xref: /openbmc/linux/drivers/ata/libata-core.c (revision 0d456bad)
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70 #include <linux/platform_device.h>
71 
72 #include "libata.h"
73 #include "libata-transport.h"
74 
75 /* debounce timing parameters in msecs { interval, duration, timeout } */
76 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
77 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
78 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
79 
80 const struct ata_port_operations ata_base_port_ops = {
81 	.prereset		= ata_std_prereset,
82 	.postreset		= ata_std_postreset,
83 	.error_handler		= ata_std_error_handler,
84 	.sched_eh		= ata_std_sched_eh,
85 	.end_eh			= ata_std_end_eh,
86 };
87 
88 const struct ata_port_operations sata_port_ops = {
89 	.inherits		= &ata_base_port_ops,
90 
91 	.qc_defer		= ata_std_qc_defer,
92 	.hardreset		= sata_std_hardreset,
93 };
94 
95 static unsigned int ata_dev_init_params(struct ata_device *dev,
96 					u16 heads, u16 sectors);
97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
98 static void ata_dev_xfermask(struct ata_device *dev);
99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
100 
101 atomic_t ata_print_id = ATOMIC_INIT(0);
102 
103 struct ata_force_param {
104 	const char	*name;
105 	unsigned int	cbl;
106 	int		spd_limit;
107 	unsigned long	xfer_mask;
108 	unsigned int	horkage_on;
109 	unsigned int	horkage_off;
110 	unsigned int	lflags;
111 };
112 
113 struct ata_force_ent {
114 	int			port;
115 	int			device;
116 	struct ata_force_param	param;
117 };
118 
119 static struct ata_force_ent *ata_force_tbl;
120 static int ata_force_tbl_size;
121 
122 static char ata_force_param_buf[PAGE_SIZE] __initdata;
123 /* param_buf is thrown away after initialization, disallow read */
124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126 
127 static int atapi_enabled = 1;
128 module_param(atapi_enabled, int, 0444);
129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130 
131 static int atapi_dmadir = 0;
132 module_param(atapi_dmadir, int, 0444);
133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134 
135 int atapi_passthru16 = 1;
136 module_param(atapi_passthru16, int, 0444);
137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
138 
139 int libata_fua = 0;
140 module_param_named(fua, libata_fua, int, 0444);
141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
142 
143 static int ata_ignore_hpa;
144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146 
147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148 module_param_named(dma, libata_dma_mask, int, 0444);
149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150 
151 static int ata_probe_timeout;
152 module_param(ata_probe_timeout, int, 0444);
153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154 
155 int libata_noacpi = 0;
156 module_param_named(noacpi, libata_noacpi, int, 0444);
157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158 
159 int libata_allow_tpm = 0;
160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
162 
163 static int atapi_an;
164 module_param(atapi_an, int, 0444);
165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
166 
167 MODULE_AUTHOR("Jeff Garzik");
168 MODULE_DESCRIPTION("Library module for ATA devices");
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION);
171 
172 
173 static bool ata_sstatus_online(u32 sstatus)
174 {
175 	return (sstatus & 0xf) == 0x3;
176 }
177 
178 /**
179  *	ata_link_next - link iteration helper
180  *	@link: the previous link, NULL to start
181  *	@ap: ATA port containing links to iterate
182  *	@mode: iteration mode, one of ATA_LITER_*
183  *
184  *	LOCKING:
185  *	Host lock or EH context.
186  *
187  *	RETURNS:
188  *	Pointer to the next link.
189  */
190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
191 			       enum ata_link_iter_mode mode)
192 {
193 	BUG_ON(mode != ATA_LITER_EDGE &&
194 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
195 
196 	/* NULL link indicates start of iteration */
197 	if (!link)
198 		switch (mode) {
199 		case ATA_LITER_EDGE:
200 		case ATA_LITER_PMP_FIRST:
201 			if (sata_pmp_attached(ap))
202 				return ap->pmp_link;
203 			/* fall through */
204 		case ATA_LITER_HOST_FIRST:
205 			return &ap->link;
206 		}
207 
208 	/* we just iterated over the host link, what's next? */
209 	if (link == &ap->link)
210 		switch (mode) {
211 		case ATA_LITER_HOST_FIRST:
212 			if (sata_pmp_attached(ap))
213 				return ap->pmp_link;
214 			/* fall through */
215 		case ATA_LITER_PMP_FIRST:
216 			if (unlikely(ap->slave_link))
217 				return ap->slave_link;
218 			/* fall through */
219 		case ATA_LITER_EDGE:
220 			return NULL;
221 		}
222 
223 	/* slave_link excludes PMP */
224 	if (unlikely(link == ap->slave_link))
225 		return NULL;
226 
227 	/* we were over a PMP link */
228 	if (++link < ap->pmp_link + ap->nr_pmp_links)
229 		return link;
230 
231 	if (mode == ATA_LITER_PMP_FIRST)
232 		return &ap->link;
233 
234 	return NULL;
235 }
236 
237 /**
238  *	ata_dev_next - device iteration helper
239  *	@dev: the previous device, NULL to start
240  *	@link: ATA link containing devices to iterate
241  *	@mode: iteration mode, one of ATA_DITER_*
242  *
243  *	LOCKING:
244  *	Host lock or EH context.
245  *
246  *	RETURNS:
247  *	Pointer to the next device.
248  */
249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
250 				enum ata_dev_iter_mode mode)
251 {
252 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
253 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
254 
255 	/* NULL dev indicates start of iteration */
256 	if (!dev)
257 		switch (mode) {
258 		case ATA_DITER_ENABLED:
259 		case ATA_DITER_ALL:
260 			dev = link->device;
261 			goto check;
262 		case ATA_DITER_ENABLED_REVERSE:
263 		case ATA_DITER_ALL_REVERSE:
264 			dev = link->device + ata_link_max_devices(link) - 1;
265 			goto check;
266 		}
267 
268  next:
269 	/* move to the next one */
270 	switch (mode) {
271 	case ATA_DITER_ENABLED:
272 	case ATA_DITER_ALL:
273 		if (++dev < link->device + ata_link_max_devices(link))
274 			goto check;
275 		return NULL;
276 	case ATA_DITER_ENABLED_REVERSE:
277 	case ATA_DITER_ALL_REVERSE:
278 		if (--dev >= link->device)
279 			goto check;
280 		return NULL;
281 	}
282 
283  check:
284 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
285 	    !ata_dev_enabled(dev))
286 		goto next;
287 	return dev;
288 }
289 
290 /**
291  *	ata_dev_phys_link - find physical link for a device
292  *	@dev: ATA device to look up physical link for
293  *
294  *	Look up physical link which @dev is attached to.  Note that
295  *	this is different from @dev->link only when @dev is on slave
296  *	link.  For all other cases, it's the same as @dev->link.
297  *
298  *	LOCKING:
299  *	Don't care.
300  *
301  *	RETURNS:
302  *	Pointer to the found physical link.
303  */
304 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
305 {
306 	struct ata_port *ap = dev->link->ap;
307 
308 	if (!ap->slave_link)
309 		return dev->link;
310 	if (!dev->devno)
311 		return &ap->link;
312 	return ap->slave_link;
313 }
314 
315 /**
316  *	ata_force_cbl - force cable type according to libata.force
317  *	@ap: ATA port of interest
318  *
319  *	Force cable type according to libata.force and whine about it.
320  *	The last entry which has matching port number is used, so it
321  *	can be specified as part of device force parameters.  For
322  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323  *	same effect.
324  *
325  *	LOCKING:
326  *	EH context.
327  */
328 void ata_force_cbl(struct ata_port *ap)
329 {
330 	int i;
331 
332 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 		const struct ata_force_ent *fe = &ata_force_tbl[i];
334 
335 		if (fe->port != -1 && fe->port != ap->print_id)
336 			continue;
337 
338 		if (fe->param.cbl == ATA_CBL_NONE)
339 			continue;
340 
341 		ap->cbl = fe->param.cbl;
342 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 		return;
344 	}
345 }
346 
347 /**
348  *	ata_force_link_limits - force link limits according to libata.force
349  *	@link: ATA link of interest
350  *
351  *	Force link flags and SATA spd limit according to libata.force
352  *	and whine about it.  When only the port part is specified
353  *	(e.g. 1:), the limit applies to all links connected to both
354  *	the host link and all fan-out ports connected via PMP.  If the
355  *	device part is specified as 0 (e.g. 1.00:), it specifies the
356  *	first fan-out link not the host link.  Device number 15 always
357  *	points to the host link whether PMP is attached or not.  If the
358  *	controller has slave link, device number 16 points to it.
359  *
360  *	LOCKING:
361  *	EH context.
362  */
363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 	bool did_spd = false;
366 	int linkno = link->pmp;
367 	int i;
368 
369 	if (ata_is_host_link(link))
370 		linkno += 15;
371 
372 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 		const struct ata_force_ent *fe = &ata_force_tbl[i];
374 
375 		if (fe->port != -1 && fe->port != link->ap->print_id)
376 			continue;
377 
378 		if (fe->device != -1 && fe->device != linkno)
379 			continue;
380 
381 		/* only honor the first spd limit */
382 		if (!did_spd && fe->param.spd_limit) {
383 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 					fe->param.name);
386 			did_spd = true;
387 		}
388 
389 		/* let lflags stack */
390 		if (fe->param.lflags) {
391 			link->flags |= fe->param.lflags;
392 			ata_link_notice(link,
393 					"FORCE: link flag 0x%x forced -> 0x%x\n",
394 					fe->param.lflags, link->flags);
395 		}
396 	}
397 }
398 
399 /**
400  *	ata_force_xfermask - force xfermask according to libata.force
401  *	@dev: ATA device of interest
402  *
403  *	Force xfer_mask according to libata.force and whine about it.
404  *	For consistency with link selection, device number 15 selects
405  *	the first device connected to the host link.
406  *
407  *	LOCKING:
408  *	EH context.
409  */
410 static void ata_force_xfermask(struct ata_device *dev)
411 {
412 	int devno = dev->link->pmp + dev->devno;
413 	int alt_devno = devno;
414 	int i;
415 
416 	/* allow n.15/16 for devices attached to host port */
417 	if (ata_is_host_link(dev->link))
418 		alt_devno += 15;
419 
420 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
421 		const struct ata_force_ent *fe = &ata_force_tbl[i];
422 		unsigned long pio_mask, mwdma_mask, udma_mask;
423 
424 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
425 			continue;
426 
427 		if (fe->device != -1 && fe->device != devno &&
428 		    fe->device != alt_devno)
429 			continue;
430 
431 		if (!fe->param.xfer_mask)
432 			continue;
433 
434 		ata_unpack_xfermask(fe->param.xfer_mask,
435 				    &pio_mask, &mwdma_mask, &udma_mask);
436 		if (udma_mask)
437 			dev->udma_mask = udma_mask;
438 		else if (mwdma_mask) {
439 			dev->udma_mask = 0;
440 			dev->mwdma_mask = mwdma_mask;
441 		} else {
442 			dev->udma_mask = 0;
443 			dev->mwdma_mask = 0;
444 			dev->pio_mask = pio_mask;
445 		}
446 
447 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
448 			       fe->param.name);
449 		return;
450 	}
451 }
452 
453 /**
454  *	ata_force_horkage - force horkage according to libata.force
455  *	@dev: ATA device of interest
456  *
457  *	Force horkage according to libata.force and whine about it.
458  *	For consistency with link selection, device number 15 selects
459  *	the first device connected to the host link.
460  *
461  *	LOCKING:
462  *	EH context.
463  */
464 static void ata_force_horkage(struct ata_device *dev)
465 {
466 	int devno = dev->link->pmp + dev->devno;
467 	int alt_devno = devno;
468 	int i;
469 
470 	/* allow n.15/16 for devices attached to host port */
471 	if (ata_is_host_link(dev->link))
472 		alt_devno += 15;
473 
474 	for (i = 0; i < ata_force_tbl_size; i++) {
475 		const struct ata_force_ent *fe = &ata_force_tbl[i];
476 
477 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
478 			continue;
479 
480 		if (fe->device != -1 && fe->device != devno &&
481 		    fe->device != alt_devno)
482 			continue;
483 
484 		if (!(~dev->horkage & fe->param.horkage_on) &&
485 		    !(dev->horkage & fe->param.horkage_off))
486 			continue;
487 
488 		dev->horkage |= fe->param.horkage_on;
489 		dev->horkage &= ~fe->param.horkage_off;
490 
491 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
492 			       fe->param.name);
493 	}
494 }
495 
496 /**
497  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
498  *	@opcode: SCSI opcode
499  *
500  *	Determine ATAPI command type from @opcode.
501  *
502  *	LOCKING:
503  *	None.
