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6877 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6878 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6879 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6880 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6881 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6882 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6883 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6884 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6885 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6886 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6887 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6888 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6889 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6890 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6891 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6892 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6893 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6894 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6895 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6896 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6897 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6898 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR }, 6899 { "disable", .horkage_on = ATA_HORKAGE_DISABLE }, 6900 }; 6901 char *start = *cur, *p = *cur; 6902 char *id, *val, *endp; 6903 const struct ata_force_param *match_fp = NULL; 6904 int nr_matches = 0, i; 6905 6906 /* find where this param ends and update *cur */ 6907 while (*p != '\0' && *p != ',') 6908 p++; 6909 6910 if (*p == '\0') 6911 *cur = p; 6912 else 6913 *cur = p + 1; 6914 6915 *p = '\0'; 6916 6917 /* parse */ 6918 p = strchr(start, ':'); 6919 if (!p) { 6920 val = strstrip(start); 6921 goto parse_val; 6922 } 6923 *p = '\0'; 6924 6925 id = strstrip(start); 6926 val = strstrip(p + 1); 6927 6928 /* parse id */ 6929 p = strchr(id, '.'); 6930 if (p) { 6931 *p++ = '\0'; 6932 force_ent->device = simple_strtoul(p, &endp, 10); 6933 if (p == endp || *endp != '\0') { 6934 *reason = "invalid device"; 6935 return -EINVAL; 6936 } 6937 } 6938 6939 force_ent->port = simple_strtoul(id, &endp, 10); 6940 if (id == endp || *endp != '\0') { 6941 *reason = "invalid port/link"; 6942 return -EINVAL; 6943 } 6944 6945 parse_val: 6946 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6947 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6948 const struct ata_force_param *fp = &force_tbl[i]; 6949 6950 if (strncasecmp(val, fp->name, strlen(val))) 6951 continue; 6952 6953 nr_matches++; 6954 match_fp = fp; 6955 6956 if (strcasecmp(val, fp->name) == 0) { 6957 nr_matches = 1; 6958 break; 6959 } 6960 } 6961 6962 if (!nr_matches) { 6963 *reason = "unknown value"; 6964 return -EINVAL; 6965 } 6966 if (nr_matches > 1) { 6967 *reason = "ambiguous value"; 6968 return -EINVAL; 6969 } 6970 6971 force_ent->param = *match_fp; 6972 6973 return 0; 6974 } 6975 6976 static void __init ata_parse_force_param(void) 6977 { 6978 int idx = 0, size = 1; 6979 int last_port = -1, last_device = -1; 6980 char *p, *cur, *next; 6981 6982 /* calculate maximum number of params and allocate force_tbl */ 6983 for (p = ata_force_param_buf; *p; p++) 6984 if (*p == ',') 6985 size++; 6986 6987 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6988 if (!ata_force_tbl) { 6989 printk(KERN_WARNING "ata: failed to extend force table, " 6990 "libata.force ignored\n"); 6991 return; 6992 } 6993 6994 /* parse and populate the table */ 6995 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6996 const char *reason = ""; 6997 struct ata_force_ent te = { .port = -1, .device = -1 }; 6998 6999 next = cur; 7000 if (ata_parse_force_one(&next, &te, &reason)) { 7001 printk(KERN_WARNING "ata: failed to parse force " 7002 "parameter \"%s\" (%s)\n", 7003 cur, reason); 7004 continue; 7005 } 7006 7007 if (te.port == -1) { 7008 te.port = last_port; 7009 te.device = last_device; 7010 } 7011 7012 ata_force_tbl[idx++] = te; 7013 7014 last_port = te.port; 7015 last_device = te.device; 7016 } 7017 7018 ata_force_tbl_size = idx; 7019 } 7020 7021 static int __init ata_init(void) 7022 { 7023 int rc; 7024 7025 ata_parse_force_param(); 7026 7027 rc = ata_sff_init(); 7028 if (rc) { 7029 kfree(ata_force_tbl); 7030 return rc; 7031 } 7032 7033 libata_transport_init(); 7034 ata_scsi_transport_template = ata_attach_transport(); 7035 if (!ata_scsi_transport_template) { 7036 ata_sff_exit(); 7037 rc = -ENOMEM; 7038 goto err_out; 7039 } 7040 7041 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 7042 return 0; 7043 7044 err_out: 7045 return rc; 7046 } 7047 7048 static void __exit ata_exit(void) 7049 { 7050 ata_release_transport(ata_scsi_transport_template); 7051 libata_transport_exit(); 7052 ata_sff_exit(); 7053 kfree(ata_force_tbl); 7054 } 7055 7056 subsys_initcall(ata_init); 7057 module_exit(ata_exit); 7058 7059 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 7060 7061 int ata_ratelimit(void) 7062 { 7063 return __ratelimit(&ratelimit); 7064 } 7065 7066 /** 7067 * ata_msleep - ATA EH owner aware msleep 7068 * @ap: ATA port to attribute the sleep to 7069 * @msecs: duration to sleep in milliseconds 7070 * 7071 * Sleeps @msecs. If the current task is owner of @ap's EH, the 7072 * ownership is released before going to sleep and reacquired 7073 * after the sleep is complete. IOW, other ports sharing the 7074 * @ap->host will be allowed to own the EH while this task is 7075 * sleeping. 7076 * 7077 * LOCKING: 7078 * Might sleep. 7079 */ 7080 void ata_msleep(struct ata_port *ap, unsigned int msecs) 7081 { 7082 bool owns_eh = ap && ap->host->eh_owner == current; 7083 7084 if (owns_eh) 7085 ata_eh_release(ap); 7086 7087 if (msecs < 20) { 7088 unsigned long usecs = msecs * USEC_PER_MSEC; 7089 usleep_range(usecs, usecs + 50); 7090 } else { 7091 msleep(msecs); 7092 } 7093 7094 if (owns_eh) 7095 ata_eh_acquire(ap); 7096 } 7097 7098 /** 7099 * ata_wait_register - wait until register value changes 7100 * @ap: ATA port to wait register for, can be NULL 7101 * @reg: IO-mapped register 7102 * @mask: Mask to apply to read register value 7103 * @val: Wait condition 7104 * @interval: polling interval in milliseconds 7105 * @timeout: timeout in milliseconds 7106 * 7107 * Waiting for some bits of register to change is a common 7108 * operation for ATA controllers. This function reads 32bit LE 7109 * IO-mapped register @reg and tests for the following condition. 7110 * 7111 * (*@reg & mask) != val 7112 * 7113 * If the condition is met, it returns; otherwise, the process is 7114 * repeated after @interval_msec until timeout. 7115 * 7116 * LOCKING: 7117 * Kernel thread context (may sleep) 7118 * 7119 * RETURNS: 7120 * The final register value. 7121 */ 7122 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 7123 unsigned long interval, unsigned long timeout) 7124 { 7125 unsigned long deadline; 7126 u32 tmp; 7127 7128 tmp = ioread32(reg); 7129 7130 /* Calculate timeout _after_ the first read to make sure 7131 * preceding writes reach the controller before starting to 7132 * eat away the timeout. 7133 */ 7134 deadline = ata_deadline(jiffies, timeout); 7135 7136 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 7137 ata_msleep(ap, interval); 7138 tmp = ioread32(reg); 7139 } 7140 7141 return tmp; 7142 } 7143 7144 /** 7145 * sata_lpm_ignore_phy_events - test if PHY event should be ignored 7146 * @link: Link receiving the event 7147 * 7148 * Test whether the received PHY event has to be ignored or not. 7149 * 7150 * LOCKING: 7151 * None: 7152 * 7153 * RETURNS: 7154 * True if the event has to be ignored. 