xref: /openbmc/linux/drivers/ata/libata-core.c (revision 0edbfea5)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/pm_runtime.h>
73 #include <linux/platform_device.h>
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/libata.h>
77 
78 #include "libata.h"
79 #include "libata-transport.h"
80 
81 /* debounce timing parameters in msecs { interval, duration, timeout } */
82 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
83 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
84 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
85 
86 const struct ata_port_operations ata_base_port_ops = {
87 	.prereset		= ata_std_prereset,
88 	.postreset		= ata_std_postreset,
89 	.error_handler		= ata_std_error_handler,
90 	.sched_eh		= ata_std_sched_eh,
91 	.end_eh			= ata_std_end_eh,
92 };
93 
94 const struct ata_port_operations sata_port_ops = {
95 	.inherits		= &ata_base_port_ops,
96 
97 	.qc_defer		= ata_std_qc_defer,
98 	.hardreset		= sata_std_hardreset,
99 };
100 
101 static unsigned int ata_dev_init_params(struct ata_device *dev,
102 					u16 heads, u16 sectors);
103 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
104 static void ata_dev_xfermask(struct ata_device *dev);
105 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
106 
107 atomic_t ata_print_id = ATOMIC_INIT(0);
108 
109 struct ata_force_param {
110 	const char	*name;
111 	unsigned int	cbl;
112 	int		spd_limit;
113 	unsigned long	xfer_mask;
114 	unsigned int	horkage_on;
115 	unsigned int	horkage_off;
116 	unsigned int	lflags;
117 };
118 
119 struct ata_force_ent {
120 	int			port;
121 	int			device;
122 	struct ata_force_param	param;
123 };
124 
125 static struct ata_force_ent *ata_force_tbl;
126 static int ata_force_tbl_size;
127 
128 static char ata_force_param_buf[PAGE_SIZE] __initdata;
129 /* param_buf is thrown away after initialization, disallow read */
130 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
131 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
132 
133 static int atapi_enabled = 1;
134 module_param(atapi_enabled, int, 0444);
135 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
136 
137 static int atapi_dmadir = 0;
138 module_param(atapi_dmadir, int, 0444);
139 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
140 
141 int atapi_passthru16 = 1;
142 module_param(atapi_passthru16, int, 0444);
143 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
144 
145 int libata_fua = 0;
146 module_param_named(fua, libata_fua, int, 0444);
147 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
148 
149 static int ata_ignore_hpa;
150 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
151 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
152 
153 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
154 module_param_named(dma, libata_dma_mask, int, 0444);
155 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
156 
157 static int ata_probe_timeout;
158 module_param(ata_probe_timeout, int, 0444);
159 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
160 
161 int libata_noacpi = 0;
162 module_param_named(noacpi, libata_noacpi, int, 0444);
163 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
164 
165 int libata_allow_tpm = 0;
166 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
167 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
168 
169 static int atapi_an;
170 module_param(atapi_an, int, 0444);
171 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
172 
173 MODULE_AUTHOR("Jeff Garzik");
174 MODULE_DESCRIPTION("Library module for ATA devices");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177 
178 
179 static bool ata_sstatus_online(u32 sstatus)
180 {
181 	return (sstatus & 0xf) == 0x3;
182 }
183 
184 /**
185  *	ata_link_next - link iteration helper
186  *	@link: the previous link, NULL to start
187  *	@ap: ATA port containing links to iterate
188  *	@mode: iteration mode, one of ATA_LITER_*
189  *
190  *	LOCKING:
191  *	Host lock or EH context.
192  *
193  *	RETURNS:
194  *	Pointer to the next link.
195  */
196 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
197 			       enum ata_link_iter_mode mode)
198 {
199 	BUG_ON(mode != ATA_LITER_EDGE &&
200 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
201 
202 	/* NULL link indicates start of iteration */
203 	if (!link)
204 		switch (mode) {
205 		case ATA_LITER_EDGE:
206 		case ATA_LITER_PMP_FIRST:
207 			if (sata_pmp_attached(ap))
208 				return ap->pmp_link;
209 			/* fall through */
210 		case ATA_LITER_HOST_FIRST:
211 			return &ap->link;
212 		}
213 
214 	/* we just iterated over the host link, what's next? */
215 	if (link == &ap->link)
216 		switch (mode) {
217 		case ATA_LITER_HOST_FIRST:
218 			if (sata_pmp_attached(ap))
219 				return ap->pmp_link;
220 			/* fall through */
221 		case ATA_LITER_PMP_FIRST:
222 			if (unlikely(ap->slave_link))
223 				return ap->slave_link;
224 			/* fall through */
225 		case ATA_LITER_EDGE:
226 			return NULL;
227 		}
228 
229 	/* slave_link excludes PMP */
230 	if (unlikely(link == ap->slave_link))
231 		return NULL;
232 
233 	/* we were over a PMP link */
234 	if (++link < ap->pmp_link + ap->nr_pmp_links)
235 		return link;
236 
237 	if (mode == ATA_LITER_PMP_FIRST)
238 		return &ap->link;
239 
240 	return NULL;
241 }
242 
243 /**
244  *	ata_dev_next - device iteration helper
245  *	@dev: the previous device, NULL to start
246  *	@link: ATA link containing devices to iterate
247  *	@mode: iteration mode, one of ATA_DITER_*
248  *
249  *	LOCKING:
250  *	Host lock or EH context.
251  *
252  *	RETURNS:
253  *	Pointer to the next device.
254  */
255 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
256 				enum ata_dev_iter_mode mode)
257 {
258 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
259 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
260 
261 	/* NULL dev indicates start of iteration */
262 	if (!dev)
263 		switch (mode) {
264 		case ATA_DITER_ENABLED:
265 		case ATA_DITER_ALL:
266 			dev = link->device;
267 			goto check;
268 		case ATA_DITER_ENABLED_REVERSE:
269 		case ATA_DITER_ALL_REVERSE:
270 			dev = link->device + ata_link_max_devices(link) - 1;
271 			goto check;
272 		}
273 
274  next:
275 	/* move to the next one */
276 	switch (mode) {
277 	case ATA_DITER_ENABLED:
278 	case ATA_DITER_ALL:
279 		if (++dev < link->device + ata_link_max_devices(link))
280 			goto check;
281 		return NULL;
282 	case ATA_DITER_ENABLED_REVERSE:
283 	case ATA_DITER_ALL_REVERSE:
284 		if (--dev >= link->device)
285 			goto check;
286 		return NULL;
287 	}
288 
289  check:
290 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
291 	    !ata_dev_enabled(dev))
292 		goto next;
293 	return dev;
294 }
295 
296 /**
297  *	ata_dev_phys_link - find physical link for a device
298  *	@dev: ATA device to look up physical link for
299  *
300  *	Look up physical link which @dev is attached to.  Note that
301  *	this is different from @dev->link only when @dev is on slave
302  *	link.  For all other cases, it's the same as @dev->link.
303  *
304  *	LOCKING:
305  *	Don't care.
306  *
307  *	RETURNS:
308  *	Pointer to the found physical link.
309  */
310 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
311 {
312 	struct ata_port *ap = dev->link->ap;
313 
314 	if (!ap->slave_link)
315 		return dev->link;
316 	if (!dev->devno)
317 		return &ap->link;
318 	return ap->slave_link;
319 }
320 
321 /**
322  *	ata_force_cbl - force cable type according to libata.force
323  *	@ap: ATA port of interest
324  *
325  *	Force cable type according to libata.force and whine about it.
326  *	The last entry which has matching port number is used, so it
327  *	can be specified as part of device force parameters.  For
328  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
329  *	same effect.
330  *
331  *	LOCKING:
332  *	EH context.
333  */
334 void ata_force_cbl(struct ata_port *ap)
335 {
336 	int i;
337 
338 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
339 		const struct ata_force_ent *fe = &ata_force_tbl[i];
340 
341 		if (fe->port != -1 && fe->port != ap->print_id)
342 			continue;
343 
344 		if (fe->param.cbl == ATA_CBL_NONE)
345 			continue;
346 
347 		ap->cbl = fe->param.cbl;
348 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
349 		return;
350 	}
351 }
352 
353 /**
354  *	ata_force_link_limits - force link limits according to libata.force
355  *	@link: ATA link of interest
356  *
357  *	Force link flags and SATA spd limit according to libata.force
358  *	and whine about it.  When only the port part is specified
359  *	(e.g. 1:), the limit applies to all links connected to both
360  *	the host link and all fan-out ports connected via PMP.  If the
361  *	device part is specified as 0 (e.g. 1.00:), it specifies the
362  *	first fan-out link not the host link.  Device number 15 always
363  *	points to the host link whether PMP is attached or not.  If the
364  *	controller has slave link, device number 16 points to it.
365  *
366  *	LOCKING:
367  *	EH context.
368  */
369 static void ata_force_link_limits(struct ata_link *link)
370 {
371 	bool did_spd = false;
372 	int linkno = link->pmp;
373 	int i;
374 
375 	if (ata_is_host_link(link))
376 		linkno += 15;
377 
378 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
379 		const struct ata_force_ent *fe = &ata_force_tbl[i];
380 
381 		if (fe->port != -1 && fe->port != link->ap->print_id)
382 			continue;
383 
384 		if (fe->device != -1 && fe->device != linkno)
385 			continue;
386 
387 		/* only honor the first spd limit */
388 		if (!did_spd && fe->param.spd_limit) {
389 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
390 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
391 					fe->param.name);
392 			did_spd = true;
393 		}
394 
395 		/* let lflags stack */
396 		if (fe->param.lflags) {
397 			link->flags |= fe->param.lflags;
398 			ata_link_notice(link,
399 					"FORCE: link flag 0x%x forced -> 0x%x\n",
400 					fe->param.lflags, link->flags);
401 		}
402 	}
403 }
404 
405 /**
406  *	ata_force_xfermask - force xfermask according to libata.force
407  *	@dev: ATA device of interest
408  *
409  *	Force xfer_mask according to libata.force and whine about it.
410  *	For consistency with link selection, device number 15 selects
411  *	the first device connected to the host link.
412  *
413  *	LOCKING:
414  *	EH context.
415  */
416 static void ata_force_xfermask(struct ata_device *dev)
417 {
418 	int devno = dev->link->pmp + dev->devno;
419 	int alt_devno = devno;
420 	int i;
421 
422 	/* allow n.15/16 for devices attached to host port */
423 	if (ata_is_host_link(dev->link))
424 		alt_devno += 15;
425 
426 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 		const struct ata_force_ent *fe = &ata_force_tbl[i];
428 		unsigned long pio_mask, mwdma_mask, udma_mask;
429 
430 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 			continue;
432 
433 		if (fe->device != -1 && fe->device != devno &&
434 		    fe->device != alt_devno)
435 			continue;
436 
437 		if (!fe->param.xfer_mask)
438 			continue;
439 
440 		ata_unpack_xfermask(fe->param.xfer_mask,
441 				    &pio_mask, &mwdma_mask, &udma_mask);
442 		if (udma_mask)
443 			dev->udma_mask = udma_mask;
444 		else if (mwdma_mask) {
445 			dev->udma_mask = 0;
446 			dev->mwdma_mask = mwdma_mask;
447 		} else {
448 			dev->udma_mask = 0;
449 			dev->mwdma_mask = 0;
450 			dev->pio_mask = pio_mask;
451 		}
452 
453 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 			       fe->param.name);
455 		return;
456 	}
457 }
458 
459 /**
460  *	ata_force_horkage - force horkage according to libata.force
461  *	@dev: ATA device of interest
462  *
463  *	Force horkage according to libata.force and whine about it.
464  *	For consistency with link selection, device number 15 selects
465  *	the first device connected to the host link.
466  *
467  *	LOCKING:
468  *	EH context.
469  */
470 static void ata_force_horkage(struct ata_device *dev)
471 {
472 	int devno = dev->link->pmp + dev->devno;
473 	int alt_devno = devno;
474 	int i;
475 
476 	/* allow n.15/16 for devices attached to host port */
477 	if (ata_is_host_link(dev->link))
478 		alt_devno += 15;
479 
480 	for (i = 0; i < ata_force_tbl_size; i++) {
481 		const struct ata_force_ent *fe = &ata_force_tbl[i];
482 
483 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 			continue;
485 
486 		if (fe->device != -1 && fe->device != devno &&
487 		    fe->device != alt_devno)
488 			continue;
489 
490 		if (!(~dev->horkage & fe->param.horkage_on) &&
491 		    !(dev->horkage & fe->param.horkage_off))
492 			continue;
493 
494 		dev->horkage |= fe->param.horkage_on;
495 		dev->horkage &= ~fe->param.horkage_off;
496 
497 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 			       fe->param.name);
499 	}
500 }
501 
502 /**
503  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
504  *	@opcode: SCSI opcode
505  *
506  *	Determine ATAPI command type from @opcode.
507  *
508  *	LOCKING:
509  *	None.
510  *
511  *	RETURNS:
512  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
513  */
514 int atapi_cmd_type(u8 opcode)
515 {
516 	switch (opcode) {
517 	case GPCMD_READ_10:
518 	case GPCMD_READ_12:
519 		return ATAPI_READ;
520 
521 	case GPCMD_WRITE_10:
522 	case GPCMD_WRITE_12:
523 	case GPCMD_WRITE_AND_VERIFY_10:
524 		return ATAPI_WRITE;
525 
526 	case GPCMD_READ_CD:
527 	case GPCMD_READ_CD_MSF:
528 		return ATAPI_READ_CD;
529 
530 	case ATA_16:
531 	case ATA_12:
532 		if (atapi_passthru16)
533 			return ATAPI_PASS_THRU;
534 		/* fall thru */
535 	default:
536 		return ATAPI_MISC;
537 	}
538 }
539 
540 /**
541  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
542  *	@tf: Taskfile to convert
543  *	@pmp: Port multiplier port
544  *	@is_cmd: This FIS is for command
545  *	@fis: Buffer into which data will output
546  *
547  *	Converts a standard ATA taskfile to a Serial ATA
548  *	FIS structure (Register - Host to Device).
549  *
550  *	LOCKING:
551  *	Inherited from caller.
552  */
553 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
554 {
555 	fis[0] = 0x27;			/* Register - Host to Device FIS */
556 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
557 	if (is_cmd)
558 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
559 
560 	fis[2] = tf->command;
561 	fis[3] = tf->feature;
562 
563 	fis[4] = tf->lbal;
564 	fis[5] = tf->lbam;
565 	fis[6] = tf->lbah;
566 	fis[7] = tf->device;
567 
568 	fis[8] = tf->hob_lbal;
569 	fis[9] = tf->hob_lbam;
570 	fis[10] = tf->hob_lbah;
571 	fis[11] = tf->hob_feature;
572 
573 	fis[12] = tf->nsect;
574 	fis[13] = tf->hob_nsect;
575 	fis[14] = 0;
576 	fis[15] = tf->ctl;
577 
578 	fis[16] = tf->auxiliary & 0xff;
579 	fis[17] = (tf->auxiliary >> 8) & 0xff;
580 	fis[18] = (tf->auxiliary >> 16) & 0xff;
581 	fis[19] = (tf->auxiliary >> 24) & 0xff;
582 }
583 
584 /**
585  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
586  *	@fis: Buffer from which data will be input
587  *	@tf: Taskfile to output
588  *
589  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
590  *
591  *	LOCKING:
592  *	Inherited from caller.
593  */
594 
595 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
596 {
597 	tf->command	= fis[2];	/* status */
598 	tf->feature	= fis[3];	/* error */
599 
600 	tf->lbal	= fis[4];
601 	tf->lbam	= fis[5];
602 	tf->lbah	= fis[6];
603 	tf->device	= fis[7];
604 
605 	tf->hob_lbal	= fis[8];
606 	tf->hob_lbam	= fis[9];
607 	tf->hob_lbah	= fis[10];
608 
609 	tf->nsect	= fis[12];
610 	tf->hob_nsect	= fis[13];
611 }
612 
613 static const u8 ata_rw_cmds[] = {
614 	/* pio multi */
615 	ATA_CMD_READ_MULTI,
616 	ATA_CMD_WRITE_MULTI,
617 	ATA_CMD_READ_MULTI_EXT,
618 	ATA_CMD_WRITE_MULTI_EXT,
619 	0,
620 	0,
621 	0,
622 	ATA_CMD_WRITE_MULTI_FUA_EXT,
623 	/* pio */
624 	ATA_CMD_PIO_READ,
625 	ATA_CMD_PIO_WRITE,
626 	ATA_CMD_PIO_READ_EXT,
627 	ATA_CMD_PIO_WRITE_EXT,
628 	0,
629 	0,
630 	0,
631 	0,
632 	/* dma */
633 	ATA_CMD_READ,
634 	ATA_CMD_WRITE,
635 	ATA_CMD_READ_EXT,
636 	ATA_CMD_WRITE_EXT,
637 	0,
638 	0,
639 	0,
640 	ATA_CMD_WRITE_FUA_EXT
641 };
642 
643 /**
644  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
645  *	@tf: command to examine and configure
646  *	@dev: device tf belongs to
647  *
648  *	Examine the device configuration and tf->flags to calculate
649  *	the proper read/write commands and protocol to use.
650  *
651  *	LOCKING:
652  *	caller.
653  */
654 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
655 {
656 	u8 cmd;
657 
658 	int index, fua, lba48, write;
659 
660 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
661 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
662 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
663 
664 	if (dev->flags & ATA_DFLAG_PIO) {
665 		tf->protocol = ATA_PROT_PIO;
666 		index = dev->multi_count ? 0 : 8;
667 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
668 		/* Unable to use DMA due to host limitation */
669 		tf->protocol = ATA_PROT_PIO;
670 		index = dev->multi_count ? 0 : 8;
671 	} else {
672 		tf->protocol = ATA_PROT_DMA;
673 		index = 16;
674 	}
675 
676 	cmd = ata_rw_cmds[index + fua + lba48 + write];
677 	if (cmd) {
678 		tf->command = cmd;
679 		return 0;
680 	}
681 	return -1;
682 }
683 
684 /**
685  *	ata_tf_read_block - Read block address from ATA taskfile
686  *	@tf: ATA taskfile of interest
687  *	@dev: ATA device @tf belongs to
688  *
689  *	LOCKING:
690  *	None.
691  *
692  *	Read block address from @tf.  This function can handle all
693  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
694  *	flags select the address format to use.
695  *
696  *	RETURNS:
697  *	Block address read from @tf.
698  */
699 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
700 {
701 	u64 block = 0;
702 
703 	if (tf->flags & ATA_TFLAG_LBA) {
704 		if (tf->flags & ATA_TFLAG_LBA48) {
705 			block |= (u64)tf->hob_lbah << 40;
706 			block |= (u64)tf->hob_lbam << 32;
707 			block |= (u64)tf->hob_lbal << 24;
708 		} else
709 			block |= (tf->device & 0xf) << 24;
710 
711 		block |= tf->lbah << 16;
712 		block |= tf->lbam << 8;
713 		block |= tf->lbal;
714 	} else {
715 		u32 cyl, head, sect;
716 
717 		cyl = tf->lbam | (tf->lbah << 8);
718 		head = tf->device & 0xf;
719 		sect = tf->lbal;
720 
721 		if (!sect) {
722 			ata_dev_warn(dev,
723 				     "device reported invalid CHS sector 0\n");
724 			return U64_MAX;
725 		}
726 
727 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
728 	}
729 
730 	return block;
731 }
732 
733 /**
734  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
735  *	@tf: Target ATA taskfile
736  *	@dev: ATA device @tf belongs to
737  *	@block: Block address
738  *	@n_block: Number of blocks
739  *	@tf_flags: RW/FUA etc...
740  *	@tag: tag
741  *
742  *	LOCKING:
743  *	None.
744  *
745  *	Build ATA taskfile @tf for read/write request described by
746  *	@block, @n_block, @tf_flags and @tag on @dev.
747  *
748  *	RETURNS:
749  *
750  *	0 on success, -ERANGE if the request is too large for @dev,
751  *	-EINVAL if the request is invalid.
752  */
753 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
754 		    u64 block, u32 n_block, unsigned int tf_flags,
755 		    unsigned int tag)
756 {
757 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
758 	tf->flags |= tf_flags;
759 
760 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
761 		/* yay, NCQ */
762 		if (!lba_48_ok(block, n_block))
763 			return -ERANGE;
764 
765 		tf->protocol = ATA_PROT_NCQ;
766 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
767 
768 		if (tf->flags & ATA_TFLAG_WRITE)
769 			tf->command = ATA_CMD_FPDMA_WRITE;
770 		else
771 			tf->command = ATA_CMD_FPDMA_READ;
772 
773 		tf->nsect = tag << 3;
774 		tf->hob_feature = (n_block >> 8) & 0xff;
775 		tf->feature = n_block & 0xff;
776 
777 		tf->hob_lbah = (block >> 40) & 0xff;
778 		tf->hob_lbam = (block >> 32) & 0xff;
779 		tf->hob_lbal = (block >> 24) & 0xff;
780 		tf->lbah = (block >> 16) & 0xff;
781 		tf->lbam = (block >> 8) & 0xff;
782 		tf->lbal = block & 0xff;
783 
784 		tf->device = ATA_LBA;
785 		if (tf->flags & ATA_TFLAG_FUA)
786 			tf->device |= 1 << 7;
787 	} else if (dev->flags & ATA_DFLAG_LBA) {
788 		tf->flags |= ATA_TFLAG_LBA;
789 
790 		if (lba_28_ok(block, n_block)) {
791 			/* use LBA28 */
792 			tf->device |= (block >> 24) & 0xf;
793 		} else if (lba_48_ok(block, n_block)) {
794 			if (!(dev->flags & ATA_DFLAG_LBA48))
795 				return -ERANGE;
796 
797 			/* use LBA48 */
798 			tf->flags |= ATA_TFLAG_LBA48;
799 
800 			tf->hob_nsect = (n_block >> 8) & 0xff;
801 
802 			tf->hob_lbah = (block >> 40) & 0xff;
803 			tf->hob_lbam = (block >> 32) & 0xff;
804 			tf->hob_lbal = (block >> 24) & 0xff;
805 		} else
806 			/* request too large even for LBA48 */
807 			return -ERANGE;
808 
809 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
810 			return -EINVAL;
811 
812 		tf->nsect = n_block & 0xff;
813 
814 		tf->lbah = (block >> 16) & 0xff;
815 		tf->lbam = (block >> 8) & 0xff;
816 		tf->lbal = block & 0xff;
817 
818 		tf->device |= ATA_LBA;
819 	} else {
820 		/* CHS */
821 		u32 sect, head, cyl, track;
822 
823 		/* The request -may- be too large for CHS addressing. */
824 		if (!lba_28_ok(block, n_block))
825 			return -ERANGE;
826 
827 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
828 			return -EINVAL;
829 
830 		/* Convert LBA to CHS */
831 		track = (u32)block / dev->sectors;
832 		cyl   = track / dev->heads;
833 		head  = track % dev->heads;
834 		sect  = (u32)block % dev->sectors + 1;
835 
836 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
837 			(u32)block, track, cyl, head, sect);
838 
839 		/* Check whether the converted CHS can fit.
840 		   Cylinder: 0-65535
841 		   Head: 0-15
842 		   Sector: 1-255*/
843 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
844 			return -ERANGE;
845 
846 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
847 		tf->lbal = sect;
848 		tf->lbam = cyl;
849 		tf->lbah = cyl >> 8;
850 		tf->device |= head;
851 	}
852 
853 	return 0;
854 }
855 
856 /**
857  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
858  *	@pio_mask: pio_mask
859  *	@mwdma_mask: mwdma_mask
860  *	@udma_mask: udma_mask
861  *
862  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
863  *	unsigned int xfer_mask.
864  *
865  *	LOCKING:
866  *	None.
867  *
868  *	RETURNS:
869  *	Packed xfer_mask.
870  */
871 unsigned long ata_pack_xfermask(unsigned long pio_mask,
872 				unsigned long mwdma_mask,
873 				unsigned long udma_mask)
874 {
875 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
876 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
877 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
878 }
879 
880 /**
881  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
882  *	@xfer_mask: xfer_mask to unpack
883  *	@pio_mask: resulting pio_mask
884  *	@mwdma_mask: resulting mwdma_mask
885  *	@udma_mask: resulting udma_mask
886  *
887  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
888  *	Any NULL destination masks will be ignored.
889  */
890 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
891 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
892 {
893 	if (pio_mask)
894 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
895 	if (mwdma_mask)
896 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
897 	if (udma_mask)
898 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
899 }
900 
901 static const struct ata_xfer_ent {
902 	int shift, bits;
903 	u8 base;
904 } ata_xfer_tbl[] = {
905 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
906 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
907 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
908 	{ -1, },
909 };
910 
911 /**
912  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
913  *	@xfer_mask: xfer_mask of interest
914  *
915  *	Return matching XFER_* value for @xfer_mask.  Only the highest
916  *	bit of @xfer_mask is considered.
917  *
918  *	LOCKING:
919  *	None.
920  *
921  *	RETURNS:
922  *	Matching XFER_* value, 0xff if no match found.
923  */
924 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
925 {
926 	int highbit = fls(xfer_mask) - 1;
927 	const struct ata_xfer_ent *ent;
928 
929 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
930 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
931 			return ent->base + highbit - ent->shift;
932 	return 0xff;
933 }
934 
935 /**
936  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
937  *	@xfer_mode: XFER_* of interest
938  *
939  *	Return matching xfer_mask for @xfer_mode.
940  *
941  *	LOCKING:
942  *	None.
943  *
944  *	RETURNS:
945  *	Matching xfer_mask, 0 if no match found.
946  */
947 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
948 {
949 	const struct ata_xfer_ent *ent;
950 
951 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
952 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
953 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
954 				& ~((1 << ent->shift) - 1);
955 	return 0;
956 }
957 
958 /**
959  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
960  *	@xfer_mode: XFER_* of interest
961  *
962  *	Return matching xfer_shift for @xfer_mode.
963  *
964  *	LOCKING:
965  *	None.
966  *
967  *	RETURNS:
968  *	Matching xfer_shift, -1 if no match found.
969  */
970 int ata_xfer_mode2shift(unsigned long xfer_mode)
971 {
972 	const struct ata_xfer_ent *ent;
973 
974 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
975 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
976 			return ent->shift;
977 	return -1;
978 }
979 
980 /**
981  *	ata_mode_string - convert xfer_mask to string
982  *	@xfer_mask: mask of bits supported; only highest bit counts.
983  *
984  *	Determine string which represents the highest speed
985  *	(highest bit in @modemask).
986  *
987  *	LOCKING:
988  *	None.
989  *
990  *	RETURNS:
991  *	Constant C string representing highest speed listed in
992  *	@mode_mask, or the constant C string "<n/a>".
