xref: /openbmc/linux/drivers/ata/libata-core.c (revision 2359ccdd)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/driver-api/libata.rst
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
78 
79 #include "libata.h"
80 #include "libata-transport.h"
81 
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
84 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
85 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
86 
87 const struct ata_port_operations ata_base_port_ops = {
88 	.prereset		= ata_std_prereset,
89 	.postreset		= ata_std_postreset,
90 	.error_handler		= ata_std_error_handler,
91 	.sched_eh		= ata_std_sched_eh,
92 	.end_eh			= ata_std_end_eh,
93 };
94 
95 const struct ata_port_operations sata_port_ops = {
96 	.inherits		= &ata_base_port_ops,
97 
98 	.qc_defer		= ata_std_qc_defer,
99 	.hardreset		= sata_std_hardreset,
100 };
101 
102 static unsigned int ata_dev_init_params(struct ata_device *dev,
103 					u16 heads, u16 sectors);
104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105 static void ata_dev_xfermask(struct ata_device *dev);
106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107 
108 atomic_t ata_print_id = ATOMIC_INIT(0);
109 
110 struct ata_force_param {
111 	const char	*name;
112 	unsigned int	cbl;
113 	int		spd_limit;
114 	unsigned long	xfer_mask;
115 	unsigned int	horkage_on;
116 	unsigned int	horkage_off;
117 	unsigned int	lflags;
118 };
119 
120 struct ata_force_ent {
121 	int			port;
122 	int			device;
123 	struct ata_force_param	param;
124 };
125 
126 static struct ata_force_ent *ata_force_tbl;
127 static int ata_force_tbl_size;
128 
129 static char ata_force_param_buf[PAGE_SIZE] __initdata;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
133 
134 static int atapi_enabled = 1;
135 module_param(atapi_enabled, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137 
138 static int atapi_dmadir = 0;
139 module_param(atapi_dmadir, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141 
142 int atapi_passthru16 = 1;
143 module_param(atapi_passthru16, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145 
146 int libata_fua = 0;
147 module_param_named(fua, libata_fua, int, 0444);
148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149 
150 static int ata_ignore_hpa;
151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153 
154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155 module_param_named(dma, libata_dma_mask, int, 0444);
156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157 
158 static int ata_probe_timeout;
159 module_param(ata_probe_timeout, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161 
162 int libata_noacpi = 0;
163 module_param_named(noacpi, libata_noacpi, int, 0444);
164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165 
166 int libata_allow_tpm = 0;
167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169 
170 static int atapi_an;
171 module_param(atapi_an, int, 0444);
172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173 
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178 
179 
180 static bool ata_sstatus_online(u32 sstatus)
181 {
182 	return (sstatus & 0xf) == 0x3;
183 }
184 
185 /**
186  *	ata_link_next - link iteration helper
187  *	@link: the previous link, NULL to start
188  *	@ap: ATA port containing links to iterate
189  *	@mode: iteration mode, one of ATA_LITER_*
190  *
191  *	LOCKING:
192  *	Host lock or EH context.
193  *
194  *	RETURNS:
195  *	Pointer to the next link.
196  */
197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 			       enum ata_link_iter_mode mode)
199 {
200 	BUG_ON(mode != ATA_LITER_EDGE &&
201 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202 
203 	/* NULL link indicates start of iteration */
204 	if (!link)
205 		switch (mode) {
206 		case ATA_LITER_EDGE:
207 		case ATA_LITER_PMP_FIRST:
208 			if (sata_pmp_attached(ap))
209 				return ap->pmp_link;
210 			/* fall through */
211 		case ATA_LITER_HOST_FIRST:
212 			return &ap->link;
213 		}
214 
215 	/* we just iterated over the host link, what's next? */
216 	if (link == &ap->link)
217 		switch (mode) {
218 		case ATA_LITER_HOST_FIRST:
219 			if (sata_pmp_attached(ap))
220 				return ap->pmp_link;
221 			/* fall through */
222 		case ATA_LITER_PMP_FIRST:
223 			if (unlikely(ap->slave_link))
224 				return ap->slave_link;
225 			/* fall through */
226 		case ATA_LITER_EDGE:
227 			return NULL;
228 		}
229 
230 	/* slave_link excludes PMP */
231 	if (unlikely(link == ap->slave_link))
232 		return NULL;
233 
234 	/* we were over a PMP link */
235 	if (++link < ap->pmp_link + ap->nr_pmp_links)
236 		return link;
237 
238 	if (mode == ATA_LITER_PMP_FIRST)
239 		return &ap->link;
240 
241 	return NULL;
242 }
243 
244 /**
245  *	ata_dev_next - device iteration helper
246  *	@dev: the previous device, NULL to start
247  *	@link: ATA link containing devices to iterate
248  *	@mode: iteration mode, one of ATA_DITER_*
249  *
250  *	LOCKING:
251  *	Host lock or EH context.
252  *
253  *	RETURNS:
254  *	Pointer to the next device.
255  */
256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 				enum ata_dev_iter_mode mode)
258 {
259 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261 
262 	/* NULL dev indicates start of iteration */
263 	if (!dev)
264 		switch (mode) {
265 		case ATA_DITER_ENABLED:
266 		case ATA_DITER_ALL:
267 			dev = link->device;
268 			goto check;
269 		case ATA_DITER_ENABLED_REVERSE:
270 		case ATA_DITER_ALL_REVERSE:
271 			dev = link->device + ata_link_max_devices(link) - 1;
272 			goto check;
273 		}
274 
275  next:
276 	/* move to the next one */
277 	switch (mode) {
278 	case ATA_DITER_ENABLED:
279 	case ATA_DITER_ALL:
280 		if (++dev < link->device + ata_link_max_devices(link))
281 			goto check;
282 		return NULL;
283 	case ATA_DITER_ENABLED_REVERSE:
284 	case ATA_DITER_ALL_REVERSE:
285 		if (--dev >= link->device)
286 			goto check;
287 		return NULL;
288 	}
289 
290  check:
291 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 	    !ata_dev_enabled(dev))
293 		goto next;
294 	return dev;
295 }
296 
297 /**
298  *	ata_dev_phys_link - find physical link for a device
299  *	@dev: ATA device to look up physical link for
300  *
301  *	Look up physical link which @dev is attached to.  Note that
302  *	this is different from @dev->link only when @dev is on slave
303  *	link.  For all other cases, it's the same as @dev->link.
304  *
305  *	LOCKING:
306  *	Don't care.
307  *
308  *	RETURNS:
309  *	Pointer to the found physical link.
310  */
311 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312 {
313 	struct ata_port *ap = dev->link->ap;
314 
315 	if (!ap->slave_link)
316 		return dev->link;
317 	if (!dev->devno)
318 		return &ap->link;
319 	return ap->slave_link;
320 }
321 
322 /**
323  *	ata_force_cbl - force cable type according to libata.force
324  *	@ap: ATA port of interest
325  *
326  *	Force cable type according to libata.force and whine about it.
327  *	The last entry which has matching port number is used, so it
328  *	can be specified as part of device force parameters.  For
329  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330  *	same effect.
331  *
332  *	LOCKING:
333  *	EH context.
334  */
335 void ata_force_cbl(struct ata_port *ap)
336 {
337 	int i;
338 
339 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 		const struct ata_force_ent *fe = &ata_force_tbl[i];
341 
342 		if (fe->port != -1 && fe->port != ap->print_id)
343 			continue;
344 
345 		if (fe->param.cbl == ATA_CBL_NONE)
346 			continue;
347 
348 		ap->cbl = fe->param.cbl;
349 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 		return;
351 	}
352 }
353 
354 /**
355  *	ata_force_link_limits - force link limits according to libata.force
356  *	@link: ATA link of interest
357  *
358  *	Force link flags and SATA spd limit according to libata.force
359  *	and whine about it.  When only the port part is specified
360  *	(e.g. 1:), the limit applies to all links connected to both
361  *	the host link and all fan-out ports connected via PMP.  If the
362  *	device part is specified as 0 (e.g. 1.00:), it specifies the
363  *	first fan-out link not the host link.  Device number 15 always
364  *	points to the host link whether PMP is attached or not.  If the
365  *	controller has slave link, device number 16 points to it.
366  *
367  *	LOCKING:
368  *	EH context.
369  */
370 static void ata_force_link_limits(struct ata_link *link)
371 {
372 	bool did_spd = false;
373 	int linkno = link->pmp;
374 	int i;
375 
376 	if (ata_is_host_link(link))
377 		linkno += 15;
378 
379 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 		const struct ata_force_ent *fe = &ata_force_tbl[i];
381 
382 		if (fe->port != -1 && fe->port != link->ap->print_id)
383 			continue;
384 
385 		if (fe->device != -1 && fe->device != linkno)
386 			continue;
387 
388 		/* only honor the first spd limit */
389 		if (!did_spd && fe->param.spd_limit) {
390 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 					fe->param.name);
393 			did_spd = true;
394 		}
395 
396 		/* let lflags stack */
397 		if (fe->param.lflags) {
398 			link->flags |= fe->param.lflags;
399 			ata_link_notice(link,
400 					"FORCE: link flag 0x%x forced -> 0x%x\n",
401 					fe->param.lflags, link->flags);
402 		}
403 	}
404 }
405 
406 /**
407  *	ata_force_xfermask - force xfermask according to libata.force
408  *	@dev: ATA device of interest
409  *
410  *	Force xfer_mask according to libata.force and whine about it.
411  *	For consistency with link selection, device number 15 selects
412  *	the first device connected to the host link.
413  *
414  *	LOCKING:
415  *	EH context.
416  */
417 static void ata_force_xfermask(struct ata_device *dev)
418 {
419 	int devno = dev->link->pmp + dev->devno;
420 	int alt_devno = devno;
421 	int i;
422 
423 	/* allow n.15/16 for devices attached to host port */
424 	if (ata_is_host_link(dev->link))
425 		alt_devno += 15;
426 
427 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 		const struct ata_force_ent *fe = &ata_force_tbl[i];
429 		unsigned long pio_mask, mwdma_mask, udma_mask;
430 
431 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 			continue;
433 
434 		if (fe->device != -1 && fe->device != devno &&
435 		    fe->device != alt_devno)
436 			continue;
437 
438 		if (!fe->param.xfer_mask)
439 			continue;
440 
441 		ata_unpack_xfermask(fe->param.xfer_mask,
442 				    &pio_mask, &mwdma_mask, &udma_mask);
443 		if (udma_mask)
444 			dev->udma_mask = udma_mask;
445 		else if (mwdma_mask) {
446 			dev->udma_mask = 0;
447 			dev->mwdma_mask = mwdma_mask;
448 		} else {
449 			dev->udma_mask = 0;
450 			dev->mwdma_mask = 0;
451 			dev->pio_mask = pio_mask;
452 		}
453 
454 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 			       fe->param.name);
456 		return;
457 	}
458 }
459 
460 /**
461  *	ata_force_horkage - force horkage according to libata.force
462  *	@dev: ATA device of interest
463  *
464  *	Force horkage according to libata.force and whine about it.
465  *	For consistency with link selection, device number 15 selects
466  *	the first device connected to the host link.
467  *
468  *	LOCKING:
469  *	EH context.
470  */
471 static void ata_force_horkage(struct ata_device *dev)
472 {
473 	int devno = dev->link->pmp + dev->devno;
474 	int alt_devno = devno;
475 	int i;
476 
477 	/* allow n.15/16 for devices attached to host port */
478 	if (ata_is_host_link(dev->link))
479 		alt_devno += 15;
480 
481 	for (i = 0; i < ata_force_tbl_size; i++) {
482 		const struct ata_force_ent *fe = &ata_force_tbl[i];
483 
484 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 			continue;
486 
487 		if (fe->device != -1 && fe->device != devno &&
488 		    fe->device != alt_devno)
489 			continue;
490 
491 		if (!(~dev->horkage & fe->param.horkage_on) &&
492 		    !(dev->horkage & fe->param.horkage_off))
493 			continue;
494 
495 		dev->horkage |= fe->param.horkage_on;
496 		dev->horkage &= ~fe->param.horkage_off;
497 
498 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 			       fe->param.name);
500 	}
501 }
502 
503 /**
504  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505  *	@opcode: SCSI opcode
506  *
507  *	Determine ATAPI command type from @opcode.
508  *
509  *	LOCKING:
510  *	None.
511  *
512  *	RETURNS:
513  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514  */
515 int atapi_cmd_type(u8 opcode)
516 {
517 	switch (opcode) {
518 	case GPCMD_READ_10:
519 	case GPCMD_READ_12:
520 		return ATAPI_READ;
521 
522 	case GPCMD_WRITE_10:
523 	case GPCMD_WRITE_12:
524 	case GPCMD_WRITE_AND_VERIFY_10:
525 		return ATAPI_WRITE;
526 
527 	case GPCMD_READ_CD:
528 	case GPCMD_READ_CD_MSF:
529 		return ATAPI_READ_CD;
530 
531 	case ATA_16:
532 	case ATA_12:
533 		if (atapi_passthru16)
534 			return ATAPI_PASS_THRU;
535 		/* fall thru */
536 	default:
537 		return ATAPI_MISC;
538 	}
539 }
540 
541 /**
542  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543  *	@tf: Taskfile to convert
544  *	@pmp: Port multiplier port
545  *	@is_cmd: This FIS is for command
546  *	@fis: Buffer into which data will output
547  *
548  *	Converts a standard ATA taskfile to a Serial ATA
549  *	FIS structure (Register - Host to Device).
550  *
551  *	LOCKING:
552  *	Inherited from caller.
553  */
554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555 {
556 	fis[0] = 0x27;			/* Register - Host to Device FIS */
557 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
558 	if (is_cmd)
559 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
560 
561 	fis[2] = tf->command;
562 	fis[3] = tf->feature;
563 
564 	fis[4] = tf->lbal;
565 	fis[5] = tf->lbam;
566 	fis[6] = tf->lbah;
567 	fis[7] = tf->device;
568 
569 	fis[8] = tf->hob_lbal;
570 	fis[9] = tf->hob_lbam;
571 	fis[10] = tf->hob_lbah;
572 	fis[11] = tf->hob_feature;
573 
574 	fis[12] = tf->nsect;
575 	fis[13] = tf->hob_nsect;
576 	fis[14] = 0;
577 	fis[15] = tf->ctl;
578 
579 	fis[16] = tf->auxiliary & 0xff;
580 	fis[17] = (tf->auxiliary >> 8) & 0xff;
581 	fis[18] = (tf->auxiliary >> 16) & 0xff;
582 	fis[19] = (tf->auxiliary >> 24) & 0xff;
583 }
584 
585 /**
586  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587  *	@fis: Buffer from which data will be input
588  *	@tf: Taskfile to output
589  *
590  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
591  *
592  *	LOCKING:
593  *	Inherited from caller.
594  */
595 
596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597 {
598 	tf->command	= fis[2];	/* status */
599 	tf->feature	= fis[3];	/* error */
600 
601 	tf->lbal	= fis[4];
602 	tf->lbam	= fis[5];
603 	tf->lbah	= fis[6];
604 	tf->device	= fis[7];
605 
606 	tf->hob_lbal	= fis[8];
607 	tf->hob_lbam	= fis[9];
608 	tf->hob_lbah	= fis[10];
609 
610 	tf->nsect	= fis[12];
611 	tf->hob_nsect	= fis[13];
612 }
613 
614 static const u8 ata_rw_cmds[] = {
615 	/* pio multi */
616 	ATA_CMD_READ_MULTI,
617 	ATA_CMD_WRITE_MULTI,
618 	ATA_CMD_READ_MULTI_EXT,
619 	ATA_CMD_WRITE_MULTI_EXT,
620 	0,
621 	0,
622 	0,
623 	ATA_CMD_WRITE_MULTI_FUA_EXT,
624 	/* pio */
625 	ATA_CMD_PIO_READ,
626 	ATA_CMD_PIO_WRITE,
627 	ATA_CMD_PIO_READ_EXT,
628 	ATA_CMD_PIO_WRITE_EXT,
629 	0,
630 	0,
631 	0,
632 	0,
633 	/* dma */
634 	ATA_CMD_READ,
635 	ATA_CMD_WRITE,
636 	ATA_CMD_READ_EXT,
637 	ATA_CMD_WRITE_EXT,
638 	0,
639 	0,
640 	0,
641 	ATA_CMD_WRITE_FUA_EXT
642 };
643 
644 /**
645  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
646  *	@tf: command to examine and configure
647  *	@dev: device tf belongs to
648  *
649  *	Examine the device configuration and tf->flags to calculate
650  *	the proper read/write commands and protocol to use.
651  *
652  *	LOCKING:
653  *	caller.
654  */
655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656 {
657 	u8 cmd;
658 
659 	int index, fua, lba48, write;
660 
661 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664 
665 	if (dev->flags & ATA_DFLAG_PIO) {
666 		tf->protocol = ATA_PROT_PIO;
667 		index = dev->multi_count ? 0 : 8;
668 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 		/* Unable to use DMA due to host limitation */
670 		tf->protocol = ATA_PROT_PIO;
671 		index = dev->multi_count ? 0 : 8;
672 	} else {
673 		tf->protocol = ATA_PROT_DMA;
674 		index = 16;
675 	}
676 
677 	cmd = ata_rw_cmds[index + fua + lba48 + write];
678 	if (cmd) {
679 		tf->command = cmd;
680 		return 0;
681 	}
682 	return -1;
683 }
684 
685 /**
686  *	ata_tf_read_block - Read block address from ATA taskfile
687  *	@tf: ATA taskfile of interest
688  *	@dev: ATA device @tf belongs to
689  *
690  *	LOCKING:
691  *	None.
692  *
693  *	Read block address from @tf.  This function can handle all
694  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
695  *	flags select the address format to use.
696  *
697  *	RETURNS:
698  *	Block address read from @tf.
699  */
700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701 {
702 	u64 block = 0;
703 
704 	if (tf->flags & ATA_TFLAG_LBA) {
705 		if (tf->flags & ATA_TFLAG_LBA48) {
706 			block |= (u64)tf->hob_lbah << 40;
707 			block |= (u64)tf->hob_lbam << 32;
708 			block |= (u64)tf->hob_lbal << 24;
709 		} else
710 			block |= (tf->device & 0xf) << 24;
711 
712 		block |= tf->lbah << 16;
713 		block |= tf->lbam << 8;
714 		block |= tf->lbal;
715 	} else {
716 		u32 cyl, head, sect;
717 
718 		cyl = tf->lbam | (tf->lbah << 8);
719 		head = tf->device & 0xf;
720 		sect = tf->lbal;
721 
722 		if (!sect) {
723 			ata_dev_warn(dev,
724 				     "device reported invalid CHS sector 0\n");
725 			return U64_MAX;
726 		}
727 
728 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 	}
730 
731 	return block;
732 }
733 
734 /**
735  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
736  *	@tf: Target ATA taskfile
737  *	@dev: ATA device @tf belongs to
738  *	@block: Block address
739  *	@n_block: Number of blocks
740  *	@tf_flags: RW/FUA etc...
741  *	@tag: tag
742  *	@class: IO priority class
743  *
744  *	LOCKING:
745  *	None.
746  *
747  *	Build ATA taskfile @tf for read/write request described by
748  *	@block, @n_block, @tf_flags and @tag on @dev.
749  *
750  *	RETURNS:
751  *
752  *	0 on success, -ERANGE if the request is too large for @dev,
753  *	-EINVAL if the request is invalid.
754  */
755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 		    u64 block, u32 n_block, unsigned int tf_flags,
757 		    unsigned int tag, int class)
758 {
759 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 	tf->flags |= tf_flags;
761 
762 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
763 		/* yay, NCQ */
764 		if (!lba_48_ok(block, n_block))
765 			return -ERANGE;
766 
767 		tf->protocol = ATA_PROT_NCQ;
768 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769 
770 		if (tf->flags & ATA_TFLAG_WRITE)
771 			tf->command = ATA_CMD_FPDMA_WRITE;
772 		else
773 			tf->command = ATA_CMD_FPDMA_READ;
774 
775 		tf->nsect = tag << 3;
776 		tf->hob_feature = (n_block >> 8) & 0xff;
777 		tf->feature = n_block & 0xff;
778 
779 		tf->hob_lbah = (block >> 40) & 0xff;
780 		tf->hob_lbam = (block >> 32) & 0xff;
781 		tf->hob_lbal = (block >> 24) & 0xff;
782 		tf->lbah = (block >> 16) & 0xff;
783 		tf->lbam = (block >> 8) & 0xff;
784 		tf->lbal = block & 0xff;
785 
786 		tf->device = ATA_LBA;
787 		if (tf->flags & ATA_TFLAG_FUA)
788 			tf->device |= 1 << 7;
789 
790 		if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
791 			if (class == IOPRIO_CLASS_RT)
792 				tf->hob_nsect |= ATA_PRIO_HIGH <<
793 						 ATA_SHIFT_PRIO;
794 		}
795 	} else if (dev->flags & ATA_DFLAG_LBA) {
796 		tf->flags |= ATA_TFLAG_LBA;
797 
798 		if (lba_28_ok(block, n_block)) {
799 			/* use LBA28 */
800 			tf->device |= (block >> 24) & 0xf;
801 		} else if (lba_48_ok(block, n_block)) {
802 			if (!(dev->flags & ATA_DFLAG_LBA48))
803 				return -ERANGE;
804 
805 			/* use LBA48 */
806 			tf->flags |= ATA_TFLAG_LBA48;
807 
808 			tf->hob_nsect = (n_block >> 8) & 0xff;
809 
810 			tf->hob_lbah = (block >> 40) & 0xff;
811 			tf->hob_lbam = (block >> 32) & 0xff;
812 			tf->hob_lbal = (block >> 24) & 0xff;
813 		} else
814 			/* request too large even for LBA48 */
815 			return -ERANGE;
816 
817 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 			return -EINVAL;
819 
820 		tf->nsect = n_block & 0xff;
821 
822 		tf->lbah = (block >> 16) & 0xff;
823 		tf->lbam = (block >> 8) & 0xff;
824 		tf->lbal = block & 0xff;
825 
826 		tf->device |= ATA_LBA;
827 	} else {
828 		/* CHS */
829 		u32 sect, head, cyl, track;
830 
831 		/* The request -may- be too large for CHS addressing. */
832 		if (!lba_28_ok(block, n_block))
833 			return -ERANGE;
834 
835 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 			return -EINVAL;
837 
838 		/* Convert LBA to CHS */
839 		track = (u32)block / dev->sectors;
840 		cyl   = track / dev->heads;
841 		head  = track % dev->heads;
842 		sect  = (u32)block % dev->sectors + 1;
843 
844 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 			(u32)block, track, cyl, head, sect);
846 
847 		/* Check whether the converted CHS can fit.
848 		   Cylinder: 0-65535
849 		   Head: 0-15
850 		   Sector: 1-255*/
851 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 			return -ERANGE;
853 
854 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 		tf->lbal = sect;
856 		tf->lbam = cyl;
857 		tf->lbah = cyl >> 8;
858 		tf->device |= head;
859 	}
860 
861 	return 0;
862 }
863 
864 /**
865  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866  *	@pio_mask: pio_mask
867  *	@mwdma_mask: mwdma_mask
868  *	@udma_mask: udma_mask
869  *
870  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871  *	unsigned int xfer_mask.
872  *
873  *	LOCKING:
874  *	None.
875  *
876  *	RETURNS:
877  *	Packed xfer_mask.
878  */
879 unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 				unsigned long mwdma_mask,
881 				unsigned long udma_mask)
882 {
883 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886 }
887 
888 /**
889  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890  *	@xfer_mask: xfer_mask to unpack
891  *	@pio_mask: resulting pio_mask
892  *	@mwdma_mask: resulting mwdma_mask
893  *	@udma_mask: resulting udma_mask
894  *
895  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896  *	Any NULL destination masks will be ignored.
897  */
898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
900 {
901 	if (pio_mask)
902 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 	if (mwdma_mask)
904 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 	if (udma_mask)
906 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907 }
908 
909 static const struct ata_xfer_ent {
910 	int shift, bits;
911 	u8 base;
912 } ata_xfer_tbl[] = {
913 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
916 	{ -1, },
917 };
918 
919 /**
920  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921  *	@xfer_mask: xfer_mask of interest
922  *
923  *	Return matching XFER_* value for @xfer_mask.  Only the highest
924  *	bit of @xfer_mask is considered.
925  *
926  *	LOCKING:
927  *	None.
928  *
929  *	RETURNS:
930  *	Matching XFER_* value, 0xff if no match found.
931  */
932 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
933 {
934 	int highbit = fls(xfer_mask) - 1;
935 	const struct ata_xfer_ent *ent;
936 
937 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 			return ent->base + highbit - ent->shift;
940 	return 0xff;
941 }
942 
943 /**
944  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945  *	@xfer_mode: XFER_* of interest
946  *
947  *	Return matching xfer_mask for @xfer_mode.
948  *
949  *	LOCKING:
950  *	None.
951  *
952  *	RETURNS:
953  *	Matching xfer_mask, 0 if no match found.
954  */
955 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
956 {
957 	const struct ata_xfer_ent *ent;
958 
959 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 				& ~((1 << ent->shift) - 1);
963 	return 0;
964 }
965 
966 /**
967  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968  *	@xfer_mode: XFER_* of interest
969  *
970  *	Return matching xfer_shift for @xfer_mode.
971  *
972  *	LOCKING:
973  *	None.
974  *
975  *	RETURNS:
976  *	Matching xfer_shift, -1 if no match found.
977  */
978 int ata_xfer_mode2shift(unsigned long xfer_mode)
979 {
980 	const struct ata_xfer_ent *ent;
981 
982 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 			return ent->shift;
985 	return -1;
986 }
987 
988 /**
989  *	ata_mode_string - convert xfer_mask to string
990  *	@xfer_mask: mask of bits supported; only highest bit counts.
991  *
992  *	Determine string which represents the highest speed
993  *	(highest bit in @modemask).
994  *
995  *	LOCKING:
996  *	None.
997  *
998  *	RETURNS:
999  *	Constant C string representing highest speed listed in
1000  *	@mode_mask, or the constant C string "<n/a>".
1001  */
1002 const char *ata_mode_string(unsigned long xfer_mask)
1003 {
1004 	static const char * const xfer_mode_str[] = {
1005 		"PIO0",
1006 		"PIO1",
1007 		"PIO2",
1008 		"PIO3",
1009 		"PIO4",
1010 		"PIO5",
1011 		"PIO6",
1012 		"MWDMA0",
1013 		"MWDMA1",
1014 		"MWDMA2",
1015 		"MWDMA3",
1016 		"MWDMA4",
1017 		"UDMA/16",
1018 		"UDMA/25",
1019 		"UDMA/33",
1020 		"UDMA/44",
1021 		"UDMA/66",
1022 		"UDMA/100",
1023 		"UDMA/133",
1024 		"UDMA7",
1025 	};
1026 	int highbit;
1027 
1028 	highbit = fls(xfer_mask) - 1;
1029 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 		return xfer_mode_str[highbit];
1031 	return "<n/a>";
1032 }
1033 
1034 const char *sata_spd_string(unsigned int spd)
1035 {
1036 	static const char * const spd_str[] = {
1037 		"1.5 Gbps",
1038 		"3.0 Gbps",
1039 		"6.0 Gbps",
1040 	};
1041 
1042 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 		return "<unknown>";
1044 	return spd_str[spd - 1];
1045 }
1046 
1047 /**
1048  *	ata_dev_classify - determine device type based on ATA-spec signature
1049  *	@tf: ATA taskfile register set for device to be identified
1050  *
1051  *	Determine from taskfile register contents whether a device is
1052  *	ATA or ATAPI, as per "Signature and persistence" section
1053  *	of ATA/PI spec (volume 1, sect 5.14).