504  *
505  *	RETURNS:
506  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
507  */
508 int atapi_cmd_type(u8 opcode)
509 {
510 	switch (opcode) {
511 	case GPCMD_READ_10:
512 	case GPCMD_READ_12:
513 		return ATAPI_READ;
514 
515 	case GPCMD_WRITE_10:
516 	case GPCMD_WRITE_12:
517 	case GPCMD_WRITE_AND_VERIFY_10:
518 		return ATAPI_WRITE;
519 
520 	case GPCMD_READ_CD:
521 	case GPCMD_READ_CD_MSF:
522 		return ATAPI_READ_CD;
523 
524 	case ATA_16:
525 	case ATA_12:
526 		if (atapi_passthru16)
527 			return ATAPI_PASS_THRU;
528 		/* fall thru */
529 	default:
530 		return ATAPI_MISC;
531 	}
532 }
533 
534 /**
535  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
536  *	@tf: Taskfile to convert
537  *	@pmp: Port multiplier port
538  *	@is_cmd: This FIS is for command
539  *	@fis: Buffer into which data will output
540  *
541  *	Converts a standard ATA taskfile to a Serial ATA
542  *	FIS structure (Register - Host to Device).
543  *
544  *	LOCKING:
545  *	Inherited from caller.
546  */
547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
548 {
549 	fis[0] = 0x27;			/* Register - Host to Device FIS */
550 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
551 	if (is_cmd)
552 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
553 
554 	fis[2] = tf->command;
555 	fis[3] = tf->feature;
556 
557 	fis[4] = tf->lbal;
558 	fis[5] = tf->lbam;
559 	fis[6] = tf->lbah;
560 	fis[7] = tf->device;
561 
562 	fis[8] = tf->hob_lbal;
563 	fis[9] = tf->hob_lbam;
564 	fis[10] = tf->hob_lbah;
565 	fis[11] = tf->hob_feature;
566 
567 	fis[12] = tf->nsect;
568 	fis[13] = tf->hob_nsect;
569 	fis[14] = 0;
570 	fis[15] = tf->ctl;
571 
572 	fis[16] = 0;
573 	fis[17] = 0;
574 	fis[18] = 0;
575 	fis[19] = 0;
576 }
577 
578 /**
579  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
580  *	@fis: Buffer from which data will be input
581  *	@tf: Taskfile to output
582  *
583  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
584  *
585  *	LOCKING:
586  *	Inherited from caller.
587  */
588 
589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
590 {
591 	tf->command	= fis[2];	/* status */
592 	tf->feature	= fis[3];	/* error */
593 
594 	tf->lbal	= fis[4];
595 	tf->lbam	= fis[5];
596 	tf->lbah	= fis[6];
597 	tf->device	= fis[7];
598 
599 	tf->hob_lbal	= fis[8];
600 	tf->hob_lbam	= fis[9];
601 	tf->hob_lbah	= fis[10];
602 
603 	tf->nsect	= fis[12];
604 	tf->hob_nsect	= fis[13];
605 }
606 
607 static const u8 ata_rw_cmds[] = {
608 	/* pio multi */
609 	ATA_CMD_READ_MULTI,
610 	ATA_CMD_WRITE_MULTI,
611 	ATA_CMD_READ_MULTI_EXT,
612 	ATA_CMD_WRITE_MULTI_EXT,
613 	0,
614 	0,
615 	0,
616 	ATA_CMD_WRITE_MULTI_FUA_EXT,
617 	/* pio */
618 	ATA_CMD_PIO_READ,
619 	ATA_CMD_PIO_WRITE,
620 	ATA_CMD_PIO_READ_EXT,
621 	ATA_CMD_PIO_WRITE_EXT,
622 	0,
623 	0,
624 	0,
625 	0,
626 	/* dma */
627 	ATA_CMD_READ,
628 	ATA_CMD_WRITE,
629 	ATA_CMD_READ_EXT,
630 	ATA_CMD_WRITE_EXT,
631 	0,
632 	0,
633 	0,
634 	ATA_CMD_WRITE_FUA_EXT
635 };
636 
637 /**
638  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
639  *	@tf: command to examine and configure
640  *	@dev: device tf belongs to
641  *
642  *	Examine the device configuration and tf->flags to calculate
643  *	the proper read/write commands and protocol to use.
644  *
645  *	LOCKING:
646  *	caller.
647  */
648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
649 {
650 	u8 cmd;
651 
652 	int index, fua, lba48, write;
653 
654 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
655 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
656 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
657 
658 	if (dev->flags & ATA_DFLAG_PIO) {
659 		tf->protocol = ATA_PROT_PIO;
660 		index = dev->multi_count ? 0 : 8;
661 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
662 		/* Unable to use DMA due to host limitation */
663 		tf->protocol = ATA_PROT_PIO;
664 		index = dev->multi_count ? 0 : 8;
665 	} else {
666 		tf->protocol = ATA_PROT_DMA;
667 		index = 16;
668 	}
669 
670 	cmd = ata_rw_cmds[index + fua + lba48 + write];
671 	if (cmd) {
672 		tf->command = cmd;
673 		return 0;
674 	}
675 	return -1;
676 }
677 
678 /**
679  *	ata_tf_read_block - Read block address from ATA taskfile
680  *	@tf: ATA taskfile of interest
681  *	@dev: ATA device @tf belongs to
682  *
683  *	LOCKING:
684  *	None.
685  *
686  *	Read block address from @tf.  This function can handle all
687  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
688  *	flags select the address format to use.
689  *
690  *	RETURNS:
691  *	Block address read from @tf.
692  */
693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
694 {
695 	u64 block = 0;
696 
697 	if (tf->flags & ATA_TFLAG_LBA) {
698 		if (tf->flags & ATA_TFLAG_LBA48) {
699 			block |= (u64)tf->hob_lbah << 40;
700 			block |= (u64)tf->hob_lbam << 32;
701 			block |= (u64)tf->hob_lbal << 24;
702 		} else
703 			block |= (tf->device & 0xf) << 24;
704 
705 		block |= tf->lbah << 16;
706 		block |= tf->lbam << 8;
707 		block |= tf->lbal;
708 	} else {
709 		u32 cyl, head, sect;
710 
711 		cyl = tf->lbam | (tf->lbah << 8);
712 		head = tf->device & 0xf;
713 		sect = tf->lbal;
714 
715 		if (!sect) {
716 			ata_dev_warn(dev,
717 				     "device reported invalid CHS sector 0\n");
718 			sect = 1; /* oh well */
719 		}
720 
721 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
722 	}
723 
724 	return block;
725 }
726 
727 /**
728  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
729  *	@tf: Target ATA taskfile
730  *	@dev: ATA device @tf belongs to
731  *	@block: Block address
732  *	@n_block: Number of blocks
733  *	@tf_flags: RW/FUA etc...
734  *	@tag: tag
735  *
736  *	LOCKING:
737  *	None.
738  *
739  *	Build ATA taskfile @tf for read/write request described by
740  *	@block, @n_block, @tf_flags and @tag on @dev.
741  *
742  *	RETURNS:
743  *
744  *	0 on success, -ERANGE if the request is too large for @dev,
745  *	-EINVAL if the request is invalid.
746  */
747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
748 		    u64 block, u32 n_block, unsigned int tf_flags,
749 		    unsigned int tag)
750 {
751 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
752 	tf->flags |= tf_flags;
753 
754 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
755 		/* yay, NCQ */
756 		if (!lba_48_ok(block, n_block))
757 			return -ERANGE;
758 
759 		tf->protocol = ATA_PROT_NCQ;
760 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
761 
762 		if (tf->flags & ATA_TFLAG_WRITE)
763 			tf->command = ATA_CMD_FPDMA_WRITE;
764 		else
765 			tf->command = ATA_CMD_FPDMA_READ;
766 
767 		tf->nsect = tag << 3;
768 		tf->hob_feature = (n_block >> 8) & 0xff;
769 		tf->feature = n_block & 0xff;
770 
771 		tf->hob_lbah = (block >> 40) & 0xff;
772 		tf->hob_lbam = (block >> 32) & 0xff;
773 		tf->hob_lbal = (block >> 24) & 0xff;
774 		tf->lbah = (block >> 16) & 0xff;
775 		tf->lbam = (block >> 8) & 0xff;
776 		tf->lbal = block & 0xff;
777 
778 		tf->device = ATA_LBA;
779 		if (tf->flags & ATA_TFLAG_FUA)
780 			tf->device |= 1 << 7;
781 	} else if (dev->flags & ATA_DFLAG_LBA) {
782 		tf->flags |= ATA_TFLAG_LBA;
783 
784 		if (lba_28_ok(block, n_block)) {
785 			/* use LBA28 */
786 			tf->device |= (block >> 24) & 0xf;
787 		} else if (lba_48_ok(block, n_block)) {
788 			if (!(dev->flags & ATA_DFLAG_LBA48))
789 				return -ERANGE;
790 
791 			/* use LBA48 */
792 			tf->flags |= ATA_TFLAG_LBA48;
793 
794 			tf->hob_nsect = (n_block >> 8) & 0xff;
795 
796 			tf->hob_lbah = (block >> 40) & 0xff;
797 			tf->hob_lbam = (block >> 32) & 0xff;
798 			tf->hob_lbal = (block >> 24) & 0xff;
799 		} else
800 			/* request too large even for LBA48 */
801 			return -ERANGE;
802 
803 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
804 			return -EINVAL;
805 
806 		tf->nsect = n_block & 0xff;
807 
808 		tf->lbah = (block >> 16) & 0xff;
809 		tf->lbam = (block >> 8) & 0xff;
810 		tf->lbal = block & 0xff;
811 
812 		tf->device |= ATA_LBA;
813 	} else {
814 		/* CHS */
815 		u32 sect, head, cyl, track;
816 
817 		/* The request -may- be too large for CHS addressing. */
818 		if (!lba_28_ok(block, n_block))
819 			return -ERANGE;
820 
821 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
822 			return -EINVAL;
823 
824 		/* Convert LBA to CHS */
825 		track = (u32)block / dev->sectors;
826 		cyl   = track / dev->heads;
827 		head  = track % dev->heads;
828 		sect  = (u32)block % dev->sectors + 1;
829 
830 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
831 			(u32)block, track, cyl, head, sect);
832 
833 		/* Check whether the converted CHS can fit.
834 		   Cylinder: 0-65535
835 		   Head: 0-15
836 		   Sector: 1-255*/
837 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
838 			return -ERANGE;
839 
840 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
841 		tf->lbal = sect;
842 		tf->lbam = cyl;
843 		tf->lbah = cyl >> 8;
844 		tf->device |= head;
845 	}
846 
847 	return 0;
848 }
849 
850 /**
851  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
852  *	@pio_mask: pio_mask
853  *	@mwdma_mask: mwdma_mask
854  *	@udma_mask: udma_mask
855  *
856  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
857  *	unsigned int xfer_mask.
858  *
859  *	LOCKING:
860  *	None.
861  *
862  *	RETURNS:
863  *	Packed xfer_mask.
864  */
865 unsigned long ata_pack_xfermask(unsigned long pio_mask,
866 				unsigned long mwdma_mask,
867 				unsigned long udma_mask)
868 {
869 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
870 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
871 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
872 }
873 
874 /**
875  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
876  *	@xfer_mask: xfer_mask to unpack
877  *	@pio_mask: resulting pio_mask
878  *	@mwdma_mask: resulting mwdma_mask
879  *	@udma_mask: resulting udma_mask
880  *
881  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
882  *	Any NULL distination masks will be ignored.
883  */
884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
885 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
886 {
887 	if (pio_mask)
888 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
889 	if (mwdma_mask)
890 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
891 	if (udma_mask)
892 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
893 }
894 
895 static const struct ata_xfer_ent {
896 	int shift, bits;
897 	u8 base;
898 } ata_xfer_tbl[] = {
899 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
900 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
901 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
902 	{ -1, },
903 };
904 
905 /**
906  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
907  *	@xfer_mask: xfer_mask of interest
908  *
909  *	Return matching XFER_* value for @xfer_mask.  Only the highest
910  *	bit of @xfer_mask is considered.
911  *
912  *	LOCKING:
913  *	None.
914  *
915  *	RETURNS:
916  *	Matching XFER_* value, 0xff if no match found.
917  */
918 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
919 {
920 	int highbit = fls(xfer_mask) - 1;
921 	const struct ata_xfer_ent *ent;
922 
923 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
924 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
925 			return ent->base + highbit - ent->shift;
926 	return 0xff;
927 }
928 
929 /**
930  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
931  *	@xfer_mode: XFER_* of interest
932  *
933  *	Return matching xfer_mask for @xfer_mode.
934  *
935  *	LOCKING:
936  *	None.
937  *
938  *	RETURNS:
939  *	Matching xfer_mask, 0 if no match found.
940  */
941 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
942 {
943 	const struct ata_xfer_ent *ent;
944 
945 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
946 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
947 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
948 				& ~((1 << ent->shift) - 1);
949 	return 0;
950 }
951 
952 /**
953  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
954  *	@xfer_mode: XFER_* of interest
955  *
956  *	Return matching xfer_shift for @xfer_mode.
957  *
958  *	LOCKING:
959  *	None.