993  */
994 const char *ata_mode_string(unsigned long xfer_mask)
995 {
996 	static const char * const xfer_mode_str[] = {
997 		"PIO0",
998 		"PIO1",
999 		"PIO2",
1000 		"PIO3",
1001 		"PIO4",
1002 		"PIO5",
1003 		"PIO6",
1004 		"MWDMA0",
1005 		"MWDMA1",
1006 		"MWDMA2",
1007 		"MWDMA3",
1008 		"MWDMA4",
1009 		"UDMA/16",
1010 		"UDMA/25",
1011 		"UDMA/33",
1012 		"UDMA/44",
1013 		"UDMA/66",
1014 		"UDMA/100",
1015 		"UDMA/133",
1016 		"UDMA7",
1017 	};
1018 	int highbit;
1019 
1020 	highbit = fls(xfer_mask) - 1;
1021 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1022 		return xfer_mode_str[highbit];
1023 	return "<n/a>";
1024 }
1025 
1026 const char *sata_spd_string(unsigned int spd)
1027 {
1028 	static const char * const spd_str[] = {
1029 		"1.5 Gbps",
1030 		"3.0 Gbps",
1031 		"6.0 Gbps",
1032 	};
1033 
1034 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1035 		return "<unknown>";
1036 	return spd_str[spd - 1];
1037 }
1038 
1039 /**
1040  *	ata_dev_classify - determine device type based on ATA-spec signature
1041  *	@tf: ATA taskfile register set for device to be identified
1042  *
1043  *	Determine from taskfile register contents whether a device is
1044  *	ATA or ATAPI, as per "Signature and persistence" section
1045  *	of ATA/PI spec (volume 1, sect 5.14).
1046  *
1047  *	LOCKING:
1048  *	None.
1049  *
1050  *	RETURNS:
1051  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1052  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1053  */
1054 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1055 {
1056 	/* Apple's open source Darwin code hints that some devices only
1057 	 * put a proper signature into the LBA mid/high registers,
1058 	 * So, we only check those.  It's sufficient for uniqueness.
1059 	 *
1060 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1061 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1062 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1063 	 * spec has never mentioned about using different signatures
1064 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1065 	 * Multiplier specification began to use 0x69/0x96 to identify
1066 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1067 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1068 	 * 0x69/0x96 shortly and described them as reserved for
1069 	 * SerialATA.
1070 	 *
1071 	 * We follow the current spec and consider that 0x69/0x96
1072 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1073 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1074 	 * SEMB signature.  This is worked around in
1075 	 * ata_dev_read_id().
1076 	 */
1077 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1078 		DPRINTK("found ATA device by sig\n");
1079 		return ATA_DEV_ATA;
1080 	}
1081 
1082 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1083 		DPRINTK("found ATAPI device by sig\n");
1084 		return ATA_DEV_ATAPI;
1085 	}
1086 
1087 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1088 		DPRINTK("found PMP device by sig\n");
1089 		return ATA_DEV_PMP;
1090 	}
1091 
1092 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1093 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1094 		return ATA_DEV_SEMB;
1095 	}
1096 
1097 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1098 		DPRINTK("found ZAC device by sig\n");
1099 		return ATA_DEV_ZAC;
1100 	}
1101 
1102 	DPRINTK("unknown device\n");
1103 	return ATA_DEV_UNKNOWN;
1104 }
1105 
1106 /**
1107  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1108  *	@id: IDENTIFY DEVICE results we will examine
1109  *	@s: string into which data is output
1110  *	@ofs: offset into identify device page
1111  *	@len: length of string to return. must be an even number.
1112  *
1113  *	The strings in the IDENTIFY DEVICE page are broken up into
1114  *	16-bit chunks.  Run through the string, and output each
1115  *	8-bit chunk linearly, regardless of platform.
1116  *
1117  *	LOCKING:
1118  *	caller.
1119  */
1120 
1121 void ata_id_string(const u16 *id, unsigned char *s,
1122 		   unsigned int ofs, unsigned int len)
1123 {
1124 	unsigned int c;
1125 
1126 	BUG_ON(len & 1);
1127 
1128 	while (len > 0) {
1129 		c = id[ofs] >> 8;
1130 		*s = c;
1131 		s++;
1132 
1133 		c = id[ofs] & 0xff;
1134 		*s = c;
1135 		s++;
1136 
1137 		ofs++;
1138 		len -= 2;
1139 	}
1140 }
1141 
1142 /**
1143  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1144  *	@id: IDENTIFY DEVICE results we will examine
1145  *	@s: string into which data is output
1146  *	@ofs: offset into identify device page
1147  *	@len: length of string to return. must be an odd number.
1148  *
1149  *	This function is identical to ata_id_string except that it
1150  *	trims trailing spaces and terminates the resulting string with
1151  *	null.  @len must be actual maximum length (even number) + 1.
1152  *
1153  *	LOCKING:
1154  *	caller.
1155  */
1156 void ata_id_c_string(const u16 *id, unsigned char *s,
1157 		     unsigned int ofs, unsigned int len)
1158 {
1159 	unsigned char *p;
1160 
1161 	ata_id_string(id, s, ofs, len - 1);
1162 
1163 	p = s + strnlen(s, len - 1);
1164 	while (p > s && p[-1] == ' ')
1165 		p--;
1166 	*p = '\0';
1167 }
1168 
1169 static u64 ata_id_n_sectors(const u16 *id)
1170 {
1171 	if (ata_id_has_lba(id)) {
1172 		if (ata_id_has_lba48(id))
1173 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1174 		else
1175 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1176 	} else {
1177 		if (ata_id_current_chs_valid(id))
1178 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1179 			       id[ATA_ID_CUR_SECTORS];
1180 		else
1181 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1182 			       id[ATA_ID_SECTORS];
1183 	}
1184 }
1185 
1186 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1187 {
1188 	u64 sectors = 0;
1189 
1190 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1191 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1192 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1193 	sectors |= (tf->lbah & 0xff) << 16;
1194 	sectors |= (tf->lbam & 0xff) << 8;
1195 	sectors |= (tf->lbal & 0xff);
1196 
1197 	return sectors;
1198 }
1199 
1200 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1201 {
1202 	u64 sectors = 0;
1203 
1204 	sectors |= (tf->device & 0x0f) << 24;
1205 	sectors |= (tf->lbah & 0xff) << 16;
1206 	sectors |= (tf->lbam & 0xff) << 8;
1207 	sectors |= (tf->lbal & 0xff);
1208 
1209 	return sectors;
1210 }
1211 
1212 /**
1213  *	ata_read_native_max_address - Read native max address
1214  *	@dev: target device
1215  *	@max_sectors: out parameter for the result native max address
1216  *
1217  *	Perform an LBA48 or LBA28 native size query upon the device in
1218  *	question.
1219  *
1220  *	RETURNS:
1221  *	0 on success, -EACCES if command is aborted by the drive.
1222  *	-EIO on other errors.
1223  */
1224 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1225 {
1226 	unsigned int err_mask;
1227 	struct ata_taskfile tf;
1228 	int lba48 = ata_id_has_lba48(dev->id);
1229 
1230 	ata_tf_init(dev, &tf);
1231 
1232 	/* always clear all address registers */
1233 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1234 
1235 	if (lba48) {
1236 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1237 		tf.flags |= ATA_TFLAG_LBA48;
1238 	} else
1239 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1240 
1241 	tf.protocol |= ATA_PROT_NODATA;
1242 	tf.device |= ATA_LBA;
1243 
1244 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1245 	if (err_mask) {
1246 		ata_dev_warn(dev,
1247 			     "failed to read native max address (err_mask=0x%x)\n",
1248 			     err_mask);
1249 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1250 			return -EACCES;
1251 		return -EIO;
1252 	}
1253 
1254 	if (lba48)
1255 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1256 	else
1257 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1258 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1259 		(*max_sectors)--;
1260 	return 0;
1261 }
1262 
1263 /**
1264  *	ata_set_max_sectors - Set max sectors
1265  *	@dev: target device
1266  *	@new_sectors: new max sectors value to set for the device
1267  *
1268  *	Set max sectors of @dev to @new_sectors.
1269  *
1270  *	RETURNS:
1271  *	0 on success, -EACCES if command is aborted or denied (due to
1272  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1273  *	errors.
1274  */
1275 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1276 {
1277 	unsigned int err_mask;
1278 	struct ata_taskfile tf;
1279 	int lba48 = ata_id_has_lba48(dev->id);
1280 
1281 	new_sectors--;
1282 
1283 	ata_tf_init(dev, &tf);
1284 
1285 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1286 
1287 	if (lba48) {
1288 		tf.command = ATA_CMD_SET_MAX_EXT;
1289 		tf.flags |= ATA_TFLAG_LBA48;
1290 
1291 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1292 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1293 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1294 	} else {
1295 		tf.command = ATA_CMD_SET_MAX;
1296 
1297 		tf.device |= (new_sectors >> 24) & 0xf;
1298 	}
1299 
1300 	tf.protocol |= ATA_PROT_NODATA;
1301 	tf.device |= ATA_LBA;
1302 
1303 	tf.lbal = (new_sectors >> 0) & 0xff;
1304 	tf.lbam = (new_sectors >> 8) & 0xff;
1305 	tf.lbah = (new_sectors >> 16) & 0xff;
1306 
1307 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1308 	if (err_mask) {
1309 		ata_dev_warn(dev,
1310 			     "failed to set max address (err_mask=0x%x)\n",
1311 			     err_mask);
1312 		if (err_mask == AC_ERR_DEV &&
1313 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1314 			return -EACCES;
1315 		return -EIO;
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 /**
1322  *	ata_hpa_resize		-	Resize a device with an HPA set
1323  *	@dev: Device to resize
1324  *
1325  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1326  *	it if required to the full size of the media. The caller must check
1327  *	the drive has the HPA feature set enabled.
1328  *
1329  *	RETURNS:
1330  *	0 on success, -errno on failure.
1331  */
1332 static int ata_hpa_resize(struct ata_device *dev)
1333 {
1334 	struct ata_eh_context *ehc = &dev->link->eh_context;
1335 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1336 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1337 	u64 sectors = ata_id_n_sectors(dev->id);
1338 	u64 native_sectors;
1339 	int rc;
1340 
1341 	/* do we need to do it? */
1342 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1343 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1344 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1345 		return 0;
1346 
1347 	/* read native max address */
1348 	rc = ata_read_native_max_address(dev, &native_sectors);
1349 	if (rc) {
1350 		/* If device aborted the command or HPA isn't going to
1351 		 * be unlocked, skip HPA resizing.
1352 		 */
1353 		if (rc == -EACCES || !unlock_hpa) {
1354 			ata_dev_warn(dev,
1355 				     "HPA support seems broken, skipping HPA handling\n");
1356 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1357 
1358 			/* we can continue if device aborted the command */
1359 			if (rc == -EACCES)
1360 				rc = 0;
1361 		}
1362 
1363 		return rc;
1364 	}
1365 	dev->n_native_sectors = native_sectors;
1366 
1367 	/* nothing to do? */
1368 	if (native_sectors <= sectors || !unlock_hpa) {
1369 		if (!print_info || native_sectors == sectors)
1370 			return 0;
1371 
1372 		if (native_sectors > sectors)
1373 			ata_dev_info(dev,
1374 				"HPA detected: current %llu, native %llu\n",
1375 				(unsigned long long)sectors,
1376 				(unsigned long long)native_sectors);
1377 		else if (native_sectors < sectors)
1378 			ata_dev_warn(dev,
1379 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1380 				(unsigned long long)native_sectors,
1381 				(unsigned long long)sectors);
1382 		return 0;
1383 	}
1384 
1385 	/* let's unlock HPA */
1386 	rc = ata_set_max_sectors(dev, native_sectors);
1387 	if (rc == -EACCES) {
1388 		/* if device aborted the command, skip HPA resizing */
1389 		ata_dev_warn(dev,
1390 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1391 			     (unsigned long long)sectors,
1392 			     (unsigned long long)native_sectors);
1393 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1394 		return 0;
1395 	} else if (rc)
1396 		return rc;
1397 
1398 	/* re-read IDENTIFY data */
1399 	rc = ata_dev_reread_id(dev, 0);
1400 	if (rc) {
1401 		ata_dev_err(dev,
1402 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1403 		return rc;
1404 	}
1405 
1406 	if (print_info) {
1407 		u64 new_sectors = ata_id_n_sectors(dev->id);
1408 		ata_dev_info(dev,
1409 			"HPA unlocked: %llu -> %llu, native %llu\n",
1410 			(unsigned long long)sectors,
1411 			(unsigned long long)new_sectors,
1412 			(unsigned long long)native_sectors);
1413 	}
1414 
1415 	return 0;
1416 }
1417 
1418 /**
1419  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1420  *	@id: IDENTIFY DEVICE page to dump
1421  *
1422  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1423  *	page.
1424  *
1425  *	LOCKING:
1426  *	caller.
1427  */
1428 
1429 static inline void ata_dump_id(const u16 *id)
1430 {
1431 	DPRINTK("49==0x%04x  "
1432 		"53==0x%04x  "
1433 		"63==0x%04x  "
1434 		"64==0x%04x  "
1435 		"75==0x%04x  \n",
1436 		id[49],
1437 		id[53],
1438 		id[63],
1439 		id[64],
1440 		id[75]);
1441 	DPRINTK("80==0x%04x  "
1442 		"81==0x%04x  "
1443 		"82==0x%04x  "
1444 		"83==0x%04x  "
1445 		"84==0x%04x  \n",
1446 		id[80],
1447 		id[81],
1448 		id[82],
1449 		id[83],
1450 		id[84]);
1451 	DPRINTK("88==0x%04x  "
1452 		"93==0x%04x\n",
1453 		id[88],
1454 		id[93]);
1455 }
1456 
1457 /**
1458  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1459  *	@id: IDENTIFY data to compute xfer mask from
1460  *
1461  *	Compute the xfermask for this device. This is not as trivial
1462  *	as it seems if we must consider early devices correctly.
1463  *
1464  *	FIXME: pre IDE drive timing (do we care ?).
1465  *
1466  *	LOCKING:
1467  *	None.
1468  *
1469  *	RETURNS:
1470  *	Computed xfermask
1471  */
1472 unsigned long ata_id_xfermask(const u16 *id)
1473 {
1474 	unsigned long pio_mask, mwdma_mask, udma_mask;
1475 
1476 	/* Usual case. Word 53 indicates word 64 is valid */
1477 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1478 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1479 		pio_mask <<= 3;
1480 		pio_mask |= 0x7;
1481 	} else {
1482 		/* If word 64 isn't valid then Word 51 high byte holds
1483 		 * the PIO timing number for the maximum. Turn it into
1484 		 * a mask.
1485 		 */
1486 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1487 		if (mode < 5)	/* Valid PIO range */
1488 			pio_mask = (2 << mode) - 1;
1489 		else
1490 			pio_mask = 1;
1491 
1492 		/* But wait.. there's more. Design your standards by
1493 		 * committee and you too can get a free iordy field to
1494 		 * process. However its the speeds not the modes that
1495 		 * are supported... Note drivers using the timing API
1496 		 * will get this right anyway
1497 		 */
1498 	}
1499 
1500 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1501 
1502 	if (ata_id_is_cfa(id)) {
1503 		/*
1504 		 *	Process compact flash extended modes
1505 		 */
1506 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1507 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1508 
1509 		if (pio)
1510 			pio_mask |= (1 << 5);
1511 		if (pio > 1)
1512 			pio_mask |= (1 << 6);
1513 		if (dma)
1514 			mwdma_mask |= (1 << 3);
1515 		if (dma > 1)
1516 			mwdma_mask |= (1 << 4);
1517 	}
1518 
1519 	udma_mask = 0;
1520 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1521 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1522 
1523 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1524 }
1525 
1526 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1527 {
1528 	struct completion *waiting = qc->private_data;
1529 
1530 	complete(waiting);
1531 }
1532 
1533 /**
1534  *	ata_exec_internal_sg - execute libata internal command
1535  *	@dev: Device to which the command is sent
1536  *	@tf: Taskfile registers for the command and the result
1537  *	@cdb: CDB for packet command
1538  *	@dma_dir: Data transfer direction of the command
1539  *	@sgl: sg list for the data buffer of the command
1540  *	@n_elem: Number of sg entries
1541  *	@timeout: Timeout in msecs (0 for default)
1542  *
1543  *	Executes libata internal command with timeout.  @tf contains
1544  *	command on entry and result on return.  Timeout and error
1545  *	conditions are reported via return value.  No recovery action
1546  *	is taken after a command times out.  It's caller's duty to
1547  *	clean up after timeout.
1548  *
1549  *	LOCKING:
1550  *	None.  Should be called with kernel context, might sleep.
1551  *
1552  *	RETURNS:
1553  *	Zero on success, AC_ERR_* mask on failure
1554  */
1555 unsigned ata_exec_internal_sg(struct ata_device *dev,
1556 			      struct ata_taskfile *tf, const u8 *cdb,
1557 			      int dma_dir, struct scatterlist *sgl,
1558 			      unsigned int n_elem, unsigned long timeout)
1559 {
1560 	struct ata_link *link = dev->link;
1561 	struct ata_port *ap = link->ap;
1562 	u8 command = tf->command;
1563 	int auto_timeout = 0;
1564 	struct ata_queued_cmd *qc;
1565 	unsigned int tag, preempted_tag;
1566 	u32 preempted_sactive, preempted_qc_active;
1567 	int preempted_nr_active_links;
1568 	DECLARE_COMPLETION_ONSTACK(wait);
1569 	unsigned long flags;
1570 	unsigned int err_mask;
1571 	int rc;
1572 
1573 	spin_lock_irqsave(ap->lock, flags);
1574 
1575 	/* no internal command while frozen */
1576 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1577 		spin_unlock_irqrestore(ap->lock, flags);
1578 		return AC_ERR_SYSTEM;
1579 	}
1580 
1581 	/* initialize internal qc */
1582 
1583 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1584 	 * drivers choke if any other tag is given.  This breaks
1585 	 * ata_tag_internal() test for those drivers.  Don't use new
1586 	 * EH stuff without converting to it.
1587 	 */
1588 	if (ap->ops->error_handler)
1589 		tag = ATA_TAG_INTERNAL;
1590 	else
1591 		tag = 0;
1592 
1593 	qc = __ata_qc_from_tag(ap, tag);
1594 
1595 	qc->tag = tag;
1596 	qc->scsicmd = NULL;
1597 	qc->ap = ap;
1598 	qc->dev = dev;
1599 	ata_qc_reinit(qc);
1600 
1601 	preempted_tag = link->active_tag;
1602 	preempted_sactive = link->sactive;
1603 	preempted_qc_active = ap->qc_active;
1604 	preempted_nr_active_links = ap->nr_active_links;
1605 	link->active_tag = ATA_TAG_POISON;
1606 	link->sactive = 0;
1607 	ap->qc_active = 0;
1608 	ap->nr_active_links = 0;
1609 
1610 	/* prepare & issue qc */
1611 	qc->tf = *tf;
1612 	if (cdb)
1613 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1614 
1615 	/* some SATA bridges need us to indicate data xfer direction */
1616 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1617 	    dma_dir == DMA_FROM_DEVICE)
1618 		qc->tf.feature |= ATAPI_DMADIR;
1619 
1620 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1621 	qc->dma_dir = dma_dir;
1622 	if (dma_dir != DMA_NONE) {
1623 		unsigned int i, buflen = 0;
1624 		struct scatterlist *sg;
1625 
1626 		for_each_sg(sgl, sg, n_elem, i)
1627 			buflen += sg->length;
1628 
1629 		ata_sg_init(qc, sgl, n_elem);
1630 		qc->nbytes = buflen;
1631 	}
1632 
1633 	qc->private_data = &wait;
1634 	qc->complete_fn = ata_qc_complete_internal;
1635 
1636 	ata_qc_issue(qc);
1637 
1638 	spin_unlock_irqrestore(ap->lock, flags);
1639 
1640 	if (!timeout) {
1641 		if (ata_probe_timeout)
1642 			timeout = ata_probe_timeout * 1000;
1643 		else {
1644 			timeout = ata_internal_cmd_timeout(dev, command);
1645 			auto_timeout = 1;
1646 		}
1647 	}
1648 
1649 	if (ap->ops->error_handler)
1650 		ata_eh_release(ap);
1651 
1652 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1653 
1654 	if (ap->ops->error_handler)
1655 		ata_eh_acquire(ap);
1656 
1657 	ata_sff_flush_pio_task(ap);
1658 
1659 	if (!rc) {
1660 		spin_lock_irqsave(ap->lock, flags);
1661 
1662 		/* We're racing with irq here.  If we lose, the
1663 		 * following test prevents us from completing the qc
1664 		 * twice.  If we win, the port is frozen and will be
1665 		 * cleaned up by ->post_internal_cmd().
1666 		 */
1667 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1668 			qc->err_mask |= AC_ERR_TIMEOUT;
1669 
1670 			if (ap->ops->error_handler)
1671 				ata_port_freeze(ap);
1672 			else
1673 				ata_qc_complete(qc);
1674 
1675 			if (ata_msg_warn(ap))
1676 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1677 					     command);
1678 		}
1679 
1680 		spin_unlock_irqrestore(ap->lock, flags);
1681 	}
1682 
1683 	/* do post_internal_cmd */
1684 	if (ap->ops->post_internal_cmd)
1685 		ap->ops->post_internal_cmd(qc);
1686 
1687 	/* perform minimal error analysis */
1688 	if (qc->flags & ATA_QCFLAG_FAILED) {
1689 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1690 			qc->err_mask |= AC_ERR_DEV;
1691 
1692 		if (!qc->err_mask)
1693 			qc->err_mask |= AC_ERR_OTHER;
1694 
1695 		if (qc->err_mask & ~AC_ERR_OTHER)
1696 			qc->err_mask &= ~AC_ERR_OTHER;
1697 	}
1698 
1699 	/* finish up */
1700 	spin_lock_irqsave(ap->lock, flags);
1701 
1702 	*tf = qc->result_tf;
1703 	err_mask = qc->err_mask;
1704 
1705 	ata_qc_free(qc);
1706 	link->active_tag = preempted_tag;
1707 	link->sactive = preempted_sactive;
1708 	ap->qc_active = preempted_qc_active;
1709 	ap->nr_active_links = preempted_nr_active_links;
1710 
1711 	spin_unlock_irqrestore(ap->lock, flags);
1712 
1713 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1714 		ata_internal_cmd_timed_out(dev, command);
1715 
1716 	return err_mask;
1717 }
1718 
1719 /**
1720  *	ata_exec_internal - execute libata internal command
1721  *	@dev: Device to which the command is sent
1722  *	@tf: Taskfile registers for the command and the result
1723  *	@cdb: CDB for packet command
1724  *	@dma_dir: Data transfer direction of the command
1725  *	@buf: Data buffer of the command
1726  *	@buflen: Length of data buffer
1727  *	@timeout: Timeout in msecs (0 for default)
1728  *
1729  *	Wrapper around ata_exec_internal_sg() which takes simple
1730  *	buffer instead of sg list.
1731  *
1732  *	LOCKING:
1733  *	None.  Should be called with kernel context, might sleep.
1734  *
1735  *	RETURNS:
1736  *	Zero on success, AC_ERR_* mask on failure
1737  */
1738 unsigned ata_exec_internal(struct ata_device *dev,
1739 			   struct ata_taskfile *tf, const u8 *cdb,
1740 			   int dma_dir, void *buf, unsigned int buflen,
1741 			   unsigned long timeout)
1742 {
1743 	struct scatterlist *psg = NULL, sg;
1744 	unsigned int n_elem = 0;
1745 
1746 	if (dma_dir != DMA_NONE) {
1747 		WARN_ON(!buf);
1748 		sg_init_one(&sg, buf, buflen);
1749 		psg = &sg;
1750 		n_elem++;
1751 	}
1752 
1753 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1754 				    timeout);
1755 }
1756 
1757 /**
1758  *	ata_pio_need_iordy	-	check if iordy needed
1759  *	@adev: ATA device
1760  *
1761  *	Check if the current speed of the device requires IORDY. Used
1762  *	by various controllers for chip configuration.
1763  */
1764 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1765 {
1766 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1767 	 * lead to controller lock up on certain controllers if the
1768 	 * port is not occupied.  See bko#11703 for details.
1769 	 */
1770 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1771 		return 0;
1772 	/* Controller doesn't support IORDY.  Probably a pointless
1773 	 * check as the caller should know this.
1774 	 */
1775 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1776 		return 0;
1777 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1778 	if (ata_id_is_cfa(adev->id)
1779 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1780 		return 0;
1781 	/* PIO3 and higher it is mandatory */
1782 	if (adev->pio_mode > XFER_PIO_2)
1783 		return 1;
1784 	/* We turn it on when possible */
1785 	if (ata_id_has_iordy(adev->id))
1786 		return 1;
1787 	return 0;
1788 }
1789 
1790 /**
1791  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1792  *	@adev: ATA device
1793  *
1794  *	Compute the highest mode possible if we are not using iordy. Return
1795  *	-1 if no iordy mode is available.
1796  */
1797 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1798 {
1799 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1800 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1801 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1802 		/* Is the speed faster than the drive allows non IORDY ? */
1803 		if (pio) {
1804 			/* This is cycle times not frequency - watch the logic! */
1805 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1806 				return 3 << ATA_SHIFT_PIO;
1807 			return 7 << ATA_SHIFT_PIO;
1808 		}
1809 	}
1810 	return 3 << ATA_SHIFT_PIO;
1811 }
1812 
1813 /**
1814  *	ata_do_dev_read_id		-	default ID read method
1815  *	@dev: device
1816  *	@tf: proposed taskfile
1817  *	@id: data buffer
1818  *
1819  *	Issue the identify taskfile and hand back the buffer containing
1820  *	identify data. For some RAID controllers and for pre ATA devices
1821  *	this function is wrapped or replaced by the driver
1822  */
1823 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1824 					struct ata_taskfile *tf, u16 *id)
1825 {
1826 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1827 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1828 }
1829 
1830 /**
1831  *	ata_dev_read_id - Read ID data from the specified device
1832  *	@dev: target device
1833  *	@p_class: pointer to class of the target device (may be changed)
1834  *	@flags: ATA_READID_* flags
1835  *	@id: buffer to read IDENTIFY data into
1836  *
1837  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1838  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1839  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1840  *	for pre-ATA4 drives.
1841  *
1842  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1843  *	now we abort if we hit that case.
1844  *
1845  *	LOCKING:
1846  *	Kernel thread context (may sleep)
1847  *
1848  *	RETURNS:
1849  *	0 on success, -errno otherwise.