1054  *
1055  *	LOCKING:
1056  *	None.
1057  *
1058  *	RETURNS:
1059  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061  */
1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063 {
1064 	/* Apple's open source Darwin code hints that some devices only
1065 	 * put a proper signature into the LBA mid/high registers,
1066 	 * So, we only check those.  It's sufficient for uniqueness.
1067 	 *
1068 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1071 	 * spec has never mentioned about using different signatures
1072 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1073 	 * Multiplier specification began to use 0x69/0x96 to identify
1074 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 	 * 0x69/0x96 shortly and described them as reserved for
1077 	 * SerialATA.
1078 	 *
1079 	 * We follow the current spec and consider that 0x69/0x96
1080 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 	 * SEMB signature.  This is worked around in
1083 	 * ata_dev_read_id().
1084 	 */
1085 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086 		DPRINTK("found ATA device by sig\n");
1087 		return ATA_DEV_ATA;
1088 	}
1089 
1090 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091 		DPRINTK("found ATAPI device by sig\n");
1092 		return ATA_DEV_ATAPI;
1093 	}
1094 
1095 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 		DPRINTK("found PMP device by sig\n");
1097 		return ATA_DEV_PMP;
1098 	}
1099 
1100 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 		return ATA_DEV_SEMB;
1103 	}
1104 
1105 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 		DPRINTK("found ZAC device by sig\n");
1107 		return ATA_DEV_ZAC;
1108 	}
1109 
1110 	DPRINTK("unknown device\n");
1111 	return ATA_DEV_UNKNOWN;
1112 }
1113 
1114 /**
1115  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1116  *	@id: IDENTIFY DEVICE results we will examine
1117  *	@s: string into which data is output
1118  *	@ofs: offset into identify device page
1119  *	@len: length of string to return. must be an even number.
1120  *
1121  *	The strings in the IDENTIFY DEVICE page are broken up into
1122  *	16-bit chunks.  Run through the string, and output each
1123  *	8-bit chunk linearly, regardless of platform.
1124  *
1125  *	LOCKING:
1126  *	caller.
1127  */
1128 
1129 void ata_id_string(const u16 *id, unsigned char *s,
1130 		   unsigned int ofs, unsigned int len)
1131 {
1132 	unsigned int c;
1133 
1134 	BUG_ON(len & 1);
1135 
1136 	while (len > 0) {
1137 		c = id[ofs] >> 8;
1138 		*s = c;
1139 		s++;
1140 
1141 		c = id[ofs] & 0xff;
1142 		*s = c;
1143 		s++;
1144 
1145 		ofs++;
1146 		len -= 2;
1147 	}
1148 }
1149 
1150 /**
1151  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152  *	@id: IDENTIFY DEVICE results we will examine
1153  *	@s: string into which data is output
1154  *	@ofs: offset into identify device page
1155  *	@len: length of string to return. must be an odd number.
1156  *
1157  *	This function is identical to ata_id_string except that it
1158  *	trims trailing spaces and terminates the resulting string with
1159  *	null.  @len must be actual maximum length (even number) + 1.
1160  *
1161  *	LOCKING:
1162  *	caller.
1163  */
1164 void ata_id_c_string(const u16 *id, unsigned char *s,
1165 		     unsigned int ofs, unsigned int len)
1166 {
1167 	unsigned char *p;
1168 
1169 	ata_id_string(id, s, ofs, len - 1);
1170 
1171 	p = s + strnlen(s, len - 1);
1172 	while (p > s && p[-1] == ' ')
1173 		p--;
1174 	*p = '\0';
1175 }
1176 
1177 static u64 ata_id_n_sectors(const u16 *id)
1178 {
1179 	if (ata_id_has_lba(id)) {
1180 		if (ata_id_has_lba48(id))
1181 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182 		else
1183 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184 	} else {
1185 		if (ata_id_current_chs_valid(id))
1186 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 			       id[ATA_ID_CUR_SECTORS];
1188 		else
1189 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 			       id[ATA_ID_SECTORS];
1191 	}
1192 }
1193 
1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195 {
1196 	u64 sectors = 0;
1197 
1198 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201 	sectors |= (tf->lbah & 0xff) << 16;
1202 	sectors |= (tf->lbam & 0xff) << 8;
1203 	sectors |= (tf->lbal & 0xff);
1204 
1205 	return sectors;
1206 }
1207 
1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209 {
1210 	u64 sectors = 0;
1211 
1212 	sectors |= (tf->device & 0x0f) << 24;
1213 	sectors |= (tf->lbah & 0xff) << 16;
1214 	sectors |= (tf->lbam & 0xff) << 8;
1215 	sectors |= (tf->lbal & 0xff);
1216 
1217 	return sectors;
1218 }
1219 
1220 /**
1221  *	ata_read_native_max_address - Read native max address
1222  *	@dev: target device
1223  *	@max_sectors: out parameter for the result native max address
1224  *
1225  *	Perform an LBA48 or LBA28 native size query upon the device in
1226  *	question.
1227  *
1228  *	RETURNS:
1229  *	0 on success, -EACCES if command is aborted by the drive.
1230  *	-EIO on other errors.
1231  */
1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233 {
1234 	unsigned int err_mask;
1235 	struct ata_taskfile tf;
1236 	int lba48 = ata_id_has_lba48(dev->id);
1237 
1238 	ata_tf_init(dev, &tf);
1239 
1240 	/* always clear all address registers */
1241 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242 
1243 	if (lba48) {
1244 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 		tf.flags |= ATA_TFLAG_LBA48;
1246 	} else
1247 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1248 
1249 	tf.protocol = ATA_PROT_NODATA;
1250 	tf.device |= ATA_LBA;
1251 
1252 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 	if (err_mask) {
1254 		ata_dev_warn(dev,
1255 			     "failed to read native max address (err_mask=0x%x)\n",
1256 			     err_mask);
1257 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 			return -EACCES;
1259 		return -EIO;
1260 	}
1261 
1262 	if (lba48)
1263 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1264 	else
1265 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1266 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267 		(*max_sectors)--;
1268 	return 0;
1269 }
1270 
1271 /**
1272  *	ata_set_max_sectors - Set max sectors
1273  *	@dev: target device
1274  *	@new_sectors: new max sectors value to set for the device
1275  *
1276  *	Set max sectors of @dev to @new_sectors.
1277  *
1278  *	RETURNS:
1279  *	0 on success, -EACCES if command is aborted or denied (due to
1280  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1281  *	errors.
1282  */
1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284 {
1285 	unsigned int err_mask;
1286 	struct ata_taskfile tf;
1287 	int lba48 = ata_id_has_lba48(dev->id);
1288 
1289 	new_sectors--;
1290 
1291 	ata_tf_init(dev, &tf);
1292 
1293 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294 
1295 	if (lba48) {
1296 		tf.command = ATA_CMD_SET_MAX_EXT;
1297 		tf.flags |= ATA_TFLAG_LBA48;
1298 
1299 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302 	} else {
1303 		tf.command = ATA_CMD_SET_MAX;
1304 
1305 		tf.device |= (new_sectors >> 24) & 0xf;
1306 	}
1307 
1308 	tf.protocol = ATA_PROT_NODATA;
1309 	tf.device |= ATA_LBA;
1310 
1311 	tf.lbal = (new_sectors >> 0) & 0xff;
1312 	tf.lbam = (new_sectors >> 8) & 0xff;
1313 	tf.lbah = (new_sectors >> 16) & 0xff;
1314 
1315 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 	if (err_mask) {
1317 		ata_dev_warn(dev,
1318 			     "failed to set max address (err_mask=0x%x)\n",
1319 			     err_mask);
1320 		if (err_mask == AC_ERR_DEV &&
1321 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 			return -EACCES;
1323 		return -EIO;
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  *	ata_hpa_resize		-	Resize a device with an HPA set
1331  *	@dev: Device to resize
1332  *
1333  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334  *	it if required to the full size of the media. The caller must check
1335  *	the drive has the HPA feature set enabled.
1336  *
1337  *	RETURNS:
1338  *	0 on success, -errno on failure.
1339  */
1340 static int ata_hpa_resize(struct ata_device *dev)
1341 {
1342 	struct ata_eh_context *ehc = &dev->link->eh_context;
1343 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345 	u64 sectors = ata_id_n_sectors(dev->id);
1346 	u64 native_sectors;
1347 	int rc;
1348 
1349 	/* do we need to do it? */
1350 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353 		return 0;
1354 
1355 	/* read native max address */
1356 	rc = ata_read_native_max_address(dev, &native_sectors);
1357 	if (rc) {
1358 		/* If device aborted the command or HPA isn't going to
1359 		 * be unlocked, skip HPA resizing.
1360 		 */
1361 		if (rc == -EACCES || !unlock_hpa) {
1362 			ata_dev_warn(dev,
1363 				     "HPA support seems broken, skipping HPA handling\n");
1364 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365 
1366 			/* we can continue if device aborted the command */
1367 			if (rc == -EACCES)
1368 				rc = 0;
1369 		}
1370 
1371 		return rc;
1372 	}
1373 	dev->n_native_sectors = native_sectors;
1374 
1375 	/* nothing to do? */
1376 	if (native_sectors <= sectors || !unlock_hpa) {
1377 		if (!print_info || native_sectors == sectors)
1378 			return 0;
1379 
1380 		if (native_sectors > sectors)
1381 			ata_dev_info(dev,
1382 				"HPA detected: current %llu, native %llu\n",
1383 				(unsigned long long)sectors,
1384 				(unsigned long long)native_sectors);
1385 		else if (native_sectors < sectors)
1386 			ata_dev_warn(dev,
1387 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1388 				(unsigned long long)native_sectors,
1389 				(unsigned long long)sectors);
1390 		return 0;
1391 	}
1392 
1393 	/* let's unlock HPA */
1394 	rc = ata_set_max_sectors(dev, native_sectors);
1395 	if (rc == -EACCES) {
1396 		/* if device aborted the command, skip HPA resizing */
1397 		ata_dev_warn(dev,
1398 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 			     (unsigned long long)sectors,
1400 			     (unsigned long long)native_sectors);
1401 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 		return 0;
1403 	} else if (rc)
1404 		return rc;
1405 
1406 	/* re-read IDENTIFY data */
1407 	rc = ata_dev_reread_id(dev, 0);
1408 	if (rc) {
1409 		ata_dev_err(dev,
1410 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1411 		return rc;
1412 	}
1413 
1414 	if (print_info) {
1415 		u64 new_sectors = ata_id_n_sectors(dev->id);
1416 		ata_dev_info(dev,
1417 			"HPA unlocked: %llu -> %llu, native %llu\n",
1418 			(unsigned long long)sectors,
1419 			(unsigned long long)new_sectors,
1420 			(unsigned long long)native_sectors);
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 /**
1427  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1428  *	@id: IDENTIFY DEVICE page to dump
1429  *
1430  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1431  *	page.
1432  *
1433  *	LOCKING:
1434  *	caller.
1435  */
1436 
1437 static inline void ata_dump_id(const u16 *id)
1438 {
1439 	DPRINTK("49==0x%04x  "
1440 		"53==0x%04x  "
1441 		"63==0x%04x  "
1442 		"64==0x%04x  "
1443 		"75==0x%04x  \n",
1444 		id[49],
1445 		id[53],
1446 		id[63],
1447 		id[64],
1448 		id[75]);
1449 	DPRINTK("80==0x%04x  "
1450 		"81==0x%04x  "
1451 		"82==0x%04x  "
1452 		"83==0x%04x  "
1453 		"84==0x%04x  \n",
1454 		id[80],
1455 		id[81],
1456 		id[82],
1457 		id[83],
1458 		id[84]);
1459 	DPRINTK("88==0x%04x  "
1460 		"93==0x%04x\n",
1461 		id[88],
1462 		id[93]);
1463 }
1464 
1465 /**
1466  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467  *	@id: IDENTIFY data to compute xfer mask from
1468  *
1469  *	Compute the xfermask for this device. This is not as trivial
1470  *	as it seems if we must consider early devices correctly.
1471  *
1472  *	FIXME: pre IDE drive timing (do we care ?).
1473  *
1474  *	LOCKING:
1475  *	None.
1476  *
1477  *	RETURNS:
1478  *	Computed xfermask
1479  */
1480 unsigned long ata_id_xfermask(const u16 *id)
1481 {
1482 	unsigned long pio_mask, mwdma_mask, udma_mask;
1483 
1484 	/* Usual case. Word 53 indicates word 64 is valid */
1485 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 		pio_mask <<= 3;
1488 		pio_mask |= 0x7;
1489 	} else {
1490 		/* If word 64 isn't valid then Word 51 high byte holds
1491 		 * the PIO timing number for the maximum. Turn it into
1492 		 * a mask.
1493 		 */
1494 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495 		if (mode < 5)	/* Valid PIO range */
1496 			pio_mask = (2 << mode) - 1;
1497 		else
1498 			pio_mask = 1;
1499 
1500 		/* But wait.. there's more. Design your standards by
1501 		 * committee and you too can get a free iordy field to
1502 		 * process. However its the speeds not the modes that
1503 		 * are supported... Note drivers using the timing API
1504 		 * will get this right anyway
1505 		 */
1506 	}
1507 
1508 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509 
1510 	if (ata_id_is_cfa(id)) {
1511 		/*
1512 		 *	Process compact flash extended modes
1513 		 */
1514 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516 
1517 		if (pio)
1518 			pio_mask |= (1 << 5);
1519 		if (pio > 1)
1520 			pio_mask |= (1 << 6);
1521 		if (dma)
1522 			mwdma_mask |= (1 << 3);
1523 		if (dma > 1)
1524 			mwdma_mask |= (1 << 4);
1525 	}
1526 
1527 	udma_mask = 0;
1528 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530 
1531 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532 }
1533 
1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535 {
1536 	struct completion *waiting = qc->private_data;
1537 
1538 	complete(waiting);
1539 }
1540 
1541 /**
1542  *	ata_exec_internal_sg - execute libata internal command
1543  *	@dev: Device to which the command is sent
1544  *	@tf: Taskfile registers for the command and the result
1545  *	@cdb: CDB for packet command
1546  *	@dma_dir: Data transfer direction of the command
1547  *	@sgl: sg list for the data buffer of the command
1548  *	@n_elem: Number of sg entries
1549  *	@timeout: Timeout in msecs (0 for default)
1550  *
1551  *	Executes libata internal command with timeout.  @tf contains
1552  *	command on entry and result on return.  Timeout and error
1553  *	conditions are reported via return value.  No recovery action
1554  *	is taken after a command times out.  It's caller's duty to
1555  *	clean up after timeout.
1556  *
1557  *	LOCKING:
1558  *	None.  Should be called with kernel context, might sleep.
1559  *
1560  *	RETURNS:
1561  *	Zero on success, AC_ERR_* mask on failure
1562  */
1563 unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 			      struct ata_taskfile *tf, const u8 *cdb,
1565 			      int dma_dir, struct scatterlist *sgl,
1566 			      unsigned int n_elem, unsigned long timeout)
1567 {
1568 	struct ata_link *link = dev->link;
1569 	struct ata_port *ap = link->ap;
1570 	u8 command = tf->command;
1571 	int auto_timeout = 0;
1572 	struct ata_queued_cmd *qc;
1573 	unsigned int tag, preempted_tag;
1574 	u32 preempted_sactive, preempted_qc_active;
1575 	int preempted_nr_active_links;
1576 	DECLARE_COMPLETION_ONSTACK(wait);
1577 	unsigned long flags;
1578 	unsigned int err_mask;
1579 	int rc;
1580 
1581 	spin_lock_irqsave(ap->lock, flags);
1582 
1583 	/* no internal command while frozen */
1584 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1585 		spin_unlock_irqrestore(ap->lock, flags);
1586 		return AC_ERR_SYSTEM;
1587 	}
1588 
1589 	/* initialize internal qc */
1590 
1591 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1592 	 * drivers choke if any other tag is given.  This breaks
1593 	 * ata_tag_internal() test for those drivers.  Don't use new
1594 	 * EH stuff without converting to it.
1595 	 */
1596 	if (ap->ops->error_handler)
1597 		tag = ATA_TAG_INTERNAL;
1598 	else
1599 		tag = 0;
1600 
1601 	qc = __ata_qc_from_tag(ap, tag);
1602 
1603 	qc->tag = tag;
1604 	qc->scsicmd = NULL;
1605 	qc->ap = ap;
1606 	qc->dev = dev;
1607 	ata_qc_reinit(qc);
1608 
1609 	preempted_tag = link->active_tag;
1610 	preempted_sactive = link->sactive;
1611 	preempted_qc_active = ap->qc_active;
1612 	preempted_nr_active_links = ap->nr_active_links;
1613 	link->active_tag = ATA_TAG_POISON;
1614 	link->sactive = 0;
1615 	ap->qc_active = 0;
1616 	ap->nr_active_links = 0;
1617 
1618 	/* prepare & issue qc */
1619 	qc->tf = *tf;
1620 	if (cdb)
1621 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1622 
1623 	/* some SATA bridges need us to indicate data xfer direction */
1624 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 	    dma_dir == DMA_FROM_DEVICE)
1626 		qc->tf.feature |= ATAPI_DMADIR;
1627 
1628 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1629 	qc->dma_dir = dma_dir;
1630 	if (dma_dir != DMA_NONE) {
1631 		unsigned int i, buflen = 0;
1632 		struct scatterlist *sg;
1633 
1634 		for_each_sg(sgl, sg, n_elem, i)
1635 			buflen += sg->length;
1636 
1637 		ata_sg_init(qc, sgl, n_elem);
1638 		qc->nbytes = buflen;
1639 	}
1640 
1641 	qc->private_data = &wait;
1642 	qc->complete_fn = ata_qc_complete_internal;
1643 
1644 	ata_qc_issue(qc);
1645 
1646 	spin_unlock_irqrestore(ap->lock, flags);
1647 
1648 	if (!timeout) {
1649 		if (ata_probe_timeout)
1650 			timeout = ata_probe_timeout * 1000;
1651 		else {
1652 			timeout = ata_internal_cmd_timeout(dev, command);
1653 			auto_timeout = 1;
1654 		}
1655 	}
1656 
1657 	if (ap->ops->error_handler)
1658 		ata_eh_release(ap);
1659 
1660 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1661 
1662 	if (ap->ops->error_handler)
1663 		ata_eh_acquire(ap);
1664 
1665 	ata_sff_flush_pio_task(ap);
1666 
1667 	if (!rc) {
1668 		spin_lock_irqsave(ap->lock, flags);
1669 
1670 		/* We're racing with irq here.  If we lose, the
1671 		 * following test prevents us from completing the qc
1672 		 * twice.  If we win, the port is frozen and will be
1673 		 * cleaned up by ->post_internal_cmd().
1674 		 */
1675 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676 			qc->err_mask |= AC_ERR_TIMEOUT;
1677 
1678 			if (ap->ops->error_handler)
1679 				ata_port_freeze(ap);
1680 			else
1681 				ata_qc_complete(qc);
1682 
1683 			if (ata_msg_warn(ap))
1684 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 					     command);
1686 		}
1687 
1688 		spin_unlock_irqrestore(ap->lock, flags);
1689 	}
1690 
1691 	/* do post_internal_cmd */
1692 	if (ap->ops->post_internal_cmd)
1693 		ap->ops->post_internal_cmd(qc);
1694 
1695 	/* perform minimal error analysis */
1696 	if (qc->flags & ATA_QCFLAG_FAILED) {
1697 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 			qc->err_mask |= AC_ERR_DEV;
1699 
1700 		if (!qc->err_mask)
1701 			qc->err_mask |= AC_ERR_OTHER;
1702 
1703 		if (qc->err_mask & ~AC_ERR_OTHER)
1704 			qc->err_mask &= ~AC_ERR_OTHER;
1705 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706 		qc->result_tf.command |= ATA_SENSE;
1707 	}
1708 
1709 	/* finish up */
1710 	spin_lock_irqsave(ap->lock, flags);
1711 
1712 	*tf = qc->result_tf;
1713 	err_mask = qc->err_mask;
1714 
1715 	ata_qc_free(qc);
1716 	link->active_tag = preempted_tag;
1717 	link->sactive = preempted_sactive;
1718 	ap->qc_active = preempted_qc_active;
1719 	ap->nr_active_links = preempted_nr_active_links;
1720 
1721 	spin_unlock_irqrestore(ap->lock, flags);
1722 
1723 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724 		ata_internal_cmd_timed_out(dev, command);
1725 
1726 	return err_mask;
1727 }
1728 
1729 /**
1730  *	ata_exec_internal - execute libata internal command
1731  *	@dev: Device to which the command is sent
1732  *	@tf: Taskfile registers for the command and the result
1733  *	@cdb: CDB for packet command
1734  *	@dma_dir: Data transfer direction of the command
1735  *	@buf: Data buffer of the command
1736  *	@buflen: Length of data buffer
1737  *	@timeout: Timeout in msecs (0 for default)
1738  *
1739  *	Wrapper around ata_exec_internal_sg() which takes simple
1740  *	buffer instead of sg list.
1741  *
1742  *	LOCKING:
1743  *	None.  Should be called with kernel context, might sleep.
1744  *
1745  *	RETURNS:
1746  *	Zero on success, AC_ERR_* mask on failure
1747  */
1748 unsigned ata_exec_internal(struct ata_device *dev,
1749 			   struct ata_taskfile *tf, const u8 *cdb,
1750 			   int dma_dir, void *buf, unsigned int buflen,
1751 			   unsigned long timeout)
1752 {
1753 	struct scatterlist *psg = NULL, sg;
1754 	unsigned int n_elem = 0;
1755 
1756 	if (dma_dir != DMA_NONE) {
1757 		WARN_ON(!buf);
1758 		sg_init_one(&sg, buf, buflen);
1759 		psg = &sg;
1760 		n_elem++;
1761 	}
1762 
1763 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764 				    timeout);
1765 }
1766 
1767 /**
1768  *	ata_pio_need_iordy	-	check if iordy needed
1769  *	@adev: ATA device
1770  *
1771  *	Check if the current speed of the device requires IORDY. Used
1772  *	by various controllers for chip configuration.
1773  */
1774 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775 {
1776 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1777 	 * lead to controller lock up on certain controllers if the
1778 	 * port is not occupied.  See bko#11703 for details.
1779 	 */
1780 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781 		return 0;
1782 	/* Controller doesn't support IORDY.  Probably a pointless
1783 	 * check as the caller should know this.
1784 	 */
1785 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1786 		return 0;
1787 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1788 	if (ata_id_is_cfa(adev->id)
1789 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790 		return 0;
1791 	/* PIO3 and higher it is mandatory */
1792 	if (adev->pio_mode > XFER_PIO_2)
1793 		return 1;
1794 	/* We turn it on when possible */
1795 	if (ata_id_has_iordy(adev->id))
1796 		return 1;
1797 	return 0;
1798 }
1799 
1800 /**
1801  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1802  *	@adev: ATA device
1803  *
1804  *	Compute the highest mode possible if we are not using iordy. Return
1805  *	-1 if no iordy mode is available.
1806  */
1807 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808 {
1809 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1810 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1811 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1812 		/* Is the speed faster than the drive allows non IORDY ? */
1813 		if (pio) {
1814 			/* This is cycle times not frequency - watch the logic! */
1815 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1816 				return 3 << ATA_SHIFT_PIO;
1817 			return 7 << ATA_SHIFT_PIO;
1818 		}
1819 	}
1820 	return 3 << ATA_SHIFT_PIO;
1821 }
1822 
1823 /**
1824  *	ata_do_dev_read_id		-	default ID read method
1825  *	@dev: device
1826  *	@tf: proposed taskfile
1827  *	@id: data buffer
1828  *
1829  *	Issue the identify taskfile and hand back the buffer containing
1830  *	identify data. For some RAID controllers and for pre ATA devices
1831  *	this function is wrapped or replaced by the driver
1832  */
1833 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834 					struct ata_taskfile *tf, u16 *id)
1835 {
1836 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838 }
1839 
1840 /**
1841  *	ata_dev_read_id - Read ID data from the specified device
1842  *	@dev: target device
1843  *	@p_class: pointer to class of the target device (may be changed)
1844  *	@flags: ATA_READID_* flags
1845  *	@id: buffer to read IDENTIFY data into
1846  *
1847  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1848  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1849  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1850  *	for pre-ATA4 drives.
1851  *
1852  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1853  *	now we abort if we hit that case.
1854  *
1855  *	LOCKING:
1856  *	Kernel thread context (may sleep)
1857  *
1858  *	RETURNS:
1859  *	0 on success, -errno otherwise.
1860  */
1861 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1862 		    unsigned int flags, u16 *id)
1863 {
1864 	struct ata_port *ap = dev->link->ap;
1865 	unsigned int class = *p_class;
1866 	struct ata_taskfile tf;
1867 	unsigned int err_mask = 0;
1868 	const char *reason;
1869 	bool is_semb = class == ATA_DEV_SEMB;
1870 	int may_fallback = 1, tried_spinup = 0;
1871 	int rc;
1872 
1873 	if (ata_msg_ctl(ap))
1874 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1875 
1876 retry:
1877 	ata_tf_init(dev, &tf);
1878 
1879 	switch (class) {
1880 	case ATA_DEV_SEMB:
1881 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1882 		/* fall through */
1883 	case ATA_DEV_ATA:
1884 	case ATA_DEV_ZAC:
1885 		tf.command = ATA_CMD_ID_ATA;
1886 		break;
1887 	case ATA_DEV_ATAPI:
1888 		tf.command = ATA_CMD_ID_ATAPI;
1889 		break;
1890 	default:
1891 		rc = -ENODEV;
1892 		reason = "unsupported class";
1893 		goto err_out;
1894 	}
1895 
1896 	tf.protocol = ATA_PROT_PIO;
1897 
1898 	/* Some devices choke if TF registers contain garbage.  Make
1899 	 * sure those are properly initialized.
1900 	 */
1901 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1902 
1903 	/* Device presence detection is unreliable on some
1904 	 * controllers.  Always poll IDENTIFY if available.
1905 	 */
1906 	tf.flags |= ATA_TFLAG_POLLING;
1907 
1908 	if (ap->ops->read_id)
1909 		err_mask = ap->ops->read_id(dev, &tf, id);
1910 	else
1911 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1912 
1913 	if (err_mask) {
1914 		if (err_mask & AC_ERR_NODEV_HINT) {
1915 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1916 			return -ENOENT;
1917 		}
1918 
1919 		if (is_semb) {
1920 			ata_dev_info(dev,
1921 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1922 			/* SEMB is not supported yet */
1923 			*p_class = ATA_DEV_SEMB_UNSUP;
1924 			return 0;
1925 		}
1926 
1927 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1928 			/* Device or controller might have reported
1929 			 * the wrong device class.  Give a shot at the
1930 			 * other IDENTIFY if the current one is
1931 			 * aborted by the device.
1932 			 */
1933 			if (may_fallback) {
1934 				may_fallback = 0;
1935 
1936 				if (class == ATA_DEV_ATA)
1937 					class = ATA_DEV_ATAPI;
1938 				else
1939 					class = ATA_DEV_ATA;
1940 				goto retry;
1941 			}
1942 
1943 			/* Control reaches here iff the device aborted
1944 			 * both flavors of IDENTIFYs which happens
1945 			 * sometimes with phantom devices.