960  *
961  *	RETURNS:
962  *	Matching xfer_shift, -1 if no match found.
963  */
964 int ata_xfer_mode2shift(unsigned long xfer_mode)
965 {
966 	const struct ata_xfer_ent *ent;
967 
968 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
969 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
970 			return ent->shift;
971 	return -1;
972 }
973 
974 /**
975  *	ata_mode_string - convert xfer_mask to string
976  *	@xfer_mask: mask of bits supported; only highest bit counts.
977  *
978  *	Determine string which represents the highest speed
979  *	(highest bit in @modemask).
980  *
981  *	LOCKING:
982  *	None.
983  *
984  *	RETURNS:
985  *	Constant C string representing highest speed listed in
986  *	@mode_mask, or the constant C string "<n/a>".
987  */
988 const char *ata_mode_string(unsigned long xfer_mask)
989 {
990 	static const char * const xfer_mode_str[] = {
991 		"PIO0",
992 		"PIO1",
993 		"PIO2",
994 		"PIO3",
995 		"PIO4",
996 		"PIO5",
997 		"PIO6",
998 		"MWDMA0",
999 		"MWDMA1",
1000 		"MWDMA2",
1001 		"MWDMA3",
1002 		"MWDMA4",
1003 		"UDMA/16",
1004 		"UDMA/25",
1005 		"UDMA/33",
1006 		"UDMA/44",
1007 		"UDMA/66",
1008 		"UDMA/100",
1009 		"UDMA/133",
1010 		"UDMA7",
1011 	};
1012 	int highbit;
1013 
1014 	highbit = fls(xfer_mask) - 1;
1015 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016 		return xfer_mode_str[highbit];
1017 	return "<n/a>";
1018 }
1019 
1020 const char *sata_spd_string(unsigned int spd)
1021 {
1022 	static const char * const spd_str[] = {
1023 		"1.5 Gbps",
1024 		"3.0 Gbps",
1025 		"6.0 Gbps",
1026 	};
1027 
1028 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029 		return "<unknown>";
1030 	return spd_str[spd - 1];
1031 }
1032 
1033 /**
1034  *	ata_dev_classify - determine device type based on ATA-spec signature
1035  *	@tf: ATA taskfile register set for device to be identified
1036  *
1037  *	Determine from taskfile register contents whether a device is
1038  *	ATA or ATAPI, as per "Signature and persistence" section
1039  *	of ATA/PI spec (volume 1, sect 5.14).
1040  *
1041  *	LOCKING:
1042  *	None.
1043  *
1044  *	RETURNS:
1045  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046  *	%ATA_DEV_UNKNOWN the event of failure.
1047  */
1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1049 {
1050 	/* Apple's open source Darwin code hints that some devices only
1051 	 * put a proper signature into the LBA mid/high registers,
1052 	 * So, we only check those.  It's sufficient for uniqueness.
1053 	 *
1054 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1056 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1057 	 * spec has never mentioned about using different signatures
1058 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1059 	 * Multiplier specification began to use 0x69/0x96 to identify
1060 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062 	 * 0x69/0x96 shortly and described them as reserved for
1063 	 * SerialATA.
1064 	 *
1065 	 * We follow the current spec and consider that 0x69/0x96
1066 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068 	 * SEMB signature.  This is worked around in
1069 	 * ata_dev_read_id().
1070 	 */
1071 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072 		DPRINTK("found ATA device by sig\n");
1073 		return ATA_DEV_ATA;
1074 	}
1075 
1076 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077 		DPRINTK("found ATAPI device by sig\n");
1078 		return ATA_DEV_ATAPI;
1079 	}
1080 
1081 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082 		DPRINTK("found PMP device by sig\n");
1083 		return ATA_DEV_PMP;
1084 	}
1085 
1086 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088 		return ATA_DEV_SEMB;
1089 	}
1090 
1091 	DPRINTK("unknown device\n");
1092 	return ATA_DEV_UNKNOWN;
1093 }
1094 
1095 /**
1096  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1097  *	@id: IDENTIFY DEVICE results we will examine
1098  *	@s: string into which data is output
1099  *	@ofs: offset into identify device page
1100  *	@len: length of string to return. must be an even number.
1101  *
1102  *	The strings in the IDENTIFY DEVICE page are broken up into
1103  *	16-bit chunks.  Run through the string, and output each
1104  *	8-bit chunk linearly, regardless of platform.
1105  *
1106  *	LOCKING:
1107  *	caller.
1108  */
1109 
1110 void ata_id_string(const u16 *id, unsigned char *s,
1111 		   unsigned int ofs, unsigned int len)
1112 {
1113 	unsigned int c;
1114 
1115 	BUG_ON(len & 1);
1116 
1117 	while (len > 0) {
1118 		c = id[ofs] >> 8;
1119 		*s = c;
1120 		s++;
1121 
1122 		c = id[ofs] & 0xff;
1123 		*s = c;
1124 		s++;
1125 
1126 		ofs++;
1127 		len -= 2;
1128 	}
1129 }
1130 
1131 /**
1132  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133  *	@id: IDENTIFY DEVICE results we will examine
1134  *	@s: string into which data is output
1135  *	@ofs: offset into identify device page
1136  *	@len: length of string to return. must be an odd number.
1137  *
1138  *	This function is identical to ata_id_string except that it
1139  *	trims trailing spaces and terminates the resulting string with
1140  *	null.  @len must be actual maximum length (even number) + 1.
1141  *
1142  *	LOCKING:
1143  *	caller.
1144  */
1145 void ata_id_c_string(const u16 *id, unsigned char *s,
1146 		     unsigned int ofs, unsigned int len)
1147 {
1148 	unsigned char *p;
1149 
1150 	ata_id_string(id, s, ofs, len - 1);
1151 
1152 	p = s + strnlen(s, len - 1);
1153 	while (p > s && p[-1] == ' ')
1154 		p--;
1155 	*p = '\0';
1156 }
1157 
1158 static u64 ata_id_n_sectors(const u16 *id)
1159 {
1160 	if (ata_id_has_lba(id)) {
1161 		if (ata_id_has_lba48(id))
1162 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163 		else
1164 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165 	} else {
1166 		if (ata_id_current_chs_valid(id))
1167 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168 			       id[ATA_ID_CUR_SECTORS];
1169 		else
1170 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171 			       id[ATA_ID_SECTORS];
1172 	}
1173 }
1174 
1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1176 {
1177 	u64 sectors = 0;
1178 
1179 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182 	sectors |= (tf->lbah & 0xff) << 16;
1183 	sectors |= (tf->lbam & 0xff) << 8;
1184 	sectors |= (tf->lbal & 0xff);
1185 
1186 	return sectors;
1187 }
1188 
1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1190 {
1191 	u64 sectors = 0;
1192 
1193 	sectors |= (tf->device & 0x0f) << 24;
1194 	sectors |= (tf->lbah & 0xff) << 16;
1195 	sectors |= (tf->lbam & 0xff) << 8;
1196 	sectors |= (tf->lbal & 0xff);
1197 
1198 	return sectors;
1199 }
1200 
1201 /**
1202  *	ata_read_native_max_address - Read native max address
1203  *	@dev: target device
1204  *	@max_sectors: out parameter for the result native max address
1205  *
1206  *	Perform an LBA48 or LBA28 native size query upon the device in
1207  *	question.
1208  *
1209  *	RETURNS:
1210  *	0 on success, -EACCES if command is aborted by the drive.
1211  *	-EIO on other errors.
1212  */
1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1214 {
1215 	unsigned int err_mask;
1216 	struct ata_taskfile tf;
1217 	int lba48 = ata_id_has_lba48(dev->id);
1218 
1219 	ata_tf_init(dev, &tf);
1220 
1221 	/* always clear all address registers */
1222 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1223 
1224 	if (lba48) {
1225 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226 		tf.flags |= ATA_TFLAG_LBA48;
1227 	} else
1228 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1229 
1230 	tf.protocol |= ATA_PROT_NODATA;
1231 	tf.device |= ATA_LBA;
1232 
1233 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234 	if (err_mask) {
1235 		ata_dev_warn(dev,
1236 			     "failed to read native max address (err_mask=0x%x)\n",
1237 			     err_mask);
1238 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239 			return -EACCES;
1240 		return -EIO;
1241 	}
1242 
1243 	if (lba48)
1244 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1245 	else
1246 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1247 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248 		(*max_sectors)--;
1249 	return 0;
1250 }
1251 
1252 /**
1253  *	ata_set_max_sectors - Set max sectors
1254  *	@dev: target device
1255  *	@new_sectors: new max sectors value to set for the device
1256  *
1257  *	Set max sectors of @dev to @new_sectors.
1258  *
1259  *	RETURNS:
1260  *	0 on success, -EACCES if command is aborted or denied (due to
1261  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1262  *	errors.
1263  */
1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1265 {
1266 	unsigned int err_mask;
1267 	struct ata_taskfile tf;
1268 	int lba48 = ata_id_has_lba48(dev->id);
1269 
1270 	new_sectors--;
1271 
1272 	ata_tf_init(dev, &tf);
1273 
1274 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1275 
1276 	if (lba48) {
1277 		tf.command = ATA_CMD_SET_MAX_EXT;
1278 		tf.flags |= ATA_TFLAG_LBA48;
1279 
1280 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283 	} else {
1284 		tf.command = ATA_CMD_SET_MAX;
1285 
1286 		tf.device |= (new_sectors >> 24) & 0xf;
1287 	}
1288 
1289 	tf.protocol |= ATA_PROT_NODATA;
1290 	tf.device |= ATA_LBA;
1291 
1292 	tf.lbal = (new_sectors >> 0) & 0xff;
1293 	tf.lbam = (new_sectors >> 8) & 0xff;
1294 	tf.lbah = (new_sectors >> 16) & 0xff;
1295 
1296 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297 	if (err_mask) {
1298 		ata_dev_warn(dev,
1299 			     "failed to set max address (err_mask=0x%x)\n",
1300 			     err_mask);
1301 		if (err_mask == AC_ERR_DEV &&
1302 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303 			return -EACCES;
1304 		return -EIO;
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 /**
1311  *	ata_hpa_resize		-	Resize a device with an HPA set
1312  *	@dev: Device to resize
1313  *
1314  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315  *	it if required to the full size of the media. The caller must check
1316  *	the drive has the HPA feature set enabled.
1317  *
1318  *	RETURNS:
1319  *	0 on success, -errno on failure.
1320  */
1321 static int ata_hpa_resize(struct ata_device *dev)
1322 {
1323 	struct ata_eh_context *ehc = &dev->link->eh_context;
1324 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326 	u64 sectors = ata_id_n_sectors(dev->id);
1327 	u64 native_sectors;
1328 	int rc;
1329 
1330 	/* do we need to do it? */
1331 	if (dev->class != ATA_DEV_ATA ||
1332 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334 		return 0;
1335 
1336 	/* read native max address */
1337 	rc = ata_read_native_max_address(dev, &native_sectors);
1338 	if (rc) {
1339 		/* If device aborted the command or HPA isn't going to
1340 		 * be unlocked, skip HPA resizing.
1341 		 */
1342 		if (rc == -EACCES || !unlock_hpa) {
1343 			ata_dev_warn(dev,
1344 				     "HPA support seems broken, skipping HPA handling\n");
1345 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346 
1347 			/* we can continue if device aborted the command */
1348 			if (rc == -EACCES)
1349 				rc = 0;
1350 		}
1351 
1352 		return rc;
1353 	}
1354 	dev->n_native_sectors = native_sectors;
1355 
1356 	/* nothing to do? */
1357 	if (native_sectors <= sectors || !unlock_hpa) {
1358 		if (!print_info || native_sectors == sectors)
1359 			return 0;
1360 
1361 		if (native_sectors > sectors)
1362 			ata_dev_info(dev,
1363 				"HPA detected: current %llu, native %llu\n",
1364 				(unsigned long long)sectors,
1365 				(unsigned long long)native_sectors);
1366 		else if (native_sectors < sectors)
1367 			ata_dev_warn(dev,
1368 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1369 				(unsigned long long)native_sectors,
1370 				(unsigned long long)sectors);
1371 		return 0;
1372 	}
1373 
1374 	/* let's unlock HPA */
1375 	rc = ata_set_max_sectors(dev, native_sectors);
1376 	if (rc == -EACCES) {
1377 		/* if device aborted the command, skip HPA resizing */
1378 		ata_dev_warn(dev,
1379 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380 			     (unsigned long long)sectors,
1381 			     (unsigned long long)native_sectors);
1382 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383 		return 0;
1384 	} else if (rc)
1385 		return rc;
1386 
1387 	/* re-read IDENTIFY data */
1388 	rc = ata_dev_reread_id(dev, 0);
1389 	if (rc) {
1390 		ata_dev_err(dev,
1391 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1392 		return rc;
1393 	}
1394 
1395 	if (print_info) {
1396 		u64 new_sectors = ata_id_n_sectors(dev->id);
1397 		ata_dev_info(dev,
1398 			"HPA unlocked: %llu -> %llu, native %llu\n",
1399 			(unsigned long long)sectors,
1400 			(unsigned long long)new_sectors,
1401 			(unsigned long long)native_sectors);
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 /**
1408  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1409  *	@id: IDENTIFY DEVICE page to dump
1410  *
1411  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1412  *	page.