1850  */
1851 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1852 		    unsigned int flags, u16 *id)
1853 {
1854 	struct ata_port *ap = dev->link->ap;
1855 	unsigned int class = *p_class;
1856 	struct ata_taskfile tf;
1857 	unsigned int err_mask = 0;
1858 	const char *reason;
1859 	bool is_semb = class == ATA_DEV_SEMB;
1860 	int may_fallback = 1, tried_spinup = 0;
1861 	int rc;
1862 
1863 	if (ata_msg_ctl(ap))
1864 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1865 
1866 retry:
1867 	ata_tf_init(dev, &tf);
1868 
1869 	switch (class) {
1870 	case ATA_DEV_SEMB:
1871 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1872 	case ATA_DEV_ATA:
1873 	case ATA_DEV_ZAC:
1874 		tf.command = ATA_CMD_ID_ATA;
1875 		break;
1876 	case ATA_DEV_ATAPI:
1877 		tf.command = ATA_CMD_ID_ATAPI;
1878 		break;
1879 	default:
1880 		rc = -ENODEV;
1881 		reason = "unsupported class";
1882 		goto err_out;
1883 	}
1884 
1885 	tf.protocol = ATA_PROT_PIO;
1886 
1887 	/* Some devices choke if TF registers contain garbage.  Make
1888 	 * sure those are properly initialized.
1889 	 */
1890 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1891 
1892 	/* Device presence detection is unreliable on some
1893 	 * controllers.  Always poll IDENTIFY if available.
1894 	 */
1895 	tf.flags |= ATA_TFLAG_POLLING;
1896 
1897 	if (ap->ops->read_id)
1898 		err_mask = ap->ops->read_id(dev, &tf, id);
1899 	else
1900 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1901 
1902 	if (err_mask) {
1903 		if (err_mask & AC_ERR_NODEV_HINT) {
1904 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1905 			return -ENOENT;
1906 		}
1907 
1908 		if (is_semb) {
1909 			ata_dev_info(dev,
1910 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1911 			/* SEMB is not supported yet */
1912 			*p_class = ATA_DEV_SEMB_UNSUP;
1913 			return 0;
1914 		}
1915 
1916 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1917 			/* Device or controller might have reported
1918 			 * the wrong device class.  Give a shot at the
1919 			 * other IDENTIFY if the current one is
1920 			 * aborted by the device.
1921 			 */
1922 			if (may_fallback) {
1923 				may_fallback = 0;
1924 
1925 				if (class == ATA_DEV_ATA)
1926 					class = ATA_DEV_ATAPI;
1927 				else
1928 					class = ATA_DEV_ATA;
1929 				goto retry;
1930 			}
1931 
1932 			/* Control reaches here iff the device aborted
1933 			 * both flavors of IDENTIFYs which happens
1934 			 * sometimes with phantom devices.
1935 			 */
1936 			ata_dev_dbg(dev,
1937 				    "both IDENTIFYs aborted, assuming NODEV\n");
1938 			return -ENOENT;
1939 		}
1940 
1941 		rc = -EIO;
1942 		reason = "I/O error";
1943 		goto err_out;
1944 	}
1945 
1946 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1947 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1948 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1949 			    class, may_fallback, tried_spinup);
1950 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1951 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1952 	}
1953 
1954 	/* Falling back doesn't make sense if ID data was read
1955 	 * successfully at least once.
1956 	 */
1957 	may_fallback = 0;
1958 
1959 	swap_buf_le16(id, ATA_ID_WORDS);
1960 
1961 	/* sanity check */
1962 	rc = -EINVAL;
1963 	reason = "device reports invalid type";
1964 
1965 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1966 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1967 			goto err_out;
1968 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1969 							ata_id_is_ata(id)) {
1970 			ata_dev_dbg(dev,
1971 				"host indicates ignore ATA devices, ignored\n");
1972 			return -ENOENT;
1973 		}
1974 	} else {
1975 		if (ata_id_is_ata(id))
1976 			goto err_out;
1977 	}
1978 
1979 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1980 		tried_spinup = 1;
1981 		/*
1982 		 * Drive powered-up in standby mode, and requires a specific
1983 		 * SET_FEATURES spin-up subcommand before it will accept
1984 		 * anything other than the original IDENTIFY command.
1985 		 */
1986 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1987 		if (err_mask && id[2] != 0x738c) {
1988 			rc = -EIO;
1989 			reason = "SPINUP failed";
1990 			goto err_out;
1991 		}
1992 		/*
1993 		 * If the drive initially returned incomplete IDENTIFY info,
1994 		 * we now must reissue the IDENTIFY command.
1995 		 */
1996 		if (id[2] == 0x37c8)
1997 			goto retry;
1998 	}
1999 
2000 	if ((flags & ATA_READID_POSTRESET) &&
2001 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2002 		/*
2003 		 * The exact sequence expected by certain pre-ATA4 drives is:
2004 		 * SRST RESET
2005 		 * IDENTIFY (optional in early ATA)
2006 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2007 		 * anything else..
2008 		 * Some drives were very specific about that exact sequence.
2009 		 *
2010 		 * Note that ATA4 says lba is mandatory so the second check
2011 		 * should never trigger.
2012 		 */
2013 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2014 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2015 			if (err_mask) {
2016 				rc = -EIO;
2017 				reason = "INIT_DEV_PARAMS failed";
2018 				goto err_out;
2019 			}
2020 
2021 			/* current CHS translation info (id[53-58]) might be
2022 			 * changed. reread the identify device info.
2023 			 */
2024 			flags &= ~ATA_READID_POSTRESET;
2025 			goto retry;
2026 		}
2027 	}
2028 
2029 	*p_class = class;
2030 
2031 	return 0;
2032 
2033  err_out:
2034 	if (ata_msg_warn(ap))
2035 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2036 			     reason, err_mask);
2037 	return rc;
2038 }
2039 
2040 static int ata_do_link_spd_horkage(struct ata_device *dev)
2041 {
2042 	struct ata_link *plink = ata_dev_phys_link(dev);
2043 	u32 target, target_limit;
2044 
2045 	if (!sata_scr_valid(plink))
2046 		return 0;
2047 
2048 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2049 		target = 1;
2050 	else
2051 		return 0;
2052 
2053 	target_limit = (1 << target) - 1;
2054 
2055 	/* if already on stricter limit, no need to push further */
2056 	if (plink->sata_spd_limit <= target_limit)
2057 		return 0;
2058 
2059 	plink->sata_spd_limit = target_limit;
2060 
2061 	/* Request another EH round by returning -EAGAIN if link is
2062 	 * going faster than the target speed.  Forward progress is
2063 	 * guaranteed by setting sata_spd_limit to target_limit above.
2064 	 */
2065 	if (plink->sata_spd > target) {
2066 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2067 			     sata_spd_string(target));
2068 		return -EAGAIN;
2069 	}
2070 	return 0;
2071 }
2072 
2073 static inline u8 ata_dev_knobble(struct ata_device *dev)
2074 {
2075 	struct ata_port *ap = dev->link->ap;
2076 
2077 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2078 		return 0;
2079 
2080 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2081 }
2082 
2083 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2084 {
2085 	struct ata_port *ap = dev->link->ap;
2086 	unsigned int err_mask;
2087 	int log_index = ATA_LOG_NCQ_SEND_RECV * 2;
2088 	u16 log_pages;
2089 
2090 	err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2091 				     0, ap->sector_buf, 1);
2092 	if (err_mask) {
2093 		ata_dev_dbg(dev,
2094 			    "failed to get Log Directory Emask 0x%x\n",
2095 			    err_mask);
2096 		return;
2097 	}
2098 	log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2099 	if (!log_pages) {
2100 		ata_dev_warn(dev,
2101 			     "NCQ Send/Recv Log not supported\n");
2102 		return;
2103 	}
2104 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2105 				     0, ap->sector_buf, 1);
2106 	if (err_mask) {
2107 		ata_dev_dbg(dev,
2108 			    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2109 			    err_mask);
2110 	} else {
2111 		u8 *cmds = dev->ncq_send_recv_cmds;
2112 
2113 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2114 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2115 
2116 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2117 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2118 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2119 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2120 		}
2121 	}
2122 }
2123 
2124 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2125 {
2126 	struct ata_port *ap = dev->link->ap;
2127 	unsigned int err_mask;
2128 	int log_index = ATA_LOG_NCQ_NON_DATA * 2;
2129 	u16 log_pages;
2130 
2131 	err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2132 				     0, ap->sector_buf, 1);
2133 	if (err_mask) {
2134 		ata_dev_dbg(dev,
2135 			    "failed to get Log Directory Emask 0x%x\n",
2136 			    err_mask);
2137 		return;
2138 	}
2139 	log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2140 	if (!log_pages) {
2141 		ata_dev_warn(dev,
2142 			     "NCQ Send/Recv Log not supported\n");
2143 		return;
2144 	}
2145 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2146 				     0, ap->sector_buf, 1);
2147 	if (err_mask) {
2148 		ata_dev_dbg(dev,
2149 			    "failed to get NCQ Non-Data Log Emask 0x%x\n",
2150 			    err_mask);
2151 	} else {
2152 		u8 *cmds = dev->ncq_non_data_cmds;
2153 
2154 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2155 	}
2156 }
2157 
2158 static int ata_dev_config_ncq(struct ata_device *dev,
2159 			       char *desc, size_t desc_sz)
2160 {
2161 	struct ata_port *ap = dev->link->ap;
2162 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2163 	unsigned int err_mask;
2164 	char *aa_desc = "";
2165 
2166 	if (!ata_id_has_ncq(dev->id)) {
2167 		desc[0] = '\0';
2168 		return 0;
2169 	}
2170 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2171 		snprintf(desc, desc_sz, "NCQ (not used)");
2172 		return 0;
2173 	}
2174 	if (ap->flags & ATA_FLAG_NCQ) {
2175 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2176 		dev->flags |= ATA_DFLAG_NCQ;
2177 	}
2178 
2179 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2180 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2181 		ata_id_has_fpdma_aa(dev->id)) {
2182 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2183 			SATA_FPDMA_AA);
2184 		if (err_mask) {
2185 			ata_dev_err(dev,
2186 				    "failed to enable AA (error_mask=0x%x)\n",
2187 				    err_mask);
2188 			if (err_mask != AC_ERR_DEV) {
2189 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2190 				return -EIO;
2191 			}
2192 		} else
2193 			aa_desc = ", AA";
2194 	}
2195 
2196 	if (hdepth >= ddepth)
2197 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2198 	else
2199 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2200 			ddepth, aa_desc);
2201 
2202 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2203 		if (ata_id_has_ncq_send_and_recv(dev->id))
2204 			ata_dev_config_ncq_send_recv(dev);
2205 		if (ata_id_has_ncq_non_data(dev->id))
2206 			ata_dev_config_ncq_non_data(dev);
2207 	}
2208 
2209 	return 0;
2210 }
2211 
2212 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2213 {
2214 	unsigned int err_mask;
2215 
2216 	if (!ata_id_has_sense_reporting(dev->id))
2217 		return;
2218 
2219 	if (ata_id_sense_reporting_enabled(dev->id))
2220 		return;
2221 
2222 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2223 	if (err_mask) {
2224 		ata_dev_dbg(dev,
2225 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2226 			    err_mask);
2227 	}
2228 }
2229 
2230 static void ata_dev_config_zac(struct ata_device *dev)
2231 {
2232 	struct ata_port *ap = dev->link->ap;
2233 	unsigned int err_mask;
2234 	u8 *identify_buf = ap->sector_buf;
2235 	int log_index = ATA_LOG_SATA_ID_DEV_DATA * 2, i, found = 0;
2236 	u16 log_pages;
2237 
2238 	dev->zac_zones_optimal_open = U32_MAX;
2239 	dev->zac_zones_optimal_nonseq = U32_MAX;
2240 	dev->zac_zones_max_open = U32_MAX;
2241 
2242 	/*
2243 	 * Always set the 'ZAC' flag for Host-managed devices.
2244 	 */
2245 	if (dev->class == ATA_DEV_ZAC)
2246 		dev->flags |= ATA_DFLAG_ZAC;
2247 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2248 		/*
2249 		 * Check for host-aware devices.
2250 		 */
2251 		dev->flags |= ATA_DFLAG_ZAC;
2252 
2253 	if (!(dev->flags & ATA_DFLAG_ZAC))
2254 		return;
2255 
2256 	/*
2257 	 * Read Log Directory to figure out if IDENTIFY DEVICE log
2258 	 * is supported.
2259 	 */
2260 	err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2261 				     0, ap->sector_buf, 1);
2262 	if (err_mask) {
2263 		ata_dev_info(dev,
2264 			     "failed to get Log Directory Emask 0x%x\n",
2265 			     err_mask);
2266 		return;
2267 	}
2268 	log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2269 	if (log_pages == 0) {
2270 		ata_dev_warn(dev,
2271 			     "ATA Identify Device Log not supported\n");
2272 		return;
2273 	}
2274 	/*
2275 	 * Read IDENTIFY DEVICE data log, page 0, to figure out
2276 	 * if page 9 is supported.
2277 	 */
2278 	err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA, 0,
2279 				     identify_buf, 1);
2280 	if (err_mask) {
2281 		ata_dev_info(dev,
2282 			     "failed to get Device Identify Log Emask 0x%x\n",
2283 			     err_mask);
2284 		return;
2285 	}
2286 	log_pages = identify_buf[8];
2287 	for (i = 0; i < log_pages; i++) {
2288 		if (identify_buf[9 + i] == ATA_LOG_ZONED_INFORMATION) {
2289 			found++;
2290 			break;
2291 		}
2292 	}
2293 	if (!found) {
2294 		ata_dev_warn(dev,
2295 			     "ATA Zoned Information Log not supported\n");
2296 		return;
2297 	}
2298 
2299 	/*
2300 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2301 	 */
2302 	err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA,
2303 				     ATA_LOG_ZONED_INFORMATION,
2304 				     identify_buf, 1);
2305 	if (!err_mask) {
2306 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2307 
2308 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2309 		if ((zoned_cap >> 63))
2310 			dev->zac_zoned_cap = (zoned_cap & 1);
2311 		opt_open = get_unaligned_le64(&identify_buf[24]);
2312 		if ((opt_open >> 63))
2313 			dev->zac_zones_optimal_open = (u32)opt_open;
2314 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2315 		if ((opt_nonseq >> 63))
2316 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2317 		max_open = get_unaligned_le64(&identify_buf[40]);
2318 		if ((max_open >> 63))
2319 			dev->zac_zones_max_open = (u32)max_open;
2320 	}
2321 }
2322 
2323 /**
2324  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2325  *	@dev: Target device to configure
2326  *
2327  *	Configure @dev according to @dev->id.  Generic and low-level
2328  *	driver specific fixups are also applied.
2329  *
2330  *	LOCKING:
2331  *	Kernel thread context (may sleep)
2332  *
2333  *	RETURNS:
2334  *	0 on success, -errno otherwise
2335  */
2336 int ata_dev_configure(struct ata_device *dev)
2337 {
2338 	struct ata_port *ap = dev->link->ap;
2339 	struct ata_eh_context *ehc = &dev->link->eh_context;
2340 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2341 	const u16 *id = dev->id;
2342 	unsigned long xfer_mask;
2343 	unsigned int err_mask;
2344 	char revbuf[7];		/* XYZ-99\0 */
2345 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2346 	char modelbuf[ATA_ID_PROD_LEN+1];
2347 	int rc;
2348 
2349 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2350 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2351 		return 0;
2352 	}
2353 
2354 	if (ata_msg_probe(ap))
2355 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2356 
2357 	/* set horkage */
2358 	dev->horkage |= ata_dev_blacklisted(dev);
2359 	ata_force_horkage(dev);
2360 
2361 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2362 		ata_dev_info(dev, "unsupported device, disabling\n");
2363 		ata_dev_disable(dev);
2364 		return 0;
2365 	}
2366 
2367 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2368 	    dev->class == ATA_DEV_ATAPI) {
2369 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2370 			     atapi_enabled ? "not supported with this driver"
2371 			     : "disabled");
2372 		ata_dev_disable(dev);
2373 		return 0;
2374 	}
2375 
2376 	rc = ata_do_link_spd_horkage(dev);
2377 	if (rc)
2378 		return rc;
2379 
2380 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2381 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2382 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2383 		dev->horkage |= ATA_HORKAGE_NOLPM;
2384 
2385 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2386 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2387 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2388 	}
2389 
2390 	/* let ACPI work its magic */
2391 	rc = ata_acpi_on_devcfg(dev);
2392 	if (rc)
2393 		return rc;
2394 
2395 	/* massage HPA, do it early as it might change IDENTIFY data */
2396 	rc = ata_hpa_resize(dev);
2397 	if (rc)
2398 		return rc;
2399 
2400 	/* print device capabilities */
2401 	if (ata_msg_probe(ap))
2402 		ata_dev_dbg(dev,
2403 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2404 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2405 			    __func__,
2406 			    id[49], id[82], id[83], id[84],
2407 			    id[85], id[86], id[87], id[88]);
2408 
2409 	/* initialize to-be-configured parameters */
2410 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2411 	dev->max_sectors = 0;
2412 	dev->cdb_len = 0;
2413 	dev->n_sectors = 0;
2414 	dev->cylinders = 0;
2415 	dev->heads = 0;
2416 	dev->sectors = 0;
2417 	dev->multi_count = 0;
2418 
2419 	/*
2420 	 * common ATA, ATAPI feature tests
2421 	 */
2422 
2423 	/* find max transfer mode; for printk only */
2424 	xfer_mask = ata_id_xfermask(id);
2425 
2426 	if (ata_msg_probe(ap))
2427 		ata_dump_id(id);
2428 
2429 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2430 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2431 			sizeof(fwrevbuf));
2432 
2433 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2434 			sizeof(modelbuf));
2435 
2436 	/* ATA-specific feature tests */
2437 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2438 		if (ata_id_is_cfa(id)) {
2439 			/* CPRM may make this media unusable */
2440 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2441 				ata_dev_warn(dev,
2442 	"supports DRM functions and may not be fully accessible\n");
2443 			snprintf(revbuf, 7, "CFA");
2444 		} else {
2445 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2446 			/* Warn the user if the device has TPM extensions */
2447 			if (ata_id_has_tpm(id))
2448 				ata_dev_warn(dev,
2449 	"supports DRM functions and may not be fully accessible\n");
2450 		}
2451 
2452 		dev->n_sectors = ata_id_n_sectors(id);
2453 
2454 		/* get current R/W Multiple count setting */
2455 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2456 			unsigned int max = dev->id[47] & 0xff;
2457 			unsigned int cnt = dev->id[59] & 0xff;
2458 			/* only recognize/allow powers of two here */
2459 			if (is_power_of_2(max) && is_power_of_2(cnt))
2460 				if (cnt <= max)
2461 					dev->multi_count = cnt;
2462 		}
2463 
2464 		if (ata_id_has_lba(id)) {
2465 			const char *lba_desc;
2466 			char ncq_desc[24];
2467 
2468 			lba_desc = "LBA";
2469 			dev->flags |= ATA_DFLAG_LBA;
2470 			if (ata_id_has_lba48(id)) {
2471 				dev->flags |= ATA_DFLAG_LBA48;
2472 				lba_desc = "LBA48";
2473 
2474 				if (dev->n_sectors >= (1UL << 28) &&
2475 				    ata_id_has_flush_ext(id))
2476 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2477 			}
2478 
2479 			/* config NCQ */
2480 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2481 			if (rc)
2482 				return rc;
2483 
2484 			/* print device info to dmesg */
2485 			if (ata_msg_drv(ap) && print_info) {
2486 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2487 					     revbuf, modelbuf, fwrevbuf,
2488 					     ata_mode_string(xfer_mask));
2489 				ata_dev_info(dev,
2490 					     "%llu sectors, multi %u: %s %s\n",
2491 					(unsigned long long)dev->n_sectors,
2492 					dev->multi_count, lba_desc, ncq_desc);
2493 			}
2494 		} else {
2495 			/* CHS */
2496 
2497 			/* Default translation */
2498 			dev->cylinders	= id[1];
2499 			dev->heads	= id[3];
2500 			dev->sectors	= id[6];
2501 
2502 			if (ata_id_current_chs_valid(id)) {
2503 				/* Current CHS translation is valid. */
2504 				dev->cylinders = id[54];
2505 				dev->heads     = id[55];
2506 				dev->sectors   = id[56];
2507 			}
2508 
2509 			/* print device info to dmesg */
2510 			if (ata_msg_drv(ap) && print_info) {
2511 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2512 					     revbuf,	modelbuf, fwrevbuf,
2513 					     ata_mode_string(xfer_mask));
2514 				ata_dev_info(dev,
2515 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2516 					     (unsigned long long)dev->n_sectors,
2517 					     dev->multi_count, dev->cylinders,
2518 					     dev->heads, dev->sectors);
2519 			}
2520 		}
2521 
2522 		/* Check and mark DevSlp capability. Get DevSlp timing variables
2523 		 * from SATA Settings page of Identify Device Data Log.
2524 		 */
2525 		if (ata_id_has_devslp(dev->id)) {
2526 			u8 *sata_setting = ap->sector_buf;
2527 			int i, j;
2528 
2529 			dev->flags |= ATA_DFLAG_DEVSLP;
2530 			err_mask = ata_read_log_page(dev,
2531 						     ATA_LOG_SATA_ID_DEV_DATA,
2532 						     ATA_LOG_SATA_SETTINGS,
2533 						     sata_setting,
2534 						     1);
2535 			if (err_mask)
2536 				ata_dev_dbg(dev,
2537 					    "failed to get Identify Device Data, Emask 0x%x\n",
2538 					    err_mask);
2539 			else
2540 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2541 					j = ATA_LOG_DEVSLP_OFFSET + i;
2542 					dev->devslp_timing[i] = sata_setting[j];
2543 				}
2544 		}
2545 		ata_dev_config_sense_reporting(dev);
2546 		ata_dev_config_zac(dev);
2547 		dev->cdb_len = 16;
2548 	}
2549 
2550 	/* ATAPI-specific feature tests */
2551 	else if (dev->class == ATA_DEV_ATAPI) {
2552 		const char *cdb_intr_string = "";
2553 		const char *atapi_an_string = "";
2554 		const char *dma_dir_string = "";
2555 		u32 sntf;
2556 
2557 		rc = atapi_cdb_len(id);
2558 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2559 			if (ata_msg_warn(ap))
2560 				ata_dev_warn(dev, "unsupported CDB len\n");
2561 			rc = -EINVAL;
2562 			goto err_out_nosup;
2563 		}
2564 		dev->cdb_len = (unsigned int) rc;
2565 
2566 		/* Enable ATAPI AN if both the host and device have
2567 		 * the support.  If PMP is attached, SNTF is required
2568 		 * to enable ATAPI AN to discern between PHY status
2569 		 * changed notifications and ATAPI ANs.
2570 		 */
2571 		if (atapi_an &&
2572 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2573 		    (!sata_pmp_attached(ap) ||
2574 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2575 			/* issue SET feature command to turn this on */
2576 			err_mask = ata_dev_set_feature(dev,
2577 					SETFEATURES_SATA_ENABLE, SATA_AN);
2578 			if (err_mask)
2579 				ata_dev_err(dev,
2580 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2581 					    err_mask);
2582 			else {
2583 				dev->flags |= ATA_DFLAG_AN;
2584 				atapi_an_string = ", ATAPI AN";
2585 			}
2586 		}
2587 
2588 		if (ata_id_cdb_intr(dev->id)) {
2589 			dev->flags |= ATA_DFLAG_CDB_INTR;
2590 			cdb_intr_string = ", CDB intr";
2591 		}
2592 
2593 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2594 			dev->flags |= ATA_DFLAG_DMADIR;
2595 			dma_dir_string = ", DMADIR";
2596 		}
2597 
2598 		if (ata_id_has_da(dev->id)) {
2599 			dev->flags |= ATA_DFLAG_DA;
2600 			zpodd_init(dev);
2601 		}
2602 
2603 		/* print device info to dmesg */
2604 		if (ata_msg_drv(ap) && print_info)
2605 			ata_dev_info(dev,
2606 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2607 				     modelbuf, fwrevbuf,
2608 				     ata_mode_string(xfer_mask),
2609 				     cdb_intr_string, atapi_an_string,
2610 				     dma_dir_string);
2611 	}
2612 
2613 	/* determine max_sectors */
2614 	dev->max_sectors = ATA_MAX_SECTORS;
2615 	if (dev->flags & ATA_DFLAG_LBA48)
2616 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2617 
2618 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2619 	   200 sectors */
2620 	if (ata_dev_knobble(dev)) {
2621 		if (ata_msg_drv(ap) && print_info)
2622 			ata_dev_info(dev, "applying bridge limits\n");
2623 		dev->udma_mask &= ATA_UDMA5;
2624 		dev->max_sectors = ATA_MAX_SECTORS;
2625 	}
2626 
2627 	if ((dev->class == ATA_DEV_ATAPI) &&
2628 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2629 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2630 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2631 	}
2632 
2633 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2634 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2635 					 dev->max_sectors);
2636 
2637 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2638 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2639 					 dev->max_sectors);
2640 
2641 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2642 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2643 
2644 	if (ap->ops->dev_config)
2645 		ap->ops->dev_config(dev);
2646 
2647 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2648 		/* Let the user know. We don't want to disallow opens for
2649 		   rescue purposes, or in case the vendor is just a blithering
2650 		   idiot. Do this after the dev_config call as some controllers
2651 		   with buggy firmware may want to avoid reporting false device
2652 		   bugs */
2653 
2654 		if (print_info) {
2655 			ata_dev_warn(dev,
2656 "Drive reports diagnostics failure. This may indicate a drive\n");
2657 			ata_dev_warn(dev,
2658 "fault or invalid emulation. Contact drive vendor for information.\n");
2659 		}
2660 	}
2661 
2662 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2663 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2664 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2665 	}
2666 
2667 	return 0;
2668 
2669 err_out_nosup:
2670 	if (ata_msg_probe(ap))
2671 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2672 	return rc;
2673 }
2674 
2675 /**
2676  *	ata_cable_40wire	-	return 40 wire cable type
2677  *	@ap: port
2678  *
2679  *	Helper method for drivers which want to hardwire 40 wire cable
2680  *	detection.
2681  */
2682 
2683 int ata_cable_40wire(struct ata_port *ap)
2684 {
2685 	return ATA_CBL_PATA40;
2686 }
2687 
2688 /**
2689  *	ata_cable_80wire	-	return 80 wire cable type
2690  *	@ap: port
2691  *
2692  *	Helper method for drivers which want to hardwire 80 wire cable
2693  *	detection.
2694  */
2695 
2696 int ata_cable_80wire(struct ata_port *ap)
2697 {
2698 	return ATA_CBL_PATA80;
2699 }
2700 
2701 /**
2702  *	ata_cable_unknown	-	return unknown PATA cable.
2703  *	@ap: port
2704  *
2705  *	Helper method for drivers which have no PATA cable detection.
2706  */
2707 
2708 int ata_cable_unknown(struct ata_port *ap)
2709 {
2710 	return ATA_CBL_PATA_UNK;
2711 }
2712 
2713 /**
2714  *	ata_cable_ignore	-	return ignored PATA cable.
2715  *	@ap: port
2716  *
2717  *	Helper method for drivers which don't use cable type to limit
2718  *	transfer mode.
