1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned int xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags_on; 100 u16 lflags_off; 101 }; 102 103 struct ata_force_ent { 104 int port; 105 int device; 106 struct ata_force_param param; 107 }; 108 109 static struct ata_force_ent *ata_force_tbl; 110 static int ata_force_tbl_size; 111 112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 113 /* param_buf is thrown away after initialization, disallow read */ 114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 116 #endif 117 118 static int atapi_enabled = 1; 119 module_param(atapi_enabled, int, 0444); 120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 121 122 static int atapi_dmadir = 0; 123 module_param(atapi_dmadir, int, 0444); 124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 125 126 int atapi_passthru16 = 1; 127 module_param(atapi_passthru16, int, 0444); 128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 129 130 int libata_fua = 0; 131 module_param_named(fua, libata_fua, int, 0444); 132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 133 134 static int ata_ignore_hpa; 135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 137 138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 139 module_param_named(dma, libata_dma_mask, int, 0444); 140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 141 142 static int ata_probe_timeout; 143 module_param(ata_probe_timeout, int, 0444); 144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 145 146 int libata_noacpi = 0; 147 module_param_named(noacpi, libata_noacpi, int, 0444); 148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 149 150 int libata_allow_tpm = 0; 151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 153 154 static int atapi_an; 155 module_param(atapi_an, int, 0444); 156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 157 158 MODULE_AUTHOR("Jeff Garzik"); 159 MODULE_DESCRIPTION("Library module for ATA devices"); 160 MODULE_LICENSE("GPL"); 161 MODULE_VERSION(DRV_VERSION); 162 163 static inline bool ata_dev_print_info(struct ata_device *dev) 164 { 165 struct ata_eh_context *ehc = &dev->link->eh_context; 166 167 return ehc->i.flags & ATA_EHI_PRINTINFO; 168 } 169 170 static bool ata_sstatus_online(u32 sstatus) 171 { 172 return (sstatus & 0xf) == 0x3; 173 } 174 175 /** 176 * ata_link_next - link iteration helper 177 * @link: the previous link, NULL to start 178 * @ap: ATA port containing links to iterate 179 * @mode: iteration mode, one of ATA_LITER_* 180 * 181 * LOCKING: 182 * Host lock or EH context. 183 * 184 * RETURNS: 185 * Pointer to the next link. 186 */ 187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 188 enum ata_link_iter_mode mode) 189 { 190 BUG_ON(mode != ATA_LITER_EDGE && 191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 192 193 /* NULL link indicates start of iteration */ 194 if (!link) 195 switch (mode) { 196 case ATA_LITER_EDGE: 197 case ATA_LITER_PMP_FIRST: 198 if (sata_pmp_attached(ap)) 199 return ap->pmp_link; 200 fallthrough; 201 case ATA_LITER_HOST_FIRST: 202 return &ap->link; 203 } 204 205 /* we just iterated over the host link, what's next? */ 206 if (link == &ap->link) 207 switch (mode) { 208 case ATA_LITER_HOST_FIRST: 209 if (sata_pmp_attached(ap)) 210 return ap->pmp_link; 211 fallthrough; 212 case ATA_LITER_PMP_FIRST: 213 if (unlikely(ap->slave_link)) 214 return ap->slave_link; 215 fallthrough; 216 case ATA_LITER_EDGE: 217 return NULL; 218 } 219 220 /* slave_link excludes PMP */ 221 if (unlikely(link == ap->slave_link)) 222 return NULL; 223 224 /* we were over a PMP link */ 225 if (++link < ap->pmp_link + ap->nr_pmp_links) 226 return link; 227 228 if (mode == ATA_LITER_PMP_FIRST) 229 return &ap->link; 230 231 return NULL; 232 } 233 EXPORT_SYMBOL_GPL(ata_link_next); 234 235 /** 236 * ata_dev_next - device iteration helper 237 * @dev: the previous device, NULL to start 238 * @link: ATA link containing devices to iterate 239 * @mode: iteration mode, one of ATA_DITER_* 240 * 241 * LOCKING: 242 * Host lock or EH context. 243 * 244 * RETURNS: 245 * Pointer to the next device. 246 */ 247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 248 enum ata_dev_iter_mode mode) 249 { 250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 252 253 /* NULL dev indicates start of iteration */ 254 if (!dev) 255 switch (mode) { 256 case ATA_DITER_ENABLED: 257 case ATA_DITER_ALL: 258 dev = link->device; 259 goto check; 260 case ATA_DITER_ENABLED_REVERSE: 261 case ATA_DITER_ALL_REVERSE: 262 dev = link->device + ata_link_max_devices(link) - 1; 263 goto check; 264 } 265 266 next: 267 /* move to the next one */ 268 switch (mode) { 269 case ATA_DITER_ENABLED: 270 case ATA_DITER_ALL: 271 if (++dev < link->device + ata_link_max_devices(link)) 272 goto check; 273 return NULL; 274 case ATA_DITER_ENABLED_REVERSE: 275 case ATA_DITER_ALL_REVERSE: 276 if (--dev >= link->device) 277 goto check; 278 return NULL; 279 } 280 281 check: 282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 283 !ata_dev_enabled(dev)) 284 goto next; 285 return dev; 286 } 287 EXPORT_SYMBOL_GPL(ata_dev_next); 288 289 /** 290 * ata_dev_phys_link - find physical link for a device 291 * @dev: ATA device to look up physical link for 292 * 293 * Look up physical link which @dev is attached to. Note that 294 * this is different from @dev->link only when @dev is on slave 295 * link. For all other cases, it's the same as @dev->link. 296 * 297 * LOCKING: 298 * Don't care. 299 * 300 * RETURNS: 301 * Pointer to the found physical link. 302 */ 303 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 304 { 305 struct ata_port *ap = dev->link->ap; 306 307 if (!ap->slave_link) 308 return dev->link; 309 if (!dev->devno) 310 return &ap->link; 311 return ap->slave_link; 312 } 313 314 #ifdef CONFIG_ATA_FORCE 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags_on) { 391 link->flags |= fe->param.lflags_on; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags_on, link->flags); 395 } 396 if (fe->param.lflags_off) { 397 link->flags &= ~fe->param.lflags_off; 398 ata_link_notice(link, 399 "FORCE: link flag 0x%x cleared -> 0x%x\n", 400 fe->param.lflags_off, link->flags); 401 } 402 } 403 } 404 405 /** 406 * ata_force_xfermask - force xfermask according to libata.force 407 * @dev: ATA device of interest 408 * 409 * Force xfer_mask according to libata.force and whine about it. 410 * For consistency with link selection, device number 15 selects 411 * the first device connected to the host link. 412 * 413 * LOCKING: 414 * EH context. 415 */ 416 static void ata_force_xfermask(struct ata_device *dev) 417 { 418 int devno = dev->link->pmp + dev->devno; 419 int alt_devno = devno; 420 int i; 421 422 /* allow n.15/16 for devices attached to host port */ 423 if (ata_is_host_link(dev->link)) 424 alt_devno += 15; 425 426 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 427 const struct ata_force_ent *fe = &ata_force_tbl[i]; 428 unsigned int pio_mask, mwdma_mask, udma_mask; 429 430 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 431 continue; 432 433 if (fe->device != -1 && fe->device != devno && 434 fe->device != alt_devno) 435 continue; 436 437 if (!fe->param.xfer_mask) 438 continue; 439 440 ata_unpack_xfermask(fe->param.xfer_mask, 441 &pio_mask, &mwdma_mask, &udma_mask); 442 if (udma_mask) 443 dev->udma_mask = udma_mask; 444 else if (mwdma_mask) { 445 dev->udma_mask = 0; 446 dev->mwdma_mask = mwdma_mask; 447 } else { 448 dev->udma_mask = 0; 449 dev->mwdma_mask = 0; 450 dev->pio_mask = pio_mask; 451 } 452 453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 454 fe->param.name); 455 return; 456 } 457 } 458 459 /** 460 * ata_force_horkage - force horkage according to libata.force 461 * @dev: ATA device of interest 462 * 463 * Force horkage according to libata.force and whine about it. 464 * For consistency with link selection, device number 15 selects 465 * the first device connected to the host link. 466 * 467 * LOCKING: 468 * EH context. 469 */ 470 static void ata_force_horkage(struct ata_device *dev) 471 { 472 int devno = dev->link->pmp + dev->devno; 473 int alt_devno = devno; 474 int i; 475 476 /* allow n.15/16 for devices attached to host port */ 477 if (ata_is_host_link(dev->link)) 478 alt_devno += 15; 479 480 for (i = 0; i < ata_force_tbl_size; i++) { 481 const struct ata_force_ent *fe = &ata_force_tbl[i]; 482 483 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 484 continue; 485 486 if (fe->device != -1 && fe->device != devno && 487 fe->device != alt_devno) 488 continue; 489 490 if (!(~dev->horkage & fe->param.horkage_on) && 491 !(dev->horkage & fe->param.horkage_off)) 492 continue; 493 494 dev->horkage |= fe->param.horkage_on; 495 dev->horkage &= ~fe->param.horkage_off; 496 497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 498 fe->param.name); 499 } 500 } 501 #else 502 static inline void ata_force_link_limits(struct ata_link *link) { } 503 static inline void ata_force_xfermask(struct ata_device *dev) { } 504 static inline void ata_force_horkage(struct ata_device *dev) { } 505 #endif 506 507 /** 508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 509 * @opcode: SCSI opcode 510 * 511 * Determine ATAPI command type from @opcode. 512 * 513 * LOCKING: 514 * None. 515 * 516 * RETURNS: 517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 518 */ 519 int atapi_cmd_type(u8 opcode) 520 { 521 switch (opcode) { 522 case GPCMD_READ_10: 523 case GPCMD_READ_12: 524 return ATAPI_READ; 525 526 case GPCMD_WRITE_10: 527 case GPCMD_WRITE_12: 528 case GPCMD_WRITE_AND_VERIFY_10: 529 return ATAPI_WRITE; 530 531 case GPCMD_READ_CD: 532 case GPCMD_READ_CD_MSF: 533 return ATAPI_READ_CD; 534 535 case ATA_16: 536 case ATA_12: 537 if (atapi_passthru16) 538 return ATAPI_PASS_THRU; 539 fallthrough; 540 default: 541 return ATAPI_MISC; 542 } 543 } 544 EXPORT_SYMBOL_GPL(atapi_cmd_type); 545 546 static const u8 ata_rw_cmds[] = { 547 /* pio multi */ 548 ATA_CMD_READ_MULTI, 549 ATA_CMD_WRITE_MULTI, 550 ATA_CMD_READ_MULTI_EXT, 551 ATA_CMD_WRITE_MULTI_EXT, 552 0, 553 0, 554 0, 555 0, 556 /* pio */ 557 ATA_CMD_PIO_READ, 558 ATA_CMD_PIO_WRITE, 559 ATA_CMD_PIO_READ_EXT, 560 ATA_CMD_PIO_WRITE_EXT, 561 0, 562 0, 563 0, 564 0, 565 /* dma */ 566 ATA_CMD_READ, 567 ATA_CMD_WRITE, 568 ATA_CMD_READ_EXT, 569 ATA_CMD_WRITE_EXT, 570 0, 571 0, 572 0, 573 ATA_CMD_WRITE_FUA_EXT 574 }; 575 576 /** 577 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol 578 * @dev: target device for the taskfile 579 * @tf: taskfile to examine and configure 580 * 581 * Examine the device configuration and tf->flags to determine 582 * the proper read/write command and protocol to use for @tf. 583 * 584 * LOCKING: 585 * caller. 586 */ 587 static bool ata_set_rwcmd_protocol(struct ata_device *dev, 588 struct ata_taskfile *tf) 589 { 590 u8 cmd; 591 592 int index, fua, lba48, write; 593 594 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 595 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 596 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 597 598 if (dev->flags & ATA_DFLAG_PIO) { 599 tf->protocol = ATA_PROT_PIO; 600 index = dev->multi_count ? 0 : 8; 601 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 602 /* Unable to use DMA due to host limitation */ 603 tf->protocol = ATA_PROT_PIO; 604 index = dev->multi_count ? 0 : 8; 605 } else { 606 tf->protocol = ATA_PROT_DMA; 607 index = 16; 608 } 609 610 cmd = ata_rw_cmds[index + fua + lba48 + write]; 611 if (!cmd) 612 return false; 613 614 tf->command = cmd; 615 616 return true; 617 } 618 619 /** 620 * ata_tf_read_block - Read block address from ATA taskfile 621 * @tf: ATA taskfile of interest 622 * @dev: ATA device @tf belongs to 623 * 624 * LOCKING: 625 * None. 626 * 627 * Read block address from @tf. This function can handle all 628 * three address formats - LBA, LBA48 and CHS. tf->protocol and 629 * flags select the address format to use. 630 * 631 * RETURNS: 632 * Block address read from @tf. 633 */ 634 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 635 { 636 u64 block = 0; 637 638 if (tf->flags & ATA_TFLAG_LBA) { 639 if (tf->flags & ATA_TFLAG_LBA48) { 640 block |= (u64)tf->hob_lbah << 40; 641 block |= (u64)tf->hob_lbam << 32; 642 block |= (u64)tf->hob_lbal << 24; 643 } else 644 block |= (tf->device & 0xf) << 24; 645 646 block |= tf->lbah << 16; 647 block |= tf->lbam << 8; 648 block |= tf->lbal; 649 } else { 650 u32 cyl, head, sect; 651 652 cyl = tf->lbam | (tf->lbah << 8); 653 head = tf->device & 0xf; 654 sect = tf->lbal; 655 656 if (!sect) { 657 ata_dev_warn(dev, 658 "device reported invalid CHS sector 0\n"); 659 return U64_MAX; 660 } 661 662 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 663 } 664 665 return block; 666 } 667 668 /* 669 * Set a taskfile command duration limit index. 670 */ 671 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl) 672 { 673 struct ata_taskfile *tf = &qc->tf; 674 675 if (tf->protocol == ATA_PROT_NCQ) 676 tf->auxiliary |= cdl; 677 else 678 tf->feature |= cdl; 679 680 /* 681 * Mark this command as having a CDL and request the result 682 * task file so that we can inspect the sense data available 683 * bit on completion. 684 */ 685 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF; 686 } 687 688 /** 689 * ata_build_rw_tf - Build ATA taskfile for given read/write request 690 * @qc: Metadata associated with the taskfile to build 691 * @block: Block address 692 * @n_block: Number of blocks 693 * @tf_flags: RW/FUA etc... 694 * @cdl: Command duration limit index 695 * @class: IO priority class 696 * 697 * LOCKING: 698 * None. 699 * 700 * Build ATA taskfile for the command @qc for read/write request described 701 * by @block, @n_block, @tf_flags and @class. 702 * 703 * RETURNS: 704 * 705 * 0 on success, -ERANGE if the request is too large for @dev, 706 * -EINVAL if the request is invalid. 707 */ 708 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block, 709 unsigned int tf_flags, int cdl, int class) 710 { 711 struct ata_taskfile *tf = &qc->tf; 712 struct ata_device *dev = qc->dev; 713 714 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 715 tf->flags |= tf_flags; 716 717 if (ata_ncq_enabled(dev)) { 718 /* yay, NCQ */ 719 if (!lba_48_ok(block, n_block)) 720 return -ERANGE; 721 722 tf->protocol = ATA_PROT_NCQ; 723 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 724 725 if (tf->flags & ATA_TFLAG_WRITE) 726 tf->command = ATA_CMD_FPDMA_WRITE; 727 else 728 tf->command = ATA_CMD_FPDMA_READ; 729 730 tf->nsect = qc->hw_tag << 3; 731 tf->hob_feature = (n_block >> 8) & 0xff; 732 tf->feature = n_block & 0xff; 733 734 tf->hob_lbah = (block >> 40) & 0xff; 735 tf->hob_lbam = (block >> 32) & 0xff; 736 tf->hob_lbal = (block >> 24) & 0xff; 737 tf->lbah = (block >> 16) & 0xff; 738 tf->lbam = (block >> 8) & 0xff; 739 tf->lbal = block & 0xff; 740 741 tf->device = ATA_LBA; 742 if (tf->flags & ATA_TFLAG_FUA) 743 tf->device |= 1 << 7; 744 745 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED && 746 class == IOPRIO_CLASS_RT) 747 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 748 749 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 750 ata_set_tf_cdl(qc, cdl); 751 752 } else if (dev->flags & ATA_DFLAG_LBA) { 753 tf->flags |= ATA_TFLAG_LBA; 754 755 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 756 ata_set_tf_cdl(qc, cdl); 757 758 /* Both FUA writes and a CDL index require 48-bit commands */ 759 if (!(tf->flags & ATA_TFLAG_FUA) && 760 !(qc->flags & ATA_QCFLAG_HAS_CDL) && 761 lba_28_ok(block, n_block)) { 762 /* use LBA28 */ 763 tf->device |= (block >> 24) & 0xf; 764 } else if (lba_48_ok(block, n_block)) { 765 if (!(dev->flags & ATA_DFLAG_LBA48)) 766 return -ERANGE; 767 768 /* use LBA48 */ 769 tf->flags |= ATA_TFLAG_LBA48; 770 771 tf->hob_nsect = (n_block >> 8) & 0xff; 772 773 tf->hob_lbah = (block >> 40) & 0xff; 774 tf->hob_lbam = (block >> 32) & 0xff; 775 tf->hob_lbal = (block >> 24) & 0xff; 776 } else { 777 /* request too large even for LBA48 */ 778 return -ERANGE; 779 } 780 781 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 782 return -EINVAL; 783 784 tf->nsect = n_block & 0xff; 785 786 tf->lbah = (block >> 16) & 0xff; 787 tf->lbam = (block >> 8) & 0xff; 788 tf->lbal = block & 0xff; 789 790 tf->device |= ATA_LBA; 791 } else { 792 /* CHS */ 793 u32 sect, head, cyl, track; 794 795 /* The request -may- be too large for CHS addressing. */ 796 if (!lba_28_ok(block, n_block)) 797 return -ERANGE; 798 799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 800 return -EINVAL; 801 802 /* Convert LBA to CHS */ 803 track = (u32)block / dev->sectors; 804 cyl = track / dev->heads; 805 head = track % dev->heads; 806 sect = (u32)block % dev->sectors + 1; 807 808 /* Check whether the converted CHS can fit. 809 Cylinder: 0-65535 810 Head: 0-15 811 Sector: 1-255*/ 812 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 813 return -ERANGE; 814 815 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 816 tf->lbal = sect; 817 tf->lbam = cyl; 818 tf->lbah = cyl >> 8; 819 tf->device |= head; 820 } 821 822 return 0; 823 } 824 825 /** 826 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 827 * @pio_mask: pio_mask 828 * @mwdma_mask: mwdma_mask 829 * @udma_mask: udma_mask 830 * 831 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 832 * unsigned int xfer_mask. 833 * 834 * LOCKING: 835 * None. 836 * 837 * RETURNS: 838 * Packed xfer_mask. 839 */ 840 unsigned int ata_pack_xfermask(unsigned int pio_mask, 841 unsigned int mwdma_mask, 842 unsigned int udma_mask) 843 { 844 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 845 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 846 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 847 } 848 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 849 850 /** 851 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 852 * @xfer_mask: xfer_mask to unpack 853 * @pio_mask: resulting pio_mask 854 * @mwdma_mask: resulting mwdma_mask 855 * @udma_mask: resulting udma_mask 856 * 857 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 858 * Any NULL destination masks will be ignored. 859 */ 860 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, 861 unsigned int *mwdma_mask, unsigned int *udma_mask) 862 { 863 if (pio_mask) 864 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 865 if (mwdma_mask) 866 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 867 if (udma_mask) 868 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 869 } 870 871 static const struct ata_xfer_ent { 872 int shift, bits; 873 u8 base; 874 } ata_xfer_tbl[] = { 875 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 876 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 877 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 878 { -1, }, 879 }; 880 881 /** 882 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 883 * @xfer_mask: xfer_mask of interest 884 * 885 * Return matching XFER_* value for @xfer_mask. Only the highest 886 * bit of @xfer_mask is considered. 887 * 888 * LOCKING: 889 * None. 890 * 891 * RETURNS: 892 * Matching XFER_* value, 0xff if no match found. 893 */ 894 u8 ata_xfer_mask2mode(unsigned int xfer_mask) 895 { 896 int highbit = fls(xfer_mask) - 1; 897 const struct ata_xfer_ent *ent; 898 899 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 900 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 901 return ent->base + highbit - ent->shift; 902 return 0xff; 903 } 904 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 905 906 /** 907 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 908 * @xfer_mode: XFER_* of interest 909 * 910 * Return matching xfer_mask for @xfer_mode. 911 * 912 * LOCKING: 913 * None. 914 * 915 * RETURNS: 916 * Matching xfer_mask, 0 if no match found. 917 */ 918 unsigned int ata_xfer_mode2mask(u8 xfer_mode) 919 { 920 const struct ata_xfer_ent *ent; 921 922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 923 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 924 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 925 & ~((1 << ent->shift) - 1); 926 return 0; 927 } 928 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 929 930 /** 931 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 932 * @xfer_mode: XFER_* of interest 933 * 934 * Return matching xfer_shift for @xfer_mode. 935 * 936 * LOCKING: 937 * None. 938 * 939 * RETURNS: 940 * Matching xfer_shift, -1 if no match found. 941 */ 942 int ata_xfer_mode2shift(u8 xfer_mode) 943 { 944 const struct ata_xfer_ent *ent; 945 946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 948 return ent->shift; 949 return -1; 950 } 951 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 952 953 /** 954 * ata_mode_string - convert xfer_mask to string 955 * @xfer_mask: mask of bits supported; only highest bit counts. 956 * 957 * Determine string which represents the highest speed 958 * (highest bit in @modemask). 959 * 960 * LOCKING: 961 * None. 962 * 963 * RETURNS: 964 * Constant C string representing highest speed listed in 965 * @mode_mask, or the constant C string "<n/a>". 966 */ 967 const char *ata_mode_string(unsigned int xfer_mask) 968 { 969 static const char * const xfer_mode_str[] = { 970 "PIO0", 971 "PIO1", 972 "PIO2", 973 "PIO3", 974 "PIO4", 975 "PIO5", 976 "PIO6", 977 "MWDMA0", 978 "MWDMA1", 979 "MWDMA2", 980 "MWDMA3", 981 "MWDMA4", 982 "UDMA/16", 983 "UDMA/25", 984 "UDMA/33", 985 "UDMA/44", 986 "UDMA/66", 987 "UDMA/100", 988 "UDMA/133", 989 "UDMA7", 990 }; 991 int highbit; 992 993 highbit = fls(xfer_mask) - 1; 994 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 995 return xfer_mode_str[highbit]; 996 return "<n/a>"; 997 } 998 EXPORT_SYMBOL_GPL(ata_mode_string); 999 1000 const char *sata_spd_string(unsigned int spd) 1001 { 1002 static const char * const spd_str[] = { 1003 "1.5 Gbps", 1004 "3.0 Gbps", 1005 "6.0 Gbps", 1006 }; 1007 1008 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1009 return "<unknown>"; 1010 return spd_str[spd - 1]; 1011 } 1012 1013 /** 1014 * ata_dev_classify - determine device type based on ATA-spec signature 1015 * @tf: ATA taskfile register set for device to be identified 1016 * 1017 * Determine from taskfile register contents whether a device is 1018 * ATA or ATAPI, as per "Signature and persistence" section 1019 * of ATA/PI spec (volume 1, sect 5.14). 1020 * 1021 * LOCKING: 1022 * None. 1023 * 1024 * RETURNS: 1025 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1026 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1027 */ 1028 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1029 { 1030 /* Apple's open source Darwin code hints that some devices only 1031 * put a proper signature into the LBA mid/high registers, 1032 * So, we only check those. It's sufficient for uniqueness. 1033 * 1034 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1035 * signatures for ATA and ATAPI devices attached on SerialATA, 1036 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1037 * spec has never mentioned about using different signatures 1038 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1039 * Multiplier specification began to use 0x69/0x96 to identify 1040 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1041 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1042 * 0x69/0x96 shortly and described them as reserved for 1043 * SerialATA. 1044 * 1045 * We follow the current spec and consider that 0x69/0x96 1046 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1047 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1048 * SEMB signature. This is worked around in 1049 * ata_dev_read_id(). 1050 */ 1051 if (tf->lbam == 0 && tf->lbah == 0) 1052 return ATA_DEV_ATA; 1053 1054 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1055 return ATA_DEV_ATAPI; 1056 1057 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1058 return ATA_DEV_PMP; 1059 1060 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1061 return ATA_DEV_SEMB; 1062 1063 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1064 return ATA_DEV_ZAC; 1065 1066 return ATA_DEV_UNKNOWN; 1067 } 1068 EXPORT_SYMBOL_GPL(ata_dev_classify); 1069 1070 /** 1071 * ata_id_string - Convert IDENTIFY DEVICE page into string 1072 * @id: IDENTIFY DEVICE results we will examine 1073 * @s: string into which data is output 1074 * @ofs: offset into identify device page 1075 * @len: length of string to return. must be an even number. 