1413  *
1414  *	LOCKING:
1415  *	caller.
1416  */
1417 
1418 static inline void ata_dump_id(const u16 *id)
1419 {
1420 	DPRINTK("49==0x%04x  "
1421 		"53==0x%04x  "
1422 		"63==0x%04x  "
1423 		"64==0x%04x  "
1424 		"75==0x%04x  \n",
1425 		id[49],
1426 		id[53],
1427 		id[63],
1428 		id[64],
1429 		id[75]);
1430 	DPRINTK("80==0x%04x  "
1431 		"81==0x%04x  "
1432 		"82==0x%04x  "
1433 		"83==0x%04x  "
1434 		"84==0x%04x  \n",
1435 		id[80],
1436 		id[81],
1437 		id[82],
1438 		id[83],
1439 		id[84]);
1440 	DPRINTK("88==0x%04x  "
1441 		"93==0x%04x\n",
1442 		id[88],
1443 		id[93]);
1444 }
1445 
1446 /**
1447  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448  *	@id: IDENTIFY data to compute xfer mask from
1449  *
1450  *	Compute the xfermask for this device. This is not as trivial
1451  *	as it seems if we must consider early devices correctly.
1452  *
1453  *	FIXME: pre IDE drive timing (do we care ?).
1454  *
1455  *	LOCKING:
1456  *	None.
1457  *
1458  *	RETURNS:
1459  *	Computed xfermask
1460  */
1461 unsigned long ata_id_xfermask(const u16 *id)
1462 {
1463 	unsigned long pio_mask, mwdma_mask, udma_mask;
1464 
1465 	/* Usual case. Word 53 indicates word 64 is valid */
1466 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468 		pio_mask <<= 3;
1469 		pio_mask |= 0x7;
1470 	} else {
1471 		/* If word 64 isn't valid then Word 51 high byte holds
1472 		 * the PIO timing number for the maximum. Turn it into
1473 		 * a mask.
1474 		 */
1475 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476 		if (mode < 5)	/* Valid PIO range */
1477 			pio_mask = (2 << mode) - 1;
1478 		else
1479 			pio_mask = 1;
1480 
1481 		/* But wait.. there's more. Design your standards by
1482 		 * committee and you too can get a free iordy field to
1483 		 * process. However its the speeds not the modes that
1484 		 * are supported... Note drivers using the timing API
1485 		 * will get this right anyway
1486 		 */
1487 	}
1488 
1489 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1490 
1491 	if (ata_id_is_cfa(id)) {
1492 		/*
1493 		 *	Process compact flash extended modes
1494 		 */
1495 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1497 
1498 		if (pio)
1499 			pio_mask |= (1 << 5);
1500 		if (pio > 1)
1501 			pio_mask |= (1 << 6);
1502 		if (dma)
1503 			mwdma_mask |= (1 << 3);
1504 		if (dma > 1)
1505 			mwdma_mask |= (1 << 4);
1506 	}
1507 
1508 	udma_mask = 0;
1509 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1511 
1512 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513 }
1514 
1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1516 {
1517 	struct completion *waiting = qc->private_data;
1518 
1519 	complete(waiting);
1520 }
1521 
1522 /**
1523  *	ata_exec_internal_sg - execute libata internal command
1524  *	@dev: Device to which the command is sent
1525  *	@tf: Taskfile registers for the command and the result
1526  *	@cdb: CDB for packet command
1527  *	@dma_dir: Data tranfer direction of the command
1528  *	@sgl: sg list for the data buffer of the command
1529  *	@n_elem: Number of sg entries
1530  *	@timeout: Timeout in msecs (0 for default)
1531  *
1532  *	Executes libata internal command with timeout.  @tf contains
1533  *	command on entry and result on return.  Timeout and error
1534  *	conditions are reported via return value.  No recovery action
1535  *	is taken after a command times out.  It's caller's duty to
1536  *	clean up after timeout.
1537  *
1538  *	LOCKING:
1539  *	None.  Should be called with kernel context, might sleep.
1540  *
1541  *	RETURNS:
1542  *	Zero on success, AC_ERR_* mask on failure
1543  */
1544 unsigned ata_exec_internal_sg(struct ata_device *dev,
1545 			      struct ata_taskfile *tf, const u8 *cdb,
1546 			      int dma_dir, struct scatterlist *sgl,
1547 			      unsigned int n_elem, unsigned long timeout)
1548 {
1549 	struct ata_link *link = dev->link;
1550 	struct ata_port *ap = link->ap;
1551 	u8 command = tf->command;
1552 	int auto_timeout = 0;
1553 	struct ata_queued_cmd *qc;
1554 	unsigned int tag, preempted_tag;
1555 	u32 preempted_sactive, preempted_qc_active;
1556 	int preempted_nr_active_links;
1557 	DECLARE_COMPLETION_ONSTACK(wait);
1558 	unsigned long flags;
1559 	unsigned int err_mask;
1560 	int rc;
1561 
1562 	spin_lock_irqsave(ap->lock, flags);
1563 
1564 	/* no internal command while frozen */
1565 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1566 		spin_unlock_irqrestore(ap->lock, flags);
1567 		return AC_ERR_SYSTEM;
1568 	}
1569 
1570 	/* initialize internal qc */
1571 
1572 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1573 	 * drivers choke if any other tag is given.  This breaks
1574 	 * ata_tag_internal() test for those drivers.  Don't use new
1575 	 * EH stuff without converting to it.
1576 	 */
1577 	if (ap->ops->error_handler)
1578 		tag = ATA_TAG_INTERNAL;
1579 	else
1580 		tag = 0;
1581 
1582 	if (test_and_set_bit(tag, &ap->qc_allocated))
1583 		BUG();
1584 	qc = __ata_qc_from_tag(ap, tag);
1585 
1586 	qc->tag = tag;
1587 	qc->scsicmd = NULL;
1588 	qc->ap = ap;
1589 	qc->dev = dev;
1590 	ata_qc_reinit(qc);
1591 
1592 	preempted_tag = link->active_tag;
1593 	preempted_sactive = link->sactive;
1594 	preempted_qc_active = ap->qc_active;
1595 	preempted_nr_active_links = ap->nr_active_links;
1596 	link->active_tag = ATA_TAG_POISON;
1597 	link->sactive = 0;
1598 	ap->qc_active = 0;
1599 	ap->nr_active_links = 0;
1600 
1601 	/* prepare & issue qc */
1602 	qc->tf = *tf;
1603 	if (cdb)
1604 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1605 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1606 	qc->dma_dir = dma_dir;
1607 	if (dma_dir != DMA_NONE) {
1608 		unsigned int i, buflen = 0;
1609 		struct scatterlist *sg;
1610 
1611 		for_each_sg(sgl, sg, n_elem, i)
1612 			buflen += sg->length;
1613 
1614 		ata_sg_init(qc, sgl, n_elem);
1615 		qc->nbytes = buflen;
1616 	}
1617 
1618 	qc->private_data = &wait;
1619 	qc->complete_fn = ata_qc_complete_internal;
1620 
1621 	ata_qc_issue(qc);
1622 
1623 	spin_unlock_irqrestore(ap->lock, flags);
1624 
1625 	if (!timeout) {
1626 		if (ata_probe_timeout)
1627 			timeout = ata_probe_timeout * 1000;
1628 		else {
1629 			timeout = ata_internal_cmd_timeout(dev, command);
1630 			auto_timeout = 1;
1631 		}
1632 	}
1633 
1634 	if (ap->ops->error_handler)
1635 		ata_eh_release(ap);
1636 
1637 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1638 
1639 	if (ap->ops->error_handler)
1640 		ata_eh_acquire(ap);
1641 
1642 	ata_sff_flush_pio_task(ap);
1643 
1644 	if (!rc) {
1645 		spin_lock_irqsave(ap->lock, flags);
1646 
1647 		/* We're racing with irq here.  If we lose, the
1648 		 * following test prevents us from completing the qc
1649 		 * twice.  If we win, the port is frozen and will be
1650 		 * cleaned up by ->post_internal_cmd().
1651 		 */
1652 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1653 			qc->err_mask |= AC_ERR_TIMEOUT;
1654 
1655 			if (ap->ops->error_handler)
1656 				ata_port_freeze(ap);
1657 			else
1658 				ata_qc_complete(qc);
1659 
1660 			if (ata_msg_warn(ap))
1661 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1662 					     command);
1663 		}
1664 
1665 		spin_unlock_irqrestore(ap->lock, flags);
1666 	}
1667 
1668 	/* do post_internal_cmd */
1669 	if (ap->ops->post_internal_cmd)
1670 		ap->ops->post_internal_cmd(qc);
1671 
1672 	/* perform minimal error analysis */
1673 	if (qc->flags & ATA_QCFLAG_FAILED) {
1674 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1675 			qc->err_mask |= AC_ERR_DEV;
1676 
1677 		if (!qc->err_mask)
1678 			qc->err_mask |= AC_ERR_OTHER;
1679 
1680 		if (qc->err_mask & ~AC_ERR_OTHER)
1681 			qc->err_mask &= ~AC_ERR_OTHER;
1682 	}
1683 
1684 	/* finish up */
1685 	spin_lock_irqsave(ap->lock, flags);
1686 
1687 	*tf = qc->result_tf;
1688 	err_mask = qc->err_mask;
1689 
1690 	ata_qc_free(qc);
1691 	link->active_tag = preempted_tag;
1692 	link->sactive = preempted_sactive;
1693 	ap->qc_active = preempted_qc_active;
1694 	ap->nr_active_links = preempted_nr_active_links;
1695 
1696 	spin_unlock_irqrestore(ap->lock, flags);
1697 
1698 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1699 		ata_internal_cmd_timed_out(dev, command);
1700 
1701 	return err_mask;
1702 }
1703 
1704 /**
1705  *	ata_exec_internal - execute libata internal command
1706  *	@dev: Device to which the command is sent
1707  *	@tf: Taskfile registers for the command and the result
1708  *	@cdb: CDB for packet command
1709  *	@dma_dir: Data tranfer direction of the command
1710  *	@buf: Data buffer of the command
1711  *	@buflen: Length of data buffer
1712  *	@timeout: Timeout in msecs (0 for default)
1713  *
1714  *	Wrapper around ata_exec_internal_sg() which takes simple
1715  *	buffer instead of sg list.
1716  *
1717  *	LOCKING:
1718  *	None.  Should be called with kernel context, might sleep.
1719  *
1720  *	RETURNS:
1721  *	Zero on success, AC_ERR_* mask on failure
1722  */
1723 unsigned ata_exec_internal(struct ata_device *dev,
1724 			   struct ata_taskfile *tf, const u8 *cdb,
1725 			   int dma_dir, void *buf, unsigned int buflen,
1726 			   unsigned long timeout)
1727 {
1728 	struct scatterlist *psg = NULL, sg;
1729 	unsigned int n_elem = 0;
1730 
1731 	if (dma_dir != DMA_NONE) {
1732 		WARN_ON(!buf);
1733 		sg_init_one(&sg, buf, buflen);
1734 		psg = &sg;
1735 		n_elem++;
1736 	}
1737 
1738 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1739 				    timeout);
1740 }
1741 
1742 /**
1743  *	ata_do_simple_cmd - execute simple internal command
1744  *	@dev: Device to which the command is sent
1745  *	@cmd: Opcode to execute
1746  *
1747  *	Execute a 'simple' command, that only consists of the opcode
1748  *	'cmd' itself, without filling any other registers
1749  *
1750  *	LOCKING:
1751  *	Kernel thread context (may sleep).
1752  *
1753  *	RETURNS:
1754  *	Zero on success, AC_ERR_* mask on failure
1755  */
1756 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1757 {
1758 	struct ata_taskfile tf;
1759 
1760 	ata_tf_init(dev, &tf);
1761 
1762 	tf.command = cmd;
1763 	tf.flags |= ATA_TFLAG_DEVICE;
1764 	tf.protocol = ATA_PROT_NODATA;
1765 
1766 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1767 }
1768 
1769 /**
1770  *	ata_pio_need_iordy	-	check if iordy needed
1771  *	@adev: ATA device
1772  *
1773  *	Check if the current speed of the device requires IORDY. Used
1774  *	by various controllers for chip configuration.
1775  */
1776 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1777 {
1778 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1779 	 * lead to controller lock up on certain controllers if the
1780 	 * port is not occupied.  See bko#11703 for details.
1781 	 */
1782 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1783 		return 0;
1784 	/* Controller doesn't support IORDY.  Probably a pointless
1785 	 * check as the caller should know this.
