1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <asm/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 const struct ata_port_operations sata_port_ops = { 76 .inherits = &ata_base_port_ops, 77 78 .qc_defer = ata_std_qc_defer, 79 .hardreset = sata_std_hardreset, 80 }; 81 EXPORT_SYMBOL_GPL(sata_port_ops); 82 83 static unsigned int ata_dev_init_params(struct ata_device *dev, 84 u16 heads, u16 sectors); 85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 86 static void ata_dev_xfermask(struct ata_device *dev); 87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 88 89 atomic_t ata_print_id = ATOMIC_INIT(0); 90 91 #ifdef CONFIG_ATA_FORCE 92 struct ata_force_param { 93 const char *name; 94 u8 cbl; 95 u8 spd_limit; 96 unsigned int xfer_mask; 97 unsigned int horkage_on; 98 unsigned int horkage_off; 99 u16 lflags_on; 100 u16 lflags_off; 101 }; 102 103 struct ata_force_ent { 104 int port; 105 int device; 106 struct ata_force_param param; 107 }; 108 109 static struct ata_force_ent *ata_force_tbl; 110 static int ata_force_tbl_size; 111 112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 113 /* param_buf is thrown away after initialization, disallow read */ 114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 116 #endif 117 118 static int atapi_enabled = 1; 119 module_param(atapi_enabled, int, 0444); 120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 121 122 static int atapi_dmadir = 0; 123 module_param(atapi_dmadir, int, 0444); 124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 125 126 int atapi_passthru16 = 1; 127 module_param(atapi_passthru16, int, 0444); 128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 129 130 int libata_fua = 0; 131 module_param_named(fua, libata_fua, int, 0444); 132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 133 134 static int ata_ignore_hpa; 135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 137 138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 139 module_param_named(dma, libata_dma_mask, int, 0444); 140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 141 142 static int ata_probe_timeout; 143 module_param(ata_probe_timeout, int, 0444); 144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 145 146 int libata_noacpi = 0; 147 module_param_named(noacpi, libata_noacpi, int, 0444); 148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 149 150 int libata_allow_tpm = 0; 151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 153 154 static int atapi_an; 155 module_param(atapi_an, int, 0444); 156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 157 158 MODULE_AUTHOR("Jeff Garzik"); 159 MODULE_DESCRIPTION("Library module for ATA devices"); 160 MODULE_LICENSE("GPL"); 161 MODULE_VERSION(DRV_VERSION); 162 163 static inline bool ata_dev_print_info(struct ata_device *dev) 164 { 165 struct ata_eh_context *ehc = &dev->link->eh_context; 166 167 return ehc->i.flags & ATA_EHI_PRINTINFO; 168 } 169 170 static bool ata_sstatus_online(u32 sstatus) 171 { 172 return (sstatus & 0xf) == 0x3; 173 } 174 175 /** 176 * ata_link_next - link iteration helper 177 * @link: the previous link, NULL to start 178 * @ap: ATA port containing links to iterate 179 * @mode: iteration mode, one of ATA_LITER_* 180 * 181 * LOCKING: 182 * Host lock or EH context. 183 * 184 * RETURNS: 185 * Pointer to the next link. 186 */ 187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 188 enum ata_link_iter_mode mode) 189 { 190 BUG_ON(mode != ATA_LITER_EDGE && 191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 192 193 /* NULL link indicates start of iteration */ 194 if (!link) 195 switch (mode) { 196 case ATA_LITER_EDGE: 197 case ATA_LITER_PMP_FIRST: 198 if (sata_pmp_attached(ap)) 199 return ap->pmp_link; 200 fallthrough; 201 case ATA_LITER_HOST_FIRST: 202 return &ap->link; 203 } 204 205 /* we just iterated over the host link, what's next? */ 206 if (link == &ap->link) 207 switch (mode) { 208 case ATA_LITER_HOST_FIRST: 209 if (sata_pmp_attached(ap)) 210 return ap->pmp_link; 211 fallthrough; 212 case ATA_LITER_PMP_FIRST: 213 if (unlikely(ap->slave_link)) 214 return ap->slave_link; 215 fallthrough; 216 case ATA_LITER_EDGE: 217 return NULL; 218 } 219 220 /* slave_link excludes PMP */ 221 if (unlikely(link == ap->slave_link)) 222 return NULL; 223 224 /* we were over a PMP link */ 225 if (++link < ap->pmp_link + ap->nr_pmp_links) 226 return link; 227 228 if (mode == ATA_LITER_PMP_FIRST) 229 return &ap->link; 230 231 return NULL; 232 } 233 EXPORT_SYMBOL_GPL(ata_link_next); 234 235 /** 236 * ata_dev_next - device iteration helper 237 * @dev: the previous device, NULL to start 238 * @link: ATA link containing devices to iterate 239 * @mode: iteration mode, one of ATA_DITER_* 240 * 241 * LOCKING: 242 * Host lock or EH context. 243 * 244 * RETURNS: 245 * Pointer to the next device. 246 */ 247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 248 enum ata_dev_iter_mode mode) 249 { 250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 252 253 /* NULL dev indicates start of iteration */ 254 if (!dev) 255 switch (mode) { 256 case ATA_DITER_ENABLED: 257 case ATA_DITER_ALL: 258 dev = link->device; 259 goto check; 260 case ATA_DITER_ENABLED_REVERSE: 261 case ATA_DITER_ALL_REVERSE: 262 dev = link->device + ata_link_max_devices(link) - 1; 263 goto check; 264 } 265 266 next: 267 /* move to the next one */ 268 switch (mode) { 269 case ATA_DITER_ENABLED: 270 case ATA_DITER_ALL: 271 if (++dev < link->device + ata_link_max_devices(link)) 272 goto check; 273 return NULL; 274 case ATA_DITER_ENABLED_REVERSE: 275 case ATA_DITER_ALL_REVERSE: 276 if (--dev >= link->device) 277 goto check; 278 return NULL; 279 } 280 281 check: 282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 283 !ata_dev_enabled(dev)) 284 goto next; 285 return dev; 286 } 287 EXPORT_SYMBOL_GPL(ata_dev_next); 288 289 /** 290 * ata_dev_phys_link - find physical link for a device 291 * @dev: ATA device to look up physical link for 292 * 293 * Look up physical link which @dev is attached to. Note that 294 * this is different from @dev->link only when @dev is on slave 295 * link. For all other cases, it's the same as @dev->link. 296 * 297 * LOCKING: 298 * Don't care. 299 * 300 * RETURNS: 301 * Pointer to the found physical link. 302 */ 303 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 304 { 305 struct ata_port *ap = dev->link->ap; 306 307 if (!ap->slave_link) 308 return dev->link; 309 if (!dev->devno) 310 return &ap->link; 311 return ap->slave_link; 312 } 313 314 #ifdef CONFIG_ATA_FORCE 315 /** 316 * ata_force_cbl - force cable type according to libata.force 317 * @ap: ATA port of interest 318 * 319 * Force cable type according to libata.force and whine about it. 320 * The last entry which has matching port number is used, so it 321 * can be specified as part of device force parameters. For 322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 323 * same effect. 324 * 325 * LOCKING: 326 * EH context. 327 */ 328 void ata_force_cbl(struct ata_port *ap) 329 { 330 int i; 331 332 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 333 const struct ata_force_ent *fe = &ata_force_tbl[i]; 334 335 if (fe->port != -1 && fe->port != ap->print_id) 336 continue; 337 338 if (fe->param.cbl == ATA_CBL_NONE) 339 continue; 340 341 ap->cbl = fe->param.cbl; 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 343 return; 344 } 345 } 346 347 /** 348 * ata_force_link_limits - force link limits according to libata.force 349 * @link: ATA link of interest 350 * 351 * Force link flags and SATA spd limit according to libata.force 352 * and whine about it. When only the port part is specified 353 * (e.g. 1:), the limit applies to all links connected to both 354 * the host link and all fan-out ports connected via PMP. If the 355 * device part is specified as 0 (e.g. 1.00:), it specifies the 356 * first fan-out link not the host link. Device number 15 always 357 * points to the host link whether PMP is attached or not. If the 358 * controller has slave link, device number 16 points to it. 359 * 360 * LOCKING: 361 * EH context. 362 */ 363 static void ata_force_link_limits(struct ata_link *link) 364 { 365 bool did_spd = false; 366 int linkno = link->pmp; 367 int i; 368 369 if (ata_is_host_link(link)) 370 linkno += 15; 371 372 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 373 const struct ata_force_ent *fe = &ata_force_tbl[i]; 374 375 if (fe->port != -1 && fe->port != link->ap->print_id) 376 continue; 377 378 if (fe->device != -1 && fe->device != linkno) 379 continue; 380 381 /* only honor the first spd limit */ 382 if (!did_spd && fe->param.spd_limit) { 383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 385 fe->param.name); 386 did_spd = true; 387 } 388 389 /* let lflags stack */ 390 if (fe->param.lflags_on) { 391 link->flags |= fe->param.lflags_on; 392 ata_link_notice(link, 393 "FORCE: link flag 0x%x forced -> 0x%x\n", 394 fe->param.lflags_on, link->flags); 395 } 396 if (fe->param.lflags_off) { 397 link->flags &= ~fe->param.lflags_off; 398 ata_link_notice(link, 399 "FORCE: link flag 0x%x cleared -> 0x%x\n", 400 fe->param.lflags_off, link->flags); 401 } 402 } 403 } 404 405 /** 406 * ata_force_xfermask - force xfermask according to libata.force 407 * @dev: ATA device of interest 408 * 409 * Force xfer_mask according to libata.force and whine about it. 410 * For consistency with link selection, device number 15 selects 411 * the first device connected to the host link. 412 * 413 * LOCKING: 414 * EH context. 415 */ 416 static void ata_force_xfermask(struct ata_device *dev) 417 { 418 int devno = dev->link->pmp + dev->devno; 419 int alt_devno = devno; 420 int i; 421 422 /* allow n.15/16 for devices attached to host port */ 423 if (ata_is_host_link(dev->link)) 424 alt_devno += 15; 425 426 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 427 const struct ata_force_ent *fe = &ata_force_tbl[i]; 428 unsigned int pio_mask, mwdma_mask, udma_mask; 429 430 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 431 continue; 432 433 if (fe->device != -1 && fe->device != devno && 434 fe->device != alt_devno) 435 continue; 436 437 if (!fe->param.xfer_mask) 438 continue; 439 440 ata_unpack_xfermask(fe->param.xfer_mask, 441 &pio_mask, &mwdma_mask, &udma_mask); 442 if (udma_mask) 443 dev->udma_mask = udma_mask; 444 else if (mwdma_mask) { 445 dev->udma_mask = 0; 446 dev->mwdma_mask = mwdma_mask; 447 } else { 448 dev->udma_mask = 0; 449 dev->mwdma_mask = 0; 450 dev->pio_mask = pio_mask; 451 } 452 453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 454 fe->param.name); 455 return; 456 } 457 } 458 459 /** 460 * ata_force_horkage - force horkage according to libata.force 461 * @dev: ATA device of interest 462 * 463 * Force horkage according to libata.force and whine about it. 464 * For consistency with link selection, device number 15 selects 465 * the first device connected to the host link. 466 * 467 * LOCKING: 468 * EH context. 469 */ 470 static void ata_force_horkage(struct ata_device *dev) 471 { 472 int devno = dev->link->pmp + dev->devno; 473 int alt_devno = devno; 474 int i; 475 476 /* allow n.15/16 for devices attached to host port */ 477 if (ata_is_host_link(dev->link)) 478 alt_devno += 15; 479 480 for (i = 0; i < ata_force_tbl_size; i++) { 481 const struct ata_force_ent *fe = &ata_force_tbl[i]; 482 483 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 484 continue; 485 486 if (fe->device != -1 && fe->device != devno && 487 fe->device != alt_devno) 488 continue; 489 490 if (!(~dev->horkage & fe->param.horkage_on) && 491 !(dev->horkage & fe->param.horkage_off)) 492 continue; 493 494 dev->horkage |= fe->param.horkage_on; 495 dev->horkage &= ~fe->param.horkage_off; 496 497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 498 fe->param.name); 499 } 500 } 501 #else 502 static inline void ata_force_link_limits(struct ata_link *link) { } 503 static inline void ata_force_xfermask(struct ata_device *dev) { } 504 static inline void ata_force_horkage(struct ata_device *dev) { } 505 #endif 506 507 /** 508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 509 * @opcode: SCSI opcode 510 * 511 * Determine ATAPI command type from @opcode. 512 * 513 * LOCKING: 514 * None. 515 * 516 * RETURNS: 517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 518 */ 519 int atapi_cmd_type(u8 opcode) 520 { 521 switch (opcode) { 522 case GPCMD_READ_10: 523 case GPCMD_READ_12: 524 return ATAPI_READ; 525 526 case GPCMD_WRITE_10: 527 case GPCMD_WRITE_12: 528 case GPCMD_WRITE_AND_VERIFY_10: 529 return ATAPI_WRITE; 530 531 case GPCMD_READ_CD: 532 case GPCMD_READ_CD_MSF: 533 return ATAPI_READ_CD; 534 535 case ATA_16: 536 case ATA_12: 537 if (atapi_passthru16) 538 return ATAPI_PASS_THRU; 539 fallthrough; 540 default: 541 return ATAPI_MISC; 542 } 543 } 544 EXPORT_SYMBOL_GPL(atapi_cmd_type); 545 546 static const u8 ata_rw_cmds[] = { 547 /* pio multi */ 548 ATA_CMD_READ_MULTI, 549 ATA_CMD_WRITE_MULTI, 550 ATA_CMD_READ_MULTI_EXT, 551 ATA_CMD_WRITE_MULTI_EXT, 552 0, 553 0, 554 0, 555 ATA_CMD_WRITE_MULTI_FUA_EXT, 556 /* pio */ 557 ATA_CMD_PIO_READ, 558 ATA_CMD_PIO_WRITE, 559 ATA_CMD_PIO_READ_EXT, 560 ATA_CMD_PIO_WRITE_EXT, 561 0, 562 0, 563 0, 564 0, 565 /* dma */ 566 ATA_CMD_READ, 567 ATA_CMD_WRITE, 568 ATA_CMD_READ_EXT, 569 ATA_CMD_WRITE_EXT, 570 0, 571 0, 572 0, 573 ATA_CMD_WRITE_FUA_EXT 574 }; 575 576 /** 577 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 578 * @tf: command to examine and configure 579 * @dev: device tf belongs to 580 * 581 * Examine the device configuration and tf->flags to calculate 582 * the proper read/write commands and protocol to use. 583 * 584 * LOCKING: 585 * caller. 586 */ 587 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 588 { 589 u8 cmd; 590 591 int index, fua, lba48, write; 592 593 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 594 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 595 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 596 597 if (dev->flags & ATA_DFLAG_PIO) { 598 tf->protocol = ATA_PROT_PIO; 599 index = dev->multi_count ? 0 : 8; 600 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 601 /* Unable to use DMA due to host limitation */ 602 tf->protocol = ATA_PROT_PIO; 603 index = dev->multi_count ? 0 : 8; 604 } else { 605 tf->protocol = ATA_PROT_DMA; 606 index = 16; 607 } 608 609 cmd = ata_rw_cmds[index + fua + lba48 + write]; 610 if (cmd) { 611 tf->command = cmd; 612 return 0; 613 } 614 return -1; 615 } 616 617 /** 618 * ata_tf_read_block - Read block address from ATA taskfile 619 * @tf: ATA taskfile of interest 620 * @dev: ATA device @tf belongs to 621 * 622 * LOCKING: 623 * None. 624 * 625 * Read block address from @tf. This function can handle all 626 * three address formats - LBA, LBA48 and CHS. tf->protocol and 627 * flags select the address format to use. 628 * 629 * RETURNS: 630 * Block address read from @tf. 631 */ 632 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 633 { 634 u64 block = 0; 635 636 if (tf->flags & ATA_TFLAG_LBA) { 637 if (tf->flags & ATA_TFLAG_LBA48) { 638 block |= (u64)tf->hob_lbah << 40; 639 block |= (u64)tf->hob_lbam << 32; 640 block |= (u64)tf->hob_lbal << 24; 641 } else 642 block |= (tf->device & 0xf) << 24; 643 644 block |= tf->lbah << 16; 645 block |= tf->lbam << 8; 646 block |= tf->lbal; 647 } else { 648 u32 cyl, head, sect; 649 650 cyl = tf->lbam | (tf->lbah << 8); 651 head = tf->device & 0xf; 652 sect = tf->lbal; 653 654 if (!sect) { 655 ata_dev_warn(dev, 656 "device reported invalid CHS sector 0\n"); 657 return U64_MAX; 658 } 659 660 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 661 } 662 663 return block; 664 } 665 666 /** 667 * ata_build_rw_tf - Build ATA taskfile for given read/write request 668 * @tf: Target ATA taskfile 669 * @dev: ATA device @tf belongs to 670 * @block: Block address 671 * @n_block: Number of blocks 672 * @tf_flags: RW/FUA etc... 673 * @tag: tag 674 * @class: IO priority class 675 * 676 * LOCKING: 677 * None. 678 * 679 * Build ATA taskfile @tf for read/write request described by 680 * @block, @n_block, @tf_flags and @tag on @dev. 681 * 682 * RETURNS: 683 * 684 * 0 on success, -ERANGE if the request is too large for @dev, 685 * -EINVAL if the request is invalid. 686 */ 687 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 688 u64 block, u32 n_block, unsigned int tf_flags, 689 unsigned int tag, int class) 690 { 691 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 692 tf->flags |= tf_flags; 693 694 if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) { 695 /* yay, NCQ */ 696 if (!lba_48_ok(block, n_block)) 697 return -ERANGE; 698 699 tf->protocol = ATA_PROT_NCQ; 700 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 701 702 if (tf->flags & ATA_TFLAG_WRITE) 703 tf->command = ATA_CMD_FPDMA_WRITE; 704 else 705 tf->command = ATA_CMD_FPDMA_READ; 706 707 tf->nsect = tag << 3; 708 tf->hob_feature = (n_block >> 8) & 0xff; 709 tf->feature = n_block & 0xff; 710 711 tf->hob_lbah = (block >> 40) & 0xff; 712 tf->hob_lbam = (block >> 32) & 0xff; 713 tf->hob_lbal = (block >> 24) & 0xff; 714 tf->lbah = (block >> 16) & 0xff; 715 tf->lbam = (block >> 8) & 0xff; 716 tf->lbal = block & 0xff; 717 718 tf->device = ATA_LBA; 719 if (tf->flags & ATA_TFLAG_FUA) 720 tf->device |= 1 << 7; 721 722 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE && 723 class == IOPRIO_CLASS_RT) 724 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 725 } else if (dev->flags & ATA_DFLAG_LBA) { 726 tf->flags |= ATA_TFLAG_LBA; 727 728 if (lba_28_ok(block, n_block)) { 729 /* use LBA28 */ 730 tf->device |= (block >> 24) & 0xf; 731 } else if (lba_48_ok(block, n_block)) { 732 if (!(dev->flags & ATA_DFLAG_LBA48)) 733 return -ERANGE; 734 735 /* use LBA48 */ 736 tf->flags |= ATA_TFLAG_LBA48; 737 738 tf->hob_nsect = (n_block >> 8) & 0xff; 739 740 tf->hob_lbah = (block >> 40) & 0xff; 741 tf->hob_lbam = (block >> 32) & 0xff; 742 tf->hob_lbal = (block >> 24) & 0xff; 743 } else 744 /* request too large even for LBA48 */ 745 return -ERANGE; 746 747 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 748 return -EINVAL; 749 750 tf->nsect = n_block & 0xff; 751 752 tf->lbah = (block >> 16) & 0xff; 753 tf->lbam = (block >> 8) & 0xff; 754 tf->lbal = block & 0xff; 755 756 tf->device |= ATA_LBA; 757 } else { 758 /* CHS */ 759 u32 sect, head, cyl, track; 760 761 /* The request -may- be too large for CHS addressing. */ 762 if (!lba_28_ok(block, n_block)) 763 return -ERANGE; 764 765 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 766 return -EINVAL; 767 768 /* Convert LBA to CHS */ 769 track = (u32)block / dev->sectors; 770 cyl = track / dev->heads; 771 head = track % dev->heads; 772 sect = (u32)block % dev->sectors + 1; 773 774 /* Check whether the converted CHS can fit. 775 Cylinder: 0-65535 776 Head: 0-15 777 Sector: 1-255*/ 778 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 779 return -ERANGE; 780 781 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 782 tf->lbal = sect; 783 tf->lbam = cyl; 784 tf->lbah = cyl >> 8; 785 tf->device |= head; 786 } 787 788 return 0; 789 } 790 791 /** 792 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 793 * @pio_mask: pio_mask 794 * @mwdma_mask: mwdma_mask 795 * @udma_mask: udma_mask 796 * 797 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 798 * unsigned int xfer_mask. 799 * 800 * LOCKING: 801 * None. 802 * 803 * RETURNS: 804 * Packed xfer_mask. 805 */ 806 unsigned int ata_pack_xfermask(unsigned int pio_mask, 807 unsigned int mwdma_mask, 808 unsigned int udma_mask) 809 { 810 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 811 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 812 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 813 } 814 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 815 816 /** 817 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 818 * @xfer_mask: xfer_mask to unpack 819 * @pio_mask: resulting pio_mask 820 * @mwdma_mask: resulting mwdma_mask 821 * @udma_mask: resulting udma_mask 822 * 823 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 824 * Any NULL destination masks will be ignored. 825 */ 826 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, 827 unsigned int *mwdma_mask, unsigned int *udma_mask) 828 { 829 if (pio_mask) 830 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 831 if (mwdma_mask) 832 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 833 if (udma_mask) 834 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 835 } 836 837 static const struct ata_xfer_ent { 838 int shift, bits; 839 u8 base; 840 } ata_xfer_tbl[] = { 841 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 842 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 843 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 844 { -1, }, 845 }; 846 847 /** 848 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 849 * @xfer_mask: xfer_mask of interest 850 * 851 * Return matching XFER_* value for @xfer_mask. Only the highest 852 * bit of @xfer_mask is considered. 853 * 854 * LOCKING: 855 * None. 856 * 857 * RETURNS: 858 * Matching XFER_* value, 0xff if no match found. 859 */ 860 u8 ata_xfer_mask2mode(unsigned int xfer_mask) 861 { 862 int highbit = fls(xfer_mask) - 1; 863 const struct ata_xfer_ent *ent; 864 865 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 866 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 867 return ent->base + highbit - ent->shift; 868 return 0xff; 869 } 870 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 871 872 /** 873 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 874 * @xfer_mode: XFER_* of interest 875 * 876 * Return matching xfer_mask for @xfer_mode. 877 * 878 * LOCKING: 879 * None. 880 * 881 * RETURNS: 882 * Matching xfer_mask, 0 if no match found. 883 */ 884 unsigned int ata_xfer_mode2mask(u8 xfer_mode) 885 { 886 const struct ata_xfer_ent *ent; 887 888 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 889 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 890 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 891 & ~((1 << ent->shift) - 1); 892 return 0; 893 } 894 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 895 896 /** 897 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 898 * @xfer_mode: XFER_* of interest 899 * 900 * Return matching xfer_shift for @xfer_mode. 901 * 902 * LOCKING: 903 * None. 904 * 905 * RETURNS: 906 * Matching xfer_shift, -1 if no match found. 907 */ 908 int ata_xfer_mode2shift(u8 xfer_mode) 909 { 910 const struct ata_xfer_ent *ent; 911 912 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 913 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 914 return ent->shift; 915 return -1; 916 } 917 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 918 919 /** 920 * ata_mode_string - convert xfer_mask to string 921 * @xfer_mask: mask of bits supported; only highest bit counts. 922 * 923 * Determine string which represents the highest speed 924 * (highest bit in @modemask). 925 * 926 * LOCKING: 927 * None. 928 * 929 * RETURNS: 930 * Constant C string representing highest speed listed in 931 * @mode_mask, or the constant C string "<n/a>". 