1076 * 1077 * The strings in the IDENTIFY DEVICE page are broken up into 1078 * 16-bit chunks. Run through the string, and output each 1079 * 8-bit chunk linearly, regardless of platform. 1080 * 1081 * LOCKING: 1082 * caller. 1083 */ 1084 1085 void ata_id_string(const u16 *id, unsigned char *s, 1086 unsigned int ofs, unsigned int len) 1087 { 1088 unsigned int c; 1089 1090 BUG_ON(len & 1); 1091 1092 while (len > 0) { 1093 c = id[ofs] >> 8; 1094 *s = c; 1095 s++; 1096 1097 c = id[ofs] & 0xff; 1098 *s = c; 1099 s++; 1100 1101 ofs++; 1102 len -= 2; 1103 } 1104 } 1105 EXPORT_SYMBOL_GPL(ata_id_string); 1106 1107 /** 1108 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1109 * @id: IDENTIFY DEVICE results we will examine 1110 * @s: string into which data is output 1111 * @ofs: offset into identify device page 1112 * @len: length of string to return. must be an odd number. 1113 * 1114 * This function is identical to ata_id_string except that it 1115 * trims trailing spaces and terminates the resulting string with 1116 * null. @len must be actual maximum length (even number) + 1. 1117 * 1118 * LOCKING: 1119 * caller. 1120 */ 1121 void ata_id_c_string(const u16 *id, unsigned char *s, 1122 unsigned int ofs, unsigned int len) 1123 { 1124 unsigned char *p; 1125 1126 ata_id_string(id, s, ofs, len - 1); 1127 1128 p = s + strnlen(s, len - 1); 1129 while (p > s && p[-1] == ' ') 1130 p--; 1131 *p = '\0'; 1132 } 1133 EXPORT_SYMBOL_GPL(ata_id_c_string); 1134 1135 static u64 ata_id_n_sectors(const u16 *id) 1136 { 1137 if (ata_id_has_lba(id)) { 1138 if (ata_id_has_lba48(id)) 1139 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1140 1141 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1142 } 1143 1144 if (ata_id_current_chs_valid(id)) 1145 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] * 1146 (u32)id[ATA_ID_CUR_SECTORS]; 1147 1148 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] * 1149 (u32)id[ATA_ID_SECTORS]; 1150 } 1151 1152 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1153 { 1154 u64 sectors = 0; 1155 1156 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1157 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1158 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1159 sectors |= (tf->lbah & 0xff) << 16; 1160 sectors |= (tf->lbam & 0xff) << 8; 1161 sectors |= (tf->lbal & 0xff); 1162 1163 return sectors; 1164 } 1165 1166 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1167 { 1168 u64 sectors = 0; 1169 1170 sectors |= (tf->device & 0x0f) << 24; 1171 sectors |= (tf->lbah & 0xff) << 16; 1172 sectors |= (tf->lbam & 0xff) << 8; 1173 sectors |= (tf->lbal & 0xff); 1174 1175 return sectors; 1176 } 1177 1178 /** 1179 * ata_read_native_max_address - Read native max address 1180 * @dev: target device 1181 * @max_sectors: out parameter for the result native max address 1182 * 1183 * Perform an LBA48 or LBA28 native size query upon the device in 1184 * question. 1185 * 1186 * RETURNS: 1187 * 0 on success, -EACCES if command is aborted by the drive. 1188 * -EIO on other errors. 1189 */ 1190 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1191 { 1192 unsigned int err_mask; 1193 struct ata_taskfile tf; 1194 int lba48 = ata_id_has_lba48(dev->id); 1195 1196 ata_tf_init(dev, &tf); 1197 1198 /* always clear all address registers */ 1199 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1200 1201 if (lba48) { 1202 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1203 tf.flags |= ATA_TFLAG_LBA48; 1204 } else 1205 tf.command = ATA_CMD_READ_NATIVE_MAX; 1206 1207 tf.protocol = ATA_PROT_NODATA; 1208 tf.device |= ATA_LBA; 1209 1210 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1211 if (err_mask) { 1212 ata_dev_warn(dev, 1213 "failed to read native max address (err_mask=0x%x)\n", 1214 err_mask); 1215 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 1216 return -EACCES; 1217 return -EIO; 1218 } 1219 1220 if (lba48) 1221 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1222 else 1223 *max_sectors = ata_tf_to_lba(&tf) + 1; 1224 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1225 (*max_sectors)--; 1226 return 0; 1227 } 1228 1229 /** 1230 * ata_set_max_sectors - Set max sectors 1231 * @dev: target device 1232 * @new_sectors: new max sectors value to set for the device 1233 * 1234 * Set max sectors of @dev to @new_sectors. 1235 * 1236 * RETURNS: 1237 * 0 on success, -EACCES if command is aborted or denied (due to 1238 * previous non-volatile SET_MAX) by the drive. -EIO on other 1239 * errors. 1240 */ 1241 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1242 { 1243 unsigned int err_mask; 1244 struct ata_taskfile tf; 1245 int lba48 = ata_id_has_lba48(dev->id); 1246 1247 new_sectors--; 1248 1249 ata_tf_init(dev, &tf); 1250 1251 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1252 1253 if (lba48) { 1254 tf.command = ATA_CMD_SET_MAX_EXT; 1255 tf.flags |= ATA_TFLAG_LBA48; 1256 1257 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1258 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1259 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1260 } else { 1261 tf.command = ATA_CMD_SET_MAX; 1262 1263 tf.device |= (new_sectors >> 24) & 0xf; 1264 } 1265 1266 tf.protocol = ATA_PROT_NODATA; 1267 tf.device |= ATA_LBA; 1268 1269 tf.lbal = (new_sectors >> 0) & 0xff; 1270 tf.lbam = (new_sectors >> 8) & 0xff; 1271 tf.lbah = (new_sectors >> 16) & 0xff; 1272 1273 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1274 if (err_mask) { 1275 ata_dev_warn(dev, 1276 "failed to set max address (err_mask=0x%x)\n", 1277 err_mask); 1278 if (err_mask == AC_ERR_DEV && 1279 (tf.error & (ATA_ABORTED | ATA_IDNF))) 1280 return -EACCES; 1281 return -EIO; 1282 } 1283 1284 return 0; 1285 } 1286 1287 /** 1288 * ata_hpa_resize - Resize a device with an HPA set 1289 * @dev: Device to resize 1290 * 1291 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1292 * it if required to the full size of the media. The caller must check 1293 * the drive has the HPA feature set enabled. 1294 * 1295 * RETURNS: 1296 * 0 on success, -errno on failure. 1297 */ 1298 static int ata_hpa_resize(struct ata_device *dev) 1299 { 1300 bool print_info = ata_dev_print_info(dev); 1301 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1302 u64 sectors = ata_id_n_sectors(dev->id); 1303 u64 native_sectors; 1304 int rc; 1305 1306 /* do we need to do it? */ 1307 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1308 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1309 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1310 return 0; 1311 1312 /* read native max address */ 1313 rc = ata_read_native_max_address(dev, &native_sectors); 1314 if (rc) { 1315 /* If device aborted the command or HPA isn't going to 1316 * be unlocked, skip HPA resizing. 1317 */ 1318 if (rc == -EACCES || !unlock_hpa) { 1319 ata_dev_warn(dev, 1320 "HPA support seems broken, skipping HPA handling\n"); 1321 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1322 1323 /* we can continue if device aborted the command */ 1324 if (rc == -EACCES) 1325 rc = 0; 1326 } 1327 1328 return rc; 1329 } 1330 dev->n_native_sectors = native_sectors; 1331 1332 /* nothing to do? */ 1333 if (native_sectors <= sectors || !unlock_hpa) { 1334 if (!print_info || native_sectors == sectors) 1335 return 0; 1336 1337 if (native_sectors > sectors) 1338 ata_dev_info(dev, 1339 "HPA detected: current %llu, native %llu\n", 1340 (unsigned long long)sectors, 1341 (unsigned long long)native_sectors); 1342 else if (native_sectors < sectors) 1343 ata_dev_warn(dev, 1344 "native sectors (%llu) is smaller than sectors (%llu)\n", 1345 (unsigned long long)native_sectors, 1346 (unsigned long long)sectors); 1347 return 0; 1348 } 1349 1350 /* let's unlock HPA */ 1351 rc = ata_set_max_sectors(dev, native_sectors); 1352 if (rc == -EACCES) { 1353 /* if device aborted the command, skip HPA resizing */ 1354 ata_dev_warn(dev, 1355 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1356 (unsigned long long)sectors, 1357 (unsigned long long)native_sectors); 1358 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1359 return 0; 1360 } else if (rc) 1361 return rc; 1362 1363 /* re-read IDENTIFY data */ 1364 rc = ata_dev_reread_id(dev, 0); 1365 if (rc) { 1366 ata_dev_err(dev, 1367 "failed to re-read IDENTIFY data after HPA resizing\n"); 1368 return rc; 1369 } 1370 1371 if (print_info) { 1372 u64 new_sectors = ata_id_n_sectors(dev->id); 1373 ata_dev_info(dev, 1374 "HPA unlocked: %llu -> %llu, native %llu\n", 1375 (unsigned long long)sectors, 1376 (unsigned long long)new_sectors, 1377 (unsigned long long)native_sectors); 1378 } 1379 1380 return 0; 1381 } 1382 1383 /** 1384 * ata_dump_id - IDENTIFY DEVICE info debugging output 1385 * @dev: device from which the information is fetched 1386 * @id: IDENTIFY DEVICE page to dump 1387 * 1388 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1389 * page. 1390 * 1391 * LOCKING: 1392 * caller. 1393 */ 1394 1395 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1396 { 1397 ata_dev_dbg(dev, 1398 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1399 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1400 "88==0x%04x 93==0x%04x\n", 1401 id[49], id[53], id[63], id[64], id[75], id[80], 1402 id[81], id[82], id[83], id[84], id[88], id[93]); 1403 } 1404 1405 /** 1406 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1407 * @id: IDENTIFY data to compute xfer mask from 1408 * 1409 * Compute the xfermask for this device. This is not as trivial 1410 * as it seems if we must consider early devices correctly. 1411 * 1412 * FIXME: pre IDE drive timing (do we care ?). 1413 * 1414 * LOCKING: 1415 * None. 1416 * 1417 * RETURNS: 1418 * Computed xfermask 1419 */ 1420 unsigned int ata_id_xfermask(const u16 *id) 1421 { 1422 unsigned int pio_mask, mwdma_mask, udma_mask; 1423 1424 /* Usual case. Word 53 indicates word 64 is valid */ 1425 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1426 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1427 pio_mask <<= 3; 1428 pio_mask |= 0x7; 1429 } else { 1430 /* If word 64 isn't valid then Word 51 high byte holds 1431 * the PIO timing number for the maximum. Turn it into 1432 * a mask. 1433 */ 1434 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1435 if (mode < 5) /* Valid PIO range */ 1436 pio_mask = (2 << mode) - 1; 1437 else 1438 pio_mask = 1; 1439 1440 /* But wait.. there's more. Design your standards by 1441 * committee and you too can get a free iordy field to 1442 * process. However it is the speeds not the modes that 1443 * are supported... Note drivers using the timing API 1444 * will get this right anyway 1445 */ 1446 } 1447 1448 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1449 1450 if (ata_id_is_cfa(id)) { 1451 /* 1452 * Process compact flash extended modes 1453 */ 1454 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1455 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1456 1457 if (pio) 1458 pio_mask |= (1 << 5); 1459 if (pio > 1) 1460 pio_mask |= (1 << 6); 1461 if (dma) 1462 mwdma_mask |= (1 << 3); 1463 if (dma > 1) 1464 mwdma_mask |= (1 << 4); 1465 } 1466 1467 udma_mask = 0; 1468 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1469 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1470 1471 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1472 } 1473 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1474 1475 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1476 { 1477 struct completion *waiting = qc->private_data; 1478 1479 complete(waiting); 1480 } 1481 1482 /** 1483 * ata_exec_internal_sg - execute libata internal command 1484 * @dev: Device to which the command is sent 1485 * @tf: Taskfile registers for the command and the result 1486 * @cdb: CDB for packet command 1487 * @dma_dir: Data transfer direction of the command 1488 * @sgl: sg list for the data buffer of the command 1489 * @n_elem: Number of sg entries 1490 * @timeout: Timeout in msecs (0 for default) 1491 * 1492 * Executes libata internal command with timeout. @tf contains 1493 * command on entry and result on return. Timeout and error 1494 * conditions are reported via return value. No recovery action 1495 * is taken after a command times out. It's caller's duty to 1496 * clean up after timeout. 1497 * 1498 * LOCKING: 1499 * None. Should be called with kernel context, might sleep. 1500 * 1501 * RETURNS: 1502 * Zero on success, AC_ERR_* mask on failure 1503 */ 1504 static unsigned ata_exec_internal_sg(struct ata_device *dev, 1505 struct ata_taskfile *tf, const u8 *cdb, 1506 int dma_dir, struct scatterlist *sgl, 1507 unsigned int n_elem, unsigned int timeout) 1508 { 1509 struct ata_link *link = dev->link; 1510 struct ata_port *ap = link->ap; 1511 u8 command = tf->command; 1512 int auto_timeout = 0; 1513 struct ata_queued_cmd *qc; 1514 unsigned int preempted_tag; 1515 u32 preempted_sactive; 1516 u64 preempted_qc_active; 1517 int preempted_nr_active_links; 1518 DECLARE_COMPLETION_ONSTACK(wait); 1519 unsigned long flags; 1520 unsigned int err_mask; 1521 int rc; 1522 1523 spin_lock_irqsave(ap->lock, flags); 1524 1525 /* no internal command while frozen */ 1526 if (ata_port_is_frozen(ap)) { 1527 spin_unlock_irqrestore(ap->lock, flags); 1528 return AC_ERR_SYSTEM; 1529 } 1530 1531 /* initialize internal qc */ 1532 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1533 1534 qc->tag = ATA_TAG_INTERNAL; 1535 qc->hw_tag = 0; 1536 qc->scsicmd = NULL; 1537 qc->ap = ap; 1538 qc->dev = dev; 1539 ata_qc_reinit(qc); 1540 1541 preempted_tag = link->active_tag; 1542 preempted_sactive = link->sactive; 1543 preempted_qc_active = ap->qc_active; 1544 preempted_nr_active_links = ap->nr_active_links; 1545 link->active_tag = ATA_TAG_POISON; 1546 link->sactive = 0; 1547 ap->qc_active = 0; 1548 ap->nr_active_links = 0; 1549 1550 /* prepare & issue qc */ 1551 qc->tf = *tf; 1552 if (cdb) 1553 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1554 1555 /* some SATA bridges need us to indicate data xfer direction */ 1556 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1557 dma_dir == DMA_FROM_DEVICE) 1558 qc->tf.feature |= ATAPI_DMADIR; 1559 1560 qc->flags |= ATA_QCFLAG_RESULT_TF; 1561 qc->dma_dir = dma_dir; 1562 if (dma_dir != DMA_NONE) { 1563 unsigned int i, buflen = 0; 1564 struct scatterlist *sg; 1565 1566 for_each_sg(sgl, sg, n_elem, i) 1567 buflen += sg->length; 1568 1569 ata_sg_init(qc, sgl, n_elem); 1570 qc->nbytes = buflen; 1571 } 1572 1573 qc->private_data = &wait; 1574 qc->complete_fn = ata_qc_complete_internal; 1575 1576 ata_qc_issue(qc); 1577 1578 spin_unlock_irqrestore(ap->lock, flags); 1579 1580 if (!timeout) { 1581 if (ata_probe_timeout) 1582 timeout = ata_probe_timeout * 1000; 1583 else { 1584 timeout = ata_internal_cmd_timeout(dev, command); 1585 auto_timeout = 1; 1586 } 1587 } 1588 1589 if (ap->ops->error_handler) 1590 ata_eh_release(ap); 1591 1592 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1593 1594 if (ap->ops->error_handler) 1595 ata_eh_acquire(ap); 1596 1597 ata_sff_flush_pio_task(ap); 1598 1599 if (!rc) { 1600 spin_lock_irqsave(ap->lock, flags); 1601 1602 /* We're racing with irq here. If we lose, the 1603 * following test prevents us from completing the qc 1604 * twice. If we win, the port is frozen and will be 1605 * cleaned up by ->post_internal_cmd(). 1606 */ 1607 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1608 qc->err_mask |= AC_ERR_TIMEOUT; 1609 1610 if (ap->ops->error_handler) 1611 ata_port_freeze(ap); 1612 else 1613 ata_qc_complete(qc); 1614 1615 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n", 1616 timeout, command); 1617 } 1618 1619 spin_unlock_irqrestore(ap->lock, flags); 1620 } 1621 1622 /* do post_internal_cmd */ 1623 if (ap->ops->post_internal_cmd) 1624 ap->ops->post_internal_cmd(qc); 1625 1626 /* perform minimal error analysis */ 1627 if (qc->flags & ATA_QCFLAG_EH) { 1628 if (qc->result_tf.status & (ATA_ERR | ATA_DF)) 1629 qc->err_mask |= AC_ERR_DEV; 1630 1631 if (!qc->err_mask) 1632 qc->err_mask |= AC_ERR_OTHER; 1633 1634 if (qc->err_mask & ~AC_ERR_OTHER) 1635 qc->err_mask &= ~AC_ERR_OTHER; 1636 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1637 qc->result_tf.status |= ATA_SENSE; 1638 } 1639 1640 /* finish up */ 1641 spin_lock_irqsave(ap->lock, flags); 1642 1643 *tf = qc->result_tf; 1644 err_mask = qc->err_mask; 1645 1646 ata_qc_free(qc); 1647 link->active_tag = preempted_tag; 1648 link->sactive = preempted_sactive; 1649 ap->qc_active = preempted_qc_active; 1650 ap->nr_active_links = preempted_nr_active_links; 1651 1652 spin_unlock_irqrestore(ap->lock, flags); 1653 1654 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1655 ata_internal_cmd_timed_out(dev, command); 1656 1657 return err_mask; 1658 } 1659 1660 /** 1661 * ata_exec_internal - execute libata internal command 1662 * @dev: Device to which the command is sent 1663 * @tf: Taskfile registers for the command and the result 1664 * @cdb: CDB for packet command 1665 * @dma_dir: Data transfer direction of the command 1666 * @buf: Data buffer of the command 1667 * @buflen: Length of data buffer 1668 * @timeout: Timeout in msecs (0 for default) 1669 * 1670 * Wrapper around ata_exec_internal_sg() which takes simple 1671 * buffer instead of sg list. 1672 * 1673 * LOCKING: 1674 * None. Should be called with kernel context, might sleep. 1675 * 1676 * RETURNS: 1677 * Zero on success, AC_ERR_* mask on failure 1678 */ 1679 unsigned ata_exec_internal(struct ata_device *dev, 1680 struct ata_taskfile *tf, const u8 *cdb, 1681 int dma_dir, void *buf, unsigned int buflen, 1682 unsigned int timeout) 1683 { 1684 struct scatterlist *psg = NULL, sg; 1685 unsigned int n_elem = 0; 1686 1687 if (dma_dir != DMA_NONE) { 1688 WARN_ON(!buf); 1689 sg_init_one(&sg, buf, buflen); 1690 psg = &sg; 1691 n_elem++; 1692 } 1693 1694 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1695 timeout); 1696 } 1697 1698 /** 1699 * ata_pio_need_iordy - check if iordy needed 1700 * @adev: ATA device 1701 * 1702 * Check if the current speed of the device requires IORDY. Used 1703 * by various controllers for chip configuration. 1704 */ 1705 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1706 { 1707 /* Don't set IORDY if we're preparing for reset. IORDY may 1708 * lead to controller lock up on certain controllers if the 1709 * port is not occupied. See bko#11703 for details. 1710 */ 1711 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1712 return 0; 1713 /* Controller doesn't support IORDY. Probably a pointless 1714 * check as the caller should know this. 1715 */ 1716 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1717 return 0; 1718 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1719 if (ata_id_is_cfa(adev->id) 1720 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1721 return 0; 1722 /* PIO3 and higher it is mandatory */ 1723 if (adev->pio_mode > XFER_PIO_2) 1724 return 1; 1725 /* We turn it on when possible */ 1726 if (ata_id_has_iordy(adev->id)) 1727 return 1; 1728 return 0; 1729 } 1730 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1731 1732 /** 1733 * ata_pio_mask_no_iordy - Return the non IORDY mask 1734 * @adev: ATA device 1735 * 1736 * Compute the highest mode possible if we are not using iordy. Return 1737 * -1 if no iordy mode is available. 1738 */ 1739 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1740 { 1741 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1742 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1743 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1744 /* Is the speed faster than the drive allows non IORDY ? */ 1745 if (pio) { 1746 /* This is cycle times not frequency - watch the logic! */ 1747 if (pio > 240) /* PIO2 is 240nS per cycle */ 1748 return 3 << ATA_SHIFT_PIO; 1749 return 7 << ATA_SHIFT_PIO; 1750 } 1751 } 1752 return 3 << ATA_SHIFT_PIO; 1753 } 1754 1755 /** 1756 * ata_do_dev_read_id - default ID read method 1757 * @dev: device 1758 * @tf: proposed taskfile 1759 * @id: data buffer 1760 * 1761 * Issue the identify taskfile and hand back the buffer containing 1762 * identify data. For some RAID controllers and for pre ATA devices 1763 * this function is wrapped or replaced by the driver 1764 */ 1765 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1766 struct ata_taskfile *tf, __le16 *id) 1767 { 1768 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1769 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1770 } 1771 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1772 1773 /** 1774 * ata_dev_read_id - Read ID data from the specified device 1775 * @dev: target device 1776 * @p_class: pointer to class of the target device (may be changed) 1777 * @flags: ATA_READID_* flags 1778 * @id: buffer to read IDENTIFY data into 1779 * 1780 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1781 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1782 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1783 * for pre-ATA4 drives. 1784 * 1785 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1786 * now we abort if we hit that case. 1787 * 1788 * LOCKING: 1789 * Kernel thread context (may sleep) 1790 * 1791 * RETURNS: 1792 * 0 on success, -errno otherwise. 1793 */ 1794 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1795 unsigned int flags, u16 *id) 1796 { 1797 struct ata_port *ap = dev->link->ap; 1798 unsigned int class = *p_class; 1799 struct ata_taskfile tf; 1800 unsigned int err_mask = 0; 1801 const char *reason; 1802 bool is_semb = class == ATA_DEV_SEMB; 1803 int may_fallback = 1, tried_spinup = 0; 1804 int rc; 1805 1806 retry: 1807 ata_tf_init(dev, &tf); 1808 1809 switch (class) { 1810 case ATA_DEV_SEMB: 1811 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1812 fallthrough; 1813 case ATA_DEV_ATA: 1814 case ATA_DEV_ZAC: 1815 tf.command = ATA_CMD_ID_ATA; 1816 break; 1817 case ATA_DEV_ATAPI: 1818 tf.command = ATA_CMD_ID_ATAPI; 1819 break; 1820 default: 1821 rc = -ENODEV; 1822 reason = "unsupported class"; 1823 goto err_out; 1824 } 1825 1826 tf.protocol = ATA_PROT_PIO; 1827 1828 /* Some devices choke if TF registers contain garbage. Make 1829 * sure those are properly initialized. 1830 */ 1831 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1832 1833 /* Device presence detection is unreliable on some 1834 * controllers. Always poll IDENTIFY if available. 1835 */ 1836 tf.flags |= ATA_TFLAG_POLLING; 1837 1838 if (ap->ops->read_id) 1839 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1840 else 1841 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1842 1843 if (err_mask) { 1844 if (err_mask & AC_ERR_NODEV_HINT) { 1845 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1846 return -ENOENT; 1847 } 1848 1849 if (is_semb) { 1850 ata_dev_info(dev, 1851 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1852 /* SEMB is not supported yet */ 1853 *p_class = ATA_DEV_SEMB_UNSUP; 1854 return 0; 1855 } 1856 1857 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) { 1858 /* Device or controller might have reported 1859 * the wrong device class. Give a shot at the 1860 * other IDENTIFY if the current one is 1861 * aborted by the device. 1862 */ 1863 if (may_fallback) { 1864 may_fallback = 0; 1865 1866 if (class == ATA_DEV_ATA) 1867 class = ATA_DEV_ATAPI; 1868 else 1869 class = ATA_DEV_ATA; 1870 goto retry; 1871 } 1872 1873 /* Control reaches here iff the device aborted 1874 * both flavors of IDENTIFYs which happens 1875 * sometimes with phantom devices. 