1946 			 */
1947 			ata_dev_dbg(dev,
1948 				    "both IDENTIFYs aborted, assuming NODEV\n");
1949 			return -ENOENT;
1950 		}
1951 
1952 		rc = -EIO;
1953 		reason = "I/O error";
1954 		goto err_out;
1955 	}
1956 
1957 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1958 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1959 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1960 			    class, may_fallback, tried_spinup);
1961 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1962 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1963 	}
1964 
1965 	/* Falling back doesn't make sense if ID data was read
1966 	 * successfully at least once.
1967 	 */
1968 	may_fallback = 0;
1969 
1970 	swap_buf_le16(id, ATA_ID_WORDS);
1971 
1972 	/* sanity check */
1973 	rc = -EINVAL;
1974 	reason = "device reports invalid type";
1975 
1976 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1977 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1978 			goto err_out;
1979 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1980 							ata_id_is_ata(id)) {
1981 			ata_dev_dbg(dev,
1982 				"host indicates ignore ATA devices, ignored\n");
1983 			return -ENOENT;
1984 		}
1985 	} else {
1986 		if (ata_id_is_ata(id))
1987 			goto err_out;
1988 	}
1989 
1990 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1991 		tried_spinup = 1;
1992 		/*
1993 		 * Drive powered-up in standby mode, and requires a specific
1994 		 * SET_FEATURES spin-up subcommand before it will accept
1995 		 * anything other than the original IDENTIFY command.
1996 		 */
1997 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1998 		if (err_mask && id[2] != 0x738c) {
1999 			rc = -EIO;
2000 			reason = "SPINUP failed";
2001 			goto err_out;
2002 		}
2003 		/*
2004 		 * If the drive initially returned incomplete IDENTIFY info,
2005 		 * we now must reissue the IDENTIFY command.
2006 		 */
2007 		if (id[2] == 0x37c8)
2008 			goto retry;
2009 	}
2010 
2011 	if ((flags & ATA_READID_POSTRESET) &&
2012 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2013 		/*
2014 		 * The exact sequence expected by certain pre-ATA4 drives is:
2015 		 * SRST RESET
2016 		 * IDENTIFY (optional in early ATA)
2017 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2018 		 * anything else..
2019 		 * Some drives were very specific about that exact sequence.
2020 		 *
2021 		 * Note that ATA4 says lba is mandatory so the second check
2022 		 * should never trigger.
2023 		 */
2024 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2025 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2026 			if (err_mask) {
2027 				rc = -EIO;
2028 				reason = "INIT_DEV_PARAMS failed";
2029 				goto err_out;
2030 			}
2031 
2032 			/* current CHS translation info (id[53-58]) might be
2033 			 * changed. reread the identify device info.
2034 			 */
2035 			flags &= ~ATA_READID_POSTRESET;
2036 			goto retry;
2037 		}
2038 	}
2039 
2040 	*p_class = class;
2041 
2042 	return 0;
2043 
2044  err_out:
2045 	if (ata_msg_warn(ap))
2046 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2047 			     reason, err_mask);
2048 	return rc;
2049 }
2050 
2051 /**
2052  *	ata_read_log_page - read a specific log page
2053  *	@dev: target device
2054  *	@log: log to read
2055  *	@page: page to read
2056  *	@buf: buffer to store read page
2057  *	@sectors: number of sectors to read
2058  *
2059  *	Read log page using READ_LOG_EXT command.
2060  *
2061  *	LOCKING:
2062  *	Kernel thread context (may sleep).
2063  *
2064  *	RETURNS:
2065  *	0 on success, AC_ERR_* mask otherwise.
2066  */
2067 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2068 			       u8 page, void *buf, unsigned int sectors)
2069 {
2070 	unsigned long ap_flags = dev->link->ap->flags;
2071 	struct ata_taskfile tf;
2072 	unsigned int err_mask;
2073 	bool dma = false;
2074 
2075 	DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2076 
2077 	/*
2078 	 * Return error without actually issuing the command on controllers
2079 	 * which e.g. lockup on a read log page.
2080 	 */
2081 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2082 		return AC_ERR_DEV;
2083 
2084 retry:
2085 	ata_tf_init(dev, &tf);
2086 	if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2087 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2088 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2089 		tf.protocol = ATA_PROT_DMA;
2090 		dma = true;
2091 	} else {
2092 		tf.command = ATA_CMD_READ_LOG_EXT;
2093 		tf.protocol = ATA_PROT_PIO;
2094 		dma = false;
2095 	}
2096 	tf.lbal = log;
2097 	tf.lbam = page;
2098 	tf.nsect = sectors;
2099 	tf.hob_nsect = sectors >> 8;
2100 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2101 
2102 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2103 				     buf, sectors * ATA_SECT_SIZE, 0);
2104 
2105 	if (err_mask && dma) {
2106 		dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2107 		ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2108 		goto retry;
2109 	}
2110 
2111 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
2112 	return err_mask;
2113 }
2114 
2115 static bool ata_log_supported(struct ata_device *dev, u8 log)
2116 {
2117 	struct ata_port *ap = dev->link->ap;
2118 
2119 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2120 		return false;
2121 	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2122 }
2123 
2124 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2125 {
2126 	struct ata_port *ap = dev->link->ap;
2127 	unsigned int err, i;
2128 
2129 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2130 		ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2131 		return false;
2132 	}
2133 
2134 	/*
2135 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2136 	 * supported.
2137 	 */
2138 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2139 				1);
2140 	if (err) {
2141 		ata_dev_info(dev,
2142 			     "failed to get Device Identify Log Emask 0x%x\n",
2143 			     err);
2144 		return false;
2145 	}
2146 
2147 	for (i = 0; i < ap->sector_buf[8]; i++) {
2148 		if (ap->sector_buf[9 + i] == page)
2149 			return true;
2150 	}
2151 
2152 	return false;
2153 }
2154 
2155 static int ata_do_link_spd_horkage(struct ata_device *dev)
2156 {
2157 	struct ata_link *plink = ata_dev_phys_link(dev);
2158 	u32 target, target_limit;
2159 
2160 	if (!sata_scr_valid(plink))
2161 		return 0;
2162 
2163 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2164 		target = 1;
2165 	else
2166 		return 0;
2167 
2168 	target_limit = (1 << target) - 1;
2169 
2170 	/* if already on stricter limit, no need to push further */
2171 	if (plink->sata_spd_limit <= target_limit)
2172 		return 0;
2173 
2174 	plink->sata_spd_limit = target_limit;
2175 
2176 	/* Request another EH round by returning -EAGAIN if link is
2177 	 * going faster than the target speed.  Forward progress is
2178 	 * guaranteed by setting sata_spd_limit to target_limit above.
2179 	 */
2180 	if (plink->sata_spd > target) {
2181 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2182 			     sata_spd_string(target));
2183 		return -EAGAIN;
2184 	}
2185 	return 0;
2186 }
2187 
2188 static inline u8 ata_dev_knobble(struct ata_device *dev)
2189 {
2190 	struct ata_port *ap = dev->link->ap;
2191 
2192 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2193 		return 0;
2194 
2195 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2196 }
2197 
2198 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2199 {
2200 	struct ata_port *ap = dev->link->ap;
2201 	unsigned int err_mask;
2202 
2203 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2204 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2205 		return;
2206 	}
2207 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2208 				     0, ap->sector_buf, 1);
2209 	if (err_mask) {
2210 		ata_dev_dbg(dev,
2211 			    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2212 			    err_mask);
2213 	} else {
2214 		u8 *cmds = dev->ncq_send_recv_cmds;
2215 
2216 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2217 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2218 
2219 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2220 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2221 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2222 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2223 		}
2224 	}
2225 }
2226 
2227 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2228 {
2229 	struct ata_port *ap = dev->link->ap;
2230 	unsigned int err_mask;
2231 
2232 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2233 		ata_dev_warn(dev,
2234 			     "NCQ Send/Recv Log not supported\n");
2235 		return;
2236 	}
2237 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2238 				     0, ap->sector_buf, 1);
2239 	if (err_mask) {
2240 		ata_dev_dbg(dev,
2241 			    "failed to get NCQ Non-Data Log Emask 0x%x\n",
2242 			    err_mask);
2243 	} else {
2244 		u8 *cmds = dev->ncq_non_data_cmds;
2245 
2246 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2247 	}
2248 }
2249 
2250 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2251 {
2252 	struct ata_port *ap = dev->link->ap;
2253 	unsigned int err_mask;
2254 
2255 	if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2256 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2257 		return;
2258 	}
2259 
2260 	err_mask = ata_read_log_page(dev,
2261 				     ATA_LOG_IDENTIFY_DEVICE,
2262 				     ATA_LOG_SATA_SETTINGS,
2263 				     ap->sector_buf,
2264 				     1);
2265 	if (err_mask) {
2266 		ata_dev_dbg(dev,
2267 			    "failed to get Identify Device data, Emask 0x%x\n",
2268 			    err_mask);
2269 		return;
2270 	}
2271 
2272 	if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2273 		dev->flags |= ATA_DFLAG_NCQ_PRIO;
2274 	} else {
2275 		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2276 		ata_dev_dbg(dev, "SATA page does not support priority\n");
2277 	}
2278 
2279 }
2280 
2281 static int ata_dev_config_ncq(struct ata_device *dev,
2282 			       char *desc, size_t desc_sz)
2283 {
2284 	struct ata_port *ap = dev->link->ap;
2285 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2286 	unsigned int err_mask;
2287 	char *aa_desc = "";
2288 
2289 	if (!ata_id_has_ncq(dev->id)) {
2290 		desc[0] = '\0';
2291 		return 0;
2292 	}
2293 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2294 		snprintf(desc, desc_sz, "NCQ (not used)");
2295 		return 0;
2296 	}
2297 	if (ap->flags & ATA_FLAG_NCQ) {
2298 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2299 		dev->flags |= ATA_DFLAG_NCQ;
2300 	}
2301 
2302 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2303 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2304 		ata_id_has_fpdma_aa(dev->id)) {
2305 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2306 			SATA_FPDMA_AA);
2307 		if (err_mask) {
2308 			ata_dev_err(dev,
2309 				    "failed to enable AA (error_mask=0x%x)\n",
2310 				    err_mask);
2311 			if (err_mask != AC_ERR_DEV) {
2312 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2313 				return -EIO;
2314 			}
2315 		} else
2316 			aa_desc = ", AA";
2317 	}
2318 
2319 	if (hdepth >= ddepth)
2320 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2321 	else
2322 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2323 			ddepth, aa_desc);
2324 
2325 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2326 		if (ata_id_has_ncq_send_and_recv(dev->id))
2327 			ata_dev_config_ncq_send_recv(dev);
2328 		if (ata_id_has_ncq_non_data(dev->id))
2329 			ata_dev_config_ncq_non_data(dev);
2330 		if (ata_id_has_ncq_prio(dev->id))
2331 			ata_dev_config_ncq_prio(dev);
2332 	}
2333 
2334 	return 0;
2335 }
2336 
2337 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2338 {
2339 	unsigned int err_mask;
2340 
2341 	if (!ata_id_has_sense_reporting(dev->id))
2342 		return;
2343 
2344 	if (ata_id_sense_reporting_enabled(dev->id))
2345 		return;
2346 
2347 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2348 	if (err_mask) {
2349 		ata_dev_dbg(dev,
2350 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2351 			    err_mask);
2352 	}
2353 }
2354 
2355 static void ata_dev_config_zac(struct ata_device *dev)
2356 {
2357 	struct ata_port *ap = dev->link->ap;
2358 	unsigned int err_mask;
2359 	u8 *identify_buf = ap->sector_buf;
2360 
2361 	dev->zac_zones_optimal_open = U32_MAX;
2362 	dev->zac_zones_optimal_nonseq = U32_MAX;
2363 	dev->zac_zones_max_open = U32_MAX;
2364 
2365 	/*
2366 	 * Always set the 'ZAC' flag for Host-managed devices.
2367 	 */
2368 	if (dev->class == ATA_DEV_ZAC)
2369 		dev->flags |= ATA_DFLAG_ZAC;
2370 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2371 		/*
2372 		 * Check for host-aware devices.
2373 		 */
2374 		dev->flags |= ATA_DFLAG_ZAC;
2375 
2376 	if (!(dev->flags & ATA_DFLAG_ZAC))
2377 		return;
2378 
2379 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2380 		ata_dev_warn(dev,
2381 			     "ATA Zoned Information Log not supported\n");
2382 		return;
2383 	}
2384 
2385 	/*
2386 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2387 	 */
2388 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2389 				     ATA_LOG_ZONED_INFORMATION,
2390 				     identify_buf, 1);
2391 	if (!err_mask) {
2392 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2393 
2394 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2395 		if ((zoned_cap >> 63))
2396 			dev->zac_zoned_cap = (zoned_cap & 1);
2397 		opt_open = get_unaligned_le64(&identify_buf[24]);
2398 		if ((opt_open >> 63))
2399 			dev->zac_zones_optimal_open = (u32)opt_open;
2400 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2401 		if ((opt_nonseq >> 63))
2402 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2403 		max_open = get_unaligned_le64(&identify_buf[40]);
2404 		if ((max_open >> 63))
2405 			dev->zac_zones_max_open = (u32)max_open;
2406 	}
2407 }
2408 
2409 static void ata_dev_config_trusted(struct ata_device *dev)
2410 {
2411 	struct ata_port *ap = dev->link->ap;
2412 	u64 trusted_cap;
2413 	unsigned int err;
2414 
2415 	if (!ata_id_has_trusted(dev->id))
2416 		return;
2417 
2418 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2419 		ata_dev_warn(dev,
2420 			     "Security Log not supported\n");
2421 		return;
2422 	}
2423 
2424 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2425 			ap->sector_buf, 1);
2426 	if (err) {
2427 		ata_dev_dbg(dev,
2428 			    "failed to read Security Log, Emask 0x%x\n", err);
2429 		return;
2430 	}
2431 
2432 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2433 	if (!(trusted_cap & (1ULL << 63))) {
2434 		ata_dev_dbg(dev,
2435 			    "Trusted Computing capability qword not valid!\n");
2436 		return;
2437 	}
2438 
2439 	if (trusted_cap & (1 << 0))
2440 		dev->flags |= ATA_DFLAG_TRUSTED;
2441 }
2442 
2443 /**
2444  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2445  *	@dev: Target device to configure
2446  *
2447  *	Configure @dev according to @dev->id.  Generic and low-level
2448  *	driver specific fixups are also applied.
2449  *
2450  *	LOCKING:
2451  *	Kernel thread context (may sleep)
2452  *
2453  *	RETURNS:
2454  *	0 on success, -errno otherwise
2455  */
2456 int ata_dev_configure(struct ata_device *dev)
2457 {
2458 	struct ata_port *ap = dev->link->ap;
2459 	struct ata_eh_context *ehc = &dev->link->eh_context;
2460 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2461 	const u16 *id = dev->id;
2462 	unsigned long xfer_mask;
2463 	unsigned int err_mask;
2464 	char revbuf[7];		/* XYZ-99\0 */
2465 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2466 	char modelbuf[ATA_ID_PROD_LEN+1];
2467 	int rc;
2468 
2469 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2470 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2471 		return 0;
2472 	}
2473 
2474 	if (ata_msg_probe(ap))
2475 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2476 
2477 	/* set horkage */
2478 	dev->horkage |= ata_dev_blacklisted(dev);
2479 	ata_force_horkage(dev);
2480 
2481 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2482 		ata_dev_info(dev, "unsupported device, disabling\n");
2483 		ata_dev_disable(dev);
2484 		return 0;
2485 	}
2486 
2487 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2488 	    dev->class == ATA_DEV_ATAPI) {
2489 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2490 			     atapi_enabled ? "not supported with this driver"
2491 			     : "disabled");
2492 		ata_dev_disable(dev);
2493 		return 0;
2494 	}
2495 
2496 	rc = ata_do_link_spd_horkage(dev);
2497 	if (rc)
2498 		return rc;
2499 
2500 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2501 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2502 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2503 		dev->horkage |= ATA_HORKAGE_NOLPM;
2504 
2505 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2506 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2507 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2508 	}
2509 
2510 	/* let ACPI work its magic */
2511 	rc = ata_acpi_on_devcfg(dev);
2512 	if (rc)
2513 		return rc;
2514 
2515 	/* massage HPA, do it early as it might change IDENTIFY data */
2516 	rc = ata_hpa_resize(dev);
2517 	if (rc)
2518 		return rc;
2519 
2520 	/* print device capabilities */
2521 	if (ata_msg_probe(ap))
2522 		ata_dev_dbg(dev,
2523 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2524 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2525 			    __func__,
2526 			    id[49], id[82], id[83], id[84],
2527 			    id[85], id[86], id[87], id[88]);
2528 
2529 	/* initialize to-be-configured parameters */
2530 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2531 	dev->max_sectors = 0;
2532 	dev->cdb_len = 0;
2533 	dev->n_sectors = 0;
2534 	dev->cylinders = 0;
2535 	dev->heads = 0;
2536 	dev->sectors = 0;
2537 	dev->multi_count = 0;
2538 
2539 	/*
2540 	 * common ATA, ATAPI feature tests
2541 	 */
2542 
2543 	/* find max transfer mode; for printk only */
2544 	xfer_mask = ata_id_xfermask(id);
2545 
2546 	if (ata_msg_probe(ap))
2547 		ata_dump_id(id);
2548 
2549 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2550 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2551 			sizeof(fwrevbuf));
2552 
2553 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2554 			sizeof(modelbuf));
2555 
2556 	/* ATA-specific feature tests */
2557 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2558 		if (ata_id_is_cfa(id)) {
2559 			/* CPRM may make this media unusable */
2560 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2561 				ata_dev_warn(dev,
2562 	"supports DRM functions and may not be fully accessible\n");
2563 			snprintf(revbuf, 7, "CFA");
2564 		} else {
2565 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2566 			/* Warn the user if the device has TPM extensions */
2567 			if (ata_id_has_tpm(id))
2568 				ata_dev_warn(dev,
2569 	"supports DRM functions and may not be fully accessible\n");
2570 		}
2571 
2572 		dev->n_sectors = ata_id_n_sectors(id);
2573 
2574 		/* get current R/W Multiple count setting */
2575 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2576 			unsigned int max = dev->id[47] & 0xff;
2577 			unsigned int cnt = dev->id[59] & 0xff;
2578 			/* only recognize/allow powers of two here */
2579 			if (is_power_of_2(max) && is_power_of_2(cnt))
2580 				if (cnt <= max)
2581 					dev->multi_count = cnt;
2582 		}
2583 
2584 		if (ata_id_has_lba(id)) {
2585 			const char *lba_desc;
2586 			char ncq_desc[24];
2587 
2588 			lba_desc = "LBA";
2589 			dev->flags |= ATA_DFLAG_LBA;
2590 			if (ata_id_has_lba48(id)) {
2591 				dev->flags |= ATA_DFLAG_LBA48;
2592 				lba_desc = "LBA48";
2593 
2594 				if (dev->n_sectors >= (1UL << 28) &&
2595 				    ata_id_has_flush_ext(id))
2596 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2597 			}
2598 
2599 			/* config NCQ */
2600 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2601 			if (rc)
2602 				return rc;
2603 
2604 			/* print device info to dmesg */
2605 			if (ata_msg_drv(ap) && print_info) {
2606 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2607 					     revbuf, modelbuf, fwrevbuf,
2608 					     ata_mode_string(xfer_mask));
2609 				ata_dev_info(dev,
2610 					     "%llu sectors, multi %u: %s %s\n",
2611 					(unsigned long long)dev->n_sectors,
2612 					dev->multi_count, lba_desc, ncq_desc);
2613 			}
2614 		} else {
2615 			/* CHS */
2616 
2617 			/* Default translation */
2618 			dev->cylinders	= id[1];
2619 			dev->heads	= id[3];
2620 			dev->sectors	= id[6];
2621 
2622 			if (ata_id_current_chs_valid(id)) {
2623 				/* Current CHS translation is valid. */
2624 				dev->cylinders = id[54];
2625 				dev->heads     = id[55];
2626 				dev->sectors   = id[56];
2627 			}
2628 
2629 			/* print device info to dmesg */
2630 			if (ata_msg_drv(ap) && print_info) {
2631 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2632 					     revbuf,	modelbuf, fwrevbuf,
2633 					     ata_mode_string(xfer_mask));
2634 				ata_dev_info(dev,
2635 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2636 					     (unsigned long long)dev->n_sectors,
2637 					     dev->multi_count, dev->cylinders,
2638 					     dev->heads, dev->sectors);
2639 			}
2640 		}
2641 
2642 		/* Check and mark DevSlp capability. Get DevSlp timing variables
2643 		 * from SATA Settings page of Identify Device Data Log.
2644 		 */
2645 		if (ata_id_has_devslp(dev->id)) {
2646 			u8 *sata_setting = ap->sector_buf;
2647 			int i, j;
2648 
2649 			dev->flags |= ATA_DFLAG_DEVSLP;
2650 			err_mask = ata_read_log_page(dev,
2651 						     ATA_LOG_IDENTIFY_DEVICE,
2652 						     ATA_LOG_SATA_SETTINGS,
2653 						     sata_setting,
2654 						     1);
2655 			if (err_mask)
2656 				ata_dev_dbg(dev,
2657 					    "failed to get Identify Device Data, Emask 0x%x\n",
2658 					    err_mask);
2659 			else
2660 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2661 					j = ATA_LOG_DEVSLP_OFFSET + i;
2662 					dev->devslp_timing[i] = sata_setting[j];
2663 				}
2664 		}
2665 		ata_dev_config_sense_reporting(dev);
2666 		ata_dev_config_zac(dev);
2667 		ata_dev_config_trusted(dev);
2668 		dev->cdb_len = 32;
2669 	}
2670 
2671 	/* ATAPI-specific feature tests */
2672 	else if (dev->class == ATA_DEV_ATAPI) {
2673 		const char *cdb_intr_string = "";
2674 		const char *atapi_an_string = "";
2675 		const char *dma_dir_string = "";
2676 		u32 sntf;
2677 
2678 		rc = atapi_cdb_len(id);
2679 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2680 			if (ata_msg_warn(ap))
2681 				ata_dev_warn(dev, "unsupported CDB len\n");
2682 			rc = -EINVAL;
2683 			goto err_out_nosup;
2684 		}
2685 		dev->cdb_len = (unsigned int) rc;
2686 
2687 		/* Enable ATAPI AN if both the host and device have
2688 		 * the support.  If PMP is attached, SNTF is required
2689 		 * to enable ATAPI AN to discern between PHY status
2690 		 * changed notifications and ATAPI ANs.
2691 		 */
2692 		if (atapi_an &&
2693 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2694 		    (!sata_pmp_attached(ap) ||
2695 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2696 			/* issue SET feature command to turn this on */
2697 			err_mask = ata_dev_set_feature(dev,
2698 					SETFEATURES_SATA_ENABLE, SATA_AN);
2699 			if (err_mask)
2700 				ata_dev_err(dev,
2701 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2702 					    err_mask);
2703 			else {
2704 				dev->flags |= ATA_DFLAG_AN;
2705 				atapi_an_string = ", ATAPI AN";
2706 			}
2707 		}
2708 
2709 		if (ata_id_cdb_intr(dev->id)) {
2710 			dev->flags |= ATA_DFLAG_CDB_INTR;
2711 			cdb_intr_string = ", CDB intr";
2712 		}
2713 
2714 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2715 			dev->flags |= ATA_DFLAG_DMADIR;
2716 			dma_dir_string = ", DMADIR";
2717 		}
2718 
2719 		if (ata_id_has_da(dev->id)) {
2720 			dev->flags |= ATA_DFLAG_DA;
2721 			zpodd_init(dev);
2722 		}
2723 
2724 		/* print device info to dmesg */
2725 		if (ata_msg_drv(ap) && print_info)
2726 			ata_dev_info(dev,
2727 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2728 				     modelbuf, fwrevbuf,
2729 				     ata_mode_string(xfer_mask),
2730 				     cdb_intr_string, atapi_an_string,
2731 				     dma_dir_string);
2732 	}
2733 
2734 	/* determine max_sectors */
2735 	dev->max_sectors = ATA_MAX_SECTORS;
2736 	if (dev->flags & ATA_DFLAG_LBA48)
2737 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2738 
2739 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2740 	   200 sectors */
2741 	if (ata_dev_knobble(dev)) {
2742 		if (ata_msg_drv(ap) && print_info)
2743 			ata_dev_info(dev, "applying bridge limits\n");
2744 		dev->udma_mask &= ATA_UDMA5;
2745 		dev->max_sectors = ATA_MAX_SECTORS;
2746 	}
2747 
2748 	if ((dev->class == ATA_DEV_ATAPI) &&
2749 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2750 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2751 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2752 	}
2753 
2754 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2755 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2756 					 dev->max_sectors);
2757 
2758 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2759 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2760 					 dev->max_sectors);
2761 
2762 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2763 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2764 
2765 	if (ap->ops->dev_config)
2766 		ap->ops->dev_config(dev);
2767 
2768 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2769 		/* Let the user know. We don't want to disallow opens for
2770 		   rescue purposes, or in case the vendor is just a blithering
2771 		   idiot. Do this after the dev_config call as some controllers
2772 		   with buggy firmware may want to avoid reporting false device
2773 		   bugs */
2774 
2775 		if (print_info) {
2776 			ata_dev_warn(dev,
2777 "Drive reports diagnostics failure. This may indicate a drive\n");
2778 			ata_dev_warn(dev,
2779 "fault or invalid emulation. Contact drive vendor for information.\n");
2780 		}
2781 	}
2782 
2783 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2784 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2785 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2786 	}
2787 
2788 	return 0;
2789 
2790 err_out_nosup:
2791 	if (ata_msg_probe(ap))
2792 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2793 	return rc;
2794 }
2795 
2796 /**
2797  *	ata_cable_40wire	-	return 40 wire cable type
2798  *	@ap: port
2799  *
2800  *	Helper method for drivers which want to hardwire 40 wire cable
2801  *	detection.
2802  */
2803 
2804 int ata_cable_40wire(struct ata_port *ap)
2805 {
2806 	return ATA_CBL_PATA40;
2807 }
2808 
2809 /**
2810  *	ata_cable_80wire	-	return 80 wire cable type
2811  *	@ap: port
2812  *
2813  *	Helper method for drivers which want to hardwire 80 wire cable
2814  *	detection.
2815  */
2816 
2817 int ata_cable_80wire(struct ata_port *ap)
2818 {
2819 	return ATA_CBL_PATA80;
2820 }
2821 
2822 /**
2823  *	ata_cable_unknown	-	return unknown PATA cable.
2824  *	@ap: port
2825  *
2826  *	Helper method for drivers which have no PATA cable detection.
2827  */
2828 
2829 int ata_cable_unknown(struct ata_port *ap)
2830 {
2831 	return ATA_CBL_PATA_UNK;
2832 }
2833 
2834 /**
2835  *	ata_cable_ignore	-	return ignored PATA cable.
2836  *	@ap: port
2837  *
2838  *	Helper method for drivers which don't use cable type to limit
2839  *	transfer mode.
2840  */
2841 int ata_cable_ignore(struct ata_port *ap)
2842 {
2843 	return ATA_CBL_PATA_IGN;
2844 }
2845 
2846 /**
2847  *	ata_cable_sata	-	return SATA cable type
2848  *	@ap: port
2849  *
2850  *	Helper method for drivers which have SATA cables
2851  */
2852 
2853 int ata_cable_sata(struct ata_port *ap)
2854 {
2855 	return ATA_CBL_SATA;
2856 }
2857 
2858 /**
2859  *	ata_bus_probe - Reset and probe ATA bus
2860  *	@ap: Bus to probe
2861  *
2862  *	Master ATA bus probing function.  Initiates a hardware-dependent
2863  *	bus reset, then attempts to identify any devices found on
2864  *	the bus.
