1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/jiffies.h> 58 #include <linux/scatterlist.h> 59 #include <linux/io.h> 60 #include <scsi/scsi.h> 61 #include <scsi/scsi_cmnd.h> 62 #include <scsi/scsi_host.h> 63 #include <linux/libata.h> 64 #include <asm/byteorder.h> 65 #include <linux/cdrom.h> 66 67 #include "libata.h" 68 69 70 /* debounce timing parameters in msecs { interval, duration, timeout } */ 71 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 72 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 73 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 74 75 const struct ata_port_operations ata_base_port_ops = { 76 .prereset = ata_std_prereset, 77 .postreset = ata_std_postreset, 78 .error_handler = ata_std_error_handler, 79 }; 80 81 const struct ata_port_operations sata_port_ops = { 82 .inherits = &ata_base_port_ops, 83 84 .qc_defer = ata_std_qc_defer, 85 .hardreset = sata_std_hardreset, 86 }; 87 88 static unsigned int ata_dev_init_params(struct ata_device *dev, 89 u16 heads, u16 sectors); 90 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 91 static unsigned int ata_dev_set_feature(struct ata_device *dev, 92 u8 enable, u8 feature); 93 static void ata_dev_xfermask(struct ata_device *dev); 94 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 95 96 unsigned int ata_print_id = 1; 97 static struct workqueue_struct *ata_wq; 98 99 struct workqueue_struct *ata_aux_wq; 100 101 struct ata_force_param { 102 const char *name; 103 unsigned int cbl; 104 int spd_limit; 105 unsigned long xfer_mask; 106 unsigned int horkage_on; 107 unsigned int horkage_off; 108 }; 109 110 struct ata_force_ent { 111 int port; 112 int device; 113 struct ata_force_param param; 114 }; 115 116 static struct ata_force_ent *ata_force_tbl; 117 static int ata_force_tbl_size; 118 119 static char ata_force_param_buf[PAGE_SIZE] __initdata; 120 /* param_buf is thrown away after initialization, disallow read */ 121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 123 124 int atapi_enabled = 1; 125 module_param(atapi_enabled, int, 0444); 126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); 127 128 static int atapi_dmadir = 0; 129 module_param(atapi_dmadir, int, 0444); 130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)"); 131 132 int atapi_passthru16 = 1; 133 module_param(atapi_passthru16, int, 0444); 134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)"); 135 136 int libata_fua = 0; 137 module_param_named(fua, libata_fua, int, 0444); 138 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)"); 139 140 static int ata_ignore_hpa; 141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 143 144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 145 module_param_named(dma, libata_dma_mask, int, 0444); 146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 147 148 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ; 149 module_param(ata_probe_timeout, int, 0444); 150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 151 152 int libata_noacpi = 0; 153 module_param_named(noacpi, libata_noacpi, int, 0444); 154 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set"); 155 156 int libata_allow_tpm = 0; 157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands"); 159 160 MODULE_AUTHOR("Jeff Garzik"); 161 MODULE_DESCRIPTION("Library module for ATA devices"); 162 MODULE_LICENSE("GPL"); 163 MODULE_VERSION(DRV_VERSION); 164 165 166 /** 167 * ata_force_cbl - force cable type according to libata.force 168 * @ap: ATA port of interest 169 * 170 * Force cable type according to libata.force and whine about it. 171 * The last entry which has matching port number is used, so it 172 * can be specified as part of device force parameters. For 173 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 174 * same effect. 175 * 176 * LOCKING: 177 * EH context. 178 */ 179 void ata_force_cbl(struct ata_port *ap) 180 { 181 int i; 182 183 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 184 const struct ata_force_ent *fe = &ata_force_tbl[i]; 185 186 if (fe->port != -1 && fe->port != ap->print_id) 187 continue; 188 189 if (fe->param.cbl == ATA_CBL_NONE) 190 continue; 191 192 ap->cbl = fe->param.cbl; 193 ata_port_printk(ap, KERN_NOTICE, 194 "FORCE: cable set to %s\n", fe->param.name); 195 return; 196 } 197 } 198 199 /** 200 * ata_force_spd_limit - force SATA spd limit according to libata.force 201 * @link: ATA link of interest 202 * 203 * Force SATA spd limit according to libata.force and whine about 204 * it. When only the port part is specified (e.g. 1:), the limit 205 * applies to all links connected to both the host link and all 206 * fan-out ports connected via PMP. If the device part is 207 * specified as 0 (e.g. 1.00:), it specifies the first fan-out 208 * link not the host link. Device number 15 always points to the 209 * host link whether PMP is attached or not. 210 * 211 * LOCKING: 212 * EH context. 213 */ 214 static void ata_force_spd_limit(struct ata_link *link) 215 { 216 int linkno, i; 217 218 if (ata_is_host_link(link)) 219 linkno = 15; 220 else 221 linkno = link->pmp; 222 223 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 224 const struct ata_force_ent *fe = &ata_force_tbl[i]; 225 226 if (fe->port != -1 && fe->port != link->ap->print_id) 227 continue; 228 229 if (fe->device != -1 && fe->device != linkno) 230 continue; 231 232 if (!fe->param.spd_limit) 233 continue; 234 235 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 236 ata_link_printk(link, KERN_NOTICE, 237 "FORCE: PHY spd limit set to %s\n", fe->param.name); 238 return; 239 } 240 } 241 242 /** 243 * ata_force_xfermask - force xfermask according to libata.force 244 * @dev: ATA device of interest 245 * 246 * Force xfer_mask according to libata.force and whine about it. 247 * For consistency with link selection, device number 15 selects 248 * the first device connected to the host link. 249 * 250 * LOCKING: 251 * EH context. 252 */ 253 static void ata_force_xfermask(struct ata_device *dev) 254 { 255 int devno = dev->link->pmp + dev->devno; 256 int alt_devno = devno; 257 int i; 258 259 /* allow n.15 for the first device attached to host port */ 260 if (ata_is_host_link(dev->link) && devno == 0) 261 alt_devno = 15; 262 263 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 264 const struct ata_force_ent *fe = &ata_force_tbl[i]; 265 unsigned long pio_mask, mwdma_mask, udma_mask; 266 267 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 268 continue; 269 270 if (fe->device != -1 && fe->device != devno && 271 fe->device != alt_devno) 272 continue; 273 274 if (!fe->param.xfer_mask) 275 continue; 276 277 ata_unpack_xfermask(fe->param.xfer_mask, 278 &pio_mask, &mwdma_mask, &udma_mask); 279 if (udma_mask) 280 dev->udma_mask = udma_mask; 281 else if (mwdma_mask) { 282 dev->udma_mask = 0; 283 dev->mwdma_mask = mwdma_mask; 284 } else { 285 dev->udma_mask = 0; 286 dev->mwdma_mask = 0; 287 dev->pio_mask = pio_mask; 288 } 289 290 ata_dev_printk(dev, KERN_NOTICE, 291 "FORCE: xfer_mask set to %s\n", fe->param.name); 292 return; 293 } 294 } 295 296 /** 297 * ata_force_horkage - force horkage according to libata.force 298 * @dev: ATA device of interest 299 * 300 * Force horkage according to libata.force and whine about it. 301 * For consistency with link selection, device number 15 selects 302 * the first device connected to the host link. 303 * 304 * LOCKING: 305 * EH context. 306 */ 307 static void ata_force_horkage(struct ata_device *dev) 308 { 309 int devno = dev->link->pmp + dev->devno; 310 int alt_devno = devno; 311 int i; 312 313 /* allow n.15 for the first device attached to host port */ 314 if (ata_is_host_link(dev->link) && devno == 0) 315 alt_devno = 15; 316 317 for (i = 0; i < ata_force_tbl_size; i++) { 318 const struct ata_force_ent *fe = &ata_force_tbl[i]; 319 320 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 321 continue; 322 323 if (fe->device != -1 && fe->device != devno && 324 fe->device != alt_devno) 325 continue; 326 327 if (!(~dev->horkage & fe->param.horkage_on) && 328 !(dev->horkage & fe->param.horkage_off)) 329 continue; 330 331 dev->horkage |= fe->param.horkage_on; 332 dev->horkage &= ~fe->param.horkage_off; 333 334 ata_dev_printk(dev, KERN_NOTICE, 335 "FORCE: horkage modified (%s)\n", fe->param.name); 336 } 337 } 338 339 /** 340 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 341 * @opcode: SCSI opcode 342 * 343 * Determine ATAPI command type from @opcode. 344 * 345 * LOCKING: 346 * None. 347 * 348 * RETURNS: 349 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 350 */ 351 int atapi_cmd_type(u8 opcode) 352 { 353 switch (opcode) { 354 case GPCMD_READ_10: 355 case GPCMD_READ_12: 356 return ATAPI_READ; 357 358 case GPCMD_WRITE_10: 359 case GPCMD_WRITE_12: 360 case GPCMD_WRITE_AND_VERIFY_10: 361 return ATAPI_WRITE; 362 363 case GPCMD_READ_CD: 364 case GPCMD_READ_CD_MSF: 365 return ATAPI_READ_CD; 366 367 case ATA_16: 368 case ATA_12: 369 if (atapi_passthru16) 370 return ATAPI_PASS_THRU; 371 /* fall thru */ 372 default: 373 return ATAPI_MISC; 374 } 375 } 376 377 /** 378 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 379 * @tf: Taskfile to convert 380 * @pmp: Port multiplier port 381 * @is_cmd: This FIS is for command 382 * @fis: Buffer into which data will output 383 * 384 * Converts a standard ATA taskfile to a Serial ATA 385 * FIS structure (Register - Host to Device). 386 * 387 * LOCKING: 388 * Inherited from caller. 389 */ 390 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 391 { 392 fis[0] = 0x27; /* Register - Host to Device FIS */ 393 fis[1] = pmp & 0xf; /* Port multiplier number*/ 394 if (is_cmd) 395 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 396 397 fis[2] = tf->command; 398 fis[3] = tf->feature; 399 400 fis[4] = tf->lbal; 401 fis[5] = tf->lbam; 402 fis[6] = tf->lbah; 403 fis[7] = tf->device; 404 405 fis[8] = tf->hob_lbal; 406 fis[9] = tf->hob_lbam; 407 fis[10] = tf->hob_lbah; 408 fis[11] = tf->hob_feature; 409 410 fis[12] = tf->nsect; 411 fis[13] = tf->hob_nsect; 412 fis[14] = 0; 413 fis[15] = tf->ctl; 414 415 fis[16] = 0; 416 fis[17] = 0; 417 fis[18] = 0; 418 fis[19] = 0; 419 } 420 421 /** 422 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 423 * @fis: Buffer from which data will be input 424 * @tf: Taskfile to output 425 * 426 * Converts a serial ATA FIS structure to a standard ATA taskfile. 427 * 428 * LOCKING: 429 * Inherited from caller. 430 */ 431 432 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 433 { 434 tf->command = fis[2]; /* status */ 435 tf->feature = fis[3]; /* error */ 436 437 tf->lbal = fis[4]; 438 tf->lbam = fis[5]; 439 tf->lbah = fis[6]; 440 tf->device = fis[7]; 441 442 tf->hob_lbal = fis[8]; 443 tf->hob_lbam = fis[9]; 444 tf->hob_lbah = fis[10]; 445 446 tf->nsect = fis[12]; 447 tf->hob_nsect = fis[13]; 448 } 449 450 static const u8 ata_rw_cmds[] = { 451 /* pio multi */ 452 ATA_CMD_READ_MULTI, 453 ATA_CMD_WRITE_MULTI, 454 ATA_CMD_READ_MULTI_EXT, 455 ATA_CMD_WRITE_MULTI_EXT, 456 0, 457 0, 458 0, 459 ATA_CMD_WRITE_MULTI_FUA_EXT, 460 /* pio */ 461 ATA_CMD_PIO_READ, 462 ATA_CMD_PIO_WRITE, 463 ATA_CMD_PIO_READ_EXT, 464 ATA_CMD_PIO_WRITE_EXT, 465 0, 466 0, 467 0, 468 0, 469 /* dma */ 470 ATA_CMD_READ, 471 ATA_CMD_WRITE, 472 ATA_CMD_READ_EXT, 473 ATA_CMD_WRITE_EXT, 474 0, 475 0, 476 0, 477 ATA_CMD_WRITE_FUA_EXT 478 }; 479 480 /** 481 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 482 * @tf: command to examine and configure 483 * @dev: device tf belongs to 484 * 485 * Examine the device configuration and tf->flags to calculate 486 * the proper read/write commands and protocol to use. 487 * 488 * LOCKING: 489 * caller. 490 */ 491 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 492 { 493 u8 cmd; 494 495 int index, fua, lba48, write; 496 497 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 498 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 499 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 500 501 if (dev->flags & ATA_DFLAG_PIO) { 502 tf->protocol = ATA_PROT_PIO; 503 index = dev->multi_count ? 0 : 8; 504 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 505 /* Unable to use DMA due to host limitation */ 506 tf->protocol = ATA_PROT_PIO; 507 index = dev->multi_count ? 0 : 8; 508 } else { 509 tf->protocol = ATA_PROT_DMA; 510 index = 16; 511 } 512 513 cmd = ata_rw_cmds[index + fua + lba48 + write]; 514 if (cmd) { 515 tf->command = cmd; 516 return 0; 517 } 518 return -1; 519 } 520 521 /** 522 * ata_tf_read_block - Read block address from ATA taskfile 523 * @tf: ATA taskfile of interest 524 * @dev: ATA device @tf belongs to 525 * 526 * LOCKING: 527 * None. 528 * 529 * Read block address from @tf. This function can handle all 530 * three address formats - LBA, LBA48 and CHS. tf->protocol and 531 * flags select the address format to use. 532 * 533 * RETURNS: 534 * Block address read from @tf. 535 */ 536 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 537 { 538 u64 block = 0; 539 540 if (tf->flags & ATA_TFLAG_LBA) { 541 if (tf->flags & ATA_TFLAG_LBA48) { 542 block |= (u64)tf->hob_lbah << 40; 543 block |= (u64)tf->hob_lbam << 32; 544 block |= tf->hob_lbal << 24; 545 } else 546 block |= (tf->device & 0xf) << 24; 547 548 block |= tf->lbah << 16; 549 block |= tf->lbam << 8; 550 block |= tf->lbal; 551 } else { 552 u32 cyl, head, sect; 553 554 cyl = tf->lbam | (tf->lbah << 8); 555 head = tf->device & 0xf; 556 sect = tf->lbal; 557 558 block = (cyl * dev->heads + head) * dev->sectors + sect; 559 } 560 561 return block; 562 } 563 564 /** 565 * ata_build_rw_tf - Build ATA taskfile for given read/write request 566 * @tf: Target ATA taskfile 567 * @dev: ATA device @tf belongs to 568 * @block: Block address 569 * @n_block: Number of blocks 570 * @tf_flags: RW/FUA etc... 571 * @tag: tag 572 * 573 * LOCKING: 574 * None. 575 * 576 * Build ATA taskfile @tf for read/write request described by 577 * @block, @n_block, @tf_flags and @tag on @dev. 578 * 579 * RETURNS: 580 * 581 * 0 on success, -ERANGE if the request is too large for @dev, 582 * -EINVAL if the request is invalid. 583 */ 584 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 585 u64 block, u32 n_block, unsigned int tf_flags, 586 unsigned int tag) 587 { 588 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 589 tf->flags |= tf_flags; 590 591 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 592 /* yay, NCQ */ 593 if (!lba_48_ok(block, n_block)) 594 return -ERANGE; 595 596 tf->protocol = ATA_PROT_NCQ; 597 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 598 599 if (tf->flags & ATA_TFLAG_WRITE) 600 tf->command = ATA_CMD_FPDMA_WRITE; 601 else 602 tf->command = ATA_CMD_FPDMA_READ; 603 604 tf->nsect = tag << 3; 605 tf->hob_feature = (n_block >> 8) & 0xff; 606 tf->feature = n_block & 0xff; 607 608 tf->hob_lbah = (block >> 40) & 0xff; 609 tf->hob_lbam = (block >> 32) & 0xff; 610 tf->hob_lbal = (block >> 24) & 0xff; 611 tf->lbah = (block >> 16) & 0xff; 612 tf->lbam = (block >> 8) & 0xff; 613 tf->lbal = block & 0xff; 614 615 tf->device = 1 << 6; 616 if (tf->flags & ATA_TFLAG_FUA) 617 tf->device |= 1 << 7; 618 } else if (dev->flags & ATA_DFLAG_LBA) { 619 tf->flags |= ATA_TFLAG_LBA; 620 621 if (lba_28_ok(block, n_block)) { 622 /* use LBA28 */ 623 tf->device |= (block >> 24) & 0xf; 624 } else if (lba_48_ok(block, n_block)) { 625 if (!(dev->flags & ATA_DFLAG_LBA48)) 626 return -ERANGE; 627 628 /* use LBA48 */ 629 tf->flags |= ATA_TFLAG_LBA48; 630 631 tf->hob_nsect = (n_block >> 8) & 0xff; 632 633 tf->hob_lbah = (block >> 40) & 0xff; 634 tf->hob_lbam = (block >> 32) & 0xff; 635 tf->hob_lbal = (block >> 24) & 0xff; 636 } else 637 /* request too large even for LBA48 */ 638 return -ERANGE; 639 640 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 641 return -EINVAL; 642 643 tf->nsect = n_block & 0xff; 644 645 tf->lbah = (block >> 16) & 0xff; 646 tf->lbam = (block >> 8) & 0xff; 647 tf->lbal = block & 0xff; 648 649 tf->device |= ATA_LBA; 650 } else { 651 /* CHS */ 652 u32 sect, head, cyl, track; 653 654 /* The request -may- be too large for CHS addressing. */ 655 if (!lba_28_ok(block, n_block)) 656 return -ERANGE; 657 658 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 659 return -EINVAL; 660 661 /* Convert LBA to CHS */ 662 track = (u32)block / dev->sectors; 663 cyl = track / dev->heads; 664 head = track % dev->heads; 665 sect = (u32)block % dev->sectors + 1; 666 667 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 668 (u32)block, track, cyl, head, sect); 669 670 /* Check whether the converted CHS can fit. 671 Cylinder: 0-65535 672 Head: 0-15 673 Sector: 1-255*/ 674 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 675 return -ERANGE; 676 677 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 678 tf->lbal = sect; 679 tf->lbam = cyl; 680 tf->lbah = cyl >> 8; 681 tf->device |= head; 682 } 683 684 return 0; 685 } 686 687 /** 688 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 689 * @pio_mask: pio_mask 690 * @mwdma_mask: mwdma_mask 691 * @udma_mask: udma_mask 692 * 693 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 694 * unsigned int xfer_mask. 695 * 696 * LOCKING: 697 * None. 698 * 699 * RETURNS: 700 * Packed xfer_mask. 701 */ 702 unsigned long ata_pack_xfermask(unsigned long pio_mask, 703 unsigned long mwdma_mask, 704 unsigned long udma_mask) 705 { 706 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 707 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 708 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 709 } 710 711 /** 712 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 713 * @xfer_mask: xfer_mask to unpack 714 * @pio_mask: resulting pio_mask 715 * @mwdma_mask: resulting mwdma_mask 716 * @udma_mask: resulting udma_mask 717 * 718 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 719 * Any NULL distination masks will be ignored. 720 */ 721 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 722 unsigned long *mwdma_mask, unsigned long *udma_mask) 723 { 724 if (pio_mask) 725 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 726 if (mwdma_mask) 727 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 728 if (udma_mask) 729 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 730 } 731 732 static const struct ata_xfer_ent { 733 int shift, bits; 734 u8 base; 735 } ata_xfer_tbl[] = { 736 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 737 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 738 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 739 { -1, }, 740 }; 741 742 /** 743 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 744 * @xfer_mask: xfer_mask of interest 745 * 746 * Return matching XFER_* value for @xfer_mask. Only the highest 747 * bit of @xfer_mask is considered. 748 * 749 * LOCKING: 750 * None. 751 * 752 * RETURNS: 753 * Matching XFER_* value, 0xff if no match found. 754 */ 755 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 756 { 757 int highbit = fls(xfer_mask) - 1; 758 const struct ata_xfer_ent *ent; 759 760 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 761 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 762 return ent->base + highbit - ent->shift; 763 return 0xff; 764 } 765 766 /** 767 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 768 * @xfer_mode: XFER_* of interest 769 * 770 * Return matching xfer_mask for @xfer_mode. 771 * 772 * LOCKING: 773 * None. 774 * 775 * RETURNS: 776 * Matching xfer_mask, 0 if no match found. 777 */ 778 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 779 { 780 const struct ata_xfer_ent *ent; 781 782 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 783 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 784 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 785 & ~((1 << ent->shift) - 1); 786 return 0; 787 } 788 789 /** 790 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 791 * @xfer_mode: XFER_* of interest 792 * 793 * Return matching xfer_shift for @xfer_mode. 794 * 795 * LOCKING: 796 * None. 797 * 798 * RETURNS: 799 * Matching xfer_shift, -1 if no match found. 800 */ 801 int ata_xfer_mode2shift(unsigned long xfer_mode) 802 { 803 const struct ata_xfer_ent *ent; 804 805 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 806 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 807 return ent->shift; 808 return -1; 809 } 810 811 /** 812 * ata_mode_string - convert xfer_mask to string 813 * @xfer_mask: mask of bits supported; only highest bit counts. 814 * 815 * Determine string which represents the highest speed 816 * (highest bit in @modemask). 817 * 818 * LOCKING: 819 * None. 820 * 821 * RETURNS: 822 * Constant C string representing highest speed listed in 823 * @mode_mask, or the constant C string "<n/a>". 824 */ 825 const char *ata_mode_string(unsigned long xfer_mask) 826 { 827 static const char * const xfer_mode_str[] = { 828 "PIO0", 829 "PIO1", 830 "PIO2", 831 "PIO3", 832 "PIO4", 833 "PIO5", 834 "PIO6", 835 "MWDMA0", 836 "MWDMA1", 837 "MWDMA2", 838 "MWDMA3", 839 "MWDMA4", 840 "UDMA/16", 841 "UDMA/25", 842 "UDMA/33", 843 "UDMA/44", 844 "UDMA/66", 845 "UDMA/100", 846 "UDMA/133", 847 "UDMA7", 848 }; 849 int highbit; 850 851 highbit = fls(xfer_mask) - 1; 852 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 853 return xfer_mode_str[highbit]; 854 return "<n/a>"; 855 } 856 857 static const char *sata_spd_string(unsigned int spd) 858 { 859 static const char * const spd_str[] = { 860 "1.5 Gbps", 861 "3.0 Gbps", 862 }; 863 864 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 865 return "<unknown>"; 866 return spd_str[spd - 1]; 867 } 868 869 void ata_dev_disable(struct ata_device *dev) 870 { 871 if (ata_dev_enabled(dev)) { 872 if (ata_msg_drv(dev->link->ap)) 873 ata_dev_printk(dev, KERN_WARNING, "disabled\n"); 874 ata_acpi_on_disable(dev); 875 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 | 876 ATA_DNXFER_QUIET); 877 dev->class++; 878 } 879 } 880 881 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy) 882 { 883 struct ata_link *link = dev->link; 884 struct ata_port *ap = link->ap; 885 u32 scontrol; 886 unsigned int err_mask; 887 int rc; 888 889 /* 890 * disallow DIPM for drivers which haven't set 891 * ATA_FLAG_IPM. This is because when DIPM is enabled, 892 * phy ready will be set in the interrupt status on 893 * state changes, which will cause some drivers to 894 * think there are errors - additionally drivers will 895 * need to disable hot plug. 896 */ 897 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) { 898 ap->pm_policy = NOT_AVAILABLE; 899 return -EINVAL; 900 } 901 902 /* 903 * For DIPM, we will only enable it for the 904 * min_power setting. 