1786 	 */
1787 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1788 		return 0;
1789 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1790 	if (ata_id_is_cfa(adev->id)
1791 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1792 		return 0;
1793 	/* PIO3 and higher it is mandatory */
1794 	if (adev->pio_mode > XFER_PIO_2)
1795 		return 1;
1796 	/* We turn it on when possible */
1797 	if (ata_id_has_iordy(adev->id))
1798 		return 1;
1799 	return 0;
1800 }
1801 
1802 /**
1803  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1804  *	@adev: ATA device
1805  *
1806  *	Compute the highest mode possible if we are not using iordy. Return
1807  *	-1 if no iordy mode is available.
1808  */
1809 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1810 {
1811 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1812 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1813 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1814 		/* Is the speed faster than the drive allows non IORDY ? */
1815 		if (pio) {
1816 			/* This is cycle times not frequency - watch the logic! */
1817 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1818 				return 3 << ATA_SHIFT_PIO;
1819 			return 7 << ATA_SHIFT_PIO;
1820 		}
1821 	}
1822 	return 3 << ATA_SHIFT_PIO;
1823 }
1824 
1825 /**
1826  *	ata_do_dev_read_id		-	default ID read method
1827  *	@dev: device
1828  *	@tf: proposed taskfile
1829  *	@id: data buffer
1830  *
1831  *	Issue the identify taskfile and hand back the buffer containing
1832  *	identify data. For some RAID controllers and for pre ATA devices
1833  *	this function is wrapped or replaced by the driver
1834  */
1835 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1836 					struct ata_taskfile *tf, u16 *id)
1837 {
1838 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1839 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1840 }
1841 
1842 /**
1843  *	ata_dev_read_id - Read ID data from the specified device
1844  *	@dev: target device
1845  *	@p_class: pointer to class of the target device (may be changed)
1846  *	@flags: ATA_READID_* flags
1847  *	@id: buffer to read IDENTIFY data into
1848  *
1849  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1850  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1851  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1852  *	for pre-ATA4 drives.
1853  *
1854  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1855  *	now we abort if we hit that case.
1856  *
1857  *	LOCKING:
1858  *	Kernel thread context (may sleep)
1859  *
1860  *	RETURNS:
1861  *	0 on success, -errno otherwise.
1862  */
1863 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1864 		    unsigned int flags, u16 *id)
1865 {
1866 	struct ata_port *ap = dev->link->ap;
1867 	unsigned int class = *p_class;
1868 	struct ata_taskfile tf;
1869 	unsigned int err_mask = 0;
1870 	const char *reason;
1871 	bool is_semb = class == ATA_DEV_SEMB;
1872 	int may_fallback = 1, tried_spinup = 0;
1873 	int rc;
1874 
1875 	if (ata_msg_ctl(ap))
1876 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1877 
1878 retry:
1879 	ata_tf_init(dev, &tf);
1880 
1881 	switch (class) {
1882 	case ATA_DEV_SEMB:
1883 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1884 	case ATA_DEV_ATA:
1885 		tf.command = ATA_CMD_ID_ATA;
1886 		break;
1887 	case ATA_DEV_ATAPI:
1888 		tf.command = ATA_CMD_ID_ATAPI;
1889 		break;
1890 	default:
1891 		rc = -ENODEV;
1892 		reason = "unsupported class";
1893 		goto err_out;
1894 	}
1895 
1896 	tf.protocol = ATA_PROT_PIO;
1897 
1898 	/* Some devices choke if TF registers contain garbage.  Make
1899 	 * sure those are properly initialized.
1900 	 */
1901 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1902 
1903 	/* Device presence detection is unreliable on some
1904 	 * controllers.  Always poll IDENTIFY if available.
1905 	 */
1906 	tf.flags |= ATA_TFLAG_POLLING;
1907 
1908 	if (ap->ops->read_id)
1909 		err_mask = ap->ops->read_id(dev, &tf, id);
1910 	else
1911 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1912 
1913 	if (err_mask) {
1914 		if (err_mask & AC_ERR_NODEV_HINT) {
1915 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1916 			return -ENOENT;
1917 		}
1918 
1919 		if (is_semb) {
1920 			ata_dev_info(dev,
1921 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1922 			/* SEMB is not supported yet */
1923 			*p_class = ATA_DEV_SEMB_UNSUP;
1924 			return 0;
1925 		}
1926 
1927 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1928 			/* Device or controller might have reported
1929 			 * the wrong device class.  Give a shot at the
1930 			 * other IDENTIFY if the current one is
1931 			 * aborted by the device.
1932 			 */
1933 			if (may_fallback) {
1934 				may_fallback = 0;
1935 
1936 				if (class == ATA_DEV_ATA)
1937 					class = ATA_DEV_ATAPI;
1938 				else
1939 					class = ATA_DEV_ATA;
1940 				goto retry;
1941 			}
1942 
1943 			/* Control reaches here iff the device aborted
1944 			 * both flavors of IDENTIFYs which happens
1945 			 * sometimes with phantom devices.
1946 			 */
1947 			ata_dev_dbg(dev,
1948 				    "both IDENTIFYs aborted, assuming NODEV\n");
1949 			return -ENOENT;
1950 		}
1951 
1952 		rc = -EIO;
1953 		reason = "I/O error";
1954 		goto err_out;
1955 	}
1956 
1957 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1958 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1959 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1960 			    class, may_fallback, tried_spinup);
1961 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1962 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1963 	}
1964 
1965 	/* Falling back doesn't make sense if ID data was read
1966 	 * successfully at least once.
1967 	 */
1968 	may_fallback = 0;
1969 
1970 	swap_buf_le16(id, ATA_ID_WORDS);
1971 
1972 	/* sanity check */
1973 	rc = -EINVAL;
1974 	reason = "device reports invalid type";
1975 
1976 	if (class == ATA_DEV_ATA) {
1977 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1978 			goto err_out;
1979 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1980 							ata_id_is_ata(id)) {
1981 			ata_dev_dbg(dev,
1982 				"host indicates ignore ATA devices, ignored\n");
1983 			return -ENOENT;
1984 		}
1985 	} else {
1986 		if (ata_id_is_ata(id))
1987 			goto err_out;
1988 	}
1989 
1990 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1991 		tried_spinup = 1;
1992 		/*
1993 		 * Drive powered-up in standby mode, and requires a specific
1994 		 * SET_FEATURES spin-up subcommand before it will accept
1995 		 * anything other than the original IDENTIFY command.
1996 		 */
1997 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1998 		if (err_mask && id[2] != 0x738c) {
1999 			rc = -EIO;
2000 			reason = "SPINUP failed";
2001 			goto err_out;
2002 		}
2003 		/*
2004 		 * If the drive initially returned incomplete IDENTIFY info,
2005 		 * we now must reissue the IDENTIFY command.
2006 		 */
2007 		if (id[2] == 0x37c8)
2008 			goto retry;
2009 	}
2010 
2011 	if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2012 		/*
2013 		 * The exact sequence expected by certain pre-ATA4 drives is:
2014 		 * SRST RESET
2015 		 * IDENTIFY (optional in early ATA)
2016 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2017 		 * anything else..
2018 		 * Some drives were very specific about that exact sequence.
2019 		 *
2020 		 * Note that ATA4 says lba is mandatory so the second check
2021 		 * should never trigger.
2022 		 */
2023 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2024 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2025 			if (err_mask) {
2026 				rc = -EIO;
2027 				reason = "INIT_DEV_PARAMS failed";
2028 				goto err_out;
2029 			}
2030 
2031 			/* current CHS translation info (id[53-58]) might be
2032 			 * changed. reread the identify device info.
2033 			 */
2034 			flags &= ~ATA_READID_POSTRESET;
2035 			goto retry;
2036 		}
2037 	}
2038 
2039 	*p_class = class;
2040 
2041 	return 0;
2042 
2043  err_out:
2044 	if (ata_msg_warn(ap))
2045 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2046 			     reason, err_mask);
2047 	return rc;
2048 }
2049 
2050 static int ata_do_link_spd_horkage(struct ata_device *dev)
2051 {
2052 	struct ata_link *plink = ata_dev_phys_link(dev);
2053 	u32 target, target_limit;
2054 
2055 	if (!sata_scr_valid(plink))
2056 		return 0;
2057 
2058 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2059 		target = 1;
2060 	else
2061 		return 0;
2062 
2063 	target_limit = (1 << target) - 1;
2064 
2065 	/* if already on stricter limit, no need to push further */
2066 	if (plink->sata_spd_limit <= target_limit)
2067 		return 0;
2068 
2069 	plink->sata_spd_limit = target_limit;
2070 
2071 	/* Request another EH round by returning -EAGAIN if link is
2072 	 * going faster than the target speed.  Forward progress is
2073 	 * guaranteed by setting sata_spd_limit to target_limit above.
2074 	 */
2075 	if (plink->sata_spd > target) {
2076 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2077 			     sata_spd_string(target));
2078 		return -EAGAIN;
2079 	}
2080 	return 0;
2081 }
2082 
2083 static inline u8 ata_dev_knobble(struct ata_device *dev)
2084 {
2085 	struct ata_port *ap = dev->link->ap;
2086 
2087 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2088 		return 0;
2089 
2090 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2091 }
2092 
2093 static int ata_dev_config_ncq(struct ata_device *dev,
2094 			       char *desc, size_t desc_sz)
2095 {
2096 	struct ata_port *ap = dev->link->ap;
2097 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2098 	unsigned int err_mask;
2099 	char *aa_desc = "";
2100 
2101 	if (!ata_id_has_ncq(dev->id)) {
2102 		desc[0] = '\0';
2103 		return 0;
2104 	}
2105 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2106 		snprintf(desc, desc_sz, "NCQ (not used)");
2107 		return 0;
2108 	}
2109 	if (ap->flags & ATA_FLAG_NCQ) {
2110 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2111 		dev->flags |= ATA_DFLAG_NCQ;
2112 	}
2113 
2114 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2115 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2116 		ata_id_has_fpdma_aa(dev->id)) {
2117 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2118 			SATA_FPDMA_AA);
2119 		if (err_mask) {
2120 			ata_dev_err(dev,
2121 				    "failed to enable AA (error_mask=0x%x)\n",
2122 				    err_mask);
2123 			if (err_mask != AC_ERR_DEV) {
2124 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2125 				return -EIO;
2126 			}
2127 		} else
2128 			aa_desc = ", AA";
2129 	}
2130 
2131 	if (hdepth >= ddepth)
2132 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2133 	else
2134 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2135 			ddepth, aa_desc);
2136 	return 0;
2137 }
2138 
2139 /**
2140  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2141  *	@dev: Target device to configure
2142  *
2143  *	Configure @dev according to @dev->id.  Generic and low-level
2144  *	driver specific fixups are also applied.