932 */ 933 const char *ata_mode_string(unsigned int xfer_mask) 934 { 935 static const char * const xfer_mode_str[] = { 936 "PIO0", 937 "PIO1", 938 "PIO2", 939 "PIO3", 940 "PIO4", 941 "PIO5", 942 "PIO6", 943 "MWDMA0", 944 "MWDMA1", 945 "MWDMA2", 946 "MWDMA3", 947 "MWDMA4", 948 "UDMA/16", 949 "UDMA/25", 950 "UDMA/33", 951 "UDMA/44", 952 "UDMA/66", 953 "UDMA/100", 954 "UDMA/133", 955 "UDMA7", 956 }; 957 int highbit; 958 959 highbit = fls(xfer_mask) - 1; 960 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 961 return xfer_mode_str[highbit]; 962 return "<n/a>"; 963 } 964 EXPORT_SYMBOL_GPL(ata_mode_string); 965 966 const char *sata_spd_string(unsigned int spd) 967 { 968 static const char * const spd_str[] = { 969 "1.5 Gbps", 970 "3.0 Gbps", 971 "6.0 Gbps", 972 }; 973 974 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 975 return "<unknown>"; 976 return spd_str[spd - 1]; 977 } 978 979 /** 980 * ata_dev_classify - determine device type based on ATA-spec signature 981 * @tf: ATA taskfile register set for device to be identified 982 * 983 * Determine from taskfile register contents whether a device is 984 * ATA or ATAPI, as per "Signature and persistence" section 985 * of ATA/PI spec (volume 1, sect 5.14). 986 * 987 * LOCKING: 988 * None. 989 * 990 * RETURNS: 991 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 992 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 993 */ 994 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 995 { 996 /* Apple's open source Darwin code hints that some devices only 997 * put a proper signature into the LBA mid/high registers, 998 * So, we only check those. It's sufficient for uniqueness. 999 * 1000 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1001 * signatures for ATA and ATAPI devices attached on SerialATA, 1002 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1003 * spec has never mentioned about using different signatures 1004 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1005 * Multiplier specification began to use 0x69/0x96 to identify 1006 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1007 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1008 * 0x69/0x96 shortly and described them as reserved for 1009 * SerialATA. 1010 * 1011 * We follow the current spec and consider that 0x69/0x96 1012 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1013 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1014 * SEMB signature. This is worked around in 1015 * ata_dev_read_id(). 1016 */ 1017 if (tf->lbam == 0 && tf->lbah == 0) 1018 return ATA_DEV_ATA; 1019 1020 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1021 return ATA_DEV_ATAPI; 1022 1023 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1024 return ATA_DEV_PMP; 1025 1026 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1027 return ATA_DEV_SEMB; 1028 1029 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1030 return ATA_DEV_ZAC; 1031 1032 return ATA_DEV_UNKNOWN; 1033 } 1034 EXPORT_SYMBOL_GPL(ata_dev_classify); 1035 1036 /** 1037 * ata_id_string - Convert IDENTIFY DEVICE page into string 1038 * @id: IDENTIFY DEVICE results we will examine 1039 * @s: string into which data is output 1040 * @ofs: offset into identify device page 1041 * @len: length of string to return. must be an even number. 1042 * 1043 * The strings in the IDENTIFY DEVICE page are broken up into 1044 * 16-bit chunks. Run through the string, and output each 1045 * 8-bit chunk linearly, regardless of platform. 1046 * 1047 * LOCKING: 1048 * caller. 1049 */ 1050 1051 void ata_id_string(const u16 *id, unsigned char *s, 1052 unsigned int ofs, unsigned int len) 1053 { 1054 unsigned int c; 1055 1056 BUG_ON(len & 1); 1057 1058 while (len > 0) { 1059 c = id[ofs] >> 8; 1060 *s = c; 1061 s++; 1062 1063 c = id[ofs] & 0xff; 1064 *s = c; 1065 s++; 1066 1067 ofs++; 1068 len -= 2; 1069 } 1070 } 1071 EXPORT_SYMBOL_GPL(ata_id_string); 1072 1073 /** 1074 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1075 * @id: IDENTIFY DEVICE results we will examine 1076 * @s: string into which data is output 1077 * @ofs: offset into identify device page 1078 * @len: length of string to return. must be an odd number. 1079 * 1080 * This function is identical to ata_id_string except that it 1081 * trims trailing spaces and terminates the resulting string with 1082 * null. @len must be actual maximum length (even number) + 1. 1083 * 1084 * LOCKING: 1085 * caller. 1086 */ 1087 void ata_id_c_string(const u16 *id, unsigned char *s, 1088 unsigned int ofs, unsigned int len) 1089 { 1090 unsigned char *p; 1091 1092 ata_id_string(id, s, ofs, len - 1); 1093 1094 p = s + strnlen(s, len - 1); 1095 while (p > s && p[-1] == ' ') 1096 p--; 1097 *p = '\0'; 1098 } 1099 EXPORT_SYMBOL_GPL(ata_id_c_string); 1100 1101 static u64 ata_id_n_sectors(const u16 *id) 1102 { 1103 if (ata_id_has_lba(id)) { 1104 if (ata_id_has_lba48(id)) 1105 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1106 1107 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1108 } 1109 1110 if (ata_id_current_chs_valid(id)) 1111 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] * 1112 (u32)id[ATA_ID_CUR_SECTORS]; 1113 1114 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] * 1115 (u32)id[ATA_ID_SECTORS]; 1116 } 1117 1118 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1119 { 1120 u64 sectors = 0; 1121 1122 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1123 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1124 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1125 sectors |= (tf->lbah & 0xff) << 16; 1126 sectors |= (tf->lbam & 0xff) << 8; 1127 sectors |= (tf->lbal & 0xff); 1128 1129 return sectors; 1130 } 1131 1132 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1133 { 1134 u64 sectors = 0; 1135 1136 sectors |= (tf->device & 0x0f) << 24; 1137 sectors |= (tf->lbah & 0xff) << 16; 1138 sectors |= (tf->lbam & 0xff) << 8; 1139 sectors |= (tf->lbal & 0xff); 1140 1141 return sectors; 1142 } 1143 1144 /** 1145 * ata_read_native_max_address - Read native max address 1146 * @dev: target device 1147 * @max_sectors: out parameter for the result native max address 1148 * 1149 * Perform an LBA48 or LBA28 native size query upon the device in 1150 * question. 1151 * 1152 * RETURNS: 1153 * 0 on success, -EACCES if command is aborted by the drive. 1154 * -EIO on other errors. 1155 */ 1156 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1157 { 1158 unsigned int err_mask; 1159 struct ata_taskfile tf; 1160 int lba48 = ata_id_has_lba48(dev->id); 1161 1162 ata_tf_init(dev, &tf); 1163 1164 /* always clear all address registers */ 1165 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1166 1167 if (lba48) { 1168 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1169 tf.flags |= ATA_TFLAG_LBA48; 1170 } else 1171 tf.command = ATA_CMD_READ_NATIVE_MAX; 1172 1173 tf.protocol = ATA_PROT_NODATA; 1174 tf.device |= ATA_LBA; 1175 1176 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1177 if (err_mask) { 1178 ata_dev_warn(dev, 1179 "failed to read native max address (err_mask=0x%x)\n", 1180 err_mask); 1181 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 1182 return -EACCES; 1183 return -EIO; 1184 } 1185 1186 if (lba48) 1187 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1188 else 1189 *max_sectors = ata_tf_to_lba(&tf) + 1; 1190 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1191 (*max_sectors)--; 1192 return 0; 1193 } 1194 1195 /** 1196 * ata_set_max_sectors - Set max sectors 1197 * @dev: target device 1198 * @new_sectors: new max sectors value to set for the device 1199 * 1200 * Set max sectors of @dev to @new_sectors. 1201 * 1202 * RETURNS: 1203 * 0 on success, -EACCES if command is aborted or denied (due to 1204 * previous non-volatile SET_MAX) by the drive. -EIO on other 1205 * errors. 1206 */ 1207 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1208 { 1209 unsigned int err_mask; 1210 struct ata_taskfile tf; 1211 int lba48 = ata_id_has_lba48(dev->id); 1212 1213 new_sectors--; 1214 1215 ata_tf_init(dev, &tf); 1216 1217 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1218 1219 if (lba48) { 1220 tf.command = ATA_CMD_SET_MAX_EXT; 1221 tf.flags |= ATA_TFLAG_LBA48; 1222 1223 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1224 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1225 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1226 } else { 1227 tf.command = ATA_CMD_SET_MAX; 1228 1229 tf.device |= (new_sectors >> 24) & 0xf; 1230 } 1231 1232 tf.protocol = ATA_PROT_NODATA; 1233 tf.device |= ATA_LBA; 1234 1235 tf.lbal = (new_sectors >> 0) & 0xff; 1236 tf.lbam = (new_sectors >> 8) & 0xff; 1237 tf.lbah = (new_sectors >> 16) & 0xff; 1238 1239 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1240 if (err_mask) { 1241 ata_dev_warn(dev, 1242 "failed to set max address (err_mask=0x%x)\n", 1243 err_mask); 1244 if (err_mask == AC_ERR_DEV && 1245 (tf.error & (ATA_ABORTED | ATA_IDNF))) 1246 return -EACCES; 1247 return -EIO; 1248 } 1249 1250 return 0; 1251 } 1252 1253 /** 1254 * ata_hpa_resize - Resize a device with an HPA set 1255 * @dev: Device to resize 1256 * 1257 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1258 * it if required to the full size of the media. The caller must check 1259 * the drive has the HPA feature set enabled. 1260 * 1261 * RETURNS: 1262 * 0 on success, -errno on failure. 1263 */ 1264 static int ata_hpa_resize(struct ata_device *dev) 1265 { 1266 bool print_info = ata_dev_print_info(dev); 1267 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1268 u64 sectors = ata_id_n_sectors(dev->id); 1269 u64 native_sectors; 1270 int rc; 1271 1272 /* do we need to do it? */ 1273 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1274 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1275 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1276 return 0; 1277 1278 /* read native max address */ 1279 rc = ata_read_native_max_address(dev, &native_sectors); 1280 if (rc) { 1281 /* If device aborted the command or HPA isn't going to 1282 * be unlocked, skip HPA resizing. 1283 */ 1284 if (rc == -EACCES || !unlock_hpa) { 1285 ata_dev_warn(dev, 1286 "HPA support seems broken, skipping HPA handling\n"); 1287 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1288 1289 /* we can continue if device aborted the command */ 1290 if (rc == -EACCES) 1291 rc = 0; 1292 } 1293 1294 return rc; 1295 } 1296 dev->n_native_sectors = native_sectors; 1297 1298 /* nothing to do? */ 1299 if (native_sectors <= sectors || !unlock_hpa) { 1300 if (!print_info || native_sectors == sectors) 1301 return 0; 1302 1303 if (native_sectors > sectors) 1304 ata_dev_info(dev, 1305 "HPA detected: current %llu, native %llu\n", 1306 (unsigned long long)sectors, 1307 (unsigned long long)native_sectors); 1308 else if (native_sectors < sectors) 1309 ata_dev_warn(dev, 1310 "native sectors (%llu) is smaller than sectors (%llu)\n", 1311 (unsigned long long)native_sectors, 1312 (unsigned long long)sectors); 1313 return 0; 1314 } 1315 1316 /* let's unlock HPA */ 1317 rc = ata_set_max_sectors(dev, native_sectors); 1318 if (rc == -EACCES) { 1319 /* if device aborted the command, skip HPA resizing */ 1320 ata_dev_warn(dev, 1321 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1322 (unsigned long long)sectors, 1323 (unsigned long long)native_sectors); 1324 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1325 return 0; 1326 } else if (rc) 1327 return rc; 1328 1329 /* re-read IDENTIFY data */ 1330 rc = ata_dev_reread_id(dev, 0); 1331 if (rc) { 1332 ata_dev_err(dev, 1333 "failed to re-read IDENTIFY data after HPA resizing\n"); 1334 return rc; 1335 } 1336 1337 if (print_info) { 1338 u64 new_sectors = ata_id_n_sectors(dev->id); 1339 ata_dev_info(dev, 1340 "HPA unlocked: %llu -> %llu, native %llu\n", 1341 (unsigned long long)sectors, 1342 (unsigned long long)new_sectors, 1343 (unsigned long long)native_sectors); 1344 } 1345 1346 return 0; 1347 } 1348 1349 /** 1350 * ata_dump_id - IDENTIFY DEVICE info debugging output 1351 * @dev: device from which the information is fetched 1352 * @id: IDENTIFY DEVICE page to dump 1353 * 1354 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1355 * page. 1356 * 1357 * LOCKING: 1358 * caller. 1359 */ 1360 1361 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1362 { 1363 ata_dev_dbg(dev, 1364 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1365 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1366 "88==0x%04x 93==0x%04x\n", 1367 id[49], id[53], id[63], id[64], id[75], id[80], 1368 id[81], id[82], id[83], id[84], id[88], id[93]); 1369 } 1370 1371 /** 1372 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1373 * @id: IDENTIFY data to compute xfer mask from 1374 * 1375 * Compute the xfermask for this device. This is not as trivial 1376 * as it seems if we must consider early devices correctly. 1377 * 1378 * FIXME: pre IDE drive timing (do we care ?). 1379 * 1380 * LOCKING: 1381 * None. 1382 * 1383 * RETURNS: 1384 * Computed xfermask 1385 */ 1386 unsigned int ata_id_xfermask(const u16 *id) 1387 { 1388 unsigned int pio_mask, mwdma_mask, udma_mask; 1389 1390 /* Usual case. Word 53 indicates word 64 is valid */ 1391 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1392 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1393 pio_mask <<= 3; 1394 pio_mask |= 0x7; 1395 } else { 1396 /* If word 64 isn't valid then Word 51 high byte holds 1397 * the PIO timing number for the maximum. Turn it into 1398 * a mask. 1399 */ 1400 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1401 if (mode < 5) /* Valid PIO range */ 1402 pio_mask = (2 << mode) - 1; 1403 else 1404 pio_mask = 1; 1405 1406 /* But wait.. there's more. Design your standards by 1407 * committee and you too can get a free iordy field to 1408 * process. However it is the speeds not the modes that 1409 * are supported... Note drivers using the timing API 1410 * will get this right anyway 1411 */ 1412 } 1413 1414 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1415 1416 if (ata_id_is_cfa(id)) { 1417 /* 1418 * Process compact flash extended modes 1419 */ 1420 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1421 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1422 1423 if (pio) 1424 pio_mask |= (1 << 5); 1425 if (pio > 1) 1426 pio_mask |= (1 << 6); 1427 if (dma) 1428 mwdma_mask |= (1 << 3); 1429 if (dma > 1) 1430 mwdma_mask |= (1 << 4); 1431 } 1432 1433 udma_mask = 0; 1434 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1435 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1436 1437 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1438 } 1439 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1440 1441 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1442 { 1443 struct completion *waiting = qc->private_data; 1444 1445 complete(waiting); 1446 } 1447 1448 /** 1449 * ata_exec_internal_sg - execute libata internal command 1450 * @dev: Device to which the command is sent 1451 * @tf: Taskfile registers for the command and the result 1452 * @cdb: CDB for packet command 1453 * @dma_dir: Data transfer direction of the command 1454 * @sgl: sg list for the data buffer of the command 1455 * @n_elem: Number of sg entries 1456 * @timeout: Timeout in msecs (0 for default) 1457 * 1458 * Executes libata internal command with timeout. @tf contains 1459 * command on entry and result on return. Timeout and error 1460 * conditions are reported via return value. No recovery action 1461 * is taken after a command times out. It's caller's duty to 1462 * clean up after timeout. 1463 * 1464 * LOCKING: 1465 * None. Should be called with kernel context, might sleep. 1466 * 1467 * RETURNS: 1468 * Zero on success, AC_ERR_* mask on failure 1469 */ 1470 static unsigned ata_exec_internal_sg(struct ata_device *dev, 1471 struct ata_taskfile *tf, const u8 *cdb, 1472 int dma_dir, struct scatterlist *sgl, 1473 unsigned int n_elem, unsigned int timeout) 1474 { 1475 struct ata_link *link = dev->link; 1476 struct ata_port *ap = link->ap; 1477 u8 command = tf->command; 1478 int auto_timeout = 0; 1479 struct ata_queued_cmd *qc; 1480 unsigned int preempted_tag; 1481 u32 preempted_sactive; 1482 u64 preempted_qc_active; 1483 int preempted_nr_active_links; 1484 DECLARE_COMPLETION_ONSTACK(wait); 1485 unsigned long flags; 1486 unsigned int err_mask; 1487 int rc; 1488 1489 spin_lock_irqsave(ap->lock, flags); 1490 1491 /* no internal command while frozen */ 1492 if (ap->pflags & ATA_PFLAG_FROZEN) { 1493 spin_unlock_irqrestore(ap->lock, flags); 1494 return AC_ERR_SYSTEM; 1495 } 1496 1497 /* initialize internal qc */ 1498 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1499 1500 qc->tag = ATA_TAG_INTERNAL; 1501 qc->hw_tag = 0; 1502 qc->scsicmd = NULL; 1503 qc->ap = ap; 1504 qc->dev = dev; 1505 ata_qc_reinit(qc); 1506 1507 preempted_tag = link->active_tag; 1508 preempted_sactive = link->sactive; 1509 preempted_qc_active = ap->qc_active; 1510 preempted_nr_active_links = ap->nr_active_links; 1511 link->active_tag = ATA_TAG_POISON; 1512 link->sactive = 0; 1513 ap->qc_active = 0; 1514 ap->nr_active_links = 0; 1515 1516 /* prepare & issue qc */ 1517 qc->tf = *tf; 1518 if (cdb) 1519 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1520 1521 /* some SATA bridges need us to indicate data xfer direction */ 1522 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1523 dma_dir == DMA_FROM_DEVICE) 1524 qc->tf.feature |= ATAPI_DMADIR; 1525 1526 qc->flags |= ATA_QCFLAG_RESULT_TF; 1527 qc->dma_dir = dma_dir; 1528 if (dma_dir != DMA_NONE) { 1529 unsigned int i, buflen = 0; 1530 struct scatterlist *sg; 1531 1532 for_each_sg(sgl, sg, n_elem, i) 1533 buflen += sg->length; 1534 1535 ata_sg_init(qc, sgl, n_elem); 1536 qc->nbytes = buflen; 1537 } 1538 1539 qc->private_data = &wait; 1540 qc->complete_fn = ata_qc_complete_internal; 1541 1542 ata_qc_issue(qc); 1543 1544 spin_unlock_irqrestore(ap->lock, flags); 1545 1546 if (!timeout) { 1547 if (ata_probe_timeout) 1548 timeout = ata_probe_timeout * 1000; 1549 else { 1550 timeout = ata_internal_cmd_timeout(dev, command); 1551 auto_timeout = 1; 1552 } 1553 } 1554 1555 if (ap->ops->error_handler) 1556 ata_eh_release(ap); 1557 1558 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1559 1560 if (ap->ops->error_handler) 1561 ata_eh_acquire(ap); 1562 1563 ata_sff_flush_pio_task(ap); 1564 1565 if (!rc) { 1566 spin_lock_irqsave(ap->lock, flags); 1567 1568 /* We're racing with irq here. If we lose, the 1569 * following test prevents us from completing the qc 1570 * twice. If we win, the port is frozen and will be 1571 * cleaned up by ->post_internal_cmd(). 1572 */ 1573 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1574 qc->err_mask |= AC_ERR_TIMEOUT; 1575 1576 if (ap->ops->error_handler) 1577 ata_port_freeze(ap); 1578 else 1579 ata_qc_complete(qc); 1580 1581 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1582 command); 1583 } 1584 1585 spin_unlock_irqrestore(ap->lock, flags); 1586 } 1587 1588 /* do post_internal_cmd */ 1589 if (ap->ops->post_internal_cmd) 1590 ap->ops->post_internal_cmd(qc); 1591 1592 /* perform minimal error analysis */ 1593 if (qc->flags & ATA_QCFLAG_FAILED) { 1594 if (qc->result_tf.status & (ATA_ERR | ATA_DF)) 1595 qc->err_mask |= AC_ERR_DEV; 1596 1597 if (!qc->err_mask) 1598 qc->err_mask |= AC_ERR_OTHER; 1599 1600 if (qc->err_mask & ~AC_ERR_OTHER) 1601 qc->err_mask &= ~AC_ERR_OTHER; 1602 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1603 qc->result_tf.status |= ATA_SENSE; 1604 } 1605 1606 /* finish up */ 1607 spin_lock_irqsave(ap->lock, flags); 1608 1609 *tf = qc->result_tf; 1610 err_mask = qc->err_mask; 1611 1612 ata_qc_free(qc); 1613 link->active_tag = preempted_tag; 1614 link->sactive = preempted_sactive; 1615 ap->qc_active = preempted_qc_active; 1616 ap->nr_active_links = preempted_nr_active_links; 1617 1618 spin_unlock_irqrestore(ap->lock, flags); 1619 1620 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1621 ata_internal_cmd_timed_out(dev, command); 1622 1623 return err_mask; 1624 } 1625 1626 /** 1627 * ata_exec_internal - execute libata internal command 1628 * @dev: Device to which the command is sent 1629 * @tf: Taskfile registers for the command and the result 1630 * @cdb: CDB for packet command 1631 * @dma_dir: Data transfer direction of the command 1632 * @buf: Data buffer of the command 1633 * @buflen: Length of data buffer 1634 * @timeout: Timeout in msecs (0 for default) 1635 * 1636 * Wrapper around ata_exec_internal_sg() which takes simple 1637 * buffer instead of sg list. 1638 * 1639 * LOCKING: 1640 * None. Should be called with kernel context, might sleep. 1641 * 1642 * RETURNS: 1643 * Zero on success, AC_ERR_* mask on failure 1644 */ 1645 unsigned ata_exec_internal(struct ata_device *dev, 1646 struct ata_taskfile *tf, const u8 *cdb, 1647 int dma_dir, void *buf, unsigned int buflen, 1648 unsigned int timeout) 1649 { 1650 struct scatterlist *psg = NULL, sg; 1651 unsigned int n_elem = 0; 1652 1653 if (dma_dir != DMA_NONE) { 1654 WARN_ON(!buf); 1655 sg_init_one(&sg, buf, buflen); 1656 psg = &sg; 1657 n_elem++; 1658 } 1659 1660 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1661 timeout); 1662 } 1663 1664 /** 1665 * ata_pio_need_iordy - check if iordy needed 1666 * @adev: ATA device 1667 * 1668 * Check if the current speed of the device requires IORDY. Used 1669 * by various controllers for chip configuration. 1670 */ 1671 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1672 { 1673 /* Don't set IORDY if we're preparing for reset. IORDY may 1674 * lead to controller lock up on certain controllers if the 1675 * port is not occupied. See bko#11703 for details. 1676 */ 1677 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1678 return 0; 1679 /* Controller doesn't support IORDY. Probably a pointless 1680 * check as the caller should know this. 1681 */ 1682 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1683 return 0; 1684 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1685 if (ata_id_is_cfa(adev->id) 1686 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1687 return 0; 1688 /* PIO3 and higher it is mandatory */ 1689 if (adev->pio_mode > XFER_PIO_2) 1690 return 1; 1691 /* We turn it on when possible */ 1692 if (ata_id_has_iordy(adev->id)) 1693 return 1; 1694 return 0; 1695 } 1696 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1697 1698 /** 1699 * ata_pio_mask_no_iordy - Return the non IORDY mask 1700 * @adev: ATA device 1701 * 1702 * Compute the highest mode possible if we are not using iordy. Return 1703 * -1 if no iordy mode is available. 1704 */ 1705 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1706 { 1707 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1708 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1709 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1710 /* Is the speed faster than the drive allows non IORDY ? */ 1711 if (pio) { 1712 /* This is cycle times not frequency - watch the logic! */ 1713 if (pio > 240) /* PIO2 is 240nS per cycle */ 1714 return 3 << ATA_SHIFT_PIO; 1715 return 7 << ATA_SHIFT_PIO; 1716 } 1717 } 1718 return 3 << ATA_SHIFT_PIO; 1719 } 1720 1721 /** 1722 * ata_do_dev_read_id - default ID read method 1723 * @dev: device 1724 * @tf: proposed taskfile 1725 * @id: data buffer 1726 * 1727 * Issue the identify taskfile and hand back the buffer containing 1728 * identify data. For some RAID controllers and for pre ATA devices 1729 * this function is wrapped or replaced by the driver 1730 */ 1731 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1732 struct ata_taskfile *tf, __le16 *id) 1733 { 1734 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1735 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1736 } 1737 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1738 1739 /** 1740 * ata_dev_read_id - Read ID data from the specified device 1741 * @dev: target device 1742 * @p_class: pointer to class of the target device (may be changed) 1743 * @flags: ATA_READID_* flags 1744 * @id: buffer to read IDENTIFY data into 1745 * 1746 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1747 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1748 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1749 * for pre-ATA4 drives. 