905 * 906 * Why? Because Disks are too stupid to know that 907 * If the host rejects a request to go to SLUMBER 908 * they should retry at PARTIAL, and instead it 909 * just would give up. So, for medium_power to 910 * work at all, we need to only allow HIPM. 911 */ 912 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 913 if (rc) 914 return rc; 915 916 switch (policy) { 917 case MIN_POWER: 918 /* no restrictions on IPM transitions */ 919 scontrol &= ~(0x3 << 8); 920 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 921 if (rc) 922 return rc; 923 924 /* enable DIPM */ 925 if (dev->flags & ATA_DFLAG_DIPM) 926 err_mask = ata_dev_set_feature(dev, 927 SETFEATURES_SATA_ENABLE, SATA_DIPM); 928 break; 929 case MEDIUM_POWER: 930 /* allow IPM to PARTIAL */ 931 scontrol &= ~(0x1 << 8); 932 scontrol |= (0x2 << 8); 933 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 934 if (rc) 935 return rc; 936 937 /* 938 * we don't have to disable DIPM since IPM flags 939 * disallow transitions to SLUMBER, which effectively 940 * disable DIPM if it does not support PARTIAL 941 */ 942 break; 943 case NOT_AVAILABLE: 944 case MAX_PERFORMANCE: 945 /* disable all IPM transitions */ 946 scontrol |= (0x3 << 8); 947 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 948 if (rc) 949 return rc; 950 951 /* 952 * we don't have to disable DIPM since IPM flags 953 * disallow all transitions which effectively 954 * disable DIPM anyway. 955 */ 956 break; 957 } 958 959 /* FIXME: handle SET FEATURES failure */ 960 (void) err_mask; 961 962 return 0; 963 } 964 965 /** 966 * ata_dev_enable_pm - enable SATA interface power management 967 * @dev: device to enable power management 968 * @policy: the link power management policy 969 * 970 * Enable SATA Interface power management. This will enable 971 * Device Interface Power Management (DIPM) for min_power 972 * policy, and then call driver specific callbacks for 973 * enabling Host Initiated Power management. 974 * 975 * Locking: Caller. 976 * Returns: -EINVAL if IPM is not supported, 0 otherwise. 977 */ 978 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy) 979 { 980 int rc = 0; 981 struct ata_port *ap = dev->link->ap; 982 983 /* set HIPM first, then DIPM */ 984 if (ap->ops->enable_pm) 985 rc = ap->ops->enable_pm(ap, policy); 986 if (rc) 987 goto enable_pm_out; 988 rc = ata_dev_set_dipm(dev, policy); 989 990 enable_pm_out: 991 if (rc) 992 ap->pm_policy = MAX_PERFORMANCE; 993 else 994 ap->pm_policy = policy; 995 return /* rc */; /* hopefully we can use 'rc' eventually */ 996 } 997 998 #ifdef CONFIG_PM 999 /** 1000 * ata_dev_disable_pm - disable SATA interface power management 1001 * @dev: device to disable power management 1002 * 1003 * Disable SATA Interface power management. This will disable 1004 * Device Interface Power Management (DIPM) without changing 1005 * policy, call driver specific callbacks for disabling Host 1006 * Initiated Power management. 1007 * 1008 * Locking: Caller. 1009 * Returns: void 1010 */ 1011 static void ata_dev_disable_pm(struct ata_device *dev) 1012 { 1013 struct ata_port *ap = dev->link->ap; 1014 1015 ata_dev_set_dipm(dev, MAX_PERFORMANCE); 1016 if (ap->ops->disable_pm) 1017 ap->ops->disable_pm(ap); 1018 } 1019 #endif /* CONFIG_PM */ 1020 1021 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy) 1022 { 1023 ap->pm_policy = policy; 1024 ap->link.eh_info.action |= ATA_EH_LPM; 1025 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY; 1026 ata_port_schedule_eh(ap); 1027 } 1028 1029 #ifdef CONFIG_PM 1030 static void ata_lpm_enable(struct ata_host *host) 1031 { 1032 struct ata_link *link; 1033 struct ata_port *ap; 1034 struct ata_device *dev; 1035 int i; 1036 1037 for (i = 0; i < host->n_ports; i++) { 1038 ap = host->ports[i]; 1039 ata_port_for_each_link(link, ap) { 1040 ata_link_for_each_dev(dev, link) 1041 ata_dev_disable_pm(dev); 1042 } 1043 } 1044 } 1045 1046 static void ata_lpm_disable(struct ata_host *host) 1047 { 1048 int i; 1049 1050 for (i = 0; i < host->n_ports; i++) { 1051 struct ata_port *ap = host->ports[i]; 1052 ata_lpm_schedule(ap, ap->pm_policy); 1053 } 1054 } 1055 #endif /* CONFIG_PM */ 1056 1057 /** 1058 * ata_dev_classify - determine device type based on ATA-spec signature 1059 * @tf: ATA taskfile register set for device to be identified 1060 * 1061 * Determine from taskfile register contents whether a device is 1062 * ATA or ATAPI, as per "Signature and persistence" section 1063 * of ATA/PI spec (volume 1, sect 5.14). 1064 * 1065 * LOCKING: 1066 * None. 1067 * 1068 * RETURNS: 1069 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1070 * %ATA_DEV_UNKNOWN the event of failure. 1071 */ 1072 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1073 { 1074 /* Apple's open source Darwin code hints that some devices only 1075 * put a proper signature into the LBA mid/high registers, 1076 * So, we only check those. It's sufficient for uniqueness. 1077 * 1078 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1079 * signatures for ATA and ATAPI devices attached on SerialATA, 1080 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1081 * spec has never mentioned about using different signatures 1082 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1083 * Multiplier specification began to use 0x69/0x96 to identify 1084 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1085 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1086 * 0x69/0x96 shortly and described them as reserved for 1087 * SerialATA. 1088 * 1089 * We follow the current spec and consider that 0x69/0x96 1090 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1091 */ 1092 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1093 DPRINTK("found ATA device by sig\n"); 1094 return ATA_DEV_ATA; 1095 } 1096 1097 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1098 DPRINTK("found ATAPI device by sig\n"); 1099 return ATA_DEV_ATAPI; 1100 } 1101 1102 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1103 DPRINTK("found PMP device by sig\n"); 1104 return ATA_DEV_PMP; 1105 } 1106 1107 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1108 printk(KERN_INFO "ata: SEMB device ignored\n"); 1109 return ATA_DEV_SEMB_UNSUP; /* not yet */ 1110 } 1111 1112 DPRINTK("unknown device\n"); 1113 return ATA_DEV_UNKNOWN; 1114 } 1115 1116 /** 1117 * ata_id_string - Convert IDENTIFY DEVICE page into string 1118 * @id: IDENTIFY DEVICE results we will examine 1119 * @s: string into which data is output 1120 * @ofs: offset into identify device page 1121 * @len: length of string to return. must be an even number. 1122 * 1123 * The strings in the IDENTIFY DEVICE page are broken up into 1124 * 16-bit chunks. Run through the string, and output each 1125 * 8-bit chunk linearly, regardless of platform. 1126 * 1127 * LOCKING: 1128 * caller. 1129 */ 1130 1131 void ata_id_string(const u16 *id, unsigned char *s, 1132 unsigned int ofs, unsigned int len) 1133 { 1134 unsigned int c; 1135 1136 while (len > 0) { 1137 c = id[ofs] >> 8; 1138 *s = c; 1139 s++; 1140 1141 c = id[ofs] & 0xff; 1142 *s = c; 1143 s++; 1144 1145 ofs++; 1146 len -= 2; 1147 } 1148 } 1149 1150 /** 1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1152 * @id: IDENTIFY DEVICE results we will examine 1153 * @s: string into which data is output 1154 * @ofs: offset into identify device page 1155 * @len: length of string to return. must be an odd number. 1156 * 1157 * This function is identical to ata_id_string except that it 1158 * trims trailing spaces and terminates the resulting string with 1159 * null. @len must be actual maximum length (even number) + 1. 1160 * 1161 * LOCKING: 1162 * caller. 1163 */ 1164 void ata_id_c_string(const u16 *id, unsigned char *s, 1165 unsigned int ofs, unsigned int len) 1166 { 1167 unsigned char *p; 1168 1169 WARN_ON(!(len & 1)); 1170 1171 ata_id_string(id, s, ofs, len - 1); 1172 1173 p = s + strnlen(s, len - 1); 1174 while (p > s && p[-1] == ' ') 1175 p--; 1176 *p = '\0'; 1177 } 1178 1179 static u64 ata_id_n_sectors(const u16 *id) 1180 { 1181 if (ata_id_has_lba(id)) { 1182 if (ata_id_has_lba48(id)) 1183 return ata_id_u64(id, 100); 1184 else 1185 return ata_id_u32(id, 60); 1186 } else { 1187 if (ata_id_current_chs_valid(id)) 1188 return ata_id_u32(id, 57); 1189 else 1190 return id[1] * id[3] * id[6]; 1191 } 1192 } 1193 1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1195 { 1196 u64 sectors = 0; 1197 1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1200 sectors |= (tf->hob_lbal & 0xff) << 24; 1201 sectors |= (tf->lbah & 0xff) << 16; 1202 sectors |= (tf->lbam & 0xff) << 8; 1203 sectors |= (tf->lbal & 0xff); 1204 1205 return sectors; 1206 } 1207 1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1209 { 1210 u64 sectors = 0; 1211 1212 sectors |= (tf->device & 0x0f) << 24; 1213 sectors |= (tf->lbah & 0xff) << 16; 1214 sectors |= (tf->lbam & 0xff) << 8; 1215 sectors |= (tf->lbal & 0xff); 1216 1217 return sectors; 1218 } 1219 1220 /** 1221 * ata_read_native_max_address - Read native max address 1222 * @dev: target device 1223 * @max_sectors: out parameter for the result native max address 1224 * 1225 * Perform an LBA48 or LBA28 native size query upon the device in 1226 * question. 1227 * 1228 * RETURNS: 1229 * 0 on success, -EACCES if command is aborted by the drive. 1230 * -EIO on other errors. 1231 */ 1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1233 { 1234 unsigned int err_mask; 1235 struct ata_taskfile tf; 1236 int lba48 = ata_id_has_lba48(dev->id); 1237 1238 ata_tf_init(dev, &tf); 1239 1240 /* always clear all address registers */ 1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1242 1243 if (lba48) { 1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1245 tf.flags |= ATA_TFLAG_LBA48; 1246 } else 1247 tf.command = ATA_CMD_READ_NATIVE_MAX; 1248 1249 tf.protocol |= ATA_PROT_NODATA; 1250 tf.device |= ATA_LBA; 1251 1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1253 if (err_mask) { 1254 ata_dev_printk(dev, KERN_WARNING, "failed to read native " 1255 "max address (err_mask=0x%x)\n", err_mask); 1256 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1257 return -EACCES; 1258 return -EIO; 1259 } 1260 1261 if (lba48) 1262 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1263 else 1264 *max_sectors = ata_tf_to_lba(&tf) + 1; 1265 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1266 (*max_sectors)--; 1267 return 0; 1268 } 1269 1270 /** 1271 * ata_set_max_sectors - Set max sectors 1272 * @dev: target device 1273 * @new_sectors: new max sectors value to set for the device 1274 * 1275 * Set max sectors of @dev to @new_sectors. 1276 * 1277 * RETURNS: 1278 * 0 on success, -EACCES if command is aborted or denied (due to 1279 * previous non-volatile SET_MAX) by the drive. -EIO on other 1280 * errors. 1281 */ 1282 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1283 { 1284 unsigned int err_mask; 1285 struct ata_taskfile tf; 1286 int lba48 = ata_id_has_lba48(dev->id); 1287 1288 new_sectors--; 1289 1290 ata_tf_init(dev, &tf); 1291 1292 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1293 1294 if (lba48) { 1295 tf.command = ATA_CMD_SET_MAX_EXT; 1296 tf.flags |= ATA_TFLAG_LBA48; 1297 1298 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1299 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1300 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1301 } else { 1302 tf.command = ATA_CMD_SET_MAX; 1303 1304 tf.device |= (new_sectors >> 24) & 0xf; 1305 } 1306 1307 tf.protocol |= ATA_PROT_NODATA; 1308 tf.device |= ATA_LBA; 1309 1310 tf.lbal = (new_sectors >> 0) & 0xff; 1311 tf.lbam = (new_sectors >> 8) & 0xff; 1312 tf.lbah = (new_sectors >> 16) & 0xff; 1313 1314 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1315 if (err_mask) { 1316 ata_dev_printk(dev, KERN_WARNING, "failed to set " 1317 "max address (err_mask=0x%x)\n", err_mask); 1318 if (err_mask == AC_ERR_DEV && 1319 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1320 return -EACCES; 1321 return -EIO; 1322 } 1323 1324 return 0; 1325 } 1326 1327 /** 1328 * ata_hpa_resize - Resize a device with an HPA set 1329 * @dev: Device to resize 1330 * 1331 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1332 * it if required to the full size of the media. The caller must check 1333 * the drive has the HPA feature set enabled. 1334 * 1335 * RETURNS: 1336 * 0 on success, -errno on failure. 1337 */ 1338 static int ata_hpa_resize(struct ata_device *dev) 1339 { 1340 struct ata_eh_context *ehc = &dev->link->eh_context; 1341 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1342 u64 sectors = ata_id_n_sectors(dev->id); 1343 u64 native_sectors; 1344 int rc; 1345 1346 /* do we need to do it? */ 1347 if (dev->class != ATA_DEV_ATA || 1348 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1349 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1350 return 0; 1351 1352 /* read native max address */ 1353 rc = ata_read_native_max_address(dev, &native_sectors); 1354 if (rc) { 1355 /* If device aborted the command or HPA isn't going to 1356 * be unlocked, skip HPA resizing. 1357 */ 1358 if (rc == -EACCES || !ata_ignore_hpa) { 1359 ata_dev_printk(dev, KERN_WARNING, "HPA support seems " 1360 "broken, skipping HPA handling\n"); 1361 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1362 1363 /* we can continue if device aborted the command */ 1364 if (rc == -EACCES) 1365 rc = 0; 1366 } 1367 1368 return rc; 1369 } 1370 1371 /* nothing to do? */ 1372 if (native_sectors <= sectors || !ata_ignore_hpa) { 1373 if (!print_info || native_sectors == sectors) 1374 return 0; 1375 1376 if (native_sectors > sectors) 1377 ata_dev_printk(dev, KERN_INFO, 1378 "HPA detected: current %llu, native %llu\n", 1379 (unsigned long long)sectors, 1380 (unsigned long long)native_sectors); 1381 else if (native_sectors < sectors) 1382 ata_dev_printk(dev, KERN_WARNING, 1383 "native sectors (%llu) is smaller than " 1384 "sectors (%llu)\n", 1385 (unsigned long long)native_sectors, 1386 (unsigned long long)sectors); 1387 return 0; 1388 } 1389 1390 /* let's unlock HPA */ 1391 rc = ata_set_max_sectors(dev, native_sectors); 1392 if (rc == -EACCES) { 1393 /* if device aborted the command, skip HPA resizing */ 1394 ata_dev_printk(dev, KERN_WARNING, "device aborted resize " 1395 "(%llu -> %llu), skipping HPA handling\n", 1396 (unsigned long long)sectors, 1397 (unsigned long long)native_sectors); 1398 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1399 return 0; 1400 } else if (rc) 1401 return rc; 1402 1403 /* re-read IDENTIFY data */ 1404 rc = ata_dev_reread_id(dev, 0); 1405 if (rc) { 1406 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY " 1407 "data after HPA resizing\n"); 1408 return rc; 1409 } 1410 1411 if (print_info) { 1412 u64 new_sectors = ata_id_n_sectors(dev->id); 1413 ata_dev_printk(dev, KERN_INFO, 1414 "HPA unlocked: %llu -> %llu, native %llu\n", 1415 (unsigned long long)sectors, 1416 (unsigned long long)new_sectors, 1417 (unsigned long long)native_sectors); 1418 } 1419 1420 return 0; 1421 } 1422 1423 /** 1424 * ata_dump_id - IDENTIFY DEVICE info debugging output 1425 * @id: IDENTIFY DEVICE page to dump 1426 * 1427 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1428 * page. 1429 * 1430 * LOCKING: 1431 * caller. 1432 */ 1433 1434 static inline void ata_dump_id(const u16 *id) 1435 { 1436 DPRINTK("49==0x%04x " 1437 "53==0x%04x " 1438 "63==0x%04x " 1439 "64==0x%04x " 1440 "75==0x%04x \n", 1441 id[49], 1442 id[53], 1443 id[63], 1444 id[64], 1445 id[75]); 1446 DPRINTK("80==0x%04x " 1447 "81==0x%04x " 1448 "82==0x%04x " 1449 "83==0x%04x " 1450 "84==0x%04x \n", 1451 id[80], 1452 id[81], 1453 id[82], 1454 id[83], 1455 id[84]); 1456 DPRINTK("88==0x%04x " 1457 "93==0x%04x\n", 1458 id[88], 1459 id[93]); 1460 } 1461 1462 /** 1463 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1464 * @id: IDENTIFY data to compute xfer mask from 1465 * 1466 * Compute the xfermask for this device. This is not as trivial 1467 * as it seems if we must consider early devices correctly. 1468 * 1469 * FIXME: pre IDE drive timing (do we care ?). 1470 * 1471 * LOCKING: 1472 * None. 1473 * 1474 * RETURNS: 1475 * Computed xfermask 1476 */ 1477 unsigned long ata_id_xfermask(const u16 *id) 1478 { 1479 unsigned long pio_mask, mwdma_mask, udma_mask; 1480 1481 /* Usual case. Word 53 indicates word 64 is valid */ 1482 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1483 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1484 pio_mask <<= 3; 1485 pio_mask |= 0x7; 1486 } else { 1487 /* If word 64 isn't valid then Word 51 high byte holds 1488 * the PIO timing number for the maximum. Turn it into 1489 * a mask. 1490 */ 1491 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1492 if (mode < 5) /* Valid PIO range */ 1493 pio_mask = (2 << mode) - 1; 1494 else 1495 pio_mask = 1; 1496 1497 /* But wait.. there's more. Design your standards by 1498 * committee and you too can get a free iordy field to 1499 * process. However its the speeds not the modes that 1500 * are supported... Note drivers using the timing API 1501 * will get this right anyway 1502 */ 1503 } 1504 1505 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1506 1507 if (ata_id_is_cfa(id)) { 1508 /* 1509 * Process compact flash extended modes 1510 */ 1511 int pio = id[163] & 0x7; 1512 int dma = (id[163] >> 3) & 7; 1513 1514 if (pio) 1515 pio_mask |= (1 << 5); 1516 if (pio > 1) 1517 pio_mask |= (1 << 6); 1518 if (dma) 1519 mwdma_mask |= (1 << 3); 1520 if (dma > 1) 1521 mwdma_mask |= (1 << 4); 1522 } 1523 1524 udma_mask = 0; 1525 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1526 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1527 1528 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1529 } 1530 1531 /** 1532 * ata_pio_queue_task - Queue port_task 1533 * @ap: The ata_port to queue port_task for 1534 * @fn: workqueue function to be scheduled 1535 * @data: data for @fn to use 1536 * @delay: delay time for workqueue function 1537 * 1538 * Schedule @fn(@data) for execution after @delay jiffies using 1539 * port_task. There is one port_task per port and it's the 1540 * user(low level driver)'s responsibility to make sure that only 1541 * one task is active at any given time. 1542 * 1543 * libata core layer takes care of synchronization between 1544 * port_task and EH. ata_pio_queue_task() may be ignored for EH 1545 * synchronization. 1546 * 1547 * LOCKING: 1548 * Inherited from caller. 1549 */ 1550 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay) 1551 { 1552 ap->port_task_data = data; 1553 1554 /* may fail if ata_port_flush_task() in progress */ 1555 queue_delayed_work(ata_wq, &ap->port_task, delay); 1556 } 1557 1558 /** 1559 * ata_port_flush_task - Flush port_task 1560 * @ap: The ata_port to flush port_task for 1561 * 1562 * After this function completes, port_task is guranteed not to 1563 * be running or scheduled. 1564 * 1565 * LOCKING: 1566 * Kernel thread context (may sleep) 1567 */ 1568 void ata_port_flush_task(struct ata_port *ap) 1569 { 1570 DPRINTK("ENTER\n"); 1571 1572 cancel_rearming_delayed_work(&ap->port_task); 1573 1574 if (ata_msg_ctl(ap)) 1575 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__); 1576 } 1577 1578 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1579 { 1580 struct completion *waiting = qc->private_data; 1581 1582 complete(waiting); 1583 } 1584 1585 /** 1586 * ata_exec_internal_sg - execute libata internal command 1587 * @dev: Device to which the command is sent 1588 * @tf: Taskfile registers for the command and the result 1589 * @cdb: CDB for packet command 1590 * @dma_dir: Data tranfer direction of the command 1591 * @sgl: sg list for the data buffer of the command 1592 * @n_elem: Number of sg entries 1593 * @timeout: Timeout in msecs (0 for default) 1594 * 1595 * Executes libata internal command with timeout. @tf contains 1596 * command on entry and result on return. Timeout and error 1597 * conditions are reported via return value. No recovery action 1598 * is taken after a command times out. It's caller's duty to 1599 * clean up after timeout. 1600 * 1601 * LOCKING: 1602 * None. Should be called with kernel context, might sleep. 1603 * 1604 * RETURNS: 1605 * Zero on success, AC_ERR_* mask on failure 1606 */ 1607 unsigned ata_exec_internal_sg(struct ata_device *dev, 1608 struct ata_taskfile *tf, const u8 *cdb, 1609 int dma_dir, struct scatterlist *sgl, 1610 unsigned int n_elem, unsigned long timeout) 1611 { 1612 struct ata_link *link = dev->link; 1613 struct ata_port *ap = link->ap; 1614 u8 command = tf->command; 1615 struct ata_queued_cmd *qc; 1616 unsigned int tag, preempted_tag; 1617 u32 preempted_sactive, preempted_qc_active; 1618 int preempted_nr_active_links; 1619 DECLARE_COMPLETION_ONSTACK(wait); 1620 unsigned long flags; 1621 unsigned int err_mask; 1622 int rc; 1623 1624 spin_lock_irqsave(ap->lock, flags); 1625 1626 /* no internal command while frozen */ 1627 if (ap->pflags & ATA_PFLAG_FROZEN) { 1628 spin_unlock_irqrestore(ap->lock, flags); 1629 return AC_ERR_SYSTEM; 1630 } 1631 1632 /* initialize internal qc */ 1633 1634 /* XXX: Tag 0 is used for drivers with legacy EH as some 1635 * drivers choke if any other tag is given. This breaks 1636 * ata_tag_internal() test for those drivers. Don't use new 1637 * EH stuff without converting to it. 1638 */ 1639 if (ap->ops->error_handler) 1640 tag = ATA_TAG_INTERNAL; 1641 else 1642 tag = 0; 1643 1644 if (test_and_set_bit(tag, &ap->qc_allocated)) 1645 BUG(); 1646 qc = __ata_qc_from_tag(ap, tag); 1647 1648 qc->tag = tag; 1649 qc->scsicmd = NULL; 1650 qc->ap = ap; 1651 qc->dev = dev; 1652 ata_qc_reinit(qc); 1653 1654 preempted_tag = link->active_tag; 1655 preempted_sactive = link->sactive; 1656 preempted_qc_active = ap->qc_active; 1657 preempted_nr_active_links = ap->nr_active_links; 1658 link->active_tag = ATA_TAG_POISON; 1659 link->sactive = 0; 1660 ap->qc_active = 0; 1661 ap->nr_active_links = 0; 1662 1663 /* prepare & issue qc */ 1664 qc->tf = *tf; 1665 if (cdb) 1666 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1667 qc->flags |= ATA_QCFLAG_RESULT_TF; 1668 qc->dma_dir = dma_dir; 1669 if (dma_dir != DMA_NONE) { 1670 unsigned int i, buflen = 0; 1671 struct scatterlist *sg; 1672 1673 for_each_sg(sgl, sg, n_elem, i) 1674 buflen += sg->length; 1675 1676 ata_sg_init(qc, sgl, n_elem); 1677 qc->nbytes = buflen; 1678 } 1679 1680 qc->private_data = &wait; 1681 qc->complete_fn = ata_qc_complete_internal; 1682 1683 ata_qc_issue(qc); 1684 1685 spin_unlock_irqrestore(ap->lock, flags); 1686 1687 if (!timeout) 1688 timeout = ata_probe_timeout * 1000 / HZ; 1689 1690 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1691 1692 ata_port_flush_task(ap); 1693 1694 if (!rc) { 1695 spin_lock_irqsave(ap->lock, flags); 1696 1697 /* We're racing with irq here. If we lose, the 1698 * following test prevents us from completing the qc 1699 * twice. If we win, the port is frozen and will be 1700 * cleaned up by ->post_internal_cmd(). 