2719  */
2720 int ata_cable_ignore(struct ata_port *ap)
2721 {
2722 	return ATA_CBL_PATA_IGN;
2723 }
2724 
2725 /**
2726  *	ata_cable_sata	-	return SATA cable type
2727  *	@ap: port
2728  *
2729  *	Helper method for drivers which have SATA cables
2730  */
2731 
2732 int ata_cable_sata(struct ata_port *ap)
2733 {
2734 	return ATA_CBL_SATA;
2735 }
2736 
2737 /**
2738  *	ata_bus_probe - Reset and probe ATA bus
2739  *	@ap: Bus to probe
2740  *
2741  *	Master ATA bus probing function.  Initiates a hardware-dependent
2742  *	bus reset, then attempts to identify any devices found on
2743  *	the bus.
2744  *
2745  *	LOCKING:
2746  *	PCI/etc. bus probe sem.
2747  *
2748  *	RETURNS:
2749  *	Zero on success, negative errno otherwise.
2750  */
2751 
2752 int ata_bus_probe(struct ata_port *ap)
2753 {
2754 	unsigned int classes[ATA_MAX_DEVICES];
2755 	int tries[ATA_MAX_DEVICES];
2756 	int rc;
2757 	struct ata_device *dev;
2758 
2759 	ata_for_each_dev(dev, &ap->link, ALL)
2760 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2761 
2762  retry:
2763 	ata_for_each_dev(dev, &ap->link, ALL) {
2764 		/* If we issue an SRST then an ATA drive (not ATAPI)
2765 		 * may change configuration and be in PIO0 timing. If
2766 		 * we do a hard reset (or are coming from power on)
2767 		 * this is true for ATA or ATAPI. Until we've set a
2768 		 * suitable controller mode we should not touch the
2769 		 * bus as we may be talking too fast.
2770 		 */
2771 		dev->pio_mode = XFER_PIO_0;
2772 		dev->dma_mode = 0xff;
2773 
2774 		/* If the controller has a pio mode setup function
2775 		 * then use it to set the chipset to rights. Don't
2776 		 * touch the DMA setup as that will be dealt with when
2777 		 * configuring devices.
2778 		 */
2779 		if (ap->ops->set_piomode)
2780 			ap->ops->set_piomode(ap, dev);
2781 	}
2782 
2783 	/* reset and determine device classes */
2784 	ap->ops->phy_reset(ap);
2785 
2786 	ata_for_each_dev(dev, &ap->link, ALL) {
2787 		if (dev->class != ATA_DEV_UNKNOWN)
2788 			classes[dev->devno] = dev->class;
2789 		else
2790 			classes[dev->devno] = ATA_DEV_NONE;
2791 
2792 		dev->class = ATA_DEV_UNKNOWN;
2793 	}
2794 
2795 	/* read IDENTIFY page and configure devices. We have to do the identify
2796 	   specific sequence bass-ackwards so that PDIAG- is released by
2797 	   the slave device */
2798 
2799 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2800 		if (tries[dev->devno])
2801 			dev->class = classes[dev->devno];
2802 
2803 		if (!ata_dev_enabled(dev))
2804 			continue;
2805 
2806 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2807 				     dev->id);
2808 		if (rc)
2809 			goto fail;
2810 	}
2811 
2812 	/* Now ask for the cable type as PDIAG- should have been released */
2813 	if (ap->ops->cable_detect)
2814 		ap->cbl = ap->ops->cable_detect(ap);
2815 
2816 	/* We may have SATA bridge glue hiding here irrespective of
2817 	 * the reported cable types and sensed types.  When SATA
2818 	 * drives indicate we have a bridge, we don't know which end
2819 	 * of the link the bridge is which is a problem.
2820 	 */
2821 	ata_for_each_dev(dev, &ap->link, ENABLED)
2822 		if (ata_id_is_sata(dev->id))
2823 			ap->cbl = ATA_CBL_SATA;
2824 
2825 	/* After the identify sequence we can now set up the devices. We do
2826 	   this in the normal order so that the user doesn't get confused */
2827 
2828 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2829 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2830 		rc = ata_dev_configure(dev);
2831 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2832 		if (rc)
2833 			goto fail;
2834 	}
2835 
2836 	/* configure transfer mode */
2837 	rc = ata_set_mode(&ap->link, &dev);
2838 	if (rc)
2839 		goto fail;
2840 
2841 	ata_for_each_dev(dev, &ap->link, ENABLED)
2842 		return 0;
2843 
2844 	return -ENODEV;
2845 
2846  fail:
2847 	tries[dev->devno]--;
2848 
2849 	switch (rc) {
2850 	case -EINVAL:
2851 		/* eeek, something went very wrong, give up */
2852 		tries[dev->devno] = 0;
2853 		break;
2854 
2855 	case -ENODEV:
2856 		/* give it just one more chance */
2857 		tries[dev->devno] = min(tries[dev->devno], 1);
2858 	case -EIO:
2859 		if (tries[dev->devno] == 1) {
2860 			/* This is the last chance, better to slow
2861 			 * down than lose it.
2862 			 */
2863 			sata_down_spd_limit(&ap->link, 0);
2864 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2865 		}
2866 	}
2867 
2868 	if (!tries[dev->devno])
2869 		ata_dev_disable(dev);
2870 
2871 	goto retry;
2872 }
2873 
2874 /**
2875  *	sata_print_link_status - Print SATA link status
2876  *	@link: SATA link to printk link status about
2877  *
2878  *	This function prints link speed and status of a SATA link.
2879  *
2880  *	LOCKING:
2881  *	None.
2882  */
2883 static void sata_print_link_status(struct ata_link *link)
2884 {
2885 	u32 sstatus, scontrol, tmp;
2886 
2887 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2888 		return;
2889 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2890 
2891 	if (ata_phys_link_online(link)) {
2892 		tmp = (sstatus >> 4) & 0xf;
2893 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2894 			      sata_spd_string(tmp), sstatus, scontrol);
2895 	} else {
2896 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2897 			      sstatus, scontrol);
2898 	}
2899 }
2900 
2901 /**
2902  *	ata_dev_pair		-	return other device on cable
2903  *	@adev: device
2904  *
2905  *	Obtain the other device on the same cable, or if none is
2906  *	present NULL is returned
2907  */
2908 
2909 struct ata_device *ata_dev_pair(struct ata_device *adev)
2910 {
2911 	struct ata_link *link = adev->link;
2912 	struct ata_device *pair = &link->device[1 - adev->devno];
2913 	if (!ata_dev_enabled(pair))
2914 		return NULL;
2915 	return pair;
2916 }
2917 
2918 /**
2919  *	sata_down_spd_limit - adjust SATA spd limit downward
2920  *	@link: Link to adjust SATA spd limit for
2921  *	@spd_limit: Additional limit
2922  *
2923  *	Adjust SATA spd limit of @link downward.  Note that this
2924  *	function only adjusts the limit.  The change must be applied
2925  *	using sata_set_spd().
2926  *
2927  *	If @spd_limit is non-zero, the speed is limited to equal to or
2928  *	lower than @spd_limit if such speed is supported.  If
2929  *	@spd_limit is slower than any supported speed, only the lowest
2930  *	supported speed is allowed.
2931  *
2932  *	LOCKING:
2933  *	Inherited from caller.
2934  *
2935  *	RETURNS:
2936  *	0 on success, negative errno on failure
2937  */
2938 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2939 {
2940 	u32 sstatus, spd, mask;
2941 	int rc, bit;
2942 
2943 	if (!sata_scr_valid(link))
2944 		return -EOPNOTSUPP;
2945 
2946 	/* If SCR can be read, use it to determine the current SPD.
2947 	 * If not, use cached value in link->sata_spd.
2948 	 */
2949 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2950 	if (rc == 0 && ata_sstatus_online(sstatus))
2951 		spd = (sstatus >> 4) & 0xf;
2952 	else
2953 		spd = link->sata_spd;
2954 
2955 	mask = link->sata_spd_limit;
2956 	if (mask <= 1)
2957 		return -EINVAL;
2958 
2959 	/* unconditionally mask off the highest bit */
2960 	bit = fls(mask) - 1;
2961 	mask &= ~(1 << bit);
2962 
2963 	/* Mask off all speeds higher than or equal to the current
2964 	 * one.  Force 1.5Gbps if current SPD is not available.
2965 	 */
2966 	if (spd > 1)
2967 		mask &= (1 << (spd - 1)) - 1;
2968 	else
2969 		mask &= 1;
2970 
2971 	/* were we already at the bottom? */
2972 	if (!mask)
2973 		return -EINVAL;
2974 
2975 	if (spd_limit) {
2976 		if (mask & ((1 << spd_limit) - 1))
2977 			mask &= (1 << spd_limit) - 1;
2978 		else {
2979 			bit = ffs(mask) - 1;
2980 			mask = 1 << bit;
2981 		}
2982 	}
2983 
2984 	link->sata_spd_limit = mask;
2985 
2986 	ata_link_warn(link, "limiting SATA link speed to %s\n",
2987 		      sata_spd_string(fls(mask)));
2988 
2989 	return 0;
2990 }
2991 
2992 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2993 {
2994 	struct ata_link *host_link = &link->ap->link;
2995 	u32 limit, target, spd;
2996 
2997 	limit = link->sata_spd_limit;
2998 
2999 	/* Don't configure downstream link faster than upstream link.
3000 	 * It doesn't speed up anything and some PMPs choke on such
3001 	 * configuration.
3002 	 */
3003 	if (!ata_is_host_link(link) && host_link->sata_spd)
3004 		limit &= (1 << host_link->sata_spd) - 1;
3005 
3006 	if (limit == UINT_MAX)
3007 		target = 0;
3008 	else
3009 		target = fls(limit);
3010 
3011 	spd = (*scontrol >> 4) & 0xf;
3012 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3013 
3014 	return spd != target;
3015 }
3016 
3017 /**
3018  *	sata_set_spd_needed - is SATA spd configuration needed
3019  *	@link: Link in question
3020  *
3021  *	Test whether the spd limit in SControl matches
3022  *	@link->sata_spd_limit.  This function is used to determine
3023  *	whether hardreset is necessary to apply SATA spd
3024  *	configuration.
3025  *
3026  *	LOCKING:
3027  *	Inherited from caller.
3028  *
3029  *	RETURNS:
3030  *	1 if SATA spd configuration is needed, 0 otherwise.
3031  */
3032 static int sata_set_spd_needed(struct ata_link *link)
3033 {
3034 	u32 scontrol;
3035 
3036 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3037 		return 1;
3038 
3039 	return __sata_set_spd_needed(link, &scontrol);
3040 }
3041 
3042 /**
3043  *	sata_set_spd - set SATA spd according to spd limit
3044  *	@link: Link to set SATA spd for
3045  *
3046  *	Set SATA spd of @link according to sata_spd_limit.
3047  *
3048  *	LOCKING:
3049  *	Inherited from caller.
3050  *
3051  *	RETURNS:
3052  *	0 if spd doesn't need to be changed, 1 if spd has been
3053  *	changed.  Negative errno if SCR registers are inaccessible.
3054  */
3055 int sata_set_spd(struct ata_link *link)
3056 {
3057 	u32 scontrol;
3058 	int rc;
3059 
3060 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3061 		return rc;
3062 
3063 	if (!__sata_set_spd_needed(link, &scontrol))
3064 		return 0;
3065 
3066 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3067 		return rc;
3068 
3069 	return 1;
3070 }
3071 
3072 /*
3073  * This mode timing computation functionality is ported over from
3074  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3075  */
3076 /*
3077  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3078  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3079  * for UDMA6, which is currently supported only by Maxtor drives.
3080  *
3081  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3082  */
3083 
3084 static const struct ata_timing ata_timing[] = {
3085 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3086 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3087 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3088 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3089 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3090 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3091 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3092 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3093 
3094 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3095 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3096 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3097 
3098 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3099 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3100 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3101 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3102 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3103 
3104 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3105 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3106 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3107 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3108 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3109 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3110 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3111 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3112 
3113 	{ 0xFF }
3114 };
3115 
3116 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3117 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
3118 
3119 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3120 {
3121 	q->setup	= EZ(t->setup      * 1000,  T);
3122 	q->act8b	= EZ(t->act8b      * 1000,  T);
3123 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
3124 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
3125 	q->active	= EZ(t->active     * 1000,  T);
3126 	q->recover	= EZ(t->recover    * 1000,  T);
3127 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
3128 	q->cycle	= EZ(t->cycle      * 1000,  T);
3129 	q->udma		= EZ(t->udma       * 1000, UT);
3130 }
3131 
3132 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3133 		      struct ata_timing *m, unsigned int what)
3134 {
3135 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3136 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3137 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3138 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3139 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3140 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3141 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3142 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3143 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3144 }
3145 
3146 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3147 {
3148 	const struct ata_timing *t = ata_timing;
3149 
3150 	while (xfer_mode > t->mode)
3151 		t++;
3152 
3153 	if (xfer_mode == t->mode)
3154 		return t;
3155 
3156 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3157 			__func__, xfer_mode);
3158 
3159 	return NULL;
3160 }
3161 
3162 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3163 		       struct ata_timing *t, int T, int UT)
3164 {
3165 	const u16 *id = adev->id;
3166 	const struct ata_timing *s;
3167 	struct ata_timing p;
3168 
3169 	/*
3170 	 * Find the mode.
3171 	 */
3172 
3173 	if (!(s = ata_timing_find_mode(speed)))
3174 		return -EINVAL;
3175 
3176 	memcpy(t, s, sizeof(*s));
3177 
3178 	/*
3179 	 * If the drive is an EIDE drive, it can tell us it needs extended
3180 	 * PIO/MW_DMA cycle timing.
3181 	 */
3182 
3183 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3184 		memset(&p, 0, sizeof(p));
3185 
3186 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3187 			if (speed <= XFER_PIO_2)
3188 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3189 			else if ((speed <= XFER_PIO_4) ||
3190 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3191 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3192 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3193 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3194 
3195 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3196 	}
3197 
3198 	/*
3199 	 * Convert the timing to bus clock counts.
3200 	 */
3201 
3202 	ata_timing_quantize(t, t, T, UT);
3203 
3204 	/*
3205 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3206 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3207 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3208 	 */
3209 
3210 	if (speed > XFER_PIO_6) {
3211 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3212 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3213 	}
3214 
3215 	/*
3216 	 * Lengthen active & recovery time so that cycle time is correct.
3217 	 */
3218 
3219 	if (t->act8b + t->rec8b < t->cyc8b) {
3220 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3221 		t->rec8b = t->cyc8b - t->act8b;
3222 	}
3223 
3224 	if (t->active + t->recover < t->cycle) {
3225 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3226 		t->recover = t->cycle - t->active;
3227 	}
3228 
3229 	/* In a few cases quantisation may produce enough errors to
3230 	   leave t->cycle too low for the sum of active and recovery
3231 	   if so we must correct this */
3232 	if (t->active + t->recover > t->cycle)
3233 		t->cycle = t->active + t->recover;
3234 
3235 	return 0;
3236 }
3237 
3238 /**
3239  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3240  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3241  *	@cycle: cycle duration in ns
3242  *
3243  *	Return matching xfer mode for @cycle.  The returned mode is of
3244  *	the transfer type specified by @xfer_shift.  If @cycle is too
3245  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3246  *	than the fastest known mode, the fasted mode is returned.
3247  *
3248  *	LOCKING:
3249  *	None.
3250  *
3251  *	RETURNS:
3252  *	Matching xfer_mode, 0xff if no match found.
3253  */
3254 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3255 {
3256 	u8 base_mode = 0xff, last_mode = 0xff;
3257 	const struct ata_xfer_ent *ent;
3258 	const struct ata_timing *t;
3259 
3260 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3261 		if (ent->shift == xfer_shift)
3262 			base_mode = ent->base;
3263 
3264 	for (t = ata_timing_find_mode(base_mode);
3265 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3266 		unsigned short this_cycle;
3267 
3268 		switch (xfer_shift) {
3269 		case ATA_SHIFT_PIO:
3270 		case ATA_SHIFT_MWDMA:
3271 			this_cycle = t->cycle;
3272 			break;
3273 		case ATA_SHIFT_UDMA:
3274 			this_cycle = t->udma;
3275 			break;
3276 		default:
3277 			return 0xff;
3278 		}
3279 
3280 		if (cycle > this_cycle)
3281 			break;
3282 
3283 		last_mode = t->mode;
3284 	}
3285 
3286 	return last_mode;
3287 }
3288 
3289 /**
3290  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3291  *	@dev: Device to adjust xfer masks
3292  *	@sel: ATA_DNXFER_* selector
3293  *
3294  *	Adjust xfer masks of @dev downward.  Note that this function
3295  *	does not apply the change.  Invoking ata_set_mode() afterwards
3296  *	will apply the limit.
3297  *
3298  *	LOCKING:
3299  *	Inherited from caller.
3300  *
3301  *	RETURNS:
3302  *	0 on success, negative errno on failure
3303  */
3304 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3305 {
3306 	char buf[32];
3307 	unsigned long orig_mask, xfer_mask;
3308 	unsigned long pio_mask, mwdma_mask, udma_mask;
3309 	int quiet, highbit;
3310 
3311 	quiet = !!(sel & ATA_DNXFER_QUIET);
3312 	sel &= ~ATA_DNXFER_QUIET;
3313 
3314 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3315 						  dev->mwdma_mask,
3316 						  dev->udma_mask);
3317 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3318 
3319 	switch (sel) {
3320 	case ATA_DNXFER_PIO:
3321 		highbit = fls(pio_mask) - 1;
3322 		pio_mask &= ~(1 << highbit);
3323 		break;
3324 
3325 	case ATA_DNXFER_DMA:
3326 		if (udma_mask) {
3327 			highbit = fls(udma_mask) - 1;
3328 			udma_mask &= ~(1 << highbit);
3329 			if (!udma_mask)
3330 				return -ENOENT;
3331 		} else if (mwdma_mask) {
3332 			highbit = fls(mwdma_mask) - 1;
3333 			mwdma_mask &= ~(1 << highbit);
3334 			if (!mwdma_mask)
3335 				return -ENOENT;
3336 		}
3337 		break;
3338 
3339 	case ATA_DNXFER_40C:
3340 		udma_mask &= ATA_UDMA_MASK_40C;
3341 		break;
3342 
3343 	case ATA_DNXFER_FORCE_PIO0:
3344 		pio_mask &= 1;
3345 	case ATA_DNXFER_FORCE_PIO:
3346 		mwdma_mask = 0;
3347 		udma_mask = 0;
3348 		break;
3349 
3350 	default:
3351 		BUG();
3352 	}
3353 
3354 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3355 
3356 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3357 		return -ENOENT;
3358 
3359 	if (!quiet) {
3360 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3361 			snprintf(buf, sizeof(buf), "%s:%s",
3362 				 ata_mode_string(xfer_mask),
3363 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3364 		else
3365 			snprintf(buf, sizeof(buf), "%s",
3366 				 ata_mode_string(xfer_mask));
3367 
3368 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3369 	}
3370 
3371 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3372 			    &dev->udma_mask);
3373 
3374 	return 0;
3375 }
3376 
3377 static int ata_dev_set_mode(struct ata_device *dev)
3378 {
3379 	struct ata_port *ap = dev->link->ap;
3380 	struct ata_eh_context *ehc = &dev->link->eh_context;
3381 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3382 	const char *dev_err_whine = "";
3383 	int ign_dev_err = 0;
3384 	unsigned int err_mask = 0;
3385 	int rc;
3386 
3387 	dev->flags &= ~ATA_DFLAG_PIO;
3388 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3389 		dev->flags |= ATA_DFLAG_PIO;
3390 
3391 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3392 		dev_err_whine = " (SET_XFERMODE skipped)";
3393 	else {
3394 		if (nosetxfer)
3395 			ata_dev_warn(dev,
3396 				     "NOSETXFER but PATA detected - can't "
3397 				     "skip SETXFER, might malfunction\n");
3398 		err_mask = ata_dev_set_xfermode(dev);
3399 	}
3400 
3401 	if (err_mask & ~AC_ERR_DEV)
3402 		goto fail;
3403 
3404 	/* revalidate */
3405 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3406 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3407 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3408 	if (rc)
3409 		return rc;
3410 
3411 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3412 		/* Old CFA may refuse this command, which is just fine */
3413 		if (ata_id_is_cfa(dev->id))
3414 			ign_dev_err = 1;
3415 		/* Catch several broken garbage emulations plus some pre
3416 		   ATA devices */
3417 		if (ata_id_major_version(dev->id) == 0 &&
3418 					dev->pio_mode <= XFER_PIO_2)
3419 			ign_dev_err = 1;
3420 		/* Some very old devices and some bad newer ones fail
3421 		   any kind of SET_XFERMODE request but support PIO0-2
3422 		   timings and no IORDY */
3423 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3424 			ign_dev_err = 1;
3425 	}
3426 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3427 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3428 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3429 	    dev->dma_mode == XFER_MW_DMA_0 &&
3430 	    (dev->id[63] >> 8) & 1)
3431 		ign_dev_err = 1;
3432 
3433 	/* if the device is actually configured correctly, ignore dev err */
3434 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3435 		ign_dev_err = 1;
3436 
3437 	if (err_mask & AC_ERR_DEV) {
3438 		if (!ign_dev_err)
3439 			goto fail;
3440 		else
3441 			dev_err_whine = " (device error ignored)";
3442 	}
3443 
3444 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3445 		dev->xfer_shift, (int)dev->xfer_mode);
3446 
3447 	ata_dev_info(dev, "configured for %s%s\n",
3448 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3449 		     dev_err_whine);
3450 
3451 	return 0;
3452 
3453  fail:
3454 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3455 	return -EIO;
3456 }
3457 
3458 /**
3459  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3460  *	@link: link on which timings will be programmed
3461  *	@r_failed_dev: out parameter for failed device
3462  *
3463  *	Standard implementation of the function used to tune and set
3464  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3465  *	ata_dev_set_mode() fails, pointer to the failing device is
3466  *	returned in @r_failed_dev.
3467  *
3468  *	LOCKING:
3469  *	PCI/etc. bus probe sem.
3470  *
3471  *	RETURNS:
3472  *	0 on success, negative errno otherwise
3473  */
3474 
3475 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3476 {
3477 	struct ata_port *ap = link->ap;
3478 	struct ata_device *dev;
3479 	int rc = 0, used_dma = 0, found = 0;
3480 
3481 	/* step 1: calculate xfer_mask */
3482 	ata_for_each_dev(dev, link, ENABLED) {
3483 		unsigned long pio_mask, dma_mask;
3484 		unsigned int mode_mask;
3485 
3486 		mode_mask = ATA_DMA_MASK_ATA;
3487 		if (dev->class == ATA_DEV_ATAPI)
3488 			mode_mask = ATA_DMA_MASK_ATAPI;
3489 		else if (ata_id_is_cfa(dev->id))
3490 			mode_mask = ATA_DMA_MASK_CFA;
3491 
3492 		ata_dev_xfermask(dev);
3493 		ata_force_xfermask(dev);
3494 
3495 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3496 
3497 		if (libata_dma_mask & mode_mask)
3498 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3499 						     dev->udma_mask);
3500 		else
3501 			dma_mask = 0;
3502 
3503 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3504 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3505 
3506 		found = 1;
3507 		if (ata_dma_enabled(dev))
3508 			used_dma = 1;
3509 	}
3510 	if (!found)
3511 		goto out;
3512 
3513 	/* step 2: always set host PIO timings */
3514 	ata_for_each_dev(dev, link, ENABLED) {
3515 		if (dev->pio_mode == 0xff) {
3516 			ata_dev_warn(dev, "no PIO support\n");
3517 			rc = -EINVAL;
3518 			goto out;
3519 		}
3520 
3521 		dev->xfer_mode = dev->pio_mode;
3522 		dev->xfer_shift = ATA_SHIFT_PIO;
3523 		if (ap->ops->set_piomode)
3524 			ap->ops->set_piomode(ap, dev);
3525 	}
3526 
3527 	/* step 3: set host DMA timings */
3528 	ata_for_each_dev(dev, link, ENABLED) {
3529 		if (!ata_dma_enabled(dev))
3530 			continue;
3531 
3532 		dev->xfer_mode = dev->dma_mode;
3533 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3534 		if (ap->ops->set_dmamode)
3535 			ap->ops->set_dmamode(ap, dev);
3536 	}
3537 
3538 	/* step 4: update devices' xfer mode */
3539 	ata_for_each_dev(dev, link, ENABLED) {
3540 		rc = ata_dev_set_mode(dev);
3541 		if (rc)
3542 			goto out;
3543 	}
3544 
3545 	/* Record simplex status. If we selected DMA then the other
3546 	 * host channels are not permitted to do so.
3547 	 */
3548 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3549 		ap->host->simplex_claimed = ap;
3550 
3551  out:
3552 	if (rc)
3553 		*r_failed_dev = dev;
3554 	return rc;
3555 }
3556 
3557 /**
3558  *	ata_wait_ready - wait for link to become ready
3559  *	@link: link to be waited on
3560  *	@deadline: deadline jiffies for the operation
3561  *	@check_ready: callback to check link readiness
3562  *
3563  *	Wait for @link to become ready.  @check_ready should return
3564  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3565  *	link doesn't seem to be occupied, other errno for other error
3566  *	conditions.
3567  *
3568  *	Transient -ENODEV conditions are allowed for
3569  *	ATA_TMOUT_FF_WAIT.
3570  *
3571  *	LOCKING:
3572  *	EH context.
3573  *
3574  *	RETURNS:
3575  *	0 if @link is ready before @deadline; otherwise, -errno.
3576  */
3577 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3578 		   int (*check_ready)(struct ata_link *link))
3579 {
3580 	unsigned long start = jiffies;
3581 	unsigned long nodev_deadline;
3582 	int warned = 0;
3583 
3584 	/* choose which 0xff timeout to use, read comment in libata.h */
3585 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3586 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3587 	else
3588 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3589 
3590 	/* Slave readiness can't be tested separately from master.  On
3591 	 * M/S emulation configuration, this function should be called
3592 	 * only on the master and it will handle both master and slave.
3593 	 */
3594 	WARN_ON(link == link->ap->slave_link);
3595 
3596 	if (time_after(nodev_deadline, deadline))
3597 		nodev_deadline = deadline;
3598 
3599 	while (1) {
3600 		unsigned long now = jiffies;
3601 		int ready, tmp;
3602 
3603 		ready = tmp = check_ready(link);
3604 		if (ready > 0)
3605 			return 0;
3606 
3607 		/*
3608 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3609 		 * is online.  Also, some SATA devices take a long
3610 		 * time to clear 0xff after reset.  Wait for
3611 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3612 		 * offline.
3613 		 *
3614 		 * Note that some PATA controllers (pata_ali) explode
3615 		 * if status register is read more than once when
3616 		 * there's no device attached.