2865  *
2866  *	LOCKING:
2867  *	PCI/etc. bus probe sem.
2868  *
2869  *	RETURNS:
2870  *	Zero on success, negative errno otherwise.
2871  */
2872 
2873 int ata_bus_probe(struct ata_port *ap)
2874 {
2875 	unsigned int classes[ATA_MAX_DEVICES];
2876 	int tries[ATA_MAX_DEVICES];
2877 	int rc;
2878 	struct ata_device *dev;
2879 
2880 	ata_for_each_dev(dev, &ap->link, ALL)
2881 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2882 
2883  retry:
2884 	ata_for_each_dev(dev, &ap->link, ALL) {
2885 		/* If we issue an SRST then an ATA drive (not ATAPI)
2886 		 * may change configuration and be in PIO0 timing. If
2887 		 * we do a hard reset (or are coming from power on)
2888 		 * this is true for ATA or ATAPI. Until we've set a
2889 		 * suitable controller mode we should not touch the
2890 		 * bus as we may be talking too fast.
2891 		 */
2892 		dev->pio_mode = XFER_PIO_0;
2893 		dev->dma_mode = 0xff;
2894 
2895 		/* If the controller has a pio mode setup function
2896 		 * then use it to set the chipset to rights. Don't
2897 		 * touch the DMA setup as that will be dealt with when
2898 		 * configuring devices.
2899 		 */
2900 		if (ap->ops->set_piomode)
2901 			ap->ops->set_piomode(ap, dev);
2902 	}
2903 
2904 	/* reset and determine device classes */
2905 	ap->ops->phy_reset(ap);
2906 
2907 	ata_for_each_dev(dev, &ap->link, ALL) {
2908 		if (dev->class != ATA_DEV_UNKNOWN)
2909 			classes[dev->devno] = dev->class;
2910 		else
2911 			classes[dev->devno] = ATA_DEV_NONE;
2912 
2913 		dev->class = ATA_DEV_UNKNOWN;
2914 	}
2915 
2916 	/* read IDENTIFY page and configure devices. We have to do the identify
2917 	   specific sequence bass-ackwards so that PDIAG- is released by
2918 	   the slave device */
2919 
2920 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2921 		if (tries[dev->devno])
2922 			dev->class = classes[dev->devno];
2923 
2924 		if (!ata_dev_enabled(dev))
2925 			continue;
2926 
2927 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2928 				     dev->id);
2929 		if (rc)
2930 			goto fail;
2931 	}
2932 
2933 	/* Now ask for the cable type as PDIAG- should have been released */
2934 	if (ap->ops->cable_detect)
2935 		ap->cbl = ap->ops->cable_detect(ap);
2936 
2937 	/* We may have SATA bridge glue hiding here irrespective of
2938 	 * the reported cable types and sensed types.  When SATA
2939 	 * drives indicate we have a bridge, we don't know which end
2940 	 * of the link the bridge is which is a problem.
2941 	 */
2942 	ata_for_each_dev(dev, &ap->link, ENABLED)
2943 		if (ata_id_is_sata(dev->id))
2944 			ap->cbl = ATA_CBL_SATA;
2945 
2946 	/* After the identify sequence we can now set up the devices. We do
2947 	   this in the normal order so that the user doesn't get confused */
2948 
2949 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2950 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2951 		rc = ata_dev_configure(dev);
2952 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2953 		if (rc)
2954 			goto fail;
2955 	}
2956 
2957 	/* configure transfer mode */
2958 	rc = ata_set_mode(&ap->link, &dev);
2959 	if (rc)
2960 		goto fail;
2961 
2962 	ata_for_each_dev(dev, &ap->link, ENABLED)
2963 		return 0;
2964 
2965 	return -ENODEV;
2966 
2967  fail:
2968 	tries[dev->devno]--;
2969 
2970 	switch (rc) {
2971 	case -EINVAL:
2972 		/* eeek, something went very wrong, give up */
2973 		tries[dev->devno] = 0;
2974 		break;
2975 
2976 	case -ENODEV:
2977 		/* give it just one more chance */
2978 		tries[dev->devno] = min(tries[dev->devno], 1);
2979 		/* fall through */
2980 	case -EIO:
2981 		if (tries[dev->devno] == 1) {
2982 			/* This is the last chance, better to slow
2983 			 * down than lose it.
2984 			 */
2985 			sata_down_spd_limit(&ap->link, 0);
2986 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2987 		}
2988 	}
2989 
2990 	if (!tries[dev->devno])
2991 		ata_dev_disable(dev);
2992 
2993 	goto retry;
2994 }
2995 
2996 /**
2997  *	sata_print_link_status - Print SATA link status
2998  *	@link: SATA link to printk link status about
2999  *
3000  *	This function prints link speed and status of a SATA link.
3001  *
3002  *	LOCKING:
3003  *	None.
3004  */
3005 static void sata_print_link_status(struct ata_link *link)
3006 {
3007 	u32 sstatus, scontrol, tmp;
3008 
3009 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3010 		return;
3011 	sata_scr_read(link, SCR_CONTROL, &scontrol);
3012 
3013 	if (ata_phys_link_online(link)) {
3014 		tmp = (sstatus >> 4) & 0xf;
3015 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3016 			      sata_spd_string(tmp), sstatus, scontrol);
3017 	} else {
3018 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3019 			      sstatus, scontrol);
3020 	}
3021 }
3022 
3023 /**
3024  *	ata_dev_pair		-	return other device on cable
3025  *	@adev: device
3026  *
3027  *	Obtain the other device on the same cable, or if none is
3028  *	present NULL is returned
3029  */
3030 
3031 struct ata_device *ata_dev_pair(struct ata_device *adev)
3032 {
3033 	struct ata_link *link = adev->link;
3034 	struct ata_device *pair = &link->device[1 - adev->devno];
3035 	if (!ata_dev_enabled(pair))
3036 		return NULL;
3037 	return pair;
3038 }
3039 
3040 /**
3041  *	sata_down_spd_limit - adjust SATA spd limit downward
3042  *	@link: Link to adjust SATA spd limit for
3043  *	@spd_limit: Additional limit
3044  *
3045  *	Adjust SATA spd limit of @link downward.  Note that this
3046  *	function only adjusts the limit.  The change must be applied
3047  *	using sata_set_spd().
3048  *
3049  *	If @spd_limit is non-zero, the speed is limited to equal to or
3050  *	lower than @spd_limit if such speed is supported.  If
3051  *	@spd_limit is slower than any supported speed, only the lowest
3052  *	supported speed is allowed.
3053  *
3054  *	LOCKING:
3055  *	Inherited from caller.
3056  *
3057  *	RETURNS:
3058  *	0 on success, negative errno on failure
3059  */
3060 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3061 {
3062 	u32 sstatus, spd, mask;
3063 	int rc, bit;
3064 
3065 	if (!sata_scr_valid(link))
3066 		return -EOPNOTSUPP;
3067 
3068 	/* If SCR can be read, use it to determine the current SPD.
3069 	 * If not, use cached value in link->sata_spd.
3070 	 */
3071 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3072 	if (rc == 0 && ata_sstatus_online(sstatus))
3073 		spd = (sstatus >> 4) & 0xf;
3074 	else
3075 		spd = link->sata_spd;
3076 
3077 	mask = link->sata_spd_limit;
3078 	if (mask <= 1)
3079 		return -EINVAL;
3080 
3081 	/* unconditionally mask off the highest bit */
3082 	bit = fls(mask) - 1;
3083 	mask &= ~(1 << bit);
3084 
3085 	/*
3086 	 * Mask off all speeds higher than or equal to the current one.  At
3087 	 * this point, if current SPD is not available and we previously
3088 	 * recorded the link speed from SStatus, the driver has already
3089 	 * masked off the highest bit so mask should already be 1 or 0.
3090 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3091 	 * not previously recorded speed from SStatus.  Just return in this
3092 	 * case.
3093 	 */
3094 	if (spd > 1)
3095 		mask &= (1 << (spd - 1)) - 1;
3096 	else
3097 		return -EINVAL;
3098 
3099 	/* were we already at the bottom? */
3100 	if (!mask)
3101 		return -EINVAL;
3102 
3103 	if (spd_limit) {
3104 		if (mask & ((1 << spd_limit) - 1))
3105 			mask &= (1 << spd_limit) - 1;
3106 		else {
3107 			bit = ffs(mask) - 1;
3108 			mask = 1 << bit;
3109 		}
3110 	}
3111 
3112 	link->sata_spd_limit = mask;
3113 
3114 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3115 		      sata_spd_string(fls(mask)));
3116 
3117 	return 0;
3118 }
3119 
3120 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3121 {
3122 	struct ata_link *host_link = &link->ap->link;
3123 	u32 limit, target, spd;
3124 
3125 	limit = link->sata_spd_limit;
3126 
3127 	/* Don't configure downstream link faster than upstream link.
3128 	 * It doesn't speed up anything and some PMPs choke on such
3129 	 * configuration.
3130 	 */
3131 	if (!ata_is_host_link(link) && host_link->sata_spd)
3132 		limit &= (1 << host_link->sata_spd) - 1;
3133 
3134 	if (limit == UINT_MAX)
3135 		target = 0;
3136 	else
3137 		target = fls(limit);
3138 
3139 	spd = (*scontrol >> 4) & 0xf;
3140 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3141 
3142 	return spd != target;
3143 }
3144 
3145 /**
3146  *	sata_set_spd_needed - is SATA spd configuration needed
3147  *	@link: Link in question
3148  *
3149  *	Test whether the spd limit in SControl matches
3150  *	@link->sata_spd_limit.  This function is used to determine
3151  *	whether hardreset is necessary to apply SATA spd
3152  *	configuration.
3153  *
3154  *	LOCKING:
3155  *	Inherited from caller.
3156  *
3157  *	RETURNS:
3158  *	1 if SATA spd configuration is needed, 0 otherwise.
3159  */
3160 static int sata_set_spd_needed(struct ata_link *link)
3161 {
3162 	u32 scontrol;
3163 
3164 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3165 		return 1;
3166 
3167 	return __sata_set_spd_needed(link, &scontrol);
3168 }
3169 
3170 /**
3171  *	sata_set_spd - set SATA spd according to spd limit
3172  *	@link: Link to set SATA spd for
3173  *
3174  *	Set SATA spd of @link according to sata_spd_limit.
3175  *
3176  *	LOCKING:
3177  *	Inherited from caller.
3178  *
3179  *	RETURNS:
3180  *	0 if spd doesn't need to be changed, 1 if spd has been
3181  *	changed.  Negative errno if SCR registers are inaccessible.
3182  */
3183 int sata_set_spd(struct ata_link *link)
3184 {
3185 	u32 scontrol;
3186 	int rc;
3187 
3188 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3189 		return rc;
3190 
3191 	if (!__sata_set_spd_needed(link, &scontrol))
3192 		return 0;
3193 
3194 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3195 		return rc;
3196 
3197 	return 1;
3198 }
3199 
3200 /*
3201  * This mode timing computation functionality is ported over from
3202  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3203  */
3204 /*
3205  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3206  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3207  * for UDMA6, which is currently supported only by Maxtor drives.
3208  *
3209  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3210  */
3211 
3212 static const struct ata_timing ata_timing[] = {
3213 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3214 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3215 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3216 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3217 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3218 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3219 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3220 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3221 
3222 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3223 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3224 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3225 
3226 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3227 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3228 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3229 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3230 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3231 
3232 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3233 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3234 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3235 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3236 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3237 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3238 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3239 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3240 
3241 	{ 0xFF }
3242 };
3243 
3244 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3245 #define EZ(v, unit)		((v)?ENOUGH(((v) * 1000), unit):0)
3246 
3247 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3248 {
3249 	q->setup	= EZ(t->setup,       T);
3250 	q->act8b	= EZ(t->act8b,       T);
3251 	q->rec8b	= EZ(t->rec8b,       T);
3252 	q->cyc8b	= EZ(t->cyc8b,       T);
3253 	q->active	= EZ(t->active,      T);
3254 	q->recover	= EZ(t->recover,     T);
3255 	q->dmack_hold	= EZ(t->dmack_hold,  T);
3256 	q->cycle	= EZ(t->cycle,       T);
3257 	q->udma		= EZ(t->udma,       UT);
3258 }
3259 
3260 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3261 		      struct ata_timing *m, unsigned int what)
3262 {
3263 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3264 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3265 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3266 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3267 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3268 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3269 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3270 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3271 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3272 }
3273 
3274 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3275 {
3276 	const struct ata_timing *t = ata_timing;
3277 
3278 	while (xfer_mode > t->mode)
3279 		t++;
3280 
3281 	if (xfer_mode == t->mode)
3282 		return t;
3283 
3284 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3285 			__func__, xfer_mode);
3286 
3287 	return NULL;
3288 }
3289 
3290 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3291 		       struct ata_timing *t, int T, int UT)
3292 {
3293 	const u16 *id = adev->id;
3294 	const struct ata_timing *s;
3295 	struct ata_timing p;
3296 
3297 	/*
3298 	 * Find the mode.
3299 	 */
3300 
3301 	if (!(s = ata_timing_find_mode(speed)))
3302 		return -EINVAL;
3303 
3304 	memcpy(t, s, sizeof(*s));
3305 
3306 	/*
3307 	 * If the drive is an EIDE drive, it can tell us it needs extended
3308 	 * PIO/MW_DMA cycle timing.
3309 	 */
3310 
3311 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3312 		memset(&p, 0, sizeof(p));
3313 
3314 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3315 			if (speed <= XFER_PIO_2)
3316 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3317 			else if ((speed <= XFER_PIO_4) ||
3318 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3319 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3320 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3321 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3322 
3323 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3324 	}
3325 
3326 	/*
3327 	 * Convert the timing to bus clock counts.
3328 	 */
3329 
3330 	ata_timing_quantize(t, t, T, UT);
3331 
3332 	/*
3333 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3334 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3335 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3336 	 */
3337 
3338 	if (speed > XFER_PIO_6) {
3339 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3340 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3341 	}
3342 
3343 	/*
3344 	 * Lengthen active & recovery time so that cycle time is correct.
3345 	 */
3346 
3347 	if (t->act8b + t->rec8b < t->cyc8b) {
3348 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3349 		t->rec8b = t->cyc8b - t->act8b;
3350 	}
3351 
3352 	if (t->active + t->recover < t->cycle) {
3353 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3354 		t->recover = t->cycle - t->active;
3355 	}
3356 
3357 	/* In a few cases quantisation may produce enough errors to
3358 	   leave t->cycle too low for the sum of active and recovery
3359 	   if so we must correct this */
3360 	if (t->active + t->recover > t->cycle)
3361 		t->cycle = t->active + t->recover;
3362 
3363 	return 0;
3364 }
3365 
3366 /**
3367  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3368  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3369  *	@cycle: cycle duration in ns
3370  *
3371  *	Return matching xfer mode for @cycle.  The returned mode is of
3372  *	the transfer type specified by @xfer_shift.  If @cycle is too
3373  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3374  *	than the fastest known mode, the fasted mode is returned.
3375  *
3376  *	LOCKING:
3377  *	None.
3378  *
3379  *	RETURNS:
3380  *	Matching xfer_mode, 0xff if no match found.
3381  */
3382 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3383 {
3384 	u8 base_mode = 0xff, last_mode = 0xff;
3385 	const struct ata_xfer_ent *ent;
3386 	const struct ata_timing *t;
3387 
3388 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3389 		if (ent->shift == xfer_shift)
3390 			base_mode = ent->base;
3391 
3392 	for (t = ata_timing_find_mode(base_mode);
3393 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3394 		unsigned short this_cycle;
3395 
3396 		switch (xfer_shift) {
3397 		case ATA_SHIFT_PIO:
3398 		case ATA_SHIFT_MWDMA:
3399 			this_cycle = t->cycle;
3400 			break;
3401 		case ATA_SHIFT_UDMA:
3402 			this_cycle = t->udma;
3403 			break;
3404 		default:
3405 			return 0xff;
3406 		}
3407 
3408 		if (cycle > this_cycle)
3409 			break;
3410 
3411 		last_mode = t->mode;
3412 	}
3413 
3414 	return last_mode;
3415 }
3416 
3417 /**
3418  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3419  *	@dev: Device to adjust xfer masks
3420  *	@sel: ATA_DNXFER_* selector
3421  *
3422  *	Adjust xfer masks of @dev downward.  Note that this function
3423  *	does not apply the change.  Invoking ata_set_mode() afterwards
3424  *	will apply the limit.
3425  *
3426  *	LOCKING:
3427  *	Inherited from caller.
3428  *
3429  *	RETURNS:
3430  *	0 on success, negative errno on failure
3431  */
3432 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3433 {
3434 	char buf[32];
3435 	unsigned long orig_mask, xfer_mask;
3436 	unsigned long pio_mask, mwdma_mask, udma_mask;
3437 	int quiet, highbit;
3438 
3439 	quiet = !!(sel & ATA_DNXFER_QUIET);
3440 	sel &= ~ATA_DNXFER_QUIET;
3441 
3442 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3443 						  dev->mwdma_mask,
3444 						  dev->udma_mask);
3445 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3446 
3447 	switch (sel) {
3448 	case ATA_DNXFER_PIO:
3449 		highbit = fls(pio_mask) - 1;
3450 		pio_mask &= ~(1 << highbit);
3451 		break;
3452 
3453 	case ATA_DNXFER_DMA:
3454 		if (udma_mask) {
3455 			highbit = fls(udma_mask) - 1;
3456 			udma_mask &= ~(1 << highbit);
3457 			if (!udma_mask)
3458 				return -ENOENT;
3459 		} else if (mwdma_mask) {
3460 			highbit = fls(mwdma_mask) - 1;
3461 			mwdma_mask &= ~(1 << highbit);
3462 			if (!mwdma_mask)
3463 				return -ENOENT;
3464 		}
3465 		break;
3466 
3467 	case ATA_DNXFER_40C:
3468 		udma_mask &= ATA_UDMA_MASK_40C;
3469 		break;
3470 
3471 	case ATA_DNXFER_FORCE_PIO0:
3472 		pio_mask &= 1;
3473 		/* fall through */
3474 	case ATA_DNXFER_FORCE_PIO:
3475 		mwdma_mask = 0;
3476 		udma_mask = 0;
3477 		break;
3478 
3479 	default:
3480 		BUG();
3481 	}
3482 
3483 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3484 
3485 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3486 		return -ENOENT;
3487 
3488 	if (!quiet) {
3489 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3490 			snprintf(buf, sizeof(buf), "%s:%s",
3491 				 ata_mode_string(xfer_mask),
3492 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3493 		else
3494 			snprintf(buf, sizeof(buf), "%s",
3495 				 ata_mode_string(xfer_mask));
3496 
3497 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3498 	}
3499 
3500 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3501 			    &dev->udma_mask);
3502 
3503 	return 0;
3504 }
3505 
3506 static int ata_dev_set_mode(struct ata_device *dev)
3507 {
3508 	struct ata_port *ap = dev->link->ap;
3509 	struct ata_eh_context *ehc = &dev->link->eh_context;
3510 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3511 	const char *dev_err_whine = "";
3512 	int ign_dev_err = 0;
3513 	unsigned int err_mask = 0;
3514 	int rc;
3515 
3516 	dev->flags &= ~ATA_DFLAG_PIO;
3517 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3518 		dev->flags |= ATA_DFLAG_PIO;
3519 
3520 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3521 		dev_err_whine = " (SET_XFERMODE skipped)";
3522 	else {
3523 		if (nosetxfer)
3524 			ata_dev_warn(dev,
3525 				     "NOSETXFER but PATA detected - can't "
3526 				     "skip SETXFER, might malfunction\n");
3527 		err_mask = ata_dev_set_xfermode(dev);
3528 	}
3529 
3530 	if (err_mask & ~AC_ERR_DEV)
3531 		goto fail;
3532 
3533 	/* revalidate */
3534 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3535 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3536 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3537 	if (rc)
3538 		return rc;
3539 
3540 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3541 		/* Old CFA may refuse this command, which is just fine */
3542 		if (ata_id_is_cfa(dev->id))
3543 			ign_dev_err = 1;
3544 		/* Catch several broken garbage emulations plus some pre
3545 		   ATA devices */
3546 		if (ata_id_major_version(dev->id) == 0 &&
3547 					dev->pio_mode <= XFER_PIO_2)
3548 			ign_dev_err = 1;
3549 		/* Some very old devices and some bad newer ones fail
3550 		   any kind of SET_XFERMODE request but support PIO0-2
3551 		   timings and no IORDY */
3552 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3553 			ign_dev_err = 1;
3554 	}
3555 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3556 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3557 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3558 	    dev->dma_mode == XFER_MW_DMA_0 &&
3559 	    (dev->id[63] >> 8) & 1)
3560 		ign_dev_err = 1;
3561 
3562 	/* if the device is actually configured correctly, ignore dev err */
3563 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3564 		ign_dev_err = 1;
3565 
3566 	if (err_mask & AC_ERR_DEV) {
3567 		if (!ign_dev_err)
3568 			goto fail;
3569 		else
3570 			dev_err_whine = " (device error ignored)";
3571 	}
3572 
3573 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3574 		dev->xfer_shift, (int)dev->xfer_mode);
3575 
3576 	ata_dev_info(dev, "configured for %s%s\n",
3577 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3578 		     dev_err_whine);
3579 
3580 	return 0;
3581 
3582  fail:
3583 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3584 	return -EIO;
3585 }
3586 
3587 /**
3588  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3589  *	@link: link on which timings will be programmed
3590  *	@r_failed_dev: out parameter for failed device
3591  *
3592  *	Standard implementation of the function used to tune and set
3593  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3594  *	ata_dev_set_mode() fails, pointer to the failing device is
3595  *	returned in @r_failed_dev.
3596  *
3597  *	LOCKING:
3598  *	PCI/etc. bus probe sem.
3599  *
3600  *	RETURNS:
3601  *	0 on success, negative errno otherwise
3602  */
3603 
3604 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3605 {
3606 	struct ata_port *ap = link->ap;
3607 	struct ata_device *dev;
3608 	int rc = 0, used_dma = 0, found = 0;
3609 
3610 	/* step 1: calculate xfer_mask */
3611 	ata_for_each_dev(dev, link, ENABLED) {
3612 		unsigned long pio_mask, dma_mask;
3613 		unsigned int mode_mask;
3614 
3615 		mode_mask = ATA_DMA_MASK_ATA;
3616 		if (dev->class == ATA_DEV_ATAPI)
3617 			mode_mask = ATA_DMA_MASK_ATAPI;
3618 		else if (ata_id_is_cfa(dev->id))
3619 			mode_mask = ATA_DMA_MASK_CFA;
3620 
3621 		ata_dev_xfermask(dev);
3622 		ata_force_xfermask(dev);
3623 
3624 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3625 
3626 		if (libata_dma_mask & mode_mask)
3627 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3628 						     dev->udma_mask);
3629 		else
3630 			dma_mask = 0;
3631 
3632 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3633 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3634 
3635 		found = 1;
3636 		if (ata_dma_enabled(dev))
3637 			used_dma = 1;
3638 	}
3639 	if (!found)
3640 		goto out;
3641 
3642 	/* step 2: always set host PIO timings */
3643 	ata_for_each_dev(dev, link, ENABLED) {
3644 		if (dev->pio_mode == 0xff) {
3645 			ata_dev_warn(dev, "no PIO support\n");
3646 			rc = -EINVAL;
3647 			goto out;
3648 		}
3649 
3650 		dev->xfer_mode = dev->pio_mode;
3651 		dev->xfer_shift = ATA_SHIFT_PIO;
3652 		if (ap->ops->set_piomode)
3653 			ap->ops->set_piomode(ap, dev);
3654 	}
3655 
3656 	/* step 3: set host DMA timings */
3657 	ata_for_each_dev(dev, link, ENABLED) {
3658 		if (!ata_dma_enabled(dev))
3659 			continue;
3660 
3661 		dev->xfer_mode = dev->dma_mode;
3662 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3663 		if (ap->ops->set_dmamode)
3664 			ap->ops->set_dmamode(ap, dev);
3665 	}
3666 
3667 	/* step 4: update devices' xfer mode */
3668 	ata_for_each_dev(dev, link, ENABLED) {
3669 		rc = ata_dev_set_mode(dev);
3670 		if (rc)
3671 			goto out;
3672 	}
3673 
3674 	/* Record simplex status. If we selected DMA then the other
3675 	 * host channels are not permitted to do so.
3676 	 */
3677 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3678 		ap->host->simplex_claimed = ap;
3679 
3680  out:
3681 	if (rc)
3682 		*r_failed_dev = dev;
3683 	return rc;
3684 }
3685 
3686 /**
3687  *	ata_wait_ready - wait for link to become ready
3688  *	@link: link to be waited on
3689  *	@deadline: deadline jiffies for the operation
3690  *	@check_ready: callback to check link readiness
3691  *
3692  *	Wait for @link to become ready.  @check_ready should return
3693  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3694  *	link doesn't seem to be occupied, other errno for other error
3695  *	conditions.
3696  *
3697  *	Transient -ENODEV conditions are allowed for
3698  *	ATA_TMOUT_FF_WAIT.
3699  *
3700  *	LOCKING:
3701  *	EH context.
3702  *
3703  *	RETURNS:
3704  *	0 if @link is ready before @deadline; otherwise, -errno.
3705  */
3706 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3707 		   int (*check_ready)(struct ata_link *link))
3708 {
3709 	unsigned long start = jiffies;
3710 	unsigned long nodev_deadline;
3711 	int warned = 0;
3712 
3713 	/* choose which 0xff timeout to use, read comment in libata.h */
3714 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3715 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3716 	else
3717 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3718 
3719 	/* Slave readiness can't be tested separately from master.  On
3720 	 * M/S emulation configuration, this function should be called
3721 	 * only on the master and it will handle both master and slave.
3722 	 */
3723 	WARN_ON(link == link->ap->slave_link);
3724 
3725 	if (time_after(nodev_deadline, deadline))
3726 		nodev_deadline = deadline;
3727 
3728 	while (1) {
3729 		unsigned long now = jiffies;
3730 		int ready, tmp;
3731 
3732 		ready = tmp = check_ready(link);
3733 		if (ready > 0)
3734 			return 0;
3735 
3736 		/*
3737 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3738 		 * is online.  Also, some SATA devices take a long
3739 		 * time to clear 0xff after reset.  Wait for
3740 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3741 		 * offline.
3742 		 *
3743 		 * Note that some PATA controllers (pata_ali) explode
3744 		 * if status register is read more than once when
3745 		 * there's no device attached.
3746 		 */
3747 		if (ready == -ENODEV) {
3748 			if (ata_link_online(link))
3749 				ready = 0;
3750 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3751 				 !ata_link_offline(link) &&
3752 				 time_before(now, nodev_deadline))
3753 				ready = 0;
3754 		}
3755 
3756 		if (ready)
3757 			return ready;
3758 		if (time_after(now, deadline))
3759 			return -EBUSY;
3760 
3761 		if (!warned && time_after(now, start + 5 * HZ) &&
3762 		    (deadline - now > 3 * HZ)) {
3763 			ata_link_warn(link,
3764 				"link is slow to respond, please be patient "
3765 				"(ready=%d)\n", tmp);
3766 			warned = 1;
3767 		}
3768 
3769 		ata_msleep(link->ap, 50);
3770 	}
3771 }
3772 
3773 /**
3774  *	ata_wait_after_reset - wait for link to become ready after reset
3775  *	@link: link to be waited on
3776  *	@deadline: deadline jiffies for the operation
3777  *	@check_ready: callback to check link readiness
3778  *
3779  *	Wait for @link to become ready after reset.