1701 */ 1702 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1703 qc->err_mask |= AC_ERR_TIMEOUT; 1704 1705 if (ap->ops->error_handler) 1706 ata_port_freeze(ap); 1707 else 1708 ata_qc_complete(qc); 1709 1710 if (ata_msg_warn(ap)) 1711 ata_dev_printk(dev, KERN_WARNING, 1712 "qc timeout (cmd 0x%x)\n", command); 1713 } 1714 1715 spin_unlock_irqrestore(ap->lock, flags); 1716 } 1717 1718 /* do post_internal_cmd */ 1719 if (ap->ops->post_internal_cmd) 1720 ap->ops->post_internal_cmd(qc); 1721 1722 /* perform minimal error analysis */ 1723 if (qc->flags & ATA_QCFLAG_FAILED) { 1724 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1725 qc->err_mask |= AC_ERR_DEV; 1726 1727 if (!qc->err_mask) 1728 qc->err_mask |= AC_ERR_OTHER; 1729 1730 if (qc->err_mask & ~AC_ERR_OTHER) 1731 qc->err_mask &= ~AC_ERR_OTHER; 1732 } 1733 1734 /* finish up */ 1735 spin_lock_irqsave(ap->lock, flags); 1736 1737 *tf = qc->result_tf; 1738 err_mask = qc->err_mask; 1739 1740 ata_qc_free(qc); 1741 link->active_tag = preempted_tag; 1742 link->sactive = preempted_sactive; 1743 ap->qc_active = preempted_qc_active; 1744 ap->nr_active_links = preempted_nr_active_links; 1745 1746 /* XXX - Some LLDDs (sata_mv) disable port on command failure. 1747 * Until those drivers are fixed, we detect the condition 1748 * here, fail the command with AC_ERR_SYSTEM and reenable the 1749 * port. 1750 * 1751 * Note that this doesn't change any behavior as internal 1752 * command failure results in disabling the device in the 1753 * higher layer for LLDDs without new reset/EH callbacks. 1754 * 1755 * Kill the following code as soon as those drivers are fixed. 1756 */ 1757 if (ap->flags & ATA_FLAG_DISABLED) { 1758 err_mask |= AC_ERR_SYSTEM; 1759 ata_port_probe(ap); 1760 } 1761 1762 spin_unlock_irqrestore(ap->lock, flags); 1763 1764 return err_mask; 1765 } 1766 1767 /** 1768 * ata_exec_internal - execute libata internal command 1769 * @dev: Device to which the command is sent 1770 * @tf: Taskfile registers for the command and the result 1771 * @cdb: CDB for packet command 1772 * @dma_dir: Data tranfer direction of the command 1773 * @buf: Data buffer of the command 1774 * @buflen: Length of data buffer 1775 * @timeout: Timeout in msecs (0 for default) 1776 * 1777 * Wrapper around ata_exec_internal_sg() which takes simple 1778 * buffer instead of sg list. 1779 * 1780 * LOCKING: 1781 * None. Should be called with kernel context, might sleep. 1782 * 1783 * RETURNS: 1784 * Zero on success, AC_ERR_* mask on failure 1785 */ 1786 unsigned ata_exec_internal(struct ata_device *dev, 1787 struct ata_taskfile *tf, const u8 *cdb, 1788 int dma_dir, void *buf, unsigned int buflen, 1789 unsigned long timeout) 1790 { 1791 struct scatterlist *psg = NULL, sg; 1792 unsigned int n_elem = 0; 1793 1794 if (dma_dir != DMA_NONE) { 1795 WARN_ON(!buf); 1796 sg_init_one(&sg, buf, buflen); 1797 psg = &sg; 1798 n_elem++; 1799 } 1800 1801 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1802 timeout); 1803 } 1804 1805 /** 1806 * ata_do_simple_cmd - execute simple internal command 1807 * @dev: Device to which the command is sent 1808 * @cmd: Opcode to execute 1809 * 1810 * Execute a 'simple' command, that only consists of the opcode 1811 * 'cmd' itself, without filling any other registers 1812 * 1813 * LOCKING: 1814 * Kernel thread context (may sleep). 1815 * 1816 * RETURNS: 1817 * Zero on success, AC_ERR_* mask on failure 1818 */ 1819 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1820 { 1821 struct ata_taskfile tf; 1822 1823 ata_tf_init(dev, &tf); 1824 1825 tf.command = cmd; 1826 tf.flags |= ATA_TFLAG_DEVICE; 1827 tf.protocol = ATA_PROT_NODATA; 1828 1829 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1830 } 1831 1832 /** 1833 * ata_pio_need_iordy - check if iordy needed 1834 * @adev: ATA device 1835 * 1836 * Check if the current speed of the device requires IORDY. Used 1837 * by various controllers for chip configuration. 1838 */ 1839 1840 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1841 { 1842 /* Controller doesn't support IORDY. Probably a pointless check 1843 as the caller should know this */ 1844 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1845 return 0; 1846 /* PIO3 and higher it is mandatory */ 1847 if (adev->pio_mode > XFER_PIO_2) 1848 return 1; 1849 /* We turn it on when possible */ 1850 if (ata_id_has_iordy(adev->id)) 1851 return 1; 1852 return 0; 1853 } 1854 1855 /** 1856 * ata_pio_mask_no_iordy - Return the non IORDY mask 1857 * @adev: ATA device 1858 * 1859 * Compute the highest mode possible if we are not using iordy. Return 1860 * -1 if no iordy mode is available. 1861 */ 1862 1863 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1864 { 1865 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1866 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1867 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1868 /* Is the speed faster than the drive allows non IORDY ? */ 1869 if (pio) { 1870 /* This is cycle times not frequency - watch the logic! */ 1871 if (pio > 240) /* PIO2 is 240nS per cycle */ 1872 return 3 << ATA_SHIFT_PIO; 1873 return 7 << ATA_SHIFT_PIO; 1874 } 1875 } 1876 return 3 << ATA_SHIFT_PIO; 1877 } 1878 1879 /** 1880 * ata_dev_read_id - Read ID data from the specified device 1881 * @dev: target device 1882 * @p_class: pointer to class of the target device (may be changed) 1883 * @flags: ATA_READID_* flags 1884 * @id: buffer to read IDENTIFY data into 1885 * 1886 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1887 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1888 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1889 * for pre-ATA4 drives. 1890 * 1891 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1892 * now we abort if we hit that case. 1893 * 1894 * LOCKING: 1895 * Kernel thread context (may sleep) 1896 * 1897 * RETURNS: 1898 * 0 on success, -errno otherwise. 1899 */ 1900 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1901 unsigned int flags, u16 *id) 1902 { 1903 struct ata_port *ap = dev->link->ap; 1904 unsigned int class = *p_class; 1905 struct ata_taskfile tf; 1906 unsigned int err_mask = 0; 1907 const char *reason; 1908 int may_fallback = 1, tried_spinup = 0; 1909 int rc; 1910 1911 if (ata_msg_ctl(ap)) 1912 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 1913 1914 retry: 1915 ata_tf_init(dev, &tf); 1916 1917 switch (class) { 1918 case ATA_DEV_ATA: 1919 tf.command = ATA_CMD_ID_ATA; 1920 break; 1921 case ATA_DEV_ATAPI: 1922 tf.command = ATA_CMD_ID_ATAPI; 1923 break; 1924 default: 1925 rc = -ENODEV; 1926 reason = "unsupported class"; 1927 goto err_out; 1928 } 1929 1930 tf.protocol = ATA_PROT_PIO; 1931 1932 /* Some devices choke if TF registers contain garbage. Make 1933 * sure those are properly initialized. 1934 */ 1935 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1936 1937 /* Device presence detection is unreliable on some 1938 * controllers. Always poll IDENTIFY if available. 1939 */ 1940 tf.flags |= ATA_TFLAG_POLLING; 1941 1942 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 1943 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1944 if (err_mask) { 1945 if (err_mask & AC_ERR_NODEV_HINT) { 1946 ata_dev_printk(dev, KERN_DEBUG, 1947 "NODEV after polling detection\n"); 1948 return -ENOENT; 1949 } 1950 1951 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1952 /* Device or controller might have reported 1953 * the wrong device class. Give a shot at the 1954 * other IDENTIFY if the current one is 1955 * aborted by the device. 1956 */ 1957 if (may_fallback) { 1958 may_fallback = 0; 1959 1960 if (class == ATA_DEV_ATA) 1961 class = ATA_DEV_ATAPI; 1962 else 1963 class = ATA_DEV_ATA; 1964 goto retry; 1965 } 1966 1967 /* Control reaches here iff the device aborted 1968 * both flavors of IDENTIFYs which happens 1969 * sometimes with phantom devices. 1970 */ 1971 ata_dev_printk(dev, KERN_DEBUG, 1972 "both IDENTIFYs aborted, assuming NODEV\n"); 1973 return -ENOENT; 1974 } 1975 1976 rc = -EIO; 1977 reason = "I/O error"; 1978 goto err_out; 1979 } 1980 1981 /* Falling back doesn't make sense if ID data was read 1982 * successfully at least once. 1983 */ 1984 may_fallback = 0; 1985 1986 swap_buf_le16(id, ATA_ID_WORDS); 1987 1988 /* sanity check */ 1989 rc = -EINVAL; 1990 reason = "device reports invalid type"; 1991 1992 if (class == ATA_DEV_ATA) { 1993 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1994 goto err_out; 1995 } else { 1996 if (ata_id_is_ata(id)) 1997 goto err_out; 1998 } 1999 2000 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 2001 tried_spinup = 1; 2002 /* 2003 * Drive powered-up in standby mode, and requires a specific 2004 * SET_FEATURES spin-up subcommand before it will accept 2005 * anything other than the original IDENTIFY command. 2006 */ 2007 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 2008 if (err_mask && id[2] != 0x738c) { 2009 rc = -EIO; 2010 reason = "SPINUP failed"; 2011 goto err_out; 2012 } 2013 /* 2014 * If the drive initially returned incomplete IDENTIFY info, 2015 * we now must reissue the IDENTIFY command. 2016 */ 2017 if (id[2] == 0x37c8) 2018 goto retry; 2019 } 2020 2021 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2022 /* 2023 * The exact sequence expected by certain pre-ATA4 drives is: 2024 * SRST RESET 2025 * IDENTIFY (optional in early ATA) 2026 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2027 * anything else.. 2028 * Some drives were very specific about that exact sequence. 2029 * 2030 * Note that ATA4 says lba is mandatory so the second check 2031 * shoud never trigger. 2032 */ 2033 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2034 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2035 if (err_mask) { 2036 rc = -EIO; 2037 reason = "INIT_DEV_PARAMS failed"; 2038 goto err_out; 2039 } 2040 2041 /* current CHS translation info (id[53-58]) might be 2042 * changed. reread the identify device info. 2043 */ 2044 flags &= ~ATA_READID_POSTRESET; 2045 goto retry; 2046 } 2047 } 2048 2049 *p_class = class; 2050 2051 return 0; 2052 2053 err_out: 2054 if (ata_msg_warn(ap)) 2055 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY " 2056 "(%s, err_mask=0x%x)\n", reason, err_mask); 2057 return rc; 2058 } 2059 2060 static inline u8 ata_dev_knobble(struct ata_device *dev) 2061 { 2062 struct ata_port *ap = dev->link->ap; 2063 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2064 } 2065 2066 static void ata_dev_config_ncq(struct ata_device *dev, 2067 char *desc, size_t desc_sz) 2068 { 2069 struct ata_port *ap = dev->link->ap; 2070 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2071 2072 if (!ata_id_has_ncq(dev->id)) { 2073 desc[0] = '\0'; 2074 return; 2075 } 2076 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2077 snprintf(desc, desc_sz, "NCQ (not used)"); 2078 return; 2079 } 2080 if (ap->flags & ATA_FLAG_NCQ) { 2081 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2082 dev->flags |= ATA_DFLAG_NCQ; 2083 } 2084 2085 if (hdepth >= ddepth) 2086 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth); 2087 else 2088 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth); 2089 } 2090 2091 /** 2092 * ata_dev_configure - Configure the specified ATA/ATAPI device 2093 * @dev: Target device to configure 2094 * 2095 * Configure @dev according to @dev->id. Generic and low-level 2096 * driver specific fixups are also applied. 2097 * 2098 * LOCKING: 2099 * Kernel thread context (may sleep) 2100 * 2101 * RETURNS: 2102 * 0 on success, -errno otherwise 2103 */ 2104 int ata_dev_configure(struct ata_device *dev) 2105 { 2106 struct ata_port *ap = dev->link->ap; 2107 struct ata_eh_context *ehc = &dev->link->eh_context; 2108 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2109 const u16 *id = dev->id; 2110 unsigned long xfer_mask; 2111 char revbuf[7]; /* XYZ-99\0 */ 2112 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2113 char modelbuf[ATA_ID_PROD_LEN+1]; 2114 int rc; 2115 2116 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2117 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n", 2118 __func__); 2119 return 0; 2120 } 2121 2122 if (ata_msg_probe(ap)) 2123 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__); 2124 2125 /* set horkage */ 2126 dev->horkage |= ata_dev_blacklisted(dev); 2127 ata_force_horkage(dev); 2128 2129 /* let ACPI work its magic */ 2130 rc = ata_acpi_on_devcfg(dev); 2131 if (rc) 2132 return rc; 2133 2134 /* massage HPA, do it early as it might change IDENTIFY data */ 2135 rc = ata_hpa_resize(dev); 2136 if (rc) 2137 return rc; 2138 2139 /* print device capabilities */ 2140 if (ata_msg_probe(ap)) 2141 ata_dev_printk(dev, KERN_DEBUG, 2142 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2143 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2144 __func__, 2145 id[49], id[82], id[83], id[84], 2146 id[85], id[86], id[87], id[88]); 2147 2148 /* initialize to-be-configured parameters */ 2149 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2150 dev->max_sectors = 0; 2151 dev->cdb_len = 0; 2152 dev->n_sectors = 0; 2153 dev->cylinders = 0; 2154 dev->heads = 0; 2155 dev->sectors = 0; 2156 2157 /* 2158 * common ATA, ATAPI feature tests 2159 */ 2160 2161 /* find max transfer mode; for printk only */ 2162 xfer_mask = ata_id_xfermask(id); 2163 2164 if (ata_msg_probe(ap)) 2165 ata_dump_id(id); 2166 2167 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2168 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2169 sizeof(fwrevbuf)); 2170 2171 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2172 sizeof(modelbuf)); 2173 2174 /* ATA-specific feature tests */ 2175 if (dev->class == ATA_DEV_ATA) { 2176 if (ata_id_is_cfa(id)) { 2177 if (id[162] & 1) /* CPRM may make this media unusable */ 2178 ata_dev_printk(dev, KERN_WARNING, 2179 "supports DRM functions and may " 2180 "not be fully accessable.\n"); 2181 snprintf(revbuf, 7, "CFA"); 2182 } else { 2183 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2184 /* Warn the user if the device has TPM extensions */ 2185 if (ata_id_has_tpm(id)) 2186 ata_dev_printk(dev, KERN_WARNING, 2187 "supports DRM functions and may " 2188 "not be fully accessable.\n"); 2189 } 2190 2191 dev->n_sectors = ata_id_n_sectors(id); 2192 2193 if (dev->id[59] & 0x100) 2194 dev->multi_count = dev->id[59] & 0xff; 2195 2196 if (ata_id_has_lba(id)) { 2197 const char *lba_desc; 2198 char ncq_desc[20]; 2199 2200 lba_desc = "LBA"; 2201 dev->flags |= ATA_DFLAG_LBA; 2202 if (ata_id_has_lba48(id)) { 2203 dev->flags |= ATA_DFLAG_LBA48; 2204 lba_desc = "LBA48"; 2205 2206 if (dev->n_sectors >= (1UL << 28) && 2207 ata_id_has_flush_ext(id)) 2208 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2209 } 2210 2211 /* config NCQ */ 2212 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2213 2214 /* print device info to dmesg */ 2215 if (ata_msg_drv(ap) && print_info) { 2216 ata_dev_printk(dev, KERN_INFO, 2217 "%s: %s, %s, max %s\n", 2218 revbuf, modelbuf, fwrevbuf, 2219 ata_mode_string(xfer_mask)); 2220 ata_dev_printk(dev, KERN_INFO, 2221 "%Lu sectors, multi %u: %s %s\n", 2222 (unsigned long long)dev->n_sectors, 2223 dev->multi_count, lba_desc, ncq_desc); 2224 } 2225 } else { 2226 /* CHS */ 2227 2228 /* Default translation */ 2229 dev->cylinders = id[1]; 2230 dev->heads = id[3]; 2231 dev->sectors = id[6]; 2232 2233 if (ata_id_current_chs_valid(id)) { 2234 /* Current CHS translation is valid. */ 2235 dev->cylinders = id[54]; 2236 dev->heads = id[55]; 2237 dev->sectors = id[56]; 2238 } 2239 2240 /* print device info to dmesg */ 2241 if (ata_msg_drv(ap) && print_info) { 2242 ata_dev_printk(dev, KERN_INFO, 2243 "%s: %s, %s, max %s\n", 2244 revbuf, modelbuf, fwrevbuf, 2245 ata_mode_string(xfer_mask)); 2246 ata_dev_printk(dev, KERN_INFO, 2247 "%Lu sectors, multi %u, CHS %u/%u/%u\n", 2248 (unsigned long long)dev->n_sectors, 2249 dev->multi_count, dev->cylinders, 2250 dev->heads, dev->sectors); 2251 } 2252 } 2253 2254 dev->cdb_len = 16; 2255 } 2256 2257 /* ATAPI-specific feature tests */ 2258 else if (dev->class == ATA_DEV_ATAPI) { 2259 const char *cdb_intr_string = ""; 2260 const char *atapi_an_string = ""; 2261 const char *dma_dir_string = ""; 2262 u32 sntf; 2263 2264 rc = atapi_cdb_len(id); 2265 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2266 if (ata_msg_warn(ap)) 2267 ata_dev_printk(dev, KERN_WARNING, 2268 "unsupported CDB len\n"); 2269 rc = -EINVAL; 2270 goto err_out_nosup; 2271 } 2272 dev->cdb_len = (unsigned int) rc; 2273 2274 /* Enable ATAPI AN if both the host and device have 2275 * the support. If PMP is attached, SNTF is required 2276 * to enable ATAPI AN to discern between PHY status 2277 * changed notifications and ATAPI ANs. 2278 */ 2279 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2280 (!sata_pmp_attached(ap) || 2281 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2282 unsigned int err_mask; 2283 2284 /* issue SET feature command to turn this on */ 2285 err_mask = ata_dev_set_feature(dev, 2286 SETFEATURES_SATA_ENABLE, SATA_AN); 2287 if (err_mask) 2288 ata_dev_printk(dev, KERN_ERR, 2289 "failed to enable ATAPI AN " 2290 "(err_mask=0x%x)\n", err_mask); 2291 else { 2292 dev->flags |= ATA_DFLAG_AN; 2293 atapi_an_string = ", ATAPI AN"; 2294 } 2295 } 2296 2297 if (ata_id_cdb_intr(dev->id)) { 2298 dev->flags |= ATA_DFLAG_CDB_INTR; 2299 cdb_intr_string = ", CDB intr"; 2300 } 2301 2302 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2303 dev->flags |= ATA_DFLAG_DMADIR; 2304 dma_dir_string = ", DMADIR"; 2305 } 2306 2307 /* print device info to dmesg */ 2308 if (ata_msg_drv(ap) && print_info) 2309 ata_dev_printk(dev, KERN_INFO, 2310 "ATAPI: %s, %s, max %s%s%s%s\n", 2311 modelbuf, fwrevbuf, 2312 ata_mode_string(xfer_mask), 2313 cdb_intr_string, atapi_an_string, 2314 dma_dir_string); 2315 } 2316 2317 /* determine max_sectors */ 2318 dev->max_sectors = ATA_MAX_SECTORS; 2319 if (dev->flags & ATA_DFLAG_LBA48) 2320 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2321 2322 if (!(dev->horkage & ATA_HORKAGE_IPM)) { 2323 if (ata_id_has_hipm(dev->id)) 2324 dev->flags |= ATA_DFLAG_HIPM; 2325 if (ata_id_has_dipm(dev->id)) 2326 dev->flags |= ATA_DFLAG_DIPM; 2327 } 2328 2329 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2330 200 sectors */ 2331 if (ata_dev_knobble(dev)) { 2332 if (ata_msg_drv(ap) && print_info) 2333 ata_dev_printk(dev, KERN_INFO, 2334 "applying bridge limits\n"); 2335 dev->udma_mask &= ATA_UDMA5; 2336 dev->max_sectors = ATA_MAX_SECTORS; 2337 } 2338 2339 if ((dev->class == ATA_DEV_ATAPI) && 2340 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2341 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2342 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2343 } 2344 2345 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2346 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2347 dev->max_sectors); 2348 2349 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) { 2350 dev->horkage |= ATA_HORKAGE_IPM; 2351 2352 /* reset link pm_policy for this port to no pm */ 2353 ap->pm_policy = MAX_PERFORMANCE; 2354 } 2355 2356 if (ap->ops->dev_config) 2357 ap->ops->dev_config(dev); 2358 2359 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2360 /* Let the user know. We don't want to disallow opens for 2361 rescue purposes, or in case the vendor is just a blithering 2362 idiot. Do this after the dev_config call as some controllers 2363 with buggy firmware may want to avoid reporting false device 2364 bugs */ 2365 2366 if (print_info) { 2367 ata_dev_printk(dev, KERN_WARNING, 2368 "Drive reports diagnostics failure. This may indicate a drive\n"); 2369 ata_dev_printk(dev, KERN_WARNING, 2370 "fault or invalid emulation. Contact drive vendor for information.\n"); 2371 } 2372 } 2373 2374 return 0; 2375 2376 err_out_nosup: 2377 if (ata_msg_probe(ap)) 2378 ata_dev_printk(dev, KERN_DEBUG, 2379 "%s: EXIT, err\n", __func__); 2380 return rc; 2381 } 2382 2383 /** 2384 * ata_cable_40wire - return 40 wire cable type 2385 * @ap: port 2386 * 2387 * Helper method for drivers which want to hardwire 40 wire cable 2388 * detection. 2389 */ 2390 2391 int ata_cable_40wire(struct ata_port *ap) 2392 { 2393 return ATA_CBL_PATA40; 2394 } 2395 2396 /** 2397 * ata_cable_80wire - return 80 wire cable type 2398 * @ap: port 2399 * 2400 * Helper method for drivers which want to hardwire 80 wire cable 2401 * detection. 2402 */ 2403 2404 int ata_cable_80wire(struct ata_port *ap) 2405 { 2406 return ATA_CBL_PATA80; 2407 } 2408 2409 /** 2410 * ata_cable_unknown - return unknown PATA cable. 2411 * @ap: port 2412 * 2413 * Helper method for drivers which have no PATA cable detection. 2414 */ 2415 2416 int ata_cable_unknown(struct ata_port *ap) 2417 { 2418 return ATA_CBL_PATA_UNK; 2419 } 2420 2421 /** 2422 * ata_cable_ignore - return ignored PATA cable. 2423 * @ap: port 2424 * 2425 * Helper method for drivers which don't use cable type to limit 2426 * transfer mode. 2427 */ 2428 int ata_cable_ignore(struct ata_port *ap) 2429 { 2430 return ATA_CBL_PATA_IGN; 2431 } 2432 2433 /** 2434 * ata_cable_sata - return SATA cable type 2435 * @ap: port 2436 * 2437 * Helper method for drivers which have SATA cables 2438 */ 2439 2440 int ata_cable_sata(struct ata_port *ap) 2441 { 2442 return ATA_CBL_SATA; 2443 } 2444 2445 /** 2446 * ata_bus_probe - Reset and probe ATA bus 2447 * @ap: Bus to probe 2448 * 2449 * Master ATA bus probing function. Initiates a hardware-dependent 2450 * bus reset, then attempts to identify any devices found on 2451 * the bus. 2452 * 2453 * LOCKING: 2454 * PCI/etc. bus probe sem. 2455 * 2456 * RETURNS: 2457 * Zero on success, negative errno otherwise. 2458 */ 2459 2460 int ata_bus_probe(struct ata_port *ap) 2461 { 2462 unsigned int classes[ATA_MAX_DEVICES]; 2463 int tries[ATA_MAX_DEVICES]; 2464 int rc; 2465 struct ata_device *dev; 2466 2467 ata_port_probe(ap); 2468 2469 ata_link_for_each_dev(dev, &ap->link) 2470 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2471 2472 retry: 2473 ata_link_for_each_dev(dev, &ap->link) { 2474 /* If we issue an SRST then an ATA drive (not ATAPI) 2475 * may change configuration and be in PIO0 timing. If 2476 * we do a hard reset (or are coming from power on) 2477 * this is true for ATA or ATAPI. Until we've set a 2478 * suitable controller mode we should not touch the 2479 * bus as we may be talking too fast. 2480 */ 2481 dev->pio_mode = XFER_PIO_0; 2482 2483 /* If the controller has a pio mode setup function 2484 * then use it to set the chipset to rights. Don't 2485 * touch the DMA setup as that will be dealt with when 2486 * configuring devices. 