1876 */ 1877 ata_dev_dbg(dev, 1878 "both IDENTIFYs aborted, assuming NODEV\n"); 1879 return -ENOENT; 1880 } 1881 1882 rc = -EIO; 1883 reason = "I/O error"; 1884 goto err_out; 1885 } 1886 1887 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1888 ata_dev_info(dev, "dumping IDENTIFY data, " 1889 "class=%d may_fallback=%d tried_spinup=%d\n", 1890 class, may_fallback, tried_spinup); 1891 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1892 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1893 } 1894 1895 /* Falling back doesn't make sense if ID data was read 1896 * successfully at least once. 1897 */ 1898 may_fallback = 0; 1899 1900 swap_buf_le16(id, ATA_ID_WORDS); 1901 1902 /* sanity check */ 1903 rc = -EINVAL; 1904 reason = "device reports invalid type"; 1905 1906 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1907 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1908 goto err_out; 1909 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1910 ata_id_is_ata(id)) { 1911 ata_dev_dbg(dev, 1912 "host indicates ignore ATA devices, ignored\n"); 1913 return -ENOENT; 1914 } 1915 } else { 1916 if (ata_id_is_ata(id)) 1917 goto err_out; 1918 } 1919 1920 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1921 tried_spinup = 1; 1922 /* 1923 * Drive powered-up in standby mode, and requires a specific 1924 * SET_FEATURES spin-up subcommand before it will accept 1925 * anything other than the original IDENTIFY command. 1926 */ 1927 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1928 if (err_mask && id[2] != 0x738c) { 1929 rc = -EIO; 1930 reason = "SPINUP failed"; 1931 goto err_out; 1932 } 1933 /* 1934 * If the drive initially returned incomplete IDENTIFY info, 1935 * we now must reissue the IDENTIFY command. 1936 */ 1937 if (id[2] == 0x37c8) 1938 goto retry; 1939 } 1940 1941 if ((flags & ATA_READID_POSTRESET) && 1942 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1943 /* 1944 * The exact sequence expected by certain pre-ATA4 drives is: 1945 * SRST RESET 1946 * IDENTIFY (optional in early ATA) 1947 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1948 * anything else.. 1949 * Some drives were very specific about that exact sequence. 1950 * 1951 * Note that ATA4 says lba is mandatory so the second check 1952 * should never trigger. 1953 */ 1954 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1955 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1956 if (err_mask) { 1957 rc = -EIO; 1958 reason = "INIT_DEV_PARAMS failed"; 1959 goto err_out; 1960 } 1961 1962 /* current CHS translation info (id[53-58]) might be 1963 * changed. reread the identify device info. 1964 */ 1965 flags &= ~ATA_READID_POSTRESET; 1966 goto retry; 1967 } 1968 } 1969 1970 *p_class = class; 1971 1972 return 0; 1973 1974 err_out: 1975 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1976 reason, err_mask); 1977 return rc; 1978 } 1979 1980 /** 1981 * ata_read_log_page - read a specific log page 1982 * @dev: target device 1983 * @log: log to read 1984 * @page: page to read 1985 * @buf: buffer to store read page 1986 * @sectors: number of sectors to read 1987 * 1988 * Read log page using READ_LOG_EXT command. 1989 * 1990 * LOCKING: 1991 * Kernel thread context (may sleep). 1992 * 1993 * RETURNS: 1994 * 0 on success, AC_ERR_* mask otherwise. 1995 */ 1996 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 1997 u8 page, void *buf, unsigned int sectors) 1998 { 1999 unsigned long ap_flags = dev->link->ap->flags; 2000 struct ata_taskfile tf; 2001 unsigned int err_mask; 2002 bool dma = false; 2003 2004 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 2005 2006 /* 2007 * Return error without actually issuing the command on controllers 2008 * which e.g. lockup on a read log page. 2009 */ 2010 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2011 return AC_ERR_DEV; 2012 2013 retry: 2014 ata_tf_init(dev, &tf); 2015 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 2016 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 2017 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2018 tf.protocol = ATA_PROT_DMA; 2019 dma = true; 2020 } else { 2021 tf.command = ATA_CMD_READ_LOG_EXT; 2022 tf.protocol = ATA_PROT_PIO; 2023 dma = false; 2024 } 2025 tf.lbal = log; 2026 tf.lbam = page; 2027 tf.nsect = sectors; 2028 tf.hob_nsect = sectors >> 8; 2029 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2030 2031 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2032 buf, sectors * ATA_SECT_SIZE, 0); 2033 2034 if (err_mask) { 2035 if (dma) { 2036 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2037 if (!ata_port_is_frozen(dev->link->ap)) 2038 goto retry; 2039 } 2040 ata_dev_err(dev, 2041 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2042 (unsigned int)log, (unsigned int)page, err_mask); 2043 } 2044 2045 return err_mask; 2046 } 2047 2048 static int ata_log_supported(struct ata_device *dev, u8 log) 2049 { 2050 struct ata_port *ap = dev->link->ap; 2051 2052 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR) 2053 return 0; 2054 2055 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2056 return 0; 2057 return get_unaligned_le16(&ap->sector_buf[log * 2]); 2058 } 2059 2060 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2061 { 2062 struct ata_port *ap = dev->link->ap; 2063 unsigned int err, i; 2064 2065 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG) 2066 return false; 2067 2068 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2069 /* 2070 * IDENTIFY DEVICE data log is defined as mandatory starting 2071 * with ACS-3 (ATA version 10). Warn about the missing log 2072 * for drives which implement this ATA level or above. 2073 */ 2074 if (ata_id_major_version(dev->id) >= 10) 2075 ata_dev_warn(dev, 2076 "ATA Identify Device Log not supported\n"); 2077 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG; 2078 return false; 2079 } 2080 2081 /* 2082 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2083 * supported. 2084 */ 2085 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2086 1); 2087 if (err) 2088 return false; 2089 2090 for (i = 0; i < ap->sector_buf[8]; i++) { 2091 if (ap->sector_buf[9 + i] == page) 2092 return true; 2093 } 2094 2095 return false; 2096 } 2097 2098 static int ata_do_link_spd_horkage(struct ata_device *dev) 2099 { 2100 struct ata_link *plink = ata_dev_phys_link(dev); 2101 u32 target, target_limit; 2102 2103 if (!sata_scr_valid(plink)) 2104 return 0; 2105 2106 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2107 target = 1; 2108 else 2109 return 0; 2110 2111 target_limit = (1 << target) - 1; 2112 2113 /* if already on stricter limit, no need to push further */ 2114 if (plink->sata_spd_limit <= target_limit) 2115 return 0; 2116 2117 plink->sata_spd_limit = target_limit; 2118 2119 /* Request another EH round by returning -EAGAIN if link is 2120 * going faster than the target speed. Forward progress is 2121 * guaranteed by setting sata_spd_limit to target_limit above. 2122 */ 2123 if (plink->sata_spd > target) { 2124 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2125 sata_spd_string(target)); 2126 return -EAGAIN; 2127 } 2128 return 0; 2129 } 2130 2131 static inline u8 ata_dev_knobble(struct ata_device *dev) 2132 { 2133 struct ata_port *ap = dev->link->ap; 2134 2135 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2136 return 0; 2137 2138 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2139 } 2140 2141 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2142 { 2143 struct ata_port *ap = dev->link->ap; 2144 unsigned int err_mask; 2145 2146 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2147 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2148 return; 2149 } 2150 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2151 0, ap->sector_buf, 1); 2152 if (!err_mask) { 2153 u8 *cmds = dev->ncq_send_recv_cmds; 2154 2155 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2156 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2157 2158 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2159 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2160 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2161 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2162 } 2163 } 2164 } 2165 2166 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2167 { 2168 struct ata_port *ap = dev->link->ap; 2169 unsigned int err_mask; 2170 2171 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2172 ata_dev_warn(dev, 2173 "NCQ Send/Recv Log not supported\n"); 2174 return; 2175 } 2176 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2177 0, ap->sector_buf, 1); 2178 if (!err_mask) { 2179 u8 *cmds = dev->ncq_non_data_cmds; 2180 2181 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2182 } 2183 } 2184 2185 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2186 { 2187 struct ata_port *ap = dev->link->ap; 2188 unsigned int err_mask; 2189 2190 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2191 return; 2192 2193 err_mask = ata_read_log_page(dev, 2194 ATA_LOG_IDENTIFY_DEVICE, 2195 ATA_LOG_SATA_SETTINGS, 2196 ap->sector_buf, 2197 1); 2198 if (err_mask) 2199 goto not_supported; 2200 2201 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2202 goto not_supported; 2203 2204 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2205 2206 return; 2207 2208 not_supported: 2209 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED; 2210 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2211 } 2212 2213 static bool ata_dev_check_adapter(struct ata_device *dev, 2214 unsigned short vendor_id) 2215 { 2216 struct pci_dev *pcidev = NULL; 2217 struct device *parent_dev = NULL; 2218 2219 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2220 parent_dev = parent_dev->parent) { 2221 if (dev_is_pci(parent_dev)) { 2222 pcidev = to_pci_dev(parent_dev); 2223 if (pcidev->vendor == vendor_id) 2224 return true; 2225 break; 2226 } 2227 } 2228 2229 return false; 2230 } 2231 2232 static int ata_dev_config_ncq(struct ata_device *dev, 2233 char *desc, size_t desc_sz) 2234 { 2235 struct ata_port *ap = dev->link->ap; 2236 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2237 unsigned int err_mask; 2238 char *aa_desc = ""; 2239 2240 if (!ata_id_has_ncq(dev->id)) { 2241 desc[0] = '\0'; 2242 return 0; 2243 } 2244 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2245 return 0; 2246 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2247 snprintf(desc, desc_sz, "NCQ (not used)"); 2248 return 0; 2249 } 2250 2251 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2252 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2253 snprintf(desc, desc_sz, "NCQ (not used)"); 2254 return 0; 2255 } 2256 2257 if (ap->flags & ATA_FLAG_NCQ) { 2258 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2259 dev->flags |= ATA_DFLAG_NCQ; 2260 } 2261 2262 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2263 (ap->flags & ATA_FLAG_FPDMA_AA) && 2264 ata_id_has_fpdma_aa(dev->id)) { 2265 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2266 SATA_FPDMA_AA); 2267 if (err_mask) { 2268 ata_dev_err(dev, 2269 "failed to enable AA (error_mask=0x%x)\n", 2270 err_mask); 2271 if (err_mask != AC_ERR_DEV) { 2272 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2273 return -EIO; 2274 } 2275 } else 2276 aa_desc = ", AA"; 2277 } 2278 2279 if (hdepth >= ddepth) 2280 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2281 else 2282 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2283 ddepth, aa_desc); 2284 2285 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2286 if (ata_id_has_ncq_send_and_recv(dev->id)) 2287 ata_dev_config_ncq_send_recv(dev); 2288 if (ata_id_has_ncq_non_data(dev->id)) 2289 ata_dev_config_ncq_non_data(dev); 2290 if (ata_id_has_ncq_prio(dev->id)) 2291 ata_dev_config_ncq_prio(dev); 2292 } 2293 2294 return 0; 2295 } 2296 2297 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2298 { 2299 unsigned int err_mask; 2300 2301 if (!ata_id_has_sense_reporting(dev->id)) 2302 return; 2303 2304 if (ata_id_sense_reporting_enabled(dev->id)) 2305 return; 2306 2307 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2308 if (err_mask) { 2309 ata_dev_dbg(dev, 2310 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2311 err_mask); 2312 } 2313 } 2314 2315 static void ata_dev_config_zac(struct ata_device *dev) 2316 { 2317 struct ata_port *ap = dev->link->ap; 2318 unsigned int err_mask; 2319 u8 *identify_buf = ap->sector_buf; 2320 2321 dev->zac_zones_optimal_open = U32_MAX; 2322 dev->zac_zones_optimal_nonseq = U32_MAX; 2323 dev->zac_zones_max_open = U32_MAX; 2324 2325 /* 2326 * Always set the 'ZAC' flag for Host-managed devices. 2327 */ 2328 if (dev->class == ATA_DEV_ZAC) 2329 dev->flags |= ATA_DFLAG_ZAC; 2330 else if (ata_id_zoned_cap(dev->id) == 0x01) 2331 /* 2332 * Check for host-aware devices. 2333 */ 2334 dev->flags |= ATA_DFLAG_ZAC; 2335 2336 if (!(dev->flags & ATA_DFLAG_ZAC)) 2337 return; 2338 2339 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2340 ata_dev_warn(dev, 2341 "ATA Zoned Information Log not supported\n"); 2342 return; 2343 } 2344 2345 /* 2346 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2347 */ 2348 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2349 ATA_LOG_ZONED_INFORMATION, 2350 identify_buf, 1); 2351 if (!err_mask) { 2352 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2353 2354 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2355 if ((zoned_cap >> 63)) 2356 dev->zac_zoned_cap = (zoned_cap & 1); 2357 opt_open = get_unaligned_le64(&identify_buf[24]); 2358 if ((opt_open >> 63)) 2359 dev->zac_zones_optimal_open = (u32)opt_open; 2360 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2361 if ((opt_nonseq >> 63)) 2362 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2363 max_open = get_unaligned_le64(&identify_buf[40]); 2364 if ((max_open >> 63)) 2365 dev->zac_zones_max_open = (u32)max_open; 2366 } 2367 } 2368 2369 static void ata_dev_config_trusted(struct ata_device *dev) 2370 { 2371 struct ata_port *ap = dev->link->ap; 2372 u64 trusted_cap; 2373 unsigned int err; 2374 2375 if (!ata_id_has_trusted(dev->id)) 2376 return; 2377 2378 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2379 ata_dev_warn(dev, 2380 "Security Log not supported\n"); 2381 return; 2382 } 2383 2384 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2385 ap->sector_buf, 1); 2386 if (err) 2387 return; 2388 2389 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2390 if (!(trusted_cap & (1ULL << 63))) { 2391 ata_dev_dbg(dev, 2392 "Trusted Computing capability qword not valid!\n"); 2393 return; 2394 } 2395 2396 if (trusted_cap & (1 << 0)) 2397 dev->flags |= ATA_DFLAG_TRUSTED; 2398 } 2399 2400 static void ata_dev_config_cdl(struct ata_device *dev) 2401 { 2402 struct ata_port *ap = dev->link->ap; 2403 unsigned int err_mask; 2404 bool cdl_enabled; 2405 u64 val; 2406 2407 if (ata_id_major_version(dev->id) < 12) 2408 goto not_supported; 2409 2410 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) || 2411 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) || 2412 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS)) 2413 goto not_supported; 2414 2415 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2416 ATA_LOG_SUPPORTED_CAPABILITIES, 2417 ap->sector_buf, 1); 2418 if (err_mask) 2419 goto not_supported; 2420 2421 /* Check Command Duration Limit Supported bits */ 2422 val = get_unaligned_le64(&ap->sector_buf[168]); 2423 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0))) 2424 goto not_supported; 2425 2426 /* Warn the user if command duration guideline is not supported */ 2427 if (!(val & BIT_ULL(1))) 2428 ata_dev_warn(dev, 2429 "Command duration guideline is not supported\n"); 2430 2431 /* 2432 * We must have support for the sense data for successful NCQ commands 2433 * log indicated by the successful NCQ command sense data supported bit. 2434 */ 2435 val = get_unaligned_le64(&ap->sector_buf[8]); 2436 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) { 2437 ata_dev_warn(dev, 2438 "CDL supported but Successful NCQ Command Sense Data is not supported\n"); 2439 goto not_supported; 2440 } 2441 2442 /* Without NCQ autosense, the successful NCQ commands log is useless. */ 2443 if (!ata_id_has_ncq_autosense(dev->id)) { 2444 ata_dev_warn(dev, 2445 "CDL supported but NCQ autosense is not supported\n"); 2446 goto not_supported; 2447 } 2448 2449 /* 2450 * If CDL is marked as enabled, make sure the feature is enabled too. 2451 * Conversely, if CDL is disabled, make sure the feature is turned off. 2452 */ 2453 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2454 ATA_LOG_CURRENT_SETTINGS, 2455 ap->sector_buf, 1); 2456 if (err_mask) 2457 goto not_supported; 2458 2459 val = get_unaligned_le64(&ap->sector_buf[8]); 2460 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21); 2461 if (dev->flags & ATA_DFLAG_CDL_ENABLED) { 2462 if (!cdl_enabled) { 2463 /* Enable CDL on the device */ 2464 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1); 2465 if (err_mask) { 2466 ata_dev_err(dev, 2467 "Enable CDL feature failed\n"); 2468 goto not_supported; 2469 } 2470 } 2471 } else { 2472 if (cdl_enabled) { 2473 /* Disable CDL on the device */ 2474 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0); 2475 if (err_mask) { 2476 ata_dev_err(dev, 2477 "Disable CDL feature failed\n"); 2478 goto not_supported; 2479 } 2480 } 2481 } 2482 2483 /* 2484 * While CDL itself has to be enabled using sysfs, CDL requires that 2485 * sense data for successful NCQ commands is enabled to work properly. 2486 * Just like ata_dev_config_sense_reporting(), enable it unconditionally 2487 * if supported. 2488 */ 2489 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) { 2490 err_mask = ata_dev_set_feature(dev, 2491 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1); 2492 if (err_mask) { 2493 ata_dev_warn(dev, 2494 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n", 2495 err_mask); 2496 goto not_supported; 2497 } 2498 } 2499 2500 /* 2501 * Allocate a buffer to handle reading the sense data for successful 2502 * NCQ Commands log page for commands using a CDL with one of the limit 2503 * policy set to 0xD (successful completion with sense data available 2504 * bit set). 2505 */ 2506 if (!ap->ncq_sense_buf) { 2507 ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL); 2508 if (!ap->ncq_sense_buf) 2509 goto not_supported; 2510 } 2511 2512 /* 2513 * Command duration limits is supported: cache the CDL log page 18h 2514 * (command duration descriptors). 2515 */ 2516 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1); 2517 if (err_mask) { 2518 ata_dev_warn(dev, "Read Command Duration Limits log failed\n"); 2519 goto not_supported; 2520 } 2521 2522 memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE); 2523 dev->flags |= ATA_DFLAG_CDL; 2524 2525 return; 2526 2527 not_supported: 2528 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED); 2529 kfree(ap->ncq_sense_buf); 2530 ap->ncq_sense_buf = NULL; 2531 } 2532 2533 static int ata_dev_config_lba(struct ata_device *dev) 2534 { 2535 const u16 *id = dev->id; 2536 const char *lba_desc; 2537 char ncq_desc[24]; 2538 int ret; 2539 2540 dev->flags |= ATA_DFLAG_LBA; 2541 2542 if (ata_id_has_lba48(id)) { 2543 lba_desc = "LBA48"; 2544 dev->flags |= ATA_DFLAG_LBA48; 2545 if (dev->n_sectors >= (1UL << 28) && 2546 ata_id_has_flush_ext(id)) 2547 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2548 } else { 2549 lba_desc = "LBA"; 2550 } 2551 2552 /* config NCQ */ 2553 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2554 2555 /* print device info to dmesg */ 2556 if (ata_dev_print_info(dev)) 2557 ata_dev_info(dev, 2558 "%llu sectors, multi %u: %s %s\n", 2559 (unsigned long long)dev->n_sectors, 2560 dev->multi_count, lba_desc, ncq_desc); 2561 2562 return ret; 2563 } 2564 2565 static void ata_dev_config_chs(struct ata_device *dev) 2566 { 2567 const u16 *id = dev->id; 2568 2569 if (ata_id_current_chs_valid(id)) { 2570 /* Current CHS translation is valid. */ 2571 dev->cylinders = id[54]; 2572 dev->heads = id[55]; 2573 dev->sectors = id[56]; 2574 } else { 2575 /* Default translation */ 2576 dev->cylinders = id[1]; 2577 dev->heads = id[3]; 2578 dev->sectors = id[6]; 2579 } 2580 2581 /* print device info to dmesg */ 2582 if (ata_dev_print_info(dev)) 2583 ata_dev_info(dev, 2584 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2585 (unsigned long long)dev->n_sectors, 2586 dev->multi_count, dev->cylinders, 2587 dev->heads, dev->sectors); 2588 } 2589 2590 static void ata_dev_config_fua(struct ata_device *dev) 2591 { 2592 /* Ignore FUA support if its use is disabled globally */ 2593 if (!libata_fua) 2594 goto nofua; 2595 2596 /* Ignore devices without support for WRITE DMA FUA EXT */ 2597 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id)) 2598 goto nofua; 2599 2600 /* Ignore known bad devices and devices that lack NCQ support */ 2601 if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA)) 2602 goto nofua; 2603 2604 dev->flags |= ATA_DFLAG_FUA; 2605 2606 return; 2607 2608 nofua: 2609 dev->flags &= ~ATA_DFLAG_FUA; 2610 } 2611 2612 static void ata_dev_config_devslp(struct ata_device *dev) 2613 { 2614 u8 *sata_setting = dev->link->ap->sector_buf; 2615 unsigned int err_mask; 2616 int i, j; 2617 2618 /* 2619 * Check device sleep capability. Get DevSlp timing variables 2620 * from SATA Settings page of Identify Device Data Log. 2621 */ 2622 if (!ata_id_has_devslp(dev->id) || 2623 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2624 return; 2625 2626 err_mask = ata_read_log_page(dev, 2627 ATA_LOG_IDENTIFY_DEVICE, 2628 ATA_LOG_SATA_SETTINGS, 2629 sata_setting, 1); 2630 if (err_mask) 2631 return; 2632 2633 dev->flags |= ATA_DFLAG_DEVSLP; 2634 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2635 j = ATA_LOG_DEVSLP_OFFSET + i; 2636 dev->devslp_timing[i] = sata_setting[j]; 2637 } 2638 } 2639 2640 static void ata_dev_config_cpr(struct ata_device *dev) 2641 { 2642 unsigned int err_mask; 2643 size_t buf_len; 2644 int i, nr_cpr = 0; 2645 struct ata_cpr_log *cpr_log = NULL; 2646 u8 *desc, *buf = NULL; 2647 2648 if (ata_id_major_version(dev->id) < 11) 2649 goto out; 2650 2651 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES); 2652 if (buf_len == 0) 2653 goto out; 2654 2655 /* 2656 * Read the concurrent positioning ranges log (0x47). We can have at 2657 * most 255 32B range descriptors plus a 64B header. This log varies in 2658 * size, so use the size reported in the GPL directory. Reading beyond 2659 * the supported length will result in an error. 2660 */ 2661 buf_len <<= 9; 2662 buf = kzalloc(buf_len, GFP_KERNEL); 2663 if (!buf) 2664 goto out; 2665 2666 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2667 0, buf, buf_len >> 9); 2668 if (err_mask) 2669 goto out; 2670 2671 nr_cpr = buf[0]; 2672 if (!nr_cpr) 2673 goto out; 2674 2675 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2676 if (!cpr_log) 2677 goto out; 2678 2679 cpr_log->nr_cpr = nr_cpr; 2680 desc = &buf[64]; 2681 for (i = 0; i < nr_cpr; i++, desc += 32) { 2682 cpr_log->cpr[i].num = desc[0]; 2683 cpr_log->cpr[i].num_storage_elements = desc[1]; 2684 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2685 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2686 } 2687 2688 out: 2689 swap(dev->cpr_log, cpr_log); 2690 kfree(cpr_log); 2691 kfree(buf); 2692 } 2693 2694 static void ata_dev_print_features(struct ata_device *dev) 2695 { 2696 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2697 return; 2698 2699 ata_dev_info(dev, 2700 "Features:%s%s%s%s%s%s%s%s\n", 2701 dev->flags & ATA_DFLAG_FUA ? " FUA" : "", 2702 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2703 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2704 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2705 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2706 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2707 dev->flags & ATA_DFLAG_CDL ? " CDL" : "", 2708 dev->cpr_log ? " CPR" : ""); 2709 } 2710 2711 /** 2712 * ata_dev_configure - Configure the specified ATA/ATAPI device 2713 * @dev: Target device to configure 2714 * 2715 * Configure @dev according to @dev->id. Generic and low-level 2716 * driver specific fixups are also applied. 