2145  *
2146  *	LOCKING:
2147  *	Kernel thread context (may sleep)
2148  *
2149  *	RETURNS:
2150  *	0 on success, -errno otherwise
2151  */
2152 int ata_dev_configure(struct ata_device *dev)
2153 {
2154 	struct ata_port *ap = dev->link->ap;
2155 	struct ata_eh_context *ehc = &dev->link->eh_context;
2156 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2157 	const u16 *id = dev->id;
2158 	unsigned long xfer_mask;
2159 	unsigned int err_mask;
2160 	char revbuf[7];		/* XYZ-99\0 */
2161 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2162 	char modelbuf[ATA_ID_PROD_LEN+1];
2163 	int rc;
2164 
2165 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2166 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2167 		return 0;
2168 	}
2169 
2170 	if (ata_msg_probe(ap))
2171 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2172 
2173 	/* set horkage */
2174 	dev->horkage |= ata_dev_blacklisted(dev);
2175 	ata_force_horkage(dev);
2176 
2177 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2178 		ata_dev_info(dev, "unsupported device, disabling\n");
2179 		ata_dev_disable(dev);
2180 		return 0;
2181 	}
2182 
2183 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2184 	    dev->class == ATA_DEV_ATAPI) {
2185 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2186 			     atapi_enabled ? "not supported with this driver"
2187 			     : "disabled");
2188 		ata_dev_disable(dev);
2189 		return 0;
2190 	}
2191 
2192 	rc = ata_do_link_spd_horkage(dev);
2193 	if (rc)
2194 		return rc;
2195 
2196 	/* let ACPI work its magic */
2197 	rc = ata_acpi_on_devcfg(dev);
2198 	if (rc)
2199 		return rc;
2200 
2201 	/* massage HPA, do it early as it might change IDENTIFY data */
2202 	rc = ata_hpa_resize(dev);
2203 	if (rc)
2204 		return rc;
2205 
2206 	/* print device capabilities */
2207 	if (ata_msg_probe(ap))
2208 		ata_dev_dbg(dev,
2209 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2210 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2211 			    __func__,
2212 			    id[49], id[82], id[83], id[84],
2213 			    id[85], id[86], id[87], id[88]);
2214 
2215 	/* initialize to-be-configured parameters */
2216 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2217 	dev->max_sectors = 0;
2218 	dev->cdb_len = 0;
2219 	dev->n_sectors = 0;
2220 	dev->cylinders = 0;
2221 	dev->heads = 0;
2222 	dev->sectors = 0;
2223 	dev->multi_count = 0;
2224 
2225 	/*
2226 	 * common ATA, ATAPI feature tests
2227 	 */
2228 
2229 	/* find max transfer mode; for printk only */
2230 	xfer_mask = ata_id_xfermask(id);
2231 
2232 	if (ata_msg_probe(ap))
2233 		ata_dump_id(id);
2234 
2235 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2236 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2237 			sizeof(fwrevbuf));
2238 
2239 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2240 			sizeof(modelbuf));
2241 
2242 	/* ATA-specific feature tests */
2243 	if (dev->class == ATA_DEV_ATA) {
2244 		if (ata_id_is_cfa(id)) {
2245 			/* CPRM may make this media unusable */
2246 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2247 				ata_dev_warn(dev,
2248 	"supports DRM functions and may not be fully accessible\n");
2249 			snprintf(revbuf, 7, "CFA");
2250 		} else {
2251 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2252 			/* Warn the user if the device has TPM extensions */
2253 			if (ata_id_has_tpm(id))
2254 				ata_dev_warn(dev,
2255 	"supports DRM functions and may not be fully accessible\n");
2256 		}
2257 
2258 		dev->n_sectors = ata_id_n_sectors(id);
2259 
2260 		/* get current R/W Multiple count setting */
2261 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2262 			unsigned int max = dev->id[47] & 0xff;
2263 			unsigned int cnt = dev->id[59] & 0xff;
2264 			/* only recognize/allow powers of two here */
2265 			if (is_power_of_2(max) && is_power_of_2(cnt))
2266 				if (cnt <= max)
2267 					dev->multi_count = cnt;
2268 		}
2269 
2270 		if (ata_id_has_lba(id)) {
2271 			const char *lba_desc;
2272 			char ncq_desc[24];
2273 
2274 			lba_desc = "LBA";
2275 			dev->flags |= ATA_DFLAG_LBA;
2276 			if (ata_id_has_lba48(id)) {
2277 				dev->flags |= ATA_DFLAG_LBA48;
2278 				lba_desc = "LBA48";
2279 
2280 				if (dev->n_sectors >= (1UL << 28) &&
2281 				    ata_id_has_flush_ext(id))
2282 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2283 			}
2284 
2285 			/* config NCQ */
2286 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2287 			if (rc)
2288 				return rc;
2289 
2290 			/* print device info to dmesg */
2291 			if (ata_msg_drv(ap) && print_info) {
2292 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2293 					     revbuf, modelbuf, fwrevbuf,
2294 					     ata_mode_string(xfer_mask));
2295 				ata_dev_info(dev,
2296 					     "%llu sectors, multi %u: %s %s\n",
2297 					(unsigned long long)dev->n_sectors,
2298 					dev->multi_count, lba_desc, ncq_desc);
2299 			}
2300 		} else {
2301 			/* CHS */
2302 
2303 			/* Default translation */
2304 			dev->cylinders	= id[1];
2305 			dev->heads	= id[3];
2306 			dev->sectors	= id[6];
2307 
2308 			if (ata_id_current_chs_valid(id)) {
2309 				/* Current CHS translation is valid. */
2310 				dev->cylinders = id[54];
2311 				dev->heads     = id[55];
2312 				dev->sectors   = id[56];
2313 			}
2314 
2315 			/* print device info to dmesg */
2316 			if (ata_msg_drv(ap) && print_info) {
2317 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2318 					     revbuf,	modelbuf, fwrevbuf,
2319 					     ata_mode_string(xfer_mask));
2320 				ata_dev_info(dev,
2321 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2322 					     (unsigned long long)dev->n_sectors,
2323 					     dev->multi_count, dev->cylinders,
2324 					     dev->heads, dev->sectors);
2325 			}
2326 		}
2327 
2328 		/* check and mark DevSlp capability */
2329 		if (ata_id_has_devslp(dev->id))
2330 			dev->flags |= ATA_DFLAG_DEVSLP;
2331 
2332 		/* Obtain SATA Settings page from Identify Device Data Log,
2333 		 * which contains DevSlp timing variables etc.
2334 		 * Exclude old devices with ata_id_has_ncq()
2335 		 */
2336 		if (ata_id_has_ncq(dev->id)) {
2337 			err_mask = ata_read_log_page(dev,
2338 						     ATA_LOG_SATA_ID_DEV_DATA,
2339 						     ATA_LOG_SATA_SETTINGS,
2340 						     dev->sata_settings,
2341 						     1);
2342 			if (err_mask)
2343 				ata_dev_dbg(dev,
2344 					    "failed to get Identify Device Data, Emask 0x%x\n",
2345 					    err_mask);
2346 		}
2347 
2348 		dev->cdb_len = 16;
2349 	}
2350 
2351 	/* ATAPI-specific feature tests */
2352 	else if (dev->class == ATA_DEV_ATAPI) {
2353 		const char *cdb_intr_string = "";
2354 		const char *atapi_an_string = "";
2355 		const char *dma_dir_string = "";
2356 		u32 sntf;
2357 
2358 		rc = atapi_cdb_len(id);
2359 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2360 			if (ata_msg_warn(ap))
2361 				ata_dev_warn(dev, "unsupported CDB len\n");
2362 			rc = -EINVAL;
2363 			goto err_out_nosup;
2364 		}
2365 		dev->cdb_len = (unsigned int) rc;
2366 
2367 		/* Enable ATAPI AN if both the host and device have
2368 		 * the support.  If PMP is attached, SNTF is required
2369 		 * to enable ATAPI AN to discern between PHY status
2370 		 * changed notifications and ATAPI ANs.
2371 		 */
2372 		if (atapi_an &&
2373 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2374 		    (!sata_pmp_attached(ap) ||
2375 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2376 			/* issue SET feature command to turn this on */
2377 			err_mask = ata_dev_set_feature(dev,
2378 					SETFEATURES_SATA_ENABLE, SATA_AN);
2379 			if (err_mask)
2380 				ata_dev_err(dev,
2381 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2382 					    err_mask);
2383 			else {
2384 				dev->flags |= ATA_DFLAG_AN;
2385 				atapi_an_string = ", ATAPI AN";
2386 			}
2387 		}
2388 
2389 		if (ata_id_cdb_intr(dev->id)) {
2390 			dev->flags |= ATA_DFLAG_CDB_INTR;
2391 			cdb_intr_string = ", CDB intr";
2392 		}
2393 
2394 		if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2395 			dev->flags |= ATA_DFLAG_DMADIR;
2396 			dma_dir_string = ", DMADIR";
2397 		}
2398 
2399 		if (ata_id_has_da(dev->id))
2400 			dev->flags |= ATA_DFLAG_DA;
2401 
2402 		/* print device info to dmesg */
2403 		if (ata_msg_drv(ap) && print_info)
2404 			ata_dev_info(dev,
2405 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2406 				     modelbuf, fwrevbuf,
2407 				     ata_mode_string(xfer_mask),
2408 				     cdb_intr_string, atapi_an_string,
2409 				     dma_dir_string);
2410 	}
2411 
2412 	/* determine max_sectors */
2413 	dev->max_sectors = ATA_MAX_SECTORS;
2414 	if (dev->flags & ATA_DFLAG_LBA48)
2415 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2416 
2417 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2418 	   200 sectors */
2419 	if (ata_dev_knobble(dev)) {
2420 		if (ata_msg_drv(ap) && print_info)
2421 			ata_dev_info(dev, "applying bridge limits\n");
2422 		dev->udma_mask &= ATA_UDMA5;
2423 		dev->max_sectors = ATA_MAX_SECTORS;
2424 	}
2425 
2426 	if ((dev->class == ATA_DEV_ATAPI) &&
2427 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2428 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2429 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2430 	}
2431 
2432 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2433 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2434 					 dev->max_sectors);
2435 
2436 	if (ap->ops->dev_config)
2437 		ap->ops->dev_config(dev);
2438 
2439 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2440 		/* Let the user know. We don't want to disallow opens for
2441 		   rescue purposes, or in case the vendor is just a blithering
2442 		   idiot. Do this after the dev_config call as some controllers
2443 		   with buggy firmware may want to avoid reporting false device
2444 		   bugs */
2445 
2446 		if (print_info) {
2447 			ata_dev_warn(dev,
2448 "Drive reports diagnostics failure. This may indicate a drive\n");
2449 			ata_dev_warn(dev,
2450 "fault or invalid emulation. Contact drive vendor for information.\n");
2451 		}
2452 	}
2453 
2454 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2455 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2456 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2457 	}
2458 
2459 	return 0;
2460 
2461 err_out_nosup:
2462 	if (ata_msg_probe(ap))
2463 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2464 	return rc;
2465 }
2466 
2467 /**
2468  *	ata_cable_40wire	-	return 40 wire cable type
2469  *	@ap: port
2470  *
2471  *	Helper method for drivers which want to hardwire 40 wire cable
2472  *	detection.
2473  */
2474 
2475 int ata_cable_40wire(struct ata_port *ap)
2476 {
2477 	return ATA_CBL_PATA40;
2478 }
2479 
2480 /**
2481  *	ata_cable_80wire	-	return 80 wire cable type
2482  *	@ap: port
2483  *
2484  *	Helper method for drivers which want to hardwire 80 wire cable
2485  *	detection.
2486  */
2487 
2488 int ata_cable_80wire(struct ata_port *ap)
2489 {
2490 	return ATA_CBL_PATA80;
2491 }
2492 
2493 /**
2494  *	ata_cable_unknown	-	return unknown PATA cable.
2495  *	@ap: port
2496  *
2497  *	Helper method for drivers which have no PATA cable detection.
2498  */
2499 
2500 int ata_cable_unknown(struct ata_port *ap)
2501 {
2502 	return ATA_CBL_PATA_UNK;
2503 }
2504 
2505 /**
2506  *	ata_cable_ignore	-	return ignored PATA cable.
2507  *	@ap: port
2508  *
2509  *	Helper method for drivers which don't use cable type to limit
2510  *	transfer mode.
2511  */
2512 int ata_cable_ignore(struct ata_port *ap)
2513 {
2514 	return ATA_CBL_PATA_IGN;
2515 }
2516 
2517 /**
2518  *	ata_cable_sata	-	return SATA cable type
2519  *	@ap: port
2520  *
2521  *	Helper method for drivers which have SATA cables
2522  */
2523 
2524 int ata_cable_sata(struct ata_port *ap)
2525 {
2526 	return ATA_CBL_SATA;
2527 }
2528 
2529 /**
2530  *	ata_bus_probe - Reset and probe ATA bus
2531  *	@ap: Bus to probe
2532  *
2533  *	Master ATA bus probing function.  Initiates a hardware-dependent
2534  *	bus reset, then attempts to identify any devices found on
2535  *	the bus.
2536  *
2537  *	LOCKING:
2538  *	PCI/etc. bus probe sem.
2539  *
2540  *	RETURNS:
2541  *	Zero on success, negative errno otherwise.
2542  */
2543 
2544 int ata_bus_probe(struct ata_port *ap)
2545 {
2546 	unsigned int classes[ATA_MAX_DEVICES];
2547 	int tries[ATA_MAX_DEVICES];
2548 	int rc;
2549 	struct ata_device *dev;
2550 
2551 	ata_for_each_dev(dev, &ap->link, ALL)
2552 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2553 
2554  retry:
2555 	ata_for_each_dev(dev, &ap->link, ALL) {
2556 		/* If we issue an SRST then an ATA drive (not ATAPI)
2557 		 * may change configuration and be in PIO0 timing. If
2558 		 * we do a hard reset (or are coming from power on)
2559 		 * this is true for ATA or ATAPI. Until we've set a
2560 		 * suitable controller mode we should not touch the
2561 		 * bus as we may be talking too fast.
2562 		 */
2563 		dev->pio_mode = XFER_PIO_0;
2564 		dev->dma_mode = 0xff;
2565 
2566 		/* If the controller has a pio mode setup function
2567 		 * then use it to set the chipset to rights. Don't
2568 		 * touch the DMA setup as that will be dealt with when
2569 		 * configuring devices.
2570 		 */
2571 		if (ap->ops->set_piomode)
2572 			ap->ops->set_piomode(ap, dev);
2573 	}
2574 
2575 	/* reset and determine device classes */
2576 	ap->ops->phy_reset(ap);
2577 
2578 	ata_for_each_dev(dev, &ap->link, ALL) {
2579 		if (dev->class != ATA_DEV_UNKNOWN)
2580 			classes[dev->devno] = dev->class;
2581 		else
2582 			classes[dev->devno] = ATA_DEV_NONE;
2583 
2584 		dev->class = ATA_DEV_UNKNOWN;
2585 	}
2586 
2587 	/* read IDENTIFY page and configure devices. We have to do the identify
2588 	   specific sequence bass-ackwards so that PDIAG- is released by
2589 	   the slave device */
2590 
2591 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2592 		if (tries[dev->devno])
2593 			dev->class = classes[dev->devno];
2594 
2595 		if (!ata_dev_enabled(dev))
2596 			continue;
2597 
2598 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2599 				     dev->id);
2600 		if (rc)
2601 			goto fail;
2602 	}
2603 
2604 	/* Now ask for the cable type as PDIAG- should have been released */
2605 	if (ap->ops->cable_detect)
2606 		ap->cbl = ap->ops->cable_detect(ap);
2607 
2608 	/* We may have SATA bridge glue hiding here irrespective of
2609 	 * the reported cable types and sensed types.  When SATA
2610 	 * drives indicate we have a bridge, we don't know which end
2611 	 * of the link the bridge is which is a problem.