2487 */ 2488 if (ap->ops->set_piomode) 2489 ap->ops->set_piomode(ap, dev); 2490 } 2491 2492 /* reset and determine device classes */ 2493 ap->ops->phy_reset(ap); 2494 2495 ata_link_for_each_dev(dev, &ap->link) { 2496 if (!(ap->flags & ATA_FLAG_DISABLED) && 2497 dev->class != ATA_DEV_UNKNOWN) 2498 classes[dev->devno] = dev->class; 2499 else 2500 classes[dev->devno] = ATA_DEV_NONE; 2501 2502 dev->class = ATA_DEV_UNKNOWN; 2503 } 2504 2505 ata_port_probe(ap); 2506 2507 /* read IDENTIFY page and configure devices. We have to do the identify 2508 specific sequence bass-ackwards so that PDIAG- is released by 2509 the slave device */ 2510 2511 ata_link_for_each_dev_reverse(dev, &ap->link) { 2512 if (tries[dev->devno]) 2513 dev->class = classes[dev->devno]; 2514 2515 if (!ata_dev_enabled(dev)) 2516 continue; 2517 2518 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2519 dev->id); 2520 if (rc) 2521 goto fail; 2522 } 2523 2524 /* Now ask for the cable type as PDIAG- should have been released */ 2525 if (ap->ops->cable_detect) 2526 ap->cbl = ap->ops->cable_detect(ap); 2527 2528 /* We may have SATA bridge glue hiding here irrespective of the 2529 reported cable types and sensed types */ 2530 ata_link_for_each_dev(dev, &ap->link) { 2531 if (!ata_dev_enabled(dev)) 2532 continue; 2533 /* SATA drives indicate we have a bridge. We don't know which 2534 end of the link the bridge is which is a problem */ 2535 if (ata_id_is_sata(dev->id)) 2536 ap->cbl = ATA_CBL_SATA; 2537 } 2538 2539 /* After the identify sequence we can now set up the devices. We do 2540 this in the normal order so that the user doesn't get confused */ 2541 2542 ata_link_for_each_dev(dev, &ap->link) { 2543 if (!ata_dev_enabled(dev)) 2544 continue; 2545 2546 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2547 rc = ata_dev_configure(dev); 2548 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2549 if (rc) 2550 goto fail; 2551 } 2552 2553 /* configure transfer mode */ 2554 rc = ata_set_mode(&ap->link, &dev); 2555 if (rc) 2556 goto fail; 2557 2558 ata_link_for_each_dev(dev, &ap->link) 2559 if (ata_dev_enabled(dev)) 2560 return 0; 2561 2562 /* no device present, disable port */ 2563 ata_port_disable(ap); 2564 return -ENODEV; 2565 2566 fail: 2567 tries[dev->devno]--; 2568 2569 switch (rc) { 2570 case -EINVAL: 2571 /* eeek, something went very wrong, give up */ 2572 tries[dev->devno] = 0; 2573 break; 2574 2575 case -ENODEV: 2576 /* give it just one more chance */ 2577 tries[dev->devno] = min(tries[dev->devno], 1); 2578 case -EIO: 2579 if (tries[dev->devno] == 1) { 2580 /* This is the last chance, better to slow 2581 * down than lose it. 2582 */ 2583 sata_down_spd_limit(&ap->link); 2584 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2585 } 2586 } 2587 2588 if (!tries[dev->devno]) 2589 ata_dev_disable(dev); 2590 2591 goto retry; 2592 } 2593 2594 /** 2595 * ata_port_probe - Mark port as enabled 2596 * @ap: Port for which we indicate enablement 2597 * 2598 * Modify @ap data structure such that the system 2599 * thinks that the entire port is enabled. 2600 * 2601 * LOCKING: host lock, or some other form of 2602 * serialization. 2603 */ 2604 2605 void ata_port_probe(struct ata_port *ap) 2606 { 2607 ap->flags &= ~ATA_FLAG_DISABLED; 2608 } 2609 2610 /** 2611 * sata_print_link_status - Print SATA link status 2612 * @link: SATA link to printk link status about 2613 * 2614 * This function prints link speed and status of a SATA link. 2615 * 2616 * LOCKING: 2617 * None. 2618 */ 2619 static void sata_print_link_status(struct ata_link *link) 2620 { 2621 u32 sstatus, scontrol, tmp; 2622 2623 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2624 return; 2625 sata_scr_read(link, SCR_CONTROL, &scontrol); 2626 2627 if (ata_link_online(link)) { 2628 tmp = (sstatus >> 4) & 0xf; 2629 ata_link_printk(link, KERN_INFO, 2630 "SATA link up %s (SStatus %X SControl %X)\n", 2631 sata_spd_string(tmp), sstatus, scontrol); 2632 } else { 2633 ata_link_printk(link, KERN_INFO, 2634 "SATA link down (SStatus %X SControl %X)\n", 2635 sstatus, scontrol); 2636 } 2637 } 2638 2639 /** 2640 * ata_dev_pair - return other device on cable 2641 * @adev: device 2642 * 2643 * Obtain the other device on the same cable, or if none is 2644 * present NULL is returned 2645 */ 2646 2647 struct ata_device *ata_dev_pair(struct ata_device *adev) 2648 { 2649 struct ata_link *link = adev->link; 2650 struct ata_device *pair = &link->device[1 - adev->devno]; 2651 if (!ata_dev_enabled(pair)) 2652 return NULL; 2653 return pair; 2654 } 2655 2656 /** 2657 * ata_port_disable - Disable port. 2658 * @ap: Port to be disabled. 2659 * 2660 * Modify @ap data structure such that the system 2661 * thinks that the entire port is disabled, and should 2662 * never attempt to probe or communicate with devices 2663 * on this port. 2664 * 2665 * LOCKING: host lock, or some other form of 2666 * serialization. 2667 */ 2668 2669 void ata_port_disable(struct ata_port *ap) 2670 { 2671 ap->link.device[0].class = ATA_DEV_NONE; 2672 ap->link.device[1].class = ATA_DEV_NONE; 2673 ap->flags |= ATA_FLAG_DISABLED; 2674 } 2675 2676 /** 2677 * sata_down_spd_limit - adjust SATA spd limit downward 2678 * @link: Link to adjust SATA spd limit for 2679 * 2680 * Adjust SATA spd limit of @link downward. Note that this 2681 * function only adjusts the limit. The change must be applied 2682 * using sata_set_spd(). 2683 * 2684 * LOCKING: 2685 * Inherited from caller. 2686 * 2687 * RETURNS: 2688 * 0 on success, negative errno on failure 2689 */ 2690 int sata_down_spd_limit(struct ata_link *link) 2691 { 2692 u32 sstatus, spd, mask; 2693 int rc, highbit; 2694 2695 if (!sata_scr_valid(link)) 2696 return -EOPNOTSUPP; 2697 2698 /* If SCR can be read, use it to determine the current SPD. 2699 * If not, use cached value in link->sata_spd. 2700 */ 2701 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2702 if (rc == 0) 2703 spd = (sstatus >> 4) & 0xf; 2704 else 2705 spd = link->sata_spd; 2706 2707 mask = link->sata_spd_limit; 2708 if (mask <= 1) 2709 return -EINVAL; 2710 2711 /* unconditionally mask off the highest bit */ 2712 highbit = fls(mask) - 1; 2713 mask &= ~(1 << highbit); 2714 2715 /* Mask off all speeds higher than or equal to the current 2716 * one. Force 1.5Gbps if current SPD is not available. 2717 */ 2718 if (spd > 1) 2719 mask &= (1 << (spd - 1)) - 1; 2720 else 2721 mask &= 1; 2722 2723 /* were we already at the bottom? */ 2724 if (!mask) 2725 return -EINVAL; 2726 2727 link->sata_spd_limit = mask; 2728 2729 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n", 2730 sata_spd_string(fls(mask))); 2731 2732 return 0; 2733 } 2734 2735 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2736 { 2737 struct ata_link *host_link = &link->ap->link; 2738 u32 limit, target, spd; 2739 2740 limit = link->sata_spd_limit; 2741 2742 /* Don't configure downstream link faster than upstream link. 2743 * It doesn't speed up anything and some PMPs choke on such 2744 * configuration. 2745 */ 2746 if (!ata_is_host_link(link) && host_link->sata_spd) 2747 limit &= (1 << host_link->sata_spd) - 1; 2748 2749 if (limit == UINT_MAX) 2750 target = 0; 2751 else 2752 target = fls(limit); 2753 2754 spd = (*scontrol >> 4) & 0xf; 2755 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2756 2757 return spd != target; 2758 } 2759 2760 /** 2761 * sata_set_spd_needed - is SATA spd configuration needed 2762 * @link: Link in question 2763 * 2764 * Test whether the spd limit in SControl matches 2765 * @link->sata_spd_limit. This function is used to determine 2766 * whether hardreset is necessary to apply SATA spd 2767 * configuration. 2768 * 2769 * LOCKING: 2770 * Inherited from caller. 2771 * 2772 * RETURNS: 2773 * 1 if SATA spd configuration is needed, 0 otherwise. 2774 */ 2775 static int sata_set_spd_needed(struct ata_link *link) 2776 { 2777 u32 scontrol; 2778 2779 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2780 return 1; 2781 2782 return __sata_set_spd_needed(link, &scontrol); 2783 } 2784 2785 /** 2786 * sata_set_spd - set SATA spd according to spd limit 2787 * @link: Link to set SATA spd for 2788 * 2789 * Set SATA spd of @link according to sata_spd_limit. 2790 * 2791 * LOCKING: 2792 * Inherited from caller. 2793 * 2794 * RETURNS: 2795 * 0 if spd doesn't need to be changed, 1 if spd has been 2796 * changed. Negative errno if SCR registers are inaccessible. 2797 */ 2798 int sata_set_spd(struct ata_link *link) 2799 { 2800 u32 scontrol; 2801 int rc; 2802 2803 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2804 return rc; 2805 2806 if (!__sata_set_spd_needed(link, &scontrol)) 2807 return 0; 2808 2809 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2810 return rc; 2811 2812 return 1; 2813 } 2814 2815 /* 2816 * This mode timing computation functionality is ported over from 2817 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2818 */ 2819 /* 2820 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2821 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2822 * for UDMA6, which is currently supported only by Maxtor drives. 2823 * 2824 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2825 */ 2826 2827 static const struct ata_timing ata_timing[] = { 2828 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ 2829 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, 2830 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, 2831 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, 2832 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, 2833 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, 2834 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 }, 2835 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 }, 2836 2837 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, 2838 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, 2839 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, 2840 2841 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, 2842 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, 2843 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, 2844 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 }, 2845 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 }, 2846 2847 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2848 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2849 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, 2850 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, 2851 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, 2852 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, 2853 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, 2854 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, 2855 2856 { 0xFF } 2857 }; 2858 2859 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2860 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2861 2862 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2863 { 2864 q->setup = EZ(t->setup * 1000, T); 2865 q->act8b = EZ(t->act8b * 1000, T); 2866 q->rec8b = EZ(t->rec8b * 1000, T); 2867 q->cyc8b = EZ(t->cyc8b * 1000, T); 2868 q->active = EZ(t->active * 1000, T); 2869 q->recover = EZ(t->recover * 1000, T); 2870 q->cycle = EZ(t->cycle * 1000, T); 2871 q->udma = EZ(t->udma * 1000, UT); 2872 } 2873 2874 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2875 struct ata_timing *m, unsigned int what) 2876 { 2877 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2878 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2879 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2880 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2881 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2882 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2883 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2884 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2885 } 2886 2887 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2888 { 2889 const struct ata_timing *t = ata_timing; 2890 2891 while (xfer_mode > t->mode) 2892 t++; 2893 2894 if (xfer_mode == t->mode) 2895 return t; 2896 return NULL; 2897 } 2898 2899 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2900 struct ata_timing *t, int T, int UT) 2901 { 2902 const struct ata_timing *s; 2903 struct ata_timing p; 2904 2905 /* 2906 * Find the mode. 2907 */ 2908 2909 if (!(s = ata_timing_find_mode(speed))) 2910 return -EINVAL; 2911 2912 memcpy(t, s, sizeof(*s)); 2913 2914 /* 2915 * If the drive is an EIDE drive, it can tell us it needs extended 2916 * PIO/MW_DMA cycle timing. 2917 */ 2918 2919 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2920 memset(&p, 0, sizeof(p)); 2921 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { 2922 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; 2923 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; 2924 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { 2925 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; 2926 } 2927 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2928 } 2929 2930 /* 2931 * Convert the timing to bus clock counts. 2932 */ 2933 2934 ata_timing_quantize(t, t, T, UT); 2935 2936 /* 2937 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2938 * S.M.A.R.T * and some other commands. We have to ensure that the 2939 * DMA cycle timing is slower/equal than the fastest PIO timing. 2940 */ 2941 2942 if (speed > XFER_PIO_6) { 2943 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 2944 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 2945 } 2946 2947 /* 2948 * Lengthen active & recovery time so that cycle time is correct. 2949 */ 2950 2951 if (t->act8b + t->rec8b < t->cyc8b) { 2952 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 2953 t->rec8b = t->cyc8b - t->act8b; 2954 } 2955 2956 if (t->active + t->recover < t->cycle) { 2957 t->active += (t->cycle - (t->active + t->recover)) / 2; 2958 t->recover = t->cycle - t->active; 2959 } 2960 2961 /* In a few cases quantisation may produce enough errors to 2962 leave t->cycle too low for the sum of active and recovery 2963 if so we must correct this */ 2964 if (t->active + t->recover > t->cycle) 2965 t->cycle = t->active + t->recover; 2966 2967 return 0; 2968 } 2969 2970 /** 2971 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 2972 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 2973 * @cycle: cycle duration in ns 2974 * 2975 * Return matching xfer mode for @cycle. The returned mode is of 2976 * the transfer type specified by @xfer_shift. If @cycle is too 2977 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 2978 * than the fastest known mode, the fasted mode is returned. 2979 * 2980 * LOCKING: 2981 * None. 2982 * 2983 * RETURNS: 2984 * Matching xfer_mode, 0xff if no match found. 2985 */ 2986 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 2987 { 2988 u8 base_mode = 0xff, last_mode = 0xff; 2989 const struct ata_xfer_ent *ent; 2990 const struct ata_timing *t; 2991 2992 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 2993 if (ent->shift == xfer_shift) 2994 base_mode = ent->base; 2995 2996 for (t = ata_timing_find_mode(base_mode); 2997 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 2998 unsigned short this_cycle; 2999 3000 switch (xfer_shift) { 3001 case ATA_SHIFT_PIO: 3002 case ATA_SHIFT_MWDMA: 3003 this_cycle = t->cycle; 3004 break; 3005 case ATA_SHIFT_UDMA: 3006 this_cycle = t->udma; 3007 break; 3008 default: 3009 return 0xff; 3010 } 3011 3012 if (cycle > this_cycle) 3013 break; 3014 3015 last_mode = t->mode; 3016 } 3017 3018 return last_mode; 3019 } 3020 3021 /** 3022 * ata_down_xfermask_limit - adjust dev xfer masks downward 3023 * @dev: Device to adjust xfer masks 3024 * @sel: ATA_DNXFER_* selector 3025 * 3026 * Adjust xfer masks of @dev downward. Note that this function 3027 * does not apply the change. Invoking ata_set_mode() afterwards 3028 * will apply the limit. 3029 * 3030 * LOCKING: 3031 * Inherited from caller. 3032 * 3033 * RETURNS: 3034 * 0 on success, negative errno on failure 3035 */ 3036 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3037 { 3038 char buf[32]; 3039 unsigned long orig_mask, xfer_mask; 3040 unsigned long pio_mask, mwdma_mask, udma_mask; 3041 int quiet, highbit; 3042 3043 quiet = !!(sel & ATA_DNXFER_QUIET); 3044 sel &= ~ATA_DNXFER_QUIET; 3045 3046 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3047 dev->mwdma_mask, 3048 dev->udma_mask); 3049 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3050 3051 switch (sel) { 3052 case ATA_DNXFER_PIO: 3053 highbit = fls(pio_mask) - 1; 3054 pio_mask &= ~(1 << highbit); 3055 break; 3056 3057 case ATA_DNXFER_DMA: 3058 if (udma_mask) { 3059 highbit = fls(udma_mask) - 1; 3060 udma_mask &= ~(1 << highbit); 3061 if (!udma_mask) 3062 return -ENOENT; 3063 } else if (mwdma_mask) { 3064 highbit = fls(mwdma_mask) - 1; 3065 mwdma_mask &= ~(1 << highbit); 3066 if (!mwdma_mask) 3067 return -ENOENT; 3068 } 3069 break; 3070 3071 case ATA_DNXFER_40C: 3072 udma_mask &= ATA_UDMA_MASK_40C; 3073 break; 3074 3075 case ATA_DNXFER_FORCE_PIO0: 3076 pio_mask &= 1; 3077 case ATA_DNXFER_FORCE_PIO: 3078 mwdma_mask = 0; 3079 udma_mask = 0; 3080 break; 3081 3082 default: 3083 BUG(); 3084 } 3085 3086 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3087 3088 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3089 return -ENOENT; 3090 3091 if (!quiet) { 3092 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3093 snprintf(buf, sizeof(buf), "%s:%s", 3094 ata_mode_string(xfer_mask), 3095 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3096 else 3097 snprintf(buf, sizeof(buf), "%s", 3098 ata_mode_string(xfer_mask)); 3099 3100 ata_dev_printk(dev, KERN_WARNING, 3101 "limiting speed to %s\n", buf); 3102 } 3103 3104 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3105 &dev->udma_mask); 3106 3107 return 0; 3108 } 3109 3110 static int ata_dev_set_mode(struct ata_device *dev) 3111 { 3112 struct ata_eh_context *ehc = &dev->link->eh_context; 3113 const char *dev_err_whine = ""; 3114 int ign_dev_err = 0; 3115 unsigned int err_mask; 3116 int rc; 3117 3118 dev->flags &= ~ATA_DFLAG_PIO; 3119 if (dev->xfer_shift == ATA_SHIFT_PIO) 3120 dev->flags |= ATA_DFLAG_PIO; 3121 3122 err_mask = ata_dev_set_xfermode(dev); 3123 3124 if (err_mask & ~AC_ERR_DEV) 3125 goto fail; 3126 3127 /* revalidate */ 3128 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3129 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3130 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3131 if (rc) 3132 return rc; 3133 3134 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3135 /* Old CFA may refuse this command, which is just fine */ 3136 if (ata_id_is_cfa(dev->id)) 3137 ign_dev_err = 1; 3138 /* Catch several broken garbage emulations plus some pre 3139 ATA devices */ 3140 if (ata_id_major_version(dev->id) == 0 && 3141 dev->pio_mode <= XFER_PIO_2) 3142 ign_dev_err = 1; 3143 /* Some very old devices and some bad newer ones fail 3144 any kind of SET_XFERMODE request but support PIO0-2 3145 timings and no IORDY */ 3146 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3147 ign_dev_err = 1; 3148 } 3149 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3150 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3151 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3152 dev->dma_mode == XFER_MW_DMA_0 && 3153 (dev->id[63] >> 8) & 1) 3154 ign_dev_err = 1; 3155 3156 /* if the device is actually configured correctly, ignore dev err */ 3157 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3158 ign_dev_err = 1; 3159 3160 if (err_mask & AC_ERR_DEV) { 3161 if (!ign_dev_err) 3162 goto fail; 3163 else 3164 dev_err_whine = " (device error ignored)"; 3165 } 3166 3167 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3168 dev->xfer_shift, (int)dev->xfer_mode); 3169 3170 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n", 3171 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3172 dev_err_whine); 3173 3174 return 0; 3175 3176 fail: 3177 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode " 3178 "(err_mask=0x%x)\n", err_mask); 3179 return -EIO; 3180 } 3181 3182 /** 3183 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3184 * @link: link on which timings will be programmed 3185 * @r_failed_dev: out parameter for failed device 3186 * 3187 * Standard implementation of the function used to tune and set 3188 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3189 * ata_dev_set_mode() fails, pointer to the failing device is 3190 * returned in @r_failed_dev. 3191 * 3192 * LOCKING: 3193 * PCI/etc. bus probe sem. 3194 * 3195 * RETURNS: 3196 * 0 on success, negative errno otherwise 3197 */ 3198 3199 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3200 { 3201 struct ata_port *ap = link->ap; 3202 struct ata_device *dev; 3203 int rc = 0, used_dma = 0, found = 0; 3204 3205 /* step 1: calculate xfer_mask */ 3206 ata_link_for_each_dev(dev, link) { 3207 unsigned long pio_mask, dma_mask; 3208 unsigned int mode_mask; 3209 3210 if (!ata_dev_enabled(dev)) 3211 continue; 3212 3213 mode_mask = ATA_DMA_MASK_ATA; 3214 if (dev->class == ATA_DEV_ATAPI) 3215 mode_mask = ATA_DMA_MASK_ATAPI; 3216 else if (ata_id_is_cfa(dev->id)) 3217 mode_mask = ATA_DMA_MASK_CFA; 3218 3219 ata_dev_xfermask(dev); 3220 ata_force_xfermask(dev); 3221 3222 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3223 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3224 3225 if (libata_dma_mask & mode_mask) 3226 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask); 3227 else 3228 dma_mask = 0; 3229 3230 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3231 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3232 3233 found = 1; 3234 if (dev->dma_mode != 0xff) 3235 used_dma = 1; 3236 } 3237 if (!found) 3238 goto out; 3239 3240 /* step 2: always set host PIO timings */ 3241 ata_link_for_each_dev(dev, link) { 3242 if (!ata_dev_enabled(dev)) 3243 continue; 3244 3245 if (dev->pio_mode == 0xff) { 3246 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n"); 3247 rc = -EINVAL; 3248 goto out; 3249 } 3250 3251 dev->xfer_mode = dev->pio_mode; 3252 dev->xfer_shift = ATA_SHIFT_PIO; 3253 if (ap->ops->set_piomode) 3254 ap->ops->set_piomode(ap, dev); 3255 } 3256 3257 /* step 3: set host DMA timings */ 3258 ata_link_for_each_dev(dev, link) { 3259 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff) 3260 continue; 3261 3262 dev->xfer_mode = dev->dma_mode; 3263 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3264 if (ap->ops->set_dmamode) 3265 ap->ops->set_dmamode(ap, dev); 3266 } 3267 3268 /* step 4: update devices' xfer mode */ 3269 ata_link_for_each_dev(dev, link) { 3270 /* don't update suspended devices' xfer mode */ 3271 if (!ata_dev_enabled(dev)) 3272 continue; 3273 3274 rc = ata_dev_set_mode(dev); 3275 if (rc) 3276 goto out; 3277 } 3278 3279 /* Record simplex status. If we selected DMA then the other 3280 * host channels are not permitted to do so. 3281 */ 3282 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3283 ap->host->simplex_claimed = ap; 3284 3285 out: 3286 if (rc) 3287 *r_failed_dev = dev; 3288 return rc; 3289 } 3290 3291 /** 3292 * ata_wait_ready - wait for link to become ready 3293 * @link: link to be waited on 3294 * @deadline: deadline jiffies for the operation 3295 * @check_ready: callback to check link readiness 3296 * 3297 * Wait for @link to become ready. @check_ready should return 3298 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3299 * link doesn't seem to be occupied, other errno for other error 3300 * conditions. 