2717 * 2718 * LOCKING: 2719 * Kernel thread context (may sleep) 2720 * 2721 * RETURNS: 2722 * 0 on success, -errno otherwise 2723 */ 2724 int ata_dev_configure(struct ata_device *dev) 2725 { 2726 struct ata_port *ap = dev->link->ap; 2727 bool print_info = ata_dev_print_info(dev); 2728 const u16 *id = dev->id; 2729 unsigned int xfer_mask; 2730 unsigned int err_mask; 2731 char revbuf[7]; /* XYZ-99\0 */ 2732 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2733 char modelbuf[ATA_ID_PROD_LEN+1]; 2734 int rc; 2735 2736 if (!ata_dev_enabled(dev)) { 2737 ata_dev_dbg(dev, "no device\n"); 2738 return 0; 2739 } 2740 2741 /* set horkage */ 2742 dev->horkage |= ata_dev_blacklisted(dev); 2743 ata_force_horkage(dev); 2744 2745 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2746 ata_dev_info(dev, "unsupported device, disabling\n"); 2747 ata_dev_disable(dev); 2748 return 0; 2749 } 2750 2751 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2752 dev->class == ATA_DEV_ATAPI) { 2753 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2754 atapi_enabled ? "not supported with this driver" 2755 : "disabled"); 2756 ata_dev_disable(dev); 2757 return 0; 2758 } 2759 2760 rc = ata_do_link_spd_horkage(dev); 2761 if (rc) 2762 return rc; 2763 2764 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2765 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2766 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2767 dev->horkage |= ATA_HORKAGE_NOLPM; 2768 2769 if (ap->flags & ATA_FLAG_NO_LPM) 2770 dev->horkage |= ATA_HORKAGE_NOLPM; 2771 2772 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2773 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2774 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2775 } 2776 2777 /* let ACPI work its magic */ 2778 rc = ata_acpi_on_devcfg(dev); 2779 if (rc) 2780 return rc; 2781 2782 /* massage HPA, do it early as it might change IDENTIFY data */ 2783 rc = ata_hpa_resize(dev); 2784 if (rc) 2785 return rc; 2786 2787 /* print device capabilities */ 2788 ata_dev_dbg(dev, 2789 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2790 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2791 __func__, 2792 id[49], id[82], id[83], id[84], 2793 id[85], id[86], id[87], id[88]); 2794 2795 /* initialize to-be-configured parameters */ 2796 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2797 dev->max_sectors = 0; 2798 dev->cdb_len = 0; 2799 dev->n_sectors = 0; 2800 dev->cylinders = 0; 2801 dev->heads = 0; 2802 dev->sectors = 0; 2803 dev->multi_count = 0; 2804 2805 /* 2806 * common ATA, ATAPI feature tests 2807 */ 2808 2809 /* find max transfer mode; for printk only */ 2810 xfer_mask = ata_id_xfermask(id); 2811 2812 ata_dump_id(dev, id); 2813 2814 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2815 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2816 sizeof(fwrevbuf)); 2817 2818 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2819 sizeof(modelbuf)); 2820 2821 /* ATA-specific feature tests */ 2822 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2823 if (ata_id_is_cfa(id)) { 2824 /* CPRM may make this media unusable */ 2825 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2826 ata_dev_warn(dev, 2827 "supports DRM functions and may not be fully accessible\n"); 2828 snprintf(revbuf, 7, "CFA"); 2829 } else { 2830 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2831 /* Warn the user if the device has TPM extensions */ 2832 if (ata_id_has_tpm(id)) 2833 ata_dev_warn(dev, 2834 "supports DRM functions and may not be fully accessible\n"); 2835 } 2836 2837 dev->n_sectors = ata_id_n_sectors(id); 2838 2839 /* get current R/W Multiple count setting */ 2840 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2841 unsigned int max = dev->id[47] & 0xff; 2842 unsigned int cnt = dev->id[59] & 0xff; 2843 /* only recognize/allow powers of two here */ 2844 if (is_power_of_2(max) && is_power_of_2(cnt)) 2845 if (cnt <= max) 2846 dev->multi_count = cnt; 2847 } 2848 2849 /* print device info to dmesg */ 2850 if (print_info) 2851 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2852 revbuf, modelbuf, fwrevbuf, 2853 ata_mode_string(xfer_mask)); 2854 2855 if (ata_id_has_lba(id)) { 2856 rc = ata_dev_config_lba(dev); 2857 if (rc) 2858 return rc; 2859 } else { 2860 ata_dev_config_chs(dev); 2861 } 2862 2863 ata_dev_config_fua(dev); 2864 ata_dev_config_devslp(dev); 2865 ata_dev_config_sense_reporting(dev); 2866 ata_dev_config_zac(dev); 2867 ata_dev_config_trusted(dev); 2868 ata_dev_config_cpr(dev); 2869 ata_dev_config_cdl(dev); 2870 dev->cdb_len = 32; 2871 2872 if (print_info) 2873 ata_dev_print_features(dev); 2874 } 2875 2876 /* ATAPI-specific feature tests */ 2877 else if (dev->class == ATA_DEV_ATAPI) { 2878 const char *cdb_intr_string = ""; 2879 const char *atapi_an_string = ""; 2880 const char *dma_dir_string = ""; 2881 u32 sntf; 2882 2883 rc = atapi_cdb_len(id); 2884 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2885 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 2886 rc = -EINVAL; 2887 goto err_out_nosup; 2888 } 2889 dev->cdb_len = (unsigned int) rc; 2890 2891 /* Enable ATAPI AN if both the host and device have 2892 * the support. If PMP is attached, SNTF is required 2893 * to enable ATAPI AN to discern between PHY status 2894 * changed notifications and ATAPI ANs. 2895 */ 2896 if (atapi_an && 2897 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2898 (!sata_pmp_attached(ap) || 2899 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2900 /* issue SET feature command to turn this on */ 2901 err_mask = ata_dev_set_feature(dev, 2902 SETFEATURES_SATA_ENABLE, SATA_AN); 2903 if (err_mask) 2904 ata_dev_err(dev, 2905 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2906 err_mask); 2907 else { 2908 dev->flags |= ATA_DFLAG_AN; 2909 atapi_an_string = ", ATAPI AN"; 2910 } 2911 } 2912 2913 if (ata_id_cdb_intr(dev->id)) { 2914 dev->flags |= ATA_DFLAG_CDB_INTR; 2915 cdb_intr_string = ", CDB intr"; 2916 } 2917 2918 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2919 dev->flags |= ATA_DFLAG_DMADIR; 2920 dma_dir_string = ", DMADIR"; 2921 } 2922 2923 if (ata_id_has_da(dev->id)) { 2924 dev->flags |= ATA_DFLAG_DA; 2925 zpodd_init(dev); 2926 } 2927 2928 /* print device info to dmesg */ 2929 if (print_info) 2930 ata_dev_info(dev, 2931 "ATAPI: %s, %s, max %s%s%s%s\n", 2932 modelbuf, fwrevbuf, 2933 ata_mode_string(xfer_mask), 2934 cdb_intr_string, atapi_an_string, 2935 dma_dir_string); 2936 } 2937 2938 /* determine max_sectors */ 2939 dev->max_sectors = ATA_MAX_SECTORS; 2940 if (dev->flags & ATA_DFLAG_LBA48) 2941 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2942 2943 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2944 200 sectors */ 2945 if (ata_dev_knobble(dev)) { 2946 if (print_info) 2947 ata_dev_info(dev, "applying bridge limits\n"); 2948 dev->udma_mask &= ATA_UDMA5; 2949 dev->max_sectors = ATA_MAX_SECTORS; 2950 } 2951 2952 if ((dev->class == ATA_DEV_ATAPI) && 2953 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2954 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2955 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2956 } 2957 2958 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2959 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2960 dev->max_sectors); 2961 2962 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2963 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2964 dev->max_sectors); 2965 2966 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2967 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2968 2969 if (ap->ops->dev_config) 2970 ap->ops->dev_config(dev); 2971 2972 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2973 /* Let the user know. We don't want to disallow opens for 2974 rescue purposes, or in case the vendor is just a blithering 2975 idiot. Do this after the dev_config call as some controllers 2976 with buggy firmware may want to avoid reporting false device 2977 bugs */ 2978 2979 if (print_info) { 2980 ata_dev_warn(dev, 2981 "Drive reports diagnostics failure. This may indicate a drive\n"); 2982 ata_dev_warn(dev, 2983 "fault or invalid emulation. Contact drive vendor for information.\n"); 2984 } 2985 } 2986 2987 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2988 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2989 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2990 } 2991 2992 return 0; 2993 2994 err_out_nosup: 2995 return rc; 2996 } 2997 2998 /** 2999 * ata_cable_40wire - return 40 wire cable type 3000 * @ap: port 3001 * 3002 * Helper method for drivers which want to hardwire 40 wire cable 3003 * detection. 3004 */ 3005 3006 int ata_cable_40wire(struct ata_port *ap) 3007 { 3008 return ATA_CBL_PATA40; 3009 } 3010 EXPORT_SYMBOL_GPL(ata_cable_40wire); 3011 3012 /** 3013 * ata_cable_80wire - return 80 wire cable type 3014 * @ap: port 3015 * 3016 * Helper method for drivers which want to hardwire 80 wire cable 3017 * detection. 3018 */ 3019 3020 int ata_cable_80wire(struct ata_port *ap) 3021 { 3022 return ATA_CBL_PATA80; 3023 } 3024 EXPORT_SYMBOL_GPL(ata_cable_80wire); 3025 3026 /** 3027 * ata_cable_unknown - return unknown PATA cable. 3028 * @ap: port 3029 * 3030 * Helper method for drivers which have no PATA cable detection. 3031 */ 3032 3033 int ata_cable_unknown(struct ata_port *ap) 3034 { 3035 return ATA_CBL_PATA_UNK; 3036 } 3037 EXPORT_SYMBOL_GPL(ata_cable_unknown); 3038 3039 /** 3040 * ata_cable_ignore - return ignored PATA cable. 3041 * @ap: port 3042 * 3043 * Helper method for drivers which don't use cable type to limit 3044 * transfer mode. 3045 */ 3046 int ata_cable_ignore(struct ata_port *ap) 3047 { 3048 return ATA_CBL_PATA_IGN; 3049 } 3050 EXPORT_SYMBOL_GPL(ata_cable_ignore); 3051 3052 /** 3053 * ata_cable_sata - return SATA cable type 3054 * @ap: port 3055 * 3056 * Helper method for drivers which have SATA cables 3057 */ 3058 3059 int ata_cable_sata(struct ata_port *ap) 3060 { 3061 return ATA_CBL_SATA; 3062 } 3063 EXPORT_SYMBOL_GPL(ata_cable_sata); 3064 3065 /** 3066 * ata_bus_probe - Reset and probe ATA bus 3067 * @ap: Bus to probe 3068 * 3069 * Master ATA bus probing function. Initiates a hardware-dependent 3070 * bus reset, then attempts to identify any devices found on 3071 * the bus. 3072 * 3073 * LOCKING: 3074 * PCI/etc. bus probe sem. 3075 * 3076 * RETURNS: 3077 * Zero on success, negative errno otherwise. 3078 */ 3079 3080 int ata_bus_probe(struct ata_port *ap) 3081 { 3082 unsigned int classes[ATA_MAX_DEVICES]; 3083 int tries[ATA_MAX_DEVICES]; 3084 int rc; 3085 struct ata_device *dev; 3086 3087 ata_for_each_dev(dev, &ap->link, ALL) 3088 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 3089 3090 retry: 3091 ata_for_each_dev(dev, &ap->link, ALL) { 3092 /* If we issue an SRST then an ATA drive (not ATAPI) 3093 * may change configuration and be in PIO0 timing. If 3094 * we do a hard reset (or are coming from power on) 3095 * this is true for ATA or ATAPI. Until we've set a 3096 * suitable controller mode we should not touch the 3097 * bus as we may be talking too fast. 3098 */ 3099 dev->pio_mode = XFER_PIO_0; 3100 dev->dma_mode = 0xff; 3101 3102 /* If the controller has a pio mode setup function 3103 * then use it to set the chipset to rights. Don't 3104 * touch the DMA setup as that will be dealt with when 3105 * configuring devices. 3106 */ 3107 if (ap->ops->set_piomode) 3108 ap->ops->set_piomode(ap, dev); 3109 } 3110 3111 /* reset and determine device classes */ 3112 ap->ops->phy_reset(ap); 3113 3114 ata_for_each_dev(dev, &ap->link, ALL) { 3115 if (dev->class != ATA_DEV_UNKNOWN) 3116 classes[dev->devno] = dev->class; 3117 else 3118 classes[dev->devno] = ATA_DEV_NONE; 3119 3120 dev->class = ATA_DEV_UNKNOWN; 3121 } 3122 3123 /* read IDENTIFY page and configure devices. We have to do the identify 3124 specific sequence bass-ackwards so that PDIAG- is released by 3125 the slave device */ 3126 3127 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 3128 if (tries[dev->devno]) 3129 dev->class = classes[dev->devno]; 3130 3131 if (!ata_dev_enabled(dev)) 3132 continue; 3133 3134 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 3135 dev->id); 3136 if (rc) 3137 goto fail; 3138 } 3139 3140 /* Now ask for the cable type as PDIAG- should have been released */ 3141 if (ap->ops->cable_detect) 3142 ap->cbl = ap->ops->cable_detect(ap); 3143 3144 /* We may have SATA bridge glue hiding here irrespective of 3145 * the reported cable types and sensed types. When SATA 3146 * drives indicate we have a bridge, we don't know which end 3147 * of the link the bridge is which is a problem. 3148 */ 3149 ata_for_each_dev(dev, &ap->link, ENABLED) 3150 if (ata_id_is_sata(dev->id)) 3151 ap->cbl = ATA_CBL_SATA; 3152 3153 /* After the identify sequence we can now set up the devices. We do 3154 this in the normal order so that the user doesn't get confused */ 3155 3156 ata_for_each_dev(dev, &ap->link, ENABLED) { 3157 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 3158 rc = ata_dev_configure(dev); 3159 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 3160 if (rc) 3161 goto fail; 3162 } 3163 3164 /* configure transfer mode */ 3165 rc = ata_set_mode(&ap->link, &dev); 3166 if (rc) 3167 goto fail; 3168 3169 ata_for_each_dev(dev, &ap->link, ENABLED) 3170 return 0; 3171 3172 return -ENODEV; 3173 3174 fail: 3175 tries[dev->devno]--; 3176 3177 switch (rc) { 3178 case -EINVAL: 3179 /* eeek, something went very wrong, give up */ 3180 tries[dev->devno] = 0; 3181 break; 3182 3183 case -ENODEV: 3184 /* give it just one more chance */ 3185 tries[dev->devno] = min(tries[dev->devno], 1); 3186 fallthrough; 3187 case -EIO: 3188 if (tries[dev->devno] == 1) { 3189 /* This is the last chance, better to slow 3190 * down than lose it. 3191 */ 3192 sata_down_spd_limit(&ap->link, 0); 3193 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 3194 } 3195 } 3196 3197 if (!tries[dev->devno]) 3198 ata_dev_disable(dev); 3199 3200 goto retry; 3201 } 3202 3203 /** 3204 * sata_print_link_status - Print SATA link status 3205 * @link: SATA link to printk link status about 3206 * 3207 * This function prints link speed and status of a SATA link. 3208 * 3209 * LOCKING: 3210 * None. 3211 */ 3212 static void sata_print_link_status(struct ata_link *link) 3213 { 3214 u32 sstatus, scontrol, tmp; 3215 3216 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3217 return; 3218 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3219 return; 3220 3221 if (ata_phys_link_online(link)) { 3222 tmp = (sstatus >> 4) & 0xf; 3223 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3224 sata_spd_string(tmp), sstatus, scontrol); 3225 } else { 3226 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3227 sstatus, scontrol); 3228 } 3229 } 3230 3231 /** 3232 * ata_dev_pair - return other device on cable 3233 * @adev: device 3234 * 3235 * Obtain the other device on the same cable, or if none is 3236 * present NULL is returned 3237 */ 3238 3239 struct ata_device *ata_dev_pair(struct ata_device *adev) 3240 { 3241 struct ata_link *link = adev->link; 3242 struct ata_device *pair = &link->device[1 - adev->devno]; 3243 if (!ata_dev_enabled(pair)) 3244 return NULL; 3245 return pair; 3246 } 3247 EXPORT_SYMBOL_GPL(ata_dev_pair); 3248 3249 /** 3250 * sata_down_spd_limit - adjust SATA spd limit downward 3251 * @link: Link to adjust SATA spd limit for 3252 * @spd_limit: Additional limit 3253 * 3254 * Adjust SATA spd limit of @link downward. Note that this 3255 * function only adjusts the limit. The change must be applied 3256 * using sata_set_spd(). 3257 * 3258 * If @spd_limit is non-zero, the speed is limited to equal to or 3259 * lower than @spd_limit if such speed is supported. If 3260 * @spd_limit is slower than any supported speed, only the lowest 3261 * supported speed is allowed. 3262 * 3263 * LOCKING: 3264 * Inherited from caller. 3265 * 3266 * RETURNS: 3267 * 0 on success, negative errno on failure 3268 */ 3269 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3270 { 3271 u32 sstatus, spd, mask; 3272 int rc, bit; 3273 3274 if (!sata_scr_valid(link)) 3275 return -EOPNOTSUPP; 3276 3277 /* If SCR can be read, use it to determine the current SPD. 3278 * If not, use cached value in link->sata_spd. 3279 */ 3280 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3281 if (rc == 0 && ata_sstatus_online(sstatus)) 3282 spd = (sstatus >> 4) & 0xf; 3283 else 3284 spd = link->sata_spd; 3285 3286 mask = link->sata_spd_limit; 3287 if (mask <= 1) 3288 return -EINVAL; 3289 3290 /* unconditionally mask off the highest bit */ 3291 bit = fls(mask) - 1; 3292 mask &= ~(1 << bit); 3293 3294 /* 3295 * Mask off all speeds higher than or equal to the current one. At 3296 * this point, if current SPD is not available and we previously 3297 * recorded the link speed from SStatus, the driver has already 3298 * masked off the highest bit so mask should already be 1 or 0. 3299 * Otherwise, we should not force 1.5Gbps on a link where we have 3300 * not previously recorded speed from SStatus. Just return in this 3301 * case. 3302 */ 3303 if (spd > 1) 3304 mask &= (1 << (spd - 1)) - 1; 3305 else if (link->sata_spd) 3306 return -EINVAL; 3307 3308 /* were we already at the bottom? */ 3309 if (!mask) 3310 return -EINVAL; 3311 3312 if (spd_limit) { 3313 if (mask & ((1 << spd_limit) - 1)) 3314 mask &= (1 << spd_limit) - 1; 3315 else { 3316 bit = ffs(mask) - 1; 3317 mask = 1 << bit; 3318 } 3319 } 3320 3321 link->sata_spd_limit = mask; 3322 3323 ata_link_warn(link, "limiting SATA link speed to %s\n", 3324 sata_spd_string(fls(mask))); 3325 3326 return 0; 3327 } 3328 3329 #ifdef CONFIG_ATA_ACPI 3330 /** 3331 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3332 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3333 * @cycle: cycle duration in ns 3334 * 3335 * Return matching xfer mode for @cycle. The returned mode is of 3336 * the transfer type specified by @xfer_shift. If @cycle is too 3337 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3338 * than the fastest known mode, the fasted mode is returned. 3339 * 3340 * LOCKING: 3341 * None. 3342 * 3343 * RETURNS: 3344 * Matching xfer_mode, 0xff if no match found. 3345 */ 3346 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3347 { 3348 u8 base_mode = 0xff, last_mode = 0xff; 3349 const struct ata_xfer_ent *ent; 3350 const struct ata_timing *t; 3351 3352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3353 if (ent->shift == xfer_shift) 3354 base_mode = ent->base; 3355 3356 for (t = ata_timing_find_mode(base_mode); 3357 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3358 unsigned short this_cycle; 3359 3360 switch (xfer_shift) { 3361 case ATA_SHIFT_PIO: 3362 case ATA_SHIFT_MWDMA: 3363 this_cycle = t->cycle; 3364 break; 3365 case ATA_SHIFT_UDMA: 3366 this_cycle = t->udma; 3367 break; 3368 default: 3369 return 0xff; 3370 } 3371 3372 if (cycle > this_cycle) 3373 break; 3374 3375 last_mode = t->mode; 3376 } 3377 3378 return last_mode; 3379 } 3380 #endif 3381 3382 /** 3383 * ata_down_xfermask_limit - adjust dev xfer masks downward 3384 * @dev: Device to adjust xfer masks 3385 * @sel: ATA_DNXFER_* selector 3386 * 3387 * Adjust xfer masks of @dev downward. Note that this function 3388 * does not apply the change. Invoking ata_set_mode() afterwards 3389 * will apply the limit. 3390 * 3391 * LOCKING: 3392 * Inherited from caller. 3393 * 3394 * RETURNS: 3395 * 0 on success, negative errno on failure 3396 */ 3397 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3398 { 3399 char buf[32]; 3400 unsigned int orig_mask, xfer_mask; 3401 unsigned int pio_mask, mwdma_mask, udma_mask; 3402 int quiet, highbit; 3403 3404 quiet = !!(sel & ATA_DNXFER_QUIET); 3405 sel &= ~ATA_DNXFER_QUIET; 3406 3407 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3408 dev->mwdma_mask, 3409 dev->udma_mask); 3410 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3411 3412 switch (sel) { 3413 case ATA_DNXFER_PIO: 3414 highbit = fls(pio_mask) - 1; 3415 pio_mask &= ~(1 << highbit); 3416 break; 3417 3418 case ATA_DNXFER_DMA: 3419 if (udma_mask) { 3420 highbit = fls(udma_mask) - 1; 3421 udma_mask &= ~(1 << highbit); 3422 if (!udma_mask) 3423 return -ENOENT; 3424 } else if (mwdma_mask) { 3425 highbit = fls(mwdma_mask) - 1; 3426 mwdma_mask &= ~(1 << highbit); 3427 if (!mwdma_mask) 3428 return -ENOENT; 3429 } 3430 break; 3431 3432 case ATA_DNXFER_40C: 3433 udma_mask &= ATA_UDMA_MASK_40C; 3434 break; 3435 3436 case ATA_DNXFER_FORCE_PIO0: 3437 pio_mask &= 1; 3438 fallthrough; 3439 case ATA_DNXFER_FORCE_PIO: 3440 mwdma_mask = 0; 3441 udma_mask = 0; 3442 break; 3443 3444 default: 3445 BUG(); 3446 } 3447 3448 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3449 3450 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3451 return -ENOENT; 3452 3453 if (!quiet) { 3454 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3455 snprintf(buf, sizeof(buf), "%s:%s", 3456 ata_mode_string(xfer_mask), 3457 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3458 else 3459 snprintf(buf, sizeof(buf), "%s", 3460 ata_mode_string(xfer_mask)); 3461 3462 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3463 } 3464 3465 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3466 &dev->udma_mask); 3467 3468 return 0; 3469 } 3470 3471 static int ata_dev_set_mode(struct ata_device *dev) 3472 { 3473 struct ata_port *ap = dev->link->ap; 3474 struct ata_eh_context *ehc = &dev->link->eh_context; 3475 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3476 const char *dev_err_whine = ""; 3477 int ign_dev_err = 0; 3478 unsigned int err_mask = 0; 3479 int rc; 3480 3481 dev->flags &= ~ATA_DFLAG_PIO; 3482 if (dev->xfer_shift == ATA_SHIFT_PIO) 3483 dev->flags |= ATA_DFLAG_PIO; 3484 3485 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3486 dev_err_whine = " (SET_XFERMODE skipped)"; 3487 else { 3488 if (nosetxfer) 3489 ata_dev_warn(dev, 3490 "NOSETXFER but PATA detected - can't " 3491 "skip SETXFER, might malfunction\n"); 3492 err_mask = ata_dev_set_xfermode(dev); 3493 } 3494 3495 if (err_mask & ~AC_ERR_DEV) 3496 goto fail; 3497 3498 /* revalidate */ 3499 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3500 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3501 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3502 if (rc) 3503 return rc; 3504 3505 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3506 /* Old CFA may refuse this command, which is just fine */ 3507 if (ata_id_is_cfa(dev->id)) 3508 ign_dev_err = 1; 3509 /* Catch several broken garbage emulations plus some pre 3510 ATA devices */ 3511 if (ata_id_major_version(dev->id) == 0 && 3512 dev->pio_mode <= XFER_PIO_2) 3513 ign_dev_err = 1; 3514 /* Some very old devices and some bad newer ones fail 3515 any kind of SET_XFERMODE request but support PIO0-2 3516 timings and no IORDY */ 3517 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3518 ign_dev_err = 1; 3519 } 3520 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3521 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3522 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3523 dev->dma_mode == XFER_MW_DMA_0 && 3524 (dev->id[63] >> 8) & 1) 3525 ign_dev_err = 1; 3526 3527 /* if the device is actually configured correctly, ignore dev err */ 3528 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3529 ign_dev_err = 1; 3530 3531 if (err_mask & AC_ERR_DEV) { 3532 if (!ign_dev_err) 3533 goto fail; 3534 else 3535 dev_err_whine = " (device error ignored)"; 3536 } 3537 3538 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3539 dev->xfer_shift, (int)dev->xfer_mode); 3540 3541 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3542 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3543 ata_dev_info(dev, "configured for %s%s\n", 3544 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3545 dev_err_whine); 3546 3547 return 0; 3548 3549 fail: 3550 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3551 return -EIO; 3552 } 3553 3554 /** 3555 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3556 * @link: link on which timings will be programmed 3557 * @r_failed_dev: out parameter for failed device 3558 * 3559 * Standard implementation of the function used to tune and set 3560 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3561 * ata_dev_set_mode() fails, pointer to the failing device is 3562 * returned in @r_failed_dev. 3563 * 3564 * LOCKING: 3565 * PCI/etc. bus probe sem. 3566 * 3567 * RETURNS: 3568 * 0 on success, negative errno otherwise 3569 */ 3570 3571 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3572 { 3573 struct ata_port *ap = link->ap; 3574 struct ata_device *dev; 3575 int rc = 0, used_dma = 0, found = 0; 3576 3577 /* step 1: calculate xfer_mask */ 3578 ata_for_each_dev(dev, link, ENABLED) { 3579 unsigned int pio_mask, dma_mask; 3580 unsigned int mode_mask; 3581 3582 mode_mask = ATA_DMA_MASK_ATA; 3583 if (dev->class == ATA_DEV_ATAPI) 3584 mode_mask = ATA_DMA_MASK_ATAPI; 3585 else if (ata_id_is_cfa(dev->id)) 3586 mode_mask = ATA_DMA_MASK_CFA; 3587 3588 ata_dev_xfermask(dev); 3589 ata_force_xfermask(dev); 3590 3591 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3592 3593 if (libata_dma_mask & mode_mask) 3594 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3595 dev->udma_mask); 3596 else 3597 dma_mask = 0; 3598 3599 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3600 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3601 3602 found = 1; 3603 if (ata_dma_enabled(dev)) 3604 used_dma = 1; 3605 } 3606 if (!found) 3607 goto out; 3608 3609 /* step 2: always set host PIO timings */ 3610 ata_for_each_dev(dev, link, ENABLED) { 3611 if (dev->pio_mode == 0xff) { 3612 ata_dev_warn(dev, "no PIO support\n"); 3613 rc = -EINVAL; 3614 goto out; 3615 } 3616 3617 dev->xfer_mode = dev->pio_mode; 3618 dev->xfer_shift = ATA_SHIFT_PIO; 3619 if (ap->ops->set_piomode) 3620 ap->ops->set_piomode(ap, dev); 3621 } 3622 3623 /* step 3: set host DMA timings */ 3624 ata_for_each_dev(dev, link, ENABLED) { 3625 if (!ata_dma_enabled(dev)) 3626 continue; 3627 3628 dev->xfer_mode = dev->dma_mode; 3629 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3630 if (ap->ops->set_dmamode) 3631 ap->ops->set_dmamode(ap, dev); 3632 } 3633 3634 /* step 4: update devices' xfer mode */ 3635 ata_for_each_dev(dev, link, ENABLED) { 3636 rc = ata_dev_set_mode(dev); 3637 if (rc) 3638 goto out; 3639 } 3640 3641 /* Record simplex status. If we selected DMA then the other 3642 * host channels are not permitted to do so. 3643 */ 3644 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3645 ap->host->simplex_claimed = ap; 3646 3647 out: 3648 if (rc) 3649 *r_failed_dev = dev; 3650 return rc; 3651 } 3652 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3653 3654 /** 3655 * ata_wait_ready - wait for link to become ready 3656 * @link: link to be waited on 3657 * @deadline: deadline jiffies for the operation 3658 * @check_ready: callback to check link readiness 3659 * 3660 * Wait for @link to become ready. @check_ready should return 3661 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3662 * link doesn't seem to be occupied, other errno for other error 3663 * conditions. 