3617 		 */
3618 		if (ready == -ENODEV) {
3619 			if (ata_link_online(link))
3620 				ready = 0;
3621 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3622 				 !ata_link_offline(link) &&
3623 				 time_before(now, nodev_deadline))
3624 				ready = 0;
3625 		}
3626 
3627 		if (ready)
3628 			return ready;
3629 		if (time_after(now, deadline))
3630 			return -EBUSY;
3631 
3632 		if (!warned && time_after(now, start + 5 * HZ) &&
3633 		    (deadline - now > 3 * HZ)) {
3634 			ata_link_warn(link,
3635 				"link is slow to respond, please be patient "
3636 				"(ready=%d)\n", tmp);
3637 			warned = 1;
3638 		}
3639 
3640 		ata_msleep(link->ap, 50);
3641 	}
3642 }
3643 
3644 /**
3645  *	ata_wait_after_reset - wait for link to become ready after reset
3646  *	@link: link to be waited on
3647  *	@deadline: deadline jiffies for the operation
3648  *	@check_ready: callback to check link readiness
3649  *
3650  *	Wait for @link to become ready after reset.
3651  *
3652  *	LOCKING:
3653  *	EH context.
3654  *
3655  *	RETURNS:
3656  *	0 if @link is ready before @deadline; otherwise, -errno.
3657  */
3658 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3659 				int (*check_ready)(struct ata_link *link))
3660 {
3661 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3662 
3663 	return ata_wait_ready(link, deadline, check_ready);
3664 }
3665 
3666 /**
3667  *	sata_link_debounce - debounce SATA phy status
3668  *	@link: ATA link to debounce SATA phy status for
3669  *	@params: timing parameters { interval, duration, timeout } in msec
3670  *	@deadline: deadline jiffies for the operation
3671  *
3672  *	Make sure SStatus of @link reaches stable state, determined by
3673  *	holding the same value where DET is not 1 for @duration polled
3674  *	every @interval, before @timeout.  Timeout constraints the
3675  *	beginning of the stable state.  Because DET gets stuck at 1 on
3676  *	some controllers after hot unplugging, this functions waits
3677  *	until timeout then returns 0 if DET is stable at 1.
3678  *
3679  *	@timeout is further limited by @deadline.  The sooner of the
3680  *	two is used.
3681  *
3682  *	LOCKING:
3683  *	Kernel thread context (may sleep)
3684  *
3685  *	RETURNS:
3686  *	0 on success, -errno on failure.
3687  */
3688 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3689 		       unsigned long deadline)
3690 {
3691 	unsigned long interval = params[0];
3692 	unsigned long duration = params[1];
3693 	unsigned long last_jiffies, t;
3694 	u32 last, cur;
3695 	int rc;
3696 
3697 	t = ata_deadline(jiffies, params[2]);
3698 	if (time_before(t, deadline))
3699 		deadline = t;
3700 
3701 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3702 		return rc;
3703 	cur &= 0xf;
3704 
3705 	last = cur;
3706 	last_jiffies = jiffies;
3707 
3708 	while (1) {
3709 		ata_msleep(link->ap, interval);
3710 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3711 			return rc;
3712 		cur &= 0xf;
3713 
3714 		/* DET stable? */
3715 		if (cur == last) {
3716 			if (cur == 1 && time_before(jiffies, deadline))
3717 				continue;
3718 			if (time_after(jiffies,
3719 				       ata_deadline(last_jiffies, duration)))
3720 				return 0;
3721 			continue;
3722 		}
3723 
3724 		/* unstable, start over */
3725 		last = cur;
3726 		last_jiffies = jiffies;
3727 
3728 		/* Check deadline.  If debouncing failed, return
3729 		 * -EPIPE to tell upper layer to lower link speed.
3730 		 */
3731 		if (time_after(jiffies, deadline))
3732 			return -EPIPE;
3733 	}
3734 }
3735 
3736 /**
3737  *	sata_link_resume - resume SATA link
3738  *	@link: ATA link to resume SATA
3739  *	@params: timing parameters { interval, duration, timeout } in msec
3740  *	@deadline: deadline jiffies for the operation
3741  *
3742  *	Resume SATA phy @link and debounce it.
3743  *
3744  *	LOCKING:
3745  *	Kernel thread context (may sleep)
3746  *
3747  *	RETURNS:
3748  *	0 on success, -errno on failure.
3749  */
3750 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3751 		     unsigned long deadline)
3752 {
3753 	int tries = ATA_LINK_RESUME_TRIES;
3754 	u32 scontrol, serror;
3755 	int rc;
3756 
3757 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3758 		return rc;
3759 
3760 	/*
3761 	 * Writes to SControl sometimes get ignored under certain
3762 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3763 	 * cleared.
3764 	 */
3765 	do {
3766 		scontrol = (scontrol & 0x0f0) | 0x300;
3767 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3768 			return rc;
3769 		/*
3770 		 * Some PHYs react badly if SStatus is pounded
3771 		 * immediately after resuming.  Delay 200ms before
3772 		 * debouncing.
3773 		 */
3774 		if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3775 			ata_msleep(link->ap, 200);
3776 
3777 		/* is SControl restored correctly? */
3778 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3779 			return rc;
3780 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3781 
3782 	if ((scontrol & 0xf0f) != 0x300) {
3783 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3784 			     scontrol);
3785 		return 0;
3786 	}
3787 
3788 	if (tries < ATA_LINK_RESUME_TRIES)
3789 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3790 			      ATA_LINK_RESUME_TRIES - tries);
3791 
3792 	if ((rc = sata_link_debounce(link, params, deadline)))
3793 		return rc;
3794 
3795 	/* clear SError, some PHYs require this even for SRST to work */
3796 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3797 		rc = sata_scr_write(link, SCR_ERROR, serror);
3798 
3799 	return rc != -EINVAL ? rc : 0;
3800 }
3801 
3802 /**
3803  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3804  *	@link: ATA link to manipulate SControl for
3805  *	@policy: LPM policy to configure
3806  *	@spm_wakeup: initiate LPM transition to active state
3807  *
3808  *	Manipulate the IPM field of the SControl register of @link
3809  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3810  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3811  *	the link.  This function also clears PHYRDY_CHG before
3812  *	returning.
3813  *
3814  *	LOCKING:
3815  *	EH context.
3816  *
3817  *	RETURNS:
3818  *	0 on success, -errno otherwise.
3819  */
3820 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3821 		      bool spm_wakeup)
3822 {
3823 	struct ata_eh_context *ehc = &link->eh_context;
3824 	bool woken_up = false;
3825 	u32 scontrol;
3826 	int rc;
3827 
3828 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3829 	if (rc)
3830 		return rc;
3831 
3832 	switch (policy) {
3833 	case ATA_LPM_MAX_POWER:
3834 		/* disable all LPM transitions */
3835 		scontrol |= (0x7 << 8);
3836 		/* initiate transition to active state */
3837 		if (spm_wakeup) {
3838 			scontrol |= (0x4 << 12);
3839 			woken_up = true;
3840 		}
3841 		break;
3842 	case ATA_LPM_MED_POWER:
3843 		/* allow LPM to PARTIAL */
3844 		scontrol &= ~(0x1 << 8);
3845 		scontrol |= (0x6 << 8);
3846 		break;
3847 	case ATA_LPM_MIN_POWER:
3848 		if (ata_link_nr_enabled(link) > 0)
3849 			/* no restrictions on LPM transitions */
3850 			scontrol &= ~(0x7 << 8);
3851 		else {
3852 			/* empty port, power off */
3853 			scontrol &= ~0xf;
3854 			scontrol |= (0x1 << 2);
3855 		}
3856 		break;
3857 	default:
3858 		WARN_ON(1);
3859 	}
3860 
3861 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3862 	if (rc)
3863 		return rc;
3864 
3865 	/* give the link time to transit out of LPM state */
3866 	if (woken_up)
3867 		msleep(10);
3868 
3869 	/* clear PHYRDY_CHG from SError */
3870 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3871 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3872 }
3873 
3874 /**
3875  *	ata_std_prereset - prepare for reset
3876  *	@link: ATA link to be reset
3877  *	@deadline: deadline jiffies for the operation
3878  *
3879  *	@link is about to be reset.  Initialize it.  Failure from
3880  *	prereset makes libata abort whole reset sequence and give up
3881  *	that port, so prereset should be best-effort.  It does its
3882  *	best to prepare for reset sequence but if things go wrong, it
3883  *	should just whine, not fail.
3884  *
3885  *	LOCKING:
3886  *	Kernel thread context (may sleep)
3887  *
3888  *	RETURNS:
3889  *	0 on success, -errno otherwise.
3890  */
3891 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3892 {
3893 	struct ata_port *ap = link->ap;
3894 	struct ata_eh_context *ehc = &link->eh_context;
3895 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3896 	int rc;
3897 
3898 	/* if we're about to do hardreset, nothing more to do */
3899 	if (ehc->i.action & ATA_EH_HARDRESET)
3900 		return 0;
3901 
3902 	/* if SATA, resume link */
3903 	if (ap->flags & ATA_FLAG_SATA) {
3904 		rc = sata_link_resume(link, timing, deadline);
3905 		/* whine about phy resume failure but proceed */
3906 		if (rc && rc != -EOPNOTSUPP)
3907 			ata_link_warn(link,
3908 				      "failed to resume link for reset (errno=%d)\n",
3909 				      rc);
3910 	}
3911 
3912 	/* no point in trying softreset on offline link */
3913 	if (ata_phys_link_offline(link))
3914 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3915 
3916 	return 0;
3917 }
3918 
3919 /**
3920  *	sata_link_hardreset - reset link via SATA phy reset
3921  *	@link: link to reset
3922  *	@timing: timing parameters { interval, duration, timeout } in msec
3923  *	@deadline: deadline jiffies for the operation
3924  *	@online: optional out parameter indicating link onlineness
3925  *	@check_ready: optional callback to check link readiness
3926  *
3927  *	SATA phy-reset @link using DET bits of SControl register.
3928  *	After hardreset, link readiness is waited upon using
3929  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3930  *	allowed to not specify @check_ready and wait itself after this
3931  *	function returns.  Device classification is LLD's
3932  *	responsibility.
3933  *
3934  *	*@online is set to one iff reset succeeded and @link is online
3935  *	after reset.
3936  *
3937  *	LOCKING:
3938  *	Kernel thread context (may sleep)
3939  *
3940  *	RETURNS:
3941  *	0 on success, -errno otherwise.
3942  */
3943 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3944 			unsigned long deadline,
3945 			bool *online, int (*check_ready)(struct ata_link *))
3946 {
3947 	u32 scontrol;
3948 	int rc;
3949 
3950 	DPRINTK("ENTER\n");
3951 
3952 	if (online)
3953 		*online = false;
3954 
3955 	if (sata_set_spd_needed(link)) {
3956 		/* SATA spec says nothing about how to reconfigure
3957 		 * spd.  To be on the safe side, turn off phy during
3958 		 * reconfiguration.  This works for at least ICH7 AHCI
3959 		 * and Sil3124.
3960 		 */
3961 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3962 			goto out;
3963 
3964 		scontrol = (scontrol & 0x0f0) | 0x304;
3965 
3966 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3967 			goto out;
3968 
3969 		sata_set_spd(link);
3970 	}
3971 
3972 	/* issue phy wake/reset */
3973 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3974 		goto out;
3975 
3976 	scontrol = (scontrol & 0x0f0) | 0x301;
3977 
3978 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3979 		goto out;
3980 
3981 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3982 	 * 10.4.2 says at least 1 ms.
3983 	 */
3984 	ata_msleep(link->ap, 1);
3985 
3986 	/* bring link back */
3987 	rc = sata_link_resume(link, timing, deadline);
3988 	if (rc)
3989 		goto out;
3990 	/* if link is offline nothing more to do */
3991 	if (ata_phys_link_offline(link))
3992 		goto out;
3993 
3994 	/* Link is online.  From this point, -ENODEV too is an error. */
3995 	if (online)
3996 		*online = true;
3997 
3998 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3999 		/* If PMP is supported, we have to do follow-up SRST.
4000 		 * Some PMPs don't send D2H Reg FIS after hardreset if
4001 		 * the first port is empty.  Wait only for
4002 		 * ATA_TMOUT_PMP_SRST_WAIT.
4003 		 */
4004 		if (check_ready) {
4005 			unsigned long pmp_deadline;
4006 
4007 			pmp_deadline = ata_deadline(jiffies,
4008 						    ATA_TMOUT_PMP_SRST_WAIT);
4009 			if (time_after(pmp_deadline, deadline))
4010 				pmp_deadline = deadline;
4011 			ata_wait_ready(link, pmp_deadline, check_ready);
4012 		}
4013 		rc = -EAGAIN;
4014 		goto out;
4015 	}
4016 
4017 	rc = 0;
4018 	if (check_ready)
4019 		rc = ata_wait_ready(link, deadline, check_ready);
4020  out:
4021 	if (rc && rc != -EAGAIN) {
4022 		/* online is set iff link is online && reset succeeded */
4023 		if (online)
4024 			*online = false;
4025 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4026 	}
4027 	DPRINTK("EXIT, rc=%d\n", rc);
4028 	return rc;
4029 }
4030 
4031 /**
4032  *	sata_std_hardreset - COMRESET w/o waiting or classification
4033  *	@link: link to reset
4034  *	@class: resulting class of attached device
4035  *	@deadline: deadline jiffies for the operation
4036  *
4037  *	Standard SATA COMRESET w/o waiting or classification.
4038  *
4039  *	LOCKING:
4040  *	Kernel thread context (may sleep)
4041  *
4042  *	RETURNS:
4043  *	0 if link offline, -EAGAIN if link online, -errno on errors.
4044  */
4045 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4046 		       unsigned long deadline)
4047 {
4048 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4049 	bool online;
4050 	int rc;
4051 
4052 	/* do hardreset */
4053 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4054 	return online ? -EAGAIN : rc;
4055 }
4056 
4057 /**
4058  *	ata_std_postreset - standard postreset callback
4059  *	@link: the target ata_link
4060  *	@classes: classes of attached devices
4061  *
4062  *	This function is invoked after a successful reset.  Note that
4063  *	the device might have been reset more than once using
4064  *	different reset methods before postreset is invoked.
4065  *
4066  *	LOCKING:
4067  *	Kernel thread context (may sleep)
4068  */
4069 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4070 {
4071 	u32 serror;
4072 
4073 	DPRINTK("ENTER\n");
4074 
4075 	/* reset complete, clear SError */
4076 	if (!sata_scr_read(link, SCR_ERROR, &serror))
4077 		sata_scr_write(link, SCR_ERROR, serror);
4078 
4079 	/* print link status */
4080 	sata_print_link_status(link);
4081 
4082 	DPRINTK("EXIT\n");
4083 }
4084 
4085 /**
4086  *	ata_dev_same_device - Determine whether new ID matches configured device
4087  *	@dev: device to compare against
4088  *	@new_class: class of the new device
4089  *	@new_id: IDENTIFY page of the new device
4090  *
4091  *	Compare @new_class and @new_id against @dev and determine
4092  *	whether @dev is the device indicated by @new_class and
4093  *	@new_id.
4094  *
4095  *	LOCKING:
4096  *	None.
4097  *
4098  *	RETURNS:
4099  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
4100  */
4101 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4102 			       const u16 *new_id)
4103 {
4104 	const u16 *old_id = dev->id;
4105 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
4106 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4107 
4108 	if (dev->class != new_class) {
4109 		ata_dev_info(dev, "class mismatch %d != %d\n",
4110 			     dev->class, new_class);
4111 		return 0;
4112 	}
4113 
4114 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4115 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4116 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4117 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4118 
4119 	if (strcmp(model[0], model[1])) {
4120 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4121 			     model[0], model[1]);
4122 		return 0;
4123 	}
4124 
4125 	if (strcmp(serial[0], serial[1])) {
4126 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4127 			     serial[0], serial[1]);
4128 		return 0;
4129 	}
4130 
4131 	return 1;
4132 }
4133 
4134 /**
4135  *	ata_dev_reread_id - Re-read IDENTIFY data
4136  *	@dev: target ATA device
4137  *	@readid_flags: read ID flags
4138  *
4139  *	Re-read IDENTIFY page and make sure @dev is still attached to
4140  *	the port.
4141  *
4142  *	LOCKING:
4143  *	Kernel thread context (may sleep)
4144  *
4145  *	RETURNS:
4146  *	0 on success, negative errno otherwise
4147  */
4148 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4149 {
4150 	unsigned int class = dev->class;
4151 	u16 *id = (void *)dev->link->ap->sector_buf;
4152 	int rc;
4153 
4154 	/* read ID data */
4155 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4156 	if (rc)
4157 		return rc;
4158 
4159 	/* is the device still there? */
4160 	if (!ata_dev_same_device(dev, class, id))
4161 		return -ENODEV;
4162 
4163 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4164 	return 0;
4165 }
4166 
4167 /**
4168  *	ata_dev_revalidate - Revalidate ATA device
4169  *	@dev: device to revalidate
4170  *	@new_class: new class code
4171  *	@readid_flags: read ID flags
4172  *
4173  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4174  *	port and reconfigure it according to the new IDENTIFY page.
4175  *
4176  *	LOCKING:
4177  *	Kernel thread context (may sleep)
4178  *
4179  *	RETURNS:
4180  *	0 on success, negative errno otherwise
4181  */
4182 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4183 		       unsigned int readid_flags)
4184 {
4185 	u64 n_sectors = dev->n_sectors;
4186 	u64 n_native_sectors = dev->n_native_sectors;
4187 	int rc;
4188 
4189 	if (!ata_dev_enabled(dev))
4190 		return -ENODEV;
4191 
4192 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4193 	if (ata_class_enabled(new_class) &&
4194 	    new_class != ATA_DEV_ATA &&
4195 	    new_class != ATA_DEV_ATAPI &&
4196 	    new_class != ATA_DEV_ZAC &&
4197 	    new_class != ATA_DEV_SEMB) {
4198 		ata_dev_info(dev, "class mismatch %u != %u\n",
4199 			     dev->class, new_class);
4200 		rc = -ENODEV;
4201 		goto fail;
4202 	}
4203 
4204 	/* re-read ID */
4205 	rc = ata_dev_reread_id(dev, readid_flags);
4206 	if (rc)
4207 		goto fail;
4208 
4209 	/* configure device according to the new ID */
4210 	rc = ata_dev_configure(dev);
4211 	if (rc)
4212 		goto fail;
4213 
4214 	/* verify n_sectors hasn't changed */
4215 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4216 	    dev->n_sectors == n_sectors)
4217 		return 0;
4218 
4219 	/* n_sectors has changed */
4220 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4221 		     (unsigned long long)n_sectors,
4222 		     (unsigned long long)dev->n_sectors);
4223 
4224 	/*
4225 	 * Something could have caused HPA to be unlocked
4226 	 * involuntarily.  If n_native_sectors hasn't changed and the
4227 	 * new size matches it, keep the device.
4228 	 */
4229 	if (dev->n_native_sectors == n_native_sectors &&
4230 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4231 		ata_dev_warn(dev,
4232 			     "new n_sectors matches native, probably "
4233 			     "late HPA unlock, n_sectors updated\n");
4234 		/* use the larger n_sectors */
4235 		return 0;
4236 	}
4237 
4238 	/*
4239 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4240 	 * unlocking HPA in those cases.
4241 	 *
4242 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4243 	 */
4244 	if (dev->n_native_sectors == n_native_sectors &&
4245 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4246 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4247 		ata_dev_warn(dev,
4248 			     "old n_sectors matches native, probably "
4249 			     "late HPA lock, will try to unlock HPA\n");
4250 		/* try unlocking HPA */
4251 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4252 		rc = -EIO;
4253 	} else
4254 		rc = -ENODEV;
4255 
4256 	/* restore original n_[native_]sectors and fail */
4257 	dev->n_native_sectors = n_native_sectors;
4258 	dev->n_sectors = n_sectors;
4259  fail:
4260 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4261 	return rc;
4262 }
4263 
4264 struct ata_blacklist_entry {
4265 	const char *model_num;
4266 	const char *model_rev;
4267 	unsigned long horkage;
4268 };
4269 
4270 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4271 	/* Devices with DMA related problems under Linux */
4272 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4273 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4274 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4275 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4276 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4277 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4278 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4279 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4280 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4281 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4282 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4283 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4284 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4285 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4286 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4287 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4288 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4289 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4290 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4291 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4292 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4293 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4294 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4295 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4296 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4297 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4298 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4299 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4300 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4301 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4302 	/* Odd clown on sil3726/4726 PMPs */
4303 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4304 
4305 	/* Weird ATAPI devices */
4306 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4307 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4308 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4309 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4310 
4311 	/*
4312 	 * Causes silent data corruption with higher max sects.
4313 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4314 	 */
4315 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4316 
4317 	/* Devices we expect to fail diagnostics */
4318 
4319 	/* Devices where NCQ should be avoided */
4320 	/* NCQ is slow */
4321 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4322 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4323 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4324 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4325 	/* NCQ is broken */
4326 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4327 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4328 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4329 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4330 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4331 
4332 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4333 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4334 						ATA_HORKAGE_FIRMWARE_WARN },
4335 
4336 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4337 						ATA_HORKAGE_FIRMWARE_WARN },
4338 
4339 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4340 						ATA_HORKAGE_FIRMWARE_WARN },
4341 
4342 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4343 						ATA_HORKAGE_FIRMWARE_WARN },
4344 
4345 	/* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4346 	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4347 	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4348 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4349 
4350 	/* Blacklist entries taken from Silicon Image 3124/3132
4351 	   Windows driver .inf file - also several Linux problem reports */
4352 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4353 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4354 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4355 
4356 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4357 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4358 
4359 	/* devices which puke on READ_NATIVE_MAX */
4360 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4361 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4362 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4363 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4364 
4365 	/* this one allows HPA unlocking but fails IOs on the area */
4366 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4367 
4368 	/* Devices which report 1 sector over size HPA */
4369 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4370 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4371 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4372 
4373 	/* Devices which get the IVB wrong */
4374 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4375 	/* Maybe we should just blacklist TSSTcorp... */
4376 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4377 
4378 	/* Devices that do not need bridging limits applied */
4379 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4380 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4381 
4382 	/* Devices which aren't very happy with higher link speeds */
4383 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4384 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4385 
4386 	/*
4387 	 * Devices which choke on SETXFER.  Applies only if both the
4388 	 * device and controller are SATA.
4389 	 */
4390 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4391 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4392 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4393 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4394 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4395 
4396 	/* devices that don't properly handle queued TRIM commands */
4397 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4398 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4399 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4400 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4401 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4402 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4403 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4404 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4405 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4406 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4407 	{ "Samsung SSD 8*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4408 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4409 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4410 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4411 
4412 	/* devices that don't properly handle TRIM commands */
4413 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4414 
4415 	/*
4416 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4417 	 * (Return Zero After Trim) flags in the ATA Command Set are
4418 	 * unreliable in the sense that they only define what happens if
4419 	 * the device successfully executed the DSM TRIM command. TRIM
4420 	 * is only advisory, however, and the device is free to silently
4421 	 * ignore all or parts of the request.
4422 	 *
4423 	 * Whitelist drives that are known to reliably return zeroes
4424 	 * after TRIM.
4425 	 */
4426 
4427 	/*
4428 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4429 	 * that model before whitelisting all other intel SSDs.
4430 	 */
4431 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4432 
4433 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4434 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4435 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4436 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4437 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4438 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4439 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4440 
4441 	/*
4442 	 * Some WD SATA-I drives spin up and down erratically when the link
4443 	 * is put into the slumber mode.  We don't have full list of the
4444 	 * affected devices.  Disable LPM if the device matches one of the
4445 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4446 	 * lost too.
4447 	 *
4448 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4449 	 */
4450 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4451 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4452 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4453 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4454 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4455 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4456 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4457 
4458 	/* End Marker */
4459 	{ }
4460 };
4461 
4462 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4463 {
4464 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4465 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4466 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4467 
4468 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4469 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4470 
4471 	while (ad->model_num) {
4472 		if (glob_match(ad->model_num, model_num)) {
4473 			if (ad->model_rev == NULL)
4474 				return ad->horkage;
4475 			if (glob_match(ad->model_rev, model_rev))
4476 				return ad->horkage;
4477 		}
4478 		ad++;
4479 	}
4480 	return 0;
4481 }
4482 
4483 static int ata_dma_blacklisted(const struct ata_device *dev)
4484 {
4485 	/* We don't support polling DMA.
4486 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4487 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4488 	 */
4489 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4490 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4491 		return 1;
4492 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4493 }
4494 
4495 /**
4496  *	ata_is_40wire		-	check drive side detection
4497  *	@dev: device
4498  *
4499  *	Perform drive side detection decoding, allowing for device vendors
4500  *	who can't follow the documentation.
4501  */
4502 
4503 static int ata_is_40wire(struct ata_device *dev)
4504 {
4505 	if (dev->horkage & ATA_HORKAGE_IVB)
4506 		return ata_drive_40wire_relaxed(dev->id);
4507 	return ata_drive_40wire(dev->id);
4508 }
4509 
4510 /**
4511  *	cable_is_40wire		-	40/80/SATA decider
4512  *	@ap: port to consider
4513  *
4514  *	This function encapsulates the policy for speed management
4515  *	in one place. At the moment we don't cache the result but
4516  *	there is a good case for setting ap->cbl to the result when
4517  *	we are called with unknown cables (and figuring out if it
4518  *	impacts hotplug at all).
4519  *
4520  *	Return 1 if the cable appears to be 40 wire.
4521  */
4522 
4523 static int cable_is_40wire(struct ata_port *ap)
4524 {
4525 	struct ata_link *link;
4526 	struct ata_device *dev;
4527 
4528 	/* If the controller thinks we are 40 wire, we are. */
4529 	if (ap->cbl == ATA_CBL_PATA40)
4530 		return 1;
4531 
4532 	/* If the controller thinks we are 80 wire, we are. */
4533 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4534 		return 0;
4535 
4536 	/* If the system is known to be 40 wire short cable (eg
4537 	 * laptop), then we allow 80 wire modes even if the drive
4538 	 * isn't sure.
4539 	 */
4540 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4541 		return 0;
4542 
4543 	/* If the controller doesn't know, we scan.
4544 	 *
4545 	 * Note: We look for all 40 wire detects at this point.  Any
4546 	 *       80 wire detect is taken to be 80 wire cable because
4547 	 * - in many setups only the one drive (slave if present) will
4548 	 *   give a valid detect
4549 	 * - if you have a non detect capable drive you don't want it
4550 	 *   to colour the choice
4551 	 */
4552 	ata_for_each_link(link, ap, EDGE) {
4553 		ata_for_each_dev(dev, link, ENABLED) {
4554 			if (!ata_is_40wire(dev))
4555 				return 0;
4556 		}
4557 	}
4558 	return 1;
4559 }
4560 
4561 /**
4562  *	ata_dev_xfermask - Compute supported xfermask of the given device
4563  *	@dev: Device to compute xfermask for
4564  *
4565  *	Compute supported xfermask of @dev and store it in
4566  *	dev->*_mask.  This function is responsible for applying all
4567  *	known limits including host controller limits, device
4568  *	blacklist, etc...
4569  *
4570  *	LOCKING:
4571  *	None.