3301 * 3302 * Transient -ENODEV conditions are allowed for 3303 * ATA_TMOUT_FF_WAIT. 3304 * 3305 * LOCKING: 3306 * EH context. 3307 * 3308 * RETURNS: 3309 * 0 if @linke is ready before @deadline; otherwise, -errno. 3310 */ 3311 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3312 int (*check_ready)(struct ata_link *link)) 3313 { 3314 unsigned long start = jiffies; 3315 unsigned long nodev_deadline = start + ATA_TMOUT_FF_WAIT; 3316 int warned = 0; 3317 3318 if (time_after(nodev_deadline, deadline)) 3319 nodev_deadline = deadline; 3320 3321 while (1) { 3322 unsigned long now = jiffies; 3323 int ready, tmp; 3324 3325 ready = tmp = check_ready(link); 3326 if (ready > 0) 3327 return 0; 3328 3329 /* -ENODEV could be transient. Ignore -ENODEV if link 3330 * is online. Also, some SATA devices take a long 3331 * time to clear 0xff after reset. For example, 3332 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum 3333 * GoVault needs even more than that. Wait for 3334 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline. 3335 * 3336 * Note that some PATA controllers (pata_ali) explode 3337 * if status register is read more than once when 3338 * there's no device attached. 3339 */ 3340 if (ready == -ENODEV) { 3341 if (ata_link_online(link)) 3342 ready = 0; 3343 else if ((link->ap->flags & ATA_FLAG_SATA) && 3344 !ata_link_offline(link) && 3345 time_before(now, nodev_deadline)) 3346 ready = 0; 3347 } 3348 3349 if (ready) 3350 return ready; 3351 if (time_after(now, deadline)) 3352 return -EBUSY; 3353 3354 if (!warned && time_after(now, start + 5 * HZ) && 3355 (deadline - now > 3 * HZ)) { 3356 ata_link_printk(link, KERN_WARNING, 3357 "link is slow to respond, please be patient " 3358 "(ready=%d)\n", tmp); 3359 warned = 1; 3360 } 3361 3362 msleep(50); 3363 } 3364 } 3365 3366 /** 3367 * ata_wait_after_reset - wait for link to become ready after reset 3368 * @link: link to be waited on 3369 * @deadline: deadline jiffies for the operation 3370 * @check_ready: callback to check link readiness 3371 * 3372 * Wait for @link to become ready after reset. 3373 * 3374 * LOCKING: 3375 * EH context. 3376 * 3377 * RETURNS: 3378 * 0 if @linke is ready before @deadline; otherwise, -errno. 3379 */ 3380 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3381 int (*check_ready)(struct ata_link *link)) 3382 { 3383 msleep(ATA_WAIT_AFTER_RESET_MSECS); 3384 3385 return ata_wait_ready(link, deadline, check_ready); 3386 } 3387 3388 /** 3389 * sata_link_debounce - debounce SATA phy status 3390 * @link: ATA link to debounce SATA phy status for 3391 * @params: timing parameters { interval, duratinon, timeout } in msec 3392 * @deadline: deadline jiffies for the operation 3393 * 3394 * Make sure SStatus of @link reaches stable state, determined by 3395 * holding the same value where DET is not 1 for @duration polled 3396 * every @interval, before @timeout. Timeout constraints the 3397 * beginning of the stable state. Because DET gets stuck at 1 on 3398 * some controllers after hot unplugging, this functions waits 3399 * until timeout then returns 0 if DET is stable at 1. 3400 * 3401 * @timeout is further limited by @deadline. The sooner of the 3402 * two is used. 3403 * 3404 * LOCKING: 3405 * Kernel thread context (may sleep) 3406 * 3407 * RETURNS: 3408 * 0 on success, -errno on failure. 3409 */ 3410 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3411 unsigned long deadline) 3412 { 3413 unsigned long interval_msec = params[0]; 3414 unsigned long duration = msecs_to_jiffies(params[1]); 3415 unsigned long last_jiffies, t; 3416 u32 last, cur; 3417 int rc; 3418 3419 t = jiffies + msecs_to_jiffies(params[2]); 3420 if (time_before(t, deadline)) 3421 deadline = t; 3422 3423 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3424 return rc; 3425 cur &= 0xf; 3426 3427 last = cur; 3428 last_jiffies = jiffies; 3429 3430 while (1) { 3431 msleep(interval_msec); 3432 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3433 return rc; 3434 cur &= 0xf; 3435 3436 /* DET stable? */ 3437 if (cur == last) { 3438 if (cur == 1 && time_before(jiffies, deadline)) 3439 continue; 3440 if (time_after(jiffies, last_jiffies + duration)) 3441 return 0; 3442 continue; 3443 } 3444 3445 /* unstable, start over */ 3446 last = cur; 3447 last_jiffies = jiffies; 3448 3449 /* Check deadline. If debouncing failed, return 3450 * -EPIPE to tell upper layer to lower link speed. 3451 */ 3452 if (time_after(jiffies, deadline)) 3453 return -EPIPE; 3454 } 3455 } 3456 3457 /** 3458 * sata_link_resume - resume SATA link 3459 * @link: ATA link to resume SATA 3460 * @params: timing parameters { interval, duratinon, timeout } in msec 3461 * @deadline: deadline jiffies for the operation 3462 * 3463 * Resume SATA phy @link and debounce it. 3464 * 3465 * LOCKING: 3466 * Kernel thread context (may sleep) 3467 * 3468 * RETURNS: 3469 * 0 on success, -errno on failure. 3470 */ 3471 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3472 unsigned long deadline) 3473 { 3474 u32 scontrol, serror; 3475 int rc; 3476 3477 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3478 return rc; 3479 3480 scontrol = (scontrol & 0x0f0) | 0x300; 3481 3482 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3483 return rc; 3484 3485 /* Some PHYs react badly if SStatus is pounded immediately 3486 * after resuming. Delay 200ms before debouncing. 3487 */ 3488 msleep(200); 3489 3490 if ((rc = sata_link_debounce(link, params, deadline))) 3491 return rc; 3492 3493 /* Clear SError. PMP and some host PHYs require this to 3494 * operate and clearing should be done before checking PHY 3495 * online status to avoid race condition (hotplugging between 3496 * link resume and status check). 3497 */ 3498 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3499 rc = sata_scr_write(link, SCR_ERROR, serror); 3500 if (rc == 0 || rc == -EINVAL) { 3501 unsigned long flags; 3502 3503 spin_lock_irqsave(link->ap->lock, flags); 3504 link->eh_info.serror = 0; 3505 spin_unlock_irqrestore(link->ap->lock, flags); 3506 rc = 0; 3507 } 3508 return rc; 3509 } 3510 3511 /** 3512 * ata_std_prereset - prepare for reset 3513 * @link: ATA link to be reset 3514 * @deadline: deadline jiffies for the operation 3515 * 3516 * @link is about to be reset. Initialize it. Failure from 3517 * prereset makes libata abort whole reset sequence and give up 3518 * that port, so prereset should be best-effort. It does its 3519 * best to prepare for reset sequence but if things go wrong, it 3520 * should just whine, not fail. 3521 * 3522 * LOCKING: 3523 * Kernel thread context (may sleep) 3524 * 3525 * RETURNS: 3526 * 0 on success, -errno otherwise. 3527 */ 3528 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3529 { 3530 struct ata_port *ap = link->ap; 3531 struct ata_eh_context *ehc = &link->eh_context; 3532 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3533 int rc; 3534 3535 /* if we're about to do hardreset, nothing more to do */ 3536 if (ehc->i.action & ATA_EH_HARDRESET) 3537 return 0; 3538 3539 /* if SATA, resume link */ 3540 if (ap->flags & ATA_FLAG_SATA) { 3541 rc = sata_link_resume(link, timing, deadline); 3542 /* whine about phy resume failure but proceed */ 3543 if (rc && rc != -EOPNOTSUPP) 3544 ata_link_printk(link, KERN_WARNING, "failed to resume " 3545 "link for reset (errno=%d)\n", rc); 3546 } 3547 3548 /* no point in trying softreset on offline link */ 3549 if (ata_link_offline(link)) 3550 ehc->i.action &= ~ATA_EH_SOFTRESET; 3551 3552 return 0; 3553 } 3554 3555 /** 3556 * sata_link_hardreset - reset link via SATA phy reset 3557 * @link: link to reset 3558 * @timing: timing parameters { interval, duratinon, timeout } in msec 3559 * @deadline: deadline jiffies for the operation 3560 * @online: optional out parameter indicating link onlineness 3561 * @check_ready: optional callback to check link readiness 3562 * 3563 * SATA phy-reset @link using DET bits of SControl register. 3564 * After hardreset, link readiness is waited upon using 3565 * ata_wait_ready() if @check_ready is specified. LLDs are 3566 * allowed to not specify @check_ready and wait itself after this 3567 * function returns. Device classification is LLD's 3568 * responsibility. 3569 * 3570 * *@online is set to one iff reset succeeded and @link is online 3571 * after reset. 3572 * 3573 * LOCKING: 3574 * Kernel thread context (may sleep) 3575 * 3576 * RETURNS: 3577 * 0 on success, -errno otherwise. 3578 */ 3579 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3580 unsigned long deadline, 3581 bool *online, int (*check_ready)(struct ata_link *)) 3582 { 3583 u32 scontrol; 3584 int rc; 3585 3586 DPRINTK("ENTER\n"); 3587 3588 if (online) 3589 *online = false; 3590 3591 if (sata_set_spd_needed(link)) { 3592 /* SATA spec says nothing about how to reconfigure 3593 * spd. To be on the safe side, turn off phy during 3594 * reconfiguration. This works for at least ICH7 AHCI 3595 * and Sil3124. 3596 */ 3597 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3598 goto out; 3599 3600 scontrol = (scontrol & 0x0f0) | 0x304; 3601 3602 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3603 goto out; 3604 3605 sata_set_spd(link); 3606 } 3607 3608 /* issue phy wake/reset */ 3609 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3610 goto out; 3611 3612 scontrol = (scontrol & 0x0f0) | 0x301; 3613 3614 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3615 goto out; 3616 3617 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3618 * 10.4.2 says at least 1 ms. 3619 */ 3620 msleep(1); 3621 3622 /* bring link back */ 3623 rc = sata_link_resume(link, timing, deadline); 3624 if (rc) 3625 goto out; 3626 /* if link is offline nothing more to do */ 3627 if (ata_link_offline(link)) 3628 goto out; 3629 3630 /* Link is online. From this point, -ENODEV too is an error. */ 3631 if (online) 3632 *online = true; 3633 3634 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3635 /* If PMP is supported, we have to do follow-up SRST. 3636 * Some PMPs don't send D2H Reg FIS after hardreset if 3637 * the first port is empty. Wait only for 3638 * ATA_TMOUT_PMP_SRST_WAIT. 3639 */ 3640 if (check_ready) { 3641 unsigned long pmp_deadline; 3642 3643 pmp_deadline = jiffies + ATA_TMOUT_PMP_SRST_WAIT; 3644 if (time_after(pmp_deadline, deadline)) 3645 pmp_deadline = deadline; 3646 ata_wait_ready(link, pmp_deadline, check_ready); 3647 } 3648 rc = -EAGAIN; 3649 goto out; 3650 } 3651 3652 rc = 0; 3653 if (check_ready) 3654 rc = ata_wait_ready(link, deadline, check_ready); 3655 out: 3656 if (rc && rc != -EAGAIN) 3657 ata_link_printk(link, KERN_ERR, 3658 "COMRESET failed (errno=%d)\n", rc); 3659 DPRINTK("EXIT, rc=%d\n", rc); 3660 return rc; 3661 } 3662 3663 /** 3664 * sata_std_hardreset - COMRESET w/o waiting or classification 3665 * @link: link to reset 3666 * @class: resulting class of attached device 3667 * @deadline: deadline jiffies for the operation 3668 * 3669 * Standard SATA COMRESET w/o waiting or classification. 3670 * 3671 * LOCKING: 3672 * Kernel thread context (may sleep) 3673 * 3674 * RETURNS: 3675 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3676 */ 3677 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3678 unsigned long deadline) 3679 { 3680 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3681 bool online; 3682 int rc; 3683 3684 /* do hardreset */ 3685 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3686 return online ? -EAGAIN : rc; 3687 } 3688 3689 /** 3690 * ata_std_postreset - standard postreset callback 3691 * @link: the target ata_link 3692 * @classes: classes of attached devices 3693 * 3694 * This function is invoked after a successful reset. Note that 3695 * the device might have been reset more than once using 3696 * different reset methods before postreset is invoked. 3697 * 3698 * LOCKING: 3699 * Kernel thread context (may sleep) 3700 */ 3701 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3702 { 3703 DPRINTK("ENTER\n"); 3704 3705 /* print link status */ 3706 sata_print_link_status(link); 3707 3708 DPRINTK("EXIT\n"); 3709 } 3710 3711 /** 3712 * ata_dev_same_device - Determine whether new ID matches configured device 3713 * @dev: device to compare against 3714 * @new_class: class of the new device 3715 * @new_id: IDENTIFY page of the new device 3716 * 3717 * Compare @new_class and @new_id against @dev and determine 3718 * whether @dev is the device indicated by @new_class and 3719 * @new_id. 3720 * 3721 * LOCKING: 3722 * None. 3723 * 3724 * RETURNS: 3725 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3726 */ 3727 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3728 const u16 *new_id) 3729 { 3730 const u16 *old_id = dev->id; 3731 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3732 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3733 3734 if (dev->class != new_class) { 3735 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n", 3736 dev->class, new_class); 3737 return 0; 3738 } 3739 3740 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3741 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3742 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3743 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3744 3745 if (strcmp(model[0], model[1])) { 3746 ata_dev_printk(dev, KERN_INFO, "model number mismatch " 3747 "'%s' != '%s'\n", model[0], model[1]); 3748 return 0; 3749 } 3750 3751 if (strcmp(serial[0], serial[1])) { 3752 ata_dev_printk(dev, KERN_INFO, "serial number mismatch " 3753 "'%s' != '%s'\n", serial[0], serial[1]); 3754 return 0; 3755 } 3756 3757 return 1; 3758 } 3759 3760 /** 3761 * ata_dev_reread_id - Re-read IDENTIFY data 3762 * @dev: target ATA device 3763 * @readid_flags: read ID flags 3764 * 3765 * Re-read IDENTIFY page and make sure @dev is still attached to 3766 * the port. 3767 * 3768 * LOCKING: 3769 * Kernel thread context (may sleep) 3770 * 3771 * RETURNS: 3772 * 0 on success, negative errno otherwise 3773 */ 3774 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3775 { 3776 unsigned int class = dev->class; 3777 u16 *id = (void *)dev->link->ap->sector_buf; 3778 int rc; 3779 3780 /* read ID data */ 3781 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3782 if (rc) 3783 return rc; 3784 3785 /* is the device still there? */ 3786 if (!ata_dev_same_device(dev, class, id)) 3787 return -ENODEV; 3788 3789 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3790 return 0; 3791 } 3792 3793 /** 3794 * ata_dev_revalidate - Revalidate ATA device 3795 * @dev: device to revalidate 3796 * @new_class: new class code 3797 * @readid_flags: read ID flags 3798 * 3799 * Re-read IDENTIFY page, make sure @dev is still attached to the 3800 * port and reconfigure it according to the new IDENTIFY page. 3801 * 3802 * LOCKING: 3803 * Kernel thread context (may sleep) 3804 * 3805 * RETURNS: 3806 * 0 on success, negative errno otherwise 3807 */ 3808 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3809 unsigned int readid_flags) 3810 { 3811 u64 n_sectors = dev->n_sectors; 3812 int rc; 3813 3814 if (!ata_dev_enabled(dev)) 3815 return -ENODEV; 3816 3817 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3818 if (ata_class_enabled(new_class) && 3819 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) { 3820 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n", 3821 dev->class, new_class); 3822 rc = -ENODEV; 3823 goto fail; 3824 } 3825 3826 /* re-read ID */ 3827 rc = ata_dev_reread_id(dev, readid_flags); 3828 if (rc) 3829 goto fail; 3830 3831 /* configure device according to the new ID */ 3832 rc = ata_dev_configure(dev); 3833 if (rc) 3834 goto fail; 3835 3836 /* verify n_sectors hasn't changed */ 3837 if (dev->class == ATA_DEV_ATA && n_sectors && 3838 dev->n_sectors != n_sectors) { 3839 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch " 3840 "%llu != %llu\n", 3841 (unsigned long long)n_sectors, 3842 (unsigned long long)dev->n_sectors); 3843 3844 /* restore original n_sectors */ 3845 dev->n_sectors = n_sectors; 3846 3847 rc = -ENODEV; 3848 goto fail; 3849 } 3850 3851 return 0; 3852 3853 fail: 3854 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc); 3855 return rc; 3856 } 3857 3858 struct ata_blacklist_entry { 3859 const char *model_num; 3860 const char *model_rev; 3861 unsigned long horkage; 3862 }; 3863 3864 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3865 /* Devices with DMA related problems under Linux */ 3866 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3867 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3868 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3869 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3870 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3871 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3872 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3873 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3874 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3875 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA }, 3876 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA }, 3877 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3878 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3879 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3880 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3881 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3882 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA }, 3883 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA }, 3884 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3885 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3886 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3887 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3888 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3889 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3890 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3891 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3892 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3893 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3894 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3895 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3896 /* Odd clown on sil3726/4726 PMPs */ 3897 { "Config Disk", NULL, ATA_HORKAGE_NODMA | 3898 ATA_HORKAGE_SKIP_PM }, 3899 3900 /* Weird ATAPI devices */ 3901 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3902 3903 /* Devices we expect to fail diagnostics */ 3904 3905 /* Devices where NCQ should be avoided */ 3906 /* NCQ is slow */ 3907 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3908 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 3909 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3910 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3911 /* NCQ is broken */ 3912 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3913 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3914 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3915 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3916 3917 /* Blacklist entries taken from Silicon Image 3124/3132 3918 Windows driver .inf file - also several Linux problem reports */ 3919 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 3920 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 3921 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 3922 3923 /* devices which puke on READ_NATIVE_MAX */ 3924 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 3925 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3926 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3927 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3928 3929 /* Devices which report 1 sector over size HPA */ 3930 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3931 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3932 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 3933 3934 /* Devices which get the IVB wrong */ 3935 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 3936 /* Maybe we should just blacklist TSSTcorp... */ 3937 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, }, 3938 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, }, 3939 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, }, 3940 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, }, 3941 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, }, 3942 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, }, 3943 3944 /* End Marker */ 3945 { } 3946 }; 3947 3948 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar) 3949 { 3950 const char *p; 3951 int len; 3952 3953 /* 3954 * check for trailing wildcard: *\0 3955 */ 3956 p = strchr(patt, wildchar); 3957 if (p && ((*(p + 1)) == 0)) 3958 len = p - patt; 3959 else { 3960 len = strlen(name); 3961 if (!len) { 3962 if (!