3664 * 3665 * Transient -ENODEV conditions are allowed for 3666 * ATA_TMOUT_FF_WAIT. 3667 * 3668 * LOCKING: 3669 * EH context. 3670 * 3671 * RETURNS: 3672 * 0 if @link is ready before @deadline; otherwise, -errno. 3673 */ 3674 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3675 int (*check_ready)(struct ata_link *link)) 3676 { 3677 unsigned long start = jiffies; 3678 unsigned long nodev_deadline; 3679 int warned = 0; 3680 3681 /* choose which 0xff timeout to use, read comment in libata.h */ 3682 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3683 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3684 else 3685 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3686 3687 /* Slave readiness can't be tested separately from master. On 3688 * M/S emulation configuration, this function should be called 3689 * only on the master and it will handle both master and slave. 3690 */ 3691 WARN_ON(link == link->ap->slave_link); 3692 3693 if (time_after(nodev_deadline, deadline)) 3694 nodev_deadline = deadline; 3695 3696 while (1) { 3697 unsigned long now = jiffies; 3698 int ready, tmp; 3699 3700 ready = tmp = check_ready(link); 3701 if (ready > 0) 3702 return 0; 3703 3704 /* 3705 * -ENODEV could be transient. Ignore -ENODEV if link 3706 * is online. Also, some SATA devices take a long 3707 * time to clear 0xff after reset. Wait for 3708 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3709 * offline. 3710 * 3711 * Note that some PATA controllers (pata_ali) explode 3712 * if status register is read more than once when 3713 * there's no device attached. 3714 */ 3715 if (ready == -ENODEV) { 3716 if (ata_link_online(link)) 3717 ready = 0; 3718 else if ((link->ap->flags & ATA_FLAG_SATA) && 3719 !ata_link_offline(link) && 3720 time_before(now, nodev_deadline)) 3721 ready = 0; 3722 } 3723 3724 if (ready) 3725 return ready; 3726 if (time_after(now, deadline)) 3727 return -EBUSY; 3728 3729 if (!warned && time_after(now, start + 5 * HZ) && 3730 (deadline - now > 3 * HZ)) { 3731 ata_link_warn(link, 3732 "link is slow to respond, please be patient " 3733 "(ready=%d)\n", tmp); 3734 warned = 1; 3735 } 3736 3737 ata_msleep(link->ap, 50); 3738 } 3739 } 3740 3741 /** 3742 * ata_wait_after_reset - wait for link to become ready after reset 3743 * @link: link to be waited on 3744 * @deadline: deadline jiffies for the operation 3745 * @check_ready: callback to check link readiness 3746 * 3747 * Wait for @link to become ready after reset. 3748 * 3749 * LOCKING: 3750 * EH context. 3751 * 3752 * RETURNS: 3753 * 0 if @link is ready before @deadline; otherwise, -errno. 3754 */ 3755 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3756 int (*check_ready)(struct ata_link *link)) 3757 { 3758 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3759 3760 return ata_wait_ready(link, deadline, check_ready); 3761 } 3762 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3763 3764 /** 3765 * ata_std_prereset - prepare for reset 3766 * @link: ATA link to be reset 3767 * @deadline: deadline jiffies for the operation 3768 * 3769 * @link is about to be reset. Initialize it. Failure from 3770 * prereset makes libata abort whole reset sequence and give up 3771 * that port, so prereset should be best-effort. It does its 3772 * best to prepare for reset sequence but if things go wrong, it 3773 * should just whine, not fail. 3774 * 3775 * LOCKING: 3776 * Kernel thread context (may sleep) 3777 * 3778 * RETURNS: 3779 * Always 0. 3780 */ 3781 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3782 { 3783 struct ata_port *ap = link->ap; 3784 struct ata_eh_context *ehc = &link->eh_context; 3785 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3786 int rc; 3787 3788 /* if we're about to do hardreset, nothing more to do */ 3789 if (ehc->i.action & ATA_EH_HARDRESET) 3790 return 0; 3791 3792 /* if SATA, resume link */ 3793 if (ap->flags & ATA_FLAG_SATA) { 3794 rc = sata_link_resume(link, timing, deadline); 3795 /* whine about phy resume failure but proceed */ 3796 if (rc && rc != -EOPNOTSUPP) 3797 ata_link_warn(link, 3798 "failed to resume link for reset (errno=%d)\n", 3799 rc); 3800 } 3801 3802 /* no point in trying softreset on offline link */ 3803 if (ata_phys_link_offline(link)) 3804 ehc->i.action &= ~ATA_EH_SOFTRESET; 3805 3806 return 0; 3807 } 3808 EXPORT_SYMBOL_GPL(ata_std_prereset); 3809 3810 /** 3811 * sata_std_hardreset - COMRESET w/o waiting or classification 3812 * @link: link to reset 3813 * @class: resulting class of attached device 3814 * @deadline: deadline jiffies for the operation 3815 * 3816 * Standard SATA COMRESET w/o waiting or classification. 3817 * 3818 * LOCKING: 3819 * Kernel thread context (may sleep) 3820 * 3821 * RETURNS: 3822 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3823 */ 3824 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3825 unsigned long deadline) 3826 { 3827 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3828 bool online; 3829 int rc; 3830 3831 /* do hardreset */ 3832 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3833 return online ? -EAGAIN : rc; 3834 } 3835 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3836 3837 /** 3838 * ata_std_postreset - standard postreset callback 3839 * @link: the target ata_link 3840 * @classes: classes of attached devices 3841 * 3842 * This function is invoked after a successful reset. Note that 3843 * the device might have been reset more than once using 3844 * different reset methods before postreset is invoked. 3845 * 3846 * LOCKING: 3847 * Kernel thread context (may sleep) 3848 */ 3849 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3850 { 3851 u32 serror; 3852 3853 /* reset complete, clear SError */ 3854 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3855 sata_scr_write(link, SCR_ERROR, serror); 3856 3857 /* print link status */ 3858 sata_print_link_status(link); 3859 } 3860 EXPORT_SYMBOL_GPL(ata_std_postreset); 3861 3862 /** 3863 * ata_dev_same_device - Determine whether new ID matches configured device 3864 * @dev: device to compare against 3865 * @new_class: class of the new device 3866 * @new_id: IDENTIFY page of the new device 3867 * 3868 * Compare @new_class and @new_id against @dev and determine 3869 * whether @dev is the device indicated by @new_class and 3870 * @new_id. 3871 * 3872 * LOCKING: 3873 * None. 3874 * 3875 * RETURNS: 3876 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3877 */ 3878 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3879 const u16 *new_id) 3880 { 3881 const u16 *old_id = dev->id; 3882 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3883 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3884 3885 if (dev->class != new_class) { 3886 ata_dev_info(dev, "class mismatch %d != %d\n", 3887 dev->class, new_class); 3888 return 0; 3889 } 3890 3891 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3892 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3893 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3894 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3895 3896 if (strcmp(model[0], model[1])) { 3897 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3898 model[0], model[1]); 3899 return 0; 3900 } 3901 3902 if (strcmp(serial[0], serial[1])) { 3903 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3904 serial[0], serial[1]); 3905 return 0; 3906 } 3907 3908 return 1; 3909 } 3910 3911 /** 3912 * ata_dev_reread_id - Re-read IDENTIFY data 3913 * @dev: target ATA device 3914 * @readid_flags: read ID flags 3915 * 3916 * Re-read IDENTIFY page and make sure @dev is still attached to 3917 * the port. 3918 * 3919 * LOCKING: 3920 * Kernel thread context (may sleep) 3921 * 3922 * RETURNS: 3923 * 0 on success, negative errno otherwise 3924 */ 3925 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3926 { 3927 unsigned int class = dev->class; 3928 u16 *id = (void *)dev->link->ap->sector_buf; 3929 int rc; 3930 3931 /* read ID data */ 3932 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3933 if (rc) 3934 return rc; 3935 3936 /* is the device still there? */ 3937 if (!ata_dev_same_device(dev, class, id)) 3938 return -ENODEV; 3939 3940 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3941 return 0; 3942 } 3943 3944 /** 3945 * ata_dev_revalidate - Revalidate ATA device 3946 * @dev: device to revalidate 3947 * @new_class: new class code 3948 * @readid_flags: read ID flags 3949 * 3950 * Re-read IDENTIFY page, make sure @dev is still attached to the 3951 * port and reconfigure it according to the new IDENTIFY page. 3952 * 3953 * LOCKING: 3954 * Kernel thread context (may sleep) 3955 * 3956 * RETURNS: 3957 * 0 on success, negative errno otherwise 3958 */ 3959 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3960 unsigned int readid_flags) 3961 { 3962 u64 n_sectors = dev->n_sectors; 3963 u64 n_native_sectors = dev->n_native_sectors; 3964 int rc; 3965 3966 if (!ata_dev_enabled(dev)) 3967 return -ENODEV; 3968 3969 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3970 if (ata_class_enabled(new_class) && 3971 new_class != ATA_DEV_ATA && 3972 new_class != ATA_DEV_ATAPI && 3973 new_class != ATA_DEV_ZAC && 3974 new_class != ATA_DEV_SEMB) { 3975 ata_dev_info(dev, "class mismatch %u != %u\n", 3976 dev->class, new_class); 3977 rc = -ENODEV; 3978 goto fail; 3979 } 3980 3981 /* re-read ID */ 3982 rc = ata_dev_reread_id(dev, readid_flags); 3983 if (rc) 3984 goto fail; 3985 3986 /* configure device according to the new ID */ 3987 rc = ata_dev_configure(dev); 3988 if (rc) 3989 goto fail; 3990 3991 /* verify n_sectors hasn't changed */ 3992 if (dev->class != ATA_DEV_ATA || !n_sectors || 3993 dev->n_sectors == n_sectors) 3994 return 0; 3995 3996 /* n_sectors has changed */ 3997 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3998 (unsigned long long)n_sectors, 3999 (unsigned long long)dev->n_sectors); 4000 4001 /* 4002 * Something could have caused HPA to be unlocked 4003 * involuntarily. If n_native_sectors hasn't changed and the 4004 * new size matches it, keep the device. 4005 */ 4006 if (dev->n_native_sectors == n_native_sectors && 4007 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4008 ata_dev_warn(dev, 4009 "new n_sectors matches native, probably " 4010 "late HPA unlock, n_sectors updated\n"); 4011 /* use the larger n_sectors */ 4012 return 0; 4013 } 4014 4015 /* 4016 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4017 * unlocking HPA in those cases. 4018 * 4019 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4020 */ 4021 if (dev->n_native_sectors == n_native_sectors && 4022 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4023 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4024 ata_dev_warn(dev, 4025 "old n_sectors matches native, probably " 4026 "late HPA lock, will try to unlock HPA\n"); 4027 /* try unlocking HPA */ 4028 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4029 rc = -EIO; 4030 } else 4031 rc = -ENODEV; 4032 4033 /* restore original n_[native_]sectors and fail */ 4034 dev->n_native_sectors = n_native_sectors; 4035 dev->n_sectors = n_sectors; 4036 fail: 4037 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4038 return rc; 4039 } 4040 4041 struct ata_blacklist_entry { 4042 const char *model_num; 4043 const char *model_rev; 4044 unsigned long horkage; 4045 }; 4046 4047 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4048 /* Devices with DMA related problems under Linux */ 4049 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4050 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4051 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4052 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4053 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4054 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4055 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4056 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4057 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4058 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4059 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4060 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4061 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4062 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4063 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4064 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4065 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4066 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4067 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4068 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4069 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4070 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4071 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4072 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4073 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4074 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4075 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4076 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4077 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4078 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 4079 /* Odd clown on sil3726/4726 PMPs */ 4080 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4081 /* Similar story with ASMedia 1092 */ 4082 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE }, 4083 4084 /* Weird ATAPI devices */ 4085 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4086 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4087 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4088 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 4089 4090 /* 4091 * Causes silent data corruption with higher max sects. 4092 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 4093 */ 4094 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 4095 4096 /* 4097 * These devices time out with higher max sects. 4098 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 4099 */ 4100 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4101 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 4102 4103 /* Devices we expect to fail diagnostics */ 4104 4105 /* Devices where NCQ should be avoided */ 4106 /* NCQ is slow */ 4107 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4108 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ }, 4109 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4110 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4111 /* NCQ is broken */ 4112 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4113 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4114 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4115 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4116 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4117 4118 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4119 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4120 ATA_HORKAGE_FIRMWARE_WARN }, 4121 4122 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4123 ATA_HORKAGE_FIRMWARE_WARN }, 4124 4125 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4126 ATA_HORKAGE_FIRMWARE_WARN }, 4127 4128 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4129 ATA_HORKAGE_FIRMWARE_WARN }, 4130 4131 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 4132 the ST disks also have LPM issues */ 4133 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 4134 ATA_HORKAGE_NOLPM }, 4135 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 4136 4137 /* Blacklist entries taken from Silicon Image 3124/3132 4138 Windows driver .inf file - also several Linux problem reports */ 4139 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ }, 4140 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ }, 4141 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ }, 4142 4143 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4144 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ }, 4145 4146 /* Sandisk SD7/8/9s lock up hard on large trims */ 4147 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M }, 4148 4149 /* devices which puke on READ_NATIVE_MAX */ 4150 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA }, 4151 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4152 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4153 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4154 4155 /* this one allows HPA unlocking but fails IOs on the area */ 4156 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4157 4158 /* Devices which report 1 sector over size HPA */ 4159 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE }, 4160 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE }, 4161 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE }, 4162 4163 /* Devices which get the IVB wrong */ 4164 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB }, 4165 /* Maybe we should just blacklist TSSTcorp... */ 4166 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB }, 4167 4168 /* Devices that do not need bridging limits applied */ 4169 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK }, 4170 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK }, 4171 4172 /* Devices which aren't very happy with higher link speeds */ 4173 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS }, 4174 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS }, 4175 4176 /* 4177 * Devices which choke on SETXFER. Applies only if both the 4178 * device and controller are SATA. 4179 */ 4180 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4181 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4182 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4183 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4184 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4185 4186 /* These specific Pioneer models have LPM issues */ 4187 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM }, 4188 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM }, 4189 4190 /* Crucial BX100 SSD 500GB has broken LPM support */ 4191 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 4192 4193 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4194 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4195 ATA_HORKAGE_ZERO_AFTER_TRIM | 4196 ATA_HORKAGE_NOLPM }, 4197 /* 512GB MX100 with newer firmware has only LPM issues */ 4198 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 4199 ATA_HORKAGE_NOLPM }, 4200 4201 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4202 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4203 ATA_HORKAGE_ZERO_AFTER_TRIM | 4204 ATA_HORKAGE_NOLPM }, 4205 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4206 ATA_HORKAGE_ZERO_AFTER_TRIM | 4207 ATA_HORKAGE_NOLPM }, 4208 4209 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4210 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM }, 4211 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM }, 4212 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM }, 4213 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM }, 4214 4215 /* devices that don't properly handle queued TRIM commands */ 4216 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4217 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4218 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4219 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4220 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4221 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4222 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4223 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4224 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4225 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4226 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4227 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4228 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4229 ATA_HORKAGE_NO_DMA_LOG | 4230 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4231 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4232 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4233 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4234 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4235 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4236 ATA_HORKAGE_ZERO_AFTER_TRIM | 4237 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4238 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4239 ATA_HORKAGE_ZERO_AFTER_TRIM | 4240 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4241 { "SAMSUNG*MZ7LH*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4242 ATA_HORKAGE_ZERO_AFTER_TRIM | 4243 ATA_HORKAGE_NO_NCQ_ON_ATI, }, 4244 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4245 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4246 4247 /* devices that don't properly handle TRIM commands */ 4248 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM }, 4249 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM }, 4250 4251 /* 4252 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4253 * (Return Zero After Trim) flags in the ATA Command Set are 4254 * unreliable in the sense that they only define what happens if 4255 * the device successfully executed the DSM TRIM command. TRIM 4256 * is only advisory, however, and the device is free to silently 4257 * ignore all or parts of the request. 