3780  *
3781  *	LOCKING:
3782  *	EH context.
3783  *
3784  *	RETURNS:
3785  *	0 if @link is ready before @deadline; otherwise, -errno.
3786  */
3787 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3788 				int (*check_ready)(struct ata_link *link))
3789 {
3790 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3791 
3792 	return ata_wait_ready(link, deadline, check_ready);
3793 }
3794 
3795 /**
3796  *	sata_link_debounce - debounce SATA phy status
3797  *	@link: ATA link to debounce SATA phy status for
3798  *	@params: timing parameters { interval, duration, timeout } in msec
3799  *	@deadline: deadline jiffies for the operation
3800  *
3801  *	Make sure SStatus of @link reaches stable state, determined by
3802  *	holding the same value where DET is not 1 for @duration polled
3803  *	every @interval, before @timeout.  Timeout constraints the
3804  *	beginning of the stable state.  Because DET gets stuck at 1 on
3805  *	some controllers after hot unplugging, this functions waits
3806  *	until timeout then returns 0 if DET is stable at 1.
3807  *
3808  *	@timeout is further limited by @deadline.  The sooner of the
3809  *	two is used.
3810  *
3811  *	LOCKING:
3812  *	Kernel thread context (may sleep)
3813  *
3814  *	RETURNS:
3815  *	0 on success, -errno on failure.
3816  */
3817 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3818 		       unsigned long deadline)
3819 {
3820 	unsigned long interval = params[0];
3821 	unsigned long duration = params[1];
3822 	unsigned long last_jiffies, t;
3823 	u32 last, cur;
3824 	int rc;
3825 
3826 	t = ata_deadline(jiffies, params[2]);
3827 	if (time_before(t, deadline))
3828 		deadline = t;
3829 
3830 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3831 		return rc;
3832 	cur &= 0xf;
3833 
3834 	last = cur;
3835 	last_jiffies = jiffies;
3836 
3837 	while (1) {
3838 		ata_msleep(link->ap, interval);
3839 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3840 			return rc;
3841 		cur &= 0xf;
3842 
3843 		/* DET stable? */
3844 		if (cur == last) {
3845 			if (cur == 1 && time_before(jiffies, deadline))
3846 				continue;
3847 			if (time_after(jiffies,
3848 				       ata_deadline(last_jiffies, duration)))
3849 				return 0;
3850 			continue;
3851 		}
3852 
3853 		/* unstable, start over */
3854 		last = cur;
3855 		last_jiffies = jiffies;
3856 
3857 		/* Check deadline.  If debouncing failed, return
3858 		 * -EPIPE to tell upper layer to lower link speed.
3859 		 */
3860 		if (time_after(jiffies, deadline))
3861 			return -EPIPE;
3862 	}
3863 }
3864 
3865 /**
3866  *	sata_link_resume - resume SATA link
3867  *	@link: ATA link to resume SATA
3868  *	@params: timing parameters { interval, duration, timeout } in msec
3869  *	@deadline: deadline jiffies for the operation
3870  *
3871  *	Resume SATA phy @link and debounce it.
3872  *
3873  *	LOCKING:
3874  *	Kernel thread context (may sleep)
3875  *
3876  *	RETURNS:
3877  *	0 on success, -errno on failure.
3878  */
3879 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3880 		     unsigned long deadline)
3881 {
3882 	int tries = ATA_LINK_RESUME_TRIES;
3883 	u32 scontrol, serror;
3884 	int rc;
3885 
3886 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3887 		return rc;
3888 
3889 	/*
3890 	 * Writes to SControl sometimes get ignored under certain
3891 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3892 	 * cleared.
3893 	 */
3894 	do {
3895 		scontrol = (scontrol & 0x0f0) | 0x300;
3896 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3897 			return rc;
3898 		/*
3899 		 * Some PHYs react badly if SStatus is pounded
3900 		 * immediately after resuming.  Delay 200ms before
3901 		 * debouncing.
3902 		 */
3903 		if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3904 			ata_msleep(link->ap, 200);
3905 
3906 		/* is SControl restored correctly? */
3907 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3908 			return rc;
3909 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3910 
3911 	if ((scontrol & 0xf0f) != 0x300) {
3912 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3913 			     scontrol);
3914 		return 0;
3915 	}
3916 
3917 	if (tries < ATA_LINK_RESUME_TRIES)
3918 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3919 			      ATA_LINK_RESUME_TRIES - tries);
3920 
3921 	if ((rc = sata_link_debounce(link, params, deadline)))
3922 		return rc;
3923 
3924 	/* clear SError, some PHYs require this even for SRST to work */
3925 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3926 		rc = sata_scr_write(link, SCR_ERROR, serror);
3927 
3928 	return rc != -EINVAL ? rc : 0;
3929 }
3930 
3931 /**
3932  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3933  *	@link: ATA link to manipulate SControl for
3934  *	@policy: LPM policy to configure
3935  *	@spm_wakeup: initiate LPM transition to active state
3936  *
3937  *	Manipulate the IPM field of the SControl register of @link
3938  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3939  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3940  *	the link.  This function also clears PHYRDY_CHG before
3941  *	returning.
3942  *
3943  *	LOCKING:
3944  *	EH context.
3945  *
3946  *	RETURNS:
3947  *	0 on success, -errno otherwise.
3948  */
3949 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3950 		      bool spm_wakeup)
3951 {
3952 	struct ata_eh_context *ehc = &link->eh_context;
3953 	bool woken_up = false;
3954 	u32 scontrol;
3955 	int rc;
3956 
3957 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3958 	if (rc)
3959 		return rc;
3960 
3961 	switch (policy) {
3962 	case ATA_LPM_MAX_POWER:
3963 		/* disable all LPM transitions */
3964 		scontrol |= (0x7 << 8);
3965 		/* initiate transition to active state */
3966 		if (spm_wakeup) {
3967 			scontrol |= (0x4 << 12);
3968 			woken_up = true;
3969 		}
3970 		break;
3971 	case ATA_LPM_MED_POWER:
3972 		/* allow LPM to PARTIAL */
3973 		scontrol &= ~(0x1 << 8);
3974 		scontrol |= (0x6 << 8);
3975 		break;
3976 	case ATA_LPM_MED_POWER_WITH_DIPM:
3977 	case ATA_LPM_MIN_POWER:
3978 		if (ata_link_nr_enabled(link) > 0)
3979 			/* no restrictions on LPM transitions */
3980 			scontrol &= ~(0x7 << 8);
3981 		else {
3982 			/* empty port, power off */
3983 			scontrol &= ~0xf;
3984 			scontrol |= (0x1 << 2);
3985 		}
3986 		break;
3987 	default:
3988 		WARN_ON(1);
3989 	}
3990 
3991 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3992 	if (rc)
3993 		return rc;
3994 
3995 	/* give the link time to transit out of LPM state */
3996 	if (woken_up)
3997 		msleep(10);
3998 
3999 	/* clear PHYRDY_CHG from SError */
4000 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
4001 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
4002 }
4003 
4004 /**
4005  *	ata_std_prereset - prepare for reset
4006  *	@link: ATA link to be reset
4007  *	@deadline: deadline jiffies for the operation
4008  *
4009  *	@link is about to be reset.  Initialize it.  Failure from
4010  *	prereset makes libata abort whole reset sequence and give up
4011  *	that port, so prereset should be best-effort.  It does its
4012  *	best to prepare for reset sequence but if things go wrong, it
4013  *	should just whine, not fail.
4014  *
4015  *	LOCKING:
4016  *	Kernel thread context (may sleep)
4017  *
4018  *	RETURNS:
4019  *	0 on success, -errno otherwise.
4020  */
4021 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4022 {
4023 	struct ata_port *ap = link->ap;
4024 	struct ata_eh_context *ehc = &link->eh_context;
4025 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
4026 	int rc;
4027 
4028 	/* if we're about to do hardreset, nothing more to do */
4029 	if (ehc->i.action & ATA_EH_HARDRESET)
4030 		return 0;
4031 
4032 	/* if SATA, resume link */
4033 	if (ap->flags & ATA_FLAG_SATA) {
4034 		rc = sata_link_resume(link, timing, deadline);
4035 		/* whine about phy resume failure but proceed */
4036 		if (rc && rc != -EOPNOTSUPP)
4037 			ata_link_warn(link,
4038 				      "failed to resume link for reset (errno=%d)\n",
4039 				      rc);
4040 	}
4041 
4042 	/* no point in trying softreset on offline link */
4043 	if (ata_phys_link_offline(link))
4044 		ehc->i.action &= ~ATA_EH_SOFTRESET;
4045 
4046 	return 0;
4047 }
4048 
4049 /**
4050  *	sata_link_hardreset - reset link via SATA phy reset
4051  *	@link: link to reset
4052  *	@timing: timing parameters { interval, duration, timeout } in msec
4053  *	@deadline: deadline jiffies for the operation
4054  *	@online: optional out parameter indicating link onlineness
4055  *	@check_ready: optional callback to check link readiness
4056  *
4057  *	SATA phy-reset @link using DET bits of SControl register.
4058  *	After hardreset, link readiness is waited upon using
4059  *	ata_wait_ready() if @check_ready is specified.  LLDs are
4060  *	allowed to not specify @check_ready and wait itself after this
4061  *	function returns.  Device classification is LLD's
4062  *	responsibility.
4063  *
4064  *	*@online is set to one iff reset succeeded and @link is online
4065  *	after reset.
4066  *
4067  *	LOCKING:
4068  *	Kernel thread context (may sleep)
4069  *
4070  *	RETURNS:
4071  *	0 on success, -errno otherwise.
4072  */
4073 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4074 			unsigned long deadline,
4075 			bool *online, int (*check_ready)(struct ata_link *))
4076 {
4077 	u32 scontrol;
4078 	int rc;
4079 
4080 	DPRINTK("ENTER\n");
4081 
4082 	if (online)
4083 		*online = false;
4084 
4085 	if (sata_set_spd_needed(link)) {
4086 		/* SATA spec says nothing about how to reconfigure
4087 		 * spd.  To be on the safe side, turn off phy during
4088 		 * reconfiguration.  This works for at least ICH7 AHCI
4089 		 * and Sil3124.
4090 		 */
4091 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4092 			goto out;
4093 
4094 		scontrol = (scontrol & 0x0f0) | 0x304;
4095 
4096 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4097 			goto out;
4098 
4099 		sata_set_spd(link);
4100 	}
4101 
4102 	/* issue phy wake/reset */
4103 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4104 		goto out;
4105 
4106 	scontrol = (scontrol & 0x0f0) | 0x301;
4107 
4108 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4109 		goto out;
4110 
4111 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4112 	 * 10.4.2 says at least 1 ms.
4113 	 */
4114 	ata_msleep(link->ap, 1);
4115 
4116 	/* bring link back */
4117 	rc = sata_link_resume(link, timing, deadline);
4118 	if (rc)
4119 		goto out;
4120 	/* if link is offline nothing more to do */
4121 	if (ata_phys_link_offline(link))
4122 		goto out;
4123 
4124 	/* Link is online.  From this point, -ENODEV too is an error. */
4125 	if (online)
4126 		*online = true;
4127 
4128 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4129 		/* If PMP is supported, we have to do follow-up SRST.
4130 		 * Some PMPs don't send D2H Reg FIS after hardreset if
4131 		 * the first port is empty.  Wait only for
4132 		 * ATA_TMOUT_PMP_SRST_WAIT.
4133 		 */
4134 		if (check_ready) {
4135 			unsigned long pmp_deadline;
4136 
4137 			pmp_deadline = ata_deadline(jiffies,
4138 						    ATA_TMOUT_PMP_SRST_WAIT);
4139 			if (time_after(pmp_deadline, deadline))
4140 				pmp_deadline = deadline;
4141 			ata_wait_ready(link, pmp_deadline, check_ready);
4142 		}
4143 		rc = -EAGAIN;
4144 		goto out;
4145 	}
4146 
4147 	rc = 0;
4148 	if (check_ready)
4149 		rc = ata_wait_ready(link, deadline, check_ready);
4150  out:
4151 	if (rc && rc != -EAGAIN) {
4152 		/* online is set iff link is online && reset succeeded */
4153 		if (online)
4154 			*online = false;
4155 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4156 	}
4157 	DPRINTK("EXIT, rc=%d\n", rc);
4158 	return rc;
4159 }
4160 
4161 /**
4162  *	sata_std_hardreset - COMRESET w/o waiting or classification
4163  *	@link: link to reset
4164  *	@class: resulting class of attached device
4165  *	@deadline: deadline jiffies for the operation
4166  *
4167  *	Standard SATA COMRESET w/o waiting or classification.
4168  *
4169  *	LOCKING:
4170  *	Kernel thread context (may sleep)
4171  *
4172  *	RETURNS:
4173  *	0 if link offline, -EAGAIN if link online, -errno on errors.
4174  */
4175 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4176 		       unsigned long deadline)
4177 {
4178 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4179 	bool online;
4180 	int rc;
4181 
4182 	/* do hardreset */
4183 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4184 	return online ? -EAGAIN : rc;
4185 }
4186 
4187 /**
4188  *	ata_std_postreset - standard postreset callback
4189  *	@link: the target ata_link
4190  *	@classes: classes of attached devices
4191  *
4192  *	This function is invoked after a successful reset.  Note that
4193  *	the device might have been reset more than once using
4194  *	different reset methods before postreset is invoked.
4195  *
4196  *	LOCKING:
4197  *	Kernel thread context (may sleep)
4198  */
4199 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4200 {
4201 	u32 serror;
4202 
4203 	DPRINTK("ENTER\n");
4204 
4205 	/* reset complete, clear SError */
4206 	if (!sata_scr_read(link, SCR_ERROR, &serror))
4207 		sata_scr_write(link, SCR_ERROR, serror);
4208 
4209 	/* print link status */
4210 	sata_print_link_status(link);
4211 
4212 	DPRINTK("EXIT\n");
4213 }
4214 
4215 /**
4216  *	ata_dev_same_device - Determine whether new ID matches configured device
4217  *	@dev: device to compare against
4218  *	@new_class: class of the new device
4219  *	@new_id: IDENTIFY page of the new device
4220  *
4221  *	Compare @new_class and @new_id against @dev and determine
4222  *	whether @dev is the device indicated by @new_class and
4223  *	@new_id.
4224  *
4225  *	LOCKING:
4226  *	None.
4227  *
4228  *	RETURNS:
4229  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
4230  */
4231 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4232 			       const u16 *new_id)
4233 {
4234 	const u16 *old_id = dev->id;
4235 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
4236 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4237 
4238 	if (dev->class != new_class) {
4239 		ata_dev_info(dev, "class mismatch %d != %d\n",
4240 			     dev->class, new_class);
4241 		return 0;
4242 	}
4243 
4244 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4245 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4246 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4247 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4248 
4249 	if (strcmp(model[0], model[1])) {
4250 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4251 			     model[0], model[1]);
4252 		return 0;
4253 	}
4254 
4255 	if (strcmp(serial[0], serial[1])) {
4256 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4257 			     serial[0], serial[1]);
4258 		return 0;
4259 	}
4260 
4261 	return 1;
4262 }
4263 
4264 /**
4265  *	ata_dev_reread_id - Re-read IDENTIFY data
4266  *	@dev: target ATA device
4267  *	@readid_flags: read ID flags
4268  *
4269  *	Re-read IDENTIFY page and make sure @dev is still attached to
4270  *	the port.
4271  *
4272  *	LOCKING:
4273  *	Kernel thread context (may sleep)
4274  *
4275  *	RETURNS:
4276  *	0 on success, negative errno otherwise
4277  */
4278 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4279 {
4280 	unsigned int class = dev->class;
4281 	u16 *id = (void *)dev->link->ap->sector_buf;
4282 	int rc;
4283 
4284 	/* read ID data */
4285 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4286 	if (rc)
4287 		return rc;
4288 
4289 	/* is the device still there? */
4290 	if (!ata_dev_same_device(dev, class, id))
4291 		return -ENODEV;
4292 
4293 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4294 	return 0;
4295 }
4296 
4297 /**
4298  *	ata_dev_revalidate - Revalidate ATA device
4299  *	@dev: device to revalidate
4300  *	@new_class: new class code
4301  *	@readid_flags: read ID flags
4302  *
4303  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4304  *	port and reconfigure it according to the new IDENTIFY page.
4305  *
4306  *	LOCKING:
4307  *	Kernel thread context (may sleep)
4308  *
4309  *	RETURNS:
4310  *	0 on success, negative errno otherwise
4311  */
4312 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4313 		       unsigned int readid_flags)
4314 {
4315 	u64 n_sectors = dev->n_sectors;
4316 	u64 n_native_sectors = dev->n_native_sectors;
4317 	int rc;
4318 
4319 	if (!ata_dev_enabled(dev))
4320 		return -ENODEV;
4321 
4322 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4323 	if (ata_class_enabled(new_class) &&
4324 	    new_class != ATA_DEV_ATA &&
4325 	    new_class != ATA_DEV_ATAPI &&
4326 	    new_class != ATA_DEV_ZAC &&
4327 	    new_class != ATA_DEV_SEMB) {
4328 		ata_dev_info(dev, "class mismatch %u != %u\n",
4329 			     dev->class, new_class);
4330 		rc = -ENODEV;
4331 		goto fail;
4332 	}
4333 
4334 	/* re-read ID */
4335 	rc = ata_dev_reread_id(dev, readid_flags);
4336 	if (rc)
4337 		goto fail;
4338 
4339 	/* configure device according to the new ID */
4340 	rc = ata_dev_configure(dev);
4341 	if (rc)
4342 		goto fail;
4343 
4344 	/* verify n_sectors hasn't changed */
4345 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4346 	    dev->n_sectors == n_sectors)
4347 		return 0;
4348 
4349 	/* n_sectors has changed */
4350 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4351 		     (unsigned long long)n_sectors,
4352 		     (unsigned long long)dev->n_sectors);
4353 
4354 	/*
4355 	 * Something could have caused HPA to be unlocked
4356 	 * involuntarily.  If n_native_sectors hasn't changed and the
4357 	 * new size matches it, keep the device.
4358 	 */
4359 	if (dev->n_native_sectors == n_native_sectors &&
4360 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4361 		ata_dev_warn(dev,
4362 			     "new n_sectors matches native, probably "
4363 			     "late HPA unlock, n_sectors updated\n");
4364 		/* use the larger n_sectors */
4365 		return 0;
4366 	}
4367 
4368 	/*
4369 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4370 	 * unlocking HPA in those cases.
4371 	 *
4372 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4373 	 */
4374 	if (dev->n_native_sectors == n_native_sectors &&
4375 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4376 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4377 		ata_dev_warn(dev,
4378 			     "old n_sectors matches native, probably "
4379 			     "late HPA lock, will try to unlock HPA\n");
4380 		/* try unlocking HPA */
4381 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4382 		rc = -EIO;
4383 	} else
4384 		rc = -ENODEV;
4385 
4386 	/* restore original n_[native_]sectors and fail */
4387 	dev->n_native_sectors = n_native_sectors;
4388 	dev->n_sectors = n_sectors;
4389  fail:
4390 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4391 	return rc;
4392 }
4393 
4394 struct ata_blacklist_entry {
4395 	const char *model_num;
4396 	const char *model_rev;
4397 	unsigned long horkage;
4398 };
4399 
4400 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4401 	/* Devices with DMA related problems under Linux */
4402 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4403 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4404 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4405 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4406 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4407 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4408 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4409 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4410 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4411 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4412 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4413 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4414 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4415 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4416 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4417 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4418 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4419 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4420 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4421 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4422 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4423 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4424 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4425 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4426 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4427 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4428 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4429 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4430 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4431 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4432 	/* Odd clown on sil3726/4726 PMPs */
4433 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4434 
4435 	/* Weird ATAPI devices */
4436 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4437 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4438 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4439 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4440 
4441 	/*
4442 	 * Causes silent data corruption with higher max sects.
4443 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4444 	 */
4445 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4446 
4447 	/*
4448 	 * These devices time out with higher max sects.
4449 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4450 	 */
4451 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4452 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4453 
4454 	/* Devices we expect to fail diagnostics */
4455 
4456 	/* Devices where NCQ should be avoided */
4457 	/* NCQ is slow */
4458 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4459 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4460 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4461 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4462 	/* NCQ is broken */
4463 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4464 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4465 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4466 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4467 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4468 
4469 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4470 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4471 						ATA_HORKAGE_FIRMWARE_WARN },
4472 
4473 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4474 						ATA_HORKAGE_FIRMWARE_WARN },
4475 
4476 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4477 						ATA_HORKAGE_FIRMWARE_WARN },
4478 
4479 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4480 						ATA_HORKAGE_FIRMWARE_WARN },
4481 
4482 	/* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4483 	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4484 	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4485 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4486 
4487 	/* Blacklist entries taken from Silicon Image 3124/3132
4488 	   Windows driver .inf file - also several Linux problem reports */
4489 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4490 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4491 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4492 
4493 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4494 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4495 
4496 	/* devices which puke on READ_NATIVE_MAX */
4497 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4498 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4499 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4500 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4501 
4502 	/* this one allows HPA unlocking but fails IOs on the area */
4503 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4504 
4505 	/* Devices which report 1 sector over size HPA */
4506 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4507 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4508 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4509 
4510 	/* Devices which get the IVB wrong */
4511 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4512 	/* Maybe we should just blacklist TSSTcorp... */
4513 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4514 
4515 	/* Devices that do not need bridging limits applied */
4516 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4517 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4518 
4519 	/* Devices which aren't very happy with higher link speeds */
4520 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4521 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4522 
4523 	/*
4524 	 * Devices which choke on SETXFER.  Applies only if both the
4525 	 * device and controller are SATA.
4526 	 */
4527 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4528 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4529 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4530 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4531 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4532 
4533 	/* Crucial BX100 SSD 500GB has broken LPM support */
4534 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4535 
4536 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4537 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4538 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4539 						ATA_HORKAGE_NOLPM, },
4540 	/* 512GB MX100 with newer firmware has only LPM issues */
4541 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4542 						ATA_HORKAGE_NOLPM, },
4543 
4544 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4545 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4546 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4547 						ATA_HORKAGE_NOLPM, },
4548 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4549 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4550 						ATA_HORKAGE_NOLPM, },
4551 
4552 	/* devices that don't properly handle queued TRIM commands */
4553 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4554 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4555 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4556 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4557 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4558 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4559 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4560 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4561 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4562 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4563 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4564 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4565 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4566 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4567 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4568 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4569 
4570 	/* devices that don't properly handle TRIM commands */
4571 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4572 
4573 	/*
4574 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4575 	 * (Return Zero After Trim) flags in the ATA Command Set are
4576 	 * unreliable in the sense that they only define what happens if
4577 	 * the device successfully executed the DSM TRIM command. TRIM
4578 	 * is only advisory, however, and the device is free to silently
4579 	 * ignore all or parts of the request.
4580 	 *
4581 	 * Whitelist drives that are known to reliably return zeroes
4582 	 * after TRIM.
4583 	 */
4584 
4585 	/*
4586 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4587 	 * that model before whitelisting all other intel SSDs.
4588 	 */
4589 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4590 
4591 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4592 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4593 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4594 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4595 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4596 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4597 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4598 
4599 	/*
4600 	 * Some WD SATA-I drives spin up and down erratically when the link
4601 	 * is put into the slumber mode.  We don't have full list of the
4602 	 * affected devices.  Disable LPM if the device matches one of the
4603 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4604 	 * lost too.
4605 	 *
4606 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4607 	 */
4608 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4609 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4610 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4611 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4612 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4613 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4614 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4615 
4616 	/* End Marker */
4617 	{ }
4618 };
4619 
4620 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4621 {
4622 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4623 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4624 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4625 
4626 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4627 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4628 
4629 	while (ad->model_num) {
4630 		if (glob_match(ad->model_num, model_num)) {
4631 			if (ad->model_rev == NULL)
4632 				return ad->horkage;
4633 			if (glob_match(ad->model_rev, model_rev))
4634 				return ad->horkage;
4635 		}
4636 		ad++;
4637 	}
4638 	return 0;
4639 }
4640 
4641 static int ata_dma_blacklisted(const struct ata_device *dev)
4642 {
4643 	/* We don't support polling DMA.
4644 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4645 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4646 	 */
4647 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4648 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4649 		return 1;
4650 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4651 }
4652 
4653 /**
4654  *	ata_is_40wire		-	check drive side detection
4655  *	@dev: device
4656  *
4657  *	Perform drive side detection decoding, allowing for device vendors
4658  *	who can't follow the documentation.
4659  */
4660 
4661 static int ata_is_40wire(struct ata_device *dev)
4662 {
4663 	if (dev->horkage & ATA_HORKAGE_IVB)
4664 		return ata_drive_40wire_relaxed(dev->id);
4665 	return ata_drive_40wire(dev->id);
4666 }
4667 
4668 /**
4669  *	cable_is_40wire		-	40/80/SATA decider
4670  *	@ap: port to consider
4671  *
4672  *	This function encapsulates the policy for speed management
4673  *	in one place. At the moment we don't cache the result but
4674  *	there is a good case for setting ap->cbl to the result when
4675  *	we are called with unknown cables (and figuring out if it
4676  *	impacts hotplug at all).
4677  *
4678  *	Return 1 if the cable appears to be 40 wire.
4679  */
4680 
4681 static int cable_is_40wire(struct ata_port *ap)
4682 {
4683 	struct ata_link *link;
4684 	struct ata_device *dev;
4685 
4686 	/* If the controller thinks we are 40 wire, we are. */
4687 	if (ap->cbl == ATA_CBL_PATA40)
4688 		return 1;
4689 
4690 	/* If the controller thinks we are 80 wire, we are. */
4691 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4692 		return 0;
4693 
4694 	/* If the system is known to be 40 wire short cable (eg
4695 	 * laptop), then we allow 80 wire modes even if the drive
4696 	 * isn't sure.
4697 	 */
4698 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4699 		return 0;
4700 
4701 	/* If the controller doesn't know, we scan.
4702 	 *
4703 	 * Note: We look for all 40 wire detects at this point.  Any
4704 	 *       80 wire detect is taken to be 80 wire cable because
4705 	 * - in many setups only the one drive (slave if present) will
4706 	 *   give a valid detect
4707 	 * - if you have a non detect capable drive you don't want it
4708 	 *   to colour the choice
4709 	 */
4710 	ata_for_each_link(link, ap, EDGE) {
4711 		ata_for_each_dev(dev, link, ENABLED) {
4712 			if (!ata_is_40wire(dev))
4713 				return 0;
4714 		}
4715 	}
4716 	return 1;
4717 }
4718 
4719 /**
4720  *	ata_dev_xfermask - Compute supported xfermask of the given device
4721  *	@dev: Device to compute xfermask for
4722  *
4723  *	Compute supported xfermask of @dev and store it in
4724  *	dev->*_mask.  This function is responsible for applying all
4725  *	known limits including host controller limits, device
4726  *	blacklist, etc...
4727  *
4728  *	LOCKING:
4729  *	None.