7155 */ 7156 bool sata_lpm_ignore_phy_events(struct ata_link *link) 7157 { 7158 unsigned long lpm_timeout = link->last_lpm_change + 7159 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY); 7160 7161 /* if LPM is enabled, PHYRDY doesn't mean anything */ 7162 if (link->lpm_policy > ATA_LPM_MAX_POWER) 7163 return true; 7164 7165 /* ignore the first PHY event after the LPM policy changed 7166 * as it is might be spurious 7167 */ 7168 if ((link->flags & ATA_LFLAG_CHANGED) && 7169 time_before(jiffies, lpm_timeout)) 7170 return true; 7171 7172 return false; 7173 } 7174 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events); 7175 7176 /* 7177 * Dummy port_ops 7178 */ 7179 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 7180 { 7181 return AC_ERR_SYSTEM; 7182 } 7183 7184 static void ata_dummy_error_handler(struct ata_port *ap) 7185 { 7186 /* truly dummy */ 7187 } 7188 7189 struct ata_port_operations ata_dummy_port_ops = { 7190 .qc_prep = ata_noop_qc_prep, 7191 .qc_issue = ata_dummy_qc_issue, 7192 .error_handler = ata_dummy_error_handler, 7193 .sched_eh = ata_std_sched_eh, 7194 .end_eh = ata_std_end_eh, 7195 }; 7196 7197 const struct ata_port_info ata_dummy_port_info = { 7198 .port_ops = &ata_dummy_port_ops, 7199 }; 7200 7201 /* 7202 * Utility print functions 7203 */ 7204 void ata_port_printk(const struct ata_port *ap, const char *level, 7205 const char *fmt, ...) 7206 { 7207 struct va_format vaf; 7208 va_list args; 7209 7210 va_start(args, fmt); 7211 7212 vaf.fmt = fmt; 7213 vaf.va = &args; 7214 7215 printk("%sata%u: %pV", level, ap->print_id, &vaf); 7216 7217 va_end(args); 7218 } 7219 EXPORT_SYMBOL(ata_port_printk); 7220 7221 void ata_link_printk(const struct ata_link *link, const char *level, 7222 const char *fmt, ...) 7223 { 7224 struct va_format vaf; 7225 va_list args; 7226 7227 va_start(args, fmt); 7228 7229 vaf.fmt = fmt; 7230 vaf.va = &args; 7231 7232 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 7233 printk("%sata%u.%02u: %pV", 7234 level, link->ap->print_id, link->pmp, &vaf); 7235 else 7236 printk("%sata%u: %pV", 7237 level, link->ap->print_id, &vaf); 7238 7239 va_end(args); 7240 } 7241 EXPORT_SYMBOL(ata_link_printk); 7242 7243 void ata_dev_printk(const struct ata_device *dev, const char *level, 7244 const char *fmt, ...) 7245 { 7246 struct va_format vaf; 7247 va_list args; 7248 7249 va_start(args, fmt); 7250 7251 vaf.fmt = fmt; 7252 vaf.va = &args; 7253 7254 printk("%sata%u.%02u: %pV", 7255 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 7256 &vaf); 7257 7258 va_end(args); 7259 } 7260 EXPORT_SYMBOL(ata_dev_printk); 7261 7262 void ata_print_version(const struct device *dev, const char *version) 7263 { 7264 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 7265 } 7266 EXPORT_SYMBOL(ata_print_version); 7267 7268 /* 7269 * libata is essentially a library of internal helper functions for 7270 * low-level ATA host controller drivers. As such, the API/ABI is 7271 * likely to change as new drivers are added and updated. 7272 * Do not depend on ABI/API stability. 7273 */ 7274 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 7275 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 7276 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 7277 EXPORT_SYMBOL_GPL(ata_base_port_ops); 7278 EXPORT_SYMBOL_GPL(sata_port_ops); 7279 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 7280 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 7281 EXPORT_SYMBOL_GPL(ata_link_next); 7282 EXPORT_SYMBOL_GPL(ata_dev_next); 7283 EXPORT_SYMBOL_GPL(ata_std_bios_param); 7284 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 7285 EXPORT_SYMBOL_GPL(ata_host_init); 7286 EXPORT_SYMBOL_GPL(ata_host_alloc); 7287 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 7288 EXPORT_SYMBOL_GPL(ata_slave_link_init); 7289 EXPORT_SYMBOL_GPL(ata_host_start); 7290 EXPORT_SYMBOL_GPL(ata_host_register); 7291 EXPORT_SYMBOL_GPL(ata_host_activate); 7292 EXPORT_SYMBOL_GPL(ata_host_detach); 7293 EXPORT_SYMBOL_GPL(ata_sg_init); 7294 EXPORT_SYMBOL_GPL(ata_qc_complete); 7295 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 7296 EXPORT_SYMBOL_GPL(atapi_cmd_type); 7297 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 7298 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 7299 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 