1750 * 1751 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1752 * now we abort if we hit that case. 1753 * 1754 * LOCKING: 1755 * Kernel thread context (may sleep) 1756 * 1757 * RETURNS: 1758 * 0 on success, -errno otherwise. 1759 */ 1760 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1761 unsigned int flags, u16 *id) 1762 { 1763 struct ata_port *ap = dev->link->ap; 1764 unsigned int class = *p_class; 1765 struct ata_taskfile tf; 1766 unsigned int err_mask = 0; 1767 const char *reason; 1768 bool is_semb = class == ATA_DEV_SEMB; 1769 int may_fallback = 1, tried_spinup = 0; 1770 int rc; 1771 1772 retry: 1773 ata_tf_init(dev, &tf); 1774 1775 switch (class) { 1776 case ATA_DEV_SEMB: 1777 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1778 fallthrough; 1779 case ATA_DEV_ATA: 1780 case ATA_DEV_ZAC: 1781 tf.command = ATA_CMD_ID_ATA; 1782 break; 1783 case ATA_DEV_ATAPI: 1784 tf.command = ATA_CMD_ID_ATAPI; 1785 break; 1786 default: 1787 rc = -ENODEV; 1788 reason = "unsupported class"; 1789 goto err_out; 1790 } 1791 1792 tf.protocol = ATA_PROT_PIO; 1793 1794 /* Some devices choke if TF registers contain garbage. Make 1795 * sure those are properly initialized. 1796 */ 1797 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1798 1799 /* Device presence detection is unreliable on some 1800 * controllers. Always poll IDENTIFY if available. 1801 */ 1802 tf.flags |= ATA_TFLAG_POLLING; 1803 1804 if (ap->ops->read_id) 1805 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1806 else 1807 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1808 1809 if (err_mask) { 1810 if (err_mask & AC_ERR_NODEV_HINT) { 1811 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1812 return -ENOENT; 1813 } 1814 1815 if (is_semb) { 1816 ata_dev_info(dev, 1817 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1818 /* SEMB is not supported yet */ 1819 *p_class = ATA_DEV_SEMB_UNSUP; 1820 return 0; 1821 } 1822 1823 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) { 1824 /* Device or controller might have reported 1825 * the wrong device class. Give a shot at the 1826 * other IDENTIFY if the current one is 1827 * aborted by the device. 1828 */ 1829 if (may_fallback) { 1830 may_fallback = 0; 1831 1832 if (class == ATA_DEV_ATA) 1833 class = ATA_DEV_ATAPI; 1834 else 1835 class = ATA_DEV_ATA; 1836 goto retry; 1837 } 1838 1839 /* Control reaches here iff the device aborted 1840 * both flavors of IDENTIFYs which happens 1841 * sometimes with phantom devices. 1842 */ 1843 ata_dev_dbg(dev, 1844 "both IDENTIFYs aborted, assuming NODEV\n"); 1845 return -ENOENT; 1846 } 1847 1848 rc = -EIO; 1849 reason = "I/O error"; 1850 goto err_out; 1851 } 1852 1853 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1854 ata_dev_info(dev, "dumping IDENTIFY data, " 1855 "class=%d may_fallback=%d tried_spinup=%d\n", 1856 class, may_fallback, tried_spinup); 1857 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1858 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1859 } 1860 1861 /* Falling back doesn't make sense if ID data was read 1862 * successfully at least once. 1863 */ 1864 may_fallback = 0; 1865 1866 swap_buf_le16(id, ATA_ID_WORDS); 1867 1868 /* sanity check */ 1869 rc = -EINVAL; 1870 reason = "device reports invalid type"; 1871 1872 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1873 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1874 goto err_out; 1875 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1876 ata_id_is_ata(id)) { 1877 ata_dev_dbg(dev, 1878 "host indicates ignore ATA devices, ignored\n"); 1879 return -ENOENT; 1880 } 1881 } else { 1882 if (ata_id_is_ata(id)) 1883 goto err_out; 1884 } 1885 1886 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1887 tried_spinup = 1; 1888 /* 1889 * Drive powered-up in standby mode, and requires a specific 1890 * SET_FEATURES spin-up subcommand before it will accept 1891 * anything other than the original IDENTIFY command. 1892 */ 1893 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1894 if (err_mask && id[2] != 0x738c) { 1895 rc = -EIO; 1896 reason = "SPINUP failed"; 1897 goto err_out; 1898 } 1899 /* 1900 * If the drive initially returned incomplete IDENTIFY info, 1901 * we now must reissue the IDENTIFY command. 1902 */ 1903 if (id[2] == 0x37c8) 1904 goto retry; 1905 } 1906 1907 if ((flags & ATA_READID_POSTRESET) && 1908 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1909 /* 1910 * The exact sequence expected by certain pre-ATA4 drives is: 1911 * SRST RESET 1912 * IDENTIFY (optional in early ATA) 1913 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1914 * anything else.. 1915 * Some drives were very specific about that exact sequence. 1916 * 1917 * Note that ATA4 says lba is mandatory so the second check 1918 * should never trigger. 1919 */ 1920 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1921 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1922 if (err_mask) { 1923 rc = -EIO; 1924 reason = "INIT_DEV_PARAMS failed"; 1925 goto err_out; 1926 } 1927 1928 /* current CHS translation info (id[53-58]) might be 1929 * changed. reread the identify device info. 1930 */ 1931 flags &= ~ATA_READID_POSTRESET; 1932 goto retry; 1933 } 1934 } 1935 1936 *p_class = class; 1937 1938 return 0; 1939 1940 err_out: 1941 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1942 reason, err_mask); 1943 return rc; 1944 } 1945 1946 /** 1947 * ata_read_log_page - read a specific log page 1948 * @dev: target device 1949 * @log: log to read 1950 * @page: page to read 1951 * @buf: buffer to store read page 1952 * @sectors: number of sectors to read 1953 * 1954 * Read log page using READ_LOG_EXT command. 1955 * 1956 * LOCKING: 1957 * Kernel thread context (may sleep). 1958 * 1959 * RETURNS: 1960 * 0 on success, AC_ERR_* mask otherwise. 1961 */ 1962 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 1963 u8 page, void *buf, unsigned int sectors) 1964 { 1965 unsigned long ap_flags = dev->link->ap->flags; 1966 struct ata_taskfile tf; 1967 unsigned int err_mask; 1968 bool dma = false; 1969 1970 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 1971 1972 /* 1973 * Return error without actually issuing the command on controllers 1974 * which e.g. lockup on a read log page. 1975 */ 1976 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 1977 return AC_ERR_DEV; 1978 1979 retry: 1980 ata_tf_init(dev, &tf); 1981 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 1982 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) { 1983 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 1984 tf.protocol = ATA_PROT_DMA; 1985 dma = true; 1986 } else { 1987 tf.command = ATA_CMD_READ_LOG_EXT; 1988 tf.protocol = ATA_PROT_PIO; 1989 dma = false; 1990 } 1991 tf.lbal = log; 1992 tf.lbam = page; 1993 tf.nsect = sectors; 1994 tf.hob_nsect = sectors >> 8; 1995 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 1996 1997 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 1998 buf, sectors * ATA_SECT_SIZE, 0); 1999 2000 if (err_mask) { 2001 if (dma) { 2002 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG; 2003 goto retry; 2004 } 2005 ata_dev_err(dev, 2006 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2007 (unsigned int)log, (unsigned int)page, err_mask); 2008 } 2009 2010 return err_mask; 2011 } 2012 2013 static int ata_log_supported(struct ata_device *dev, u8 log) 2014 { 2015 struct ata_port *ap = dev->link->ap; 2016 2017 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR) 2018 return 0; 2019 2020 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1)) 2021 return 0; 2022 return get_unaligned_le16(&ap->sector_buf[log * 2]); 2023 } 2024 2025 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2026 { 2027 struct ata_port *ap = dev->link->ap; 2028 unsigned int err, i; 2029 2030 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG) 2031 return false; 2032 2033 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2034 /* 2035 * IDENTIFY DEVICE data log is defined as mandatory starting 2036 * with ACS-3 (ATA version 10). Warn about the missing log 2037 * for drives which implement this ATA level or above. 2038 */ 2039 if (ata_id_major_version(dev->id) >= 10) 2040 ata_dev_warn(dev, 2041 "ATA Identify Device Log not supported\n"); 2042 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG; 2043 return false; 2044 } 2045 2046 /* 2047 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2048 * supported. 2049 */ 2050 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf, 2051 1); 2052 if (err) 2053 return false; 2054 2055 for (i = 0; i < ap->sector_buf[8]; i++) { 2056 if (ap->sector_buf[9 + i] == page) 2057 return true; 2058 } 2059 2060 return false; 2061 } 2062 2063 static int ata_do_link_spd_horkage(struct ata_device *dev) 2064 { 2065 struct ata_link *plink = ata_dev_phys_link(dev); 2066 u32 target, target_limit; 2067 2068 if (!sata_scr_valid(plink)) 2069 return 0; 2070 2071 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2072 target = 1; 2073 else 2074 return 0; 2075 2076 target_limit = (1 << target) - 1; 2077 2078 /* if already on stricter limit, no need to push further */ 2079 if (plink->sata_spd_limit <= target_limit) 2080 return 0; 2081 2082 plink->sata_spd_limit = target_limit; 2083 2084 /* Request another EH round by returning -EAGAIN if link is 2085 * going faster than the target speed. Forward progress is 2086 * guaranteed by setting sata_spd_limit to target_limit above. 2087 */ 2088 if (plink->sata_spd > target) { 2089 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2090 sata_spd_string(target)); 2091 return -EAGAIN; 2092 } 2093 return 0; 2094 } 2095 2096 static inline u8 ata_dev_knobble(struct ata_device *dev) 2097 { 2098 struct ata_port *ap = dev->link->ap; 2099 2100 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2101 return 0; 2102 2103 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2104 } 2105 2106 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2107 { 2108 struct ata_port *ap = dev->link->ap; 2109 unsigned int err_mask; 2110 2111 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2112 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2113 return; 2114 } 2115 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2116 0, ap->sector_buf, 1); 2117 if (!err_mask) { 2118 u8 *cmds = dev->ncq_send_recv_cmds; 2119 2120 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2121 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2122 2123 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) { 2124 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2125 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2126 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2127 } 2128 } 2129 } 2130 2131 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2132 { 2133 struct ata_port *ap = dev->link->ap; 2134 unsigned int err_mask; 2135 2136 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2137 ata_dev_warn(dev, 2138 "NCQ Send/Recv Log not supported\n"); 2139 return; 2140 } 2141 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2142 0, ap->sector_buf, 1); 2143 if (!err_mask) { 2144 u8 *cmds = dev->ncq_non_data_cmds; 2145 2146 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE); 2147 } 2148 } 2149 2150 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2151 { 2152 struct ata_port *ap = dev->link->ap; 2153 unsigned int err_mask; 2154 2155 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2156 return; 2157 2158 err_mask = ata_read_log_page(dev, 2159 ATA_LOG_IDENTIFY_DEVICE, 2160 ATA_LOG_SATA_SETTINGS, 2161 ap->sector_buf, 2162 1); 2163 if (err_mask) 2164 goto not_supported; 2165 2166 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2167 goto not_supported; 2168 2169 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2170 2171 return; 2172 2173 not_supported: 2174 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE; 2175 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2176 } 2177 2178 static bool ata_dev_check_adapter(struct ata_device *dev, 2179 unsigned short vendor_id) 2180 { 2181 struct pci_dev *pcidev = NULL; 2182 struct device *parent_dev = NULL; 2183 2184 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2185 parent_dev = parent_dev->parent) { 2186 if (dev_is_pci(parent_dev)) { 2187 pcidev = to_pci_dev(parent_dev); 2188 if (pcidev->vendor == vendor_id) 2189 return true; 2190 break; 2191 } 2192 } 2193 2194 return false; 2195 } 2196 2197 static int ata_dev_config_ncq(struct ata_device *dev, 2198 char *desc, size_t desc_sz) 2199 { 2200 struct ata_port *ap = dev->link->ap; 2201 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2202 unsigned int err_mask; 2203 char *aa_desc = ""; 2204 2205 if (!ata_id_has_ncq(dev->id)) { 2206 desc[0] = '\0'; 2207 return 0; 2208 } 2209 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2210 return 0; 2211 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2212 snprintf(desc, desc_sz, "NCQ (not used)"); 2213 return 0; 2214 } 2215 2216 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI && 2217 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2218 snprintf(desc, desc_sz, "NCQ (not used)"); 2219 return 0; 2220 } 2221 2222 if (ap->flags & ATA_FLAG_NCQ) { 2223 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2224 dev->flags |= ATA_DFLAG_NCQ; 2225 } 2226 2227 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2228 (ap->flags & ATA_FLAG_FPDMA_AA) && 2229 ata_id_has_fpdma_aa(dev->id)) { 2230 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2231 SATA_FPDMA_AA); 2232 if (err_mask) { 2233 ata_dev_err(dev, 2234 "failed to enable AA (error_mask=0x%x)\n", 2235 err_mask); 2236 if (err_mask != AC_ERR_DEV) { 2237 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2238 return -EIO; 2239 } 2240 } else 2241 aa_desc = ", AA"; 2242 } 2243 2244 if (hdepth >= ddepth) 2245 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2246 else 2247 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2248 ddepth, aa_desc); 2249 2250 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2251 if (ata_id_has_ncq_send_and_recv(dev->id)) 2252 ata_dev_config_ncq_send_recv(dev); 2253 if (ata_id_has_ncq_non_data(dev->id)) 2254 ata_dev_config_ncq_non_data(dev); 2255 if (ata_id_has_ncq_prio(dev->id)) 2256 ata_dev_config_ncq_prio(dev); 2257 } 2258 2259 return 0; 2260 } 2261 2262 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2263 { 2264 unsigned int err_mask; 2265 2266 if (!ata_id_has_sense_reporting(dev->id)) 2267 return; 2268 2269 if (ata_id_sense_reporting_enabled(dev->id)) 2270 return; 2271 2272 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2273 if (err_mask) { 2274 ata_dev_dbg(dev, 2275 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2276 err_mask); 2277 } 2278 } 2279 2280 static void ata_dev_config_zac(struct ata_device *dev) 2281 { 2282 struct ata_port *ap = dev->link->ap; 2283 unsigned int err_mask; 2284 u8 *identify_buf = ap->sector_buf; 2285 2286 dev->zac_zones_optimal_open = U32_MAX; 2287 dev->zac_zones_optimal_nonseq = U32_MAX; 2288 dev->zac_zones_max_open = U32_MAX; 2289 2290 /* 2291 * Always set the 'ZAC' flag for Host-managed devices. 2292 */ 2293 if (dev->class == ATA_DEV_ZAC) 2294 dev->flags |= ATA_DFLAG_ZAC; 2295 else if (ata_id_zoned_cap(dev->id) == 0x01) 2296 /* 2297 * Check for host-aware devices. 2298 */ 2299 dev->flags |= ATA_DFLAG_ZAC; 2300 2301 if (!(dev->flags & ATA_DFLAG_ZAC)) 2302 return; 2303 2304 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2305 ata_dev_warn(dev, 2306 "ATA Zoned Information Log not supported\n"); 2307 return; 2308 } 2309 2310 /* 2311 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2312 */ 2313 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2314 ATA_LOG_ZONED_INFORMATION, 2315 identify_buf, 1); 2316 if (!err_mask) { 2317 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2318 2319 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2320 if ((zoned_cap >> 63)) 2321 dev->zac_zoned_cap = (zoned_cap & 1); 2322 opt_open = get_unaligned_le64(&identify_buf[24]); 2323 if ((opt_open >> 63)) 2324 dev->zac_zones_optimal_open = (u32)opt_open; 2325 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2326 if ((opt_nonseq >> 63)) 2327 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2328 max_open = get_unaligned_le64(&identify_buf[40]); 2329 if ((max_open >> 63)) 2330 dev->zac_zones_max_open = (u32)max_open; 2331 } 2332 } 2333 2334 static void ata_dev_config_trusted(struct ata_device *dev) 2335 { 2336 struct ata_port *ap = dev->link->ap; 2337 u64 trusted_cap; 2338 unsigned int err; 2339 2340 if (!ata_id_has_trusted(dev->id)) 2341 return; 2342 2343 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2344 ata_dev_warn(dev, 2345 "Security Log not supported\n"); 2346 return; 2347 } 2348 2349 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2350 ap->sector_buf, 1); 2351 if (err) 2352 return; 2353 2354 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]); 2355 if (!(trusted_cap & (1ULL << 63))) { 2356 ata_dev_dbg(dev, 2357 "Trusted Computing capability qword not valid!\n"); 2358 return; 2359 } 2360 2361 if (trusted_cap & (1 << 0)) 2362 dev->flags |= ATA_DFLAG_TRUSTED; 2363 } 2364 2365 static int ata_dev_config_lba(struct ata_device *dev) 2366 { 2367 const u16 *id = dev->id; 2368 const char *lba_desc; 2369 char ncq_desc[24]; 2370 int ret; 2371 2372 dev->flags |= ATA_DFLAG_LBA; 2373 2374 if (ata_id_has_lba48(id)) { 2375 lba_desc = "LBA48"; 2376 dev->flags |= ATA_DFLAG_LBA48; 2377 if (dev->n_sectors >= (1UL << 28) && 2378 ata_id_has_flush_ext(id)) 2379 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2380 } else { 2381 lba_desc = "LBA"; 2382 } 2383 2384 /* config NCQ */ 2385 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2386 2387 /* print device info to dmesg */ 2388 if (ata_dev_print_info(dev)) 2389 ata_dev_info(dev, 2390 "%llu sectors, multi %u: %s %s\n", 2391 (unsigned long long)dev->n_sectors, 2392 dev->multi_count, lba_desc, ncq_desc); 2393 2394 return ret; 2395 } 2396 2397 static void ata_dev_config_chs(struct ata_device *dev) 2398 { 2399 const u16 *id = dev->id; 2400 2401 if (ata_id_current_chs_valid(id)) { 2402 /* Current CHS translation is valid. */ 2403 dev->cylinders = id[54]; 2404 dev->heads = id[55]; 2405 dev->sectors = id[56]; 2406 } else { 2407 /* Default translation */ 2408 dev->cylinders = id[1]; 2409 dev->heads = id[3]; 2410 dev->sectors = id[6]; 2411 } 2412 2413 /* print device info to dmesg */ 2414 if (ata_dev_print_info(dev)) 2415 ata_dev_info(dev, 2416 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2417 (unsigned long long)dev->n_sectors, 2418 dev->multi_count, dev->cylinders, 2419 dev->heads, dev->sectors); 2420 } 2421 2422 static void ata_dev_config_devslp(struct ata_device *dev) 2423 { 2424 u8 *sata_setting = dev->link->ap->sector_buf; 2425 unsigned int err_mask; 2426 int i, j; 2427 2428 /* 2429 * Check device sleep capability. Get DevSlp timing variables 2430 * from SATA Settings page of Identify Device Data Log. 2431 */ 2432 if (!ata_id_has_devslp(dev->id) || 2433 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2434 return; 2435 2436 err_mask = ata_read_log_page(dev, 2437 ATA_LOG_IDENTIFY_DEVICE, 2438 ATA_LOG_SATA_SETTINGS, 2439 sata_setting, 1); 2440 if (err_mask) 2441 return; 2442 2443 dev->flags |= ATA_DFLAG_DEVSLP; 2444 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2445 j = ATA_LOG_DEVSLP_OFFSET + i; 2446 dev->devslp_timing[i] = sata_setting[j]; 2447 } 2448 } 2449 2450 static void ata_dev_config_cpr(struct ata_device *dev) 2451 { 2452 unsigned int err_mask; 2453 size_t buf_len; 2454 int i, nr_cpr = 0; 2455 struct ata_cpr_log *cpr_log = NULL; 2456 u8 *desc, *buf = NULL; 2457 2458 if (ata_id_major_version(dev->id) < 11) 2459 goto out; 2460 2461 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES); 2462 if (buf_len == 0) 2463 goto out; 2464 2465 /* 2466 * Read the concurrent positioning ranges log (0x47). We can have at 2467 * most 255 32B range descriptors plus a 64B header. This log varies in 2468 * size, so use the size reported in the GPL directory. Reading beyond 2469 * the supported length will result in an error. 2470 */ 2471 buf_len <<= 9; 2472 buf = kzalloc(buf_len, GFP_KERNEL); 2473 if (!buf) 2474 goto out; 2475 2476 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2477 0, buf, buf_len >> 9); 2478 if (err_mask) 2479 goto out; 2480 2481 nr_cpr = buf[0]; 2482 if (!nr_cpr) 2483 goto out; 2484 2485 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2486 if (!cpr_log) 2487 goto out; 2488 2489 cpr_log->nr_cpr = nr_cpr; 2490 desc = &buf[64]; 2491 for (i = 0; i < nr_cpr; i++, desc += 32) { 2492 cpr_log->cpr[i].num = desc[0]; 2493 cpr_log->cpr[i].num_storage_elements = desc[1]; 2494 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2495 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2496 } 2497 2498 out: 2499 swap(dev->cpr_log, cpr_log); 2500 kfree(cpr_log); 2501 kfree(buf); 2502 } 2503 2504 static void ata_dev_print_features(struct ata_device *dev) 2505 { 2506 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2507 return; 2508 2509 ata_dev_info(dev, 2510 "Features:%s%s%s%s%s%s\n", 2511 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2512 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2513 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2514 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2515 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2516 dev->cpr_log ? " CPR" : ""); 2517 } 2518 2519 /** 2520 * ata_dev_configure - Configure the specified ATA/ATAPI device 2521 * @dev: Target device to configure 2522 * 2523 * Configure @dev according to @dev->id. Generic and low-level 2524 * driver specific fixups are also applied. 