4730  */
4731 static void ata_dev_xfermask(struct ata_device *dev)
4732 {
4733 	struct ata_link *link = dev->link;
4734 	struct ata_port *ap = link->ap;
4735 	struct ata_host *host = ap->host;
4736 	unsigned long xfer_mask;
4737 
4738 	/* controller modes available */
4739 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4740 				      ap->mwdma_mask, ap->udma_mask);
4741 
4742 	/* drive modes available */
4743 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4744 				       dev->mwdma_mask, dev->udma_mask);
4745 	xfer_mask &= ata_id_xfermask(dev->id);
4746 
4747 	/*
4748 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4749 	 *	cable
4750 	 */
4751 	if (ata_dev_pair(dev)) {
4752 		/* No PIO5 or PIO6 */
4753 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4754 		/* No MWDMA3 or MWDMA 4 */
4755 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4756 	}
4757 
4758 	if (ata_dma_blacklisted(dev)) {
4759 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4760 		ata_dev_warn(dev,
4761 			     "device is on DMA blacklist, disabling DMA\n");
4762 	}
4763 
4764 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4765 	    host->simplex_claimed && host->simplex_claimed != ap) {
4766 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4767 		ata_dev_warn(dev,
4768 			     "simplex DMA is claimed by other device, disabling DMA\n");
4769 	}
4770 
4771 	if (ap->flags & ATA_FLAG_NO_IORDY)
4772 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4773 
4774 	if (ap->ops->mode_filter)
4775 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4776 
4777 	/* Apply cable rule here.  Don't apply it early because when
4778 	 * we handle hot plug the cable type can itself change.
4779 	 * Check this last so that we know if the transfer rate was
4780 	 * solely limited by the cable.
4781 	 * Unknown or 80 wire cables reported host side are checked
4782 	 * drive side as well. Cases where we know a 40wire cable
4783 	 * is used safely for 80 are not checked here.
4784 	 */
4785 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4786 		/* UDMA/44 or higher would be available */
4787 		if (cable_is_40wire(ap)) {
4788 			ata_dev_warn(dev,
4789 				     "limited to UDMA/33 due to 40-wire cable\n");
4790 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4791 		}
4792 
4793 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4794 			    &dev->mwdma_mask, &dev->udma_mask);
4795 }
4796 
4797 /**
4798  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4799  *	@dev: Device to which command will be sent
4800  *
4801  *	Issue SET FEATURES - XFER MODE command to device @dev
4802  *	on port @ap.
4803  *
4804  *	LOCKING:
4805  *	PCI/etc. bus probe sem.
4806  *
4807  *	RETURNS:
4808  *	0 on success, AC_ERR_* mask otherwise.
4809  */
4810 
4811 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4812 {
4813 	struct ata_taskfile tf;
4814 	unsigned int err_mask;
4815 
4816 	/* set up set-features taskfile */
4817 	DPRINTK("set features - xfer mode\n");
4818 
4819 	/* Some controllers and ATAPI devices show flaky interrupt
4820 	 * behavior after setting xfer mode.  Use polling instead.
4821 	 */
4822 	ata_tf_init(dev, &tf);
4823 	tf.command = ATA_CMD_SET_FEATURES;
4824 	tf.feature = SETFEATURES_XFER;
4825 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4826 	tf.protocol = ATA_PROT_NODATA;
4827 	/* If we are using IORDY we must send the mode setting command */
4828 	if (ata_pio_need_iordy(dev))
4829 		tf.nsect = dev->xfer_mode;
4830 	/* If the device has IORDY and the controller does not - turn it off */
4831  	else if (ata_id_has_iordy(dev->id))
4832 		tf.nsect = 0x01;
4833 	else /* In the ancient relic department - skip all of this */
4834 		return 0;
4835 
4836 	/* On some disks, this command causes spin-up, so we need longer timeout */
4837 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4838 
4839 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4840 	return err_mask;
4841 }
4842 
4843 /**
4844  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4845  *	@dev: Device to which command will be sent
4846  *	@enable: Whether to enable or disable the feature
4847  *	@feature: The sector count represents the feature to set
4848  *
4849  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4850  *	on port @ap with sector count
4851  *
4852  *	LOCKING:
4853  *	PCI/etc. bus probe sem.
4854  *
4855  *	RETURNS:
4856  *	0 on success, AC_ERR_* mask otherwise.
4857  */
4858 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4859 {
4860 	struct ata_taskfile tf;
4861 	unsigned int err_mask;
4862 	unsigned long timeout = 0;
4863 
4864 	/* set up set-features taskfile */
4865 	DPRINTK("set features - SATA features\n");
4866 
4867 	ata_tf_init(dev, &tf);
4868 	tf.command = ATA_CMD_SET_FEATURES;
4869 	tf.feature = enable;
4870 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4871 	tf.protocol = ATA_PROT_NODATA;
4872 	tf.nsect = feature;
4873 
4874 	if (enable == SETFEATURES_SPINUP)
4875 		timeout = ata_probe_timeout ?
4876 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4877 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4878 
4879 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4880 	return err_mask;
4881 }
4882 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4883 
4884 /**
4885  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4886  *	@dev: Device to which command will be sent
4887  *	@heads: Number of heads (taskfile parameter)
4888  *	@sectors: Number of sectors (taskfile parameter)
4889  *
4890  *	LOCKING:
4891  *	Kernel thread context (may sleep)
4892  *
4893  *	RETURNS:
4894  *	0 on success, AC_ERR_* mask otherwise.
4895  */
4896 static unsigned int ata_dev_init_params(struct ata_device *dev,
4897 					u16 heads, u16 sectors)
4898 {
4899 	struct ata_taskfile tf;
4900 	unsigned int err_mask;
4901 
4902 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4903 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4904 		return AC_ERR_INVALID;
4905 
4906 	/* set up init dev params taskfile */
4907 	DPRINTK("init dev params \n");
4908 
4909 	ata_tf_init(dev, &tf);
4910 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4911 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4912 	tf.protocol = ATA_PROT_NODATA;
4913 	tf.nsect = sectors;
4914 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4915 
4916 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4917 	/* A clean abort indicates an original or just out of spec drive
4918 	   and we should continue as we issue the setup based on the
4919 	   drive reported working geometry */
4920 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4921 		err_mask = 0;
4922 
4923 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4924 	return err_mask;
4925 }
4926 
4927 /**
4928  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4929  *	@qc: Metadata associated with taskfile to check
4930  *
4931  *	Allow low-level driver to filter ATA PACKET commands, returning
4932  *	a status indicating whether or not it is OK to use DMA for the
4933  *	supplied PACKET command.
4934  *
4935  *	LOCKING:
4936  *	spin_lock_irqsave(host lock)
4937  *
4938  *	RETURNS: 0 when ATAPI DMA can be used
4939  *               nonzero otherwise
4940  */
4941 int atapi_check_dma(struct ata_queued_cmd *qc)
4942 {
4943 	struct ata_port *ap = qc->ap;
4944 
4945 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4946 	 * few ATAPI devices choke on such DMA requests.
4947 	 */
4948 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4949 	    unlikely(qc->nbytes & 15))
4950 		return 1;
4951 
4952 	if (ap->ops->check_atapi_dma)
4953 		return ap->ops->check_atapi_dma(qc);
4954 
4955 	return 0;
4956 }
4957 
4958 /**
4959  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4960  *	@qc: ATA command in question
4961  *
4962  *	Non-NCQ commands cannot run with any other command, NCQ or
4963  *	not.  As upper layer only knows the queue depth, we are
4964  *	responsible for maintaining exclusion.  This function checks
4965  *	whether a new command @qc can be issued.
4966  *
4967  *	LOCKING:
4968  *	spin_lock_irqsave(host lock)
4969  *
4970  *	RETURNS:
4971  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4972  */
4973 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4974 {
4975 	struct ata_link *link = qc->dev->link;
4976 
4977 	if (ata_is_ncq(qc->tf.protocol)) {
4978 		if (!ata_tag_valid(link->active_tag))
4979 			return 0;
4980 	} else {
4981 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4982 			return 0;
4983 	}
4984 
4985 	return ATA_DEFER_LINK;
4986 }
4987 
4988 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4989 
4990 /**
4991  *	ata_sg_init - Associate command with scatter-gather table.
4992  *	@qc: Command to be associated
4993  *	@sg: Scatter-gather table.
4994  *	@n_elem: Number of elements in s/g table.
4995  *
4996  *	Initialize the data-related elements of queued_cmd @qc
4997  *	to point to a scatter-gather table @sg, containing @n_elem
4998  *	elements.
4999  *
5000  *	LOCKING:
5001  *	spin_lock_irqsave(host lock)
5002  */
5003 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
5004 		 unsigned int n_elem)
5005 {
5006 	qc->sg = sg;
5007 	qc->n_elem = n_elem;
5008 	qc->cursg = qc->sg;
5009 }
5010 
5011 #ifdef CONFIG_HAS_DMA
5012 
5013 /**
5014  *	ata_sg_clean - Unmap DMA memory associated with command
5015  *	@qc: Command containing DMA memory to be released
5016  *
5017  *	Unmap all mapped DMA memory associated with this command.
5018  *
5019  *	LOCKING:
5020  *	spin_lock_irqsave(host lock)
5021  */
5022 static void ata_sg_clean(struct ata_queued_cmd *qc)
5023 {
5024 	struct ata_port *ap = qc->ap;
5025 	struct scatterlist *sg = qc->sg;
5026 	int dir = qc->dma_dir;
5027 
5028 	WARN_ON_ONCE(sg == NULL);
5029 
5030 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5031 
5032 	if (qc->n_elem)
5033 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5034 
5035 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
5036 	qc->sg = NULL;
5037 }
5038 
5039 /**
5040  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5041  *	@qc: Command with scatter-gather table to be mapped.
5042  *
5043  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
5044  *
5045  *	LOCKING:
5046  *	spin_lock_irqsave(host lock)
5047  *
5048  *	RETURNS:
5049  *	Zero on success, negative on error.
5050  *
5051  */
5052 static int ata_sg_setup(struct ata_queued_cmd *qc)
5053 {
5054 	struct ata_port *ap = qc->ap;
5055 	unsigned int n_elem;
5056 
5057 	VPRINTK("ENTER, ata%u\n", ap->print_id);
5058 
5059 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5060 	if (n_elem < 1)
5061 		return -1;
5062 
5063 	DPRINTK("%d sg elements mapped\n", n_elem);
5064 	qc->orig_n_elem = qc->n_elem;
5065 	qc->n_elem = n_elem;
5066 	qc->flags |= ATA_QCFLAG_DMAMAP;
5067 
5068 	return 0;
5069 }
5070 
5071 #else /* !CONFIG_HAS_DMA */
5072 
5073 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5074 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5075 
5076 #endif /* !CONFIG_HAS_DMA */
5077 
5078 /**
5079  *	swap_buf_le16 - swap halves of 16-bit words in place
5080  *	@buf:  Buffer to swap
5081  *	@buf_words:  Number of 16-bit words in buffer.
5082  *
5083  *	Swap halves of 16-bit words if needed to convert from
5084  *	little-endian byte order to native cpu byte order, or
5085  *	vice-versa.
5086  *
5087  *	LOCKING:
5088  *	Inherited from caller.
5089  */
5090 void swap_buf_le16(u16 *buf, unsigned int buf_words)
5091 {
5092 #ifdef __BIG_ENDIAN
5093 	unsigned int i;
5094 
5095 	for (i = 0; i < buf_words; i++)
5096 		buf[i] = le16_to_cpu(buf[i]);
5097 #endif /* __BIG_ENDIAN */
5098 }
5099 
5100 /**
5101  *	ata_qc_new_init - Request an available ATA command, and initialize it
5102  *	@dev: Device from whom we request an available command structure
5103  *	@tag: tag
5104  *
5105  *	LOCKING:
5106  *	None.
5107  */
5108 
5109 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5110 {
5111 	struct ata_port *ap = dev->link->ap;
5112 	struct ata_queued_cmd *qc;
5113 
5114 	/* no command while frozen */
5115 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5116 		return NULL;
5117 
5118 	/* libsas case */
5119 	if (ap->flags & ATA_FLAG_SAS_HOST) {
5120 		tag = ata_sas_allocate_tag(ap);
5121 		if (tag < 0)
5122 			return NULL;
5123 	}
5124 
5125 	qc = __ata_qc_from_tag(ap, tag);
5126 	qc->tag = tag;
5127 	qc->scsicmd = NULL;
5128 	qc->ap = ap;
5129 	qc->dev = dev;
5130 
5131 	ata_qc_reinit(qc);
5132 
5133 	return qc;
5134 }
5135 
5136 /**
5137  *	ata_qc_free - free unused ata_queued_cmd
5138  *	@qc: Command to complete
5139  *
5140  *	Designed to free unused ata_queued_cmd object
5141  *	in case something prevents using it.
5142  *
5143  *	LOCKING:
5144  *	spin_lock_irqsave(host lock)
5145  */
5146 void ata_qc_free(struct ata_queued_cmd *qc)
5147 {
5148 	struct ata_port *ap;
5149 	unsigned int tag;
5150 
5151 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5152 	ap = qc->ap;
5153 
5154 	qc->flags = 0;
5155 	tag = qc->tag;
5156 	if (likely(ata_tag_valid(tag))) {
5157 		qc->tag = ATA_TAG_POISON;
5158 		if (ap->flags & ATA_FLAG_SAS_HOST)
5159 			ata_sas_free_tag(tag, ap);
5160 	}
5161 }
5162 
5163 void __ata_qc_complete(struct ata_queued_cmd *qc)
5164 {
5165 	struct ata_port *ap;
5166 	struct ata_link *link;
5167 
5168 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5169 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5170 	ap = qc->ap;
5171 	link = qc->dev->link;
5172 
5173 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5174 		ata_sg_clean(qc);
5175 
5176 	/* command should be marked inactive atomically with qc completion */
5177 	if (ata_is_ncq(qc->tf.protocol)) {
5178 		link->sactive &= ~(1 << qc->tag);
5179 		if (!link->sactive)
5180 			ap->nr_active_links--;
5181 	} else {
5182 		link->active_tag = ATA_TAG_POISON;
5183 		ap->nr_active_links--;
5184 	}
5185 
5186 	/* clear exclusive status */
5187 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5188 		     ap->excl_link == link))
5189 		ap->excl_link = NULL;
5190 
5191 	/* atapi: mark qc as inactive to prevent the interrupt handler
5192 	 * from completing the command twice later, before the error handler
5193 	 * is called. (when rc != 0 and atapi request sense is needed)
5194 	 */
5195 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
5196 	ap->qc_active &= ~(1 << qc->tag);
5197 
5198 	/* call completion callback */
5199 	qc->complete_fn(qc);
5200 }
5201 
5202 static void fill_result_tf(struct ata_queued_cmd *qc)
5203 {
5204 	struct ata_port *ap = qc->ap;
5205 
5206 	qc->result_tf.flags = qc->tf.flags;
5207 	ap->ops->qc_fill_rtf(qc);
5208 }
5209 
5210 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5211 {
5212 	struct ata_device *dev = qc->dev;
5213 
5214 	if (!ata_is_data(qc->tf.protocol))
5215 		return;
5216 
5217 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5218 		return;
5219 
5220 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5221 }
5222 
5223 /**
5224  *	ata_qc_complete - Complete an active ATA command
5225  *	@qc: Command to complete
5226  *
5227  *	Indicate to the mid and upper layers that an ATA command has
5228  *	completed, with either an ok or not-ok status.
5229  *
5230  *	Refrain from calling this function multiple times when
5231  *	successfully completing multiple NCQ commands.
5232  *	ata_qc_complete_multiple() should be used instead, which will
5233  *	properly update IRQ expect state.
5234  *
5235  *	LOCKING:
5236  *	spin_lock_irqsave(host lock)
5237  */
5238 void ata_qc_complete(struct ata_queued_cmd *qc)
5239 {
5240 	struct ata_port *ap = qc->ap;
5241 
5242 	/* Trigger the LED (if available) */
5243 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
5244 
5245 	/* XXX: New EH and old EH use different mechanisms to
5246 	 * synchronize EH with regular execution path.
5247 	 *
5248 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5249 	 * Normal execution path is responsible for not accessing a
5250 	 * failed qc.  libata core enforces the rule by returning NULL
5251 	 * from ata_qc_from_tag() for failed qcs.
5252 	 *
5253 	 * Old EH depends on ata_qc_complete() nullifying completion
5254 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5255 	 * not synchronize with interrupt handler.  Only PIO task is
5256 	 * taken care of.
5257 	 */
5258 	if (ap->ops->error_handler) {
5259 		struct ata_device *dev = qc->dev;
5260 		struct ata_eh_info *ehi = &dev->link->eh_info;
5261 
5262 		if (unlikely(qc->err_mask))
5263 			qc->flags |= ATA_QCFLAG_FAILED;
5264 
5265 		/*
5266 		 * Finish internal commands without any further processing
5267 		 * and always with the result TF filled.
5268 		 */
5269 		if (unlikely(ata_tag_internal(qc->tag))) {
5270 			fill_result_tf(qc);
5271 			trace_ata_qc_complete_internal(qc);
5272 			__ata_qc_complete(qc);
5273 			return;
5274 		}
5275 
5276 		/*
5277 		 * Non-internal qc has failed.  Fill the result TF and
5278 		 * summon EH.
5279 		 */
5280 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5281 			fill_result_tf(qc);
5282 			trace_ata_qc_complete_failed(qc);
5283 			ata_qc_schedule_eh(qc);
5284 			return;
5285 		}
5286 
5287 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5288 
5289 		/* read result TF if requested */
5290 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5291 			fill_result_tf(qc);
5292 
5293 		trace_ata_qc_complete_done(qc);
5294 		/* Some commands need post-processing after successful
5295 		 * completion.
5296 		 */
5297 		switch (qc->tf.command) {
5298 		case ATA_CMD_SET_FEATURES:
5299 			if (qc->tf.feature != SETFEATURES_WC_ON &&
5300 			    qc->tf.feature != SETFEATURES_WC_OFF &&
5301 			    qc->tf.feature != SETFEATURES_RA_ON &&
5302 			    qc->tf.feature != SETFEATURES_RA_OFF)
5303 				break;
5304 			/* fall through */
5305 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5306 		case ATA_CMD_SET_MULTI: /* multi_count changed */
5307 			/* revalidate device */
5308 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5309 			ata_port_schedule_eh(ap);
5310 			break;
5311 
5312 		case ATA_CMD_SLEEP:
5313 			dev->flags |= ATA_DFLAG_SLEEPING;
5314 			break;
5315 		}
5316 
5317 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5318 			ata_verify_xfer(qc);
5319 
5320 		__ata_qc_complete(qc);
5321 	} else {
5322 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5323 			return;
5324 
5325 		/* read result TF if failed or requested */
5326 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5327 			fill_result_tf(qc);
5328 
5329 		__ata_qc_complete(qc);
5330 	}
5331 }
5332 
5333 /**
5334  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5335  *	@ap: port in question
5336  *	@qc_active: new qc_active mask
5337  *
5338  *	Complete in-flight commands.  This functions is meant to be
5339  *	called from low-level driver's interrupt routine to complete
5340  *	requests normally.  ap->qc_active and @qc_active is compared
5341  *	and commands are completed accordingly.
5342  *
5343  *	Always use this function when completing multiple NCQ commands
5344  *	from IRQ handlers instead of calling ata_qc_complete()
5345  *	multiple times to keep IRQ expect status properly in sync.
5346  *
5347  *	LOCKING:
5348  *	spin_lock_irqsave(host lock)
5349  *
5350  *	RETURNS:
5351  *	Number of completed commands on success, -errno otherwise.
5352  */
5353 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5354 {
5355 	int nr_done = 0;
5356 	u32 done_mask;
5357 
5358 	done_mask = ap->qc_active ^ qc_active;
5359 
5360 	if (unlikely(done_mask & qc_active)) {
5361 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5362 			     ap->qc_active, qc_active);
5363 		return -EINVAL;
5364 	}
5365 
5366 	while (done_mask) {
5367 		struct ata_queued_cmd *qc;
5368 		unsigned int tag = __ffs(done_mask);
5369 
5370 		qc = ata_qc_from_tag(ap, tag);
5371 		if (qc) {
5372 			ata_qc_complete(qc);
5373 			nr_done++;
5374 		}
5375 		done_mask &= ~(1 << tag);
5376 	}
5377 
5378 	return nr_done;
5379 }
5380 
5381 /**
5382  *	ata_qc_issue - issue taskfile to device
5383  *	@qc: command to issue to device
5384  *
5385  *	Prepare an ATA command to submission to device.
5386  *	This includes mapping the data into a DMA-able
5387  *	area, filling in the S/G table, and finally
5388  *	writing the taskfile to hardware, starting the command.
5389  *
5390  *	LOCKING:
5391  *	spin_lock_irqsave(host lock)
5392  */
5393 void ata_qc_issue(struct ata_queued_cmd *qc)
5394 {
5395 	struct ata_port *ap = qc->ap;
5396 	struct ata_link *link = qc->dev->link;
5397 	u8 prot = qc->tf.protocol;
5398 
5399 	/* Make sure only one non-NCQ command is outstanding.  The
5400 	 * check is skipped for old EH because it reuses active qc to
5401 	 * request ATAPI sense.
5402 	 */
5403 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5404 
5405 	if (ata_is_ncq(prot)) {
5406 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5407 
5408 		if (!link->sactive)
5409 			ap->nr_active_links++;
5410 		link->sactive |= 1 << qc->tag;
5411 	} else {
5412 		WARN_ON_ONCE(link->sactive);
5413 
5414 		ap->nr_active_links++;
5415 		link->active_tag = qc->tag;
5416 	}
5417 
5418 	qc->flags |= ATA_QCFLAG_ACTIVE;
5419 	ap->qc_active |= 1 << qc->tag;
5420 
5421 	/*
5422 	 * We guarantee to LLDs that they will have at least one
5423 	 * non-zero sg if the command is a data command.
5424 	 */
5425 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5426 		goto sys_err;
5427 
5428 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5429 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5430 		if (ata_sg_setup(qc))
5431 			goto sys_err;
5432 
5433 	/* if device is sleeping, schedule reset and abort the link */
5434 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5435 		link->eh_info.action |= ATA_EH_RESET;
5436 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5437 		ata_link_abort(link);
5438 		return;
5439 	}
5440 
5441 	ap->ops->qc_prep(qc);
5442 	trace_ata_qc_issue(qc);
5443 	qc->err_mask |= ap->ops->qc_issue(qc);
5444 	if (unlikely(qc->err_mask))
5445 		goto err;
5446 	return;
5447 
5448 sys_err:
5449 	qc->err_mask |= AC_ERR_SYSTEM;
5450 err:
5451 	ata_qc_complete(qc);
5452 }
5453 
5454 /**
5455  *	sata_scr_valid - test whether SCRs are accessible
5456  *	@link: ATA link to test SCR accessibility for
5457  *
5458  *	Test whether SCRs are accessible for @link.
5459  *
5460  *	LOCKING:
5461  *	None.
5462  *
5463  *	RETURNS:
5464  *	1 if SCRs are accessible, 0 otherwise.
5465  */
5466 int sata_scr_valid(struct ata_link *link)
5467 {
5468 	struct ata_port *ap = link->ap;
5469 
5470 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5471 }
5472 
5473 /**
5474  *	sata_scr_read - read SCR register of the specified port
5475  *	@link: ATA link to read SCR for
5476  *	@reg: SCR to read
5477  *	@val: Place to store read value
5478  *
5479  *	Read SCR register @reg of @link into *@val.  This function is
5480  *	guaranteed to succeed if @link is ap->link, the cable type of
5481  *	the port is SATA and the port implements ->scr_read.
5482  *
5483  *	LOCKING:
5484  *	None if @link is ap->link.  Kernel thread context otherwise.
5485  *
5486  *	RETURNS:
5487  *	0 on success, negative errno on failure.
5488  */
5489 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5490 {
5491 	if (ata_is_host_link(link)) {
5492 		if (sata_scr_valid(link))
5493 			return link->ap->ops->scr_read(link, reg, val);
5494 		return -EOPNOTSUPP;
5495 	}
5496 
5497 	return sata_pmp_scr_read(link, reg, val);
5498 }
5499 
5500 /**
5501  *	sata_scr_write - write SCR register of the specified port
5502  *	@link: ATA link to write SCR for
5503  *	@reg: SCR to write
5504  *	@val: value to write
5505  *
5506  *	Write @val to SCR register @reg of @link.  This function is
5507  *	guaranteed to succeed if @link is ap->link, the cable type of
5508  *	the port is SATA and the port implements ->scr_read.
5509  *
5510  *	LOCKING:
5511  *	None if @link is ap->link.  Kernel thread context otherwise.
5512  *
5513  *	RETURNS:
5514  *	0 on success, negative errno on failure.
5515  */
5516 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5517 {
5518 	if (ata_is_host_link(link)) {
5519 		if (sata_scr_valid(link))
5520 			return link->ap->ops->scr_write(link, reg, val);
5521 		return -EOPNOTSUPP;
5522 	}
5523 
5524 	return sata_pmp_scr_write(link, reg, val);
5525 }
5526 
5527 /**
5528  *	sata_scr_write_flush - write SCR register of the specified port and flush
5529  *	@link: ATA link to write SCR for
5530  *	@reg: SCR to write
5531  *	@val: value to write
5532  *
5533  *	This function is identical to sata_scr_write() except that this
5534  *	function performs flush after writing to the register.
5535  *
5536  *	LOCKING:
5537  *	None if @link is ap->link.  Kernel thread context otherwise.
5538  *
5539  *	RETURNS:
5540  *	0 on success, negative errno on failure.
5541  */
5542 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5543 {
5544 	if (ata_is_host_link(link)) {
5545 		int rc;
5546 
5547 		if (sata_scr_valid(link)) {
5548 			rc = link->ap->ops->scr_write(link, reg, val);
5549 			if (rc == 0)
5550 				rc = link->ap->ops->scr_read(link, reg, &val);
5551 			return rc;
5552 		}
5553 		return -EOPNOTSUPP;
5554 	}
5555 
5556 	return sata_pmp_scr_write(link, reg, val);
5557 }
5558 
5559 /**
5560  *	ata_phys_link_online - test whether the given link is online
5561  *	@link: ATA link to test
5562  *
5563  *	Test whether @link is online.  Note that this function returns
5564  *	0 if online status of @link cannot be obtained, so
5565  *	ata_link_online(link) != !ata_link_offline(link).
5566  *
5567  *	LOCKING:
5568  *	None.
5569  *
5570  *	RETURNS:
5571  *	True if the port online status is available and online.
5572  */
5573 bool ata_phys_link_online(struct ata_link *link)
5574 {
5575 	u32 sstatus;
5576 
5577 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5578 	    ata_sstatus_online(sstatus))
5579 		return true;
5580 	return false;
5581 }
5582 
5583 /**
5584  *	ata_phys_link_offline - test whether the given link is offline
5585  *	@link: ATA link to test
5586  *
5587  *	Test whether @link is offline.  Note that this function
5588  *	returns 0 if offline status of @link cannot be obtained, so
5589  *	ata_link_online(link) != !ata_link_offline(link).
5590  *
5591  *	LOCKING:
5592  *	None.
5593  *
5594  *	RETURNS:
5595  *	True if the port offline status is available and offline.
5596  */
5597 bool ata_phys_link_offline(struct ata_link *link)
5598 {
5599 	u32 sstatus;
5600 
5601 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5602 	    !ata_sstatus_online(sstatus))
5603 		return true;
5604 	return false;
5605 }
5606 
5607 /**
5608  *	ata_link_online - test whether the given link is online
5609  *	@link: ATA link to test
5610  *
5611  *	Test whether @link is online.  This is identical to
5612  *	ata_phys_link_online() when there's no slave link.  When
5613  *	there's a slave link, this function should only be called on
5614  *	the master link and will return true if any of M/S links is
5615  *	online.