4258 * 4259 * Whitelist drives that are known to reliably return zeroes 4260 * after TRIM. 4261 */ 4262 4263 /* 4264 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4265 * that model before whitelisting all other intel SSDs. 4266 */ 4267 { "INTEL*SSDSC2MH*", NULL, 0 }, 4268 4269 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4270 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4271 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4272 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4273 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4274 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4275 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4276 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4277 4278 /* 4279 * Some WD SATA-I drives spin up and down erratically when the link 4280 * is put into the slumber mode. We don't have full list of the 4281 * affected devices. Disable LPM if the device matches one of the 4282 * known prefixes and is SATA-1. As a side effect LPM partial is 4283 * lost too. 4284 * 4285 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4286 */ 4287 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4288 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4289 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4290 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4291 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4292 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4293 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4294 4295 /* 4296 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4297 * log page is accessed. Ensure we never ask for this log page with 4298 * these devices. 4299 */ 4300 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR }, 4301 4302 /* Buggy FUA */ 4303 { "Maxtor", "BANC1G10", ATA_HORKAGE_NO_FUA }, 4304 { "WDC*WD2500J*", NULL, ATA_HORKAGE_NO_FUA }, 4305 { "OCZ-VERTEX*", NULL, ATA_HORKAGE_NO_FUA }, 4306 { "INTEL*SSDSC2CT*", NULL, ATA_HORKAGE_NO_FUA }, 4307 4308 /* End Marker */ 4309 { } 4310 }; 4311 4312 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4313 { 4314 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4315 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4316 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4317 4318 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4319 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4320 4321 while (ad->model_num) { 4322 if (glob_match(ad->model_num, model_num)) { 4323 if (ad->model_rev == NULL) 4324 return ad->horkage; 4325 if (glob_match(ad->model_rev, model_rev)) 4326 return ad->horkage; 4327 } 4328 ad++; 4329 } 4330 return 0; 4331 } 4332 4333 static int ata_dma_blacklisted(const struct ata_device *dev) 4334 { 4335 /* We don't support polling DMA. 4336 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4337 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4338 */ 4339 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4340 (dev->flags & ATA_DFLAG_CDB_INTR)) 4341 return 1; 4342 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4343 } 4344 4345 /** 4346 * ata_is_40wire - check drive side detection 4347 * @dev: device 4348 * 4349 * Perform drive side detection decoding, allowing for device vendors 4350 * who can't follow the documentation. 4351 */ 4352 4353 static int ata_is_40wire(struct ata_device *dev) 4354 { 4355 if (dev->horkage & ATA_HORKAGE_IVB) 4356 return ata_drive_40wire_relaxed(dev->id); 4357 return ata_drive_40wire(dev->id); 4358 } 4359 4360 /** 4361 * cable_is_40wire - 40/80/SATA decider 4362 * @ap: port to consider 4363 * 4364 * This function encapsulates the policy for speed management 4365 * in one place. At the moment we don't cache the result but 4366 * there is a good case for setting ap->cbl to the result when 4367 * we are called with unknown cables (and figuring out if it 4368 * impacts hotplug at all). 4369 * 4370 * Return 1 if the cable appears to be 40 wire. 4371 */ 4372 4373 static int cable_is_40wire(struct ata_port *ap) 4374 { 4375 struct ata_link *link; 4376 struct ata_device *dev; 4377 4378 /* If the controller thinks we are 40 wire, we are. */ 4379 if (ap->cbl == ATA_CBL_PATA40) 4380 return 1; 4381 4382 /* If the controller thinks we are 80 wire, we are. */ 4383 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4384 return 0; 4385 4386 /* If the system is known to be 40 wire short cable (eg 4387 * laptop), then we allow 80 wire modes even if the drive 4388 * isn't sure. 4389 */ 4390 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4391 return 0; 4392 4393 /* If the controller doesn't know, we scan. 4394 * 4395 * Note: We look for all 40 wire detects at this point. Any 4396 * 80 wire detect is taken to be 80 wire cable because 4397 * - in many setups only the one drive (slave if present) will 4398 * give a valid detect 4399 * - if you have a non detect capable drive you don't want it 4400 * to colour the choice 4401 */ 4402 ata_for_each_link(link, ap, EDGE) { 4403 ata_for_each_dev(dev, link, ENABLED) { 4404 if (!ata_is_40wire(dev)) 4405 return 0; 4406 } 4407 } 4408 return 1; 4409 } 4410 4411 /** 4412 * ata_dev_xfermask - Compute supported xfermask of the given device 4413 * @dev: Device to compute xfermask for 4414 * 4415 * Compute supported xfermask of @dev and store it in 4416 * dev->*_mask. This function is responsible for applying all 4417 * known limits including host controller limits, device 4418 * blacklist, etc... 4419 * 4420 * LOCKING: 4421 * None. 4422 */ 4423 static void ata_dev_xfermask(struct ata_device *dev) 4424 { 4425 struct ata_link *link = dev->link; 4426 struct ata_port *ap = link->ap; 4427 struct ata_host *host = ap->host; 4428 unsigned int xfer_mask; 4429 4430 /* controller modes available */ 4431 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4432 ap->mwdma_mask, ap->udma_mask); 4433 4434 /* drive modes available */ 4435 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4436 dev->mwdma_mask, dev->udma_mask); 4437 xfer_mask &= ata_id_xfermask(dev->id); 4438 4439 /* 4440 * CFA Advanced TrueIDE timings are not allowed on a shared 4441 * cable 4442 */ 4443 if (ata_dev_pair(dev)) { 4444 /* No PIO5 or PIO6 */ 4445 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4446 /* No MWDMA3 or MWDMA 4 */ 4447 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4448 } 4449 4450 if (ata_dma_blacklisted(dev)) { 4451 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4452 ata_dev_warn(dev, 4453 "device is on DMA blacklist, disabling DMA\n"); 4454 } 4455 4456 if ((host->flags & ATA_HOST_SIMPLEX) && 4457 host->simplex_claimed && host->simplex_claimed != ap) { 4458 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4459 ata_dev_warn(dev, 4460 "simplex DMA is claimed by other device, disabling DMA\n"); 4461 } 4462 4463 if (ap->flags & ATA_FLAG_NO_IORDY) 4464 xfer_mask &= ata_pio_mask_no_iordy(dev); 4465 4466 if (ap->ops->mode_filter) 4467 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4468 4469 /* Apply cable rule here. Don't apply it early because when 4470 * we handle hot plug the cable type can itself change. 4471 * Check this last so that we know if the transfer rate was 4472 * solely limited by the cable. 4473 * Unknown or 80 wire cables reported host side are checked 4474 * drive side as well. Cases where we know a 40wire cable 4475 * is used safely for 80 are not checked here. 4476 */ 4477 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4478 /* UDMA/44 or higher would be available */ 4479 if (cable_is_40wire(ap)) { 4480 ata_dev_warn(dev, 4481 "limited to UDMA/33 due to 40-wire cable\n"); 4482 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4483 } 4484 4485 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4486 &dev->mwdma_mask, &dev->udma_mask); 4487 } 4488 4489 /** 4490 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4491 * @dev: Device to which command will be sent 4492 * 4493 * Issue SET FEATURES - XFER MODE command to device @dev 4494 * on port @ap. 4495 * 4496 * LOCKING: 4497 * PCI/etc. bus probe sem. 4498 * 4499 * RETURNS: 4500 * 0 on success, AC_ERR_* mask otherwise. 4501 */ 4502 4503 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4504 { 4505 struct ata_taskfile tf; 4506 4507 /* set up set-features taskfile */ 4508 ata_dev_dbg(dev, "set features - xfer mode\n"); 4509 4510 /* Some controllers and ATAPI devices show flaky interrupt 4511 * behavior after setting xfer mode. Use polling instead. 4512 */ 4513 ata_tf_init(dev, &tf); 4514 tf.command = ATA_CMD_SET_FEATURES; 4515 tf.feature = SETFEATURES_XFER; 4516 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4517 tf.protocol = ATA_PROT_NODATA; 4518 /* If we are using IORDY we must send the mode setting command */ 4519 if (ata_pio_need_iordy(dev)) 4520 tf.nsect = dev->xfer_mode; 4521 /* If the device has IORDY and the controller does not - turn it off */ 4522 else if (ata_id_has_iordy(dev->id)) 4523 tf.nsect = 0x01; 4524 else /* In the ancient relic department - skip all of this */ 4525 return 0; 4526 4527 /* 4528 * On some disks, this command causes spin-up, so we need longer 4529 * timeout. 4530 */ 4531 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4532 } 4533 4534 /** 4535 * ata_dev_set_feature - Issue SET FEATURES 4536 * @dev: Device to which command will be sent 4537 * @subcmd: The SET FEATURES subcommand to be sent 4538 * @action: The sector count represents a subcommand specific action 4539 * 4540 * Issue SET FEATURES command to device @dev on port @ap with sector count 4541 * 4542 * LOCKING: 4543 * PCI/etc. bus probe sem. 4544 * 4545 * RETURNS: 4546 * 0 on success, AC_ERR_* mask otherwise. 4547 */ 4548 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action) 4549 { 4550 struct ata_taskfile tf; 4551 unsigned int timeout = 0; 4552 4553 /* set up set-features taskfile */ 4554 ata_dev_dbg(dev, "set features\n"); 4555 4556 ata_tf_init(dev, &tf); 4557 tf.command = ATA_CMD_SET_FEATURES; 4558 tf.feature = subcmd; 4559 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4560 tf.protocol = ATA_PROT_NODATA; 4561 tf.nsect = action; 4562 4563 if (subcmd == SETFEATURES_SPINUP) 4564 timeout = ata_probe_timeout ? 4565 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4566 4567 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4568 } 4569 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4570 4571 /** 4572 * ata_dev_init_params - Issue INIT DEV PARAMS command 4573 * @dev: Device to which command will be sent 4574 * @heads: Number of heads (taskfile parameter) 4575 * @sectors: Number of sectors (taskfile parameter) 4576 * 4577 * LOCKING: 4578 * Kernel thread context (may sleep) 4579 * 4580 * RETURNS: 4581 * 0 on success, AC_ERR_* mask otherwise. 4582 */ 4583 static unsigned int ata_dev_init_params(struct ata_device *dev, 4584 u16 heads, u16 sectors) 4585 { 4586 struct ata_taskfile tf; 4587 unsigned int err_mask; 4588 4589 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4590 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4591 return AC_ERR_INVALID; 4592 4593 /* set up init dev params taskfile */ 4594 ata_dev_dbg(dev, "init dev params \n"); 4595 4596 ata_tf_init(dev, &tf); 4597 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4598 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4599 tf.protocol = ATA_PROT_NODATA; 4600 tf.nsect = sectors; 4601 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4602 4603 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4604 /* A clean abort indicates an original or just out of spec drive 4605 and we should continue as we issue the setup based on the 4606 drive reported working geometry */ 4607 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 4608 err_mask = 0; 4609 4610 return err_mask; 4611 } 4612 4613 /** 4614 * atapi_check_dma - Check whether ATAPI DMA can be supported 4615 * @qc: Metadata associated with taskfile to check 4616 * 4617 * Allow low-level driver to filter ATA PACKET commands, returning 4618 * a status indicating whether or not it is OK to use DMA for the 4619 * supplied PACKET command. 4620 * 4621 * LOCKING: 4622 * spin_lock_irqsave(host lock) 4623 * 4624 * RETURNS: 0 when ATAPI DMA can be used 4625 * nonzero otherwise 4626 */ 4627 int atapi_check_dma(struct ata_queued_cmd *qc) 4628 { 4629 struct ata_port *ap = qc->ap; 4630 4631 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4632 * few ATAPI devices choke on such DMA requests. 4633 */ 4634 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4635 unlikely(qc->nbytes & 15)) 4636 return 1; 4637 4638 if (ap->ops->check_atapi_dma) 4639 return ap->ops->check_atapi_dma(qc); 4640 4641 return 0; 4642 } 4643 4644 /** 4645 * ata_std_qc_defer - Check whether a qc needs to be deferred 4646 * @qc: ATA command in question 4647 * 4648 * Non-NCQ commands cannot run with any other command, NCQ or 4649 * not. As upper layer only knows the queue depth, we are 4650 * responsible for maintaining exclusion. This function checks 4651 * whether a new command @qc can be issued. 4652 * 4653 * LOCKING: 4654 * spin_lock_irqsave(host lock) 4655 * 4656 * RETURNS: 4657 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4658 */ 4659 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4660 { 4661 struct ata_link *link = qc->dev->link; 4662 4663 if (ata_is_ncq(qc->tf.protocol)) { 4664 if (!ata_tag_valid(link->active_tag)) 4665 return 0; 4666 } else { 4667 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4668 return 0; 4669 } 4670 4671 return ATA_DEFER_LINK; 4672 } 4673 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4674 4675 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4676 { 4677 return AC_ERR_OK; 4678 } 4679 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4680 4681 /** 4682 * ata_sg_init - Associate command with scatter-gather table. 4683 * @qc: Command to be associated 4684 * @sg: Scatter-gather table. 4685 * @n_elem: Number of elements in s/g table. 4686 * 4687 * Initialize the data-related elements of queued_cmd @qc 4688 * to point to a scatter-gather table @sg, containing @n_elem 4689 * elements. 4690 * 4691 * LOCKING: 4692 * spin_lock_irqsave(host lock) 4693 */ 4694 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4695 unsigned int n_elem) 4696 { 4697 qc->sg = sg; 4698 qc->n_elem = n_elem; 4699 qc->cursg = qc->sg; 4700 } 4701 4702 #ifdef CONFIG_HAS_DMA 4703 4704 /** 4705 * ata_sg_clean - Unmap DMA memory associated with command 4706 * @qc: Command containing DMA memory to be released 4707 * 4708 * Unmap all mapped DMA memory associated with this command. 4709 * 4710 * LOCKING: 4711 * spin_lock_irqsave(host lock) 4712 */ 4713 static void ata_sg_clean(struct ata_queued_cmd *qc) 4714 { 4715 struct ata_port *ap = qc->ap; 4716 struct scatterlist *sg = qc->sg; 4717 int dir = qc->dma_dir; 4718 4719 WARN_ON_ONCE(sg == NULL); 4720 4721 if (qc->n_elem) 4722 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4723 4724 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4725 qc->sg = NULL; 4726 } 4727 4728 /** 4729 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4730 * @qc: Command with scatter-gather table to be mapped. 4731 * 4732 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4733 * 4734 * LOCKING: 4735 * spin_lock_irqsave(host lock) 4736 * 4737 * RETURNS: 4738 * Zero on success, negative on error. 4739 * 4740 */ 4741 static int ata_sg_setup(struct ata_queued_cmd *qc) 4742 { 4743 struct ata_port *ap = qc->ap; 4744 unsigned int n_elem; 4745 4746 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4747 if (n_elem < 1) 4748 return -1; 4749 4750 qc->orig_n_elem = qc->n_elem; 4751 qc->n_elem = n_elem; 4752 qc->flags |= ATA_QCFLAG_DMAMAP; 4753 4754 return 0; 4755 } 4756 4757 #else /* !CONFIG_HAS_DMA */ 4758 4759 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4760 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4761 4762 #endif /* !CONFIG_HAS_DMA */ 4763 4764 /** 4765 * swap_buf_le16 - swap halves of 16-bit words in place 4766 * @buf: Buffer to swap 4767 * @buf_words: Number of 16-bit words in buffer. 4768 * 4769 * Swap halves of 16-bit words if needed to convert from 4770 * little-endian byte order to native cpu byte order, or 4771 * vice-versa. 4772 * 4773 * LOCKING: 4774 * Inherited from caller. 4775 */ 4776 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4777 { 4778 #ifdef __BIG_ENDIAN 4779 unsigned int i; 4780 4781 for (i = 0; i < buf_words; i++) 4782 buf[i] = le16_to_cpu(buf[i]); 4783 #endif /* __BIG_ENDIAN */ 4784 } 4785 4786 /** 4787 * ata_qc_free - free unused ata_queued_cmd 4788 * @qc: Command to complete 4789 * 4790 * Designed to free unused ata_queued_cmd object 4791 * in case something prevents using it. 4792 * 4793 * LOCKING: 4794 * spin_lock_irqsave(host lock) 4795 */ 4796 void ata_qc_free(struct ata_queued_cmd *qc) 4797 { 4798 qc->flags = 0; 4799 if (ata_tag_valid(qc->tag)) 4800 qc->tag = ATA_TAG_POISON; 4801 } 4802 4803 void __ata_qc_complete(struct ata_queued_cmd *qc) 4804 { 4805 struct ata_port *ap; 4806 struct ata_link *link; 4807 4808 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4809 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4810 ap = qc->ap; 4811 link = qc->dev->link; 4812 4813 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4814 ata_sg_clean(qc); 4815 4816 /* command should be marked inactive atomically with qc completion */ 4817 if (ata_is_ncq(qc->tf.protocol)) { 4818 link->sactive &= ~(1 << qc->hw_tag); 4819 if (!link->sactive) 4820 ap->nr_active_links--; 4821 } else { 4822 link->active_tag = ATA_TAG_POISON; 4823 ap->nr_active_links--; 4824 } 4825 4826 /* clear exclusive status */ 4827 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4828 ap->excl_link == link)) 4829 ap->excl_link = NULL; 4830 4831 /* atapi: mark qc as inactive to prevent the interrupt handler 4832 * from completing the command twice later, before the error handler 4833 * is called. (when rc != 0 and atapi request sense is needed) 4834 */ 4835 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4836 ap->qc_active &= ~(1ULL << qc->tag); 4837 4838 /* call completion callback */ 4839 qc->complete_fn(qc); 4840 } 4841 4842 static void fill_result_tf(struct ata_queued_cmd *qc) 4843 { 4844 struct ata_port *ap = qc->ap; 4845 4846 qc->result_tf.flags = qc->tf.flags; 4847 ap->ops->qc_fill_rtf(qc); 4848 } 4849 4850 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4851 { 4852 struct ata_device *dev = qc->dev; 4853 4854 if (!ata_is_data(qc->tf.protocol)) 4855 return; 4856 4857 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4858 return; 4859 4860 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4861 } 4862 4863 /** 4864 * ata_qc_complete - Complete an active ATA command 4865 * @qc: Command to complete 4866 * 4867 * Indicate to the mid and upper layers that an ATA command has 4868 * completed, with either an ok or not-ok status. 4869 * 4870 * Refrain from calling this function multiple times when 4871 * successfully completing multiple NCQ commands. 4872 * ata_qc_complete_multiple() should be used instead, which will 4873 * properly update IRQ expect state. 4874 * 4875 * LOCKING: 4876 * spin_lock_irqsave(host lock) 4877 */ 4878 void ata_qc_complete(struct ata_queued_cmd *qc) 4879 { 4880 struct ata_port *ap = qc->ap; 4881 4882 /* Trigger the LED (if available) */ 4883 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4884 4885 /* XXX: New EH and old EH use different mechanisms to 4886 * synchronize EH with regular execution path. 4887 * 4888 * In new EH, a qc owned by EH is marked with ATA_QCFLAG_EH. 4889 * Normal execution path is responsible for not accessing a 4890 * qc owned by EH. libata core enforces the rule by returning NULL 4891 * from ata_qc_from_tag() for qcs owned by EH. 4892 * 4893 * Old EH depends on ata_qc_complete() nullifying completion 4894 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4895 * not synchronize with interrupt handler. Only PIO task is 4896 * taken care of. 4897 */ 4898 if (ap->ops->error_handler) { 4899 struct ata_device *dev = qc->dev; 4900 struct ata_eh_info *ehi = &dev->link->eh_info; 4901 4902 if (unlikely(qc->err_mask)) 4903 qc->flags |= ATA_QCFLAG_EH; 4904 4905 /* 4906 * Finish internal commands without any further processing 4907 * and always with the result TF filled. 4908 */ 4909 if (unlikely(ata_tag_internal(qc->tag))) { 4910 fill_result_tf(qc); 4911 trace_ata_qc_complete_internal(qc); 4912 __ata_qc_complete(qc); 4913 return; 4914 } 4915 4916 /* 4917 * Non-internal qc has failed. Fill the result TF and 4918 * summon EH. 4919 */ 4920 if (unlikely(qc->flags & ATA_QCFLAG_EH)) { 4921 fill_result_tf(qc); 4922 trace_ata_qc_complete_failed(qc); 4923 ata_qc_schedule_eh(qc); 4924 return; 4925 } 4926 4927 WARN_ON_ONCE(ata_port_is_frozen(ap)); 4928 4929 /* read result TF if requested */ 4930 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4931 fill_result_tf(qc); 4932 4933 trace_ata_qc_complete_done(qc); 4934 4935 /* 4936 * For CDL commands that completed without an error, check if 4937 * we have sense data (ATA_SENSE is set). If we do, then the 4938 * command may have been aborted by the device due to a limit 4939 * timeout using the policy 0xD. For these commands, invoke EH 4940 * to get the command sense data. 4941 */ 4942 if (qc->result_tf.status & ATA_SENSE && 4943 ((ata_is_ncq(qc->tf.protocol) && 4944 dev->flags & ATA_DFLAG_CDL_ENABLED) || 4945 (!(ata_is_ncq(qc->tf.protocol) && 4946 ata_id_sense_reporting_enabled(dev->id))))) { 4947 /* 4948 * Tell SCSI EH to not overwrite scmd->result even if 4949 * this command is finished with result SAM_STAT_GOOD. 4950 */ 4951 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS; 4952 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD; 4953 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE; 4954 4955 /* 4956 * set pending so that ata_qc_schedule_eh() does not 4957 * trigger fast drain, and freeze the port. 4958 */ 4959 ap->pflags |= ATA_PFLAG_EH_PENDING; 4960 ata_qc_schedule_eh(qc); 4961 return; 4962 } 4963 4964 /* Some commands need post-processing after successful 4965 * completion. 4966 */ 4967 switch (qc->tf.command) { 4968 case ATA_CMD_SET_FEATURES: 4969 if (qc->tf.feature != SETFEATURES_WC_ON && 4970 qc->tf.feature != SETFEATURES_WC_OFF && 4971 qc->tf.feature != SETFEATURES_RA_ON && 4972 qc->tf.feature != SETFEATURES_RA_OFF) 4973 break; 4974 fallthrough; 4975 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4976 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4977 /* revalidate device */ 4978 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4979 ata_port_schedule_eh(ap); 4980 break; 4981 4982 case ATA_CMD_SLEEP: 4983 dev->flags |= ATA_DFLAG_SLEEPING; 4984 break; 4985 } 4986 4987 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4988 ata_verify_xfer(qc); 4989 4990 __ata_qc_complete(qc); 4991 } else { 4992 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4993 return; 4994 4995 /* read result TF if failed or requested */ 4996 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4997 fill_result_tf(qc); 4998 4999 __ata_qc_complete(qc); 5000 } 5001 } 5002 EXPORT_SYMBOL_GPL(ata_qc_complete); 5003 5004 /** 5005 * ata_qc_get_active - get bitmask of active qcs 5006 * @ap: port in question 5007 * 5008 * LOCKING: 5009 * spin_lock_irqsave(host lock) 5010 * 5011 * RETURNS: 5012 * Bitmask of active qcs 5013 */ 5014 u64 ata_qc_get_active(struct ata_port *ap) 5015 { 5016 u64 qc_active = ap->qc_active; 5017 5018 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 5019 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 5020 qc_active |= (1 << 0); 5021 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 5022 } 5023 5024 return qc_active; 5025 } 5026 EXPORT_SYMBOL_GPL(ata_qc_get_active); 5027 5028 /** 5029 * ata_qc_issue - issue taskfile to device 5030 * @qc: command to issue to device 5031 * 5032 * Prepare an ATA command to submission to device. 5033 * This includes mapping the data into a DMA-able 5034 * area, filling in the S/G table, and finally 5035 * writing the taskfile to hardware, starting the command. 