2525 * 2526 * LOCKING: 2527 * Kernel thread context (may sleep) 2528 * 2529 * RETURNS: 2530 * 0 on success, -errno otherwise 2531 */ 2532 int ata_dev_configure(struct ata_device *dev) 2533 { 2534 struct ata_port *ap = dev->link->ap; 2535 bool print_info = ata_dev_print_info(dev); 2536 const u16 *id = dev->id; 2537 unsigned int xfer_mask; 2538 unsigned int err_mask; 2539 char revbuf[7]; /* XYZ-99\0 */ 2540 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2541 char modelbuf[ATA_ID_PROD_LEN+1]; 2542 int rc; 2543 2544 if (!ata_dev_enabled(dev)) { 2545 ata_dev_dbg(dev, "no device\n"); 2546 return 0; 2547 } 2548 2549 /* set horkage */ 2550 dev->horkage |= ata_dev_blacklisted(dev); 2551 ata_force_horkage(dev); 2552 2553 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2554 ata_dev_info(dev, "unsupported device, disabling\n"); 2555 ata_dev_disable(dev); 2556 return 0; 2557 } 2558 2559 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2560 dev->class == ATA_DEV_ATAPI) { 2561 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2562 atapi_enabled ? "not supported with this driver" 2563 : "disabled"); 2564 ata_dev_disable(dev); 2565 return 0; 2566 } 2567 2568 rc = ata_do_link_spd_horkage(dev); 2569 if (rc) 2570 return rc; 2571 2572 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2573 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) && 2574 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2575 dev->horkage |= ATA_HORKAGE_NOLPM; 2576 2577 if (ap->flags & ATA_FLAG_NO_LPM) 2578 dev->horkage |= ATA_HORKAGE_NOLPM; 2579 2580 if (dev->horkage & ATA_HORKAGE_NOLPM) { 2581 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2582 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2583 } 2584 2585 /* let ACPI work its magic */ 2586 rc = ata_acpi_on_devcfg(dev); 2587 if (rc) 2588 return rc; 2589 2590 /* massage HPA, do it early as it might change IDENTIFY data */ 2591 rc = ata_hpa_resize(dev); 2592 if (rc) 2593 return rc; 2594 2595 /* print device capabilities */ 2596 ata_dev_dbg(dev, 2597 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2598 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2599 __func__, 2600 id[49], id[82], id[83], id[84], 2601 id[85], id[86], id[87], id[88]); 2602 2603 /* initialize to-be-configured parameters */ 2604 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2605 dev->max_sectors = 0; 2606 dev->cdb_len = 0; 2607 dev->n_sectors = 0; 2608 dev->cylinders = 0; 2609 dev->heads = 0; 2610 dev->sectors = 0; 2611 dev->multi_count = 0; 2612 2613 /* 2614 * common ATA, ATAPI feature tests 2615 */ 2616 2617 /* find max transfer mode; for printk only */ 2618 xfer_mask = ata_id_xfermask(id); 2619 2620 ata_dump_id(dev, id); 2621 2622 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2623 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2624 sizeof(fwrevbuf)); 2625 2626 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2627 sizeof(modelbuf)); 2628 2629 /* ATA-specific feature tests */ 2630 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2631 if (ata_id_is_cfa(id)) { 2632 /* CPRM may make this media unusable */ 2633 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2634 ata_dev_warn(dev, 2635 "supports DRM functions and may not be fully accessible\n"); 2636 snprintf(revbuf, 7, "CFA"); 2637 } else { 2638 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2639 /* Warn the user if the device has TPM extensions */ 2640 if (ata_id_has_tpm(id)) 2641 ata_dev_warn(dev, 2642 "supports DRM functions and may not be fully accessible\n"); 2643 } 2644 2645 dev->n_sectors = ata_id_n_sectors(id); 2646 2647 /* get current R/W Multiple count setting */ 2648 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2649 unsigned int max = dev->id[47] & 0xff; 2650 unsigned int cnt = dev->id[59] & 0xff; 2651 /* only recognize/allow powers of two here */ 2652 if (is_power_of_2(max) && is_power_of_2(cnt)) 2653 if (cnt <= max) 2654 dev->multi_count = cnt; 2655 } 2656 2657 /* print device info to dmesg */ 2658 if (print_info) 2659 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2660 revbuf, modelbuf, fwrevbuf, 2661 ata_mode_string(xfer_mask)); 2662 2663 if (ata_id_has_lba(id)) { 2664 rc = ata_dev_config_lba(dev); 2665 if (rc) 2666 return rc; 2667 } else { 2668 ata_dev_config_chs(dev); 2669 } 2670 2671 ata_dev_config_devslp(dev); 2672 ata_dev_config_sense_reporting(dev); 2673 ata_dev_config_zac(dev); 2674 ata_dev_config_trusted(dev); 2675 ata_dev_config_cpr(dev); 2676 dev->cdb_len = 32; 2677 2678 if (print_info) 2679 ata_dev_print_features(dev); 2680 } 2681 2682 /* ATAPI-specific feature tests */ 2683 else if (dev->class == ATA_DEV_ATAPI) { 2684 const char *cdb_intr_string = ""; 2685 const char *atapi_an_string = ""; 2686 const char *dma_dir_string = ""; 2687 u32 sntf; 2688 2689 rc = atapi_cdb_len(id); 2690 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2691 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 2692 rc = -EINVAL; 2693 goto err_out_nosup; 2694 } 2695 dev->cdb_len = (unsigned int) rc; 2696 2697 /* Enable ATAPI AN if both the host and device have 2698 * the support. If PMP is attached, SNTF is required 2699 * to enable ATAPI AN to discern between PHY status 2700 * changed notifications and ATAPI ANs. 2701 */ 2702 if (atapi_an && 2703 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2704 (!sata_pmp_attached(ap) || 2705 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2706 /* issue SET feature command to turn this on */ 2707 err_mask = ata_dev_set_feature(dev, 2708 SETFEATURES_SATA_ENABLE, SATA_AN); 2709 if (err_mask) 2710 ata_dev_err(dev, 2711 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2712 err_mask); 2713 else { 2714 dev->flags |= ATA_DFLAG_AN; 2715 atapi_an_string = ", ATAPI AN"; 2716 } 2717 } 2718 2719 if (ata_id_cdb_intr(dev->id)) { 2720 dev->flags |= ATA_DFLAG_CDB_INTR; 2721 cdb_intr_string = ", CDB intr"; 2722 } 2723 2724 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) { 2725 dev->flags |= ATA_DFLAG_DMADIR; 2726 dma_dir_string = ", DMADIR"; 2727 } 2728 2729 if (ata_id_has_da(dev->id)) { 2730 dev->flags |= ATA_DFLAG_DA; 2731 zpodd_init(dev); 2732 } 2733 2734 /* print device info to dmesg */ 2735 if (print_info) 2736 ata_dev_info(dev, 2737 "ATAPI: %s, %s, max %s%s%s%s\n", 2738 modelbuf, fwrevbuf, 2739 ata_mode_string(xfer_mask), 2740 cdb_intr_string, atapi_an_string, 2741 dma_dir_string); 2742 } 2743 2744 /* determine max_sectors */ 2745 dev->max_sectors = ATA_MAX_SECTORS; 2746 if (dev->flags & ATA_DFLAG_LBA48) 2747 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2748 2749 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2750 200 sectors */ 2751 if (ata_dev_knobble(dev)) { 2752 if (print_info) 2753 ata_dev_info(dev, "applying bridge limits\n"); 2754 dev->udma_mask &= ATA_UDMA5; 2755 dev->max_sectors = ATA_MAX_SECTORS; 2756 } 2757 2758 if ((dev->class == ATA_DEV_ATAPI) && 2759 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2760 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2761 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2762 } 2763 2764 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2765 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2766 dev->max_sectors); 2767 2768 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024) 2769 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 2770 dev->max_sectors); 2771 2772 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48) 2773 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2774 2775 if (ap->ops->dev_config) 2776 ap->ops->dev_config(dev); 2777 2778 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2779 /* Let the user know. We don't want to disallow opens for 2780 rescue purposes, or in case the vendor is just a blithering 2781 idiot. Do this after the dev_config call as some controllers 2782 with buggy firmware may want to avoid reporting false device 2783 bugs */ 2784 2785 if (print_info) { 2786 ata_dev_warn(dev, 2787 "Drive reports diagnostics failure. This may indicate a drive\n"); 2788 ata_dev_warn(dev, 2789 "fault or invalid emulation. Contact drive vendor for information.\n"); 2790 } 2791 } 2792 2793 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2794 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2795 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2796 } 2797 2798 return 0; 2799 2800 err_out_nosup: 2801 return rc; 2802 } 2803 2804 /** 2805 * ata_cable_40wire - return 40 wire cable type 2806 * @ap: port 2807 * 2808 * Helper method for drivers which want to hardwire 40 wire cable 2809 * detection. 2810 */ 2811 2812 int ata_cable_40wire(struct ata_port *ap) 2813 { 2814 return ATA_CBL_PATA40; 2815 } 2816 EXPORT_SYMBOL_GPL(ata_cable_40wire); 2817 2818 /** 2819 * ata_cable_80wire - return 80 wire cable type 2820 * @ap: port 2821 * 2822 * Helper method for drivers which want to hardwire 80 wire cable 2823 * detection. 2824 */ 2825 2826 int ata_cable_80wire(struct ata_port *ap) 2827 { 2828 return ATA_CBL_PATA80; 2829 } 2830 EXPORT_SYMBOL_GPL(ata_cable_80wire); 2831 2832 /** 2833 * ata_cable_unknown - return unknown PATA cable. 2834 * @ap: port 2835 * 2836 * Helper method for drivers which have no PATA cable detection. 2837 */ 2838 2839 int ata_cable_unknown(struct ata_port *ap) 2840 { 2841 return ATA_CBL_PATA_UNK; 2842 } 2843 EXPORT_SYMBOL_GPL(ata_cable_unknown); 2844 2845 /** 2846 * ata_cable_ignore - return ignored PATA cable. 2847 * @ap: port 2848 * 2849 * Helper method for drivers which don't use cable type to limit 2850 * transfer mode. 2851 */ 2852 int ata_cable_ignore(struct ata_port *ap) 2853 { 2854 return ATA_CBL_PATA_IGN; 2855 } 2856 EXPORT_SYMBOL_GPL(ata_cable_ignore); 2857 2858 /** 2859 * ata_cable_sata - return SATA cable type 2860 * @ap: port 2861 * 2862 * Helper method for drivers which have SATA cables 2863 */ 2864 2865 int ata_cable_sata(struct ata_port *ap) 2866 { 2867 return ATA_CBL_SATA; 2868 } 2869 EXPORT_SYMBOL_GPL(ata_cable_sata); 2870 2871 /** 2872 * ata_bus_probe - Reset and probe ATA bus 2873 * @ap: Bus to probe 2874 * 2875 * Master ATA bus probing function. Initiates a hardware-dependent 2876 * bus reset, then attempts to identify any devices found on 2877 * the bus. 2878 * 2879 * LOCKING: 2880 * PCI/etc. bus probe sem. 2881 * 2882 * RETURNS: 2883 * Zero on success, negative errno otherwise. 2884 */ 2885 2886 int ata_bus_probe(struct ata_port *ap) 2887 { 2888 unsigned int classes[ATA_MAX_DEVICES]; 2889 int tries[ATA_MAX_DEVICES]; 2890 int rc; 2891 struct ata_device *dev; 2892 2893 ata_for_each_dev(dev, &ap->link, ALL) 2894 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2895 2896 retry: 2897 ata_for_each_dev(dev, &ap->link, ALL) { 2898 /* If we issue an SRST then an ATA drive (not ATAPI) 2899 * may change configuration and be in PIO0 timing. If 2900 * we do a hard reset (or are coming from power on) 2901 * this is true for ATA or ATAPI. Until we've set a 2902 * suitable controller mode we should not touch the 2903 * bus as we may be talking too fast. 2904 */ 2905 dev->pio_mode = XFER_PIO_0; 2906 dev->dma_mode = 0xff; 2907 2908 /* If the controller has a pio mode setup function 2909 * then use it to set the chipset to rights. Don't 2910 * touch the DMA setup as that will be dealt with when 2911 * configuring devices. 2912 */ 2913 if (ap->ops->set_piomode) 2914 ap->ops->set_piomode(ap, dev); 2915 } 2916 2917 /* reset and determine device classes */ 2918 ap->ops->phy_reset(ap); 2919 2920 ata_for_each_dev(dev, &ap->link, ALL) { 2921 if (dev->class != ATA_DEV_UNKNOWN) 2922 classes[dev->devno] = dev->class; 2923 else 2924 classes[dev->devno] = ATA_DEV_NONE; 2925 2926 dev->class = ATA_DEV_UNKNOWN; 2927 } 2928 2929 /* read IDENTIFY page and configure devices. We have to do the identify 2930 specific sequence bass-ackwards so that PDIAG- is released by 2931 the slave device */ 2932 2933 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2934 if (tries[dev->devno]) 2935 dev->class = classes[dev->devno]; 2936 2937 if (!ata_dev_enabled(dev)) 2938 continue; 2939 2940 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2941 dev->id); 2942 if (rc) 2943 goto fail; 2944 } 2945 2946 /* Now ask for the cable type as PDIAG- should have been released */ 2947 if (ap->ops->cable_detect) 2948 ap->cbl = ap->ops->cable_detect(ap); 2949 2950 /* We may have SATA bridge glue hiding here irrespective of 2951 * the reported cable types and sensed types. When SATA 2952 * drives indicate we have a bridge, we don't know which end 2953 * of the link the bridge is which is a problem. 2954 */ 2955 ata_for_each_dev(dev, &ap->link, ENABLED) 2956 if (ata_id_is_sata(dev->id)) 2957 ap->cbl = ATA_CBL_SATA; 2958 2959 /* After the identify sequence we can now set up the devices. We do 2960 this in the normal order so that the user doesn't get confused */ 2961 2962 ata_for_each_dev(dev, &ap->link, ENABLED) { 2963 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2964 rc = ata_dev_configure(dev); 2965 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2966 if (rc) 2967 goto fail; 2968 } 2969 2970 /* configure transfer mode */ 2971 rc = ata_set_mode(&ap->link, &dev); 2972 if (rc) 2973 goto fail; 2974 2975 ata_for_each_dev(dev, &ap->link, ENABLED) 2976 return 0; 2977 2978 return -ENODEV; 2979 2980 fail: 2981 tries[dev->devno]--; 2982 2983 switch (rc) { 2984 case -EINVAL: 2985 /* eeek, something went very wrong, give up */ 2986 tries[dev->devno] = 0; 2987 break; 2988 2989 case -ENODEV: 2990 /* give it just one more chance */ 2991 tries[dev->devno] = min(tries[dev->devno], 1); 2992 fallthrough; 2993 case -EIO: 2994 if (tries[dev->devno] == 1) { 2995 /* This is the last chance, better to slow 2996 * down than lose it. 2997 */ 2998 sata_down_spd_limit(&ap->link, 0); 2999 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 3000 } 3001 } 3002 3003 if (!tries[dev->devno]) 3004 ata_dev_disable(dev); 3005 3006 goto retry; 3007 } 3008 3009 /** 3010 * sata_print_link_status - Print SATA link status 3011 * @link: SATA link to printk link status about 3012 * 3013 * This function prints link speed and status of a SATA link. 3014 * 3015 * LOCKING: 3016 * None. 3017 */ 3018 static void sata_print_link_status(struct ata_link *link) 3019 { 3020 u32 sstatus, scontrol, tmp; 3021 3022 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3023 return; 3024 sata_scr_read(link, SCR_CONTROL, &scontrol); 3025 3026 if (ata_phys_link_online(link)) { 3027 tmp = (sstatus >> 4) & 0xf; 3028 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3029 sata_spd_string(tmp), sstatus, scontrol); 3030 } else { 3031 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3032 sstatus, scontrol); 3033 } 3034 } 3035 3036 /** 3037 * ata_dev_pair - return other device on cable 3038 * @adev: device 3039 * 3040 * Obtain the other device on the same cable, or if none is 3041 * present NULL is returned 3042 */ 3043 3044 struct ata_device *ata_dev_pair(struct ata_device *adev) 3045 { 3046 struct ata_link *link = adev->link; 3047 struct ata_device *pair = &link->device[1 - adev->devno]; 3048 if (!ata_dev_enabled(pair)) 3049 return NULL; 3050 return pair; 3051 } 3052 EXPORT_SYMBOL_GPL(ata_dev_pair); 3053 3054 /** 3055 * sata_down_spd_limit - adjust SATA spd limit downward 3056 * @link: Link to adjust SATA spd limit for 3057 * @spd_limit: Additional limit 3058 * 3059 * Adjust SATA spd limit of @link downward. Note that this 3060 * function only adjusts the limit. The change must be applied 3061 * using sata_set_spd(). 3062 * 3063 * If @spd_limit is non-zero, the speed is limited to equal to or 3064 * lower than @spd_limit if such speed is supported. If 3065 * @spd_limit is slower than any supported speed, only the lowest 3066 * supported speed is allowed. 3067 * 3068 * LOCKING: 3069 * Inherited from caller. 3070 * 3071 * RETURNS: 3072 * 0 on success, negative errno on failure 3073 */ 3074 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 3075 { 3076 u32 sstatus, spd, mask; 3077 int rc, bit; 3078 3079 if (!sata_scr_valid(link)) 3080 return -EOPNOTSUPP; 3081 3082 /* If SCR can be read, use it to determine the current SPD. 3083 * If not, use cached value in link->sata_spd. 3084 */ 3085 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 3086 if (rc == 0 && ata_sstatus_online(sstatus)) 3087 spd = (sstatus >> 4) & 0xf; 3088 else 3089 spd = link->sata_spd; 3090 3091 mask = link->sata_spd_limit; 3092 if (mask <= 1) 3093 return -EINVAL; 3094 3095 /* unconditionally mask off the highest bit */ 3096 bit = fls(mask) - 1; 3097 mask &= ~(1 << bit); 3098 3099 /* 3100 * Mask off all speeds higher than or equal to the current one. At 3101 * this point, if current SPD is not available and we previously 3102 * recorded the link speed from SStatus, the driver has already 3103 * masked off the highest bit so mask should already be 1 or 0. 3104 * Otherwise, we should not force 1.5Gbps on a link where we have 3105 * not previously recorded speed from SStatus. Just return in this 3106 * case. 3107 */ 3108 if (spd > 1) 3109 mask &= (1 << (spd - 1)) - 1; 3110 else 3111 return -EINVAL; 3112 3113 /* were we already at the bottom? */ 3114 if (!mask) 3115 return -EINVAL; 3116 3117 if (spd_limit) { 3118 if (mask & ((1 << spd_limit) - 1)) 3119 mask &= (1 << spd_limit) - 1; 3120 else { 3121 bit = ffs(mask) - 1; 3122 mask = 1 << bit; 3123 } 3124 } 3125 3126 link->sata_spd_limit = mask; 3127 3128 ata_link_warn(link, "limiting SATA link speed to %s\n", 3129 sata_spd_string(fls(mask))); 3130 3131 return 0; 3132 } 3133 3134 #ifdef CONFIG_ATA_ACPI 3135 /** 3136 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3137 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3138 * @cycle: cycle duration in ns 3139 * 3140 * Return matching xfer mode for @cycle. The returned mode is of 3141 * the transfer type specified by @xfer_shift. If @cycle is too 3142 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3143 * than the fastest known mode, the fasted mode is returned. 3144 * 3145 * LOCKING: 3146 * None. 3147 * 3148 * RETURNS: 3149 * Matching xfer_mode, 0xff if no match found. 3150 */ 3151 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3152 { 3153 u8 base_mode = 0xff, last_mode = 0xff; 3154 const struct ata_xfer_ent *ent; 3155 const struct ata_timing *t; 3156 3157 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3158 if (ent->shift == xfer_shift) 3159 base_mode = ent->base; 3160 3161 for (t = ata_timing_find_mode(base_mode); 3162 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3163 unsigned short this_cycle; 3164 3165 switch (xfer_shift) { 3166 case ATA_SHIFT_PIO: 3167 case ATA_SHIFT_MWDMA: 3168 this_cycle = t->cycle; 3169 break; 3170 case ATA_SHIFT_UDMA: 3171 this_cycle = t->udma; 3172 break; 3173 default: 3174 return 0xff; 3175 } 3176 3177 if (cycle > this_cycle) 3178 break; 3179 3180 last_mode = t->mode; 3181 } 3182 3183 return last_mode; 3184 } 3185 #endif 3186 3187 /** 3188 * ata_down_xfermask_limit - adjust dev xfer masks downward 3189 * @dev: Device to adjust xfer masks 3190 * @sel: ATA_DNXFER_* selector 3191 * 3192 * Adjust xfer masks of @dev downward. Note that this function 3193 * does not apply the change. Invoking ata_set_mode() afterwards 3194 * will apply the limit. 3195 * 3196 * LOCKING: 3197 * Inherited from caller. 3198 * 3199 * RETURNS: 3200 * 0 on success, negative errno on failure 3201 */ 3202 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3203 { 3204 char buf[32]; 3205 unsigned int orig_mask, xfer_mask; 3206 unsigned int pio_mask, mwdma_mask, udma_mask; 3207 int quiet, highbit; 3208 3209 quiet = !!(sel & ATA_DNXFER_QUIET); 3210 sel &= ~ATA_DNXFER_QUIET; 3211 3212 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3213 dev->mwdma_mask, 3214 dev->udma_mask); 3215 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3216 3217 switch (sel) { 3218 case ATA_DNXFER_PIO: 3219 highbit = fls(pio_mask) - 1; 3220 pio_mask &= ~(1 << highbit); 3221 break; 3222 3223 case ATA_DNXFER_DMA: 3224 if (udma_mask) { 3225 highbit = fls(udma_mask) - 1; 3226 udma_mask &= ~(1 << highbit); 3227 if (!udma_mask) 3228 return -ENOENT; 3229 } else if (mwdma_mask) { 3230 highbit = fls(mwdma_mask) - 1; 3231 mwdma_mask &= ~(1 << highbit); 3232 if (!mwdma_mask) 3233 return -ENOENT; 3234 } 3235 break; 3236 3237 case ATA_DNXFER_40C: 3238 udma_mask &= ATA_UDMA_MASK_40C; 3239 break; 3240 3241 case ATA_DNXFER_FORCE_PIO0: 3242 pio_mask &= 1; 3243 fallthrough; 3244 case ATA_DNXFER_FORCE_PIO: 3245 mwdma_mask = 0; 3246 udma_mask = 0; 3247 break; 3248 3249 default: 3250 BUG(); 3251 } 3252 3253 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3254 3255 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3256 return -ENOENT; 3257 3258 if (!quiet) { 3259 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3260 snprintf(buf, sizeof(buf), "%s:%s", 3261 ata_mode_string(xfer_mask), 3262 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3263 else 3264 snprintf(buf, sizeof(buf), "%s", 3265 ata_mode_string(xfer_mask)); 3266 3267 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3268 } 3269 3270 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3271 &dev->udma_mask); 3272 3273 return 0; 3274 } 3275 3276 static int ata_dev_set_mode(struct ata_device *dev) 3277 { 3278 struct ata_port *ap = dev->link->ap; 3279 struct ata_eh_context *ehc = &dev->link->eh_context; 3280 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3281 const char *dev_err_whine = ""; 3282 int ign_dev_err = 0; 3283 unsigned int err_mask = 0; 3284 int rc; 3285 3286 dev->flags &= ~ATA_DFLAG_PIO; 3287 if (dev->xfer_shift == ATA_SHIFT_PIO) 3288 dev->flags |= ATA_DFLAG_PIO; 3289 3290 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3291 dev_err_whine = " (SET_XFERMODE skipped)"; 3292 else { 3293 if (nosetxfer) 3294 ata_dev_warn(dev, 3295 "NOSETXFER but PATA detected - can't " 3296 "skip SETXFER, might malfunction\n"); 3297 err_mask = ata_dev_set_xfermode(dev); 3298 } 3299 3300 if (err_mask & ~AC_ERR_DEV) 3301 goto fail; 3302 3303 /* revalidate */ 3304 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3305 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3306 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3307 if (rc) 3308 return rc; 3309 3310 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3311 /* Old CFA may refuse this command, which is just fine */ 3312 if (ata_id_is_cfa(dev->id)) 3313 ign_dev_err = 1; 3314 /* Catch several broken garbage emulations plus some pre 3315 ATA devices */ 3316 if (ata_id_major_version(dev->id) == 0 && 3317 dev->pio_mode <= XFER_PIO_2) 3318 ign_dev_err = 1; 3319 /* Some very old devices and some bad newer ones fail 3320 any kind of SET_XFERMODE request but support PIO0-2 3321 timings and no IORDY */ 3322 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3323 ign_dev_err = 1; 3324 } 3325 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3326 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3327 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3328 dev->dma_mode == XFER_MW_DMA_0 && 3329 (dev->id[63] >> 8) & 1) 3330 ign_dev_err = 1; 3331 3332 /* if the device is actually configured correctly, ignore dev err */ 3333 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3334 ign_dev_err = 1; 3335 3336 if (err_mask & AC_ERR_DEV) { 3337 if (!ign_dev_err) 3338 goto fail; 3339 else 3340 dev_err_whine = " (device error ignored)"; 3341 } 3342 3343 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3344 dev->xfer_shift, (int)dev->xfer_mode); 3345 3346 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3347 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3348 ata_dev_info(dev, "configured for %s%s\n", 3349 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3350 dev_err_whine); 3351 3352 return 0; 3353 3354 fail: 3355 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3356 return -EIO; 3357 } 3358 3359 /** 3360 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3361 * @link: link on which timings will be programmed 3362 * @r_failed_dev: out parameter for failed device 3363 * 3364 * Standard implementation of the function used to tune and set 3365 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3366 * ata_dev_set_mode() fails, pointer to the failing device is 3367 * returned in @r_failed_dev. 3368 * 3369 * LOCKING: 3370 * PCI/etc. bus probe sem. 3371 * 3372 * RETURNS: 3373 * 0 on success, negative errno otherwise 3374 */ 3375 3376 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3377 { 3378 struct ata_port *ap = link->ap; 3379 struct ata_device *dev; 3380 int rc = 0, used_dma = 0, found = 0; 3381 3382 /* step 1: calculate xfer_mask */ 3383 ata_for_each_dev(dev, link, ENABLED) { 3384 unsigned int pio_mask, dma_mask; 3385 unsigned int mode_mask; 3386 3387 mode_mask = ATA_DMA_MASK_ATA; 3388 if (dev->class == ATA_DEV_ATAPI) 3389 mode_mask = ATA_DMA_MASK_ATAPI; 3390 else if (ata_id_is_cfa(dev->id)) 3391 mode_mask = ATA_DMA_MASK_CFA; 3392 3393 ata_dev_xfermask(dev); 3394 ata_force_xfermask(dev); 3395 3396 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3397 3398 if (libata_dma_mask & mode_mask) 3399 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3400 dev->udma_mask); 3401 else 3402 dma_mask = 0; 3403 3404 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3405 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3406 3407 found = 1; 3408 if (ata_dma_enabled(dev)) 3409 used_dma = 1; 3410 } 3411 if (!found) 3412 goto out; 3413 3414 /* step 2: always set host PIO timings */ 3415 ata_for_each_dev(dev, link, ENABLED) { 3416 if (dev->pio_mode == 0xff) { 3417 ata_dev_warn(dev, "no PIO support\n"); 3418 rc = -EINVAL; 3419 goto out; 3420 } 3421 3422 dev->xfer_mode = dev->pio_mode; 3423 dev->xfer_shift = ATA_SHIFT_PIO; 3424 if (ap->ops->set_piomode) 3425 ap->ops->set_piomode(ap, dev); 3426 } 3427 3428 /* step 3: set host DMA timings */ 3429 ata_for_each_dev(dev, link, ENABLED) { 3430 if (!ata_dma_enabled(dev)) 3431 continue; 3432 3433 dev->xfer_mode = dev->dma_mode; 3434 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3435 if (ap->ops->set_dmamode) 3436 ap->ops->set_dmamode(ap, dev); 3437 } 3438 3439 /* step 4: update devices' xfer mode */ 3440 ata_for_each_dev(dev, link, ENABLED) { 3441 rc = ata_dev_set_mode(dev); 3442 if (rc) 3443 goto out; 3444 } 3445 3446 /* Record simplex status. If we selected DMA then the other 3447 * host channels are not permitted to do so. 3448 */ 3449 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3450 ap->host->simplex_claimed = ap; 3451 3452 out: 3453 if (rc) 3454 *r_failed_dev = dev; 3455 return rc; 3456 } 3457 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3458 3459 /** 3460 * ata_wait_ready - wait for link to become ready 3461 * @link: link to be waited on 3462 * @deadline: deadline jiffies for the operation 3463 * @check_ready: callback to check link readiness 3464 * 3465 * Wait for @link to become ready. @check_ready should return 3466 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3467 * link doesn't seem to be occupied, other errno for other error 3468 * conditions. 