5616  *
5617  *	LOCKING:
5618  *	None.
5619  *
5620  *	RETURNS:
5621  *	True if the port online status is available and online.
5622  */
5623 bool ata_link_online(struct ata_link *link)
5624 {
5625 	struct ata_link *slave = link->ap->slave_link;
5626 
5627 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5628 
5629 	return ata_phys_link_online(link) ||
5630 		(slave && ata_phys_link_online(slave));
5631 }
5632 
5633 /**
5634  *	ata_link_offline - test whether the given link is offline
5635  *	@link: ATA link to test
5636  *
5637  *	Test whether @link is offline.  This is identical to
5638  *	ata_phys_link_offline() when there's no slave link.  When
5639  *	there's a slave link, this function should only be called on
5640  *	the master link and will return true if both M/S links are
5641  *	offline.
5642  *
5643  *	LOCKING:
5644  *	None.
5645  *
5646  *	RETURNS:
5647  *	True if the port offline status is available and offline.
5648  */
5649 bool ata_link_offline(struct ata_link *link)
5650 {
5651 	struct ata_link *slave = link->ap->slave_link;
5652 
5653 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5654 
5655 	return ata_phys_link_offline(link) &&
5656 		(!slave || ata_phys_link_offline(slave));
5657 }
5658 
5659 #ifdef CONFIG_PM
5660 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5661 				unsigned int action, unsigned int ehi_flags,
5662 				bool async)
5663 {
5664 	struct ata_link *link;
5665 	unsigned long flags;
5666 
5667 	/* Previous resume operation might still be in
5668 	 * progress.  Wait for PM_PENDING to clear.
5669 	 */
5670 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5671 		ata_port_wait_eh(ap);
5672 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5673 	}
5674 
5675 	/* request PM ops to EH */
5676 	spin_lock_irqsave(ap->lock, flags);
5677 
5678 	ap->pm_mesg = mesg;
5679 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5680 	ata_for_each_link(link, ap, HOST_FIRST) {
5681 		link->eh_info.action |= action;
5682 		link->eh_info.flags |= ehi_flags;
5683 	}
5684 
5685 	ata_port_schedule_eh(ap);
5686 
5687 	spin_unlock_irqrestore(ap->lock, flags);
5688 
5689 	if (!async) {
5690 		ata_port_wait_eh(ap);
5691 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5692 	}
5693 }
5694 
5695 /*
5696  * On some hardware, device fails to respond after spun down for suspend.  As
5697  * the device won't be used before being resumed, we don't need to touch the
5698  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5699  *
5700  * http://thread.gmane.org/gmane.linux.ide/46764
5701  */
5702 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5703 						 | ATA_EHI_NO_AUTOPSY
5704 						 | ATA_EHI_NO_RECOVERY;
5705 
5706 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5707 {
5708 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5709 }
5710 
5711 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5712 {
5713 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5714 }
5715 
5716 static int ata_port_pm_suspend(struct device *dev)
5717 {
5718 	struct ata_port *ap = to_ata_port(dev);
5719 
5720 	if (pm_runtime_suspended(dev))
5721 		return 0;
5722 
5723 	ata_port_suspend(ap, PMSG_SUSPEND);
5724 	return 0;
5725 }
5726 
5727 static int ata_port_pm_freeze(struct device *dev)
5728 {
5729 	struct ata_port *ap = to_ata_port(dev);
5730 
5731 	if (pm_runtime_suspended(dev))
5732 		return 0;
5733 
5734 	ata_port_suspend(ap, PMSG_FREEZE);
5735 	return 0;
5736 }
5737 
5738 static int ata_port_pm_poweroff(struct device *dev)
5739 {
5740 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5741 	return 0;
5742 }
5743 
5744 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5745 						| ATA_EHI_QUIET;
5746 
5747 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5748 {
5749 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5750 }
5751 
5752 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5753 {
5754 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5755 }
5756 
5757 static int ata_port_pm_resume(struct device *dev)
5758 {
5759 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5760 	pm_runtime_disable(dev);
5761 	pm_runtime_set_active(dev);
5762 	pm_runtime_enable(dev);
5763 	return 0;
5764 }
5765 
5766 /*
5767  * For ODDs, the upper layer will poll for media change every few seconds,
5768  * which will make it enter and leave suspend state every few seconds. And
5769  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5770  * is very little and the ODD may malfunction after constantly being reset.
5771  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5772  * ODD is attached to the port.
5773  */
5774 static int ata_port_runtime_idle(struct device *dev)
5775 {
5776 	struct ata_port *ap = to_ata_port(dev);
5777 	struct ata_link *link;
5778 	struct ata_device *adev;
5779 
5780 	ata_for_each_link(link, ap, HOST_FIRST) {
5781 		ata_for_each_dev(adev, link, ENABLED)
5782 			if (adev->class == ATA_DEV_ATAPI &&
5783 			    !zpodd_dev_enabled(adev))
5784 				return -EBUSY;
5785 	}
5786 
5787 	return 0;
5788 }
5789 
5790 static int ata_port_runtime_suspend(struct device *dev)
5791 {
5792 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5793 	return 0;
5794 }
5795 
5796 static int ata_port_runtime_resume(struct device *dev)
5797 {
5798 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5799 	return 0;
5800 }
5801 
5802 static const struct dev_pm_ops ata_port_pm_ops = {
5803 	.suspend = ata_port_pm_suspend,
5804 	.resume = ata_port_pm_resume,
5805 	.freeze = ata_port_pm_freeze,
5806 	.thaw = ata_port_pm_resume,
5807 	.poweroff = ata_port_pm_poweroff,
5808 	.restore = ata_port_pm_resume,
5809 
5810 	.runtime_suspend = ata_port_runtime_suspend,
5811 	.runtime_resume = ata_port_runtime_resume,
5812 	.runtime_idle = ata_port_runtime_idle,
5813 };
5814 
5815 /* sas ports don't participate in pm runtime management of ata_ports,
5816  * and need to resume ata devices at the domain level, not the per-port
5817  * level. sas suspend/resume is async to allow parallel port recovery
5818  * since sas has multiple ata_port instances per Scsi_Host.
5819  */
5820 void ata_sas_port_suspend(struct ata_port *ap)
5821 {
5822 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5823 }
5824 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5825 
5826 void ata_sas_port_resume(struct ata_port *ap)
5827 {
5828 	ata_port_resume_async(ap, PMSG_RESUME);
5829 }
5830 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5831 
5832 /**
5833  *	ata_host_suspend - suspend host
5834  *	@host: host to suspend
5835  *	@mesg: PM message
5836  *
5837  *	Suspend @host.  Actual operation is performed by port suspend.
5838  */
5839 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5840 {
5841 	host->dev->power.power_state = mesg;
5842 	return 0;
5843 }
5844 
5845 /**
5846  *	ata_host_resume - resume host
5847  *	@host: host to resume
5848  *
5849  *	Resume @host.  Actual operation is performed by port resume.
5850  */
5851 void ata_host_resume(struct ata_host *host)
5852 {
5853 	host->dev->power.power_state = PMSG_ON;
5854 }
5855 #endif
5856 
5857 const struct device_type ata_port_type = {
5858 	.name = "ata_port",
5859 #ifdef CONFIG_PM
5860 	.pm = &ata_port_pm_ops,
5861 #endif
5862 };
5863 
5864 /**
5865  *	ata_dev_init - Initialize an ata_device structure
5866  *	@dev: Device structure to initialize
5867  *
5868  *	Initialize @dev in preparation for probing.
5869  *
5870  *	LOCKING:
5871  *	Inherited from caller.
5872  */
5873 void ata_dev_init(struct ata_device *dev)
5874 {
5875 	struct ata_link *link = ata_dev_phys_link(dev);
5876 	struct ata_port *ap = link->ap;
5877 	unsigned long flags;
5878 
5879 	/* SATA spd limit is bound to the attached device, reset together */
5880 	link->sata_spd_limit = link->hw_sata_spd_limit;
5881 	link->sata_spd = 0;
5882 
5883 	/* High bits of dev->flags are used to record warm plug
5884 	 * requests which occur asynchronously.  Synchronize using
5885 	 * host lock.
5886 	 */
5887 	spin_lock_irqsave(ap->lock, flags);
5888 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5889 	dev->horkage = 0;
5890 	spin_unlock_irqrestore(ap->lock, flags);
5891 
5892 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5893 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5894 	dev->pio_mask = UINT_MAX;
5895 	dev->mwdma_mask = UINT_MAX;
5896 	dev->udma_mask = UINT_MAX;
5897 }
5898 
5899 /**
5900  *	ata_link_init - Initialize an ata_link structure
5901  *	@ap: ATA port link is attached to
5902  *	@link: Link structure to initialize
5903  *	@pmp: Port multiplier port number
5904  *
5905  *	Initialize @link.
5906  *
5907  *	LOCKING:
5908  *	Kernel thread context (may sleep)
5909  */
5910 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5911 {
5912 	int i;
5913 
5914 	/* clear everything except for devices */
5915 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5916 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5917 
5918 	link->ap = ap;
5919 	link->pmp = pmp;
5920 	link->active_tag = ATA_TAG_POISON;
5921 	link->hw_sata_spd_limit = UINT_MAX;
5922 
5923 	/* can't use iterator, ap isn't initialized yet */
5924 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5925 		struct ata_device *dev = &link->device[i];
5926 
5927 		dev->link = link;
5928 		dev->devno = dev - link->device;
5929 #ifdef CONFIG_ATA_ACPI
5930 		dev->gtf_filter = ata_acpi_gtf_filter;
5931 #endif
5932 		ata_dev_init(dev);
5933 	}
5934 }
5935 
5936 /**
5937  *	sata_link_init_spd - Initialize link->sata_spd_limit
5938  *	@link: Link to configure sata_spd_limit for
5939  *
5940  *	Initialize @link->[hw_]sata_spd_limit to the currently
5941  *	configured value.
5942  *
5943  *	LOCKING:
5944  *	Kernel thread context (may sleep).
5945  *
5946  *	RETURNS:
5947  *	0 on success, -errno on failure.
5948  */
5949 int sata_link_init_spd(struct ata_link *link)
5950 {
5951 	u8 spd;
5952 	int rc;
5953 
5954 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5955 	if (rc)
5956 		return rc;
5957 
5958 	spd = (link->saved_scontrol >> 4) & 0xf;
5959 	if (spd)
5960 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5961 
5962 	ata_force_link_limits(link);
5963 
5964 	link->sata_spd_limit = link->hw_sata_spd_limit;
5965 
5966 	return 0;
5967 }
5968 
5969 /**
5970  *	ata_port_alloc - allocate and initialize basic ATA port resources
5971  *	@host: ATA host this allocated port belongs to
5972  *
5973  *	Allocate and initialize basic ATA port resources.
5974  *
5975  *	RETURNS:
5976  *	Allocate ATA port on success, NULL on failure.
5977  *
5978  *	LOCKING:
5979  *	Inherited from calling layer (may sleep).
5980  */
5981 struct ata_port *ata_port_alloc(struct ata_host *host)
5982 {
5983 	struct ata_port *ap;
5984 
5985 	DPRINTK("ENTER\n");
5986 
5987 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5988 	if (!ap)
5989 		return NULL;
5990 
5991 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5992 	ap->lock = &host->lock;
5993 	ap->print_id = -1;
5994 	ap->local_port_no = -1;
5995 	ap->host = host;
5996 	ap->dev = host->dev;
5997 
5998 #if defined(ATA_VERBOSE_DEBUG)
5999 	/* turn on all debugging levels */
6000 	ap->msg_enable = 0x00FF;
6001 #elif defined(ATA_DEBUG)
6002 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6003 #else
6004 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6005 #endif
6006 
6007 	mutex_init(&ap->scsi_scan_mutex);
6008 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6009 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6010 	INIT_LIST_HEAD(&ap->eh_done_q);
6011 	init_waitqueue_head(&ap->eh_wait_q);
6012 	init_completion(&ap->park_req_pending);
6013 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6014 		    TIMER_DEFERRABLE);
6015 
6016 	ap->cbl = ATA_CBL_NONE;
6017 
6018 	ata_link_init(ap, &ap->link, 0);
6019 
6020 #ifdef ATA_IRQ_TRAP
6021 	ap->stats.unhandled_irq = 1;
6022 	ap->stats.idle_irq = 1;
6023 #endif
6024 	ata_sff_port_init(ap);
6025 
6026 	return ap;
6027 }
6028 
6029 static void ata_devres_release(struct device *gendev, void *res)
6030 {
6031 	struct ata_host *host = dev_get_drvdata(gendev);
6032 	int i;
6033 
6034 	for (i = 0; i < host->n_ports; i++) {
6035 		struct ata_port *ap = host->ports[i];
6036 
6037 		if (!ap)
6038 			continue;
6039 
6040 		if (ap->scsi_host)
6041 			scsi_host_put(ap->scsi_host);
6042 
6043 	}
6044 
6045 	dev_set_drvdata(gendev, NULL);
6046 	ata_host_put(host);
6047 }
6048 
6049 static void ata_host_release(struct kref *kref)
6050 {
6051 	struct ata_host *host = container_of(kref, struct ata_host, kref);
6052 	int i;
6053 
6054 	for (i = 0; i < host->n_ports; i++) {
6055 		struct ata_port *ap = host->ports[i];
6056 
6057 		kfree(ap->pmp_link);
6058 		kfree(ap->slave_link);
6059 		kfree(ap);
6060 		host->ports[i] = NULL;
6061 	}
6062 	kfree(host);
6063 }
6064 
6065 void ata_host_get(struct ata_host *host)
6066 {
6067 	kref_get(&host->kref);
6068 }
6069 
6070 void ata_host_put(struct ata_host *host)
6071 {
6072 	kref_put(&host->kref, ata_host_release);
6073 }
6074 
6075 /**
6076  *	ata_host_alloc - allocate and init basic ATA host resources
6077  *	@dev: generic device this host is associated with
6078  *	@max_ports: maximum number of ATA ports associated with this host
6079  *
6080  *	Allocate and initialize basic ATA host resources.  LLD calls
6081  *	this function to allocate a host, initializes it fully and
6082  *	attaches it using ata_host_register().
6083  *
6084  *	@max_ports ports are allocated and host->n_ports is
6085  *	initialized to @max_ports.  The caller is allowed to decrease
6086  *	host->n_ports before calling ata_host_register().  The unused
6087  *	ports will be automatically freed on registration.
6088  *
6089  *	RETURNS:
6090  *	Allocate ATA host on success, NULL on failure.
6091  *
6092  *	LOCKING:
6093  *	Inherited from calling layer (may sleep).
6094  */
6095 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6096 {
6097 	struct ata_host *host;
6098 	size_t sz;
6099 	int i;
6100 	void *dr;
6101 
6102 	DPRINTK("ENTER\n");
6103 
6104 	/* alloc a container for our list of ATA ports (buses) */
6105 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6106 	host = kzalloc(sz, GFP_KERNEL);
6107 	if (!host)
6108 		return NULL;
6109 
6110 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
6111 		goto err_free;
6112 
6113 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
6114 	if (!dr)
6115 		goto err_out;
6116 
6117 	devres_add(dev, dr);
6118 	dev_set_drvdata(dev, host);
6119 
6120 	spin_lock_init(&host->lock);
6121 	mutex_init(&host->eh_mutex);
6122 	host->dev = dev;
6123 	host->n_ports = max_ports;
6124 	kref_init(&host->kref);
6125 
6126 	/* allocate ports bound to this host */
6127 	for (i = 0; i < max_ports; i++) {
6128 		struct ata_port *ap;
6129 
6130 		ap = ata_port_alloc(host);
6131 		if (!ap)
6132 			goto err_out;
6133 
6134 		ap->port_no = i;
6135 		host->ports[i] = ap;
6136 	}
6137 
6138 	devres_remove_group(dev, NULL);
6139 	return host;
6140 
6141  err_out:
6142 	devres_release_group(dev, NULL);
6143  err_free:
6144 	kfree(host);
6145 	return NULL;
6146 }
6147 
6148 /**
6149  *	ata_host_alloc_pinfo - alloc host and init with port_info array
6150  *	@dev: generic device this host is associated with
6151  *	@ppi: array of ATA port_info to initialize host with
6152  *	@n_ports: number of ATA ports attached to this host
6153  *
6154  *	Allocate ATA host and initialize with info from @ppi.  If NULL
6155  *	terminated, @ppi may contain fewer entries than @n_ports.  The
6156  *	last entry will be used for the remaining ports.
6157  *
6158  *	RETURNS:
6159  *	Allocate ATA host on success, NULL on failure.
6160  *
6161  *	LOCKING:
6162  *	Inherited from calling layer (may sleep).
6163  */
6164 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6165 				      const struct ata_port_info * const * ppi,
6166 				      int n_ports)
6167 {
6168 	const struct ata_port_info *pi;
6169 	struct ata_host *host;
6170 	int i, j;
6171 
6172 	host = ata_host_alloc(dev, n_ports);
6173 	if (!host)
6174 		return NULL;
6175 
6176 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6177 		struct ata_port *ap = host->ports[i];
6178 
6179 		if (ppi[j])
6180 			pi = ppi[j++];
6181 
6182 		ap->pio_mask = pi->pio_mask;
6183 		ap->mwdma_mask = pi->mwdma_mask;
6184 		ap->udma_mask = pi->udma_mask;
6185 		ap->flags |= pi->flags;
6186 		ap->link.flags |= pi->link_flags;
6187 		ap->ops = pi->port_ops;
6188 
6189 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6190 			host->ops = pi->port_ops;
6191 	}
6192 
6193 	return host;
6194 }
6195 
6196 /**
6197  *	ata_slave_link_init - initialize slave link
6198  *	@ap: port to initialize slave link for
6199  *
6200  *	Create and initialize slave link for @ap.  This enables slave
6201  *	link handling on the port.
6202  *
6203  *	In libata, a port contains links and a link contains devices.
6204  *	There is single host link but if a PMP is attached to it,
6205  *	there can be multiple fan-out links.  On SATA, there's usually
6206  *	a single device connected to a link but PATA and SATA
6207  *	controllers emulating TF based interface can have two - master
6208  *	and slave.
6209  *
6210  *	However, there are a few controllers which don't fit into this
6211  *	abstraction too well - SATA controllers which emulate TF
6212  *	interface with both master and slave devices but also have
6213  *	separate SCR register sets for each device.  These controllers
6214  *	need separate links for physical link handling
6215  *	(e.g. onlineness, link speed) but should be treated like a
6216  *	traditional M/S controller for everything else (e.g. command
6217  *	issue, softreset).
6218  *
6219  *	slave_link is libata's way of handling this class of
6220  *	controllers without impacting core layer too much.  For
6221  *	anything other than physical link handling, the default host
6222  *	link is used for both master and slave.  For physical link
6223  *	handling, separate @ap->slave_link is used.  All dirty details
6224  *	are implemented inside libata core layer.  From LLD's POV, the
6225  *	only difference is that prereset, hardreset and postreset are
6226  *	called once more for the slave link, so the reset sequence
6227  *	looks like the following.
6228  *
6229  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6230  *	softreset(M) -> postreset(M) -> postreset(S)
6231  *
6232  *	Note that softreset is called only for the master.  Softreset
6233  *	resets both M/S by definition, so SRST on master should handle
6234  *	both (the standard method will work just fine).
6235  *
6236  *	LOCKING:
6237  *	Should be called before host is registered.
6238  *
6239  *	RETURNS:
6240  *	0 on success, -errno on failure.
6241  */
6242 int ata_slave_link_init(struct ata_port *ap)
6243 {
6244 	struct ata_link *link;
6245 
6246 	WARN_ON(ap->slave_link);
6247 	WARN_ON(ap->flags & ATA_FLAG_PMP);
6248 
6249 	link = kzalloc(sizeof(*link), GFP_KERNEL);
6250 	if (!link)
6251 		return -ENOMEM;
6252 
6253 	ata_link_init(ap, link, 1);
6254 	ap->slave_link = link;
6255 	return 0;
6256 }
6257 
6258 static void ata_host_stop(struct device *gendev, void *res)
6259 {
6260 	struct ata_host *host = dev_get_drvdata(gendev);
6261 	int i;
6262 
6263 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
6264 
6265 	for (i = 0; i < host->n_ports; i++) {
6266 		struct ata_port *ap = host->ports[i];
6267 
6268 		if (ap->ops->port_stop)
6269 			ap->ops->port_stop(ap);
6270 	}
6271 
6272 	if (host->ops->host_stop)
6273 		host->ops->host_stop(host);
6274 }
6275 
6276 /**
6277  *	ata_finalize_port_ops - finalize ata_port_operations
6278  *	@ops: ata_port_operations to finalize
6279  *
6280  *	An ata_port_operations can inherit from another ops and that
6281  *	ops can again inherit from another.  This can go on as many
6282  *	times as necessary as long as there is no loop in the
6283  *	inheritance chain.
6284  *
6285  *	Ops tables are finalized when the host is started.  NULL or
6286  *	unspecified entries are inherited from the closet ancestor
6287  *	which has the method and the entry is populated with it.
6288  *	After finalization, the ops table directly points to all the
6289  *	methods and ->inherits is no longer necessary and cleared.
6290  *
6291  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6292  *
6293  *	LOCKING:
6294  *	None.
6295  */
6296 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6297 {
6298 	static DEFINE_SPINLOCK(lock);
6299 	const struct ata_port_operations *cur;
6300 	void **begin = (void **)ops;
6301 	void **end = (void **)&ops->inherits;
6302 	void **pp;
6303 
6304 	if (!ops || !ops->inherits)
6305 		return;
6306 
6307 	spin_lock(&lock);
6308 
6309 	for (cur = ops->inherits; cur; cur = cur->inherits) {
6310 		void **inherit = (void **)cur;
6311 
6312 		for (pp = begin; pp < end; pp++, inherit++)
6313 			if (!*pp)
6314 				*pp = *inherit;
6315 	}
6316 
6317 	for (pp = begin; pp < end; pp++)
6318 		if (IS_ERR(*pp))
6319 			*pp = NULL;
6320 
6321 	ops->inherits = NULL;
6322 
6323 	spin_unlock(&lock);
6324 }
6325 
6326 /**
6327  *	ata_host_start - start and freeze ports of an ATA host
6328  *	@host: ATA host to start ports for
6329  *
6330  *	Start and then freeze ports of @host.  Started status is
6331  *	recorded in host->flags, so this function can be called
6332  *	multiple times.  Ports are guaranteed to get started only
6333  *	once.  If host->ops isn't initialized yet, its set to the
6334  *	first non-dummy port ops.
6335  *
6336  *	LOCKING:
6337  *	Inherited from calling layer (may sleep).
6338  *
6339  *	RETURNS:
6340  *	0 if all ports are started successfully, -errno otherwise.
6341  */
6342 int ata_host_start(struct ata_host *host)
6343 {
6344 	int have_stop = 0;
6345 	void *start_dr = NULL;
6346 	int i, rc;
6347 
6348 	if (host->flags & ATA_HOST_STARTED)
6349 		return 0;
6350 
6351 	ata_finalize_port_ops(host->ops);
6352 
6353 	for (i = 0; i < host->n_ports; i++) {
6354 		struct ata_port *ap = host->ports[i];
6355 
6356 		ata_finalize_port_ops(ap->ops);
6357 
6358 		if (!host->ops && !ata_port_is_dummy(ap))
6359 			host->ops = ap->ops;
6360 
6361 		if (ap->ops->port_stop)
6362 			have_stop = 1;
6363 	}
6364 
6365 	if (host->ops->host_stop)
6366 		have_stop = 1;
6367 
6368 	if (have_stop) {
6369 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6370 		if (!start_dr)
6371 			return -ENOMEM;
6372 	}
6373 
6374 	for (i = 0; i < host->n_ports; i++) {
6375 		struct ata_port *ap = host->ports[i];
6376 
6377 		if (ap->ops->port_start) {
6378 			rc = ap->ops->port_start(ap);
6379 			if (rc) {
6380 				if (rc != -ENODEV)
6381 					dev_err(host->dev,
6382 						"failed to start port %d (errno=%d)\n",
6383 						i, rc);
6384 				goto err_out;
6385 			}
6386 		}
6387 		ata_eh_freeze_port(ap);
6388 	}
6389 
6390 	if (start_dr)
6391 		devres_add(host->dev, start_dr);
6392 	host->flags |= ATA_HOST_STARTED;
6393 	return 0;
6394 
6395  err_out:
6396 	while (--i >= 0) {
6397 		struct ata_port *ap = host->ports[i];
6398 
6399 		if (ap->ops->port_stop)
6400 			ap->ops->port_stop(ap);
6401 	}
6402 	devres_free(start_dr);
6403 	return rc;
6404 }
6405 
6406 /**
6407  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6408  *	@host:	host to initialize
6409  *	@dev:	device host is attached to
6410  *	@ops:	port_ops
6411  *
6412  */
6413 void ata_host_init(struct ata_host *host, struct device *dev,
6414 		   struct ata_port_operations *ops)
6415 {
6416 	spin_lock_init(&host->lock);
6417 	mutex_init(&host->eh_mutex);
6418 	host->n_tags = ATA_MAX_QUEUE - 1;
6419 	host->dev = dev;
6420 	host->ops = ops;
6421 }
6422 
6423 void __ata_port_probe(struct ata_port *ap)
6424 {
6425 	struct ata_eh_info *ehi = &ap->link.eh_info;
6426 	unsigned long flags;
6427 
6428 	/* kick EH for boot probing */
6429 	spin_lock_irqsave(ap->lock, flags);
6430 
6431 	ehi->probe_mask |= ATA_ALL_DEVICES;
6432 	ehi->action |= ATA_EH_RESET;
6433 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6434 
6435 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6436 	ap->pflags |= ATA_PFLAG_LOADING;
6437 	ata_port_schedule_eh(ap);
6438 
6439 	spin_unlock_irqrestore(ap->lock, flags);
6440 }
6441 
6442 int ata_port_probe(struct ata_port *ap)
6443 {
6444 	int rc = 0;
6445 
6446 	if (ap->ops->error_handler) {
6447 		__ata_port_probe(ap);
6448 		ata_port_wait_eh(ap);
6449 	} else {
6450 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6451 		rc = ata_bus_probe(ap);
6452 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6453 	}
6454 	return rc;
6455 }
6456 
6457 
6458 static void async_port_probe(void *data, async_cookie_t cookie)
6459 {
6460 	struct ata_port *ap = data;
6461 
6462 	/*
6463 	 * If we're not allowed to scan this host in parallel,
6464 	 * we need to wait until all previous scans have completed
6465 	 * before going further.
6466 	 * Jeff Garzik says this is only within a controller, so we
6467 	 * don't need to wait for port 0, only for later ports.
6468 	 */
6469 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6470 		async_synchronize_cookie(cookie);
6471 
6472 	(void)ata_port_probe(ap);
6473 
6474 	/* in order to keep device order, we need to synchronize at this point */
6475 	async_synchronize_cookie(cookie);
6476 
6477 	ata_scsi_scan_host(ap, 1);
6478 }
6479 
6480 /**
6481  *	ata_host_register - register initialized ATA host
6482  *	@host: ATA host to register
6483  *	@sht: template for SCSI host
6484  *
6485  *	Register initialized ATA host.  @host is allocated using
6486  *	ata_host_alloc() and fully initialized by LLD.  This function
6487  *	starts ports, registers @host with ATA and SCSI layers and
6488  *	probe registered devices.