4572  */
4573 static void ata_dev_xfermask(struct ata_device *dev)
4574 {
4575 	struct ata_link *link = dev->link;
4576 	struct ata_port *ap = link->ap;
4577 	struct ata_host *host = ap->host;
4578 	unsigned long xfer_mask;
4579 
4580 	/* controller modes available */
4581 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4582 				      ap->mwdma_mask, ap->udma_mask);
4583 
4584 	/* drive modes available */
4585 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4586 				       dev->mwdma_mask, dev->udma_mask);
4587 	xfer_mask &= ata_id_xfermask(dev->id);
4588 
4589 	/*
4590 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4591 	 *	cable
4592 	 */
4593 	if (ata_dev_pair(dev)) {
4594 		/* No PIO5 or PIO6 */
4595 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4596 		/* No MWDMA3 or MWDMA 4 */
4597 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4598 	}
4599 
4600 	if (ata_dma_blacklisted(dev)) {
4601 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4602 		ata_dev_warn(dev,
4603 			     "device is on DMA blacklist, disabling DMA\n");
4604 	}
4605 
4606 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4607 	    host->simplex_claimed && host->simplex_claimed != ap) {
4608 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4609 		ata_dev_warn(dev,
4610 			     "simplex DMA is claimed by other device, disabling DMA\n");
4611 	}
4612 
4613 	if (ap->flags & ATA_FLAG_NO_IORDY)
4614 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4615 
4616 	if (ap->ops->mode_filter)
4617 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4618 
4619 	/* Apply cable rule here.  Don't apply it early because when
4620 	 * we handle hot plug the cable type can itself change.
4621 	 * Check this last so that we know if the transfer rate was
4622 	 * solely limited by the cable.
4623 	 * Unknown or 80 wire cables reported host side are checked
4624 	 * drive side as well. Cases where we know a 40wire cable
4625 	 * is used safely for 80 are not checked here.
4626 	 */
4627 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4628 		/* UDMA/44 or higher would be available */
4629 		if (cable_is_40wire(ap)) {
4630 			ata_dev_warn(dev,
4631 				     "limited to UDMA/33 due to 40-wire cable\n");
4632 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4633 		}
4634 
4635 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4636 			    &dev->mwdma_mask, &dev->udma_mask);
4637 }
4638 
4639 /**
4640  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4641  *	@dev: Device to which command will be sent
4642  *
4643  *	Issue SET FEATURES - XFER MODE command to device @dev
4644  *	on port @ap.
4645  *
4646  *	LOCKING:
4647  *	PCI/etc. bus probe sem.
4648  *
4649  *	RETURNS:
4650  *	0 on success, AC_ERR_* mask otherwise.
4651  */
4652 
4653 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4654 {
4655 	struct ata_taskfile tf;
4656 	unsigned int err_mask;
4657 
4658 	/* set up set-features taskfile */
4659 	DPRINTK("set features - xfer mode\n");
4660 
4661 	/* Some controllers and ATAPI devices show flaky interrupt
4662 	 * behavior after setting xfer mode.  Use polling instead.
4663 	 */
4664 	ata_tf_init(dev, &tf);
4665 	tf.command = ATA_CMD_SET_FEATURES;
4666 	tf.feature = SETFEATURES_XFER;
4667 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4668 	tf.protocol = ATA_PROT_NODATA;
4669 	/* If we are using IORDY we must send the mode setting command */
4670 	if (ata_pio_need_iordy(dev))
4671 		tf.nsect = dev->xfer_mode;
4672 	/* If the device has IORDY and the controller does not - turn it off */
4673  	else if (ata_id_has_iordy(dev->id))
4674 		tf.nsect = 0x01;
4675 	else /* In the ancient relic department - skip all of this */
4676 		return 0;
4677 
4678 	/* On some disks, this command causes spin-up, so we need longer timeout */
4679 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4680 
4681 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4682 	return err_mask;
4683 }
4684 
4685 /**
4686  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4687  *	@dev: Device to which command will be sent
4688  *	@enable: Whether to enable or disable the feature
4689  *	@feature: The sector count represents the feature to set
4690  *
4691  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4692  *	on port @ap with sector count
4693  *
4694  *	LOCKING:
4695  *	PCI/etc. bus probe sem.
4696  *
4697  *	RETURNS:
4698  *	0 on success, AC_ERR_* mask otherwise.
4699  */
4700 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4701 {
4702 	struct ata_taskfile tf;
4703 	unsigned int err_mask;
4704 	unsigned long timeout = 0;
4705 
4706 	/* set up set-features taskfile */
4707 	DPRINTK("set features - SATA features\n");
4708 
4709 	ata_tf_init(dev, &tf);
4710 	tf.command = ATA_CMD_SET_FEATURES;
4711 	tf.feature = enable;
4712 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4713 	tf.protocol = ATA_PROT_NODATA;
4714 	tf.nsect = feature;
4715 
4716 	if (enable == SETFEATURES_SPINUP)
4717 		timeout = ata_probe_timeout ?
4718 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4719 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4720 
4721 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4722 	return err_mask;
4723 }
4724 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4725 
4726 /**
4727  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4728  *	@dev: Device to which command will be sent
4729  *	@heads: Number of heads (taskfile parameter)
4730  *	@sectors: Number of sectors (taskfile parameter)
4731  *
4732  *	LOCKING:
4733  *	Kernel thread context (may sleep)
4734  *
4735  *	RETURNS:
4736  *	0 on success, AC_ERR_* mask otherwise.
4737  */
4738 static unsigned int ata_dev_init_params(struct ata_device *dev,
4739 					u16 heads, u16 sectors)
4740 {
4741 	struct ata_taskfile tf;
4742 	unsigned int err_mask;
4743 
4744 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4745 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4746 		return AC_ERR_INVALID;
4747 
4748 	/* set up init dev params taskfile */
4749 	DPRINTK("init dev params \n");
4750 
4751 	ata_tf_init(dev, &tf);
4752 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4753 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4754 	tf.protocol = ATA_PROT_NODATA;
4755 	tf.nsect = sectors;
4756 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4757 
4758 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4759 	/* A clean abort indicates an original or just out of spec drive
4760 	   and we should continue as we issue the setup based on the
4761 	   drive reported working geometry */
4762 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4763 		err_mask = 0;
4764 
4765 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4766 	return err_mask;
4767 }
4768 
4769 /**
4770  *	ata_sg_clean - Unmap DMA memory associated with command
4771  *	@qc: Command containing DMA memory to be released
4772  *
4773  *	Unmap all mapped DMA memory associated with this command.
4774  *
4775  *	LOCKING:
4776  *	spin_lock_irqsave(host lock)
4777  */
4778 void ata_sg_clean(struct ata_queued_cmd *qc)
4779 {
4780 	struct ata_port *ap = qc->ap;
4781 	struct scatterlist *sg = qc->sg;
4782 	int dir = qc->dma_dir;
4783 
4784 	WARN_ON_ONCE(sg == NULL);
4785 
4786 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4787 
4788 	if (qc->n_elem)
4789 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4790 
4791 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4792 	qc->sg = NULL;
4793 }
4794 
4795 /**
4796  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4797  *	@qc: Metadata associated with taskfile to check
4798  *
4799  *	Allow low-level driver to filter ATA PACKET commands, returning
4800  *	a status indicating whether or not it is OK to use DMA for the
4801  *	supplied PACKET command.
4802  *
4803  *	LOCKING:
4804  *	spin_lock_irqsave(host lock)
4805  *
4806  *	RETURNS: 0 when ATAPI DMA can be used
4807  *               nonzero otherwise
4808  */
4809 int atapi_check_dma(struct ata_queued_cmd *qc)
4810 {
4811 	struct ata_port *ap = qc->ap;
4812 
4813 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4814 	 * few ATAPI devices choke on such DMA requests.
4815 	 */
4816 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4817 	    unlikely(qc->nbytes & 15))
4818 		return 1;
4819 
4820 	if (ap->ops->check_atapi_dma)
4821 		return ap->ops->check_atapi_dma(qc);
4822 
4823 	return 0;
4824 }
4825 
4826 /**
4827  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4828  *	@qc: ATA command in question
4829  *
4830  *	Non-NCQ commands cannot run with any other command, NCQ or
4831  *	not.  As upper layer only knows the queue depth, we are
4832  *	responsible for maintaining exclusion.  This function checks
4833  *	whether a new command @qc can be issued.
4834  *
4835  *	LOCKING:
4836  *	spin_lock_irqsave(host lock)
4837  *
4838  *	RETURNS:
4839  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4840  */
4841 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4842 {
4843 	struct ata_link *link = qc->dev->link;
4844 
4845 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4846 		if (!ata_tag_valid(link->active_tag))
4847 			return 0;
4848 	} else {
4849 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4850 			return 0;
4851 	}
4852 
4853 	return ATA_DEFER_LINK;
4854 }
4855 
4856 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4857 
4858 /**
4859  *	ata_sg_init - Associate command with scatter-gather table.
4860  *	@qc: Command to be associated
4861  *	@sg: Scatter-gather table.
4862  *	@n_elem: Number of elements in s/g table.
4863  *
4864  *	Initialize the data-related elements of queued_cmd @qc
4865  *	to point to a scatter-gather table @sg, containing @n_elem
4866  *	elements.
4867  *
4868  *	LOCKING:
4869  *	spin_lock_irqsave(host lock)
4870  */
4871 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4872 		 unsigned int n_elem)
4873 {
4874 	qc->sg = sg;
4875 	qc->n_elem = n_elem;
4876 	qc->cursg = qc->sg;
4877 }
4878 
4879 /**
4880  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4881  *	@qc: Command with scatter-gather table to be mapped.
4882  *
4883  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4884  *
4885  *	LOCKING:
4886  *	spin_lock_irqsave(host lock)
4887  *
4888  *	RETURNS:
4889  *	Zero on success, negative on error.
4890  *
4891  */
4892 static int ata_sg_setup(struct ata_queued_cmd *qc)
4893 {
4894 	struct ata_port *ap = qc->ap;
4895 	unsigned int n_elem;
4896 
4897 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4898 
4899 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4900 	if (n_elem < 1)
4901 		return -1;
4902 
4903 	DPRINTK("%d sg elements mapped\n", n_elem);
4904 	qc->orig_n_elem = qc->n_elem;
4905 	qc->n_elem = n_elem;
4906 	qc->flags |= ATA_QCFLAG_DMAMAP;
4907 
4908 	return 0;
4909 }
4910 
4911 /**
4912  *	swap_buf_le16 - swap halves of 16-bit words in place
4913  *	@buf:  Buffer to swap
4914  *	@buf_words:  Number of 16-bit words in buffer.
4915  *
4916  *	Swap halves of 16-bit words if needed to convert from
4917  *	little-endian byte order to native cpu byte order, or
4918  *	vice-versa.
4919  *
4920  *	LOCKING:
4921  *	Inherited from caller.
4922  */
4923 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4924 {
4925 #ifdef __BIG_ENDIAN
4926 	unsigned int i;
4927 
4928 	for (i = 0; i < buf_words; i++)
4929 		buf[i] = le16_to_cpu(buf[i]);
4930 #endif /* __BIG_ENDIAN */
4931 }
4932 
4933 /**
4934  *	ata_qc_new_init - Request an available ATA command, and initialize it
4935  *	@dev: Device from whom we request an available command structure
4936  *	@tag: tag
4937  *
4938  *	LOCKING:
4939  *	None.
4940  */
4941 
4942 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4943 {
4944 	struct ata_port *ap = dev->link->ap;
4945 	struct ata_queued_cmd *qc;
4946 
4947 	/* no command while frozen */
4948 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4949 		return NULL;
4950 
4951 	/* libsas case */
4952 	if (ap->flags & ATA_FLAG_SAS_HOST) {
4953 		tag = ata_sas_allocate_tag(ap);
4954 		if (tag < 0)
4955 			return NULL;
4956 	}
4957 
4958 	qc = __ata_qc_from_tag(ap, tag);
4959 	qc->tag = tag;
4960 	qc->scsicmd = NULL;
4961 	qc->ap = ap;
4962 	qc->dev = dev;
4963 
4964 	ata_qc_reinit(qc);
4965 
4966 	return qc;
4967 }
4968 
4969 /**
4970  *	ata_qc_free - free unused ata_queued_cmd
4971  *	@qc: Command to complete
4972  *
4973  *	Designed to free unused ata_queued_cmd object
4974  *	in case something prevents using it.
4975  *
4976  *	LOCKING:
4977  *	spin_lock_irqsave(host lock)
4978  */
4979 void ata_qc_free(struct ata_queued_cmd *qc)
4980 {
4981 	struct ata_port *ap;
4982 	unsigned int tag;
4983 
4984 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4985 	ap = qc->ap;
4986 
4987 	qc->flags = 0;
4988 	tag = qc->tag;
4989 	if (likely(ata_tag_valid(tag))) {
4990 		qc->tag = ATA_TAG_POISON;
4991 		if (ap->flags & ATA_FLAG_SAS_HOST)
4992 			ata_sas_free_tag(tag, ap);
4993 	}
4994 }
4995 
4996 void __ata_qc_complete(struct ata_queued_cmd *qc)
4997 {
4998 	struct ata_port *ap;
4999 	struct ata_link *link;
5000 
5001 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5002 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5003 	ap = qc->ap;
5004 	link = qc->dev->link;
5005 
5006 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5007 		ata_sg_clean(qc);
5008 
5009 	/* command should be marked inactive atomically with qc completion */
5010 	if (qc->tf.protocol == ATA_PROT_NCQ) {
5011 		link->sactive &= ~(1 << qc->tag);
5012 		if (!link->sactive)
5013 			ap->nr_active_links--;
5014 	} else {
5015 		link->active_tag = ATA_TAG_POISON;
5016 		ap->nr_active_links--;
5017 	}
5018 
5019 	/* clear exclusive status */
5020 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5021 		     ap->excl_link == link))
5022 		ap->excl_link = NULL;
5023 
5024 	/* atapi: mark qc as inactive to prevent the interrupt handler
5025 	 * from completing the command twice later, before the error handler
5026 	 * is called. (when rc != 0 and atapi request sense is needed)
5027 	 */
5028 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
5029 	ap->qc_active &= ~(1 << qc->tag);
5030 
5031 	/* call completion callback */
5032 	qc->complete_fn(qc);
5033 }
5034 
5035 static void fill_result_tf(struct ata_queued_cmd *qc)
5036 {
5037 	struct ata_port *ap = qc->ap;
5038 
5039 	qc->result_tf.flags = qc->tf.flags;
5040 	ap->ops->qc_fill_rtf(qc);
5041 }
5042 
5043 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5044 {
5045 	struct ata_device *dev = qc->dev;
5046 
5047 	if (ata_is_nodata(qc->tf.protocol))
5048 		return;
5049 
5050 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5051 		return;
5052 
5053 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5054 }
5055 
5056 /**
5057  *	ata_qc_complete - Complete an active ATA command
5058  *	@qc: Command to complete
5059  *
5060  *	Indicate to the mid and upper layers that an ATA command has
5061  *	completed, with either an ok or not-ok status.
5062  *
5063  *	Refrain from calling this function multiple times when
5064  *	successfully completing multiple NCQ commands.
5065  *	ata_qc_complete_multiple() should be used instead, which will
5066  *	properly update IRQ expect state.
5067  *
5068  *	LOCKING:
5069  *	spin_lock_irqsave(host lock)
5070  */
5071 void ata_qc_complete(struct ata_queued_cmd *qc)
5072 {
5073 	struct ata_port *ap = qc->ap;
5074 
5075 	/* XXX: New EH and old EH use different mechanisms to
5076 	 * synchronize EH with regular execution path.
5077 	 *
5078 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5079 	 * Normal execution path is responsible for not accessing a
5080 	 * failed qc.  libata core enforces the rule by returning NULL
5081 	 * from ata_qc_from_tag() for failed qcs.
5082 	 *
5083 	 * Old EH depends on ata_qc_complete() nullifying completion
5084 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5085 	 * not synchronize with interrupt handler.  Only PIO task is
5086 	 * taken care of.
5087 	 */
5088 	if (ap->ops->error_handler) {
5089 		struct ata_device *dev = qc->dev;
5090 		struct ata_eh_info *ehi = &dev->link->eh_info;
5091 
5092 		if (unlikely(qc->err_mask))
5093 			qc->flags |= ATA_QCFLAG_FAILED;
5094 
5095 		/*
5096 		 * Finish internal commands without any further processing
5097 		 * and always with the result TF filled.
5098 		 */
5099 		if (unlikely(ata_tag_internal(qc->tag))) {
5100 			fill_result_tf(qc);
5101 			trace_ata_qc_complete_internal(qc);
5102 			__ata_qc_complete(qc);
5103 			return;
5104 		}
5105 
5106 		/*
5107 		 * Non-internal qc has failed.  Fill the result TF and
5108 		 * summon EH.
5109 		 */
5110 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5111 			fill_result_tf(qc);
5112 			trace_ata_qc_complete_failed(qc);
5113 			ata_qc_schedule_eh(qc);
5114 			return;
5115 		}
5116 
5117 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5118 
5119 		/* read result TF if requested */
5120 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5121 			fill_result_tf(qc);
5122 
5123 		trace_ata_qc_complete_done(qc);
5124 		/* Some commands need post-processing after successful
5125 		 * completion.
5126 		 */
5127 		switch (qc->tf.command) {
5128 		case ATA_CMD_SET_FEATURES:
5129 			if (qc->tf.feature != SETFEATURES_WC_ON &&
5130 			    qc->tf.feature != SETFEATURES_WC_OFF)
5131 				break;
5132 			/* fall through */
5133 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5134 		case ATA_CMD_SET_MULTI: /* multi_count changed */
5135 			/* revalidate device */
5136 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5137 			ata_port_schedule_eh(ap);
5138 			break;
5139 
5140 		case ATA_CMD_SLEEP:
5141 			dev->flags |= ATA_DFLAG_SLEEPING;
5142 			break;
5143 		}
5144 
5145 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5146 			ata_verify_xfer(qc);
5147 
5148 		__ata_qc_complete(qc);
5149 	} else {
5150 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5151 			return;
5152 
5153 		/* read result TF if failed or requested */
5154 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5155 			fill_result_tf(qc);
5156 
5157 		__ata_qc_complete(qc);
5158 	}
5159 }
5160 
5161 /**
5162  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5163  *	@ap: port in question
5164  *	@qc_active: new qc_active mask
5165  *
5166  *	Complete in-flight commands.  This functions is meant to be
5167  *	called from low-level driver's interrupt routine to complete
5168  *	requests normally.  ap->qc_active and @qc_active is compared
5169  *	and commands are completed accordingly.
5170  *
5171  *	Always use this function when completing multiple NCQ commands
5172  *	from IRQ handlers instead of calling ata_qc_complete()
5173  *	multiple times to keep IRQ expect status properly in sync.
5174  *
5175  *	LOCKING:
5176  *	spin_lock_irqsave(host lock)
5177  *
5178  *	RETURNS:
5179  *	Number of completed commands on success, -errno otherwise.
5180  */
5181 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5182 {
5183 	int nr_done = 0;
5184 	u32 done_mask;
5185 
5186 	done_mask = ap->qc_active ^ qc_active;
5187 
5188 	if (unlikely(done_mask & qc_active)) {
5189 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5190 			     ap->qc_active, qc_active);
5191 		return -EINVAL;
5192 	}
5193 
5194 	while (done_mask) {
5195 		struct ata_queued_cmd *qc;
5196 		unsigned int tag = __ffs(done_mask);
5197 
5198 		qc = ata_qc_from_tag(ap, tag);
5199 		if (qc) {
5200 			ata_qc_complete(qc);
5201 			nr_done++;
5202 		}
5203 		done_mask &= ~(1 << tag);
5204 	}
5205 
5206 	return nr_done;
5207 }
5208 
5209 /**
5210  *	ata_qc_issue - issue taskfile to device
5211  *	@qc: command to issue to device
5212  *
5213  *	Prepare an ATA command to submission to device.
5214  *	This includes mapping the data into a DMA-able
5215  *	area, filling in the S/G table, and finally
5216  *	writing the taskfile to hardware, starting the command.
5217  *
5218  *	LOCKING:
5219  *	spin_lock_irqsave(host lock)
5220  */
5221 void ata_qc_issue(struct ata_queued_cmd *qc)
5222 {
5223 	struct ata_port *ap = qc->ap;
5224 	struct ata_link *link = qc->dev->link;
5225 	u8 prot = qc->tf.protocol;
5226 
5227 	/* Make sure only one non-NCQ command is outstanding.  The
5228 	 * check is skipped for old EH because it reuses active qc to
5229 	 * request ATAPI sense.
5230 	 */
5231 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5232 
5233 	if (ata_is_ncq(prot)) {
5234 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5235 
5236 		if (!link->sactive)
5237 			ap->nr_active_links++;
5238 		link->sactive |= 1 << qc->tag;
5239 	} else {
5240 		WARN_ON_ONCE(link->sactive);
5241 
5242 		ap->nr_active_links++;
5243 		link->active_tag = qc->tag;
5244 	}
5245 
5246 	qc->flags |= ATA_QCFLAG_ACTIVE;
5247 	ap->qc_active |= 1 << qc->tag;
5248 
5249 	/*
5250 	 * We guarantee to LLDs that they will have at least one
5251 	 * non-zero sg if the command is a data command.
5252 	 */
5253 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5254 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5255 		goto sys_err;
5256 
5257 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5258 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5259 		if (ata_sg_setup(qc))
5260 			goto sys_err;
5261 
5262 	/* if device is sleeping, schedule reset and abort the link */
5263 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5264 		link->eh_info.action |= ATA_EH_RESET;
5265 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5266 		ata_link_abort(link);
5267 		return;
5268 	}
5269 
5270 	ap->ops->qc_prep(qc);
5271 	trace_ata_qc_issue(qc);
5272 	qc->err_mask |= ap->ops->qc_issue(qc);
5273 	if (unlikely(qc->err_mask))
5274 		goto err;
5275 	return;
5276 
5277 sys_err:
5278 	qc->err_mask |= AC_ERR_SYSTEM;
5279 err:
5280 	ata_qc_complete(qc);
5281 }
5282 
5283 /**
5284  *	sata_scr_valid - test whether SCRs are accessible
5285  *	@link: ATA link to test SCR accessibility for
5286  *
5287  *	Test whether SCRs are accessible for @link.
5288  *
5289  *	LOCKING:
5290  *	None.
5291  *
5292  *	RETURNS:
5293  *	1 if SCRs are accessible, 0 otherwise.
5294  */
5295 int sata_scr_valid(struct ata_link *link)
5296 {
5297 	struct ata_port *ap = link->ap;
5298 
5299 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5300 }
5301 
5302 /**
5303  *	sata_scr_read - read SCR register of the specified port
5304  *	@link: ATA link to read SCR for
5305  *	@reg: SCR to read
5306  *	@val: Place to store read value
5307  *
5308  *	Read SCR register @reg of @link into *@val.  This function is
5309  *	guaranteed to succeed if @link is ap->link, the cable type of
5310  *	the port is SATA and the port implements ->scr_read.
5311  *
5312  *	LOCKING:
5313  *	None if @link is ap->link.  Kernel thread context otherwise.
5314  *
5315  *	RETURNS:
5316  *	0 on success, negative errno on failure.
5317  */
5318 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5319 {
5320 	if (ata_is_host_link(link)) {
5321 		if (sata_scr_valid(link))
5322 			return link->ap->ops->scr_read(link, reg, val);
5323 		return -EOPNOTSUPP;
5324 	}
5325 
5326 	return sata_pmp_scr_read(link, reg, val);
5327 }
5328 
5329 /**
5330  *	sata_scr_write - write SCR register of the specified port
5331  *	@link: ATA link to write SCR for
5332  *	@reg: SCR to write
5333  *	@val: value to write
5334  *
5335  *	Write @val to SCR register @reg of @link.  This function is
5336  *	guaranteed to succeed if @link is ap->link, the cable type of
5337  *	the port is SATA and the port implements ->scr_read.
5338  *
5339  *	LOCKING:
5340  *	None if @link is ap->link.  Kernel thread context otherwise.
5341  *
5342  *	RETURNS:
5343  *	0 on success, negative errno on failure.
5344  */
5345 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5346 {
5347 	if (ata_is_host_link(link)) {
5348 		if (sata_scr_valid(link))
5349 			return link->ap->ops->scr_write(link, reg, val);
5350 		return -EOPNOTSUPP;
5351 	}
5352 
5353 	return sata_pmp_scr_write(link, reg, val);
5354 }
5355 
5356 /**
5357  *	sata_scr_write_flush - write SCR register of the specified port and flush
5358  *	@link: ATA link to write SCR for
5359  *	@reg: SCR to write
5360  *	@val: value to write
5361  *
5362  *	This function is identical to sata_scr_write() except that this
5363  *	function performs flush after writing to the register.
5364  *
5365  *	LOCKING:
5366  *	None if @link is ap->link.  Kernel thread context otherwise.
5367  *
5368  *	RETURNS:
5369  *	0 on success, negative errno on failure.
5370  */
5371 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5372 {
5373 	if (ata_is_host_link(link)) {
5374 		int rc;
5375 
5376 		if (sata_scr_valid(link)) {
5377 			rc = link->ap->ops->scr_write(link, reg, val);
5378 			if (rc == 0)
5379 				rc = link->ap->ops->scr_read(link, reg, &val);
5380 			return rc;
5381 		}
5382 		return -EOPNOTSUPP;
5383 	}
5384 
5385 	return sata_pmp_scr_write(link, reg, val);
5386 }
5387 
5388 /**
5389  *	ata_phys_link_online - test whether the given link is online
5390  *	@link: ATA link to test
5391  *
5392  *	Test whether @link is online.  Note that this function returns
5393  *	0 if online status of @link cannot be obtained, so
5394  *	ata_link_online(link) != !ata_link_offline(link).
5395  *
5396  *	LOCKING:
5397  *	None.
5398  *
5399  *	RETURNS:
5400  *	True if the port online status is available and online.
5401  */
5402 bool ata_phys_link_online(struct ata_link *link)
5403 {
5404 	u32 sstatus;
5405 
5406 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5407 	    ata_sstatus_online(sstatus))
5408 		return true;
5409 	return false;
5410 }
5411 
5412 /**
5413  *	ata_phys_link_offline - test whether the given link is offline
5414  *	@link: ATA link to test
5415  *
5416  *	Test whether @link is offline.  Note that this function
5417  *	returns 0 if offline status of @link cannot be obtained, so
5418  *	ata_link_online(link) != !ata_link_offline(link).
5419  *
5420  *	LOCKING:
5421  *	None.
5422  *
5423  *	RETURNS:
5424  *	True if the port offline status is available and offline.
5425  */
5426 bool ata_phys_link_offline(struct ata_link *link)
5427 {
5428 	u32 sstatus;
5429 
5430 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5431 	    !ata_sstatus_online(sstatus))
5432 		return true;
5433 	return false;
5434 }
5435 
5436 /**
5437  *	ata_link_online - test whether the given link is online
5438  *	@link: ATA link to test
5439  *
5440  *	Test whether @link is online.  This is identical to
5441  *	ata_phys_link_online() when there's no slave link.  When
5442  *	there's a slave link, this function should only be called on
5443  *	the master link and will return true if any of M/S links is
5444  *	online.