3469 * 3470 * Transient -ENODEV conditions are allowed for 3471 * ATA_TMOUT_FF_WAIT. 3472 * 3473 * LOCKING: 3474 * EH context. 3475 * 3476 * RETURNS: 3477 * 0 if @link is ready before @deadline; otherwise, -errno. 3478 */ 3479 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3480 int (*check_ready)(struct ata_link *link)) 3481 { 3482 unsigned long start = jiffies; 3483 unsigned long nodev_deadline; 3484 int warned = 0; 3485 3486 /* choose which 0xff timeout to use, read comment in libata.h */ 3487 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3488 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3489 else 3490 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3491 3492 /* Slave readiness can't be tested separately from master. On 3493 * M/S emulation configuration, this function should be called 3494 * only on the master and it will handle both master and slave. 3495 */ 3496 WARN_ON(link == link->ap->slave_link); 3497 3498 if (time_after(nodev_deadline, deadline)) 3499 nodev_deadline = deadline; 3500 3501 while (1) { 3502 unsigned long now = jiffies; 3503 int ready, tmp; 3504 3505 ready = tmp = check_ready(link); 3506 if (ready > 0) 3507 return 0; 3508 3509 /* 3510 * -ENODEV could be transient. Ignore -ENODEV if link 3511 * is online. Also, some SATA devices take a long 3512 * time to clear 0xff after reset. Wait for 3513 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3514 * offline. 3515 * 3516 * Note that some PATA controllers (pata_ali) explode 3517 * if status register is read more than once when 3518 * there's no device attached. 3519 */ 3520 if (ready == -ENODEV) { 3521 if (ata_link_online(link)) 3522 ready = 0; 3523 else if ((link->ap->flags & ATA_FLAG_SATA) && 3524 !ata_link_offline(link) && 3525 time_before(now, nodev_deadline)) 3526 ready = 0; 3527 } 3528 3529 if (ready) 3530 return ready; 3531 if (time_after(now, deadline)) 3532 return -EBUSY; 3533 3534 if (!warned && time_after(now, start + 5 * HZ) && 3535 (deadline - now > 3 * HZ)) { 3536 ata_link_warn(link, 3537 "link is slow to respond, please be patient " 3538 "(ready=%d)\n", tmp); 3539 warned = 1; 3540 } 3541 3542 ata_msleep(link->ap, 50); 3543 } 3544 } 3545 3546 /** 3547 * ata_wait_after_reset - wait for link to become ready after reset 3548 * @link: link to be waited on 3549 * @deadline: deadline jiffies for the operation 3550 * @check_ready: callback to check link readiness 3551 * 3552 * Wait for @link to become ready after reset. 3553 * 3554 * LOCKING: 3555 * EH context. 3556 * 3557 * RETURNS: 3558 * 0 if @link is ready before @deadline; otherwise, -errno. 3559 */ 3560 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3561 int (*check_ready)(struct ata_link *link)) 3562 { 3563 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3564 3565 return ata_wait_ready(link, deadline, check_ready); 3566 } 3567 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3568 3569 /** 3570 * ata_std_prereset - prepare for reset 3571 * @link: ATA link to be reset 3572 * @deadline: deadline jiffies for the operation 3573 * 3574 * @link is about to be reset. Initialize it. Failure from 3575 * prereset makes libata abort whole reset sequence and give up 3576 * that port, so prereset should be best-effort. It does its 3577 * best to prepare for reset sequence but if things go wrong, it 3578 * should just whine, not fail. 3579 * 3580 * LOCKING: 3581 * Kernel thread context (may sleep) 3582 * 3583 * RETURNS: 3584 * Always 0. 3585 */ 3586 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3587 { 3588 struct ata_port *ap = link->ap; 3589 struct ata_eh_context *ehc = &link->eh_context; 3590 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3591 int rc; 3592 3593 /* if we're about to do hardreset, nothing more to do */ 3594 if (ehc->i.action & ATA_EH_HARDRESET) 3595 return 0; 3596 3597 /* if SATA, resume link */ 3598 if (ap->flags & ATA_FLAG_SATA) { 3599 rc = sata_link_resume(link, timing, deadline); 3600 /* whine about phy resume failure but proceed */ 3601 if (rc && rc != -EOPNOTSUPP) 3602 ata_link_warn(link, 3603 "failed to resume link for reset (errno=%d)\n", 3604 rc); 3605 } 3606 3607 /* no point in trying softreset on offline link */ 3608 if (ata_phys_link_offline(link)) 3609 ehc->i.action &= ~ATA_EH_SOFTRESET; 3610 3611 return 0; 3612 } 3613 EXPORT_SYMBOL_GPL(ata_std_prereset); 3614 3615 /** 3616 * sata_std_hardreset - COMRESET w/o waiting or classification 3617 * @link: link to reset 3618 * @class: resulting class of attached device 3619 * @deadline: deadline jiffies for the operation 3620 * 3621 * Standard SATA COMRESET w/o waiting or classification. 3622 * 3623 * LOCKING: 3624 * Kernel thread context (may sleep) 3625 * 3626 * RETURNS: 3627 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3628 */ 3629 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3630 unsigned long deadline) 3631 { 3632 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3633 bool online; 3634 int rc; 3635 3636 /* do hardreset */ 3637 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3638 return online ? -EAGAIN : rc; 3639 } 3640 EXPORT_SYMBOL_GPL(sata_std_hardreset); 3641 3642 /** 3643 * ata_std_postreset - standard postreset callback 3644 * @link: the target ata_link 3645 * @classes: classes of attached devices 3646 * 3647 * This function is invoked after a successful reset. Note that 3648 * the device might have been reset more than once using 3649 * different reset methods before postreset is invoked. 3650 * 3651 * LOCKING: 3652 * Kernel thread context (may sleep) 3653 */ 3654 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3655 { 3656 u32 serror; 3657 3658 /* reset complete, clear SError */ 3659 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3660 sata_scr_write(link, SCR_ERROR, serror); 3661 3662 /* print link status */ 3663 sata_print_link_status(link); 3664 } 3665 EXPORT_SYMBOL_GPL(ata_std_postreset); 3666 3667 /** 3668 * ata_dev_same_device - Determine whether new ID matches configured device 3669 * @dev: device to compare against 3670 * @new_class: class of the new device 3671 * @new_id: IDENTIFY page of the new device 3672 * 3673 * Compare @new_class and @new_id against @dev and determine 3674 * whether @dev is the device indicated by @new_class and 3675 * @new_id. 3676 * 3677 * LOCKING: 3678 * None. 3679 * 3680 * RETURNS: 3681 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3682 */ 3683 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3684 const u16 *new_id) 3685 { 3686 const u16 *old_id = dev->id; 3687 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3688 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3689 3690 if (dev->class != new_class) { 3691 ata_dev_info(dev, "class mismatch %d != %d\n", 3692 dev->class, new_class); 3693 return 0; 3694 } 3695 3696 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3697 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3698 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3699 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3700 3701 if (strcmp(model[0], model[1])) { 3702 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3703 model[0], model[1]); 3704 return 0; 3705 } 3706 3707 if (strcmp(serial[0], serial[1])) { 3708 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3709 serial[0], serial[1]); 3710 return 0; 3711 } 3712 3713 return 1; 3714 } 3715 3716 /** 3717 * ata_dev_reread_id - Re-read IDENTIFY data 3718 * @dev: target ATA device 3719 * @readid_flags: read ID flags 3720 * 3721 * Re-read IDENTIFY page and make sure @dev is still attached to 3722 * the port. 3723 * 3724 * LOCKING: 3725 * Kernel thread context (may sleep) 3726 * 3727 * RETURNS: 3728 * 0 on success, negative errno otherwise 3729 */ 3730 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3731 { 3732 unsigned int class = dev->class; 3733 u16 *id = (void *)dev->link->ap->sector_buf; 3734 int rc; 3735 3736 /* read ID data */ 3737 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3738 if (rc) 3739 return rc; 3740 3741 /* is the device still there? */ 3742 if (!ata_dev_same_device(dev, class, id)) 3743 return -ENODEV; 3744 3745 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3746 return 0; 3747 } 3748 3749 /** 3750 * ata_dev_revalidate - Revalidate ATA device 3751 * @dev: device to revalidate 3752 * @new_class: new class code 3753 * @readid_flags: read ID flags 3754 * 3755 * Re-read IDENTIFY page, make sure @dev is still attached to the 3756 * port and reconfigure it according to the new IDENTIFY page. 3757 * 3758 * LOCKING: 3759 * Kernel thread context (may sleep) 3760 * 3761 * RETURNS: 3762 * 0 on success, negative errno otherwise 3763 */ 3764 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3765 unsigned int readid_flags) 3766 { 3767 u64 n_sectors = dev->n_sectors; 3768 u64 n_native_sectors = dev->n_native_sectors; 3769 int rc; 3770 3771 if (!ata_dev_enabled(dev)) 3772 return -ENODEV; 3773 3774 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3775 if (ata_class_enabled(new_class) && 3776 new_class != ATA_DEV_ATA && 3777 new_class != ATA_DEV_ATAPI && 3778 new_class != ATA_DEV_ZAC && 3779 new_class != ATA_DEV_SEMB) { 3780 ata_dev_info(dev, "class mismatch %u != %u\n", 3781 dev->class, new_class); 3782 rc = -ENODEV; 3783 goto fail; 3784 } 3785 3786 /* re-read ID */ 3787 rc = ata_dev_reread_id(dev, readid_flags); 3788 if (rc) 3789 goto fail; 3790 3791 /* configure device according to the new ID */ 3792 rc = ata_dev_configure(dev); 3793 if (rc) 3794 goto fail; 3795 3796 /* verify n_sectors hasn't changed */ 3797 if (dev->class != ATA_DEV_ATA || !n_sectors || 3798 dev->n_sectors == n_sectors) 3799 return 0; 3800 3801 /* n_sectors has changed */ 3802 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3803 (unsigned long long)n_sectors, 3804 (unsigned long long)dev->n_sectors); 3805 3806 /* 3807 * Something could have caused HPA to be unlocked 3808 * involuntarily. If n_native_sectors hasn't changed and the 3809 * new size matches it, keep the device. 3810 */ 3811 if (dev->n_native_sectors == n_native_sectors && 3812 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3813 ata_dev_warn(dev, 3814 "new n_sectors matches native, probably " 3815 "late HPA unlock, n_sectors updated\n"); 3816 /* use the larger n_sectors */ 3817 return 0; 3818 } 3819 3820 /* 3821 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3822 * unlocking HPA in those cases. 3823 * 3824 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3825 */ 3826 if (dev->n_native_sectors == n_native_sectors && 3827 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3828 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 3829 ata_dev_warn(dev, 3830 "old n_sectors matches native, probably " 3831 "late HPA lock, will try to unlock HPA\n"); 3832 /* try unlocking HPA */ 3833 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3834 rc = -EIO; 3835 } else 3836 rc = -ENODEV; 3837 3838 /* restore original n_[native_]sectors and fail */ 3839 dev->n_native_sectors = n_native_sectors; 3840 dev->n_sectors = n_sectors; 3841 fail: 3842 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3843 return rc; 3844 } 3845 3846 struct ata_blacklist_entry { 3847 const char *model_num; 3848 const char *model_rev; 3849 unsigned long horkage; 3850 }; 3851 3852 static const struct ata_blacklist_entry ata_device_blacklist [] = { 3853 /* Devices with DMA related problems under Linux */ 3854 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 3855 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 3856 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 3857 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 3858 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 3859 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 3860 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 3861 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 3862 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 3863 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 3864 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 3865 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 3866 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 3867 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 3868 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 3869 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 3870 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 3871 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 3872 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 3873 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 3874 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 3875 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 3876 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 3877 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 3878 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 3879 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 3880 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 3881 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 3882 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 3883 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA }, 3884 /* Odd clown on sil3726/4726 PMPs */ 3885 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 3886 /* Similar story with ASMedia 1092 */ 3887 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE }, 3888 3889 /* Weird ATAPI devices */ 3890 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 3891 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 3892 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3893 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 }, 3894 3895 /* 3896 * Causes silent data corruption with higher max sects. 3897 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 3898 */ 3899 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 }, 3900 3901 /* 3902 * These devices time out with higher max sects. 3903 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 3904 */ 3905 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3906 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 }, 3907 3908 /* Devices we expect to fail diagnostics */ 3909 3910 /* Devices where NCQ should be avoided */ 3911 /* NCQ is slow */ 3912 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 3913 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ }, 3914 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 3915 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 3916 /* NCQ is broken */ 3917 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 3918 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 3919 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 3920 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 3921 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 3922 3923 /* Seagate NCQ + FLUSH CACHE firmware bug */ 3924 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3925 ATA_HORKAGE_FIRMWARE_WARN }, 3926 3927 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3928 ATA_HORKAGE_FIRMWARE_WARN }, 3929 3930 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3931 ATA_HORKAGE_FIRMWARE_WARN }, 3932 3933 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 3934 ATA_HORKAGE_FIRMWARE_WARN }, 3935 3936 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 3937 the ST disks also have LPM issues */ 3938 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA | 3939 ATA_HORKAGE_NOLPM }, 3940 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA }, 3941 3942 /* Blacklist entries taken from Silicon Image 3124/3132 3943 Windows driver .inf file - also several Linux problem reports */ 3944 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ }, 3945 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ }, 3946 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ }, 3947 3948 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 3949 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ }, 3950 3951 /* Sandisk SD7/8/9s lock up hard on large trims */ 3952 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M }, 3953 3954 /* devices which puke on READ_NATIVE_MAX */ 3955 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA }, 3956 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 3957 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 3958 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 3959 3960 /* this one allows HPA unlocking but fails IOs on the area */ 3961 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 3962 3963 /* Devices which report 1 sector over size HPA */ 3964 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE }, 3965 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE }, 3966 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE }, 3967 3968 /* Devices which get the IVB wrong */ 3969 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB }, 3970 /* Maybe we should just blacklist TSSTcorp... */ 3971 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB }, 3972 3973 /* Devices that do not need bridging limits applied */ 3974 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK }, 3975 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK }, 3976 3977 /* Devices which aren't very happy with higher link speeds */ 3978 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS }, 3979 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS }, 3980 3981 /* 3982 * Devices which choke on SETXFER. Applies only if both the 3983 * device and controller are SATA. 3984 */ 3985 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 3986 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 3987 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 3988 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 3989 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 3990 3991 /* Crucial BX100 SSD 500GB has broken LPM support */ 3992 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM }, 3993 3994 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 3995 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 3996 ATA_HORKAGE_ZERO_AFTER_TRIM | 3997 ATA_HORKAGE_NOLPM }, 3998 /* 512GB MX100 with newer firmware has only LPM issues */ 3999 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM | 4000 ATA_HORKAGE_NOLPM }, 4001 4002 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4003 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4004 ATA_HORKAGE_ZERO_AFTER_TRIM | 4005 ATA_HORKAGE_NOLPM }, 4006 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4007 ATA_HORKAGE_ZERO_AFTER_TRIM | 4008 ATA_HORKAGE_NOLPM }, 4009 4010 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4011 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM }, 4012 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM }, 4013 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM }, 4014 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM }, 4015 4016 /* devices that don't properly handle queued TRIM commands */ 4017 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4018 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4019 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4020 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4021 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4022 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4023 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4024 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4025 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4026 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4027 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM | 4028 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4029 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4030 ATA_HORKAGE_NO_DMA_LOG | 4031 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4032 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4033 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4034 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4035 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4036 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4037 ATA_HORKAGE_ZERO_AFTER_TRIM | 4038 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4039 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4040 ATA_HORKAGE_ZERO_AFTER_TRIM | 4041 ATA_HORKAGE_NO_NCQ_ON_ATI }, 4042 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM | 4043 ATA_HORKAGE_ZERO_AFTER_TRIM }, 4044 4045 /* devices that don't properly handle TRIM commands */ 4046 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM }, 4047 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM }, 4048 4049 /* 4050 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4051 * (Return Zero After Trim) flags in the ATA Command Set are 4052 * unreliable in the sense that they only define what happens if 4053 * the device successfully executed the DSM TRIM command. TRIM 4054 * is only advisory, however, and the device is free to silently 4055 * ignore all or parts of the request. 