7300 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 7301 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 7302 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 7303 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 7304 EXPORT_SYMBOL_GPL(ata_mode_string); 7305 EXPORT_SYMBOL_GPL(ata_id_xfermask); 7306 EXPORT_SYMBOL_GPL(ata_do_set_mode); 7307 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 7308 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 7309 EXPORT_SYMBOL_GPL(ata_dev_disable); 7310 EXPORT_SYMBOL_GPL(sata_set_spd); 7311 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 7312 EXPORT_SYMBOL_GPL(sata_link_debounce); 7313 EXPORT_SYMBOL_GPL(sata_link_resume); 7314 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 7315 EXPORT_SYMBOL_GPL(ata_std_prereset); 7316 EXPORT_SYMBOL_GPL(sata_link_hardreset); 7317 EXPORT_SYMBOL_GPL(sata_std_hardreset); 7318 EXPORT_SYMBOL_GPL(ata_std_postreset); 7319 EXPORT_SYMBOL_GPL(ata_dev_classify); 7320 EXPORT_SYMBOL_GPL(ata_dev_pair); 7321 EXPORT_SYMBOL_GPL(ata_ratelimit); 7322 EXPORT_SYMBOL_GPL(ata_msleep); 7323 EXPORT_SYMBOL_GPL(ata_wait_register); 7324 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 7325 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 7326 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 7327 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 7328 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 7329 EXPORT_SYMBOL_GPL(sata_scr_valid); 7330 EXPORT_SYMBOL_GPL(sata_scr_read); 7331 EXPORT_SYMBOL_GPL(sata_scr_write); 7332 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 7333 EXPORT_SYMBOL_GPL(ata_link_online); 7334 EXPORT_SYMBOL_GPL(ata_link_offline); 7335 #ifdef CONFIG_PM 7336 EXPORT_SYMBOL_GPL(ata_host_suspend); 7337 EXPORT_SYMBOL_GPL(ata_host_resume); 7338 #endif /* CONFIG_PM */ 7339 EXPORT_SYMBOL_GPL(ata_id_string); 7340 EXPORT_SYMBOL_GPL(ata_id_c_string); 7341 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 7342 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 7343 7344 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 7345 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 7346 EXPORT_SYMBOL_GPL(ata_timing_compute); 7347 EXPORT_SYMBOL_GPL(ata_timing_merge); 7348 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 7349 7350 #ifdef CONFIG_PCI 7351 EXPORT_SYMBOL_GPL(pci_test_config_bits); 7352 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 7353 #ifdef CONFIG_PM 7354 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 7355 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 7356 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 7357 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 7358 #endif /* CONFIG_PM */ 7359 #endif /* CONFIG_PCI */ 7360 7361 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 7362 7363 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 7364 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 7365 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 7366 EXPORT_SYMBOL_GPL(ata_port_desc); 7367 #ifdef CONFIG_PCI 7368 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 7369 #endif /* CONFIG_PCI */ 7370 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 7371 EXPORT_SYMBOL_GPL(ata_link_abort); 7372 EXPORT_SYMBOL_GPL(ata_port_abort); 7373 EXPORT_SYMBOL_GPL(ata_port_freeze); 7374 EXPORT_SYMBOL_GPL(sata_async_notification); 7375 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 7376 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 7377 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 7378 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 7379 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 7380 EXPORT_SYMBOL_GPL(ata_do_eh); 7381 EXPORT_SYMBOL_GPL(ata_std_error_handler); 7382 7383 EXPORT_SYMBOL_GPL(ata_cable_40wire); 7384 EXPORT_SYMBOL_GPL(ata_cable_80wire); 7385 EXPORT_SYMBOL_GPL(ata_cable_unknown); 7386 EXPORT_SYMBOL_GPL(ata_cable_ignore); 7387 EXPORT_SYMBOL_GPL(ata_cable_sata); 7388