*patt) 3963 return 0; 3964 return -1; 3965 } 3966 } 3967 3968 return strncmp(patt, name, len); 3969 } 3970 3971 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 3972 { 3973 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 3974 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 3975 const struct ata_blacklist_entry *ad = ata_device_blacklist; 3976 3977 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 3978 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 3979 3980 while (ad->model_num) { 3981 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) { 3982 if (ad->model_rev == NULL) 3983 return ad->horkage; 3984 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*')) 3985 return ad->horkage; 3986 } 3987 ad++; 3988 } 3989 return 0; 3990 } 3991 3992 static int ata_dma_blacklisted(const struct ata_device *dev) 3993 { 3994 /* We don't support polling DMA. 3995 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 3996 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 3997 */ 3998 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 3999 (dev->flags & ATA_DFLAG_CDB_INTR)) 4000 return 1; 4001 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4002 } 4003 4004 /** 4005 * ata_is_40wire - check drive side detection 4006 * @dev: device 4007 * 4008 * Perform drive side detection decoding, allowing for device vendors 4009 * who can't follow the documentation. 4010 */ 4011 4012 static int ata_is_40wire(struct ata_device *dev) 4013 { 4014 if (dev->horkage & ATA_HORKAGE_IVB) 4015 return ata_drive_40wire_relaxed(dev->id); 4016 return ata_drive_40wire(dev->id); 4017 } 4018 4019 /** 4020 * cable_is_40wire - 40/80/SATA decider 4021 * @ap: port to consider 4022 * 4023 * This function encapsulates the policy for speed management 4024 * in one place. At the moment we don't cache the result but 4025 * there is a good case for setting ap->cbl to the result when 4026 * we are called with unknown cables (and figuring out if it 4027 * impacts hotplug at all). 4028 * 4029 * Return 1 if the cable appears to be 40 wire. 4030 */ 4031 4032 static int cable_is_40wire(struct ata_port *ap) 4033 { 4034 struct ata_link *link; 4035 struct ata_device *dev; 4036 4037 /* If the controller thinks we are 40 wire, we are */ 4038 if (ap->cbl == ATA_CBL_PATA40) 4039 return 1; 4040 /* If the controller thinks we are 80 wire, we are */ 4041 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4042 return 0; 4043 /* If the system is known to be 40 wire short cable (eg laptop), 4044 then we allow 80 wire modes even if the drive isn't sure */ 4045 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4046 return 0; 4047 /* If the controller doesn't know we scan 4048 4049 - Note: We look for all 40 wire detects at this point. 4050 Any 80 wire detect is taken to be 80 wire cable 4051 because 4052 - In many setups only the one drive (slave if present) 4053 will give a valid detect 4054 - If you have a non detect capable drive you don't 4055 want it to colour the choice 4056 */ 4057 ata_port_for_each_link(link, ap) { 4058 ata_link_for_each_dev(dev, link) { 4059 if (!ata_is_40wire(dev)) 4060 return 0; 4061 } 4062 } 4063 return 1; 4064 } 4065 4066 /** 4067 * ata_dev_xfermask - Compute supported xfermask of the given device 4068 * @dev: Device to compute xfermask for 4069 * 4070 * Compute supported xfermask of @dev and store it in 4071 * dev->*_mask. This function is responsible for applying all 4072 * known limits including host controller limits, device 4073 * blacklist, etc... 4074 * 4075 * LOCKING: 4076 * None. 4077 */ 4078 static void ata_dev_xfermask(struct ata_device *dev) 4079 { 4080 struct ata_link *link = dev->link; 4081 struct ata_port *ap = link->ap; 4082 struct ata_host *host = ap->host; 4083 unsigned long xfer_mask; 4084 4085 /* controller modes available */ 4086 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4087 ap->mwdma_mask, ap->udma_mask); 4088 4089 /* drive modes available */ 4090 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4091 dev->mwdma_mask, dev->udma_mask); 4092 xfer_mask &= ata_id_xfermask(dev->id); 4093 4094 /* 4095 * CFA Advanced TrueIDE timings are not allowed on a shared 4096 * cable 4097 */ 4098 if (ata_dev_pair(dev)) { 4099 /* No PIO5 or PIO6 */ 4100 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4101 /* No MWDMA3 or MWDMA 4 */ 4102 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4103 } 4104 4105 if (ata_dma_blacklisted(dev)) { 4106 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4107 ata_dev_printk(dev, KERN_WARNING, 4108 "device is on DMA blacklist, disabling DMA\n"); 4109 } 4110 4111 if ((host->flags & ATA_HOST_SIMPLEX) && 4112 host->simplex_claimed && host->simplex_claimed != ap) { 4113 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4114 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by " 4115 "other device, disabling DMA\n"); 4116 } 4117 4118 if (ap->flags & ATA_FLAG_NO_IORDY) 4119 xfer_mask &= ata_pio_mask_no_iordy(dev); 4120 4121 if (ap->ops->mode_filter) 4122 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4123 4124 /* Apply cable rule here. Don't apply it early because when 4125 * we handle hot plug the cable type can itself change. 4126 * Check this last so that we know if the transfer rate was 4127 * solely limited by the cable. 4128 * Unknown or 80 wire cables reported host side are checked 4129 * drive side as well. Cases where we know a 40wire cable 4130 * is used safely for 80 are not checked here. 4131 */ 4132 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4133 /* UDMA/44 or higher would be available */ 4134 if (cable_is_40wire(ap)) { 4135 ata_dev_printk(dev, KERN_WARNING, 4136 "limited to UDMA/33 due to 40-wire cable\n"); 4137 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4138 } 4139 4140 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4141 &dev->mwdma_mask, &dev->udma_mask); 4142 } 4143 4144 /** 4145 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4146 * @dev: Device to which command will be sent 4147 * 4148 * Issue SET FEATURES - XFER MODE command to device @dev 4149 * on port @ap. 4150 * 4151 * LOCKING: 4152 * PCI/etc. bus probe sem. 4153 * 4154 * RETURNS: 4155 * 0 on success, AC_ERR_* mask otherwise. 4156 */ 4157 4158 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4159 { 4160 struct ata_taskfile tf; 4161 unsigned int err_mask; 4162 4163 /* set up set-features taskfile */ 4164 DPRINTK("set features - xfer mode\n"); 4165 4166 /* Some controllers and ATAPI devices show flaky interrupt 4167 * behavior after setting xfer mode. Use polling instead. 4168 */ 4169 ata_tf_init(dev, &tf); 4170 tf.command = ATA_CMD_SET_FEATURES; 4171 tf.feature = SETFEATURES_XFER; 4172 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4173 tf.protocol = ATA_PROT_NODATA; 4174 /* If we are using IORDY we must send the mode setting command */ 4175 if (ata_pio_need_iordy(dev)) 4176 tf.nsect = dev->xfer_mode; 4177 /* If the device has IORDY and the controller does not - turn it off */ 4178 else if (ata_id_has_iordy(dev->id)) 4179 tf.nsect = 0x01; 4180 else /* In the ancient relic department - skip all of this */ 4181 return 0; 4182 4183 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4184 4185 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4186 return err_mask; 4187 } 4188 /** 4189 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4190 * @dev: Device to which command will be sent 4191 * @enable: Whether to enable or disable the feature 4192 * @feature: The sector count represents the feature to set 4193 * 4194 * Issue SET FEATURES - SATA FEATURES command to device @dev 4195 * on port @ap with sector count 4196 * 4197 * LOCKING: 4198 * PCI/etc. bus probe sem. 4199 * 4200 * RETURNS: 4201 * 0 on success, AC_ERR_* mask otherwise. 4202 */ 4203 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, 4204 u8 feature) 4205 { 4206 struct ata_taskfile tf; 4207 unsigned int err_mask; 4208 4209 /* set up set-features taskfile */ 4210 DPRINTK("set features - SATA features\n"); 4211 4212 ata_tf_init(dev, &tf); 4213 tf.command = ATA_CMD_SET_FEATURES; 4214 tf.feature = enable; 4215 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4216 tf.protocol = ATA_PROT_NODATA; 4217 tf.nsect = feature; 4218 4219 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4220 4221 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4222 return err_mask; 4223 } 4224 4225 /** 4226 * ata_dev_init_params - Issue INIT DEV PARAMS command 4227 * @dev: Device to which command will be sent 4228 * @heads: Number of heads (taskfile parameter) 4229 * @sectors: Number of sectors (taskfile parameter) 4230 * 4231 * LOCKING: 4232 * Kernel thread context (may sleep) 4233 * 4234 * RETURNS: 4235 * 0 on success, AC_ERR_* mask otherwise. 4236 */ 4237 static unsigned int ata_dev_init_params(struct ata_device *dev, 4238 u16 heads, u16 sectors) 4239 { 4240 struct ata_taskfile tf; 4241 unsigned int err_mask; 4242 4243 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4244 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4245 return AC_ERR_INVALID; 4246 4247 /* set up init dev params taskfile */ 4248 DPRINTK("init dev params \n"); 4249 4250 ata_tf_init(dev, &tf); 4251 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4252 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4253 tf.protocol = ATA_PROT_NODATA; 4254 tf.nsect = sectors; 4255 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4256 4257 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4258 /* A clean abort indicates an original or just out of spec drive 4259 and we should continue as we issue the setup based on the 4260 drive reported working geometry */ 4261 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4262 err_mask = 0; 4263 4264 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4265 return err_mask; 4266 } 4267 4268 /** 4269 * ata_sg_clean - Unmap DMA memory associated with command 4270 * @qc: Command containing DMA memory to be released 4271 * 4272 * Unmap all mapped DMA memory associated with this command. 4273 * 4274 * LOCKING: 4275 * spin_lock_irqsave(host lock) 4276 */ 4277 void ata_sg_clean(struct ata_queued_cmd *qc) 4278 { 4279 struct ata_port *ap = qc->ap; 4280 struct scatterlist *sg = qc->sg; 4281 int dir = qc->dma_dir; 4282 4283 WARN_ON(sg == NULL); 4284 4285 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4286 4287 if (qc->n_elem) 4288 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir); 4289 4290 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4291 qc->sg = NULL; 4292 } 4293 4294 /** 4295 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported 4296 * @qc: Metadata associated with taskfile to check 4297 * 4298 * Allow low-level driver to filter ATA PACKET commands, returning 4299 * a status indicating whether or not it is OK to use DMA for the 4300 * supplied PACKET command. 4301 * 4302 * LOCKING: 4303 * spin_lock_irqsave(host lock) 4304 * 4305 * RETURNS: 0 when ATAPI DMA can be used 4306 * nonzero otherwise 4307 */ 4308 int ata_check_atapi_dma(struct ata_queued_cmd *qc) 4309 { 4310 struct ata_port *ap = qc->ap; 4311 4312 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4313 * few ATAPI devices choke on such DMA requests. 4314 */ 4315 if (unlikely(qc->nbytes & 15)) 4316 return 1; 4317 4318 if (ap->ops->check_atapi_dma) 4319 return ap->ops->check_atapi_dma(qc); 4320 4321 return 0; 4322 } 4323 4324 /** 4325 * ata_std_qc_defer - Check whether a qc needs to be deferred 4326 * @qc: ATA command in question 4327 * 4328 * Non-NCQ commands cannot run with any other command, NCQ or 4329 * not. As upper layer only knows the queue depth, we are 4330 * responsible for maintaining exclusion. This function checks 4331 * whether a new command @qc can be issued. 4332 * 4333 * LOCKING: 4334 * spin_lock_irqsave(host lock) 4335 * 4336 * RETURNS: 4337 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4338 */ 4339 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4340 { 4341 struct ata_link *link = qc->dev->link; 4342 4343 if (qc->tf.protocol == ATA_PROT_NCQ) { 4344 if (!ata_tag_valid(link->active_tag)) 4345 return 0; 4346 } else { 4347 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4348 return 0; 4349 } 4350 4351 return ATA_DEFER_LINK; 4352 } 4353 4354 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4355 4356 /** 4357 * ata_sg_init - Associate command with scatter-gather table. 4358 * @qc: Command to be associated 4359 * @sg: Scatter-gather table. 4360 * @n_elem: Number of elements in s/g table. 4361 * 4362 * Initialize the data-related elements of queued_cmd @qc 4363 * to point to a scatter-gather table @sg, containing @n_elem 4364 * elements. 4365 * 4366 * LOCKING: 4367 * spin_lock_irqsave(host lock) 4368 */ 4369 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4370 unsigned int n_elem) 4371 { 4372 qc->sg = sg; 4373 qc->n_elem = n_elem; 4374 qc->cursg = qc->sg; 4375 } 4376 4377 /** 4378 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4379 * @qc: Command with scatter-gather table to be mapped. 4380 * 4381 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4382 * 4383 * LOCKING: 4384 * spin_lock_irqsave(host lock) 4385 * 4386 * RETURNS: 4387 * Zero on success, negative on error. 4388 * 4389 */ 4390 static int ata_sg_setup(struct ata_queued_cmd *qc) 4391 { 4392 struct ata_port *ap = qc->ap; 4393 unsigned int n_elem; 4394 4395 VPRINTK("ENTER, ata%u\n", ap->print_id); 4396 4397 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4398 if (n_elem < 1) 4399 return -1; 4400 4401 DPRINTK("%d sg elements mapped\n", n_elem); 4402 4403 qc->n_elem = n_elem; 4404 qc->flags |= ATA_QCFLAG_DMAMAP; 4405 4406 return 0; 4407 } 4408 4409 /** 4410 * swap_buf_le16 - swap halves of 16-bit words in place 4411 * @buf: Buffer to swap 4412 * @buf_words: Number of 16-bit words in buffer. 4413 * 4414 * Swap halves of 16-bit words if needed to convert from 4415 * little-endian byte order to native cpu byte order, or 4416 * vice-versa. 4417 * 4418 * LOCKING: 4419 * Inherited from caller. 4420 */ 4421 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4422 { 4423 #ifdef __BIG_ENDIAN 4424 unsigned int i; 4425 4426 for (i = 0; i < buf_words; i++) 4427 buf[i] = le16_to_cpu(buf[i]); 4428 #endif /* __BIG_ENDIAN */ 4429 } 4430 4431 /** 4432 * ata_qc_new - Request an available ATA command, for queueing 4433 * @ap: Port associated with device @dev 4434 * @dev: Device from whom we request an available command structure 4435 * 4436 * LOCKING: 4437 * None. 4438 */ 4439 4440 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4441 { 4442 struct ata_queued_cmd *qc = NULL; 4443 unsigned int i; 4444 4445 /* no command while frozen */ 4446 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4447 return NULL; 4448 4449 /* the last tag is reserved for internal command. */ 4450 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4451 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4452 qc = __ata_qc_from_tag(ap, i); 4453 break; 4454 } 4455 4456 if (qc) 4457 qc->tag = i; 4458 4459 return qc; 4460 } 4461 4462 /** 4463 * ata_qc_new_init - Request an available ATA command, and initialize it 4464 * @dev: Device from whom we request an available command structure 4465 * 4466 * LOCKING: 4467 * None. 4468 */ 4469 4470 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4471 { 4472 struct ata_port *ap = dev->link->ap; 4473 struct ata_queued_cmd *qc; 4474 4475 qc = ata_qc_new(ap); 4476 if (qc) { 4477 qc->scsicmd = NULL; 4478 qc->ap = ap; 4479 qc->dev = dev; 4480 4481 ata_qc_reinit(qc); 4482 } 4483 4484 return qc; 4485 } 4486 4487 /** 4488 * ata_qc_free - free unused ata_queued_cmd 4489 * @qc: Command to complete 4490 * 4491 * Designed to free unused ata_queued_cmd object 4492 * in case something prevents using it. 4493 * 4494 * LOCKING: 4495 * spin_lock_irqsave(host lock) 4496 */ 4497 void ata_qc_free(struct ata_queued_cmd *qc) 4498 { 4499 struct ata_port *ap = qc->ap; 4500 unsigned int tag; 4501 4502 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4503 4504 qc->flags = 0; 4505 tag = qc->tag; 4506 if (likely(ata_tag_valid(tag))) { 4507 qc->tag = ATA_TAG_POISON; 4508 clear_bit(tag, &ap->qc_allocated); 4509 } 4510 } 4511 4512 void __ata_qc_complete(struct ata_queued_cmd *qc) 4513 { 4514 struct ata_port *ap = qc->ap; 4515 struct ata_link *link = qc->dev->link; 4516 4517 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4518 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4519 4520 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4521 ata_sg_clean(qc); 4522 4523 /* command should be marked inactive atomically with qc completion */ 4524 if (qc->tf.protocol == ATA_PROT_NCQ) { 4525 link->sactive &= ~(1 << qc->tag); 4526 if (!link->sactive) 4527 ap->nr_active_links--; 4528 } else { 4529 link->active_tag = ATA_TAG_POISON; 4530 ap->nr_active_links--; 4531 } 4532 4533 /* clear exclusive status */ 4534 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4535 ap->excl_link == link)) 4536 ap->excl_link = NULL; 4537 4538 /* atapi: mark qc as inactive to prevent the interrupt handler 4539 * from completing the command twice later, before the error handler 4540 * is called. (when rc != 0 and atapi request sense is needed) 4541 */ 4542 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4543 ap->qc_active &= ~(1 << qc->tag); 4544 4545 /* call completion callback */ 4546 qc->complete_fn(qc); 4547 } 4548 4549 static void fill_result_tf(struct ata_queued_cmd *qc) 4550 { 4551 struct ata_port *ap = qc->ap; 4552 4553 qc->result_tf.flags = qc->tf.flags; 4554 ap->ops->qc_fill_rtf(qc); 4555 } 4556 4557 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4558 { 4559 struct ata_device *dev = qc->dev; 4560 4561 if (ata_tag_internal(qc->tag)) 4562 return; 4563 4564 if (ata_is_nodata(qc->tf.protocol)) 4565 return; 4566 4567 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4568 return; 4569 4570 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4571 } 4572 4573 /** 4574 * ata_qc_complete - Complete an active ATA command 4575 * @qc: Command to complete 4576 * @err_mask: ATA Status register contents 4577 * 4578 * Indicate to the mid and upper layers that an ATA 4579 * command has completed, with either an ok or not-ok status. 4580 * 4581 * LOCKING: 4582 * spin_lock_irqsave(host lock) 4583 */ 4584 void ata_qc_complete(struct ata_queued_cmd *qc) 4585 { 4586 struct ata_port *ap = qc->ap; 4587 4588 /* XXX: New EH and old EH use different mechanisms to 4589 * synchronize EH with regular execution path. 4590 * 4591 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4592 * Normal execution path is responsible for not accessing a 4593 * failed qc. libata core enforces the rule by returning NULL 4594 * from ata_qc_from_tag() for failed qcs. 4595 * 4596 * Old EH depends on ata_qc_complete() nullifying completion 4597 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4598 * not synchronize with interrupt handler. Only PIO task is 4599 * taken care of. 4600 */ 4601 if (ap->ops->error_handler) { 4602 struct ata_device *dev = qc->dev; 4603 struct ata_eh_info *ehi = &dev->link->eh_info; 4604 4605 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN); 4606 4607 if (unlikely(qc->err_mask)) 4608 qc->flags |= ATA_QCFLAG_FAILED; 4609 4610 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4611 if (!ata_tag_internal(qc->tag)) { 4612 /* always fill result TF for failed qc */ 4613 fill_result_tf(qc); 4614 ata_qc_schedule_eh(qc); 4615 return; 4616 } 4617 } 4618 4619 /* read result TF if requested */ 4620 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4621 fill_result_tf(qc); 4622 4623 /* Some commands need post-processing after successful 4624 * completion. 4625 */ 4626 switch (qc->tf.command) { 4627 case ATA_CMD_SET_FEATURES: 4628 if (qc->tf.feature != SETFEATURES_WC_ON && 4629 qc->tf.feature != SETFEATURES_WC_OFF) 4630 break; 4631 /* fall through */ 4632 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4633 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4634 /* revalidate device */ 4635 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4636 ata_port_schedule_eh(ap); 4637 break; 4638 4639 case ATA_CMD_SLEEP: 4640 dev->flags |= ATA_DFLAG_SLEEPING; 4641 break; 4642 } 4643 4644 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4645 ata_verify_xfer(qc); 4646 4647 __ata_qc_complete(qc); 4648 } else { 4649 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4650 return; 4651 4652 /* read result TF if failed or requested */ 4653 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4654 fill_result_tf(qc); 4655 4656 __ata_qc_complete(qc); 4657 } 4658 } 4659 4660 /** 4661 * ata_qc_complete_multiple - Complete multiple qcs successfully 4662 * @ap: port in question 4663 * @qc_active: new qc_active mask 4664 * 4665 * Complete in-flight commands. This functions is meant to be 4666 * called from low-level driver's interrupt routine to complete 4667 * requests normally. ap->qc_active and @qc_active is compared 4668 * and commands are completed accordingly. 4669 * 4670 * LOCKING: 4671 * spin_lock_irqsave(host lock) 4672 * 4673 * RETURNS: 4674 * Number of completed commands on success, -errno otherwise. 4675 */ 4676 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4677 { 4678 int nr_done = 0; 4679 u32 done_mask; 4680 int i; 4681 4682 done_mask = ap->qc_active ^ qc_active; 4683 4684 if (unlikely(done_mask & qc_active)) { 4685 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition " 4686 "(%08x->%08x)\n", ap->qc_active, qc_active); 4687 return -EINVAL; 4688 } 4689 4690 for (i = 0; i < ATA_MAX_QUEUE; i++) { 4691 struct ata_queued_cmd *qc; 4692 4693 if (!(done_mask & (1 << i))) 4694 continue; 4695 4696 if ((qc = ata_qc_from_tag(ap, i))) { 4697 ata_qc_complete(qc); 4698 nr_done++; 4699 } 4700 } 4701 4702 return nr_done; 4703 } 4704 4705 /** 4706 * ata_qc_issue - issue taskfile to device 4707 * @qc: command to issue to device 4708 * 4709 * Prepare an ATA command to submission to device. 4710 * This includes mapping the data into a DMA-able 4711 * area, filling in the S/G table, and finally 4712 * writing the taskfile to hardware, starting the command. 4713 * 4714 * LOCKING: 4715 * spin_lock_irqsave(host lock) 4716 */ 4717 void ata_qc_issue(struct ata_queued_cmd *qc) 4718 { 4719 struct ata_port *ap = qc->ap; 4720 struct ata_link *link = qc->dev->link; 4721 u8 prot = qc->tf.protocol; 4722 4723 /* Make sure only one non-NCQ command is outstanding. The 4724 * check is skipped for old EH because it reuses active qc to 4725 * request ATAPI sense. 4726 */ 4727 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4728 4729 if (ata_is_ncq(prot)) { 4730 WARN_ON(link->sactive & (1 << qc->tag)); 4731 4732 if (!link->sactive) 4733 ap->nr_active_links++; 4734 link->sactive |= 1 << qc->tag; 4735 } else { 4736 WARN_ON(link->sactive); 4737 4738 ap->nr_active_links++; 4739 link->active_tag = qc->tag; 4740 } 4741 4742 qc->flags |= ATA_QCFLAG_ACTIVE; 4743 ap->qc_active |= 1 << qc->tag; 4744 4745 /* We guarantee to LLDs that they will have at least one 4746 * non-zero sg if the command is a data command. 