4056 * 4057 * Whitelist drives that are known to reliably return zeroes 4058 * after TRIM. 4059 */ 4060 4061 /* 4062 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4063 * that model before whitelisting all other intel SSDs. 4064 */ 4065 { "INTEL*SSDSC2MH*", NULL, 0 }, 4066 4067 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4068 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4069 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4070 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4071 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4072 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4073 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4074 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM }, 4075 4076 /* 4077 * Some WD SATA-I drives spin up and down erratically when the link 4078 * is put into the slumber mode. We don't have full list of the 4079 * affected devices. Disable LPM if the device matches one of the 4080 * known prefixes and is SATA-1. As a side effect LPM partial is 4081 * lost too. 4082 * 4083 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4084 */ 4085 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4086 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4087 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4088 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4089 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4090 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4091 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM }, 4092 4093 /* 4094 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4095 * log page is accessed. Ensure we never ask for this log page with 4096 * these devices. 4097 */ 4098 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR }, 4099 4100 /* End Marker */ 4101 { } 4102 }; 4103 4104 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4105 { 4106 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4107 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4108 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4109 4110 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4111 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4112 4113 while (ad->model_num) { 4114 if (glob_match(ad->model_num, model_num)) { 4115 if (ad->model_rev == NULL) 4116 return ad->horkage; 4117 if (glob_match(ad->model_rev, model_rev)) 4118 return ad->horkage; 4119 } 4120 ad++; 4121 } 4122 return 0; 4123 } 4124 4125 static int ata_dma_blacklisted(const struct ata_device *dev) 4126 { 4127 /* We don't support polling DMA. 4128 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4129 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4130 */ 4131 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4132 (dev->flags & ATA_DFLAG_CDB_INTR)) 4133 return 1; 4134 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4135 } 4136 4137 /** 4138 * ata_is_40wire - check drive side detection 4139 * @dev: device 4140 * 4141 * Perform drive side detection decoding, allowing for device vendors 4142 * who can't follow the documentation. 4143 */ 4144 4145 static int ata_is_40wire(struct ata_device *dev) 4146 { 4147 if (dev->horkage & ATA_HORKAGE_IVB) 4148 return ata_drive_40wire_relaxed(dev->id); 4149 return ata_drive_40wire(dev->id); 4150 } 4151 4152 /** 4153 * cable_is_40wire - 40/80/SATA decider 4154 * @ap: port to consider 4155 * 4156 * This function encapsulates the policy for speed management 4157 * in one place. At the moment we don't cache the result but 4158 * there is a good case for setting ap->cbl to the result when 4159 * we are called with unknown cables (and figuring out if it 4160 * impacts hotplug at all). 4161 * 4162 * Return 1 if the cable appears to be 40 wire. 4163 */ 4164 4165 static int cable_is_40wire(struct ata_port *ap) 4166 { 4167 struct ata_link *link; 4168 struct ata_device *dev; 4169 4170 /* If the controller thinks we are 40 wire, we are. */ 4171 if (ap->cbl == ATA_CBL_PATA40) 4172 return 1; 4173 4174 /* If the controller thinks we are 80 wire, we are. */ 4175 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4176 return 0; 4177 4178 /* If the system is known to be 40 wire short cable (eg 4179 * laptop), then we allow 80 wire modes even if the drive 4180 * isn't sure. 4181 */ 4182 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4183 return 0; 4184 4185 /* If the controller doesn't know, we scan. 4186 * 4187 * Note: We look for all 40 wire detects at this point. Any 4188 * 80 wire detect is taken to be 80 wire cable because 4189 * - in many setups only the one drive (slave if present) will 4190 * give a valid detect 4191 * - if you have a non detect capable drive you don't want it 4192 * to colour the choice 4193 */ 4194 ata_for_each_link(link, ap, EDGE) { 4195 ata_for_each_dev(dev, link, ENABLED) { 4196 if (!ata_is_40wire(dev)) 4197 return 0; 4198 } 4199 } 4200 return 1; 4201 } 4202 4203 /** 4204 * ata_dev_xfermask - Compute supported xfermask of the given device 4205 * @dev: Device to compute xfermask for 4206 * 4207 * Compute supported xfermask of @dev and store it in 4208 * dev->*_mask. This function is responsible for applying all 4209 * known limits including host controller limits, device 4210 * blacklist, etc... 4211 * 4212 * LOCKING: 4213 * None. 4214 */ 4215 static void ata_dev_xfermask(struct ata_device *dev) 4216 { 4217 struct ata_link *link = dev->link; 4218 struct ata_port *ap = link->ap; 4219 struct ata_host *host = ap->host; 4220 unsigned int xfer_mask; 4221 4222 /* controller modes available */ 4223 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4224 ap->mwdma_mask, ap->udma_mask); 4225 4226 /* drive modes available */ 4227 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4228 dev->mwdma_mask, dev->udma_mask); 4229 xfer_mask &= ata_id_xfermask(dev->id); 4230 4231 /* 4232 * CFA Advanced TrueIDE timings are not allowed on a shared 4233 * cable 4234 */ 4235 if (ata_dev_pair(dev)) { 4236 /* No PIO5 or PIO6 */ 4237 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4238 /* No MWDMA3 or MWDMA 4 */ 4239 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4240 } 4241 4242 if (ata_dma_blacklisted(dev)) { 4243 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4244 ata_dev_warn(dev, 4245 "device is on DMA blacklist, disabling DMA\n"); 4246 } 4247 4248 if ((host->flags & ATA_HOST_SIMPLEX) && 4249 host->simplex_claimed && host->simplex_claimed != ap) { 4250 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4251 ata_dev_warn(dev, 4252 "simplex DMA is claimed by other device, disabling DMA\n"); 4253 } 4254 4255 if (ap->flags & ATA_FLAG_NO_IORDY) 4256 xfer_mask &= ata_pio_mask_no_iordy(dev); 4257 4258 if (ap->ops->mode_filter) 4259 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4260 4261 /* Apply cable rule here. Don't apply it early because when 4262 * we handle hot plug the cable type can itself change. 4263 * Check this last so that we know if the transfer rate was 4264 * solely limited by the cable. 4265 * Unknown or 80 wire cables reported host side are checked 4266 * drive side as well. Cases where we know a 40wire cable 4267 * is used safely for 80 are not checked here. 4268 */ 4269 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4270 /* UDMA/44 or higher would be available */ 4271 if (cable_is_40wire(ap)) { 4272 ata_dev_warn(dev, 4273 "limited to UDMA/33 due to 40-wire cable\n"); 4274 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4275 } 4276 4277 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4278 &dev->mwdma_mask, &dev->udma_mask); 4279 } 4280 4281 /** 4282 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4283 * @dev: Device to which command will be sent 4284 * 4285 * Issue SET FEATURES - XFER MODE command to device @dev 4286 * on port @ap. 4287 * 4288 * LOCKING: 4289 * PCI/etc. bus probe sem. 4290 * 4291 * RETURNS: 4292 * 0 on success, AC_ERR_* mask otherwise. 4293 */ 4294 4295 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4296 { 4297 struct ata_taskfile tf; 4298 unsigned int err_mask; 4299 4300 /* set up set-features taskfile */ 4301 ata_dev_dbg(dev, "set features - xfer mode\n"); 4302 4303 /* Some controllers and ATAPI devices show flaky interrupt 4304 * behavior after setting xfer mode. Use polling instead. 4305 */ 4306 ata_tf_init(dev, &tf); 4307 tf.command = ATA_CMD_SET_FEATURES; 4308 tf.feature = SETFEATURES_XFER; 4309 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4310 tf.protocol = ATA_PROT_NODATA; 4311 /* If we are using IORDY we must send the mode setting command */ 4312 if (ata_pio_need_iordy(dev)) 4313 tf.nsect = dev->xfer_mode; 4314 /* If the device has IORDY and the controller does not - turn it off */ 4315 else if (ata_id_has_iordy(dev->id)) 4316 tf.nsect = 0x01; 4317 else /* In the ancient relic department - skip all of this */ 4318 return 0; 4319 4320 /* On some disks, this command causes spin-up, so we need longer timeout */ 4321 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4322 4323 return err_mask; 4324 } 4325 4326 /** 4327 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4328 * @dev: Device to which command will be sent 4329 * @enable: Whether to enable or disable the feature 4330 * @feature: The sector count represents the feature to set 4331 * 4332 * Issue SET FEATURES - SATA FEATURES command to device @dev 4333 * on port @ap with sector count 4334 * 4335 * LOCKING: 4336 * PCI/etc. bus probe sem. 4337 * 4338 * RETURNS: 4339 * 0 on success, AC_ERR_* mask otherwise. 4340 */ 4341 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4342 { 4343 struct ata_taskfile tf; 4344 unsigned int err_mask; 4345 unsigned int timeout = 0; 4346 4347 /* set up set-features taskfile */ 4348 ata_dev_dbg(dev, "set features - SATA features\n"); 4349 4350 ata_tf_init(dev, &tf); 4351 tf.command = ATA_CMD_SET_FEATURES; 4352 tf.feature = enable; 4353 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4354 tf.protocol = ATA_PROT_NODATA; 4355 tf.nsect = feature; 4356 4357 if (enable == SETFEATURES_SPINUP) 4358 timeout = ata_probe_timeout ? 4359 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4360 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4361 4362 return err_mask; 4363 } 4364 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4365 4366 /** 4367 * ata_dev_init_params - Issue INIT DEV PARAMS command 4368 * @dev: Device to which command will be sent 4369 * @heads: Number of heads (taskfile parameter) 4370 * @sectors: Number of sectors (taskfile parameter) 4371 * 4372 * LOCKING: 4373 * Kernel thread context (may sleep) 4374 * 4375 * RETURNS: 4376 * 0 on success, AC_ERR_* mask otherwise. 4377 */ 4378 static unsigned int ata_dev_init_params(struct ata_device *dev, 4379 u16 heads, u16 sectors) 4380 { 4381 struct ata_taskfile tf; 4382 unsigned int err_mask; 4383 4384 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4385 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4386 return AC_ERR_INVALID; 4387 4388 /* set up init dev params taskfile */ 4389 ata_dev_dbg(dev, "init dev params \n"); 4390 4391 ata_tf_init(dev, &tf); 4392 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4393 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4394 tf.protocol = ATA_PROT_NODATA; 4395 tf.nsect = sectors; 4396 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4397 4398 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4399 /* A clean abort indicates an original or just out of spec drive 4400 and we should continue as we issue the setup based on the 4401 drive reported working geometry */ 4402 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 4403 err_mask = 0; 4404 4405 return err_mask; 4406 } 4407 4408 /** 4409 * atapi_check_dma - Check whether ATAPI DMA can be supported 4410 * @qc: Metadata associated with taskfile to check 4411 * 4412 * Allow low-level driver to filter ATA PACKET commands, returning 4413 * a status indicating whether or not it is OK to use DMA for the 4414 * supplied PACKET command. 4415 * 4416 * LOCKING: 4417 * spin_lock_irqsave(host lock) 4418 * 4419 * RETURNS: 0 when ATAPI DMA can be used 4420 * nonzero otherwise 4421 */ 4422 int atapi_check_dma(struct ata_queued_cmd *qc) 4423 { 4424 struct ata_port *ap = qc->ap; 4425 4426 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4427 * few ATAPI devices choke on such DMA requests. 4428 */ 4429 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4430 unlikely(qc->nbytes & 15)) 4431 return 1; 4432 4433 if (ap->ops->check_atapi_dma) 4434 return ap->ops->check_atapi_dma(qc); 4435 4436 return 0; 4437 } 4438 4439 /** 4440 * ata_std_qc_defer - Check whether a qc needs to be deferred 4441 * @qc: ATA command in question 4442 * 4443 * Non-NCQ commands cannot run with any other command, NCQ or 4444 * not. As upper layer only knows the queue depth, we are 4445 * responsible for maintaining exclusion. This function checks 4446 * whether a new command @qc can be issued. 4447 * 4448 * LOCKING: 4449 * spin_lock_irqsave(host lock) 4450 * 4451 * RETURNS: 4452 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4453 */ 4454 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4455 { 4456 struct ata_link *link = qc->dev->link; 4457 4458 if (ata_is_ncq(qc->tf.protocol)) { 4459 if (!ata_tag_valid(link->active_tag)) 4460 return 0; 4461 } else { 4462 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4463 return 0; 4464 } 4465 4466 return ATA_DEFER_LINK; 4467 } 4468 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4469 4470 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc) 4471 { 4472 return AC_ERR_OK; 4473 } 4474 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 4475 4476 /** 4477 * ata_sg_init - Associate command with scatter-gather table. 4478 * @qc: Command to be associated 4479 * @sg: Scatter-gather table. 4480 * @n_elem: Number of elements in s/g table. 4481 * 4482 * Initialize the data-related elements of queued_cmd @qc 4483 * to point to a scatter-gather table @sg, containing @n_elem 4484 * elements. 4485 * 4486 * LOCKING: 4487 * spin_lock_irqsave(host lock) 4488 */ 4489 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4490 unsigned int n_elem) 4491 { 4492 qc->sg = sg; 4493 qc->n_elem = n_elem; 4494 qc->cursg = qc->sg; 4495 } 4496 4497 #ifdef CONFIG_HAS_DMA 4498 4499 /** 4500 * ata_sg_clean - Unmap DMA memory associated with command 4501 * @qc: Command containing DMA memory to be released 4502 * 4503 * Unmap all mapped DMA memory associated with this command. 4504 * 4505 * LOCKING: 4506 * spin_lock_irqsave(host lock) 4507 */ 4508 static void ata_sg_clean(struct ata_queued_cmd *qc) 4509 { 4510 struct ata_port *ap = qc->ap; 4511 struct scatterlist *sg = qc->sg; 4512 int dir = qc->dma_dir; 4513 4514 WARN_ON_ONCE(sg == NULL); 4515 4516 if (qc->n_elem) 4517 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4518 4519 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4520 qc->sg = NULL; 4521 } 4522 4523 /** 4524 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4525 * @qc: Command with scatter-gather table to be mapped. 4526 * 4527 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4528 * 4529 * LOCKING: 4530 * spin_lock_irqsave(host lock) 4531 * 4532 * RETURNS: 4533 * Zero on success, negative on error. 4534 * 4535 */ 4536 static int ata_sg_setup(struct ata_queued_cmd *qc) 4537 { 4538 struct ata_port *ap = qc->ap; 4539 unsigned int n_elem; 4540 4541 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4542 if (n_elem < 1) 4543 return -1; 4544 4545 qc->orig_n_elem = qc->n_elem; 4546 qc->n_elem = n_elem; 4547 qc->flags |= ATA_QCFLAG_DMAMAP; 4548 4549 return 0; 4550 } 4551 4552 #else /* !CONFIG_HAS_DMA */ 4553 4554 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4555 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4556 4557 #endif /* !CONFIG_HAS_DMA */ 4558 4559 /** 4560 * swap_buf_le16 - swap halves of 16-bit words in place 4561 * @buf: Buffer to swap 4562 * @buf_words: Number of 16-bit words in buffer. 4563 * 4564 * Swap halves of 16-bit words if needed to convert from 4565 * little-endian byte order to native cpu byte order, or 4566 * vice-versa. 4567 * 4568 * LOCKING: 4569 * Inherited from caller. 4570 */ 4571 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4572 { 4573 #ifdef __BIG_ENDIAN 4574 unsigned int i; 4575 4576 for (i = 0; i < buf_words; i++) 4577 buf[i] = le16_to_cpu(buf[i]); 4578 #endif /* __BIG_ENDIAN */ 4579 } 4580 4581 /** 4582 * ata_qc_free - free unused ata_queued_cmd 4583 * @qc: Command to complete 4584 * 4585 * Designed to free unused ata_queued_cmd object 4586 * in case something prevents using it. 4587 * 4588 * LOCKING: 4589 * spin_lock_irqsave(host lock) 4590 */ 4591 void ata_qc_free(struct ata_queued_cmd *qc) 4592 { 4593 qc->flags = 0; 4594 if (ata_tag_valid(qc->tag)) 4595 qc->tag = ATA_TAG_POISON; 4596 } 4597 4598 void __ata_qc_complete(struct ata_queued_cmd *qc) 4599 { 4600 struct ata_port *ap; 4601 struct ata_link *link; 4602 4603 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4604 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4605 ap = qc->ap; 4606 link = qc->dev->link; 4607 4608 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4609 ata_sg_clean(qc); 4610 4611 /* command should be marked inactive atomically with qc completion */ 4612 if (ata_is_ncq(qc->tf.protocol)) { 4613 link->sactive &= ~(1 << qc->hw_tag); 4614 if (!link->sactive) 4615 ap->nr_active_links--; 4616 } else { 4617 link->active_tag = ATA_TAG_POISON; 4618 ap->nr_active_links--; 4619 } 4620 4621 /* clear exclusive status */ 4622 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4623 ap->excl_link == link)) 4624 ap->excl_link = NULL; 4625 4626 /* atapi: mark qc as inactive to prevent the interrupt handler 4627 * from completing the command twice later, before the error handler 4628 * is called. (when rc != 0 and atapi request sense is needed) 4629 */ 4630 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4631 ap->qc_active &= ~(1ULL << qc->tag); 4632 4633 /* call completion callback */ 4634 qc->complete_fn(qc); 4635 } 4636 4637 static void fill_result_tf(struct ata_queued_cmd *qc) 4638 { 4639 struct ata_port *ap = qc->ap; 4640 4641 qc->result_tf.flags = qc->tf.flags; 4642 ap->ops->qc_fill_rtf(qc); 4643 } 4644 4645 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4646 { 4647 struct ata_device *dev = qc->dev; 4648 4649 if (!ata_is_data(qc->tf.protocol)) 4650 return; 4651 4652 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4653 return; 4654 4655 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4656 } 4657 4658 /** 4659 * ata_qc_complete - Complete an active ATA command 4660 * @qc: Command to complete 4661 * 4662 * Indicate to the mid and upper layers that an ATA command has 4663 * completed, with either an ok or not-ok status. 4664 * 4665 * Refrain from calling this function multiple times when 4666 * successfully completing multiple NCQ commands. 4667 * ata_qc_complete_multiple() should be used instead, which will 4668 * properly update IRQ expect state. 4669 * 4670 * LOCKING: 4671 * spin_lock_irqsave(host lock) 4672 */ 4673 void ata_qc_complete(struct ata_queued_cmd *qc) 4674 { 4675 struct ata_port *ap = qc->ap; 4676 4677 /* Trigger the LED (if available) */ 4678 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4679 4680 /* XXX: New EH and old EH use different mechanisms to 4681 * synchronize EH with regular execution path. 4682 * 4683 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4684 * Normal execution path is responsible for not accessing a 4685 * failed qc. libata core enforces the rule by returning NULL 4686 * from ata_qc_from_tag() for failed qcs. 4687 * 4688 * Old EH depends on ata_qc_complete() nullifying completion 4689 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4690 * not synchronize with interrupt handler. Only PIO task is 4691 * taken care of. 4692 */ 4693 if (ap->ops->error_handler) { 4694 struct ata_device *dev = qc->dev; 4695 struct ata_eh_info *ehi = &dev->link->eh_info; 4696 4697 if (unlikely(qc->err_mask)) 4698 qc->flags |= ATA_QCFLAG_FAILED; 4699 4700 /* 4701 * Finish internal commands without any further processing 4702 * and always with the result TF filled. 4703 */ 4704 if (unlikely(ata_tag_internal(qc->tag))) { 4705 fill_result_tf(qc); 4706 trace_ata_qc_complete_internal(qc); 4707 __ata_qc_complete(qc); 4708 return; 4709 } 4710 4711 /* 4712 * Non-internal qc has failed. Fill the result TF and 4713 * summon EH. 4714 */ 4715 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4716 fill_result_tf(qc); 4717 trace_ata_qc_complete_failed(qc); 4718 ata_qc_schedule_eh(qc); 4719 return; 4720 } 4721 4722 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4723 4724 /* read result TF if requested */ 4725 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4726 fill_result_tf(qc); 4727 4728 trace_ata_qc_complete_done(qc); 4729 /* Some commands need post-processing after successful 4730 * completion. 4731 */ 4732 switch (qc->tf.command) { 4733 case ATA_CMD_SET_FEATURES: 4734 if (qc->tf.feature != SETFEATURES_WC_ON && 4735 qc->tf.feature != SETFEATURES_WC_OFF && 4736 qc->tf.feature != SETFEATURES_RA_ON && 4737 qc->tf.feature != SETFEATURES_RA_OFF) 4738 break; 4739 fallthrough; 4740 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4741 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4742 /* revalidate device */ 4743 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4744 ata_port_schedule_eh(ap); 4745 break; 4746 4747 case ATA_CMD_SLEEP: 4748 dev->flags |= ATA_DFLAG_SLEEPING; 4749 break; 4750 } 4751 4752 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4753 ata_verify_xfer(qc); 4754 4755 __ata_qc_complete(qc); 4756 } else { 4757 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4758 return; 4759 4760 /* read result TF if failed or requested */ 4761 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4762 fill_result_tf(qc); 4763 4764 __ata_qc_complete(qc); 4765 } 4766 } 4767 EXPORT_SYMBOL_GPL(ata_qc_complete); 4768 4769 /** 4770 * ata_qc_get_active - get bitmask of active qcs 4771 * @ap: port in question 4772 * 4773 * LOCKING: 4774 * spin_lock_irqsave(host lock) 4775 * 4776 * RETURNS: 4777 * Bitmask of active qcs 4778 */ 4779 u64 ata_qc_get_active(struct ata_port *ap) 4780 { 4781 u64 qc_active = ap->qc_active; 4782 4783 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4784 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4785 qc_active |= (1 << 0); 4786 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4787 } 4788 4789 return qc_active; 4790 } 4791 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4792 4793 /** 4794 * ata_qc_issue - issue taskfile to device 4795 * @qc: command to issue to device 4796 * 4797 * Prepare an ATA command to submission to device. 4798 * This includes mapping the data into a DMA-able 4799 * area, filling in the S/G table, and finally 4800 * writing the taskfile to hardware, starting the command. 4801 * 4802 * LOCKING: 4803 * spin_lock_irqsave(host lock) 4804 */ 4805 void ata_qc_issue(struct ata_queued_cmd *qc) 4806 { 4807 struct ata_port *ap = qc->ap; 4808 struct ata_link *link = qc->dev->link; 4809 u8 prot = qc->tf.protocol; 4810 4811 /* Make sure only one non-NCQ command is outstanding. The 4812 * check is skipped for old EH because it reuses active qc to 4813 * request ATAPI sense. 4814 */ 4815 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 4816 4817 if (ata_is_ncq(prot)) { 4818 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4819 4820 if (!link->sactive) 4821 ap->nr_active_links++; 4822 link->sactive |= 1 << qc->hw_tag; 4823 } else { 4824 WARN_ON_ONCE(link->sactive); 4825 4826 ap->nr_active_links++; 4827 link->active_tag = qc->tag; 4828 } 4829 4830 qc->flags |= ATA_QCFLAG_ACTIVE; 4831 ap->qc_active |= 1ULL << qc->tag; 4832 4833 /* 4834 * We guarantee to LLDs that they will have at least one 4835 * non-zero sg if the command is a data command. 