6489  *
6490  *	LOCKING:
6491  *	Inherited from calling layer (may sleep).
6492  *
6493  *	RETURNS:
6494  *	0 on success, -errno otherwise.
6495  */
6496 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6497 {
6498 	int i, rc;
6499 
6500 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6501 
6502 	/* host must have been started */
6503 	if (!(host->flags & ATA_HOST_STARTED)) {
6504 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6505 		WARN_ON(1);
6506 		return -EINVAL;
6507 	}
6508 
6509 	/* Blow away unused ports.  This happens when LLD can't
6510 	 * determine the exact number of ports to allocate at
6511 	 * allocation time.
6512 	 */
6513 	for (i = host->n_ports; host->ports[i]; i++)
6514 		kfree(host->ports[i]);
6515 
6516 	/* give ports names and add SCSI hosts */
6517 	for (i = 0; i < host->n_ports; i++) {
6518 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6519 		host->ports[i]->local_port_no = i + 1;
6520 	}
6521 
6522 	/* Create associated sysfs transport objects  */
6523 	for (i = 0; i < host->n_ports; i++) {
6524 		rc = ata_tport_add(host->dev,host->ports[i]);
6525 		if (rc) {
6526 			goto err_tadd;
6527 		}
6528 	}
6529 
6530 	rc = ata_scsi_add_hosts(host, sht);
6531 	if (rc)
6532 		goto err_tadd;
6533 
6534 	/* set cable, sata_spd_limit and report */
6535 	for (i = 0; i < host->n_ports; i++) {
6536 		struct ata_port *ap = host->ports[i];
6537 		unsigned long xfer_mask;
6538 
6539 		/* set SATA cable type if still unset */
6540 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6541 			ap->cbl = ATA_CBL_SATA;
6542 
6543 		/* init sata_spd_limit to the current value */
6544 		sata_link_init_spd(&ap->link);
6545 		if (ap->slave_link)
6546 			sata_link_init_spd(ap->slave_link);
6547 
6548 		/* print per-port info to dmesg */
6549 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6550 					      ap->udma_mask);
6551 
6552 		if (!ata_port_is_dummy(ap)) {
6553 			ata_port_info(ap, "%cATA max %s %s\n",
6554 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6555 				      ata_mode_string(xfer_mask),
6556 				      ap->link.eh_info.desc);
6557 			ata_ehi_clear_desc(&ap->link.eh_info);
6558 		} else
6559 			ata_port_info(ap, "DUMMY\n");
6560 	}
6561 
6562 	/* perform each probe asynchronously */
6563 	for (i = 0; i < host->n_ports; i++) {
6564 		struct ata_port *ap = host->ports[i];
6565 		async_schedule(async_port_probe, ap);
6566 	}
6567 
6568 	return 0;
6569 
6570  err_tadd:
6571 	while (--i >= 0) {
6572 		ata_tport_delete(host->ports[i]);
6573 	}
6574 	return rc;
6575 
6576 }
6577 
6578 /**
6579  *	ata_host_activate - start host, request IRQ and register it
6580  *	@host: target ATA host
6581  *	@irq: IRQ to request
6582  *	@irq_handler: irq_handler used when requesting IRQ
6583  *	@irq_flags: irq_flags used when requesting IRQ
6584  *	@sht: scsi_host_template to use when registering the host
6585  *
6586  *	After allocating an ATA host and initializing it, most libata
6587  *	LLDs perform three steps to activate the host - start host,
6588  *	request IRQ and register it.  This helper takes necessary
6589  *	arguments and performs the three steps in one go.
6590  *
6591  *	An invalid IRQ skips the IRQ registration and expects the host to
6592  *	have set polling mode on the port. In this case, @irq_handler
6593  *	should be NULL.
6594  *
6595  *	LOCKING:
6596  *	Inherited from calling layer (may sleep).
6597  *
6598  *	RETURNS:
6599  *	0 on success, -errno otherwise.
6600  */
6601 int ata_host_activate(struct ata_host *host, int irq,
6602 		      irq_handler_t irq_handler, unsigned long irq_flags,
6603 		      struct scsi_host_template *sht)
6604 {
6605 	int i, rc;
6606 	char *irq_desc;
6607 
6608 	rc = ata_host_start(host);
6609 	if (rc)
6610 		return rc;
6611 
6612 	/* Special case for polling mode */
6613 	if (!irq) {
6614 		WARN_ON(irq_handler);
6615 		return ata_host_register(host, sht);
6616 	}
6617 
6618 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6619 				  dev_driver_string(host->dev),
6620 				  dev_name(host->dev));
6621 	if (!irq_desc)
6622 		return -ENOMEM;
6623 
6624 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6625 			      irq_desc, host);
6626 	if (rc)
6627 		return rc;
6628 
6629 	for (i = 0; i < host->n_ports; i++)
6630 		ata_port_desc(host->ports[i], "irq %d", irq);
6631 
6632 	rc = ata_host_register(host, sht);
6633 	/* if failed, just free the IRQ and leave ports alone */
6634 	if (rc)
6635 		devm_free_irq(host->dev, irq, host);
6636 
6637 	return rc;
6638 }
6639 
6640 /**
6641  *	ata_port_detach - Detach ATA port in preparation of device removal
6642  *	@ap: ATA port to be detached
6643  *
6644  *	Detach all ATA devices and the associated SCSI devices of @ap;
6645  *	then, remove the associated SCSI host.  @ap is guaranteed to
6646  *	be quiescent on return from this function.
6647  *
6648  *	LOCKING:
6649  *	Kernel thread context (may sleep).
6650  */
6651 static void ata_port_detach(struct ata_port *ap)
6652 {
6653 	unsigned long flags;
6654 	struct ata_link *link;
6655 	struct ata_device *dev;
6656 
6657 	if (!ap->ops->error_handler)
6658 		goto skip_eh;
6659 
6660 	/* tell EH we're leaving & flush EH */
6661 	spin_lock_irqsave(ap->lock, flags);
6662 	ap->pflags |= ATA_PFLAG_UNLOADING;
6663 	ata_port_schedule_eh(ap);
6664 	spin_unlock_irqrestore(ap->lock, flags);
6665 
6666 	/* wait till EH commits suicide */
6667 	ata_port_wait_eh(ap);
6668 
6669 	/* it better be dead now */
6670 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6671 
6672 	cancel_delayed_work_sync(&ap->hotplug_task);
6673 
6674  skip_eh:
6675 	/* clean up zpodd on port removal */
6676 	ata_for_each_link(link, ap, HOST_FIRST) {
6677 		ata_for_each_dev(dev, link, ALL) {
6678 			if (zpodd_dev_enabled(dev))
6679 				zpodd_exit(dev);
6680 		}
6681 	}
6682 	if (ap->pmp_link) {
6683 		int i;
6684 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6685 			ata_tlink_delete(&ap->pmp_link[i]);
6686 	}
6687 	/* remove the associated SCSI host */
6688 	scsi_remove_host(ap->scsi_host);
6689 	ata_tport_delete(ap);
6690 }
6691 
6692 /**
6693  *	ata_host_detach - Detach all ports of an ATA host
6694  *	@host: Host to detach
6695  *
6696  *	Detach all ports of @host.
6697  *
6698  *	LOCKING:
6699  *	Kernel thread context (may sleep).
6700  */
6701 void ata_host_detach(struct ata_host *host)
6702 {
6703 	int i;
6704 
6705 	for (i = 0; i < host->n_ports; i++)
6706 		ata_port_detach(host->ports[i]);
6707 
6708 	/* the host is dead now, dissociate ACPI */
6709 	ata_acpi_dissociate(host);
6710 }
6711 
6712 #ifdef CONFIG_PCI
6713 
6714 /**
6715  *	ata_pci_remove_one - PCI layer callback for device removal
6716  *	@pdev: PCI device that was removed
6717  *
6718  *	PCI layer indicates to libata via this hook that hot-unplug or
6719  *	module unload event has occurred.  Detach all ports.  Resource
6720  *	release is handled via devres.
6721  *
6722  *	LOCKING:
6723  *	Inherited from PCI layer (may sleep).
6724  */
6725 void ata_pci_remove_one(struct pci_dev *pdev)
6726 {
6727 	struct ata_host *host = pci_get_drvdata(pdev);
6728 
6729 	ata_host_detach(host);
6730 }
6731 
6732 /* move to PCI subsystem */
6733 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6734 {
6735 	unsigned long tmp = 0;
6736 
6737 	switch (bits->width) {
6738 	case 1: {
6739 		u8 tmp8 = 0;
6740 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6741 		tmp = tmp8;
6742 		break;
6743 	}
6744 	case 2: {
6745 		u16 tmp16 = 0;
6746 		pci_read_config_word(pdev, bits->reg, &tmp16);
6747 		tmp = tmp16;
6748 		break;
6749 	}
6750 	case 4: {
6751 		u32 tmp32 = 0;
6752 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6753 		tmp = tmp32;
6754 		break;
6755 	}
6756 
6757 	default:
6758 		return -EINVAL;
6759 	}
6760 
6761 	tmp &= bits->mask;
6762 
6763 	return (tmp == bits->val) ? 1 : 0;
6764 }
6765 
6766 #ifdef CONFIG_PM
6767 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6768 {
6769 	pci_save_state(pdev);
6770 	pci_disable_device(pdev);
6771 
6772 	if (mesg.event & PM_EVENT_SLEEP)
6773 		pci_set_power_state(pdev, PCI_D3hot);
6774 }
6775 
6776 int ata_pci_device_do_resume(struct pci_dev *pdev)
6777 {
6778 	int rc;
6779 
6780 	pci_set_power_state(pdev, PCI_D0);
6781 	pci_restore_state(pdev);
6782 
6783 	rc = pcim_enable_device(pdev);
6784 	if (rc) {
6785 		dev_err(&pdev->dev,
6786 			"failed to enable device after resume (%d)\n", rc);
6787 		return rc;
6788 	}
6789 
6790 	pci_set_master(pdev);
6791 	return 0;
6792 }
6793 
6794 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6795 {
6796 	struct ata_host *host = pci_get_drvdata(pdev);
6797 	int rc = 0;
6798 
6799 	rc = ata_host_suspend(host, mesg);
6800 	if (rc)
6801 		return rc;
6802 
6803 	ata_pci_device_do_suspend(pdev, mesg);
6804 
6805 	return 0;
6806 }
6807 
6808 int ata_pci_device_resume(struct pci_dev *pdev)
6809 {
6810 	struct ata_host *host = pci_get_drvdata(pdev);
6811 	int rc;
6812 
6813 	rc = ata_pci_device_do_resume(pdev);
6814 	if (rc == 0)
6815 		ata_host_resume(host);
6816 	return rc;
6817 }
6818 #endif /* CONFIG_PM */
6819 
6820 #endif /* CONFIG_PCI */
6821 
6822 /**
6823  *	ata_platform_remove_one - Platform layer callback for device removal
6824  *	@pdev: Platform device that was removed
6825  *
6826  *	Platform layer indicates to libata via this hook that hot-unplug or
6827  *	module unload event has occurred.  Detach all ports.  Resource
6828  *	release is handled via devres.
6829  *
6830  *	LOCKING:
6831  *	Inherited from platform layer (may sleep).
6832  */
6833 int ata_platform_remove_one(struct platform_device *pdev)
6834 {
6835 	struct ata_host *host = platform_get_drvdata(pdev);
6836 
6837 	ata_host_detach(host);
6838 
6839 	return 0;
6840 }
6841 
6842 static int __init ata_parse_force_one(char **cur,
6843 				      struct ata_force_ent *force_ent,
6844 				      const char **reason)
6845 {
6846 	static const struct ata_force_param force_tbl[] __initconst = {
6847 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6848 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6849 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6850 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6851 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6852 		{ "sata",	.cbl		= ATA_CBL_SATA },
6853 		{ "1.5Gbps",	.spd_limit	= 1 },
6854 		{ "3.0Gbps",	.spd_limit	= 2 },
6855 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6856 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6857 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6858 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6859 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6860 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6861 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6862 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6863 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6864 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6865 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6866 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6867 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6868 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6869 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6870 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6871 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6872 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6873 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6874 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6875 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6876 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6877 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6878 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6879 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6880 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6881 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6882 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6883 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6884 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6885 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6886 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6887 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6888 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6889 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6890 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6891 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6892 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6893 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6894 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6895 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6896 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6897 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6898 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6899 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6900 	};
6901 	char *start = *cur, *p = *cur;
6902 	char *id, *val, *endp;
6903 	const struct ata_force_param *match_fp = NULL;
6904 	int nr_matches = 0, i;
6905 
6906 	/* find where this param ends and update *cur */
6907 	while (*p != '\0' && *p != ',')
6908 		p++;
6909 
6910 	if (*p == '\0')
6911 		*cur = p;
6912 	else
6913 		*cur = p + 1;
6914 
6915 	*p = '\0';
6916 
6917 	/* parse */
6918 	p = strchr(start, ':');
6919 	if (!p) {
6920 		val = strstrip(start);
6921 		goto parse_val;
6922 	}
6923 	*p = '\0';
6924 
6925 	id = strstrip(start);
6926 	val = strstrip(p + 1);
6927 
6928 	/* parse id */
6929 	p = strchr(id, '.');
6930 	if (p) {
6931 		*p++ = '\0';
6932 		force_ent->device = simple_strtoul(p, &endp, 10);
6933 		if (p == endp || *endp != '\0') {
6934 			*reason = "invalid device";
6935 			return -EINVAL;
6936 		}
6937 	}
6938 
6939 	force_ent->port = simple_strtoul(id, &endp, 10);
6940 	if (id == endp || *endp != '\0') {
6941 		*reason = "invalid port/link";
6942 		return -EINVAL;
6943 	}
6944 
6945  parse_val:
6946 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6947 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6948 		const struct ata_force_param *fp = &force_tbl[i];
6949 
6950 		if (strncasecmp(val, fp->name, strlen(val)))
6951 			continue;
6952 
6953 		nr_matches++;
6954 		match_fp = fp;
6955 
6956 		if (strcasecmp(val, fp->name) == 0) {
6957 			nr_matches = 1;
6958 			break;
6959 		}
6960 	}
6961 
6962 	if (!nr_matches) {
6963 		*reason = "unknown value";
6964 		return -EINVAL;
6965 	}
6966 	if (nr_matches > 1) {
6967 		*reason = "ambiguous value";
6968 		return -EINVAL;
6969 	}
6970 
6971 	force_ent->param = *match_fp;
6972 
6973 	return 0;
6974 }
6975 
6976 static void __init ata_parse_force_param(void)
6977 {
6978 	int idx = 0, size = 1;
6979 	int last_port = -1, last_device = -1;
6980 	char *p, *cur, *next;
6981 
6982 	/* calculate maximum number of params and allocate force_tbl */
6983 	for (p = ata_force_param_buf; *p; p++)
6984 		if (*p == ',')
6985 			size++;
6986 
6987 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6988 	if (!ata_force_tbl) {
6989 		printk(KERN_WARNING "ata: failed to extend force table, "
6990 		       "libata.force ignored\n");
6991 		return;
6992 	}
6993 
6994 	/* parse and populate the table */
6995 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6996 		const char *reason = "";
6997 		struct ata_force_ent te = { .port = -1, .device = -1 };
6998 
6999 		next = cur;
7000 		if (ata_parse_force_one(&next, &te, &reason)) {
7001 			printk(KERN_WARNING "ata: failed to parse force "
7002 			       "parameter \"%s\" (%s)\n",
7003 			       cur, reason);
7004 			continue;
7005 		}
7006 
7007 		if (te.port == -1) {
7008 			te.port = last_port;
7009 			te.device = last_device;
7010 		}
7011 
7012 		ata_force_tbl[idx++] = te;
7013 
7014 		last_port = te.port;
7015 		last_device = te.device;
7016 	}
7017 
7018 	ata_force_tbl_size = idx;
7019 }
7020 
7021 static int __init ata_init(void)
7022 {
7023 	int rc;
7024 
7025 	ata_parse_force_param();
7026 
7027 	rc = ata_sff_init();
7028 	if (rc) {
7029 		kfree(ata_force_tbl);
7030 		return rc;
7031 	}
7032 
7033 	libata_transport_init();
7034 	ata_scsi_transport_template = ata_attach_transport();
7035 	if (!ata_scsi_transport_template) {
7036 		ata_sff_exit();
7037 		rc = -ENOMEM;
7038 		goto err_out;
7039 	}
7040 
7041 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7042 	return 0;
7043 
7044 err_out:
7045 	return rc;
7046 }
7047 
7048 static void __exit ata_exit(void)
7049 {
7050 	ata_release_transport(ata_scsi_transport_template);
7051 	libata_transport_exit();
7052 	ata_sff_exit();
7053 	kfree(ata_force_tbl);
7054 }
7055 
7056 subsys_initcall(ata_init);
7057 module_exit(ata_exit);
7058 
7059 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7060 
7061 int ata_ratelimit(void)
7062 {
7063 	return __ratelimit(&ratelimit);
7064 }
7065 
7066 /**
7067  *	ata_msleep - ATA EH owner aware msleep
7068  *	@ap: ATA port to attribute the sleep to
7069  *	@msecs: duration to sleep in milliseconds
7070  *
7071  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
7072  *	ownership is released before going to sleep and reacquired
7073  *	after the sleep is complete.  IOW, other ports sharing the
7074  *	@ap->host will be allowed to own the EH while this task is
7075  *	sleeping.
7076  *
7077  *	LOCKING:
7078  *	Might sleep.
7079  */
7080 void ata_msleep(struct ata_port *ap, unsigned int msecs)
7081 {
7082 	bool owns_eh = ap && ap->host->eh_owner == current;
7083 
7084 	if (owns_eh)
7085 		ata_eh_release(ap);
7086 
7087 	if (msecs < 20) {
7088 		unsigned long usecs = msecs * USEC_PER_MSEC;
7089 		usleep_range(usecs, usecs + 50);
7090 	} else {
7091 		msleep(msecs);
7092 	}
7093 
7094 	if (owns_eh)
7095 		ata_eh_acquire(ap);
7096 }
7097 
7098 /**
7099  *	ata_wait_register - wait until register value changes
7100  *	@ap: ATA port to wait register for, can be NULL
7101  *	@reg: IO-mapped register
7102  *	@mask: Mask to apply to read register value
7103  *	@val: Wait condition
7104  *	@interval: polling interval in milliseconds
7105  *	@timeout: timeout in milliseconds
7106  *
7107  *	Waiting for some bits of register to change is a common
7108  *	operation for ATA controllers.  This function reads 32bit LE
7109  *	IO-mapped register @reg and tests for the following condition.
7110  *
7111  *	(*@reg & mask) != val
7112  *
7113  *	If the condition is met, it returns; otherwise, the process is
7114  *	repeated after @interval_msec until timeout.
7115  *
7116  *	LOCKING:
7117  *	Kernel thread context (may sleep)
7118  *
7119  *	RETURNS:
7120  *	The final register value.
7121  */
7122 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7123 		      unsigned long interval, unsigned long timeout)
7124 {
7125 	unsigned long deadline;
7126 	u32 tmp;
7127 
7128 	tmp = ioread32(reg);
7129 
7130 	/* Calculate timeout _after_ the first read to make sure
7131 	 * preceding writes reach the controller before starting to
7132 	 * eat away the timeout.
7133 	 */
7134 	deadline = ata_deadline(jiffies, timeout);
7135 
7136 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7137 		ata_msleep(ap, interval);
7138 		tmp = ioread32(reg);
7139 	}
7140 
7141 	return tmp;
7142 }
7143 
7144 /**
7145  *	sata_lpm_ignore_phy_events - test if PHY event should be ignored
7146  *	@link: Link receiving the event
7147  *
7148  *	Test whether the received PHY event has to be ignored or not.
7149  *
7150  *	LOCKING:
7151  *	None:
7152  *
7153  *	RETURNS:
7154  *	True if the event has to be ignored.
7155  */
7156 bool sata_lpm_ignore_phy_events(struct ata_link *link)
7157 {
7158 	unsigned long lpm_timeout = link->last_lpm_change +
7159 				    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7160 
7161 	/* if LPM is enabled, PHYRDY doesn't mean anything */
7162 	if (link->lpm_policy > ATA_LPM_MAX_POWER)
7163 		return true;
7164 
7165 	/* ignore the first PHY event after the LPM policy changed
7166 	 * as it is might be spurious
7167 	 */
7168 	if ((link->flags & ATA_LFLAG_CHANGED) &&
7169 	    time_before(jiffies, lpm_timeout))
7170 		return true;
7171 
7172 	return false;
7173 }
7174 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7175 
7176 /*
7177  * Dummy port_ops
7178  */
7179 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7180 {
7181 	return AC_ERR_SYSTEM;
7182 }
7183 
7184 static void ata_dummy_error_handler(struct ata_port *ap)
7185 {
7186 	/* truly dummy */
7187 }
7188 
7189 struct ata_port_operations ata_dummy_port_ops = {
7190 	.qc_prep		= ata_noop_qc_prep,
7191 	.qc_issue		= ata_dummy_qc_issue,
7192 	.error_handler		= ata_dummy_error_handler,
7193 	.sched_eh		= ata_std_sched_eh,
7194 	.end_eh			= ata_std_end_eh,
7195 };
7196 
7197 const struct ata_port_info ata_dummy_port_info = {
7198 	.port_ops		= &ata_dummy_port_ops,
7199 };
7200 
7201 /*
7202  * Utility print functions
7203  */
7204 void ata_port_printk(const struct ata_port *ap, const char *level,
7205 		     const char *fmt, ...)
7206 {
7207 	struct va_format vaf;
7208 	va_list args;
7209 
7210 	va_start(args, fmt);
7211 
7212 	vaf.fmt = fmt;
7213 	vaf.va = &args;
7214 
7215 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
7216 
7217 	va_end(args);
7218 }
7219 EXPORT_SYMBOL(ata_port_printk);
7220 
7221 void ata_link_printk(const struct ata_link *link, const char *level,
7222 		     const char *fmt, ...)
7223 {
7224 	struct va_format vaf;
7225 	va_list args;
7226 
7227 	va_start(args, fmt);
7228 
7229 	vaf.fmt = fmt;
7230 	vaf.va = &args;
7231 
7232 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7233 		printk("%sata%u.%02u: %pV",
7234 		       level, link->ap->print_id, link->pmp, &vaf);
7235 	else
7236 		printk("%sata%u: %pV",
7237 		       level, link->ap->print_id, &vaf);
7238 
7239 	va_end(args);
7240 }
7241 EXPORT_SYMBOL(ata_link_printk);
7242 
7243 void ata_dev_printk(const struct ata_device *dev, const char *level,
7244 		    const char *fmt, ...)
7245 {
7246 	struct va_format vaf;
7247 	va_list args;
7248 
7249 	va_start(args, fmt);
7250 
7251 	vaf.fmt = fmt;
7252 	vaf.va = &args;
7253 
7254 	printk("%sata%u.%02u: %pV",
7255 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7256 	       &vaf);
7257 
7258 	va_end(args);
7259 }
7260 EXPORT_SYMBOL(ata_dev_printk);
7261 
7262 void ata_print_version(const struct device *dev, const char *version)
7263 {
7264 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7265 }
7266 EXPORT_SYMBOL(ata_print_version);
7267 
7268 /*
7269  * libata is essentially a library of internal helper functions for
7270  * low-level ATA host controller drivers.  As such, the API/ABI is
7271  * likely to change as new drivers are added and updated.
7272  * Do not depend on ABI/API stability.
7273  */
7274 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7275 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7276 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7277 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7278 EXPORT_SYMBOL_GPL(sata_port_ops);
7279 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7280 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7281 EXPORT_SYMBOL_GPL(ata_link_next);
7282 EXPORT_SYMBOL_GPL(ata_dev_next);
7283 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7284 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7285 EXPORT_SYMBOL_GPL(ata_host_init);
7286 EXPORT_SYMBOL_GPL(ata_host_alloc);
7287 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7288 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7289 EXPORT_SYMBOL_GPL(ata_host_start);
7290 EXPORT_SYMBOL_GPL(ata_host_register);
7291 EXPORT_SYMBOL_GPL(ata_host_activate);
7292 EXPORT_SYMBOL_GPL(ata_host_detach);
7293 EXPORT_SYMBOL_GPL(ata_sg_init);
7294 EXPORT_SYMBOL_GPL(ata_qc_complete);
7295 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7296 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7297 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7298 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7299 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7300 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7301 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7302 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7303 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7304 EXPORT_SYMBOL_GPL(ata_mode_string);
7305 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7306 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7307 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7308 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7309 EXPORT_SYMBOL_GPL(ata_dev_disable);
7310 EXPORT_SYMBOL_GPL(sata_set_spd);
7311 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7312 EXPORT_SYMBOL_GPL(sata_link_debounce);
7313 EXPORT_SYMBOL_GPL(sata_link_resume);
7314 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7315 EXPORT_SYMBOL_GPL(ata_std_prereset);
7316 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7317 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7318 EXPORT_SYMBOL_GPL(ata_std_postreset);
7319 EXPORT_SYMBOL_GPL(ata_dev_classify);
7320 EXPORT_SYMBOL_GPL(ata_dev_pair);
7321 EXPORT_SYMBOL_GPL(ata_ratelimit);
7322 EXPORT_SYMBOL_GPL(ata_msleep);
7323 EXPORT_SYMBOL_GPL(ata_wait_register);
7324 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7325 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7326 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7327 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7328 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7329 EXPORT_SYMBOL_GPL(sata_scr_valid);
7330 EXPORT_SYMBOL_GPL(sata_scr_read);
7331 EXPORT_SYMBOL_GPL(sata_scr_write);
7332 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7333 EXPORT_SYMBOL_GPL(ata_link_online);
7334 EXPORT_SYMBOL_GPL(ata_link_offline);
7335 #ifdef CONFIG_PM
7336 EXPORT_SYMBOL_GPL(ata_host_suspend);
7337 EXPORT_SYMBOL_GPL(ata_host_resume);
7338 #endif /* CONFIG_PM */
7339 EXPORT_SYMBOL_GPL(ata_id_string);
7340 EXPORT_SYMBOL_GPL(ata_id_c_string);
7341 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7342 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7343 
7344 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7345 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7346 EXPORT_SYMBOL_GPL(ata_timing_compute);
7347 EXPORT_SYMBOL_GPL(ata_timing_merge);
7348 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7349 
7350 #ifdef CONFIG_PCI
7351 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7352 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7353 #ifdef CONFIG_PM
7354 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7355 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7356 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7357 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7358 #endif /* CONFIG_PM */
7359 #endif /* CONFIG_PCI */
7360 
7361 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7362 
7363 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7364 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7365 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7366 EXPORT_SYMBOL_GPL(ata_port_desc);
7367 #ifdef CONFIG_PCI
7368 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7369 #endif /* CONFIG_PCI */
7370 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7371 EXPORT_SYMBOL_GPL(ata_link_abort);
7372 EXPORT_SYMBOL_GPL(ata_port_abort);
7373 EXPORT_SYMBOL_GPL(ata_port_freeze);
7374 EXPORT_SYMBOL_GPL(sata_async_notification);
7375 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7376 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7377 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7378 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7379 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7380 EXPORT_SYMBOL_GPL(ata_do_eh);
7381 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7382 
7383 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7384 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7385 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7386 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7387 EXPORT_SYMBOL_GPL(ata_cable_sata);
7388