4747 */ 4748 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)); 4749 4750 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4751 (ap->flags & ATA_FLAG_PIO_DMA))) 4752 if (ata_sg_setup(qc)) 4753 goto sg_err; 4754 4755 /* if device is sleeping, schedule reset and abort the link */ 4756 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4757 link->eh_info.action |= ATA_EH_RESET; 4758 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4759 ata_link_abort(link); 4760 return; 4761 } 4762 4763 ap->ops->qc_prep(qc); 4764 4765 qc->err_mask |= ap->ops->qc_issue(qc); 4766 if (unlikely(qc->err_mask)) 4767 goto err; 4768 return; 4769 4770 sg_err: 4771 qc->err_mask |= AC_ERR_SYSTEM; 4772 err: 4773 ata_qc_complete(qc); 4774 } 4775 4776 /** 4777 * sata_scr_valid - test whether SCRs are accessible 4778 * @link: ATA link to test SCR accessibility for 4779 * 4780 * Test whether SCRs are accessible for @link. 4781 * 4782 * LOCKING: 4783 * None. 4784 * 4785 * RETURNS: 4786 * 1 if SCRs are accessible, 0 otherwise. 4787 */ 4788 int sata_scr_valid(struct ata_link *link) 4789 { 4790 struct ata_port *ap = link->ap; 4791 4792 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 4793 } 4794 4795 /** 4796 * sata_scr_read - read SCR register of the specified port 4797 * @link: ATA link to read SCR for 4798 * @reg: SCR to read 4799 * @val: Place to store read value 4800 * 4801 * Read SCR register @reg of @link into *@val. This function is 4802 * guaranteed to succeed if @link is ap->link, the cable type of 4803 * the port is SATA and the port implements ->scr_read. 4804 * 4805 * LOCKING: 4806 * None if @link is ap->link. Kernel thread context otherwise. 4807 * 4808 * RETURNS: 4809 * 0 on success, negative errno on failure. 4810 */ 4811 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 4812 { 4813 if (ata_is_host_link(link)) { 4814 struct ata_port *ap = link->ap; 4815 4816 if (sata_scr_valid(link)) 4817 return ap->ops->scr_read(ap, reg, val); 4818 return -EOPNOTSUPP; 4819 } 4820 4821 return sata_pmp_scr_read(link, reg, val); 4822 } 4823 4824 /** 4825 * sata_scr_write - write SCR register of the specified port 4826 * @link: ATA link to write SCR for 4827 * @reg: SCR to write 4828 * @val: value to write 4829 * 4830 * Write @val to SCR register @reg of @link. This function is 4831 * guaranteed to succeed if @link is ap->link, the cable type of 4832 * the port is SATA and the port implements ->scr_read. 4833 * 4834 * LOCKING: 4835 * None if @link is ap->link. Kernel thread context otherwise. 4836 * 4837 * RETURNS: 4838 * 0 on success, negative errno on failure. 4839 */ 4840 int sata_scr_write(struct ata_link *link, int reg, u32 val) 4841 { 4842 if (ata_is_host_link(link)) { 4843 struct ata_port *ap = link->ap; 4844 4845 if (sata_scr_valid(link)) 4846 return ap->ops->scr_write(ap, reg, val); 4847 return -EOPNOTSUPP; 4848 } 4849 4850 return sata_pmp_scr_write(link, reg, val); 4851 } 4852 4853 /** 4854 * sata_scr_write_flush - write SCR register of the specified port and flush 4855 * @link: ATA link to write SCR for 4856 * @reg: SCR to write 4857 * @val: value to write 4858 * 4859 * This function is identical to sata_scr_write() except that this 4860 * function performs flush after writing to the register. 4861 * 4862 * LOCKING: 4863 * None if @link is ap->link. Kernel thread context otherwise. 4864 * 4865 * RETURNS: 4866 * 0 on success, negative errno on failure. 4867 */ 4868 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 4869 { 4870 if (ata_is_host_link(link)) { 4871 struct ata_port *ap = link->ap; 4872 int rc; 4873 4874 if (sata_scr_valid(link)) { 4875 rc = ap->ops->scr_write(ap, reg, val); 4876 if (rc == 0) 4877 rc = ap->ops->scr_read(ap, reg, &val); 4878 return rc; 4879 } 4880 return -EOPNOTSUPP; 4881 } 4882 4883 return sata_pmp_scr_write(link, reg, val); 4884 } 4885 4886 /** 4887 * ata_link_online - test whether the given link is online 4888 * @link: ATA link to test 4889 * 4890 * Test whether @link is online. Note that this function returns 4891 * 0 if online status of @link cannot be obtained, so 4892 * ata_link_online(link) != !ata_link_offline(link). 4893 * 4894 * LOCKING: 4895 * None. 4896 * 4897 * RETURNS: 4898 * 1 if the port online status is available and online. 4899 */ 4900 int ata_link_online(struct ata_link *link) 4901 { 4902 u32 sstatus; 4903 4904 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4905 (sstatus & 0xf) == 0x3) 4906 return 1; 4907 return 0; 4908 } 4909 4910 /** 4911 * ata_link_offline - test whether the given link is offline 4912 * @link: ATA link to test 4913 * 4914 * Test whether @link is offline. Note that this function 4915 * returns 0 if offline status of @link cannot be obtained, so 4916 * ata_link_online(link) != !ata_link_offline(link). 4917 * 4918 * LOCKING: 4919 * None. 4920 * 4921 * RETURNS: 4922 * 1 if the port offline status is available and offline. 4923 */ 4924 int ata_link_offline(struct ata_link *link) 4925 { 4926 u32 sstatus; 4927 4928 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4929 (sstatus & 0xf) != 0x3) 4930 return 1; 4931 return 0; 4932 } 4933 4934 #ifdef CONFIG_PM 4935 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg, 4936 unsigned int action, unsigned int ehi_flags, 4937 int wait) 4938 { 4939 unsigned long flags; 4940 int i, rc; 4941 4942 for (i = 0; i < host->n_ports; i++) { 4943 struct ata_port *ap = host->ports[i]; 4944 struct ata_link *link; 4945 4946 /* Previous resume operation might still be in 4947 * progress. Wait for PM_PENDING to clear. 4948 */ 4949 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 4950 ata_port_wait_eh(ap); 4951 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 4952 } 4953 4954 /* request PM ops to EH */ 4955 spin_lock_irqsave(ap->lock, flags); 4956 4957 ap->pm_mesg = mesg; 4958 if (wait) { 4959 rc = 0; 4960 ap->pm_result = &rc; 4961 } 4962 4963 ap->pflags |= ATA_PFLAG_PM_PENDING; 4964 __ata_port_for_each_link(link, ap) { 4965 link->eh_info.action |= action; 4966 link->eh_info.flags |= ehi_flags; 4967 } 4968 4969 ata_port_schedule_eh(ap); 4970 4971 spin_unlock_irqrestore(ap->lock, flags); 4972 4973 /* wait and check result */ 4974 if (wait) { 4975 ata_port_wait_eh(ap); 4976 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 4977 if (rc) 4978 return rc; 4979 } 4980 } 4981 4982 return 0; 4983 } 4984 4985 /** 4986 * ata_host_suspend - suspend host 4987 * @host: host to suspend 4988 * @mesg: PM message 4989 * 4990 * Suspend @host. Actual operation is performed by EH. This 4991 * function requests EH to perform PM operations and waits for EH 4992 * to finish. 4993 * 4994 * LOCKING: 4995 * Kernel thread context (may sleep). 4996 * 4997 * RETURNS: 4998 * 0 on success, -errno on failure. 4999 */ 5000 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5001 { 5002 int rc; 5003 5004 /* 5005 * disable link pm on all ports before requesting 5006 * any pm activity 5007 */ 5008 ata_lpm_enable(host); 5009 5010 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1); 5011 if (rc == 0) 5012 host->dev->power.power_state = mesg; 5013 return rc; 5014 } 5015 5016 /** 5017 * ata_host_resume - resume host 5018 * @host: host to resume 5019 * 5020 * Resume @host. Actual operation is performed by EH. This 5021 * function requests EH to perform PM operations and returns. 5022 * Note that all resume operations are performed parallely. 5023 * 5024 * LOCKING: 5025 * Kernel thread context (may sleep). 5026 */ 5027 void ata_host_resume(struct ata_host *host) 5028 { 5029 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET, 5030 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0); 5031 host->dev->power.power_state = PMSG_ON; 5032 5033 /* reenable link pm */ 5034 ata_lpm_disable(host); 5035 } 5036 #endif 5037 5038 /** 5039 * ata_port_start - Set port up for dma. 5040 * @ap: Port to initialize 5041 * 5042 * Called just after data structures for each port are 5043 * initialized. Allocates space for PRD table. 5044 * 5045 * May be used as the port_start() entry in ata_port_operations. 5046 * 5047 * LOCKING: 5048 * Inherited from caller. 5049 */ 5050 int ata_port_start(struct ata_port *ap) 5051 { 5052 struct device *dev = ap->dev; 5053 5054 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, 5055 GFP_KERNEL); 5056 if (!ap->prd) 5057 return -ENOMEM; 5058 5059 return 0; 5060 } 5061 5062 /** 5063 * ata_dev_init - Initialize an ata_device structure 5064 * @dev: Device structure to initialize 5065 * 5066 * Initialize @dev in preparation for probing. 5067 * 5068 * LOCKING: 5069 * Inherited from caller. 5070 */ 5071 void ata_dev_init(struct ata_device *dev) 5072 { 5073 struct ata_link *link = dev->link; 5074 struct ata_port *ap = link->ap; 5075 unsigned long flags; 5076 5077 /* SATA spd limit is bound to the first device */ 5078 link->sata_spd_limit = link->hw_sata_spd_limit; 5079 link->sata_spd = 0; 5080 5081 /* High bits of dev->flags are used to record warm plug 5082 * requests which occur asynchronously. Synchronize using 5083 * host lock. 5084 */ 5085 spin_lock_irqsave(ap->lock, flags); 5086 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5087 dev->horkage = 0; 5088 spin_unlock_irqrestore(ap->lock, flags); 5089 5090 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0, 5091 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET); 5092 dev->pio_mask = UINT_MAX; 5093 dev->mwdma_mask = UINT_MAX; 5094 dev->udma_mask = UINT_MAX; 5095 } 5096 5097 /** 5098 * ata_link_init - Initialize an ata_link structure 5099 * @ap: ATA port link is attached to 5100 * @link: Link structure to initialize 5101 * @pmp: Port multiplier port number 5102 * 5103 * Initialize @link. 5104 * 5105 * LOCKING: 5106 * Kernel thread context (may sleep) 5107 */ 5108 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5109 { 5110 int i; 5111 5112 /* clear everything except for devices */ 5113 memset(link, 0, offsetof(struct ata_link, device[0])); 5114 5115 link->ap = ap; 5116 link->pmp = pmp; 5117 link->active_tag = ATA_TAG_POISON; 5118 link->hw_sata_spd_limit = UINT_MAX; 5119 5120 /* can't use iterator, ap isn't initialized yet */ 5121 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5122 struct ata_device *dev = &link->device[i]; 5123 5124 dev->link = link; 5125 dev->devno = dev - link->device; 5126 ata_dev_init(dev); 5127 } 5128 } 5129 5130 /** 5131 * sata_link_init_spd - Initialize link->sata_spd_limit 5132 * @link: Link to configure sata_spd_limit for 5133 * 5134 * Initialize @link->[hw_]sata_spd_limit to the currently 5135 * configured value. 5136 * 5137 * LOCKING: 5138 * Kernel thread context (may sleep). 5139 * 5140 * RETURNS: 5141 * 0 on success, -errno on failure. 5142 */ 5143 int sata_link_init_spd(struct ata_link *link) 5144 { 5145 u32 scontrol; 5146 u8 spd; 5147 int rc; 5148 5149 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 5150 if (rc) 5151 return rc; 5152 5153 spd = (scontrol >> 4) & 0xf; 5154 if (spd) 5155 link->hw_sata_spd_limit &= (1 << spd) - 1; 5156 5157 ata_force_spd_limit(link); 5158 5159 link->sata_spd_limit = link->hw_sata_spd_limit; 5160 5161 return 0; 5162 } 5163 5164 /** 5165 * ata_port_alloc - allocate and initialize basic ATA port resources 5166 * @host: ATA host this allocated port belongs to 5167 * 5168 * Allocate and initialize basic ATA port resources. 5169 * 5170 * RETURNS: 5171 * Allocate ATA port on success, NULL on failure. 5172 * 5173 * LOCKING: 5174 * Inherited from calling layer (may sleep). 5175 */ 5176 struct ata_port *ata_port_alloc(struct ata_host *host) 5177 { 5178 struct ata_port *ap; 5179 5180 DPRINTK("ENTER\n"); 5181 5182 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5183 if (!ap) 5184 return NULL; 5185 5186 ap->pflags |= ATA_PFLAG_INITIALIZING; 5187 ap->lock = &host->lock; 5188 ap->flags = ATA_FLAG_DISABLED; 5189 ap->print_id = -1; 5190 ap->ctl = ATA_DEVCTL_OBS; 5191 ap->host = host; 5192 ap->dev = host->dev; 5193 ap->last_ctl = 0xFF; 5194 5195 #if defined(ATA_VERBOSE_DEBUG) 5196 /* turn on all debugging levels */ 5197 ap->msg_enable = 0x00FF; 5198 #elif defined(ATA_DEBUG) 5199 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5200 #else 5201 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5202 #endif 5203 5204 #ifdef CONFIG_ATA_SFF 5205 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task); 5206 #endif 5207 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5208 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5209 INIT_LIST_HEAD(&ap->eh_done_q); 5210 init_waitqueue_head(&ap->eh_wait_q); 5211 init_timer_deferrable(&ap->fastdrain_timer); 5212 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5213 ap->fastdrain_timer.data = (unsigned long)ap; 5214 5215 ap->cbl = ATA_CBL_NONE; 5216 5217 ata_link_init(ap, &ap->link, 0); 5218 5219 #ifdef ATA_IRQ_TRAP 5220 ap->stats.unhandled_irq = 1; 5221 ap->stats.idle_irq = 1; 5222 #endif 5223 return ap; 5224 } 5225 5226 static void ata_host_release(struct device *gendev, void *res) 5227 { 5228 struct ata_host *host = dev_get_drvdata(gendev); 5229 int i; 5230 5231 for (i = 0; i < host->n_ports; i++) { 5232 struct ata_port *ap = host->ports[i]; 5233 5234 if (!ap) 5235 continue; 5236 5237 if (ap->scsi_host) 5238 scsi_host_put(ap->scsi_host); 5239 5240 kfree(ap->pmp_link); 5241 kfree(ap); 5242 host->ports[i] = NULL; 5243 } 5244 5245 dev_set_drvdata(gendev, NULL); 5246 } 5247 5248 /** 5249 * ata_host_alloc - allocate and init basic ATA host resources 5250 * @dev: generic device this host is associated with 5251 * @max_ports: maximum number of ATA ports associated with this host 5252 * 5253 * Allocate and initialize basic ATA host resources. LLD calls 5254 * this function to allocate a host, initializes it fully and 5255 * attaches it using ata_host_register(). 5256 * 5257 * @max_ports ports are allocated and host->n_ports is 5258 * initialized to @max_ports. The caller is allowed to decrease 5259 * host->n_ports before calling ata_host_register(). The unused 5260 * ports will be automatically freed on registration. 5261 * 5262 * RETURNS: 5263 * Allocate ATA host on success, NULL on failure. 5264 * 5265 * LOCKING: 5266 * Inherited from calling layer (may sleep). 5267 */ 5268 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5269 { 5270 struct ata_host *host; 5271 size_t sz; 5272 int i; 5273 5274 DPRINTK("ENTER\n"); 5275 5276 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5277 return NULL; 5278 5279 /* alloc a container for our list of ATA ports (buses) */ 5280 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5281 /* alloc a container for our list of ATA ports (buses) */ 5282 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5283 if (!host) 5284 goto err_out; 5285 5286 devres_add(dev, host); 5287 dev_set_drvdata(dev, host); 5288 5289 spin_lock_init(&host->lock); 5290 host->dev = dev; 5291 host->n_ports = max_ports; 5292 5293 /* allocate ports bound to this host */ 5294 for (i = 0; i < max_ports; i++) { 5295 struct ata_port *ap; 5296 5297 ap = ata_port_alloc(host); 5298 if (!ap) 5299 goto err_out; 5300 5301 ap->port_no = i; 5302 host->ports[i] = ap; 5303 } 5304 5305 devres_remove_group(dev, NULL); 5306 return host; 5307 5308 err_out: 5309 devres_release_group(dev, NULL); 5310 return NULL; 5311 } 5312 5313 /** 5314 * ata_host_alloc_pinfo - alloc host and init with port_info array 5315 * @dev: generic device this host is associated with 5316 * @ppi: array of ATA port_info to initialize host with 5317 * @n_ports: number of ATA ports attached to this host 5318 * 5319 * Allocate ATA host and initialize with info from @ppi. If NULL 5320 * terminated, @ppi may contain fewer entries than @n_ports. The 5321 * last entry will be used for the remaining ports. 5322 * 5323 * RETURNS: 5324 * Allocate ATA host on success, NULL on failure. 5325 * 5326 * LOCKING: 5327 * Inherited from calling layer (may sleep). 5328 */ 5329 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5330 const struct ata_port_info * const * ppi, 5331 int n_ports) 5332 { 5333 const struct ata_port_info *pi; 5334 struct ata_host *host; 5335 int i, j; 5336 5337 host = ata_host_alloc(dev, n_ports); 5338 if (!host) 5339 return NULL; 5340 5341 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5342 struct ata_port *ap = host->ports[i]; 5343 5344 if (ppi[j]) 5345 pi = ppi[j++]; 5346 5347 ap->pio_mask = pi->pio_mask; 5348 ap->mwdma_mask = pi->mwdma_mask; 5349 ap->udma_mask = pi->udma_mask; 5350 ap->flags |= pi->flags; 5351 ap->link.flags |= pi->link_flags; 5352 ap->ops = pi->port_ops; 5353 5354 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5355 host->ops = pi->port_ops; 5356 } 5357 5358 return host; 5359 } 5360 5361 static void ata_host_stop(struct device *gendev, void *res) 5362 { 5363 struct ata_host *host = dev_get_drvdata(gendev); 5364 int i; 5365 5366 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5367 5368 for (i = 0; i < host->n_ports; i++) { 5369 struct ata_port *ap = host->ports[i]; 5370 5371 if (ap->ops->port_stop) 5372 ap->ops->port_stop(ap); 5373 } 5374 5375 if (host->ops->host_stop) 5376 host->ops->host_stop(host); 5377 } 5378 5379 /** 5380 * ata_finalize_port_ops - finalize ata_port_operations 5381 * @ops: ata_port_operations to finalize 5382 * 5383 * An ata_port_operations can inherit from another ops and that 5384 * ops can again inherit from another. This can go on as many 5385 * times as necessary as long as there is no loop in the 5386 * inheritance chain. 5387 * 5388 * Ops tables are finalized when the host is started. NULL or 5389 * unspecified entries are inherited from the closet ancestor 5390 * which has the method and the entry is populated with it. 5391 * After finalization, the ops table directly points to all the 5392 * methods and ->inherits is no longer necessary and cleared. 5393 * 5394 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5395 * 5396 * LOCKING: 5397 * None. 5398 */ 5399 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5400 { 5401 static spinlock_t lock = SPIN_LOCK_UNLOCKED; 5402 const struct ata_port_operations *cur; 5403 void **begin = (void **)ops; 5404 void **end = (void **)&ops->inherits; 5405 void **pp; 5406 5407 if (!ops || !ops->inherits) 5408 return; 5409 5410 spin_lock(&lock); 5411 5412 for (cur = ops->inherits; cur; cur = cur->inherits) { 5413 void **inherit = (void **)cur; 5414 5415 for (pp = begin; pp < end; pp++, inherit++) 5416 if (!*pp) 5417 *pp = *inherit; 5418 } 5419 5420 for (pp = begin; pp < end; pp++) 5421 if (IS_ERR(*pp)) 5422 *pp = NULL; 5423 5424 ops->inherits = NULL; 5425 5426 spin_unlock(&lock); 5427 } 5428 5429 /** 5430 * ata_host_start - start and freeze ports of an ATA host 5431 * @host: ATA host to start ports for 5432 * 5433 * Start and then freeze ports of @host. Started status is 5434 * recorded in host->flags, so this function can be called 5435 * multiple times. Ports are guaranteed to get started only 5436 * once. If host->ops isn't initialized yet, its set to the 5437 * first non-dummy port ops. 5438 * 5439 * LOCKING: 5440 * Inherited from calling layer (may sleep). 5441 * 5442 * RETURNS: 5443 * 0 if all ports are started successfully, -errno otherwise. 5444 */ 5445 int ata_host_start(struct ata_host *host) 5446 { 5447 int have_stop = 0; 5448 void *start_dr = NULL; 5449 int i, rc; 5450 5451 if (host->flags & ATA_HOST_STARTED) 5452 return 0; 5453 5454 ata_finalize_port_ops(host->ops); 5455 5456 for (i = 0; i < host->n_ports; i++) { 5457 struct ata_port *ap = host->ports[i]; 5458 5459 ata_finalize_port_ops(ap->ops); 5460 5461 if (!host->ops && !ata_port_is_dummy(ap)) 5462 host->ops = ap->ops; 5463 5464 if (ap->ops->port_stop) 5465 have_stop = 1; 5466 } 5467 5468 if (host->ops->host_stop) 5469 have_stop = 1; 5470 5471 if (have_stop) { 5472 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5473 if (!start_dr) 5474 return -ENOMEM; 5475 } 5476 5477 for (i = 0; i < host->n_ports; i++) { 5478 struct ata_port *ap = host->ports[i]; 5479 5480 if (ap->ops->port_start) { 5481 rc = ap->ops->port_start(ap); 5482 if (rc) { 5483 if (rc != -ENODEV) 5484 dev_printk(KERN_ERR, host->dev, 5485 "failed to start port %d " 5486 "(errno=%d)\n", i, rc); 5487 goto err_out; 5488 } 5489 } 5490 ata_eh_freeze_port(ap); 5491 } 5492 5493 if (start_dr) 5494 devres_add(host->dev, start_dr); 5495 host->flags |= ATA_HOST_STARTED; 5496 return 0; 5497 5498 err_out: 5499 while (--i >= 0) { 5500 struct ata_port *ap = host->ports[i]; 5501 5502 if (ap->ops->port_stop) 5503 ap->ops->port_stop(ap); 5504 } 5505 devres_free(start_dr); 5506 return rc; 5507 } 5508 5509 /** 5510 * ata_sas_host_init - Initialize a host struct 5511 * @host: host to initialize 5512 * @dev: device host is attached to 5513 * @flags: host flags 5514 * @ops: port_ops 5515 * 5516 * LOCKING: 5517 * PCI/etc. bus probe sem. 5518 * 5519 */ 5520 /* KILLME - the only user left is ipr */ 5521 void ata_host_init(struct ata_host *host, struct device *dev, 5522 unsigned long flags, struct ata_port_operations *ops) 5523 { 5524 spin_lock_init(&host->lock); 5525 host->dev = dev; 5526 host->flags = flags; 5527 host->ops = ops; 5528 } 5529 5530 /** 5531 * ata_host_register - register initialized ATA host 5532 * @host: ATA host to register 5533 * @sht: template for SCSI host 5534 * 5535 * Register initialized ATA host. @host is allocated using 5536 * ata_host_alloc() and fully initialized by LLD. This function 5537 * starts ports, registers @host with ATA and SCSI layers and 5538 * probe registered devices. 5539 * 5540 * LOCKING: 5541 * Inherited from calling layer (may sleep). 5542 * 5543 * RETURNS: 5544 * 0 on success, -errno otherwise. 5545 */ 5546 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5547 { 5548 int i, rc; 5549 5550 /* host must have been started */ 5551 if (!