5445  *
5446  *	LOCKING:
5447  *	None.
5448  *
5449  *	RETURNS:
5450  *	True if the port online status is available and online.
5451  */
5452 bool ata_link_online(struct ata_link *link)
5453 {
5454 	struct ata_link *slave = link->ap->slave_link;
5455 
5456 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5457 
5458 	return ata_phys_link_online(link) ||
5459 		(slave && ata_phys_link_online(slave));
5460 }
5461 
5462 /**
5463  *	ata_link_offline - test whether the given link is offline
5464  *	@link: ATA link to test
5465  *
5466  *	Test whether @link is offline.  This is identical to
5467  *	ata_phys_link_offline() when there's no slave link.  When
5468  *	there's a slave link, this function should only be called on
5469  *	the master link and will return true if both M/S links are
5470  *	offline.
5471  *
5472  *	LOCKING:
5473  *	None.
5474  *
5475  *	RETURNS:
5476  *	True if the port offline status is available and offline.
5477  */
5478 bool ata_link_offline(struct ata_link *link)
5479 {
5480 	struct ata_link *slave = link->ap->slave_link;
5481 
5482 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5483 
5484 	return ata_phys_link_offline(link) &&
5485 		(!slave || ata_phys_link_offline(slave));
5486 }
5487 
5488 #ifdef CONFIG_PM
5489 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5490 				unsigned int action, unsigned int ehi_flags,
5491 				bool async)
5492 {
5493 	struct ata_link *link;
5494 	unsigned long flags;
5495 
5496 	/* Previous resume operation might still be in
5497 	 * progress.  Wait for PM_PENDING to clear.
5498 	 */
5499 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5500 		ata_port_wait_eh(ap);
5501 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5502 	}
5503 
5504 	/* request PM ops to EH */
5505 	spin_lock_irqsave(ap->lock, flags);
5506 
5507 	ap->pm_mesg = mesg;
5508 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5509 	ata_for_each_link(link, ap, HOST_FIRST) {
5510 		link->eh_info.action |= action;
5511 		link->eh_info.flags |= ehi_flags;
5512 	}
5513 
5514 	ata_port_schedule_eh(ap);
5515 
5516 	spin_unlock_irqrestore(ap->lock, flags);
5517 
5518 	if (!async) {
5519 		ata_port_wait_eh(ap);
5520 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5521 	}
5522 }
5523 
5524 /*
5525  * On some hardware, device fails to respond after spun down for suspend.  As
5526  * the device won't be used before being resumed, we don't need to touch the
5527  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5528  *
5529  * http://thread.gmane.org/gmane.linux.ide/46764
5530  */
5531 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5532 						 | ATA_EHI_NO_AUTOPSY
5533 						 | ATA_EHI_NO_RECOVERY;
5534 
5535 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5536 {
5537 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5538 }
5539 
5540 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5541 {
5542 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5543 }
5544 
5545 static int ata_port_pm_suspend(struct device *dev)
5546 {
5547 	struct ata_port *ap = to_ata_port(dev);
5548 
5549 	if (pm_runtime_suspended(dev))
5550 		return 0;
5551 
5552 	ata_port_suspend(ap, PMSG_SUSPEND);
5553 	return 0;
5554 }
5555 
5556 static int ata_port_pm_freeze(struct device *dev)
5557 {
5558 	struct ata_port *ap = to_ata_port(dev);
5559 
5560 	if (pm_runtime_suspended(dev))
5561 		return 0;
5562 
5563 	ata_port_suspend(ap, PMSG_FREEZE);
5564 	return 0;
5565 }
5566 
5567 static int ata_port_pm_poweroff(struct device *dev)
5568 {
5569 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5570 	return 0;
5571 }
5572 
5573 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5574 						| ATA_EHI_QUIET;
5575 
5576 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5577 {
5578 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5579 }
5580 
5581 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5582 {
5583 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5584 }
5585 
5586 static int ata_port_pm_resume(struct device *dev)
5587 {
5588 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5589 	pm_runtime_disable(dev);
5590 	pm_runtime_set_active(dev);
5591 	pm_runtime_enable(dev);
5592 	return 0;
5593 }
5594 
5595 /*
5596  * For ODDs, the upper layer will poll for media change every few seconds,
5597  * which will make it enter and leave suspend state every few seconds. And
5598  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5599  * is very little and the ODD may malfunction after constantly being reset.
5600  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5601  * ODD is attached to the port.
5602  */
5603 static int ata_port_runtime_idle(struct device *dev)
5604 {
5605 	struct ata_port *ap = to_ata_port(dev);
5606 	struct ata_link *link;
5607 	struct ata_device *adev;
5608 
5609 	ata_for_each_link(link, ap, HOST_FIRST) {
5610 		ata_for_each_dev(adev, link, ENABLED)
5611 			if (adev->class == ATA_DEV_ATAPI &&
5612 			    !zpodd_dev_enabled(adev))
5613 				return -EBUSY;
5614 	}
5615 
5616 	return 0;
5617 }
5618 
5619 static int ata_port_runtime_suspend(struct device *dev)
5620 {
5621 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5622 	return 0;
5623 }
5624 
5625 static int ata_port_runtime_resume(struct device *dev)
5626 {
5627 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5628 	return 0;
5629 }
5630 
5631 static const struct dev_pm_ops ata_port_pm_ops = {
5632 	.suspend = ata_port_pm_suspend,
5633 	.resume = ata_port_pm_resume,
5634 	.freeze = ata_port_pm_freeze,
5635 	.thaw = ata_port_pm_resume,
5636 	.poweroff = ata_port_pm_poweroff,
5637 	.restore = ata_port_pm_resume,
5638 
5639 	.runtime_suspend = ata_port_runtime_suspend,
5640 	.runtime_resume = ata_port_runtime_resume,
5641 	.runtime_idle = ata_port_runtime_idle,
5642 };
5643 
5644 /* sas ports don't participate in pm runtime management of ata_ports,
5645  * and need to resume ata devices at the domain level, not the per-port
5646  * level. sas suspend/resume is async to allow parallel port recovery
5647  * since sas has multiple ata_port instances per Scsi_Host.
5648  */
5649 void ata_sas_port_suspend(struct ata_port *ap)
5650 {
5651 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5652 }
5653 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5654 
5655 void ata_sas_port_resume(struct ata_port *ap)
5656 {
5657 	ata_port_resume_async(ap, PMSG_RESUME);
5658 }
5659 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5660 
5661 /**
5662  *	ata_host_suspend - suspend host
5663  *	@host: host to suspend
5664  *	@mesg: PM message
5665  *
5666  *	Suspend @host.  Actual operation is performed by port suspend.
5667  */
5668 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5669 {
5670 	host->dev->power.power_state = mesg;
5671 	return 0;
5672 }
5673 
5674 /**
5675  *	ata_host_resume - resume host
5676  *	@host: host to resume
5677  *
5678  *	Resume @host.  Actual operation is performed by port resume.
5679  */
5680 void ata_host_resume(struct ata_host *host)
5681 {
5682 	host->dev->power.power_state = PMSG_ON;
5683 }
5684 #endif
5685 
5686 struct device_type ata_port_type = {
5687 	.name = "ata_port",
5688 #ifdef CONFIG_PM
5689 	.pm = &ata_port_pm_ops,
5690 #endif
5691 };
5692 
5693 /**
5694  *	ata_dev_init - Initialize an ata_device structure
5695  *	@dev: Device structure to initialize
5696  *
5697  *	Initialize @dev in preparation for probing.
5698  *
5699  *	LOCKING:
5700  *	Inherited from caller.
5701  */
5702 void ata_dev_init(struct ata_device *dev)
5703 {
5704 	struct ata_link *link = ata_dev_phys_link(dev);
5705 	struct ata_port *ap = link->ap;
5706 	unsigned long flags;
5707 
5708 	/* SATA spd limit is bound to the attached device, reset together */
5709 	link->sata_spd_limit = link->hw_sata_spd_limit;
5710 	link->sata_spd = 0;
5711 
5712 	/* High bits of dev->flags are used to record warm plug
5713 	 * requests which occur asynchronously.  Synchronize using
5714 	 * host lock.
5715 	 */
5716 	spin_lock_irqsave(ap->lock, flags);
5717 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5718 	dev->horkage = 0;
5719 	spin_unlock_irqrestore(ap->lock, flags);
5720 
5721 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5722 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5723 	dev->pio_mask = UINT_MAX;
5724 	dev->mwdma_mask = UINT_MAX;
5725 	dev->udma_mask = UINT_MAX;
5726 }
5727 
5728 /**
5729  *	ata_link_init - Initialize an ata_link structure
5730  *	@ap: ATA port link is attached to
5731  *	@link: Link structure to initialize
5732  *	@pmp: Port multiplier port number
5733  *
5734  *	Initialize @link.
5735  *
5736  *	LOCKING:
5737  *	Kernel thread context (may sleep)
5738  */
5739 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5740 {
5741 	int i;
5742 
5743 	/* clear everything except for devices */
5744 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5745 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5746 
5747 	link->ap = ap;
5748 	link->pmp = pmp;
5749 	link->active_tag = ATA_TAG_POISON;
5750 	link->hw_sata_spd_limit = UINT_MAX;
5751 
5752 	/* can't use iterator, ap isn't initialized yet */
5753 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5754 		struct ata_device *dev = &link->device[i];
5755 
5756 		dev->link = link;
5757 		dev->devno = dev - link->device;
5758 #ifdef CONFIG_ATA_ACPI
5759 		dev->gtf_filter = ata_acpi_gtf_filter;
5760 #endif
5761 		ata_dev_init(dev);
5762 	}
5763 }
5764 
5765 /**
5766  *	sata_link_init_spd - Initialize link->sata_spd_limit
5767  *	@link: Link to configure sata_spd_limit for
5768  *
5769  *	Initialize @link->[hw_]sata_spd_limit to the currently
5770  *	configured value.
5771  *
5772  *	LOCKING:
5773  *	Kernel thread context (may sleep).
5774  *
5775  *	RETURNS:
5776  *	0 on success, -errno on failure.
5777  */
5778 int sata_link_init_spd(struct ata_link *link)
5779 {
5780 	u8 spd;
5781 	int rc;
5782 
5783 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5784 	if (rc)
5785 		return rc;
5786 
5787 	spd = (link->saved_scontrol >> 4) & 0xf;
5788 	if (spd)
5789 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5790 
5791 	ata_force_link_limits(link);
5792 
5793 	link->sata_spd_limit = link->hw_sata_spd_limit;
5794 
5795 	return 0;
5796 }
5797 
5798 /**
5799  *	ata_port_alloc - allocate and initialize basic ATA port resources
5800  *	@host: ATA host this allocated port belongs to
5801  *
5802  *	Allocate and initialize basic ATA port resources.
5803  *
5804  *	RETURNS:
5805  *	Allocate ATA port on success, NULL on failure.
5806  *
5807  *	LOCKING:
5808  *	Inherited from calling layer (may sleep).
5809  */
5810 struct ata_port *ata_port_alloc(struct ata_host *host)
5811 {
5812 	struct ata_port *ap;
5813 
5814 	DPRINTK("ENTER\n");
5815 
5816 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5817 	if (!ap)
5818 		return NULL;
5819 
5820 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5821 	ap->lock = &host->lock;
5822 	ap->print_id = -1;
5823 	ap->local_port_no = -1;
5824 	ap->host = host;
5825 	ap->dev = host->dev;
5826 
5827 #if defined(ATA_VERBOSE_DEBUG)
5828 	/* turn on all debugging levels */
5829 	ap->msg_enable = 0x00FF;
5830 #elif defined(ATA_DEBUG)
5831 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5832 #else
5833 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5834 #endif
5835 
5836 	mutex_init(&ap->scsi_scan_mutex);
5837 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5838 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5839 	INIT_LIST_HEAD(&ap->eh_done_q);
5840 	init_waitqueue_head(&ap->eh_wait_q);
5841 	init_completion(&ap->park_req_pending);
5842 	init_timer_deferrable(&ap->fastdrain_timer);
5843 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5844 	ap->fastdrain_timer.data = (unsigned long)ap;
5845 
5846 	ap->cbl = ATA_CBL_NONE;
5847 
5848 	ata_link_init(ap, &ap->link, 0);
5849 
5850 #ifdef ATA_IRQ_TRAP
5851 	ap->stats.unhandled_irq = 1;
5852 	ap->stats.idle_irq = 1;
5853 #endif
5854 	ata_sff_port_init(ap);
5855 
5856 	return ap;
5857 }
5858 
5859 static void ata_host_release(struct device *gendev, void *res)
5860 {
5861 	struct ata_host *host = dev_get_drvdata(gendev);
5862 	int i;
5863 
5864 	for (i = 0; i < host->n_ports; i++) {
5865 		struct ata_port *ap = host->ports[i];
5866 
5867 		if (!ap)
5868 			continue;
5869 
5870 		if (ap->scsi_host)
5871 			scsi_host_put(ap->scsi_host);
5872 
5873 		kfree(ap->pmp_link);
5874 		kfree(ap->slave_link);
5875 		kfree(ap);
5876 		host->ports[i] = NULL;
5877 	}
5878 
5879 	dev_set_drvdata(gendev, NULL);
5880 }
5881 
5882 /**
5883  *	ata_host_alloc - allocate and init basic ATA host resources
5884  *	@dev: generic device this host is associated with
5885  *	@max_ports: maximum number of ATA ports associated with this host
5886  *
5887  *	Allocate and initialize basic ATA host resources.  LLD calls
5888  *	this function to allocate a host, initializes it fully and
5889  *	attaches it using ata_host_register().
5890  *
5891  *	@max_ports ports are allocated and host->n_ports is
5892  *	initialized to @max_ports.  The caller is allowed to decrease
5893  *	host->n_ports before calling ata_host_register().  The unused
5894  *	ports will be automatically freed on registration.
5895  *
5896  *	RETURNS:
5897  *	Allocate ATA host on success, NULL on failure.
5898  *
5899  *	LOCKING:
5900  *	Inherited from calling layer (may sleep).
5901  */
5902 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5903 {
5904 	struct ata_host *host;
5905 	size_t sz;
5906 	int i;
5907 
5908 	DPRINTK("ENTER\n");
5909 
5910 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5911 		return NULL;
5912 
5913 	/* alloc a container for our list of ATA ports (buses) */
5914 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5915 	/* alloc a container for our list of ATA ports (buses) */
5916 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5917 	if (!host)
5918 		goto err_out;
5919 
5920 	devres_add(dev, host);
5921 	dev_set_drvdata(dev, host);
5922 
5923 	spin_lock_init(&host->lock);
5924 	mutex_init(&host->eh_mutex);
5925 	host->dev = dev;
5926 	host->n_ports = max_ports;
5927 
5928 	/* allocate ports bound to this host */
5929 	for (i = 0; i < max_ports; i++) {
5930 		struct ata_port *ap;
5931 
5932 		ap = ata_port_alloc(host);
5933 		if (!ap)
5934 			goto err_out;
5935 
5936 		ap->port_no = i;
5937 		host->ports[i] = ap;
5938 	}
5939 
5940 	devres_remove_group(dev, NULL);
5941 	return host;
5942 
5943  err_out:
5944 	devres_release_group(dev, NULL);
5945 	return NULL;
5946 }
5947 
5948 /**
5949  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5950  *	@dev: generic device this host is associated with
5951  *	@ppi: array of ATA port_info to initialize host with
5952  *	@n_ports: number of ATA ports attached to this host
5953  *
5954  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5955  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5956  *	last entry will be used for the remaining ports.
5957  *
5958  *	RETURNS:
5959  *	Allocate ATA host on success, NULL on failure.
5960  *
5961  *	LOCKING:
5962  *	Inherited from calling layer (may sleep).
5963  */
5964 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5965 				      const struct ata_port_info * const * ppi,
5966 				      int n_ports)
5967 {
5968 	const struct ata_port_info *pi;
5969 	struct ata_host *host;
5970 	int i, j;
5971 
5972 	host = ata_host_alloc(dev, n_ports);
5973 	if (!host)
5974 		return NULL;
5975 
5976 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5977 		struct ata_port *ap = host->ports[i];
5978 
5979 		if (ppi[j])
5980 			pi = ppi[j++];
5981 
5982 		ap->pio_mask = pi->pio_mask;
5983 		ap->mwdma_mask = pi->mwdma_mask;
5984 		ap->udma_mask = pi->udma_mask;
5985 		ap->flags |= pi->flags;
5986 		ap->link.flags |= pi->link_flags;
5987 		ap->ops = pi->port_ops;
5988 
5989 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5990 			host->ops = pi->port_ops;
5991 	}
5992 
5993 	return host;
5994 }
5995 
5996 /**
5997  *	ata_slave_link_init - initialize slave link
5998  *	@ap: port to initialize slave link for
5999  *
6000  *	Create and initialize slave link for @ap.  This enables slave
6001  *	link handling on the port.
6002  *
6003  *	In libata, a port contains links and a link contains devices.
6004  *	There is single host link but if a PMP is attached to it,
6005  *	there can be multiple fan-out links.  On SATA, there's usually
6006  *	a single device connected to a link but PATA and SATA
6007  *	controllers emulating TF based interface can have two - master
6008  *	and slave.
6009  *
6010  *	However, there are a few controllers which don't fit into this
6011  *	abstraction too well - SATA controllers which emulate TF
6012  *	interface with both master and slave devices but also have
6013  *	separate SCR register sets for each device.  These controllers
6014  *	need separate links for physical link handling
6015  *	(e.g. onlineness, link speed) but should be treated like a
6016  *	traditional M/S controller for everything else (e.g. command
6017  *	issue, softreset).
6018  *
6019  *	slave_link is libata's way of handling this class of
6020  *	controllers without impacting core layer too much.  For
6021  *	anything other than physical link handling, the default host
6022  *	link is used for both master and slave.  For physical link
6023  *	handling, separate @ap->slave_link is used.  All dirty details
6024  *	are implemented inside libata core layer.  From LLD's POV, the
6025  *	only difference is that prereset, hardreset and postreset are
6026  *	called once more for the slave link, so the reset sequence
6027  *	looks like the following.
6028  *
6029  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6030  *	softreset(M) -> postreset(M) -> postreset(S)
6031  *
6032  *	Note that softreset is called only for the master.  Softreset
6033  *	resets both M/S by definition, so SRST on master should handle
6034  *	both (the standard method will work just fine).
6035  *
6036  *	LOCKING:
6037  *	Should be called before host is registered.
6038  *
6039  *	RETURNS:
6040  *	0 on success, -errno on failure.
6041  */
6042 int ata_slave_link_init(struct ata_port *ap)
6043 {
6044 	struct ata_link *link;
6045 
6046 	WARN_ON(ap->slave_link);
6047 	WARN_ON(ap->flags & ATA_FLAG_PMP);
6048 
6049 	link = kzalloc(sizeof(*link), GFP_KERNEL);
6050 	if (!link)
6051 		return -ENOMEM;
6052 
6053 	ata_link_init(ap, link, 1);
6054 	ap->slave_link = link;
6055 	return 0;
6056 }
6057 
6058 static void ata_host_stop(struct device *gendev, void *res)
6059 {
6060 	struct ata_host *host = dev_get_drvdata(gendev);
6061 	int i;
6062 
6063 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
6064 
6065 	for (i = 0; i < host->n_ports; i++) {
6066 		struct ata_port *ap = host->ports[i];
6067 
6068 		if (ap->ops->port_stop)
6069 			ap->ops->port_stop(ap);
6070 	}
6071 
6072 	if (host->ops->host_stop)
6073 		host->ops->host_stop(host);
6074 }
6075 
6076 /**
6077  *	ata_finalize_port_ops - finalize ata_port_operations
6078  *	@ops: ata_port_operations to finalize
6079  *
6080  *	An ata_port_operations can inherit from another ops and that
6081  *	ops can again inherit from another.  This can go on as many
6082  *	times as necessary as long as there is no loop in the
6083  *	inheritance chain.
6084  *
6085  *	Ops tables are finalized when the host is started.  NULL or
6086  *	unspecified entries are inherited from the closet ancestor
6087  *	which has the method and the entry is populated with it.
6088  *	After finalization, the ops table directly points to all the
6089  *	methods and ->inherits is no longer necessary and cleared.
6090  *
6091  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6092  *
6093  *	LOCKING:
6094  *	None.
6095  */
6096 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6097 {
6098 	static DEFINE_SPINLOCK(lock);
6099 	const struct ata_port_operations *cur;
6100 	void **begin = (void **)ops;
6101 	void **end = (void **)&ops->inherits;
6102 	void **pp;
6103 
6104 	if (!ops || !ops->inherits)
6105 		return;
6106 
6107 	spin_lock(&lock);
6108 
6109 	for (cur = ops->inherits; cur; cur = cur->inherits) {
6110 		void **inherit = (void **)cur;
6111 
6112 		for (pp = begin; pp < end; pp++, inherit++)
6113 			if (!*pp)
6114 				*pp = *inherit;
6115 	}
6116 
6117 	for (pp = begin; pp < end; pp++)
6118 		if (IS_ERR(*pp))
6119 			*pp = NULL;
6120 
6121 	ops->inherits = NULL;
6122 
6123 	spin_unlock(&lock);
6124 }
6125 
6126 /**
6127  *	ata_host_start - start and freeze ports of an ATA host
6128  *	@host: ATA host to start ports for
6129  *
6130  *	Start and then freeze ports of @host.  Started status is
6131  *	recorded in host->flags, so this function can be called
6132  *	multiple times.  Ports are guaranteed to get started only
6133  *	once.  If host->ops isn't initialized yet, its set to the
6134  *	first non-dummy port ops.
6135  *
6136  *	LOCKING:
6137  *	Inherited from calling layer (may sleep).
6138  *
6139  *	RETURNS:
6140  *	0 if all ports are started successfully, -errno otherwise.
6141  */
6142 int ata_host_start(struct ata_host *host)
6143 {
6144 	int have_stop = 0;
6145 	void *start_dr = NULL;
6146 	int i, rc;
6147 
6148 	if (host->flags & ATA_HOST_STARTED)
6149 		return 0;
6150 
6151 	ata_finalize_port_ops(host->ops);
6152 
6153 	for (i = 0; i < host->n_ports; i++) {
6154 		struct ata_port *ap = host->ports[i];
6155 
6156 		ata_finalize_port_ops(ap->ops);
6157 
6158 		if (!host->ops && !ata_port_is_dummy(ap))
6159 			host->ops = ap->ops;
6160 
6161 		if (ap->ops->port_stop)
6162 			have_stop = 1;
6163 	}
6164 
6165 	if (host->ops->host_stop)
6166 		have_stop = 1;
6167 
6168 	if (have_stop) {
6169 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6170 		if (!start_dr)
6171 			return -ENOMEM;
6172 	}
6173 
6174 	for (i = 0; i < host->n_ports; i++) {
6175 		struct ata_port *ap = host->ports[i];
6176 
6177 		if (ap->ops->port_start) {
6178 			rc = ap->ops->port_start(ap);
6179 			if (rc) {
6180 				if (rc != -ENODEV)
6181 					dev_err(host->dev,
6182 						"failed to start port %d (errno=%d)\n",
6183 						i, rc);
6184 				goto err_out;
6185 			}
6186 		}
6187 		ata_eh_freeze_port(ap);
6188 	}
6189 
6190 	if (start_dr)
6191 		devres_add(host->dev, start_dr);
6192 	host->flags |= ATA_HOST_STARTED;
6193 	return 0;
6194 
6195  err_out:
6196 	while (--i >= 0) {
6197 		struct ata_port *ap = host->ports[i];
6198 
6199 		if (ap->ops->port_stop)
6200 			ap->ops->port_stop(ap);
6201 	}
6202 	devres_free(start_dr);
6203 	return rc;
6204 }
6205 
6206 /**
6207  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6208  *	@host:	host to initialize
6209  *	@dev:	device host is attached to
6210  *	@ops:	port_ops
6211  *
6212  */
6213 void ata_host_init(struct ata_host *host, struct device *dev,
6214 		   struct ata_port_operations *ops)
6215 {
6216 	spin_lock_init(&host->lock);
6217 	mutex_init(&host->eh_mutex);
6218 	host->n_tags = ATA_MAX_QUEUE - 1;
6219 	host->dev = dev;
6220 	host->ops = ops;
6221 }
6222 
6223 void __ata_port_probe(struct ata_port *ap)
6224 {
6225 	struct ata_eh_info *ehi = &ap->link.eh_info;
6226 	unsigned long flags;
6227 
6228 	/* kick EH for boot probing */
6229 	spin_lock_irqsave(ap->lock, flags);
6230 
6231 	ehi->probe_mask |= ATA_ALL_DEVICES;
6232 	ehi->action |= ATA_EH_RESET;
6233 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6234 
6235 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6236 	ap->pflags |= ATA_PFLAG_LOADING;
6237 	ata_port_schedule_eh(ap);
6238 
6239 	spin_unlock_irqrestore(ap->lock, flags);
6240 }
6241 
6242 int ata_port_probe(struct ata_port *ap)
6243 {
6244 	int rc = 0;
6245 
6246 	if (ap->ops->error_handler) {
6247 		__ata_port_probe(ap);
6248 		ata_port_wait_eh(ap);
6249 	} else {
6250 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6251 		rc = ata_bus_probe(ap);
6252 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6253 	}
6254 	return rc;
6255 }
6256 
6257 
6258 static void async_port_probe(void *data, async_cookie_t cookie)
6259 {
6260 	struct ata_port *ap = data;
6261 
6262 	/*
6263 	 * If we're not allowed to scan this host in parallel,
6264 	 * we need to wait until all previous scans have completed
6265 	 * before going further.
6266 	 * Jeff Garzik says this is only within a controller, so we
6267 	 * don't need to wait for port 0, only for later ports.
6268 	 */
6269 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6270 		async_synchronize_cookie(cookie);
6271 
6272 	(void)ata_port_probe(ap);
6273 
6274 	/* in order to keep device order, we need to synchronize at this point */
6275 	async_synchronize_cookie(cookie);
6276 
6277 	ata_scsi_scan_host(ap, 1);
6278 }
6279 
6280 /**
6281  *	ata_host_register - register initialized ATA host
6282  *	@host: ATA host to register
6283  *	@sht: template for SCSI host
6284  *
6285  *	Register initialized ATA host.  @host is allocated using
6286  *	ata_host_alloc() and fully initialized by LLD.  This function
6287  *	starts ports, registers @host with ATA and SCSI layers and
6288  *	probe registered devices.
6289  *
6290  *	LOCKING:
6291  *	Inherited from calling layer (may sleep).
6292  *
6293  *	RETURNS:
6294  *	0 on success, -errno otherwise.