4836 */ 4837 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4838 goto sys_err; 4839 4840 if (ata_is_dma(prot) || (ata_is_pio(prot) && 4841 (ap->flags & ATA_FLAG_PIO_DMA))) 4842 if (ata_sg_setup(qc)) 4843 goto sys_err; 4844 4845 /* if device is sleeping, schedule reset and abort the link */ 4846 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 4847 link->eh_info.action |= ATA_EH_RESET; 4848 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 4849 ata_link_abort(link); 4850 return; 4851 } 4852 4853 trace_ata_qc_prep(qc); 4854 qc->err_mask |= ap->ops->qc_prep(qc); 4855 if (unlikely(qc->err_mask)) 4856 goto err; 4857 trace_ata_qc_issue(qc); 4858 qc->err_mask |= ap->ops->qc_issue(qc); 4859 if (unlikely(qc->err_mask)) 4860 goto err; 4861 return; 4862 4863 sys_err: 4864 qc->err_mask |= AC_ERR_SYSTEM; 4865 err: 4866 ata_qc_complete(qc); 4867 } 4868 4869 /** 4870 * ata_phys_link_online - test whether the given link is online 4871 * @link: ATA link to test 4872 * 4873 * Test whether @link is online. Note that this function returns 4874 * 0 if online status of @link cannot be obtained, so 4875 * ata_link_online(link) != !ata_link_offline(link). 4876 * 4877 * LOCKING: 4878 * None. 4879 * 4880 * RETURNS: 4881 * True if the port online status is available and online. 4882 */ 4883 bool ata_phys_link_online(struct ata_link *link) 4884 { 4885 u32 sstatus; 4886 4887 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4888 ata_sstatus_online(sstatus)) 4889 return true; 4890 return false; 4891 } 4892 4893 /** 4894 * ata_phys_link_offline - test whether the given link is offline 4895 * @link: ATA link to test 4896 * 4897 * Test whether @link is offline. Note that this function 4898 * returns 0 if offline status of @link cannot be obtained, so 4899 * ata_link_online(link) != !ata_link_offline(link). 4900 * 4901 * LOCKING: 4902 * None. 4903 * 4904 * RETURNS: 4905 * True if the port offline status is available and offline. 4906 */ 4907 bool ata_phys_link_offline(struct ata_link *link) 4908 { 4909 u32 sstatus; 4910 4911 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 4912 !ata_sstatus_online(sstatus)) 4913 return true; 4914 return false; 4915 } 4916 4917 /** 4918 * ata_link_online - test whether the given link is online 4919 * @link: ATA link to test 4920 * 4921 * Test whether @link is online. This is identical to 4922 * ata_phys_link_online() when there's no slave link. When 4923 * there's a slave link, this function should only be called on 4924 * the master link and will return true if any of M/S links is 4925 * online. 4926 * 4927 * LOCKING: 4928 * None. 4929 * 4930 * RETURNS: 4931 * True if the port online status is available and online. 4932 */ 4933 bool ata_link_online(struct ata_link *link) 4934 { 4935 struct ata_link *slave = link->ap->slave_link; 4936 4937 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4938 4939 return ata_phys_link_online(link) || 4940 (slave && ata_phys_link_online(slave)); 4941 } 4942 EXPORT_SYMBOL_GPL(ata_link_online); 4943 4944 /** 4945 * ata_link_offline - test whether the given link is offline 4946 * @link: ATA link to test 4947 * 4948 * Test whether @link is offline. This is identical to 4949 * ata_phys_link_offline() when there's no slave link. When 4950 * there's a slave link, this function should only be called on 4951 * the master link and will return true if both M/S links are 4952 * offline. 4953 * 4954 * LOCKING: 4955 * None. 4956 * 4957 * RETURNS: 4958 * True if the port offline status is available and offline. 4959 */ 4960 bool ata_link_offline(struct ata_link *link) 4961 { 4962 struct ata_link *slave = link->ap->slave_link; 4963 4964 WARN_ON(link == slave); /* shouldn't be called on slave link */ 4965 4966 return ata_phys_link_offline(link) && 4967 (!slave || ata_phys_link_offline(slave)); 4968 } 4969 EXPORT_SYMBOL_GPL(ata_link_offline); 4970 4971 #ifdef CONFIG_PM 4972 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 4973 unsigned int action, unsigned int ehi_flags, 4974 bool async) 4975 { 4976 struct ata_link *link; 4977 unsigned long flags; 4978 4979 /* Previous resume operation might still be in 4980 * progress. Wait for PM_PENDING to clear. 4981 */ 4982 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 4983 ata_port_wait_eh(ap); 4984 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 4985 } 4986 4987 /* request PM ops to EH */ 4988 spin_lock_irqsave(ap->lock, flags); 4989 4990 ap->pm_mesg = mesg; 4991 ap->pflags |= ATA_PFLAG_PM_PENDING; 4992 ata_for_each_link(link, ap, HOST_FIRST) { 4993 link->eh_info.action |= action; 4994 link->eh_info.flags |= ehi_flags; 4995 } 4996 4997 ata_port_schedule_eh(ap); 4998 4999 spin_unlock_irqrestore(ap->lock, flags); 5000 5001 if (!async) { 5002 ata_port_wait_eh(ap); 5003 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5004 } 5005 } 5006 5007 /* 5008 * On some hardware, device fails to respond after spun down for suspend. As 5009 * the device won't be used before being resumed, we don't need to touch the 5010 * device. Ask EH to skip the usual stuff and proceed directly to suspend. 5011 * 5012 * http://thread.gmane.org/gmane.linux.ide/46764 5013 */ 5014 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET 5015 | ATA_EHI_NO_AUTOPSY 5016 | ATA_EHI_NO_RECOVERY; 5017 5018 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg) 5019 { 5020 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false); 5021 } 5022 5023 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg) 5024 { 5025 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true); 5026 } 5027 5028 static int ata_port_pm_suspend(struct device *dev) 5029 { 5030 struct ata_port *ap = to_ata_port(dev); 5031 5032 if (pm_runtime_suspended(dev)) 5033 return 0; 5034 5035 ata_port_suspend(ap, PMSG_SUSPEND); 5036 return 0; 5037 } 5038 5039 static int ata_port_pm_freeze(struct device *dev) 5040 { 5041 struct ata_port *ap = to_ata_port(dev); 5042 5043 if (pm_runtime_suspended(dev)) 5044 return 0; 5045 5046 ata_port_suspend(ap, PMSG_FREEZE); 5047 return 0; 5048 } 5049 5050 static int ata_port_pm_poweroff(struct device *dev) 5051 { 5052 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE); 5053 return 0; 5054 } 5055 5056 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY 5057 | ATA_EHI_QUIET; 5058 5059 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg) 5060 { 5061 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false); 5062 } 5063 5064 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg) 5065 { 5066 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true); 5067 } 5068 5069 static int ata_port_pm_resume(struct device *dev) 5070 { 5071 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME); 5072 pm_runtime_disable(dev); 5073 pm_runtime_set_active(dev); 5074 pm_runtime_enable(dev); 5075 return 0; 5076 } 5077 5078 /* 5079 * For ODDs, the upper layer will poll for media change every few seconds, 5080 * which will make it enter and leave suspend state every few seconds. And 5081 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5082 * is very little and the ODD may malfunction after constantly being reset. 5083 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5084 * ODD is attached to the port. 5085 */ 5086 static int ata_port_runtime_idle(struct device *dev) 5087 { 5088 struct ata_port *ap = to_ata_port(dev); 5089 struct ata_link *link; 5090 struct ata_device *adev; 5091 5092 ata_for_each_link(link, ap, HOST_FIRST) { 5093 ata_for_each_dev(adev, link, ENABLED) 5094 if (adev->class == ATA_DEV_ATAPI && 5095 !zpodd_dev_enabled(adev)) 5096 return -EBUSY; 5097 } 5098 5099 return 0; 5100 } 5101 5102 static int ata_port_runtime_suspend(struct device *dev) 5103 { 5104 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND); 5105 return 0; 5106 } 5107 5108 static int ata_port_runtime_resume(struct device *dev) 5109 { 5110 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME); 5111 return 0; 5112 } 5113 5114 static const struct dev_pm_ops ata_port_pm_ops = { 5115 .suspend = ata_port_pm_suspend, 5116 .resume = ata_port_pm_resume, 5117 .freeze = ata_port_pm_freeze, 5118 .thaw = ata_port_pm_resume, 5119 .poweroff = ata_port_pm_poweroff, 5120 .restore = ata_port_pm_resume, 5121 5122 .runtime_suspend = ata_port_runtime_suspend, 5123 .runtime_resume = ata_port_runtime_resume, 5124 .runtime_idle = ata_port_runtime_idle, 5125 }; 5126 5127 /* sas ports don't participate in pm runtime management of ata_ports, 5128 * and need to resume ata devices at the domain level, not the per-port 5129 * level. sas suspend/resume is async to allow parallel port recovery 5130 * since sas has multiple ata_port instances per Scsi_Host. 5131 */ 5132 void ata_sas_port_suspend(struct ata_port *ap) 5133 { 5134 ata_port_suspend_async(ap, PMSG_SUSPEND); 5135 } 5136 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5137 5138 void ata_sas_port_resume(struct ata_port *ap) 5139 { 5140 ata_port_resume_async(ap, PMSG_RESUME); 5141 } 5142 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5143 5144 /** 5145 * ata_host_suspend - suspend host 5146 * @host: host to suspend 5147 * @mesg: PM message 5148 * 5149 * Suspend @host. Actual operation is performed by port suspend. 5150 */ 5151 void ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5152 { 5153 host->dev->power.power_state = mesg; 5154 } 5155 EXPORT_SYMBOL_GPL(ata_host_suspend); 5156 5157 /** 5158 * ata_host_resume - resume host 5159 * @host: host to resume 5160 * 5161 * Resume @host. Actual operation is performed by port resume. 5162 */ 5163 void ata_host_resume(struct ata_host *host) 5164 { 5165 host->dev->power.power_state = PMSG_ON; 5166 } 5167 EXPORT_SYMBOL_GPL(ata_host_resume); 5168 #endif 5169 5170 const struct device_type ata_port_type = { 5171 .name = "ata_port", 5172 #ifdef CONFIG_PM 5173 .pm = &ata_port_pm_ops, 5174 #endif 5175 }; 5176 5177 /** 5178 * ata_dev_init - Initialize an ata_device structure 5179 * @dev: Device structure to initialize 5180 * 5181 * Initialize @dev in preparation for probing. 5182 * 5183 * LOCKING: 5184 * Inherited from caller. 5185 */ 5186 void ata_dev_init(struct ata_device *dev) 5187 { 5188 struct ata_link *link = ata_dev_phys_link(dev); 5189 struct ata_port *ap = link->ap; 5190 unsigned long flags; 5191 5192 /* SATA spd limit is bound to the attached device, reset together */ 5193 link->sata_spd_limit = link->hw_sata_spd_limit; 5194 link->sata_spd = 0; 5195 5196 /* High bits of dev->flags are used to record warm plug 5197 * requests which occur asynchronously. Synchronize using 5198 * host lock. 5199 */ 5200 spin_lock_irqsave(ap->lock, flags); 5201 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5202 dev->horkage = 0; 5203 spin_unlock_irqrestore(ap->lock, flags); 5204 5205 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5206 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5207 dev->pio_mask = UINT_MAX; 5208 dev->mwdma_mask = UINT_MAX; 5209 dev->udma_mask = UINT_MAX; 5210 } 5211 5212 /** 5213 * ata_link_init - Initialize an ata_link structure 5214 * @ap: ATA port link is attached to 5215 * @link: Link structure to initialize 5216 * @pmp: Port multiplier port number 5217 * 5218 * Initialize @link. 5219 * 5220 * LOCKING: 5221 * Kernel thread context (may sleep) 5222 */ 5223 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5224 { 5225 int i; 5226 5227 /* clear everything except for devices */ 5228 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5229 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5230 5231 link->ap = ap; 5232 link->pmp = pmp; 5233 link->active_tag = ATA_TAG_POISON; 5234 link->hw_sata_spd_limit = UINT_MAX; 5235 5236 /* can't use iterator, ap isn't initialized yet */ 5237 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5238 struct ata_device *dev = &link->device[i]; 5239 5240 dev->link = link; 5241 dev->devno = dev - link->device; 5242 #ifdef CONFIG_ATA_ACPI 5243 dev->gtf_filter = ata_acpi_gtf_filter; 5244 #endif 5245 ata_dev_init(dev); 5246 } 5247 } 5248 5249 /** 5250 * sata_link_init_spd - Initialize link->sata_spd_limit 5251 * @link: Link to configure sata_spd_limit for 5252 * 5253 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5254 * configured value. 5255 * 5256 * LOCKING: 5257 * Kernel thread context (may sleep). 5258 * 5259 * RETURNS: 5260 * 0 on success, -errno on failure. 5261 */ 5262 int sata_link_init_spd(struct ata_link *link) 5263 { 5264 u8 spd; 5265 int rc; 5266 5267 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5268 if (rc) 5269 return rc; 5270 5271 spd = (link->saved_scontrol >> 4) & 0xf; 5272 if (spd) 5273 link->hw_sata_spd_limit &= (1 << spd) - 1; 5274 5275 ata_force_link_limits(link); 5276 5277 link->sata_spd_limit = link->hw_sata_spd_limit; 5278 5279 return 0; 5280 } 5281 5282 /** 5283 * ata_port_alloc - allocate and initialize basic ATA port resources 5284 * @host: ATA host this allocated port belongs to 5285 * 5286 * Allocate and initialize basic ATA port resources. 5287 * 5288 * RETURNS: 5289 * Allocate ATA port on success, NULL on failure. 5290 * 5291 * LOCKING: 5292 * Inherited from calling layer (may sleep). 5293 */ 5294 struct ata_port *ata_port_alloc(struct ata_host *host) 5295 { 5296 struct ata_port *ap; 5297 5298 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5299 if (!ap) 5300 return NULL; 5301 5302 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5303 ap->lock = &host->lock; 5304 ap->print_id = -1; 5305 ap->local_port_no = -1; 5306 ap->host = host; 5307 ap->dev = host->dev; 5308 5309 mutex_init(&ap->scsi_scan_mutex); 5310 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5311 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5312 INIT_LIST_HEAD(&ap->eh_done_q); 5313 init_waitqueue_head(&ap->eh_wait_q); 5314 init_completion(&ap->park_req_pending); 5315 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5316 TIMER_DEFERRABLE); 5317 5318 ap->cbl = ATA_CBL_NONE; 5319 5320 ata_link_init(ap, &ap->link, 0); 5321 5322 #ifdef ATA_IRQ_TRAP 5323 ap->stats.unhandled_irq = 1; 5324 ap->stats.idle_irq = 1; 5325 #endif 5326 ata_sff_port_init(ap); 5327 5328 return ap; 5329 } 5330 5331 static void ata_devres_release(struct device *gendev, void *res) 5332 { 5333 struct ata_host *host = dev_get_drvdata(gendev); 5334 int i; 5335 5336 for (i = 0; i < host->n_ports; i++) { 5337 struct ata_port *ap = host->ports[i]; 5338 5339 if (!ap) 5340 continue; 5341 5342 if (ap->scsi_host) 5343 scsi_host_put(ap->scsi_host); 5344 5345 } 5346 5347 dev_set_drvdata(gendev, NULL); 5348 ata_host_put(host); 5349 } 5350 5351 static void ata_host_release(struct kref *kref) 5352 { 5353 struct ata_host *host = container_of(kref, struct ata_host, kref); 5354 int i; 5355 5356 for (i = 0; i < host->n_ports; i++) { 5357 struct ata_port *ap = host->ports[i]; 5358 5359 kfree(ap->pmp_link); 5360 kfree(ap->slave_link); 5361 kfree(ap); 5362 host->ports[i] = NULL; 5363 } 5364 kfree(host); 5365 } 5366 5367 void ata_host_get(struct ata_host *host) 5368 { 5369 kref_get(&host->kref); 5370 } 5371 5372 void ata_host_put(struct ata_host *host) 5373 { 5374 kref_put(&host->kref, ata_host_release); 5375 } 5376 EXPORT_SYMBOL_GPL(ata_host_put); 5377 5378 /** 5379 * ata_host_alloc - allocate and init basic ATA host resources 5380 * @dev: generic device this host is associated with 5381 * @max_ports: maximum number of ATA ports associated with this host 5382 * 5383 * Allocate and initialize basic ATA host resources. LLD calls 5384 * this function to allocate a host, initializes it fully and 5385 * attaches it using ata_host_register(). 5386 * 5387 * @max_ports ports are allocated and host->n_ports is 5388 * initialized to @max_ports. The caller is allowed to decrease 5389 * host->n_ports before calling ata_host_register(). The unused 5390 * ports will be automatically freed on registration. 5391 * 5392 * RETURNS: 5393 * Allocate ATA host on success, NULL on failure. 5394 * 5395 * LOCKING: 5396 * Inherited from calling layer (may sleep). 5397 */ 5398 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5399 { 5400 struct ata_host *host; 5401 size_t sz; 5402 int i; 5403 void *dr; 5404 5405 /* alloc a container for our list of ATA ports (buses) */ 5406 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5407 host = kzalloc(sz, GFP_KERNEL); 5408 if (!host) 5409 return NULL; 5410 5411 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5412 goto err_free; 5413 5414 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5415 if (!dr) 5416 goto err_out; 5417 5418 devres_add(dev, dr); 5419 dev_set_drvdata(dev, host); 5420 5421 spin_lock_init(&host->lock); 5422 mutex_init(&host->eh_mutex); 5423 host->dev = dev; 5424 host->n_ports = max_ports; 5425 kref_init(&host->kref); 5426 5427 /* allocate ports bound to this host */ 5428 for (i = 0; i < max_ports; i++) { 5429 struct ata_port *ap; 5430 5431 ap = ata_port_alloc(host); 5432 if (!ap) 5433 goto err_out; 5434 5435 ap->port_no = i; 5436 host->ports[i] = ap; 5437 } 5438 5439 devres_remove_group(dev, NULL); 5440 return host; 5441 5442 err_out: 5443 devres_release_group(dev, NULL); 5444 err_free: 5445 kfree(host); 5446 return NULL; 5447 } 5448 EXPORT_SYMBOL_GPL(ata_host_alloc); 5449 5450 /** 5451 * ata_host_alloc_pinfo - alloc host and init with port_info array 5452 * @dev: generic device this host is associated with 5453 * @ppi: array of ATA port_info to initialize host with 5454 * @n_ports: number of ATA ports attached to this host 5455 * 5456 * Allocate ATA host and initialize with info from @ppi. If NULL 5457 * terminated, @ppi may contain fewer entries than @n_ports. The 5458 * last entry will be used for the remaining ports. 5459 * 5460 * RETURNS: 5461 * Allocate ATA host on success, NULL on failure. 5462 * 5463 * LOCKING: 5464 * Inherited from calling layer (may sleep). 5465 */ 5466 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5467 const struct ata_port_info * const * ppi, 5468 int n_ports) 5469 { 5470 const struct ata_port_info *pi = &ata_dummy_port_info; 5471 struct ata_host *host; 5472 int i, j; 5473 5474 host = ata_host_alloc(dev, n_ports); 5475 if (!host) 5476 return NULL; 5477 5478 for (i = 0, j = 0; i < host->n_ports; i++) { 5479 struct ata_port *ap = host->ports[i]; 5480 5481 if (ppi[j]) 5482 pi = ppi[j++]; 5483 5484 ap->pio_mask = pi->pio_mask; 5485 ap->mwdma_mask = pi->mwdma_mask; 5486 ap->udma_mask = pi->udma_mask; 5487 ap->flags |= pi->flags; 5488 ap->link.flags |= pi->link_flags; 5489 ap->ops = pi->port_ops; 5490 5491 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5492 host->ops = pi->port_ops; 5493 } 5494 5495 return host; 5496 } 5497 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5498 5499 static void ata_host_stop(struct device *gendev, void *res) 5500 { 5501 struct ata_host *host = dev_get_drvdata(gendev); 5502 int i; 5503 5504 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5505 5506 for (i = 0; i < host->n_ports; i++) { 5507 struct ata_port *ap = host->ports[i]; 5508 5509 if (ap->ops->port_stop) 5510 ap->ops->port_stop(ap); 5511 } 5512 5513 if (host->ops->host_stop) 5514 host->ops->host_stop(host); 5515 } 5516 5517 /** 5518 * ata_finalize_port_ops - finalize ata_port_operations 5519 * @ops: ata_port_operations to finalize 5520 * 5521 * An ata_port_operations can inherit from another ops and that 5522 * ops can again inherit from another. This can go on as many 5523 * times as necessary as long as there is no loop in the 5524 * inheritance chain. 5525 * 5526 * Ops tables are finalized when the host is started. NULL or 5527 * unspecified entries are inherited from the closet ancestor 5528 * which has the method and the entry is populated with it. 5529 * After finalization, the ops table directly points to all the 5530 * methods and ->inherits is no longer necessary and cleared. 5531 * 5532 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5533 * 5534 * LOCKING: 5535 * None. 5536 */ 5537 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5538 { 5539 static DEFINE_SPINLOCK(lock); 5540 const struct ata_port_operations *cur; 5541 void **begin = (void **)ops; 5542 void **end = (void **)&ops->inherits; 5543 void **pp; 5544 5545 if (!ops || !ops->inherits) 5546 return; 5547 5548 spin_lock(&lock); 5549 5550 for (cur = ops->inherits; cur; cur = cur->inherits) { 5551 void **inherit = (void **)cur; 5552 5553 for (pp = begin; pp < end; pp++, inherit++) 5554 if (!*pp) 5555 *pp = *inherit; 5556 } 5557 5558 for (pp = begin; pp < end; pp++) 5559 if (IS_ERR(*pp)) 5560 *pp = NULL; 5561 5562 ops->inherits = NULL; 5563 5564 spin_unlock(&lock); 5565 } 5566 5567 /** 5568 * ata_host_start - start and freeze ports of an ATA host 5569 * @host: ATA host to start ports for 5570 * 5571 * Start and then freeze ports of @host. Started status is 5572 * recorded in host->flags, so this function can be called 5573 * multiple times. Ports are guaranteed to get started only 5574 * once. If host->ops is not initialized yet, it is set to the 5575 * first non-dummy port ops. 5576 * 5577 * LOCKING: 5578 * Inherited from calling layer (may sleep). 5579 * 5580 * RETURNS: 5581 * 0 if all ports are started successfully, -errno otherwise. 5582 */ 5583 int ata_host_start(struct ata_host *host) 5584 { 5585 int have_stop = 0; 5586 void *start_dr = NULL; 5587 int i, rc; 5588 5589 if (host->flags & ATA_HOST_STARTED) 5590 return 0; 5591 5592 ata_finalize_port_ops(host->ops); 5593 5594 for (i = 0; i < host->n_ports; i++) { 5595 struct ata_port *ap = host->ports[i]; 5596 5597 ata_finalize_port_ops(ap->ops); 5598 5599 if (!host->ops && !ata_port_is_dummy(ap)) 5600 host->ops = ap->ops; 5601 5602 if (ap->ops->port_stop) 5603 have_stop = 1; 5604 } 5605 5606 if (host->ops && host->ops->host_stop) 5607 have_stop = 1; 5608 5609 if (have_stop) { 5610 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5611 if (!start_dr) 5612 return -ENOMEM; 5613 } 5614 5615 for (i = 0; i < host->n_ports; i++) { 5616 struct ata_port *ap = host->ports[i]; 5617 5618 if (ap->ops->port_start) { 5619 rc = ap->ops->port_start(ap); 5620 if (rc) { 5621 if (rc != -ENODEV) 5622 dev_err(host->dev, 5623 "failed to start port %d (errno=%d)\n", 5624 i, rc); 5625 goto err_out; 5626 } 5627 } 5628 ata_eh_freeze_port(ap); 5629 } 5630 5631 if (start_dr) 5632 devres_add(host->dev, start_dr); 5633 host->flags |= ATA_HOST_STARTED; 5634 return 0; 5635 5636 err_out: 5637 while (--i >= 0) { 5638 struct ata_port *ap = host->ports[i]; 5639 5640 if (ap->ops->port_stop) 5641 ap->ops->port_stop(ap); 5642 } 5643 devres_free(start_dr); 5644 return rc; 5645 } 5646 EXPORT_SYMBOL_GPL(ata_host_start); 5647 5648 /** 5649 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5650 * @host: host to initialize 5651 * @dev: device host is attached to 5652 * @ops: port_ops 5653 * 5654 */ 5655 void ata_host_init(struct ata_host *host, struct device *dev, 5656 struct ata_port_operations *ops) 5657 { 5658 spin_lock_init(&host->lock); 5659 mutex_init(&host->eh_mutex); 5660 host->n_tags = ATA_MAX_QUEUE; 5661 host->dev = dev; 5662 host->ops = ops; 5663 kref_init(&host->kref); 5664 } 5665 EXPORT_SYMBOL_GPL(ata_host_init); 5666 5667 void __ata_port_probe(struct ata_port *ap) 5668 { 5669 struct ata_eh_info *ehi = &ap->link.eh_info; 5670 unsigned long flags; 5671 5672 /* kick EH for boot probing */ 5673 spin_lock_irqsave(ap->lock, flags); 5674 5675 ehi->probe_mask |= ATA_ALL_DEVICES; 5676 ehi->action |= ATA_EH_RESET; 5677 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5678 5679 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5680 ap->pflags |= ATA_PFLAG_LOADING; 5681 ata_port_schedule_eh(ap); 5682 5683 spin_unlock_irqrestore(ap->lock, flags); 5684 } 5685 5686 int ata_port_probe(struct ata_port *ap) 5687 { 5688 int rc = 0; 5689 5690 if (ap->ops->error_handler) { 5691 __ata_port_probe(ap); 5692 ata_port_wait_eh(ap); 5693 } else { 5694 rc = ata_bus_probe(ap); 5695 } 5696 return rc; 5697 } 5698 5699 5700 static void async_port_probe(void *data, async_cookie_t cookie) 5701 { 5702 struct ata_port *ap = data; 5703 5704 /* 5705 * If we're not allowed to scan this host in parallel, 5706 * we need to wait until all previous scans have completed 5707 * before going further. 