2612 	 */
2613 	ata_for_each_dev(dev, &ap->link, ENABLED)
2614 		if (ata_id_is_sata(dev->id))
2615 			ap->cbl = ATA_CBL_SATA;
2616 
2617 	/* After the identify sequence we can now set up the devices. We do
2618 	   this in the normal order so that the user doesn't get confused */
2619 
2620 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2621 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2622 		rc = ata_dev_configure(dev);
2623 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2624 		if (rc)
2625 			goto fail;
2626 	}
2627 
2628 	/* configure transfer mode */
2629 	rc = ata_set_mode(&ap->link, &dev);
2630 	if (rc)
2631 		goto fail;
2632 
2633 	ata_for_each_dev(dev, &ap->link, ENABLED)
2634 		return 0;
2635 
2636 	return -ENODEV;
2637 
2638  fail:
2639 	tries[dev->devno]--;
2640 
2641 	switch (rc) {
2642 	case -EINVAL:
2643 		/* eeek, something went very wrong, give up */
2644 		tries[dev->devno] = 0;
2645 		break;
2646 
2647 	case -ENODEV:
2648 		/* give it just one more chance */
2649 		tries[dev->devno] = min(tries[dev->devno], 1);
2650 	case -EIO:
2651 		if (tries[dev->devno] == 1) {
2652 			/* This is the last chance, better to slow
2653 			 * down than lose it.
2654 			 */
2655 			sata_down_spd_limit(&ap->link, 0);
2656 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2657 		}
2658 	}
2659 
2660 	if (!tries[dev->devno])
2661 		ata_dev_disable(dev);
2662 
2663 	goto retry;
2664 }
2665 
2666 /**
2667  *	sata_print_link_status - Print SATA link status
2668  *	@link: SATA link to printk link status about
2669  *
2670  *	This function prints link speed and status of a SATA link.
2671  *
2672  *	LOCKING:
2673  *	None.
2674  */
2675 static void sata_print_link_status(struct ata_link *link)
2676 {
2677 	u32 sstatus, scontrol, tmp;
2678 
2679 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2680 		return;
2681 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2682 
2683 	if (ata_phys_link_online(link)) {
2684 		tmp = (sstatus >> 4) & 0xf;
2685 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2686 			      sata_spd_string(tmp), sstatus, scontrol);
2687 	} else {
2688 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2689 			      sstatus, scontrol);
2690 	}
2691 }
2692 
2693 /**
2694  *	ata_dev_pair		-	return other device on cable
2695  *	@adev: device
2696  *
2697  *	Obtain the other device on the same cable, or if none is
2698  *	present NULL is returned
2699  */
2700 
2701 struct ata_device *ata_dev_pair(struct ata_device *adev)
2702 {
2703 	struct ata_link *link = adev->link;
2704 	struct ata_device *pair = &link->device[1 - adev->devno];
2705 	if (!ata_dev_enabled(pair))
2706 		return NULL;
2707 	return pair;
2708 }
2709 
2710 /**
2711  *	sata_down_spd_limit - adjust SATA spd limit downward
2712  *	@link: Link to adjust SATA spd limit for
2713  *	@spd_limit: Additional limit
2714  *
2715  *	Adjust SATA spd limit of @link downward.  Note that this
2716  *	function only adjusts the limit.  The change must be applied
2717  *	using sata_set_spd().
2718  *
2719  *	If @spd_limit is non-zero, the speed is limited to equal to or
2720  *	lower than @spd_limit if such speed is supported.  If
2721  *	@spd_limit is slower than any supported speed, only the lowest
2722  *	supported speed is allowed.
2723  *
2724  *	LOCKING:
2725  *	Inherited from caller.
2726  *
2727  *	RETURNS:
2728  *	0 on success, negative errno on failure
2729  */
2730 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2731 {
2732 	u32 sstatus, spd, mask;
2733 	int rc, bit;
2734 
2735 	if (!sata_scr_valid(link))
2736 		return -EOPNOTSUPP;
2737 
2738 	/* If SCR can be read, use it to determine the current SPD.
2739 	 * If not, use cached value in link->sata_spd.
2740 	 */
2741 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2742 	if (rc == 0 && ata_sstatus_online(sstatus))
2743 		spd = (sstatus >> 4) & 0xf;
2744 	else
2745 		spd = link->sata_spd;
2746 
2747 	mask = link->sata_spd_limit;
2748 	if (mask <= 1)
2749 		return -EINVAL;
2750 
2751 	/* unconditionally mask off the highest bit */
2752 	bit = fls(mask) - 1;
2753 	mask &= ~(1 << bit);
2754 
2755 	/* Mask off all speeds higher than or equal to the current
2756 	 * one.  Force 1.5Gbps if current SPD is not available.
2757 	 */
2758 	if (spd > 1)
2759 		mask &= (1 << (spd - 1)) - 1;
2760 	else
2761 		mask &= 1;
2762 
2763 	/* were we already at the bottom? */
2764 	if (!mask)
2765 		return -EINVAL;
2766 
2767 	if (spd_limit) {
2768 		if (mask & ((1 << spd_limit) - 1))
2769 			mask &= (1 << spd_limit) - 1;
2770 		else {
2771 			bit = ffs(mask) - 1;
2772 			mask = 1 << bit;
2773 		}
2774 	}
2775 
2776 	link->sata_spd_limit = mask;
2777 
2778 	ata_link_warn(link, "limiting SATA link speed to %s\n",
2779 		      sata_spd_string(fls(mask)));
2780 
2781 	return 0;
2782 }
2783 
2784 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2785 {
2786 	struct ata_link *host_link = &link->ap->link;
2787 	u32 limit, target, spd;
2788 
2789 	limit = link->sata_spd_limit;
2790 
2791 	/* Don't configure downstream link faster than upstream link.
2792 	 * It doesn't speed up anything and some PMPs choke on such
2793 	 * configuration.
2794 	 */
2795 	if (!ata_is_host_link(link) && host_link->sata_spd)
2796 		limit &= (1 << host_link->sata_spd) - 1;
2797 
2798 	if (limit == UINT_MAX)
2799 		target = 0;
2800 	else
2801 		target = fls(limit);
2802 
2803 	spd = (*scontrol >> 4) & 0xf;
2804 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2805 
2806 	return spd != target;
2807 }
2808 
2809 /**
2810  *	sata_set_spd_needed - is SATA spd configuration needed
2811  *	@link: Link in question
2812  *
2813  *	Test whether the spd limit in SControl matches
2814  *	@link->sata_spd_limit.  This function is used to determine
2815  *	whether hardreset is necessary to apply SATA spd
2816  *	configuration.
2817  *
2818  *	LOCKING:
2819  *	Inherited from caller.
2820  *
2821  *	RETURNS:
2822  *	1 if SATA spd configuration is needed, 0 otherwise.
2823  */
2824 static int sata_set_spd_needed(struct ata_link *link)
2825 {
2826 	u32 scontrol;
2827 
2828 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2829 		return 1;
2830 
2831 	return __sata_set_spd_needed(link, &scontrol);
2832 }
2833 
2834 /**
2835  *	sata_set_spd - set SATA spd according to spd limit
2836  *	@link: Link to set SATA spd for
2837  *
2838  *	Set SATA spd of @link according to sata_spd_limit.
2839  *
2840  *	LOCKING:
2841  *	Inherited from caller.
2842  *
2843  *	RETURNS:
2844  *	0 if spd doesn't need to be changed, 1 if spd has been
2845  *	changed.  Negative errno if SCR registers are inaccessible.
2846  */
2847 int sata_set_spd(struct ata_link *link)
2848 {
2849 	u32 scontrol;
2850 	int rc;
2851 
2852 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2853 		return rc;
2854 
2855 	if (!__sata_set_spd_needed(link, &scontrol))
2856 		return 0;
2857 
2858 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2859 		return rc;
2860 
2861 	return 1;
2862 }
2863 
2864 /*
2865  * This mode timing computation functionality is ported over from
2866  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2867  */
2868 /*
2869  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2870  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2871  * for UDMA6, which is currently supported only by Maxtor drives.
2872  *
2873  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2874  */
2875 
2876 static const struct ata_timing ata_timing[] = {
2877 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2878 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2879 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2880 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2881 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2882 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2883 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2884 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2885 
2886 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2887 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2888 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2889 
2890 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2891 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2892 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2893 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2894 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2895 
2896 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2897 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2898 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2899 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2900 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2901 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2902 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2903 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2904 
2905 	{ 0xFF }
2906 };
2907 
2908 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2909 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2910 
2911 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2912 {
2913 	q->setup	= EZ(t->setup      * 1000,  T);
2914 	q->act8b	= EZ(t->act8b      * 1000,  T);
2915 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2916 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2917 	q->active	= EZ(t->active     * 1000,  T);
2918 	q->recover	= EZ(t->recover    * 1000,  T);
2919 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2920 	q->cycle	= EZ(t->cycle      * 1000,  T);
2921 	q->udma		= EZ(t->udma       * 1000, UT);
2922 }
2923 
2924 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2925 		      struct ata_timing *m, unsigned int what)
2926 {
2927 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2928 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2929 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2930 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2931 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2932 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2933 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2934 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2935 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2936 }
2937 
2938 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2939 {
2940 	const struct ata_timing *t = ata_timing;
2941 
2942 	while (xfer_mode > t->mode)
2943 		t++;
2944 
2945 	if (xfer_mode == t->mode)
2946 		return t;
2947 
2948 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2949 			__func__, xfer_mode);
2950 
2951 	return NULL;
2952 }
2953 
2954 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2955 		       struct ata_timing *t, int T, int UT)
2956 {
2957 	const u16 *id = adev->id;
2958 	const struct ata_timing *s;
2959 	struct ata_timing p;
2960 
2961 	/*
2962 	 * Find the mode.
2963 	 */
2964 
2965 	if (!(s = ata_timing_find_mode(speed)))
2966 		return -EINVAL;
2967 
2968 	memcpy(t, s, sizeof(*s));
2969 
2970 	/*
2971 	 * If the drive is an EIDE drive, it can tell us it needs extended
2972 	 * PIO/MW_DMA cycle timing.
2973 	 */
2974 
2975 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
2976 		memset(&p, 0, sizeof(p));
2977 
2978 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2979 			if (speed <= XFER_PIO_2)
2980 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2981 			else if ((speed <= XFER_PIO_4) ||
2982 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2983 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2984 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2985 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2986 
2987 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2988 	}
2989 
2990 	/*
2991 	 * Convert the timing to bus clock counts.
2992 	 */
2993 
2994 	ata_timing_quantize(t, t, T, UT);
2995 
2996 	/*
2997 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2998 	 * S.M.A.R.T * and some other commands. We have to ensure that the
2999 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3000 	 */
3001 
3002 	if (speed > XFER_PIO_6) {
3003 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3004 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3005 	}
3006 
3007 	/*
3008 	 * Lengthen active & recovery time so that cycle time is correct.
3009 	 */
3010 
3011 	if (t->act8b + t->rec8b < t->cyc8b) {
3012 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3013 		t->rec8b = t->cyc8b - t->act8b;
3014 	}
3015 
3016 	if (t->active + t->recover < t->cycle) {
3017 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3018 		t->recover = t->cycle - t->active;
3019 	}
3020 
3021 	/* In a few cases quantisation may produce enough errors to
3022 	   leave t->cycle too low for the sum of active and recovery
3023 	   if so we must correct this */
3024 	if (t->active + t->recover > t->cycle)
3025 		t->cycle = t->active + t->recover;
3026 
3027 	return 0;
3028 }
3029 
3030 /**
3031  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3032  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3033  *	@cycle: cycle duration in ns
3034  *
3035  *	Return matching xfer mode for @cycle.  The returned mode is of
3036  *	the transfer type specified by @xfer_shift.  If @cycle is too
3037  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3038  *	than the fastest known mode, the fasted mode is returned.
3039  *
3040  *	LOCKING:
3041  *	None.
3042  *
3043  *	RETURNS:
3044  *	Matching xfer_mode, 0xff if no match found.