5036 * 5037 * LOCKING: 5038 * spin_lock_irqsave(host lock) 5039 */ 5040 void ata_qc_issue(struct ata_queued_cmd *qc) 5041 { 5042 struct ata_port *ap = qc->ap; 5043 struct ata_link *link = qc->dev->link; 5044 u8 prot = qc->tf.protocol; 5045 5046 /* Make sure only one non-NCQ command is outstanding. The 5047 * check is skipped for old EH because it reuses active qc to 5048 * request ATAPI sense. 5049 */ 5050 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5051 5052 if (ata_is_ncq(prot)) { 5053 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 5054 5055 if (!link->sactive) 5056 ap->nr_active_links++; 5057 link->sactive |= 1 << qc->hw_tag; 5058 } else { 5059 WARN_ON_ONCE(link->sactive); 5060 5061 ap->nr_active_links++; 5062 link->active_tag = qc->tag; 5063 } 5064 5065 qc->flags |= ATA_QCFLAG_ACTIVE; 5066 ap->qc_active |= 1ULL << qc->tag; 5067 5068 /* 5069 * We guarantee to LLDs that they will have at least one 5070 * non-zero sg if the command is a data command. 5071 */ 5072 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 5073 goto sys_err; 5074 5075 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5076 (ap->flags & ATA_FLAG_PIO_DMA))) 5077 if (ata_sg_setup(qc)) 5078 goto sys_err; 5079 5080 /* if device is sleeping, schedule reset and abort the link */ 5081 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5082 link->eh_info.action |= ATA_EH_RESET; 5083 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5084 ata_link_abort(link); 5085 return; 5086 } 5087 5088 trace_ata_qc_prep(qc); 5089 qc->err_mask |= ap->ops->qc_prep(qc); 5090 if (unlikely(qc->err_mask)) 5091 goto err; 5092 trace_ata_qc_issue(qc); 5093 qc->err_mask |= ap->ops->qc_issue(qc); 5094 if (unlikely(qc->err_mask)) 5095 goto err; 5096 return; 5097 5098 sys_err: 5099 qc->err_mask |= AC_ERR_SYSTEM; 5100 err: 5101 ata_qc_complete(qc); 5102 } 5103 5104 /** 5105 * ata_phys_link_online - test whether the given link is online 5106 * @link: ATA link to test 5107 * 5108 * Test whether @link is online. Note that this function returns 5109 * 0 if online status of @link cannot be obtained, so 5110 * ata_link_online(link) != !ata_link_offline(link). 5111 * 5112 * LOCKING: 5113 * None. 5114 * 5115 * RETURNS: 5116 * True if the port online status is available and online. 5117 */ 5118 bool ata_phys_link_online(struct ata_link *link) 5119 { 5120 u32 sstatus; 5121 5122 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5123 ata_sstatus_online(sstatus)) 5124 return true; 5125 return false; 5126 } 5127 5128 /** 5129 * ata_phys_link_offline - test whether the given link is offline 5130 * @link: ATA link to test 5131 * 5132 * Test whether @link is offline. Note that this function 5133 * returns 0 if offline status of @link cannot be obtained, so 5134 * ata_link_online(link) != !ata_link_offline(link). 5135 * 5136 * LOCKING: 5137 * None. 5138 * 5139 * RETURNS: 5140 * True if the port offline status is available and offline. 5141 */ 5142 bool ata_phys_link_offline(struct ata_link *link) 5143 { 5144 u32 sstatus; 5145 5146 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5147 !ata_sstatus_online(sstatus)) 5148 return true; 5149 return false; 5150 } 5151 5152 /** 5153 * ata_link_online - test whether the given link is online 5154 * @link: ATA link to test 5155 * 5156 * Test whether @link is online. This is identical to 5157 * ata_phys_link_online() when there's no slave link. When 5158 * there's a slave link, this function should only be called on 5159 * the master link and will return true if any of M/S links is 5160 * online. 5161 * 5162 * LOCKING: 5163 * None. 5164 * 5165 * RETURNS: 5166 * True if the port online status is available and online. 5167 */ 5168 bool ata_link_online(struct ata_link *link) 5169 { 5170 struct ata_link *slave = link->ap->slave_link; 5171 5172 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5173 5174 return ata_phys_link_online(link) || 5175 (slave && ata_phys_link_online(slave)); 5176 } 5177 EXPORT_SYMBOL_GPL(ata_link_online); 5178 5179 /** 5180 * ata_link_offline - test whether the given link is offline 5181 * @link: ATA link to test 5182 * 5183 * Test whether @link is offline. This is identical to 5184 * ata_phys_link_offline() when there's no slave link. When 5185 * there's a slave link, this function should only be called on 5186 * the master link and will return true if both M/S links are 5187 * offline. 5188 * 5189 * LOCKING: 5190 * None. 5191 * 5192 * RETURNS: 5193 * True if the port offline status is available and offline. 5194 */ 5195 bool ata_link_offline(struct ata_link *link) 5196 { 5197 struct ata_link *slave = link->ap->slave_link; 5198 5199 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5200 5201 return ata_phys_link_offline(link) && 5202 (!slave || ata_phys_link_offline(slave)); 5203 } 5204 EXPORT_SYMBOL_GPL(ata_link_offline); 5205 5206 #ifdef CONFIG_PM 5207 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5208 unsigned int action, unsigned int ehi_flags, 5209 bool async) 5210 { 5211 struct ata_link *link; 5212 unsigned long flags; 5213 5214 /* Previous resume operation might still be in 5215 * progress. Wait for PM_PENDING to clear. 5216 */ 5217 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5218 ata_port_wait_eh(ap); 5219 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5220 } 5221 5222 /* request PM ops to EH */ 5223 spin_lock_irqsave(ap->lock, flags); 5224 5225 ap->pm_mesg = mesg; 5226 ap->pflags |= ATA_PFLAG_PM_PENDING; 5227 ata_for_each_link(link, ap, HOST_FIRST) { 5228 link->eh_info.action |= action; 5229 link->eh_info.flags |= ehi_flags; 5230 } 5231 5232 ata_port_schedule_eh(ap); 5233 5234 spin_unlock_irqrestore(ap->lock, flags); 5235 5236 if (!async) { 5237 ata_port_wait_eh(ap); 5238 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5239 } 5240 } 5241 5242 /* 5243 * On some hardware, device fails to respond after spun down for suspend. As 5244 * the device won't be used before being resumed, we don't need to touch the 5245 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5246 * 5247 * http://thread.gmane.org/gmane.linux.ide/46764 5248 */ 5249 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5250 | ATA_EHI_NO_AUTOPSY 5251 | ATA_EHI_NO_RECOVERY; 5252 5253 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5254 { 5255 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5256 } 5257 5258 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5259 { 5260 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5261 } 5262 5263 static int ata_port_pm_suspend(struct device *dev) 5264 { 5265 struct ata_port *ap = to_ata_port(dev); 5266 5267 if (pm_runtime_suspended(dev)) 5268 return 0; 5269 5270 ata_port_suspend(ap, PMSG_SUSPEND); 5271 return 0; 5272 } 5273 5274 static int ata_port_pm_freeze(struct device *dev) 5275 { 5276 struct ata_port *ap = to_ata_port(dev); 5277 5278 if (pm_runtime_suspended(dev)) 5279 return 0; 5280 5281 ata_port_suspend(ap, PMSG_FREEZE); 5282 return 0; 5283 } 5284 5285 static int ata_port_pm_poweroff(struct device *dev) 5286 { 5287 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5288 return 0; 5289 } 5290 5291 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5292 | ATA_EHI_QUIET; 5293 5294 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5295 { 5296 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5297 } 5298 5299 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5300 { 5301 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5302 } 5303 5304 static int ata_port_pm_resume(struct device *dev) 5305 { 5306 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5307 pm_runtime_disable(dev); 5308 pm_runtime_set_active(dev); 5309 pm_runtime_enable(dev); 5310 return 0; 5311 } 5312 5313 /* 5314 * For ODDs, the upper layer will poll for media change every few seconds, 5315 * which will make it enter and leave suspend state every few seconds. And 5316 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5317 * is very little and the ODD may malfunction after constantly being reset. 5318 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5319 * ODD is attached to the port. 5320 */ 5321 static int ata_port_runtime_idle(struct device *dev) 5322 { 5323 struct ata_port *ap = to_ata_port(dev); 5324 struct ata_link *link; 5325 struct ata_device *adev; 5326 5327 ata_for_each_link(link, ap, HOST_FIRST) { 5328 ata_for_each_dev(adev, link, ENABLED) 5329 if (adev->class == ATA_DEV_ATAPI && 5330 !zpodd_dev_enabled(adev)) 5331 return -EBUSY; 5332 } 5333 5334 return 0; 5335 } 5336 5337 static int ata_port_runtime_suspend(struct device *dev) 5338 { 5339 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5340 return 0; 5341 } 5342 5343 static int ata_port_runtime_resume(struct device *dev) 5344 { 5345 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5346 return 0; 5347 } 5348 5349 static const struct dev_pm_ops ata_port_pm_ops = { 5350 .suspend = ata_port_pm_suspend, 5351 .resume = ata_port_pm_resume, 5352 .freeze = ata_port_pm_freeze, 5353 .thaw = ata_port_pm_resume, 5354 .poweroff = ata_port_pm_poweroff, 5355 .restore = ata_port_pm_resume, 5356 5357 .runtime_suspend = ata_port_runtime_suspend, 5358 .runtime_resume = ata_port_runtime_resume, 5359 .runtime_idle = ata_port_runtime_idle, 5360 }; 5361 5362 /* sas ports don't participate in pm runtime management of ata_ports, 5363 * and need to resume ata devices at the domain level, not the per-port 5364 * level. sas suspend/resume is async to allow parallel port recovery 5365 * since sas has multiple ata_port instances per Scsi_Host. 5366 */ 5367 void ata_sas_port_suspend(struct ata_port *ap) 5368 { 5369 ata_port_suspend_async(ap, PMSG_SUSPEND); 5370 } 5371 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5372 5373 void ata_sas_port_resume(struct ata_port *ap) 5374 { 5375 ata_port_resume_async(ap, PMSG_RESUME); 5376 } 5377 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5378 5379 /** 5380 * ata_host_suspend - suspend host 5381 * @host: host to suspend 5382 * @mesg: PM message 5383 * 5384 * Suspend @host. Actual operation is performed by port suspend. 5385 */ 5386 void ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5387 { 5388 host->dev->power.power_state = mesg; 5389 } 5390 EXPORT_SYMBOL_GPL(ata_host_suspend); 5391 5392 /** 5393 * ata_host_resume - resume host 5394 * @host: host to resume 5395 * 5396 * Resume @host. Actual operation is performed by port resume. 5397 */ 5398 void ata_host_resume(struct ata_host *host) 5399 { 5400 host->dev->power.power_state = PMSG_ON; 5401 } 5402 EXPORT_SYMBOL_GPL(ata_host_resume); 5403 #endif 5404 5405 const struct device_type ata_port_type = { 5406 .name = "ata_port", 5407 #ifdef CONFIG_PM 5408 .pm = &ata_port_pm_ops, 5409 #endif 5410 }; 5411 5412 /** 5413 * ata_dev_init - Initialize an ata_device structure 5414 * @dev: Device structure to initialize 5415 * 5416 * Initialize @dev in preparation for probing. 5417 * 5418 * LOCKING: 5419 * Inherited from caller. 5420 */ 5421 void ata_dev_init(struct ata_device *dev) 5422 { 5423 struct ata_link *link = ata_dev_phys_link(dev); 5424 struct ata_port *ap = link->ap; 5425 unsigned long flags; 5426 5427 /* SATA spd limit is bound to the attached device, reset together */ 5428 link->sata_spd_limit = link->hw_sata_spd_limit; 5429 link->sata_spd = 0; 5430 5431 /* High bits of dev->flags are used to record warm plug 5432 * requests which occur asynchronously. Synchronize using 5433 * host lock. 5434 */ 5435 spin_lock_irqsave(ap->lock, flags); 5436 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5437 dev->horkage = 0; 5438 spin_unlock_irqrestore(ap->lock, flags); 5439 5440 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5441 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5442 dev->pio_mask = UINT_MAX; 5443 dev->mwdma_mask = UINT_MAX; 5444 dev->udma_mask = UINT_MAX; 5445 } 5446 5447 /** 5448 * ata_link_init - Initialize an ata_link structure 5449 * @ap: ATA port link is attached to 5450 * @link: Link structure to initialize 5451 * @pmp: Port multiplier port number 5452 * 5453 * Initialize @link. 5454 * 5455 * LOCKING: 5456 * Kernel thread context (may sleep) 5457 */ 5458 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5459 { 5460 int i; 5461 5462 /* clear everything except for devices */ 5463 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5464 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5465 5466 link->ap = ap; 5467 link->pmp = pmp; 5468 link->active_tag = ATA_TAG_POISON; 5469 link->hw_sata_spd_limit = UINT_MAX; 5470 5471 /* can't use iterator, ap isn't initialized yet */ 5472 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5473 struct ata_device *dev = &link->device[i]; 5474 5475 dev->link = link; 5476 dev->devno = dev - link->device; 5477 #ifdef CONFIG_ATA_ACPI 5478 dev->gtf_filter = ata_acpi_gtf_filter; 5479 #endif 5480 ata_dev_init(dev); 5481 } 5482 } 5483 5484 /** 5485 * sata_link_init_spd - Initialize link->sata_spd_limit 5486 * @link: Link to configure sata_spd_limit for 5487 * 5488 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5489 * configured value. 5490 * 5491 * LOCKING: 5492 * Kernel thread context (may sleep). 5493 * 5494 * RETURNS: 5495 * 0 on success, -errno on failure. 5496 */ 5497 int sata_link_init_spd(struct ata_link *link) 5498 { 5499 u8 spd; 5500 int rc; 5501 5502 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5503 if (rc) 5504 return rc; 5505 5506 spd = (link->saved_scontrol >> 4) & 0xf; 5507 if (spd) 5508 link->hw_sata_spd_limit &= (1 << spd) - 1; 5509 5510 ata_force_link_limits(link); 5511 5512 link->sata_spd_limit = link->hw_sata_spd_limit; 5513 5514 return 0; 5515 } 5516 5517 /** 5518 * ata_port_alloc - allocate and initialize basic ATA port resources 5519 * @host: ATA host this allocated port belongs to 5520 * 5521 * Allocate and initialize basic ATA port resources. 5522 * 5523 * RETURNS: 5524 * Allocate ATA port on success, NULL on failure. 5525 * 5526 * LOCKING: 5527 * Inherited from calling layer (may sleep). 5528 */ 5529 struct ata_port *ata_port_alloc(struct ata_host *host) 5530 { 5531 struct ata_port *ap; 5532 5533 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5534 if (!ap) 5535 return NULL; 5536 5537 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5538 ap->lock = &host->lock; 5539 ap->print_id = -1; 5540 ap->local_port_no = -1; 5541 ap->host = host; 5542 ap->dev = host->dev; 5543 5544 mutex_init(&ap->scsi_scan_mutex); 5545 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5546 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5547 INIT_LIST_HEAD(&ap->eh_done_q); 5548 init_waitqueue_head(&ap->eh_wait_q); 5549 init_completion(&ap->park_req_pending); 5550 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5551 TIMER_DEFERRABLE); 5552 5553 ap->cbl = ATA_CBL_NONE; 5554 5555 ata_link_init(ap, &ap->link, 0); 5556 5557 #ifdef ATA_IRQ_TRAP 5558 ap->stats.unhandled_irq = 1; 5559 ap->stats.idle_irq = 1; 5560 #endif 5561 ata_sff_port_init(ap); 5562 5563 return ap; 5564 } 5565 5566 static void ata_devres_release(struct device *gendev, void *res) 5567 { 5568 struct ata_host *host = dev_get_drvdata(gendev); 5569 int i; 5570 5571 for (i = 0; i < host->n_ports; i++) { 5572 struct ata_port *ap = host->ports[i]; 5573 5574 if (!ap) 5575 continue; 5576 5577 if (ap->scsi_host) 5578 scsi_host_put(ap->scsi_host); 5579 5580 } 5581 5582 dev_set_drvdata(gendev, NULL); 5583 ata_host_put(host); 5584 } 5585 5586 static void ata_host_release(struct kref *kref) 5587 { 5588 struct ata_host *host = container_of(kref, struct ata_host, kref); 5589 int i; 5590 5591 for (i = 0; i < host->n_ports; i++) { 5592 struct ata_port *ap = host->ports[i]; 5593 5594 kfree(ap->pmp_link); 5595 kfree(ap->slave_link); 5596 kfree(ap->ncq_sense_buf); 5597 kfree(ap); 5598 host->ports[i] = NULL; 5599 } 5600 kfree(host); 5601 } 5602 5603 void ata_host_get(struct ata_host *host) 5604 { 5605 kref_get(&host->kref); 5606 } 5607 5608 void ata_host_put(struct ata_host *host) 5609 { 5610 kref_put(&host->kref, ata_host_release); 5611 } 5612 EXPORT_SYMBOL_GPL(ata_host_put); 5613 5614 /** 5615 * ata_host_alloc - allocate and init basic ATA host resources 5616 * @dev: generic device this host is associated with 5617 * @max_ports: maximum number of ATA ports associated with this host 5618 * 5619 * Allocate and initialize basic ATA host resources. LLD calls 5620 * this function to allocate a host, initializes it fully and 5621 * attaches it using ata_host_register(). 5622 * 5623 * @max_ports ports are allocated and host->n_ports is 5624 * initialized to @max_ports. The caller is allowed to decrease 5625 * host->n_ports before calling ata_host_register(). The unused 5626 * ports will be automatically freed on registration. 5627 * 5628 * RETURNS: 5629 * Allocate ATA host on success, NULL on failure. 5630 * 5631 * LOCKING: 5632 * Inherited from calling layer (may sleep). 5633 */ 5634 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5635 { 5636 struct ata_host *host; 5637 size_t sz; 5638 int i; 5639 void *dr; 5640 5641 /* alloc a container for our list of ATA ports (buses) */ 5642 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5643 host = kzalloc(sz, GFP_KERNEL); 5644 if (!host) 5645 return NULL; 5646 5647 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5648 goto err_free; 5649 5650 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5651 if (!dr) 5652 goto err_out; 5653 5654 devres_add(dev, dr); 5655 dev_set_drvdata(dev, host); 5656 5657 spin_lock_init(&host->lock); 5658 mutex_init(&host->eh_mutex); 5659 host->dev = dev; 5660 host->n_ports = max_ports; 5661 kref_init(&host->kref); 5662 5663 /* allocate ports bound to this host */ 5664 for (i = 0; i < max_ports; i++) { 5665 struct ata_port *ap; 5666 5667 ap = ata_port_alloc(host); 5668 if (!ap) 5669 goto err_out; 5670 5671 ap->port_no = i; 5672 host->ports[i] = ap; 5673 } 5674 5675 devres_remove_group(dev, NULL); 5676 return host; 5677 5678 err_out: 5679 devres_release_group(dev, NULL); 5680 err_free: 5681 kfree(host); 5682 return NULL; 5683 } 5684 EXPORT_SYMBOL_GPL(ata_host_alloc); 5685 5686 /** 5687 * ata_host_alloc_pinfo - alloc host and init with port_info array 5688 * @dev: generic device this host is associated with 5689 * @ppi: array of ATA port_info to initialize host with 5690 * @n_ports: number of ATA ports attached to this host 5691 * 5692 * Allocate ATA host and initialize with info from @ppi. If NULL 5693 * terminated, @ppi may contain fewer entries than @n_ports. The 5694 * last entry will be used for the remaining ports. 5695 * 5696 * RETURNS: 5697 * Allocate ATA host on success, NULL on failure. 5698 * 5699 * LOCKING: 5700 * Inherited from calling layer (may sleep). 5701 */ 5702 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5703 const struct ata_port_info * const * ppi, 5704 int n_ports) 5705 { 5706 const struct ata_port_info *pi = &ata_dummy_port_info; 5707 struct ata_host *host; 5708 int i, j; 5709 5710 host = ata_host_alloc(dev, n_ports); 5711 if (!host) 5712 return NULL; 5713 5714 for (i = 0, j = 0; i < host->n_ports; i++) { 5715 struct ata_port *ap = host->ports[i]; 5716 5717 if (ppi[j]) 5718 pi = ppi[j++]; 5719 5720 ap->pio_mask = pi->pio_mask; 5721 ap->mwdma_mask = pi->mwdma_mask; 5722 ap->udma_mask = pi->udma_mask; 5723 ap->flags |= pi->flags; 5724 ap->link.flags |= pi->link_flags; 5725 ap->ops = pi->port_ops; 5726 5727 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5728 host->ops = pi->port_ops; 5729 } 5730 5731 return host; 5732 } 5733 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5734 5735 static void ata_host_stop(struct device *gendev, void *res) 5736 { 5737 struct ata_host *host = dev_get_drvdata(gendev); 5738 int i; 5739 5740 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5741 5742 for (i = 0; i < host->n_ports; i++) { 5743 struct ata_port *ap = host->ports[i]; 5744 5745 if (ap->ops->port_stop) 5746 ap->ops->port_stop(ap); 5747 } 5748 5749 if (host->ops->host_stop) 5750 host->ops->host_stop(host); 5751 } 5752 5753 /** 5754 * ata_finalize_port_ops - finalize ata_port_operations 5755 * @ops: ata_port_operations to finalize 5756 * 5757 * An ata_port_operations can inherit from another ops and that 5758 * ops can again inherit from another. This can go on as many 5759 * times as necessary as long as there is no loop in the 5760 * inheritance chain. 5761 * 5762 * Ops tables are finalized when the host is started. NULL or 5763 * unspecified entries are inherited from the closet ancestor 5764 * which has the method and the entry is populated with it. 5765 * After finalization, the ops table directly points to all the 5766 * methods and ->inherits is no longer necessary and cleared. 5767 * 5768 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5769 * 5770 * LOCKING: 5771 * None. 5772 */ 5773 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5774 { 5775 static DEFINE_SPINLOCK(lock); 5776 const struct ata_port_operations *cur; 5777 void **begin = (void **)ops; 5778 void **end = (void **)&ops->inherits; 5779 void **pp; 5780 5781 if (!ops || !ops->inherits) 5782 return; 5783 5784 spin_lock(&lock); 5785 5786 for (cur = ops->inherits; cur; cur = cur->inherits) { 5787 void **inherit = (void **)cur; 5788 5789 for (pp = begin; pp < end; pp++, inherit++) 5790 if (!*pp) 5791 *pp = *inherit; 5792 } 5793 5794 for (pp = begin; pp < end; pp++) 5795 if (IS_ERR(*pp)) 5796 *pp = NULL; 5797 5798 ops->inherits = NULL; 5799 5800 spin_unlock(&lock); 5801 } 5802 5803 /** 5804 * ata_host_start - start and freeze ports of an ATA host 5805 * @host: ATA host to start ports for 5806 * 5807 * Start and then freeze ports of @host. Started status is 5808 * recorded in host->flags, so this function can be called 5809 * multiple times. Ports are guaranteed to get started only 5810 * once. If host->ops is not initialized yet, it is set to the 5811 * first non-dummy port ops. 5812 * 5813 * LOCKING: 5814 * Inherited from calling layer (may sleep). 5815 * 5816 * RETURNS: 5817 * 0 if all ports are started successfully, -errno otherwise. 5818 */ 5819 int ata_host_start(struct ata_host *host) 5820 { 5821 int have_stop = 0; 5822 void *start_dr = NULL; 5823 int i, rc; 5824 5825 if (host->flags & ATA_HOST_STARTED) 5826 return 0; 5827 5828 ata_finalize_port_ops(host->ops); 5829 5830 for (i = 0; i < host->n_ports; i++) { 5831 struct ata_port *ap = host->ports[i]; 5832 5833 ata_finalize_port_ops(ap->ops); 5834 5835 if (!host->ops && !ata_port_is_dummy(ap)) 5836 host->ops = ap->ops; 5837 5838 if (ap->ops->port_stop) 5839 have_stop = 1; 5840 } 5841 5842 if (host->ops && host->ops->host_stop) 5843 have_stop = 1; 5844 5845 if (have_stop) { 5846 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5847 if (!start_dr) 5848 return -ENOMEM; 5849 } 5850 5851 for (i = 0; i < host->n_ports; i++) { 5852 struct ata_port *ap = host->ports[i]; 5853 5854 if (ap->ops->port_start) { 5855 rc = ap->ops->port_start(ap); 5856 if (rc) { 5857 if (rc != -ENODEV) 5858 dev_err(host->dev, 5859 "failed to start port %d (errno=%d)\n", 5860 i, rc); 5861 goto err_out; 5862 } 5863 } 5864 ata_eh_freeze_port(ap); 5865 } 5866 5867 if (start_dr) 5868 devres_add(host->dev, start_dr); 5869 host->flags |= ATA_HOST_STARTED; 5870 return 0; 5871 5872 err_out: 5873 while (--i >= 0) { 5874 struct ata_port *ap = host->ports[i]; 5875 5876 if (ap->ops->port_stop) 5877 ap->ops->port_stop(ap); 5878 } 5879 devres_free(start_dr); 5880 return rc; 5881 } 5882 EXPORT_SYMBOL_GPL(ata_host_start); 5883 5884 /** 5885 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5886 * @host: host to initialize 5887 * @dev: device host is attached to 5888 * @ops: port_ops 5889 * 5890 */ 5891 void ata_host_init(struct ata_host *host, struct device *dev, 5892 struct ata_port_operations *ops) 5893 { 5894 spin_lock_init(&host->lock); 5895 mutex_init(&host->eh_mutex); 5896 host->n_tags = ATA_MAX_QUEUE; 5897 host->dev = dev; 5898 host->ops = ops; 5899 kref_init(&host->kref); 5900 } 5901 EXPORT_SYMBOL_GPL(ata_host_init); 5902 5903 void __ata_port_probe(struct ata_port *ap) 5904 { 5905 struct ata_eh_info *ehi = &ap->link.eh_info; 5906 unsigned long flags; 5907 5908 /* kick EH for boot probing */ 5909 spin_lock_irqsave(ap->lock, flags); 5910 5911 ehi->probe_mask |= ATA_ALL_DEVICES; 5912 ehi->action |= ATA_EH_RESET; 5913 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5914 5915 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5916 ap->pflags |= ATA_PFLAG_LOADING; 5917 ata_port_schedule_eh(ap); 5918 5919 spin_unlock_irqrestore(ap->lock, flags); 5920 } 5921 5922 int ata_port_probe(struct ata_port *ap) 5923 { 5924 int rc = 0; 5925 5926 if (ap->ops->error_handler) { 5927 __ata_port_probe(ap); 5928 ata_port_wait_eh(ap); 5929 } else { 5930 rc = ata_bus_probe(ap); 5931 } 5932 return rc; 5933 } 5934 5935 5936 static void async_port_probe(void *data, async_cookie_t cookie) 5937 { 5938 struct ata_port *ap = data; 5939 5940 /* 5941 * If we're not allowed to scan this host in parallel, 5942 * we need to wait until all previous scans have completed 5943 * before going further. 