5708 * Jeff Garzik says this is only within a controller, so we 5709 * don't need to wait for port 0, only for later ports. 5710 */ 5711 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5712 async_synchronize_cookie(cookie); 5713 5714 (void)ata_port_probe(ap); 5715 5716 /* in order to keep device order, we need to synchronize at this point */ 5717 async_synchronize_cookie(cookie); 5718 5719 ata_scsi_scan_host(ap, 1); 5720 } 5721 5722 /** 5723 * ata_host_register - register initialized ATA host 5724 * @host: ATA host to register 5725 * @sht: template for SCSI host 5726 * 5727 * Register initialized ATA host. @host is allocated using 5728 * ata_host_alloc() and fully initialized by LLD. This function 5729 * starts ports, registers @host with ATA and SCSI layers and 5730 * probe registered devices. 5731 * 5732 * LOCKING: 5733 * Inherited from calling layer (may sleep). 5734 * 5735 * RETURNS: 5736 * 0 on success, -errno otherwise. 5737 */ 5738 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 5739 { 5740 int i, rc; 5741 5742 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5743 5744 /* host must have been started */ 5745 if (!(host->flags & ATA_HOST_STARTED)) { 5746 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5747 WARN_ON(1); 5748 return -EINVAL; 5749 } 5750 5751 /* Blow away unused ports. This happens when LLD can't 5752 * determine the exact number of ports to allocate at 5753 * allocation time. 5754 */ 5755 for (i = host->n_ports; host->ports[i]; i++) 5756 kfree(host->ports[i]); 5757 5758 /* give ports names and add SCSI hosts */ 5759 for (i = 0; i < host->n_ports; i++) { 5760 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 5761 host->ports[i]->local_port_no = i + 1; 5762 } 5763 5764 /* Create associated sysfs transport objects */ 5765 for (i = 0; i < host->n_ports; i++) { 5766 rc = ata_tport_add(host->dev,host->ports[i]); 5767 if (rc) { 5768 goto err_tadd; 5769 } 5770 } 5771 5772 rc = ata_scsi_add_hosts(host, sht); 5773 if (rc) 5774 goto err_tadd; 5775 5776 /* set cable, sata_spd_limit and report */ 5777 for (i = 0; i < host->n_ports; i++) { 5778 struct ata_port *ap = host->ports[i]; 5779 unsigned int xfer_mask; 5780 5781 /* set SATA cable type if still unset */ 5782 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5783 ap->cbl = ATA_CBL_SATA; 5784 5785 /* init sata_spd_limit to the current value */ 5786 sata_link_init_spd(&ap->link); 5787 if (ap->slave_link) 5788 sata_link_init_spd(ap->slave_link); 5789 5790 /* print per-port info to dmesg */ 5791 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5792 ap->udma_mask); 5793 5794 if (!ata_port_is_dummy(ap)) { 5795 ata_port_info(ap, "%cATA max %s %s\n", 5796 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5797 ata_mode_string(xfer_mask), 5798 ap->link.eh_info.desc); 5799 ata_ehi_clear_desc(&ap->link.eh_info); 5800 } else 5801 ata_port_info(ap, "DUMMY\n"); 5802 } 5803 5804 /* perform each probe asynchronously */ 5805 for (i = 0; i < host->n_ports; i++) { 5806 struct ata_port *ap = host->ports[i]; 5807 ap->cookie = async_schedule(async_port_probe, ap); 5808 } 5809 5810 return 0; 5811 5812 err_tadd: 5813 while (--i >= 0) { 5814 ata_tport_delete(host->ports[i]); 5815 } 5816 return rc; 5817 5818 } 5819 EXPORT_SYMBOL_GPL(ata_host_register); 5820 5821 /** 5822 * ata_host_activate - start host, request IRQ and register it 5823 * @host: target ATA host 5824 * @irq: IRQ to request 5825 * @irq_handler: irq_handler used when requesting IRQ 5826 * @irq_flags: irq_flags used when requesting IRQ 5827 * @sht: scsi_host_template to use when registering the host 5828 * 5829 * After allocating an ATA host and initializing it, most libata 5830 * LLDs perform three steps to activate the host - start host, 5831 * request IRQ and register it. This helper takes necessary 5832 * arguments and performs the three steps in one go. 5833 * 5834 * An invalid IRQ skips the IRQ registration and expects the host to 5835 * have set polling mode on the port. In this case, @irq_handler 5836 * should be NULL. 5837 * 5838 * LOCKING: 5839 * Inherited from calling layer (may sleep). 5840 * 5841 * RETURNS: 5842 * 0 on success, -errno otherwise. 5843 */ 5844 int ata_host_activate(struct ata_host *host, int irq, 5845 irq_handler_t irq_handler, unsigned long irq_flags, 5846 struct scsi_host_template *sht) 5847 { 5848 int i, rc; 5849 char *irq_desc; 5850 5851 rc = ata_host_start(host); 5852 if (rc) 5853 return rc; 5854 5855 /* Special case for polling mode */ 5856 if (!irq) { 5857 WARN_ON(irq_handler); 5858 return ata_host_register(host, sht); 5859 } 5860 5861 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 5862 dev_driver_string(host->dev), 5863 dev_name(host->dev)); 5864 if (!irq_desc) 5865 return -ENOMEM; 5866 5867 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 5868 irq_desc, host); 5869 if (rc) 5870 return rc; 5871 5872 for (i = 0; i < host->n_ports; i++) 5873 ata_port_desc(host->ports[i], "irq %d", irq); 5874 5875 rc = ata_host_register(host, sht); 5876 /* if failed, just free the IRQ and leave ports alone */ 5877 if (rc) 5878 devm_free_irq(host->dev, irq, host); 5879 5880 return rc; 5881 } 5882 EXPORT_SYMBOL_GPL(ata_host_activate); 5883 5884 /** 5885 * ata_port_detach - Detach ATA port in preparation of device removal 5886 * @ap: ATA port to be detached 5887 * 5888 * Detach all ATA devices and the associated SCSI devices of @ap; 5889 * then, remove the associated SCSI host. @ap is guaranteed to 5890 * be quiescent on return from this function. 5891 * 5892 * LOCKING: 5893 * Kernel thread context (may sleep). 5894 */ 5895 static void ata_port_detach(struct ata_port *ap) 5896 { 5897 unsigned long flags; 5898 struct ata_link *link; 5899 struct ata_device *dev; 5900 5901 if (!ap->ops->error_handler) 5902 goto skip_eh; 5903 5904 /* tell EH we're leaving & flush EH */ 5905 spin_lock_irqsave(ap->lock, flags); 5906 ap->pflags |= ATA_PFLAG_UNLOADING; 5907 ata_port_schedule_eh(ap); 5908 spin_unlock_irqrestore(ap->lock, flags); 5909 5910 /* wait till EH commits suicide */ 5911 ata_port_wait_eh(ap); 5912 5913 /* it better be dead now */ 5914 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 5915 5916 cancel_delayed_work_sync(&ap->hotplug_task); 5917 5918 skip_eh: 5919 /* clean up zpodd on port removal */ 5920 ata_for_each_link(link, ap, HOST_FIRST) { 5921 ata_for_each_dev(dev, link, ALL) { 5922 if (zpodd_dev_enabled(dev)) 5923 zpodd_exit(dev); 5924 } 5925 } 5926 if (ap->pmp_link) { 5927 int i; 5928 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 5929 ata_tlink_delete(&ap->pmp_link[i]); 5930 } 5931 /* remove the associated SCSI host */ 5932 scsi_remove_host(ap->scsi_host); 5933 ata_tport_delete(ap); 5934 } 5935 5936 /** 5937 * ata_host_detach - Detach all ports of an ATA host 5938 * @host: Host to detach 5939 * 5940 * Detach all ports of @host. 5941 * 5942 * LOCKING: 5943 * Kernel thread context (may sleep). 5944 */ 5945 void ata_host_detach(struct ata_host *host) 5946 { 5947 int i; 5948 5949 for (i = 0; i < host->n_ports; i++) { 5950 /* Ensure ata_port probe has completed */ 5951 async_synchronize_cookie(host->ports[i]->cookie + 1); 5952 ata_port_detach(host->ports[i]); 5953 } 5954 5955 /* the host is dead now, dissociate ACPI */ 5956 ata_acpi_dissociate(host); 5957 } 5958 EXPORT_SYMBOL_GPL(ata_host_detach); 5959 5960 #ifdef CONFIG_PCI 5961 5962 /** 5963 * ata_pci_remove_one - PCI layer callback for device removal 5964 * @pdev: PCI device that was removed 5965 * 5966 * PCI layer indicates to libata via this hook that hot-unplug or 5967 * module unload event has occurred. Detach all ports. Resource 5968 * release is handled via devres. 5969 * 5970 * LOCKING: 5971 * Inherited from PCI layer (may sleep). 5972 */ 5973 void ata_pci_remove_one(struct pci_dev *pdev) 5974 { 5975 struct ata_host *host = pci_get_drvdata(pdev); 5976 5977 ata_host_detach(host); 5978 } 5979 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 5980 5981 void ata_pci_shutdown_one(struct pci_dev *pdev) 5982 { 5983 struct ata_host *host = pci_get_drvdata(pdev); 5984 int i; 5985 5986 for (i = 0; i < host->n_ports; i++) { 5987 struct ata_port *ap = host->ports[i]; 5988 5989 ap->pflags |= ATA_PFLAG_FROZEN; 5990 5991 /* Disable port interrupts */ 5992 if (ap->ops->freeze) 5993 ap->ops->freeze(ap); 5994 5995 /* Stop the port DMA engines */ 5996 if (ap->ops->port_stop) 5997 ap->ops->port_stop(ap); 5998 } 5999 } 6000 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6001 6002 /* move to PCI subsystem */ 6003 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6004 { 6005 unsigned long tmp = 0; 6006 6007 switch (bits->width) { 6008 case 1: { 6009 u8 tmp8 = 0; 6010 pci_read_config_byte(pdev, bits->reg, &tmp8); 6011 tmp = tmp8; 6012 break; 6013 } 6014 case 2: { 6015 u16 tmp16 = 0; 6016 pci_read_config_word(pdev, bits->reg, &tmp16); 6017 tmp = tmp16; 6018 break; 6019 } 6020 case 4: { 6021 u32 tmp32 = 0; 6022 pci_read_config_dword(pdev, bits->reg, &tmp32); 6023 tmp = tmp32; 6024 break; 6025 } 6026 6027 default: 6028 return -EINVAL; 6029 } 6030 6031 tmp &= bits->mask; 6032 6033 return (tmp == bits->val) ? 1 : 0; 6034 } 6035 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6036 6037 #ifdef CONFIG_PM 6038 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6039 { 6040 pci_save_state(pdev); 6041 pci_disable_device(pdev); 6042 6043 if (mesg.event & PM_EVENT_SLEEP) 6044 pci_set_power_state(pdev, PCI_D3hot); 6045 } 6046 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6047 6048 int ata_pci_device_do_resume(struct pci_dev *pdev) 6049 { 6050 int rc; 6051 6052 pci_set_power_state(pdev, PCI_D0); 6053 pci_restore_state(pdev); 6054 6055 rc = pcim_enable_device(pdev); 6056 if (rc) { 6057 dev_err(&pdev->dev, 6058 "failed to enable device after resume (%d)\n", rc); 6059 return rc; 6060 } 6061 6062 pci_set_master(pdev); 6063 return 0; 6064 } 6065 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6066 6067 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6068 { 6069 struct ata_host *host = pci_get_drvdata(pdev); 6070 6071 ata_host_suspend(host, mesg); 6072 6073 ata_pci_device_do_suspend(pdev, mesg); 6074 6075 return 0; 6076 } 6077 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6078 6079 int ata_pci_device_resume(struct pci_dev *pdev) 6080 { 6081 struct ata_host *host = pci_get_drvdata(pdev); 6082 int rc; 6083 6084 rc = ata_pci_device_do_resume(pdev); 6085 if (rc == 0) 6086 ata_host_resume(host); 6087 return rc; 6088 } 6089 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6090 #endif /* CONFIG_PM */ 6091 #endif /* CONFIG_PCI */ 6092 6093 /** 6094 * ata_platform_remove_one - Platform layer callback for device removal 6095 * @pdev: Platform device that was removed 6096 * 6097 * Platform layer indicates to libata via this hook that hot-unplug or 6098 * module unload event has occurred. Detach all ports. Resource 6099 * release is handled via devres. 6100 * 6101 * LOCKING: 6102 * Inherited from platform layer (may sleep). 6103 */ 6104 int ata_platform_remove_one(struct platform_device *pdev) 6105 { 6106 struct ata_host *host = platform_get_drvdata(pdev); 6107 6108 ata_host_detach(host); 6109 6110 return 0; 6111 } 6112 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6113 6114 #ifdef CONFIG_ATA_FORCE 6115 6116 #define force_cbl(name, flag) \ 6117 { #name, .cbl = (flag) } 6118 6119 #define force_spd_limit(spd, val) \ 6120 { #spd, .spd_limit = (val) } 6121 6122 #define force_xfer(mode, shift) \ 6123 { #mode, .xfer_mask = (1UL << (shift)) } 6124 6125 #define force_lflag_on(name, flags) \ 6126 { #name, .lflags_on = (flags) } 6127 6128 #define force_lflag_onoff(name, flags) \ 6129 { "no" #name, .lflags_on = (flags) }, \ 6130 { #name, .lflags_off = (flags) } 6131 6132 #define force_horkage_on(name, flag) \ 6133 { #name, .horkage_on = (flag) } 6134 6135 #define force_horkage_onoff(name, flag) \ 6136 { "no" #name, .horkage_on = (flag) }, \ 6137 { #name, .horkage_off = (flag) } 6138 6139 static const struct ata_force_param force_tbl[] __initconst = { 6140 force_cbl(40c, ATA_CBL_PATA40), 6141 force_cbl(80c, ATA_CBL_PATA80), 6142 force_cbl(short40c, ATA_CBL_PATA40_SHORT), 6143 force_cbl(unk, ATA_CBL_PATA_UNK), 6144 force_cbl(ign, ATA_CBL_PATA_IGN), 6145 force_cbl(sata, ATA_CBL_SATA), 6146 6147 force_spd_limit(1.5Gbps, 1), 6148 force_spd_limit(3.0Gbps, 2), 6149 6150 force_xfer(pio0, ATA_SHIFT_PIO + 0), 6151 force_xfer(pio1, ATA_SHIFT_PIO + 1), 6152 force_xfer(pio2, ATA_SHIFT_PIO + 2), 6153 force_xfer(pio3, ATA_SHIFT_PIO + 3), 6154 force_xfer(pio4, ATA_SHIFT_PIO + 4), 6155 force_xfer(pio5, ATA_SHIFT_PIO + 5), 6156 force_xfer(pio6, ATA_SHIFT_PIO + 6), 6157 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0), 6158 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1), 6159 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2), 6160 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3), 6161 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4), 6162 force_xfer(udma0, ATA_SHIFT_UDMA + 0), 6163 force_xfer(udma16, ATA_SHIFT_UDMA + 0), 6164 force_xfer(udma/16, ATA_SHIFT_UDMA + 0), 6165 force_xfer(udma1, ATA_SHIFT_UDMA + 1), 6166 force_xfer(udma25, ATA_SHIFT_UDMA + 1), 6167 force_xfer(udma/25, ATA_SHIFT_UDMA + 1), 6168 force_xfer(udma2, ATA_SHIFT_UDMA + 2), 6169 force_xfer(udma33, ATA_SHIFT_UDMA + 2), 6170 force_xfer(udma/33, ATA_SHIFT_UDMA + 2), 6171 force_xfer(udma3, ATA_SHIFT_UDMA + 3), 6172 force_xfer(udma44, ATA_SHIFT_UDMA + 3), 6173 force_xfer(udma/44, ATA_SHIFT_UDMA + 3), 6174 force_xfer(udma4, ATA_SHIFT_UDMA + 4), 6175 force_xfer(udma66, ATA_SHIFT_UDMA + 4), 6176 force_xfer(udma/66, ATA_SHIFT_UDMA + 4), 6177 force_xfer(udma5, ATA_SHIFT_UDMA + 5), 6178 force_xfer(udma100, ATA_SHIFT_UDMA + 5), 6179 force_xfer(udma/100, ATA_SHIFT_UDMA + 5), 6180 force_xfer(udma6, ATA_SHIFT_UDMA + 6), 6181 force_xfer(udma133, ATA_SHIFT_UDMA + 6), 6182 force_xfer(udma/133, ATA_SHIFT_UDMA + 6), 6183 force_xfer(udma7, ATA_SHIFT_UDMA + 7), 6184 6185 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST), 6186 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST), 6187 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST), 6188 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE), 6189 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY), 6190 6191 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ), 6192 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM), 6193 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI), 6194 6195 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM), 6196 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM), 6197 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M), 6198 6199 force_horkage_onoff(dma, ATA_HORKAGE_NODMA), 6200 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR), 6201 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA), 6202 6203 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG), 6204 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG), 6205 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR), 6206 6207 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128), 6208 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024), 6209 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48), 6210 6211 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM), 6212 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER), 6213 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID), 6214 6215 force_horkage_on(disable, ATA_HORKAGE_DISABLE), 6216 }; 6217 6218 static int __init ata_parse_force_one(char **cur, 6219 struct ata_force_ent *force_ent, 6220 const char **reason) 6221 { 6222 char *start = *cur, *p = *cur; 6223 char *id, *val, *endp; 6224 const struct ata_force_param *match_fp = NULL; 6225 int nr_matches = 0, i; 6226 6227 /* find where this param ends and update *cur */ 6228 while (*p != '\0' && *p != ',') 6229 p++; 6230 6231 if (*p == '\0') 6232 *cur = p; 6233 else 6234 *cur = p + 1; 6235 6236 *p = '\0'; 6237 6238 /* parse */ 6239 p = strchr(start, ':'); 6240 if (!p) { 6241 val = strstrip(start); 6242 goto parse_val; 6243 } 6244 *p = '\0'; 6245 6246 id = strstrip(start); 6247 val = strstrip(p + 1); 6248 6249 /* parse id */ 6250 p = strchr(id, '.'); 6251 if (p) { 6252 *p++ = '\0'; 6253 force_ent->device = simple_strtoul(p, &endp, 10); 6254 if (p == endp || *endp != '\0') { 6255 *reason = "invalid device"; 6256 return -EINVAL; 6257 } 6258 } 6259 6260 force_ent->port = simple_strtoul(id, &endp, 10); 6261 if (id == endp || *endp != '\0') { 6262 *reason = "invalid port/link"; 6263 return -EINVAL; 6264 } 6265 6266 parse_val: 6267 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6268 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6269 const struct ata_force_param *fp = &force_tbl[i]; 6270 6271 if (strncasecmp(val, fp->name, strlen(val))) 6272 continue; 6273 6274 nr_matches++; 6275 match_fp = fp; 6276 6277 if (strcasecmp(val, fp->name) == 0) { 6278 nr_matches = 1; 6279 break; 6280 } 6281 } 6282 6283 if (!nr_matches) { 6284 *reason = "unknown value"; 6285 return -EINVAL; 6286 } 6287 if (nr_matches > 1) { 6288 *reason = "ambiguous value"; 6289 return -EINVAL; 6290 } 6291 6292 force_ent->param = *match_fp; 6293 6294 return 0; 6295 } 6296 6297 static void __init ata_parse_force_param(void) 6298 { 6299 int idx = 0, size = 1; 6300 int last_port = -1, last_device = -1; 6301 char *p, *cur, *next; 6302 6303 /* Calculate maximum number of params and allocate ata_force_tbl */ 6304 for (p = ata_force_param_buf; *p; p++) 6305 if (*p == ',') 6306 size++; 6307 6308 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6309 if (!ata_force_tbl) { 6310 printk(KERN_WARNING "ata: failed to extend force table, " 6311 "libata.force ignored\n"); 6312 return; 6313 } 6314 6315 /* parse and populate the table */ 6316 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6317 const char *reason = ""; 6318 struct ata_force_ent te = { .port = -1, .device = -1 }; 6319 6320 next = cur; 6321 if (ata_parse_force_one(&next, &te, &reason)) { 6322 printk(KERN_WARNING "ata: failed to parse force " 6323 "parameter \"%s\" (%s)\n", 6324 cur, reason); 6325 continue; 6326 } 6327 6328 if (te.port == -1) { 6329 te.port = last_port; 6330 te.device = last_device; 6331 } 6332 6333 ata_force_tbl[idx++] = te; 6334 6335 last_port = te.port; 6336 last_device = te.device; 6337 } 6338 6339 ata_force_tbl_size = idx; 6340 } 6341 6342 static void ata_free_force_param(void) 6343 { 6344 kfree(ata_force_tbl); 6345 } 6346 #else 6347 static inline void ata_parse_force_param(void) { } 6348 static inline void ata_free_force_param(void) { } 6349 #endif 6350 6351 static int __init ata_init(void) 6352 { 6353 int rc; 6354 6355 ata_parse_force_param(); 6356 6357 rc = ata_sff_init(); 6358 if (rc) { 6359 ata_free_force_param(); 6360 return rc; 6361 } 6362 6363 libata_transport_init(); 6364 ata_scsi_transport_template = ata_attach_transport(); 6365 if (!ata_scsi_transport_template) { 6366 ata_sff_exit(); 6367 rc = -ENOMEM; 6368 goto err_out; 6369 } 6370 6371 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6372 return 0; 6373 6374 err_out: 6375 return rc; 6376 } 6377 6378 static void __exit ata_exit(void) 6379 { 6380 ata_release_transport(ata_scsi_transport_template); 6381 libata_transport_exit(); 6382 ata_sff_exit(); 6383 ata_free_force_param(); 6384 } 6385 6386 subsys_initcall(ata_init); 6387 module_exit(ata_exit); 6388 6389 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6390 6391 int ata_ratelimit(void) 6392 { 6393 return __ratelimit(&ratelimit); 6394 } 6395 EXPORT_SYMBOL_GPL(ata_ratelimit); 6396 6397 /** 6398 * ata_msleep - ATA EH owner aware msleep 6399 * @ap: ATA port to attribute the sleep to 6400 * @msecs: duration to sleep in milliseconds 6401 * 6402 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6403 * ownership is released before going to sleep and reacquired 6404 * after the sleep is complete. IOW, other ports sharing the 6405 * @ap->host will be allowed to own the EH while this task is 6406 * sleeping. 6407 * 6408 * LOCKING: 6409 * Might sleep. 6410 */ 6411 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6412 { 6413 bool owns_eh = ap && ap->host->eh_owner == current; 6414 6415 if (owns_eh) 6416 ata_eh_release(ap); 6417 6418 if (msecs < 20) { 6419 unsigned long usecs = msecs * USEC_PER_MSEC; 6420 usleep_range(usecs, usecs + 50); 6421 } else { 6422 msleep(msecs); 6423 } 6424 6425 if (owns_eh) 6426 ata_eh_acquire(ap); 6427 } 6428 EXPORT_SYMBOL_GPL(ata_msleep); 6429 6430 /** 6431 * ata_wait_register - wait until register value changes 6432 * @ap: ATA port to wait register for, can be NULL 6433 * @reg: IO-mapped register 6434 * @mask: Mask to apply to read register value 6435 * @val: Wait condition 6436 * @interval: polling interval in milliseconds 6437 * @timeout: timeout in milliseconds 6438 * 6439 * Waiting for some bits of register to change is a common 6440 * operation for ATA controllers. This function reads 32bit LE 6441 * IO-mapped register @reg and tests for the following condition. 6442 * 6443 * (*@reg & mask) != val 6444 * 6445 * If the condition is met, it returns; otherwise, the process is 6446 * repeated after @interval_msec until timeout. 6447 * 6448 * LOCKING: 6449 * Kernel thread context (may sleep) 6450 * 6451 * RETURNS: 6452 * The final register value. 6453 */ 6454 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6455 unsigned long interval, unsigned long timeout) 6456 { 6457 unsigned long deadline; 6458 u32 tmp; 6459 6460 tmp = ioread32(reg); 6461 6462 /* Calculate timeout _after_ the first read to make sure 6463 * preceding writes reach the controller before starting to 6464 * eat away the timeout. 6465 */ 6466 deadline = ata_deadline(jiffies, timeout); 6467 6468 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6469 ata_msleep(ap, interval); 6470 tmp = ioread32(reg); 6471 } 6472 6473 return tmp; 6474 } 6475 EXPORT_SYMBOL_GPL(ata_wait_register); 6476 6477 /* 6478 * Dummy port_ops 6479 */ 6480 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6481 { 6482 return AC_ERR_SYSTEM; 6483 } 6484 6485 static void ata_dummy_error_handler(struct ata_port *ap) 6486 { 6487 /* truly dummy */ 6488 } 6489 6490 struct ata_port_operations ata_dummy_port_ops = { 6491 .qc_prep = ata_noop_qc_prep, 6492 .qc_issue = ata_dummy_qc_issue, 6493 .error_handler = ata_dummy_error_handler, 6494 .sched_eh = ata_std_sched_eh, 6495 .end_eh = ata_std_end_eh, 6496 }; 6497 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6498 6499 const struct ata_port_info ata_dummy_port_info = { 6500 .port_ops = &ata_dummy_port_ops, 6501 }; 6502 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6503 6504 void ata_print_version(const struct device *dev, const char *version) 6505 { 6506 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6507 } 6508 EXPORT_SYMBOL(ata_print_version); 6509 6510 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6511 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6512 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6513 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6514 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6515