(host->flags & ATA_HOST_STARTED)) { 5552 dev_printk(KERN_ERR, host->dev, 5553 "BUG: trying to register unstarted host\n"); 5554 WARN_ON(1); 5555 return -EINVAL; 5556 } 5557 5558 /* Blow away unused ports. This happens when LLD can't 5559 * determine the exact number of ports to allocate at 5560 * allocation time. 5561 */ 5562 for (i = host->n_ports; host->ports[i]; i++) 5563 kfree(host->ports[i]); 5564 5565 /* give ports names and add SCSI hosts */ 5566 for (i = 0; i < host->n_ports; i++) 5567 host->ports[i]->print_id = ata_print_id++; 5568 5569 rc = ata_scsi_add_hosts(host, sht); 5570 if (rc) 5571 return rc; 5572 5573 /* associate with ACPI nodes */ 5574 ata_acpi_associate(host); 5575 5576 /* set cable, sata_spd_limit and report */ 5577 for (i = 0; i < host->n_ports; i++) { 5578 struct ata_port *ap = host->ports[i]; 5579 unsigned long xfer_mask; 5580 5581 /* set SATA cable type if still unset */ 5582 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5583 ap->cbl = ATA_CBL_SATA; 5584 5585 /* init sata_spd_limit to the current value */ 5586 sata_link_init_spd(&ap->link); 5587 5588 /* print per-port info to dmesg */ 5589 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5590 ap->udma_mask); 5591 5592 if (!ata_port_is_dummy(ap)) { 5593 ata_port_printk(ap, KERN_INFO, 5594 "%cATA max %s %s\n", 5595 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5596 ata_mode_string(xfer_mask), 5597 ap->link.eh_info.desc); 5598 ata_ehi_clear_desc(&ap->link.eh_info); 5599 } else 5600 ata_port_printk(ap, KERN_INFO, "DUMMY\n"); 5601 } 5602 5603 /* perform each probe synchronously */ 5604 DPRINTK("probe begin\n"); 5605 for (i = 0; i < host->n_ports; i++) { 5606 struct ata_port *ap = host->ports[i]; 5607 5608 /* probe */ 5609 if (ap->ops->error_handler) { 5610 struct ata_eh_info *ehi = &ap->link.eh_info; 5611 unsigned long flags; 5612 5613 ata_port_probe(ap); 5614 5615 /* kick EH for boot probing */ 5616 spin_lock_irqsave(ap->lock, flags); 5617 5618 ehi->probe_mask |= ATA_ALL_DEVICES; 5619 ehi->action |= ATA_EH_RESET; 5620 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5621 5622 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5623 ap->pflags |= ATA_PFLAG_LOADING; 5624 ata_port_schedule_eh(ap); 5625 5626 spin_unlock_irqrestore(ap->lock, flags); 5627 5628 /* wait for EH to finish */ 5629 ata_port_wait_eh(ap); 5630 } else { 5631 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 5632 rc = ata_bus_probe(ap); 5633 DPRINTK("ata%u: bus probe end\n", ap->print_id); 5634 5635 if (rc) { 5636 /* FIXME: do something useful here? 5637 * Current libata behavior will 5638 * tear down everything when 5639 * the module is removed 5640 * or the h/w is unplugged. 5641 */ 5642 } 5643 } 5644 } 5645 5646 /* probes are done, now scan each port's disk(s) */ 5647 DPRINTK("host probe begin\n"); 5648 for (i = 0; i < host->n_ports; i++) { 5649 struct ata_port *ap = host->ports[i]; 5650 5651 ata_scsi_scan_host(ap, 1); 5652 ata_lpm_schedule(ap, ap->pm_policy); 5653 } 5654 5655 return 0; 5656 } 5657 5658 /** 5659 * ata_host_activate - start host, request IRQ and register it 5660 * @host: target ATA host 5661 * @irq: IRQ to request 5662 * @irq_handler: irq_handler used when requesting IRQ 5663 * @irq_flags: irq_flags used when requesting IRQ 5664 * @sht: scsi_host_template to use when registering the host 5665 * 5666 * After allocating an ATA host and initializing it, most libata 5667 * LLDs perform three steps to activate the host - start host, 5668 * request IRQ and register it. This helper takes necessasry 5669 * arguments and performs the three steps in one go. 5670 * 5671 * An invalid IRQ skips the IRQ registration and expects the host to 5672 * have set polling mode on the port. In this case, @irq_handler 5673 * should be NULL. 5674 * 5675 * LOCKING: 5676 * Inherited from calling layer (may sleep). 5677 * 5678 * RETURNS: 5679 * 0 on success, -errno otherwise. 5680 */ 5681 int ata_host_activate(struct ata_host *host, int irq, 5682 irq_handler_t irq_handler, unsigned long irq_flags, 5683 struct scsi_host_template *sht) 5684 { 5685 int i, rc; 5686 5687 rc = ata_host_start(host); 5688 if (rc) 5689 return rc; 5690 5691 /* Special case for polling mode */ 5692 if (!irq) { 5693 WARN_ON(irq_handler); 5694 return ata_host_register(host, sht); 5695 } 5696 5697 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5698 dev_driver_string(host->dev), host); 5699 if (rc) 5700 return rc; 5701 5702 for (i = 0; i < host->n_ports; i++) 5703 ata_port_desc(host->ports[i], "irq %d", irq); 5704 5705 rc = ata_host_register(host, sht); 5706 /* if failed, just free the IRQ and leave ports alone */ 5707 if (rc) 5708 devm_free_irq(host->dev, irq, host); 5709 5710 return rc; 5711 } 5712 5713 /** 5714 * ata_port_detach - Detach ATA port in prepration of device removal 5715 * @ap: ATA port to be detached 5716 * 5717 * Detach all ATA devices and the associated SCSI devices of @ap; 5718 * then, remove the associated SCSI host. @ap is guaranteed to 5719 * be quiescent on return from this function. 5720 * 5721 * LOCKING: 5722 * Kernel thread context (may sleep). 5723 */ 5724 static void ata_port_detach(struct ata_port *ap) 5725 { 5726 unsigned long flags; 5727 struct ata_link *link; 5728 struct ata_device *dev; 5729 5730 if (!ap->ops->error_handler) 5731 goto skip_eh; 5732 5733 /* tell EH we're leaving & flush EH */ 5734 spin_lock_irqsave(ap->lock, flags); 5735 ap->pflags |= ATA_PFLAG_UNLOADING; 5736 spin_unlock_irqrestore(ap->lock, flags); 5737 5738 ata_port_wait_eh(ap); 5739 5740 /* EH is now guaranteed to see UNLOADING - EH context belongs 5741 * to us. Disable all existing devices. 5742 */ 5743 ata_port_for_each_link(link, ap) { 5744 ata_link_for_each_dev(dev, link) 5745 ata_dev_disable(dev); 5746 } 5747 5748 /* Final freeze & EH. All in-flight commands are aborted. EH 5749 * will be skipped and retrials will be terminated with bad 5750 * target. 5751 */ 5752 spin_lock_irqsave(ap->lock, flags); 5753 ata_port_freeze(ap); /* won't be thawed */ 5754 spin_unlock_irqrestore(ap->lock, flags); 5755 5756 ata_port_wait_eh(ap); 5757 cancel_rearming_delayed_work(&ap->hotplug_task); 5758 5759 skip_eh: 5760 /* remove the associated SCSI host */ 5761 scsi_remove_host(ap->scsi_host); 5762 } 5763 5764 /** 5765 * ata_host_detach - Detach all ports of an ATA host 5766 * @host: Host to detach 5767 * 5768 * Detach all ports of @host. 5769 * 5770 * LOCKING: 5771 * Kernel thread context (may sleep). 5772 */ 5773 void ata_host_detach(struct ata_host *host) 5774 { 5775 int i; 5776 5777 for (i = 0; i < host->n_ports; i++) 5778 ata_port_detach(host->ports[i]); 5779 5780 /* the host is dead now, dissociate ACPI */ 5781 ata_acpi_dissociate(host); 5782 } 5783 5784 #ifdef CONFIG_PCI 5785 5786 /** 5787 * ata_pci_remove_one - PCI layer callback for device removal 5788 * @pdev: PCI device that was removed 5789 * 5790 * PCI layer indicates to libata via this hook that hot-unplug or 5791 * module unload event has occurred. Detach all ports. Resource 5792 * release is handled via devres. 5793 * 5794 * LOCKING: 5795 * Inherited from PCI layer (may sleep). 5796 */ 5797 void ata_pci_remove_one(struct pci_dev *pdev) 5798 { 5799 struct device *dev = &pdev->dev; 5800 struct ata_host *host = dev_get_drvdata(dev); 5801 5802 ata_host_detach(host); 5803 } 5804 5805 /* move to PCI subsystem */ 5806 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 5807 { 5808 unsigned long tmp = 0; 5809 5810 switch (bits->width) { 5811 case 1: { 5812 u8 tmp8 = 0; 5813 pci_read_config_byte(pdev, bits->reg, &tmp8); 5814 tmp = tmp8; 5815 break; 5816 } 5817 case 2: { 5818 u16 tmp16 = 0; 5819 pci_read_config_word(pdev, bits->reg, &tmp16); 5820 tmp = tmp16; 5821 break; 5822 } 5823 case 4: { 5824 u32 tmp32 = 0; 5825 pci_read_config_dword(pdev, bits->reg, &tmp32); 5826 tmp = tmp32; 5827 break; 5828 } 5829 5830 default: 5831 return -EINVAL; 5832 } 5833 5834 tmp &= bits->mask; 5835 5836 return (tmp == bits->val) ? 1 : 0; 5837 } 5838 5839 #ifdef CONFIG_PM 5840 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 5841 { 5842 pci_save_state(pdev); 5843 pci_disable_device(pdev); 5844 5845 if (mesg.event & PM_EVENT_SLEEP) 5846 pci_set_power_state(pdev, PCI_D3hot); 5847 } 5848 5849 int ata_pci_device_do_resume(struct pci_dev *pdev) 5850 { 5851 int rc; 5852 5853 pci_set_power_state(pdev, PCI_D0); 5854 pci_restore_state(pdev); 5855 5856 rc = pcim_enable_device(pdev); 5857 if (rc) { 5858 dev_printk(KERN_ERR, &pdev->dev, 5859 "failed to enable device after resume (%d)\n", rc); 5860 return rc; 5861 } 5862 5863 pci_set_master(pdev); 5864 return 0; 5865 } 5866 5867 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 5868 { 5869 struct ata_host *host = dev_get_drvdata(&pdev->dev); 5870 int rc = 0; 5871 5872 rc = ata_host_suspend(host, mesg); 5873 if (rc) 5874 return rc; 5875 5876 ata_pci_device_do_suspend(pdev, mesg); 5877 5878 return 0; 5879 } 5880 5881 int ata_pci_device_resume(struct pci_dev *pdev) 5882 { 5883 struct ata_host *host = dev_get_drvdata(&pdev->dev); 5884 int rc; 5885 5886 rc = ata_pci_device_do_resume(pdev); 5887 if (rc == 0) 5888 ata_host_resume(host); 5889 return rc; 5890 } 5891 #endif /* CONFIG_PM */ 5892 5893 #endif /* CONFIG_PCI */ 5894 5895 static int __init ata_parse_force_one(char **cur, 5896 struct ata_force_ent *force_ent, 5897 const char **reason) 5898 { 5899 /* FIXME: Currently, there's no way to tag init const data and 5900 * using __initdata causes build failure on some versions of 5901 * gcc. Once __initdataconst is implemented, add const to the 5902 * following structure. 5903 */ 5904 static struct ata_force_param force_tbl[] __initdata = { 5905 { "40c", .cbl = ATA_CBL_PATA40 }, 5906 { "80c", .cbl = ATA_CBL_PATA80 }, 5907 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 5908 { "unk", .cbl = ATA_CBL_PATA_UNK }, 5909 { "ign", .cbl = ATA_CBL_PATA_IGN }, 5910 { "sata", .cbl = ATA_CBL_SATA }, 5911 { "1.5Gbps", .spd_limit = 1 }, 5912 { "3.0Gbps", .spd_limit = 2 }, 5913 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 5914 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 5915 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 5916 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 5917 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 5918 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 5919 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 5920 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 5921 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 5922 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 5923 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 5924 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 5925 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 5926 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 5927 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 5928 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 5929 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 5930 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 5931 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 5932 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 5933 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 5934 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 5935 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 5936 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 5937 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 5938 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 5939 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 5940 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 5941 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 5942 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 5943 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 5944 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 5945 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 5946 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 5947 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 5948 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 5949 }; 5950 char *start = *cur, *p = *cur; 5951 char *id, *val, *endp; 5952 const struct ata_force_param *match_fp = NULL; 5953 int nr_matches = 0, i; 5954 5955 /* find where this param ends and update *cur */ 5956 while (*p != '\0' && *p != ',') 5957 p++; 5958 5959 if (*p == '\0') 5960 *cur = p; 5961 else 5962 *cur = p + 1; 5963 5964 *p = '\0'; 5965 5966 /* parse */ 5967 p = strchr(start, ':'); 5968 if (!p) { 5969 val = strstrip(start); 5970 goto parse_val; 5971 } 5972 *p = '\0'; 5973 5974 id = strstrip(start); 5975 val = strstrip(p + 1); 5976 5977 /* parse id */ 5978 p = strchr(id, '.'); 5979 if (p) { 5980 *p++ = '\0'; 5981 force_ent->device = simple_strtoul(p, &endp, 10); 5982 if (p == endp || *endp != '\0') { 5983 *reason = "invalid device"; 5984 return -EINVAL; 5985 } 5986 } 5987 5988 force_ent->port = simple_strtoul(id, &endp, 10); 5989 if (p == endp || *endp != '\0') { 5990 *reason = "invalid port/link"; 5991 return -EINVAL; 5992 } 5993 5994 parse_val: 5995 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 5996 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 5997 const struct ata_force_param *fp = &force_tbl[i]; 5998 5999 if (strncasecmp(val, fp->name, strlen(val))) 6000 continue; 6001 6002 nr_matches++; 6003 match_fp = fp; 6004 6005 if (strcasecmp(val, fp->name) == 0) { 6006 nr_matches = 1; 6007 break; 6008 } 6009 } 6010 6011 if (!nr_matches) { 6012 *reason = "unknown value"; 6013 return -EINVAL; 6014 } 6015 if (nr_matches > 1) { 6016 *reason = "ambigious value"; 6017 return -EINVAL; 6018 } 6019 6020 force_ent->param = *match_fp; 6021 6022 return 0; 6023 } 6024 6025 static void __init ata_parse_force_param(void) 6026 { 6027 int idx = 0, size = 1; 6028 int last_port = -1, last_device = -1; 6029 char *p, *cur, *next; 6030 6031 /* calculate maximum number of params and allocate force_tbl */ 6032 for (p = ata_force_param_buf; *p; p++) 6033 if (*p == ',') 6034 size++; 6035 6036 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6037 if (!ata_force_tbl) { 6038 printk(KERN_WARNING "ata: failed to extend force table, " 6039 "libata.force ignored\n"); 6040 return; 6041 } 6042 6043 /* parse and populate the table */ 6044 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6045 const char *reason = ""; 6046 struct ata_force_ent te = { .port = -1, .device = -1 }; 6047 6048 next = cur; 6049 if (ata_parse_force_one(&next, &te, &reason)) { 6050 printk(KERN_WARNING "ata: failed to parse force " 6051 "parameter \"%s\" (%s)\n", 6052 cur, reason); 6053 continue; 6054 } 6055 6056 if (te.port == -1) { 6057 te.port = last_port; 6058 te.device = last_device; 6059 } 6060 6061 ata_force_tbl[idx++] = te; 6062 6063 last_port = te.port; 6064 last_device = te.device; 6065 } 6066 6067 ata_force_tbl_size = idx; 6068 } 6069 6070 static int __init ata_init(void) 6071 { 6072 ata_probe_timeout *= HZ; 6073 6074 ata_parse_force_param(); 6075 6076 ata_wq = create_workqueue("ata"); 6077 if (!ata_wq) 6078 return -ENOMEM; 6079 6080 ata_aux_wq = create_singlethread_workqueue("ata_aux"); 6081 if (!ata_aux_wq) { 6082 destroy_workqueue(ata_wq); 6083 return -ENOMEM; 6084 } 6085 6086 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6087 return 0; 6088 } 6089 6090 static void __exit ata_exit(void) 6091 { 6092 kfree(ata_force_tbl); 6093 destroy_workqueue(ata_wq); 6094 destroy_workqueue(ata_aux_wq); 6095 } 6096 6097 subsys_initcall(ata_init); 6098 module_exit(ata_exit); 6099 6100 static unsigned long ratelimit_time; 6101 static DEFINE_SPINLOCK(ata_ratelimit_lock); 6102 6103 int ata_ratelimit(void) 6104 { 6105 int rc; 6106 unsigned long flags; 6107 6108 spin_lock_irqsave(&ata_ratelimit_lock, flags); 6109 6110 if (time_after(jiffies, ratelimit_time)) { 6111 rc = 1; 6112 ratelimit_time = jiffies + (HZ/5); 6113 } else 6114 rc = 0; 6115 6116 spin_unlock_irqrestore(&ata_ratelimit_lock, flags); 6117 6118 return rc; 6119 } 6120 6121 /** 6122 * ata_wait_register - wait until register value changes 6123 * @reg: IO-mapped register 6124 * @mask: Mask to apply to read register value 6125 * @val: Wait condition 6126 * @interval_msec: polling interval in milliseconds 6127 * @timeout_msec: timeout in milliseconds 6128 * 6129 * Waiting for some bits of register to change is a common 6130 * operation for ATA controllers. This function reads 32bit LE 6131 * IO-mapped register @reg and tests for the following condition. 6132 * 6133 * (*@reg & mask) != val 6134 * 6135 * If the condition is met, it returns; otherwise, the process is 6136 * repeated after @interval_msec until timeout. 6137 * 6138 * LOCKING: 6139 * Kernel thread context (may sleep) 6140 * 6141 * RETURNS: 6142 * The final register value. 6143 */ 6144 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val, 6145 unsigned long interval_msec, 6146 unsigned long timeout_msec) 6147 { 6148 unsigned long timeout; 6149 u32 tmp; 6150 6151 tmp = ioread32(reg); 6152 6153 /* Calculate timeout _after_ the first read to make sure 6154 * preceding writes reach the controller before starting to 6155 * eat away the timeout. 6156 */ 6157 timeout = jiffies + (timeout_msec * HZ) / 1000; 6158 6159 while ((tmp & mask) == val && time_before(jiffies, timeout)) { 6160 msleep(interval_msec); 6161 tmp = ioread32(reg); 6162 } 6163 6164 return tmp; 6165 } 6166 6167 /* 6168 * Dummy port_ops 6169 */ 6170 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6171 { 6172 return AC_ERR_SYSTEM; 6173 } 6174 6175 static void ata_dummy_error_handler(struct ata_port *ap) 6176 { 6177 /* truly dummy */ 6178 } 6179 6180 struct ata_port_operations ata_dummy_port_ops = { 6181 .qc_prep = ata_noop_qc_prep, 6182 .qc_issue = ata_dummy_qc_issue, 6183 .error_handler = ata_dummy_error_handler, 6184 }; 6185 6186 const struct ata_port_info ata_dummy_port_info = { 6187 .port_ops = &ata_dummy_port_ops, 6188 }; 6189 6190 /* 6191 * libata is essentially a library of internal helper functions for 6192 * low-level ATA host controller drivers. As such, the API/ABI is 6193 * likely to change as new drivers are added and updated. 6194 * Do not depend on ABI/API stability. 6195 */ 6196 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6197 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6198 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6199 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6200 EXPORT_SYMBOL_GPL(sata_port_ops); 6201 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6202 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6203 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6204 EXPORT_SYMBOL_GPL(ata_host_init); 6205 EXPORT_SYMBOL_GPL(ata_host_alloc); 6206 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6207 EXPORT_SYMBOL_GPL(ata_host_start); 6208 EXPORT_SYMBOL_GPL(ata_host_register); 6209 EXPORT_SYMBOL_GPL(ata_host_activate); 6210 EXPORT_SYMBOL_GPL(ata_host_detach); 6211 EXPORT_SYMBOL_GPL(ata_sg_init); 6212 EXPORT_SYMBOL_GPL(ata_qc_complete); 6213 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6214 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6215 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6216 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6217 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6218 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6219 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6220 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6221 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6222 EXPORT_SYMBOL_GPL(ata_mode_string); 6223 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6224 EXPORT_SYMBOL_GPL(ata_port_start); 6225 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6226 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6227 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6228 EXPORT_SYMBOL_GPL(ata_port_probe); 6229 EXPORT_SYMBOL_GPL(ata_dev_disable); 6230 EXPORT_SYMBOL_GPL(sata_set_spd); 6231 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6232 EXPORT_SYMBOL_GPL(sata_link_debounce); 6233 EXPORT_SYMBOL_GPL(sata_link_resume); 6234 EXPORT_SYMBOL_GPL(ata_std_prereset); 6235 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6236 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6237 EXPORT_SYMBOL_GPL(ata_std_postreset); 6238 EXPORT_SYMBOL_GPL(ata_dev_classify); 6239 EXPORT_SYMBOL_GPL(ata_dev_pair); 6240 EXPORT_SYMBOL_GPL(ata_port_disable); 6241 EXPORT_SYMBOL_GPL(ata_ratelimit); 6242 EXPORT_SYMBOL_GPL(ata_wait_register); 6243 EXPORT_SYMBOL_GPL(ata_scsi_ioctl); 6244 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6245 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6246 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6247 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6248 EXPORT_SYMBOL_GPL(sata_scr_valid); 6249 EXPORT_SYMBOL_GPL(sata_scr_read); 6250 EXPORT_SYMBOL_GPL(sata_scr_write); 6251 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6252 EXPORT_SYMBOL_GPL(ata_link_online); 6253 EXPORT_SYMBOL_GPL(ata_link_offline); 6254 #ifdef CONFIG_PM 6255 EXPORT_SYMBOL_GPL(ata_host_suspend); 6256 EXPORT_SYMBOL_GPL(ata_host_resume); 6257 #endif /* CONFIG_PM */ 6258 EXPORT_SYMBOL_GPL(ata_id_string); 6259 EXPORT_SYMBOL_GPL(ata_id_c_string); 6260 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6261 6262 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6263 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6264 EXPORT_SYMBOL_GPL(ata_timing_compute); 6265 EXPORT_SYMBOL_GPL(ata_timing_merge); 6266 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6267 6268 #ifdef CONFIG_PCI 6269 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6270 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6271 #ifdef CONFIG_PM 6272 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6273 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6274 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6275 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6276 #endif /* CONFIG_PM */ 6277 #endif /* CONFIG_PCI */ 6278 6279 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6280 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6281 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6282 EXPORT_SYMBOL_GPL(ata_port_desc); 6283 #ifdef CONFIG_PCI 6284 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6285 #endif /* CONFIG_PCI */ 6286 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6287 EXPORT_SYMBOL_GPL(ata_link_abort); 6288 EXPORT_SYMBOL_GPL(ata_port_abort); 6289 EXPORT_SYMBOL_GPL(ata_port_freeze); 6290 EXPORT_SYMBOL_GPL(sata_async_notification); 6291 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6292 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6293 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6294 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6295 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6296 EXPORT_SYMBOL_GPL(ata_do_eh); 6297 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6298 6299 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6300 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6301 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6302 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6303 EXPORT_SYMBOL_GPL(ata_cable_sata); 6304