5944 * Jeff Garzik says this is only within a controller, so we 5945 * don't need to wait for port 0, only for later ports. 5946 */ 5947 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5948 async_synchronize_cookie(cookie); 5949 5950 (void)ata_port_probe(ap); 5951 5952 /* in order to keep device order, we need to synchronize at this point */ 5953 async_synchronize_cookie(cookie); 5954 5955 ata_scsi_scan_host(ap, 1); 5956 } 5957 5958 /** 5959 * ata_host_register - register initialized ATA host 5960 * @host: ATA host to register 5961 * @sht: template for SCSI host 5962 * 5963 * Register initialized ATA host. @host is allocated using 5964 * ata_host_alloc() and fully initialized by LLD. This function 5965 * starts ports, registers @host with ATA and SCSI layers and 5966 * probe registered devices. 5967 * 5968 * LOCKING: 5969 * Inherited from calling layer (may sleep). 5970 * 5971 * RETURNS: 5972 * 0 on success, -errno otherwise. 5973 */ 5974 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht) 5975 { 5976 int i, rc; 5977 5978 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5979 5980 /* host must have been started */ 5981 if (!(host->flags & ATA_HOST_STARTED)) { 5982 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5983 WARN_ON(1); 5984 return -EINVAL; 5985 } 5986 5987 /* Blow away unused ports. This happens when LLD can't 5988 * determine the exact number of ports to allocate at 5989 * allocation time. 5990 */ 5991 for (i = host->n_ports; host->ports[i]; i++) 5992 kfree(host->ports[i]); 5993 5994 /* give ports names and add SCSI hosts */ 5995 for (i = 0; i < host->n_ports; i++) { 5996 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5997 host->ports[i]->local_port_no = i + 1; 5998 } 5999 6000 /* Create associated sysfs transport objects */ 6001 for (i = 0; i < host->n_ports; i++) { 6002 rc = ata_tport_add(host->dev,host->ports[i]); 6003 if (rc) { 6004 goto err_tadd; 6005 } 6006 } 6007 6008 rc = ata_scsi_add_hosts(host, sht); 6009 if (rc) 6010 goto err_tadd; 6011 6012 /* set cable, sata_spd_limit and report */ 6013 for (i = 0; i < host->n_ports; i++) { 6014 struct ata_port *ap = host->ports[i]; 6015 unsigned int xfer_mask; 6016 6017 /* set SATA cable type if still unset */ 6018 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6019 ap->cbl = ATA_CBL_SATA; 6020 6021 /* init sata_spd_limit to the current value */ 6022 sata_link_init_spd(&ap->link); 6023 if (ap->slave_link) 6024 sata_link_init_spd(ap->slave_link); 6025 6026 /* print per-port info to dmesg */ 6027 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6028 ap->udma_mask); 6029 6030 if (!ata_port_is_dummy(ap)) { 6031 ata_port_info(ap, "%cATA max %s %s\n", 6032 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6033 ata_mode_string(xfer_mask), 6034 ap->link.eh_info.desc); 6035 ata_ehi_clear_desc(&ap->link.eh_info); 6036 } else 6037 ata_port_info(ap, "DUMMY\n"); 6038 } 6039 6040 /* perform each probe asynchronously */ 6041 for (i = 0; i < host->n_ports; i++) { 6042 struct ata_port *ap = host->ports[i]; 6043 ap->cookie = async_schedule(async_port_probe, ap); 6044 } 6045 6046 return 0; 6047 6048 err_tadd: 6049 while (--i >= 0) { 6050 ata_tport_delete(host->ports[i]); 6051 } 6052 return rc; 6053 6054 } 6055 EXPORT_SYMBOL_GPL(ata_host_register); 6056 6057 /** 6058 * ata_host_activate - start host, request IRQ and register it 6059 * @host: target ATA host 6060 * @irq: IRQ to request 6061 * @irq_handler: irq_handler used when requesting IRQ 6062 * @irq_flags: irq_flags used when requesting IRQ 6063 * @sht: scsi_host_template to use when registering the host 6064 * 6065 * After allocating an ATA host and initializing it, most libata 6066 * LLDs perform three steps to activate the host - start host, 6067 * request IRQ and register it. This helper takes necessary 6068 * arguments and performs the three steps in one go. 6069 * 6070 * An invalid IRQ skips the IRQ registration and expects the host to 6071 * have set polling mode on the port. In this case, @irq_handler 6072 * should be NULL. 6073 * 6074 * LOCKING: 6075 * Inherited from calling layer (may sleep). 6076 * 6077 * RETURNS: 6078 * 0 on success, -errno otherwise. 6079 */ 6080 int ata_host_activate(struct ata_host *host, int irq, 6081 irq_handler_t irq_handler, unsigned long irq_flags, 6082 const struct scsi_host_template *sht) 6083 { 6084 int i, rc; 6085 char *irq_desc; 6086 6087 rc = ata_host_start(host); 6088 if (rc) 6089 return rc; 6090 6091 /* Special case for polling mode */ 6092 if (!irq) { 6093 WARN_ON(irq_handler); 6094 return ata_host_register(host, sht); 6095 } 6096 6097 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 6098 dev_driver_string(host->dev), 6099 dev_name(host->dev)); 6100 if (!irq_desc) 6101 return -ENOMEM; 6102 6103 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6104 irq_desc, host); 6105 if (rc) 6106 return rc; 6107 6108 for (i = 0; i < host->n_ports; i++) 6109 ata_port_desc(host->ports[i], "irq %d", irq); 6110 6111 rc = ata_host_register(host, sht); 6112 /* if failed, just free the IRQ and leave ports alone */ 6113 if (rc) 6114 devm_free_irq(host->dev, irq, host); 6115 6116 return rc; 6117 } 6118 EXPORT_SYMBOL_GPL(ata_host_activate); 6119 6120 /** 6121 * ata_port_detach - Detach ATA port in preparation of device removal 6122 * @ap: ATA port to be detached 6123 * 6124 * Detach all ATA devices and the associated SCSI devices of @ap; 6125 * then, remove the associated SCSI host. @ap is guaranteed to 6126 * be quiescent on return from this function. 6127 * 6128 * LOCKING: 6129 * Kernel thread context (may sleep). 6130 */ 6131 static void ata_port_detach(struct ata_port *ap) 6132 { 6133 unsigned long flags; 6134 struct ata_link *link; 6135 struct ata_device *dev; 6136 6137 if (!ap->ops->error_handler) 6138 goto skip_eh; 6139 6140 /* tell EH we're leaving & flush EH */ 6141 spin_lock_irqsave(ap->lock, flags); 6142 ap->pflags |= ATA_PFLAG_UNLOADING; 6143 ata_port_schedule_eh(ap); 6144 spin_unlock_irqrestore(ap->lock, flags); 6145 6146 /* wait till EH commits suicide */ 6147 ata_port_wait_eh(ap); 6148 6149 /* it better be dead now */ 6150 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6151 6152 cancel_delayed_work_sync(&ap->hotplug_task); 6153 6154 skip_eh: 6155 /* clean up zpodd on port removal */ 6156 ata_for_each_link(link, ap, HOST_FIRST) { 6157 ata_for_each_dev(dev, link, ALL) { 6158 if (zpodd_dev_enabled(dev)) 6159 zpodd_exit(dev); 6160 } 6161 } 6162 if (ap->pmp_link) { 6163 int i; 6164 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6165 ata_tlink_delete(&ap->pmp_link[i]); 6166 } 6167 /* remove the associated SCSI host */ 6168 scsi_remove_host(ap->scsi_host); 6169 ata_tport_delete(ap); 6170 } 6171 6172 /** 6173 * ata_host_detach - Detach all ports of an ATA host 6174 * @host: Host to detach 6175 * 6176 * Detach all ports of @host. 6177 * 6178 * LOCKING: 6179 * Kernel thread context (may sleep). 6180 */ 6181 void ata_host_detach(struct ata_host *host) 6182 { 6183 int i; 6184 6185 for (i = 0; i < host->n_ports; i++) { 6186 /* Ensure ata_port probe has completed */ 6187 async_synchronize_cookie(host->ports[i]->cookie + 1); 6188 ata_port_detach(host->ports[i]); 6189 } 6190 6191 /* the host is dead now, dissociate ACPI */ 6192 ata_acpi_dissociate(host); 6193 } 6194 EXPORT_SYMBOL_GPL(ata_host_detach); 6195 6196 #ifdef CONFIG_PCI 6197 6198 /** 6199 * ata_pci_remove_one - PCI layer callback for device removal 6200 * @pdev: PCI device that was removed 6201 * 6202 * PCI layer indicates to libata via this hook that hot-unplug or 6203 * module unload event has occurred. Detach all ports. Resource 6204 * release is handled via devres. 6205 * 6206 * LOCKING: 6207 * Inherited from PCI layer (may sleep). 6208 */ 6209 void ata_pci_remove_one(struct pci_dev *pdev) 6210 { 6211 struct ata_host *host = pci_get_drvdata(pdev); 6212 6213 ata_host_detach(host); 6214 } 6215 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6216 6217 void ata_pci_shutdown_one(struct pci_dev *pdev) 6218 { 6219 struct ata_host *host = pci_get_drvdata(pdev); 6220 int i; 6221 6222 for (i = 0; i < host->n_ports; i++) { 6223 struct ata_port *ap = host->ports[i]; 6224 6225 ap->pflags |= ATA_PFLAG_FROZEN; 6226 6227 /* Disable port interrupts */ 6228 if (ap->ops->freeze) 6229 ap->ops->freeze(ap); 6230 6231 /* Stop the port DMA engines */ 6232 if (ap->ops->port_stop) 6233 ap->ops->port_stop(ap); 6234 } 6235 } 6236 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6237 6238 /* move to PCI subsystem */ 6239 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6240 { 6241 unsigned long tmp = 0; 6242 6243 switch (bits->width) { 6244 case 1: { 6245 u8 tmp8 = 0; 6246 pci_read_config_byte(pdev, bits->reg, &tmp8); 6247 tmp = tmp8; 6248 break; 6249 } 6250 case 2: { 6251 u16 tmp16 = 0; 6252 pci_read_config_word(pdev, bits->reg, &tmp16); 6253 tmp = tmp16; 6254 break; 6255 } 6256 case 4: { 6257 u32 tmp32 = 0; 6258 pci_read_config_dword(pdev, bits->reg, &tmp32); 6259 tmp = tmp32; 6260 break; 6261 } 6262 6263 default: 6264 return -EINVAL; 6265 } 6266 6267 tmp &= bits->mask; 6268 6269 return (tmp == bits->val) ? 1 : 0; 6270 } 6271 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6272 6273 #ifdef CONFIG_PM 6274 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6275 { 6276 pci_save_state(pdev); 6277 pci_disable_device(pdev); 6278 6279 if (mesg.event & PM_EVENT_SLEEP) 6280 pci_set_power_state(pdev, PCI_D3hot); 6281 } 6282 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6283 6284 int ata_pci_device_do_resume(struct pci_dev *pdev) 6285 { 6286 int rc; 6287 6288 pci_set_power_state(pdev, PCI_D0); 6289 pci_restore_state(pdev); 6290 6291 rc = pcim_enable_device(pdev); 6292 if (rc) { 6293 dev_err(&pdev->dev, 6294 "failed to enable device after resume (%d)\n", rc); 6295 return rc; 6296 } 6297 6298 pci_set_master(pdev); 6299 return 0; 6300 } 6301 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6302 6303 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6304 { 6305 struct ata_host *host = pci_get_drvdata(pdev); 6306 6307 ata_host_suspend(host, mesg); 6308 6309 ata_pci_device_do_suspend(pdev, mesg); 6310 6311 return 0; 6312 } 6313 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6314 6315 int ata_pci_device_resume(struct pci_dev *pdev) 6316 { 6317 struct ata_host *host = pci_get_drvdata(pdev); 6318 int rc; 6319 6320 rc = ata_pci_device_do_resume(pdev); 6321 if (rc == 0) 6322 ata_host_resume(host); 6323 return rc; 6324 } 6325 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6326 #endif /* CONFIG_PM */ 6327 #endif /* CONFIG_PCI */ 6328 6329 /** 6330 * ata_platform_remove_one - Platform layer callback for device removal 6331 * @pdev: Platform device that was removed 6332 * 6333 * Platform layer indicates to libata via this hook that hot-unplug or 6334 * module unload event has occurred. Detach all ports. Resource 6335 * release is handled via devres. 6336 * 6337 * LOCKING: 6338 * Inherited from platform layer (may sleep). 6339 */ 6340 int ata_platform_remove_one(struct platform_device *pdev) 6341 { 6342 struct ata_host *host = platform_get_drvdata(pdev); 6343 6344 ata_host_detach(host); 6345 6346 return 0; 6347 } 6348 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6349 6350 #ifdef CONFIG_ATA_FORCE 6351 6352 #define force_cbl(name, flag) \ 6353 { #name, .cbl = (flag) } 6354 6355 #define force_spd_limit(spd, val) \ 6356 { #spd, .spd_limit = (val) } 6357 6358 #define force_xfer(mode, shift) \ 6359 { #mode, .xfer_mask = (1UL << (shift)) } 6360 6361 #define force_lflag_on(name, flags) \ 6362 { #name, .lflags_on = (flags) } 6363 6364 #define force_lflag_onoff(name, flags) \ 6365 { "no" #name, .lflags_on = (flags) }, \ 6366 { #name, .lflags_off = (flags) } 6367 6368 #define force_horkage_on(name, flag) \ 6369 { #name, .horkage_on = (flag) } 6370 6371 #define force_horkage_onoff(name, flag) \ 6372 { "no" #name, .horkage_on = (flag) }, \ 6373 { #name, .horkage_off = (flag) } 6374 6375 static const struct ata_force_param force_tbl[] __initconst = { 6376 force_cbl(40c, ATA_CBL_PATA40), 6377 force_cbl(80c, ATA_CBL_PATA80), 6378 force_cbl(short40c, ATA_CBL_PATA40_SHORT), 6379 force_cbl(unk, ATA_CBL_PATA_UNK), 6380 force_cbl(ign, ATA_CBL_PATA_IGN), 6381 force_cbl(sata, ATA_CBL_SATA), 6382 6383 force_spd_limit(1.5Gbps, 1), 6384 force_spd_limit(3.0Gbps, 2), 6385 6386 force_xfer(pio0, ATA_SHIFT_PIO + 0), 6387 force_xfer(pio1, ATA_SHIFT_PIO + 1), 6388 force_xfer(pio2, ATA_SHIFT_PIO + 2), 6389 force_xfer(pio3, ATA_SHIFT_PIO + 3), 6390 force_xfer(pio4, ATA_SHIFT_PIO + 4), 6391 force_xfer(pio5, ATA_SHIFT_PIO + 5), 6392 force_xfer(pio6, ATA_SHIFT_PIO + 6), 6393 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0), 6394 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1), 6395 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2), 6396 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3), 6397 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4), 6398 force_xfer(udma0, ATA_SHIFT_UDMA + 0), 6399 force_xfer(udma16, ATA_SHIFT_UDMA + 0), 6400 force_xfer(udma/16, ATA_SHIFT_UDMA + 0), 6401 force_xfer(udma1, ATA_SHIFT_UDMA + 1), 6402 force_xfer(udma25, ATA_SHIFT_UDMA + 1), 6403 force_xfer(udma/25, ATA_SHIFT_UDMA + 1), 6404 force_xfer(udma2, ATA_SHIFT_UDMA + 2), 6405 force_xfer(udma33, ATA_SHIFT_UDMA + 2), 6406 force_xfer(udma/33, ATA_SHIFT_UDMA + 2), 6407 force_xfer(udma3, ATA_SHIFT_UDMA + 3), 6408 force_xfer(udma44, ATA_SHIFT_UDMA + 3), 6409 force_xfer(udma/44, ATA_SHIFT_UDMA + 3), 6410 force_xfer(udma4, ATA_SHIFT_UDMA + 4), 6411 force_xfer(udma66, ATA_SHIFT_UDMA + 4), 6412 force_xfer(udma/66, ATA_SHIFT_UDMA + 4), 6413 force_xfer(udma5, ATA_SHIFT_UDMA + 5), 6414 force_xfer(udma100, ATA_SHIFT_UDMA + 5), 6415 force_xfer(udma/100, ATA_SHIFT_UDMA + 5), 6416 force_xfer(udma6, ATA_SHIFT_UDMA + 6), 6417 force_xfer(udma133, ATA_SHIFT_UDMA + 6), 6418 force_xfer(udma/133, ATA_SHIFT_UDMA + 6), 6419 force_xfer(udma7, ATA_SHIFT_UDMA + 7), 6420 6421 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST), 6422 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST), 6423 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST), 6424 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE), 6425 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY), 6426 6427 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ), 6428 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM), 6429 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI), 6430 6431 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM), 6432 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM), 6433 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M), 6434 6435 force_horkage_onoff(dma, ATA_HORKAGE_NODMA), 6436 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR), 6437 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA), 6438 6439 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG), 6440 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG), 6441 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR), 6442 6443 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128), 6444 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024), 6445 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48), 6446 6447 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM), 6448 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER), 6449 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID), 6450 force_horkage_onoff(fua, ATA_HORKAGE_NO_FUA), 6451 6452 force_horkage_on(disable, ATA_HORKAGE_DISABLE), 6453 }; 6454 6455 static int __init ata_parse_force_one(char **cur, 6456 struct ata_force_ent *force_ent, 6457 const char **reason) 6458 { 6459 char *start = *cur, *p = *cur; 6460 char *id, *val, *endp; 6461 const struct ata_force_param *match_fp = NULL; 6462 int nr_matches = 0, i; 6463 6464 /* find where this param ends and update *cur */ 6465 while (*p != '\0' && *p != ',') 6466 p++; 6467 6468 if (*p == '\0') 6469 *cur = p; 6470 else 6471 *cur = p + 1; 6472 6473 *p = '\0'; 6474 6475 /* parse */ 6476 p = strchr(start, ':'); 6477 if (!p) { 6478 val = strstrip(start); 6479 goto parse_val; 6480 } 6481 *p = '\0'; 6482 6483 id = strstrip(start); 6484 val = strstrip(p + 1); 6485 6486 /* parse id */ 6487 p = strchr(id, '.'); 6488 if (p) { 6489 *p++ = '\0'; 6490 force_ent->device = simple_strtoul(p, &endp, 10); 6491 if (p == endp || *endp != '\0') { 6492 *reason = "invalid device"; 6493 return -EINVAL; 6494 } 6495 } 6496 6497 force_ent->port = simple_strtoul(id, &endp, 10); 6498 if (id == endp || *endp != '\0') { 6499 *reason = "invalid port/link"; 6500 return -EINVAL; 6501 } 6502 6503 parse_val: 6504 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6505 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6506 const struct ata_force_param *fp = &force_tbl[i]; 6507 6508 if (strncasecmp(val, fp->name, strlen(val))) 6509 continue; 6510 6511 nr_matches++; 6512 match_fp = fp; 6513 6514 if (strcasecmp(val, fp->name) == 0) { 6515 nr_matches = 1; 6516 break; 6517 } 6518 } 6519 6520 if (!nr_matches) { 6521 *reason = "unknown value"; 6522 return -EINVAL; 6523 } 6524 if (nr_matches > 1) { 6525 *reason = "ambiguous value"; 6526 return -EINVAL; 6527 } 6528 6529 force_ent->param = *match_fp; 6530 6531 return 0; 6532 } 6533 6534 static void __init ata_parse_force_param(void) 6535 { 6536 int idx = 0, size = 1; 6537 int last_port = -1, last_device = -1; 6538 char *p, *cur, *next; 6539 6540 /* Calculate maximum number of params and allocate ata_force_tbl */ 6541 for (p = ata_force_param_buf; *p; p++) 6542 if (*p == ',') 6543 size++; 6544 6545 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6546 if (!ata_force_tbl) { 6547 printk(KERN_WARNING "ata: failed to extend force table, " 6548 "libata.force ignored\n"); 6549 return; 6550 } 6551 6552 /* parse and populate the table */ 6553 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6554 const char *reason = ""; 6555 struct ata_force_ent te = { .port = -1, .device = -1 }; 6556 6557 next = cur; 6558 if (ata_parse_force_one(&next, &te, &reason)) { 6559 printk(KERN_WARNING "ata: failed to parse force " 6560 "parameter \"%s\" (%s)\n", 6561 cur, reason); 6562 continue; 6563 } 6564 6565 if (te.port == -1) { 6566 te.port = last_port; 6567 te.device = last_device; 6568 } 6569 6570 ata_force_tbl[idx++] = te; 6571 6572 last_port = te.port; 6573 last_device = te.device; 6574 } 6575 6576 ata_force_tbl_size = idx; 6577 } 6578 6579 static void ata_free_force_param(void) 6580 { 6581 kfree(ata_force_tbl); 6582 } 6583 #else 6584 static inline void ata_parse_force_param(void) { } 6585 static inline void ata_free_force_param(void) { } 6586 #endif 6587 6588 static int __init ata_init(void) 6589 { 6590 int rc; 6591 6592 ata_parse_force_param(); 6593 6594 rc = ata_sff_init(); 6595 if (rc) { 6596 ata_free_force_param(); 6597 return rc; 6598 } 6599 6600 libata_transport_init(); 6601 ata_scsi_transport_template = ata_attach_transport(); 6602 if (!ata_scsi_transport_template) { 6603 ata_sff_exit(); 6604 rc = -ENOMEM; 6605 goto err_out; 6606 } 6607 6608 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6609 return 0; 6610 6611 err_out: 6612 return rc; 6613 } 6614 6615 static void __exit ata_exit(void) 6616 { 6617 ata_release_transport(ata_scsi_transport_template); 6618 libata_transport_exit(); 6619 ata_sff_exit(); 6620 ata_free_force_param(); 6621 } 6622 6623 subsys_initcall(ata_init); 6624 module_exit(ata_exit); 6625 6626 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6627 6628 int ata_ratelimit(void) 6629 { 6630 return __ratelimit(&ratelimit); 6631 } 6632 EXPORT_SYMBOL_GPL(ata_ratelimit); 6633 6634 /** 6635 * ata_msleep - ATA EH owner aware msleep 6636 * @ap: ATA port to attribute the sleep to 6637 * @msecs: duration to sleep in milliseconds 6638 * 6639 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6640 * ownership is released before going to sleep and reacquired 6641 * after the sleep is complete. IOW, other ports sharing the 6642 * @ap->host will be allowed to own the EH while this task is 6643 * sleeping. 6644 * 6645 * LOCKING: 6646 * Might sleep. 6647 */ 6648 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6649 { 6650 bool owns_eh = ap && ap->host->eh_owner == current; 6651 6652 if (owns_eh) 6653 ata_eh_release(ap); 6654 6655 if (msecs < 20) { 6656 unsigned long usecs = msecs * USEC_PER_MSEC; 6657 usleep_range(usecs, usecs + 50); 6658 } else { 6659 msleep(msecs); 6660 } 6661 6662 if (owns_eh) 6663 ata_eh_acquire(ap); 6664 } 6665 EXPORT_SYMBOL_GPL(ata_msleep); 6666 6667 /** 6668 * ata_wait_register - wait until register value changes 6669 * @ap: ATA port to wait register for, can be NULL 6670 * @reg: IO-mapped register 6671 * @mask: Mask to apply to read register value 6672 * @val: Wait condition 6673 * @interval: polling interval in milliseconds 6674 * @timeout: timeout in milliseconds 6675 * 6676 * Waiting for some bits of register to change is a common 6677 * operation for ATA controllers. This function reads 32bit LE 6678 * IO-mapped register @reg and tests for the following condition. 6679 * 6680 * (*@reg & mask) != val 6681 * 6682 * If the condition is met, it returns; otherwise, the process is 6683 * repeated after @interval_msec until timeout. 6684 * 6685 * LOCKING: 6686 * Kernel thread context (may sleep) 6687 * 6688 * RETURNS: 6689 * The final register value. 6690 */ 6691 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6692 unsigned long interval, unsigned long timeout) 6693 { 6694 unsigned long deadline; 6695 u32 tmp; 6696 6697 tmp = ioread32(reg); 6698 6699 /* Calculate timeout _after_ the first read to make sure 6700 * preceding writes reach the controller before starting to 6701 * eat away the timeout. 6702 */ 6703 deadline = ata_deadline(jiffies, timeout); 6704 6705 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6706 ata_msleep(ap, interval); 6707 tmp = ioread32(reg); 6708 } 6709 6710 return tmp; 6711 } 6712 EXPORT_SYMBOL_GPL(ata_wait_register); 6713 6714 /* 6715 * Dummy port_ops 6716 */ 6717 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6718 { 6719 return AC_ERR_SYSTEM; 6720 } 6721 6722 static void ata_dummy_error_handler(struct ata_port *ap) 6723 { 6724 /* truly dummy */ 6725 } 6726 6727 struct ata_port_operations ata_dummy_port_ops = { 6728 .qc_prep = ata_noop_qc_prep, 6729 .qc_issue = ata_dummy_qc_issue, 6730 .error_handler = ata_dummy_error_handler, 6731 .sched_eh = ata_std_sched_eh, 6732 .end_eh = ata_std_end_eh, 6733 }; 6734 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6735 6736 const struct ata_port_info ata_dummy_port_info = { 6737 .port_ops = &ata_dummy_port_ops, 6738 }; 6739 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6740 6741 void ata_print_version(const struct device *dev, const char *version) 6742 { 6743 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6744 } 6745 EXPORT_SYMBOL(ata_print_version); 6746 6747 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6748 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6749 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6750 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6751 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6752