6295  */
6296 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6297 {
6298 	int i, rc;
6299 
6300 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6301 
6302 	/* host must have been started */
6303 	if (!(host->flags & ATA_HOST_STARTED)) {
6304 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6305 		WARN_ON(1);
6306 		return -EINVAL;
6307 	}
6308 
6309 	/* Blow away unused ports.  This happens when LLD can't
6310 	 * determine the exact number of ports to allocate at
6311 	 * allocation time.
6312 	 */
6313 	for (i = host->n_ports; host->ports[i]; i++)
6314 		kfree(host->ports[i]);
6315 
6316 	/* give ports names and add SCSI hosts */
6317 	for (i = 0; i < host->n_ports; i++) {
6318 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6319 		host->ports[i]->local_port_no = i + 1;
6320 	}
6321 
6322 	/* Create associated sysfs transport objects  */
6323 	for (i = 0; i < host->n_ports; i++) {
6324 		rc = ata_tport_add(host->dev,host->ports[i]);
6325 		if (rc) {
6326 			goto err_tadd;
6327 		}
6328 	}
6329 
6330 	rc = ata_scsi_add_hosts(host, sht);
6331 	if (rc)
6332 		goto err_tadd;
6333 
6334 	/* set cable, sata_spd_limit and report */
6335 	for (i = 0; i < host->n_ports; i++) {
6336 		struct ata_port *ap = host->ports[i];
6337 		unsigned long xfer_mask;
6338 
6339 		/* set SATA cable type if still unset */
6340 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6341 			ap->cbl = ATA_CBL_SATA;
6342 
6343 		/* init sata_spd_limit to the current value */
6344 		sata_link_init_spd(&ap->link);
6345 		if (ap->slave_link)
6346 			sata_link_init_spd(ap->slave_link);
6347 
6348 		/* print per-port info to dmesg */
6349 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6350 					      ap->udma_mask);
6351 
6352 		if (!ata_port_is_dummy(ap)) {
6353 			ata_port_info(ap, "%cATA max %s %s\n",
6354 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6355 				      ata_mode_string(xfer_mask),
6356 				      ap->link.eh_info.desc);
6357 			ata_ehi_clear_desc(&ap->link.eh_info);
6358 		} else
6359 			ata_port_info(ap, "DUMMY\n");
6360 	}
6361 
6362 	/* perform each probe asynchronously */
6363 	for (i = 0; i < host->n_ports; i++) {
6364 		struct ata_port *ap = host->ports[i];
6365 		async_schedule(async_port_probe, ap);
6366 	}
6367 
6368 	return 0;
6369 
6370  err_tadd:
6371 	while (--i >= 0) {
6372 		ata_tport_delete(host->ports[i]);
6373 	}
6374 	return rc;
6375 
6376 }
6377 
6378 /**
6379  *	ata_host_activate - start host, request IRQ and register it
6380  *	@host: target ATA host
6381  *	@irq: IRQ to request
6382  *	@irq_handler: irq_handler used when requesting IRQ
6383  *	@irq_flags: irq_flags used when requesting IRQ
6384  *	@sht: scsi_host_template to use when registering the host
6385  *
6386  *	After allocating an ATA host and initializing it, most libata
6387  *	LLDs perform three steps to activate the host - start host,
6388  *	request IRQ and register it.  This helper takes necessary
6389  *	arguments and performs the three steps in one go.
6390  *
6391  *	An invalid IRQ skips the IRQ registration and expects the host to
6392  *	have set polling mode on the port. In this case, @irq_handler
6393  *	should be NULL.
6394  *
6395  *	LOCKING:
6396  *	Inherited from calling layer (may sleep).
6397  *
6398  *	RETURNS:
6399  *	0 on success, -errno otherwise.
6400  */
6401 int ata_host_activate(struct ata_host *host, int irq,
6402 		      irq_handler_t irq_handler, unsigned long irq_flags,
6403 		      struct scsi_host_template *sht)
6404 {
6405 	int i, rc;
6406 	char *irq_desc;
6407 
6408 	rc = ata_host_start(host);
6409 	if (rc)
6410 		return rc;
6411 
6412 	/* Special case for polling mode */
6413 	if (!irq) {
6414 		WARN_ON(irq_handler);
6415 		return ata_host_register(host, sht);
6416 	}
6417 
6418 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6419 				  dev_driver_string(host->dev),
6420 				  dev_name(host->dev));
6421 	if (!irq_desc)
6422 		return -ENOMEM;
6423 
6424 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6425 			      irq_desc, host);
6426 	if (rc)
6427 		return rc;
6428 
6429 	for (i = 0; i < host->n_ports; i++)
6430 		ata_port_desc(host->ports[i], "irq %d", irq);
6431 
6432 	rc = ata_host_register(host, sht);
6433 	/* if failed, just free the IRQ and leave ports alone */
6434 	if (rc)
6435 		devm_free_irq(host->dev, irq, host);
6436 
6437 	return rc;
6438 }
6439 
6440 /**
6441  *	ata_port_detach - Detach ATA port in preparation of device removal
6442  *	@ap: ATA port to be detached
6443  *
6444  *	Detach all ATA devices and the associated SCSI devices of @ap;
6445  *	then, remove the associated SCSI host.  @ap is guaranteed to
6446  *	be quiescent on return from this function.
6447  *
6448  *	LOCKING:
6449  *	Kernel thread context (may sleep).
6450  */
6451 static void ata_port_detach(struct ata_port *ap)
6452 {
6453 	unsigned long flags;
6454 	struct ata_link *link;
6455 	struct ata_device *dev;
6456 
6457 	if (!ap->ops->error_handler)
6458 		goto skip_eh;
6459 
6460 	/* tell EH we're leaving & flush EH */
6461 	spin_lock_irqsave(ap->lock, flags);
6462 	ap->pflags |= ATA_PFLAG_UNLOADING;
6463 	ata_port_schedule_eh(ap);
6464 	spin_unlock_irqrestore(ap->lock, flags);
6465 
6466 	/* wait till EH commits suicide */
6467 	ata_port_wait_eh(ap);
6468 
6469 	/* it better be dead now */
6470 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6471 
6472 	cancel_delayed_work_sync(&ap->hotplug_task);
6473 
6474  skip_eh:
6475 	/* clean up zpodd on port removal */
6476 	ata_for_each_link(link, ap, HOST_FIRST) {
6477 		ata_for_each_dev(dev, link, ALL) {
6478 			if (zpodd_dev_enabled(dev))
6479 				zpodd_exit(dev);
6480 		}
6481 	}
6482 	if (ap->pmp_link) {
6483 		int i;
6484 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6485 			ata_tlink_delete(&ap->pmp_link[i]);
6486 	}
6487 	/* remove the associated SCSI host */
6488 	scsi_remove_host(ap->scsi_host);
6489 	ata_tport_delete(ap);
6490 }
6491 
6492 /**
6493  *	ata_host_detach - Detach all ports of an ATA host
6494  *	@host: Host to detach
6495  *
6496  *	Detach all ports of @host.
6497  *
6498  *	LOCKING:
6499  *	Kernel thread context (may sleep).
6500  */
6501 void ata_host_detach(struct ata_host *host)
6502 {
6503 	int i;
6504 
6505 	for (i = 0; i < host->n_ports; i++)
6506 		ata_port_detach(host->ports[i]);
6507 
6508 	/* the host is dead now, dissociate ACPI */
6509 	ata_acpi_dissociate(host);
6510 }
6511 
6512 #ifdef CONFIG_PCI
6513 
6514 /**
6515  *	ata_pci_remove_one - PCI layer callback for device removal
6516  *	@pdev: PCI device that was removed
6517  *
6518  *	PCI layer indicates to libata via this hook that hot-unplug or
6519  *	module unload event has occurred.  Detach all ports.  Resource
6520  *	release is handled via devres.
6521  *
6522  *	LOCKING:
6523  *	Inherited from PCI layer (may sleep).
6524  */
6525 void ata_pci_remove_one(struct pci_dev *pdev)
6526 {
6527 	struct ata_host *host = pci_get_drvdata(pdev);
6528 
6529 	ata_host_detach(host);
6530 }
6531 
6532 /* move to PCI subsystem */
6533 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6534 {
6535 	unsigned long tmp = 0;
6536 
6537 	switch (bits->width) {
6538 	case 1: {
6539 		u8 tmp8 = 0;
6540 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6541 		tmp = tmp8;
6542 		break;
6543 	}
6544 	case 2: {
6545 		u16 tmp16 = 0;
6546 		pci_read_config_word(pdev, bits->reg, &tmp16);
6547 		tmp = tmp16;
6548 		break;
6549 	}
6550 	case 4: {
6551 		u32 tmp32 = 0;
6552 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6553 		tmp = tmp32;
6554 		break;
6555 	}
6556 
6557 	default:
6558 		return -EINVAL;
6559 	}
6560 
6561 	tmp &= bits->mask;
6562 
6563 	return (tmp == bits->val) ? 1 : 0;
6564 }
6565 
6566 #ifdef CONFIG_PM
6567 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6568 {
6569 	pci_save_state(pdev);
6570 	pci_disable_device(pdev);
6571 
6572 	if (mesg.event & PM_EVENT_SLEEP)
6573 		pci_set_power_state(pdev, PCI_D3hot);
6574 }
6575 
6576 int ata_pci_device_do_resume(struct pci_dev *pdev)
6577 {
6578 	int rc;
6579 
6580 	pci_set_power_state(pdev, PCI_D0);
6581 	pci_restore_state(pdev);
6582 
6583 	rc = pcim_enable_device(pdev);
6584 	if (rc) {
6585 		dev_err(&pdev->dev,
6586 			"failed to enable device after resume (%d)\n", rc);
6587 		return rc;
6588 	}
6589 
6590 	pci_set_master(pdev);
6591 	return 0;
6592 }
6593 
6594 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6595 {
6596 	struct ata_host *host = pci_get_drvdata(pdev);
6597 	int rc = 0;
6598 
6599 	rc = ata_host_suspend(host, mesg);
6600 	if (rc)
6601 		return rc;
6602 
6603 	ata_pci_device_do_suspend(pdev, mesg);
6604 
6605 	return 0;
6606 }
6607 
6608 int ata_pci_device_resume(struct pci_dev *pdev)
6609 {
6610 	struct ata_host *host = pci_get_drvdata(pdev);
6611 	int rc;
6612 
6613 	rc = ata_pci_device_do_resume(pdev);
6614 	if (rc == 0)
6615 		ata_host_resume(host);
6616 	return rc;
6617 }
6618 #endif /* CONFIG_PM */
6619 
6620 #endif /* CONFIG_PCI */
6621 
6622 /**
6623  *	ata_platform_remove_one - Platform layer callback for device removal
6624  *	@pdev: Platform device that was removed
6625  *
6626  *	Platform layer indicates to libata via this hook that hot-unplug or
6627  *	module unload event has occurred.  Detach all ports.  Resource
6628  *	release is handled via devres.
6629  *
6630  *	LOCKING:
6631  *	Inherited from platform layer (may sleep).
6632  */
6633 int ata_platform_remove_one(struct platform_device *pdev)
6634 {
6635 	struct ata_host *host = platform_get_drvdata(pdev);
6636 
6637 	ata_host_detach(host);
6638 
6639 	return 0;
6640 }
6641 
6642 static int __init ata_parse_force_one(char **cur,
6643 				      struct ata_force_ent *force_ent,
6644 				      const char **reason)
6645 {
6646 	static const struct ata_force_param force_tbl[] __initconst = {
6647 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6648 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6649 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6650 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6651 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6652 		{ "sata",	.cbl		= ATA_CBL_SATA },
6653 		{ "1.5Gbps",	.spd_limit	= 1 },
6654 		{ "3.0Gbps",	.spd_limit	= 2 },
6655 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6656 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6657 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6658 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6659 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6660 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6661 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6662 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6663 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6664 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6665 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6666 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6667 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6668 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6669 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6670 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6671 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6672 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6673 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6674 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6675 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6676 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6677 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6678 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6679 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6680 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6681 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6682 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6683 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6684 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6685 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6686 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6687 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6688 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6689 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6690 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6691 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6692 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6693 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6694 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6695 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6696 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6697 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6698 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6699 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6700 	};
6701 	char *start = *cur, *p = *cur;
6702 	char *id, *val, *endp;
6703 	const struct ata_force_param *match_fp = NULL;
6704 	int nr_matches = 0, i;
6705 
6706 	/* find where this param ends and update *cur */
6707 	while (*p != '\0' && *p != ',')
6708 		p++;
6709 
6710 	if (*p == '\0')
6711 		*cur = p;
6712 	else
6713 		*cur = p + 1;
6714 
6715 	*p = '\0';
6716 
6717 	/* parse */
6718 	p = strchr(start, ':');
6719 	if (!p) {
6720 		val = strstrip(start);
6721 		goto parse_val;
6722 	}
6723 	*p = '\0';
6724 
6725 	id = strstrip(start);
6726 	val = strstrip(p + 1);
6727 
6728 	/* parse id */
6729 	p = strchr(id, '.');
6730 	if (p) {
6731 		*p++ = '\0';
6732 		force_ent->device = simple_strtoul(p, &endp, 10);
6733 		if (p == endp || *endp != '\0') {
6734 			*reason = "invalid device";
6735 			return -EINVAL;
6736 		}
6737 	}
6738 
6739 	force_ent->port = simple_strtoul(id, &endp, 10);
6740 	if (p == endp || *endp != '\0') {
6741 		*reason = "invalid port/link";
6742 		return -EINVAL;
6743 	}
6744 
6745  parse_val:
6746 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6747 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6748 		const struct ata_force_param *fp = &force_tbl[i];
6749 
6750 		if (strncasecmp(val, fp->name, strlen(val)))
6751 			continue;
6752 
6753 		nr_matches++;
6754 		match_fp = fp;
6755 
6756 		if (strcasecmp(val, fp->name) == 0) {
6757 			nr_matches = 1;
6758 			break;
6759 		}
6760 	}
6761 
6762 	if (!nr_matches) {
6763 		*reason = "unknown value";
6764 		return -EINVAL;
6765 	}
6766 	if (nr_matches > 1) {
6767 		*reason = "ambigious value";
6768 		return -EINVAL;
6769 	}
6770 
6771 	force_ent->param = *match_fp;
6772 
6773 	return 0;
6774 }
6775 
6776 static void __init ata_parse_force_param(void)
6777 {
6778 	int idx = 0, size = 1;
6779 	int last_port = -1, last_device = -1;
6780 	char *p, *cur, *next;
6781 
6782 	/* calculate maximum number of params and allocate force_tbl */
6783 	for (p = ata_force_param_buf; *p; p++)
6784 		if (*p == ',')
6785 			size++;
6786 
6787 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6788 	if (!ata_force_tbl) {
6789 		printk(KERN_WARNING "ata: failed to extend force table, "
6790 		       "libata.force ignored\n");
6791 		return;
6792 	}
6793 
6794 	/* parse and populate the table */
6795 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6796 		const char *reason = "";
6797 		struct ata_force_ent te = { .port = -1, .device = -1 };
6798 
6799 		next = cur;
6800 		if (ata_parse_force_one(&next, &te, &reason)) {
6801 			printk(KERN_WARNING "ata: failed to parse force "
6802 			       "parameter \"%s\" (%s)\n",
6803 			       cur, reason);
6804 			continue;
6805 		}
6806 
6807 		if (te.port == -1) {
6808 			te.port = last_port;
6809 			te.device = last_device;
6810 		}
6811 
6812 		ata_force_tbl[idx++] = te;
6813 
6814 		last_port = te.port;
6815 		last_device = te.device;
6816 	}
6817 
6818 	ata_force_tbl_size = idx;
6819 }
6820 
6821 static int __init ata_init(void)
6822 {
6823 	int rc;
6824 
6825 	ata_parse_force_param();
6826 
6827 	rc = ata_sff_init();
6828 	if (rc) {
6829 		kfree(ata_force_tbl);
6830 		return rc;
6831 	}
6832 
6833 	libata_transport_init();
6834 	ata_scsi_transport_template = ata_attach_transport();
6835 	if (!ata_scsi_transport_template) {
6836 		ata_sff_exit();
6837 		rc = -ENOMEM;
6838 		goto err_out;
6839 	}
6840 
6841 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6842 	return 0;
6843 
6844 err_out:
6845 	return rc;
6846 }
6847 
6848 static void __exit ata_exit(void)
6849 {
6850 	ata_release_transport(ata_scsi_transport_template);
6851 	libata_transport_exit();
6852 	ata_sff_exit();
6853 	kfree(ata_force_tbl);
6854 }
6855 
6856 subsys_initcall(ata_init);
6857 module_exit(ata_exit);
6858 
6859 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6860 
6861 int ata_ratelimit(void)
6862 {
6863 	return __ratelimit(&ratelimit);
6864 }
6865 
6866 /**
6867  *	ata_msleep - ATA EH owner aware msleep
6868  *	@ap: ATA port to attribute the sleep to
6869  *	@msecs: duration to sleep in milliseconds
6870  *
6871  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6872  *	ownership is released before going to sleep and reacquired
6873  *	after the sleep is complete.  IOW, other ports sharing the
6874  *	@ap->host will be allowed to own the EH while this task is
6875  *	sleeping.
6876  *
6877  *	LOCKING:
6878  *	Might sleep.
6879  */
6880 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6881 {
6882 	bool owns_eh = ap && ap->host->eh_owner == current;
6883 
6884 	if (owns_eh)
6885 		ata_eh_release(ap);
6886 
6887 	if (msecs < 20) {
6888 		unsigned long usecs = msecs * USEC_PER_MSEC;
6889 		usleep_range(usecs, usecs + 50);
6890 	} else {
6891 		msleep(msecs);
6892 	}
6893 
6894 	if (owns_eh)
6895 		ata_eh_acquire(ap);
6896 }
6897 
6898 /**
6899  *	ata_wait_register - wait until register value changes
6900  *	@ap: ATA port to wait register for, can be NULL
6901  *	@reg: IO-mapped register
6902  *	@mask: Mask to apply to read register value
6903  *	@val: Wait condition
6904  *	@interval: polling interval in milliseconds
6905  *	@timeout: timeout in milliseconds
6906  *
6907  *	Waiting for some bits of register to change is a common
6908  *	operation for ATA controllers.  This function reads 32bit LE
6909  *	IO-mapped register @reg and tests for the following condition.
6910  *
6911  *	(*@reg & mask) != val
6912  *
6913  *	If the condition is met, it returns; otherwise, the process is
6914  *	repeated after @interval_msec until timeout.
6915  *
6916  *	LOCKING:
6917  *	Kernel thread context (may sleep)
6918  *
6919  *	RETURNS:
6920  *	The final register value.
6921  */
6922 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6923 		      unsigned long interval, unsigned long timeout)
6924 {
6925 	unsigned long deadline;
6926 	u32 tmp;
6927 
6928 	tmp = ioread32(reg);
6929 
6930 	/* Calculate timeout _after_ the first read to make sure
6931 	 * preceding writes reach the controller before starting to
6932 	 * eat away the timeout.
6933 	 */
6934 	deadline = ata_deadline(jiffies, timeout);
6935 
6936 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6937 		ata_msleep(ap, interval);
6938 		tmp = ioread32(reg);
6939 	}
6940 
6941 	return tmp;
6942 }
6943 
6944 /**
6945  *	sata_lpm_ignore_phy_events - test if PHY event should be ignored
6946  *	@link: Link receiving the event
6947  *
6948  *	Test whether the received PHY event has to be ignored or not.
6949  *
6950  *	LOCKING:
6951  *	None:
6952  *
6953  *	RETURNS:
6954  *	True if the event has to be ignored.
6955  */
6956 bool sata_lpm_ignore_phy_events(struct ata_link *link)
6957 {
6958 	unsigned long lpm_timeout = link->last_lpm_change +
6959 				    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
6960 
6961 	/* if LPM is enabled, PHYRDY doesn't mean anything */
6962 	if (link->lpm_policy > ATA_LPM_MAX_POWER)
6963 		return true;
6964 
6965 	/* ignore the first PHY event after the LPM policy changed
6966 	 * as it is might be spurious
6967 	 */
6968 	if ((link->flags & ATA_LFLAG_CHANGED) &&
6969 	    time_before(jiffies, lpm_timeout))
6970 		return true;
6971 
6972 	return false;
6973 }
6974 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
6975 
6976 /*
6977  * Dummy port_ops
6978  */
6979 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6980 {
6981 	return AC_ERR_SYSTEM;
6982 }
6983 
6984 static void ata_dummy_error_handler(struct ata_port *ap)
6985 {
6986 	/* truly dummy */
6987 }
6988 
6989 struct ata_port_operations ata_dummy_port_ops = {
6990 	.qc_prep		= ata_noop_qc_prep,
6991 	.qc_issue		= ata_dummy_qc_issue,
6992 	.error_handler		= ata_dummy_error_handler,
6993 	.sched_eh		= ata_std_sched_eh,
6994 	.end_eh			= ata_std_end_eh,
6995 };
6996 
6997 const struct ata_port_info ata_dummy_port_info = {
6998 	.port_ops		= &ata_dummy_port_ops,
6999 };
7000 
7001 /*
7002  * Utility print functions
7003  */
7004 void ata_port_printk(const struct ata_port *ap, const char *level,
7005 		     const char *fmt, ...)
7006 {
7007 	struct va_format vaf;
7008 	va_list args;
7009 
7010 	va_start(args, fmt);
7011 
7012 	vaf.fmt = fmt;
7013 	vaf.va = &args;
7014 
7015 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
7016 
7017 	va_end(args);
7018 }
7019 EXPORT_SYMBOL(ata_port_printk);
7020 
7021 void ata_link_printk(const struct ata_link *link, const char *level,
7022 		     const char *fmt, ...)
7023 {
7024 	struct va_format vaf;
7025 	va_list args;
7026 
7027 	va_start(args, fmt);
7028 
7029 	vaf.fmt = fmt;
7030 	vaf.va = &args;
7031 
7032 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7033 		printk("%sata%u.%02u: %pV",
7034 		       level, link->ap->print_id, link->pmp, &vaf);
7035 	else
7036 		printk("%sata%u: %pV",
7037 		       level, link->ap->print_id, &vaf);
7038 
7039 	va_end(args);
7040 }
7041 EXPORT_SYMBOL(ata_link_printk);
7042 
7043 void ata_dev_printk(const struct ata_device *dev, const char *level,
7044 		    const char *fmt, ...)
7045 {
7046 	struct va_format vaf;
7047 	va_list args;
7048 
7049 	va_start(args, fmt);
7050 
7051 	vaf.fmt = fmt;
7052 	vaf.va = &args;
7053 
7054 	printk("%sata%u.%02u: %pV",
7055 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7056 	       &vaf);
7057 
7058 	va_end(args);
7059 }
7060 EXPORT_SYMBOL(ata_dev_printk);
7061 
7062 void ata_print_version(const struct device *dev, const char *version)
7063 {
7064 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7065 }
7066 EXPORT_SYMBOL(ata_print_version);
7067 
7068 /*
7069  * libata is essentially a library of internal helper functions for
7070  * low-level ATA host controller drivers.  As such, the API/ABI is
7071  * likely to change as new drivers are added and updated.
7072  * Do not depend on ABI/API stability.
7073  */
7074 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7075 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7076 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7077 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7078 EXPORT_SYMBOL_GPL(sata_port_ops);
7079 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7080 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7081 EXPORT_SYMBOL_GPL(ata_link_next);
7082 EXPORT_SYMBOL_GPL(ata_dev_next);
7083 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7084 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7085 EXPORT_SYMBOL_GPL(ata_host_init);
7086 EXPORT_SYMBOL_GPL(ata_host_alloc);
7087 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7088 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7089 EXPORT_SYMBOL_GPL(ata_host_start);
7090 EXPORT_SYMBOL_GPL(ata_host_register);
7091 EXPORT_SYMBOL_GPL(ata_host_activate);
7092 EXPORT_SYMBOL_GPL(ata_host_detach);
7093 EXPORT_SYMBOL_GPL(ata_sg_init);
7094 EXPORT_SYMBOL_GPL(ata_qc_complete);
7095 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7096 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7097 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7098 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7099 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7100 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7101 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7102 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7103 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7104 EXPORT_SYMBOL_GPL(ata_mode_string);
7105 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7106 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7107 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7108 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7109 EXPORT_SYMBOL_GPL(ata_dev_disable);
7110 EXPORT_SYMBOL_GPL(sata_set_spd);
7111 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7112 EXPORT_SYMBOL_GPL(sata_link_debounce);
7113 EXPORT_SYMBOL_GPL(sata_link_resume);
7114 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7115 EXPORT_SYMBOL_GPL(ata_std_prereset);
7116 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7117 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7118 EXPORT_SYMBOL_GPL(ata_std_postreset);
7119 EXPORT_SYMBOL_GPL(ata_dev_classify);
7120 EXPORT_SYMBOL_GPL(ata_dev_pair);
7121 EXPORT_SYMBOL_GPL(ata_ratelimit);
7122 EXPORT_SYMBOL_GPL(ata_msleep);
7123 EXPORT_SYMBOL_GPL(ata_wait_register);
7124 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7125 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7126 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7127 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7128 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7129 EXPORT_SYMBOL_GPL(sata_scr_valid);
7130 EXPORT_SYMBOL_GPL(sata_scr_read);
7131 EXPORT_SYMBOL_GPL(sata_scr_write);
7132 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7133 EXPORT_SYMBOL_GPL(ata_link_online);
7134 EXPORT_SYMBOL_GPL(ata_link_offline);
7135 #ifdef CONFIG_PM
7136 EXPORT_SYMBOL_GPL(ata_host_suspend);
7137 EXPORT_SYMBOL_GPL(ata_host_resume);
7138 #endif /* CONFIG_PM */
7139 EXPORT_SYMBOL_GPL(ata_id_string);
7140 EXPORT_SYMBOL_GPL(ata_id_c_string);
7141 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7142 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7143 
7144 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7145 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7146 EXPORT_SYMBOL_GPL(ata_timing_compute);
7147 EXPORT_SYMBOL_GPL(ata_timing_merge);
7148 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7149 
7150 #ifdef CONFIG_PCI
7151 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7152 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7153 #ifdef CONFIG_PM
7154 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7155 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7156 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7157 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7158 #endif /* CONFIG_PM */
7159 #endif /* CONFIG_PCI */
7160 
7161 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7162 
7163 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7164 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7165 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7166 EXPORT_SYMBOL_GPL(ata_port_desc);
7167 #ifdef CONFIG_PCI
7168 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7169 #endif /* CONFIG_PCI */
7170 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7171 EXPORT_SYMBOL_GPL(ata_link_abort);
7172 EXPORT_SYMBOL_GPL(ata_port_abort);
7173 EXPORT_SYMBOL_GPL(ata_port_freeze);
7174 EXPORT_SYMBOL_GPL(sata_async_notification);
7175 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7176 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7177 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7178 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7179 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7180 EXPORT_SYMBOL_GPL(ata_do_eh);
7181 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7182 
7183 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7184 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7185 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7186 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7187 EXPORT_SYMBOL_GPL(ata_cable_sata);
7188