3045  */
3046 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3047 {
3048 	u8 base_mode = 0xff, last_mode = 0xff;
3049 	const struct ata_xfer_ent *ent;
3050 	const struct ata_timing *t;
3051 
3052 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3053 		if (ent->shift == xfer_shift)
3054 			base_mode = ent->base;
3055 
3056 	for (t = ata_timing_find_mode(base_mode);
3057 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3058 		unsigned short this_cycle;
3059 
3060 		switch (xfer_shift) {
3061 		case ATA_SHIFT_PIO:
3062 		case ATA_SHIFT_MWDMA:
3063 			this_cycle = t->cycle;
3064 			break;
3065 		case ATA_SHIFT_UDMA:
3066 			this_cycle = t->udma;
3067 			break;
3068 		default:
3069 			return 0xff;
3070 		}
3071 
3072 		if (cycle > this_cycle)
3073 			break;
3074 
3075 		last_mode = t->mode;
3076 	}
3077 
3078 	return last_mode;
3079 }
3080 
3081 /**
3082  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3083  *	@dev: Device to adjust xfer masks
3084  *	@sel: ATA_DNXFER_* selector
3085  *
3086  *	Adjust xfer masks of @dev downward.  Note that this function
3087  *	does not apply the change.  Invoking ata_set_mode() afterwards
3088  *	will apply the limit.
3089  *
3090  *	LOCKING:
3091  *	Inherited from caller.
3092  *
3093  *	RETURNS:
3094  *	0 on success, negative errno on failure
3095  */
3096 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3097 {
3098 	char buf[32];
3099 	unsigned long orig_mask, xfer_mask;
3100 	unsigned long pio_mask, mwdma_mask, udma_mask;
3101 	int quiet, highbit;
3102 
3103 	quiet = !!(sel & ATA_DNXFER_QUIET);
3104 	sel &= ~ATA_DNXFER_QUIET;
3105 
3106 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3107 						  dev->mwdma_mask,
3108 						  dev->udma_mask);
3109 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3110 
3111 	switch (sel) {
3112 	case ATA_DNXFER_PIO:
3113 		highbit = fls(pio_mask) - 1;
3114 		pio_mask &= ~(1 << highbit);
3115 		break;
3116 
3117 	case ATA_DNXFER_DMA:
3118 		if (udma_mask) {
3119 			highbit = fls(udma_mask) - 1;
3120 			udma_mask &= ~(1 << highbit);
3121 			if (!udma_mask)
3122 				return -ENOENT;
3123 		} else if (mwdma_mask) {
3124 			highbit = fls(mwdma_mask) - 1;
3125 			mwdma_mask &= ~(1 << highbit);
3126 			if (!mwdma_mask)
3127 				return -ENOENT;
3128 		}
3129 		break;
3130 
3131 	case ATA_DNXFER_40C:
3132 		udma_mask &= ATA_UDMA_MASK_40C;
3133 		break;
3134 
3135 	case ATA_DNXFER_FORCE_PIO0:
3136 		pio_mask &= 1;
3137 	case ATA_DNXFER_FORCE_PIO:
3138 		mwdma_mask = 0;
3139 		udma_mask = 0;
3140 		break;
3141 
3142 	default:
3143 		BUG();
3144 	}
3145 
3146 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3147 
3148 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3149 		return -ENOENT;
3150 
3151 	if (!quiet) {
3152 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3153 			snprintf(buf, sizeof(buf), "%s:%s",
3154 				 ata_mode_string(xfer_mask),
3155 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3156 		else
3157 			snprintf(buf, sizeof(buf), "%s",
3158 				 ata_mode_string(xfer_mask));
3159 
3160 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3161 	}
3162 
3163 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3164 			    &dev->udma_mask);
3165 
3166 	return 0;
3167 }
3168 
3169 static int ata_dev_set_mode(struct ata_device *dev)
3170 {
3171 	struct ata_port *ap = dev->link->ap;
3172 	struct ata_eh_context *ehc = &dev->link->eh_context;
3173 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3174 	const char *dev_err_whine = "";
3175 	int ign_dev_err = 0;
3176 	unsigned int err_mask = 0;
3177 	int rc;
3178 
3179 	dev->flags &= ~ATA_DFLAG_PIO;
3180 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3181 		dev->flags |= ATA_DFLAG_PIO;
3182 
3183 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3184 		dev_err_whine = " (SET_XFERMODE skipped)";
3185 	else {
3186 		if (nosetxfer)
3187 			ata_dev_warn(dev,
3188 				     "NOSETXFER but PATA detected - can't "
3189 				     "skip SETXFER, might malfunction\n");
3190 		err_mask = ata_dev_set_xfermode(dev);
3191 	}
3192 
3193 	if (err_mask & ~AC_ERR_DEV)
3194 		goto fail;
3195 
3196 	/* revalidate */
3197 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3198 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3199 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3200 	if (rc)
3201 		return rc;
3202 
3203 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3204 		/* Old CFA may refuse this command, which is just fine */
3205 		if (ata_id_is_cfa(dev->id))
3206 			ign_dev_err = 1;
3207 		/* Catch several broken garbage emulations plus some pre
3208 		   ATA devices */
3209 		if (ata_id_major_version(dev->id) == 0 &&
3210 					dev->pio_mode <= XFER_PIO_2)
3211 			ign_dev_err = 1;
3212 		/* Some very old devices and some bad newer ones fail
3213 		   any kind of SET_XFERMODE request but support PIO0-2
3214 		   timings and no IORDY */
3215 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3216 			ign_dev_err = 1;
3217 	}
3218 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3219 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3220 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3221 	    dev->dma_mode == XFER_MW_DMA_0 &&
3222 	    (dev->id[63] >> 8) & 1)
3223 		ign_dev_err = 1;
3224 
3225 	/* if the device is actually configured correctly, ignore dev err */
3226 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3227 		ign_dev_err = 1;
3228 
3229 	if (err_mask & AC_ERR_DEV) {
3230 		if (!ign_dev_err)
3231 			goto fail;
3232 		else
3233 			dev_err_whine = " (device error ignored)";
3234 	}
3235 
3236 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3237 		dev->xfer_shift, (int)dev->xfer_mode);
3238 
3239 	ata_dev_info(dev, "configured for %s%s\n",
3240 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3241 		     dev_err_whine);
3242 
3243 	return 0;
3244 
3245  fail:
3246 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3247 	return -EIO;
3248 }
3249 
3250 /**
3251  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3252  *	@link: link on which timings will be programmed
3253  *	@r_failed_dev: out parameter for failed device
3254  *
3255  *	Standard implementation of the function used to tune and set
3256  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3257  *	ata_dev_set_mode() fails, pointer to the failing device is
3258  *	returned in @r_failed_dev.
3259  *
3260  *	LOCKING:
3261  *	PCI/etc. bus probe sem.
3262  *
3263  *	RETURNS:
3264  *	0 on success, negative errno otherwise
3265  */
3266 
3267 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3268 {
3269 	struct ata_port *ap = link->ap;
3270 	struct ata_device *dev;
3271 	int rc = 0, used_dma = 0, found = 0;
3272 
3273 	/* step 1: calculate xfer_mask */
3274 	ata_for_each_dev(dev, link, ENABLED) {
3275 		unsigned long pio_mask, dma_mask;
3276 		unsigned int mode_mask;
3277 
3278 		mode_mask = ATA_DMA_MASK_ATA;
3279 		if (dev->class == ATA_DEV_ATAPI)
3280 			mode_mask = ATA_DMA_MASK_ATAPI;
3281 		else if (ata_id_is_cfa(dev->id))
3282 			mode_mask = ATA_DMA_MASK_CFA;
3283 
3284 		ata_dev_xfermask(dev);
3285 		ata_force_xfermask(dev);
3286 
3287 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3288 
3289 		if (libata_dma_mask & mode_mask)
3290 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3291 						     dev->udma_mask);
3292 		else
3293 			dma_mask = 0;
3294 
3295 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3296 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3297 
3298 		found = 1;
3299 		if (ata_dma_enabled(dev))
3300 			used_dma = 1;
3301 	}
3302 	if (!found)
3303 		goto out;
3304 
3305 	/* step 2: always set host PIO timings */
3306 	ata_for_each_dev(dev, link, ENABLED) {
3307 		if (dev->pio_mode == 0xff) {
3308 			ata_dev_warn(dev, "no PIO support\n");
3309 			rc = -EINVAL;
3310 			goto out;
3311 		}
3312 
3313 		dev->xfer_mode = dev->pio_mode;
3314 		dev->xfer_shift = ATA_SHIFT_PIO;
3315 		if (ap->ops->set_piomode)
3316 			ap->ops->set_piomode(ap, dev);
3317 	}
3318 
3319 	/* step 3: set host DMA timings */
3320 	ata_for_each_dev(dev, link, ENABLED) {
3321 		if (!ata_dma_enabled(dev))
3322 			continue;
3323 
3324 		dev->xfer_mode = dev->dma_mode;
3325 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3326 		if (ap->ops->set_dmamode)
3327 			ap->ops->set_dmamode(ap, dev);
3328 	}
3329 
3330 	/* step 4: update devices' xfer mode */
3331 	ata_for_each_dev(dev, link, ENABLED) {
3332 		rc = ata_dev_set_mode(dev);
3333 		if (rc)
3334 			goto out;
3335 	}
3336 
3337 	/* Record simplex status. If we selected DMA then the other
3338 	 * host channels are not permitted to do so.
3339 	 */
3340 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3341 		ap->host->simplex_claimed = ap;
3342 
3343  out:
3344 	if (rc)
3345 		*r_failed_dev = dev;
3346 	return rc;
3347 }
3348 
3349 /**
3350  *	ata_wait_ready - wait for link to become ready
3351  *	@link: link to be waited on
3352  *	@deadline: deadline jiffies for the operation
3353  *	@check_ready: callback to check link readiness
3354  *
3355  *	Wait for @link to become ready.  @check_ready should return
3356  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3357  *	link doesn't seem to be occupied, other errno for other error
3358  *	conditions.
3359  *
3360  *	Transient -ENODEV conditions are allowed for
3361  *	ATA_TMOUT_FF_WAIT.
3362  *
3363  *	LOCKING:
3364  *	EH context.
3365  *
3366  *	RETURNS:
3367  *	0 if @linke is ready before @deadline; otherwise, -errno.
3368  */
3369 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3370 		   int (*check_ready)(struct ata_link *link))
3371 {
3372 	unsigned long start = jiffies;
3373 	unsigned long nodev_deadline;
3374 	int warned = 0;
3375 
3376 	/* choose which 0xff timeout to use, read comment in libata.h */
3377 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3378 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3379 	else
3380 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3381 
3382 	/* Slave readiness can't be tested separately from master.  On
3383 	 * M/S emulation configuration, this function should be called
3384 	 * only on the master and it will handle both master and slave.
3385 	 */
3386 	WARN_ON(link == link->ap->slave_link);
3387 
3388 	if (time_after(nodev_deadline, deadline))
3389 		nodev_deadline = deadline;
3390 
3391 	while (1) {
3392 		unsigned long now = jiffies;
3393 		int ready, tmp;
3394 
3395 		ready = tmp = check_ready(link);
3396 		if (ready > 0)
3397 			return 0;
3398 
3399 		/*
3400 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3401 		 * is online.  Also, some SATA devices take a long
3402 		 * time to clear 0xff after reset.  Wait for
3403 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3404 		 * offline.
3405 		 *
3406 		 * Note that some PATA controllers (pata_ali) explode
3407 		 * if status register is read more than once when
3408 		 * there's no device attached.
3409 		 */
3410 		if (ready == -ENODEV) {
3411 			if (ata_link_online(link))
3412 				ready = 0;
3413 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3414 				 !ata_link_offline(link) &&
3415 				 time_before(now, nodev_deadline))
3416 				ready = 0;
3417 		}
3418 
3419 		if (ready)
3420 			return ready;
3421 		if (time_after(now, deadline))
3422 			return -EBUSY;
3423 
3424 		if (!warned && time_after(now, start + 5 * HZ) &&
3425 		    (deadline - now > 3 * HZ)) {
3426 			ata_link_warn(link,
3427 				"link is slow to respond, please be patient "
3428 				"(ready=%d)\n", tmp);
3429 			warned = 1;
3430 		}
3431 
3432 		ata_msleep(link->ap, 50);
3433 	}
3434 }
3435 
3436 /**
3437  *	ata_wait_after_reset - wait for link to become ready after reset
3438  *	@link: link to be waited on
3439  *	@deadline: deadline jiffies for the operation
3440  *	@check_ready: callback to check link readiness
3441  *
3442  *	Wait for @link to become ready after reset.
3443  *
3444  *	LOCKING:
3445  *	EH context.
3446  *
3447  *	RETURNS:
3448  *	0 if @linke is ready before @deadline; otherwise, -errno.
3449  */
3450 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3451 				int (*check_ready)(struct ata_link *link))
3452 {
3453 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3454 
3455 	return ata_wait_ready(link, deadline, check_ready);
3456 }
3457 
3458 /**
3459  *	sata_link_debounce - debounce SATA phy status
3460  *	@link: ATA link to debounce SATA phy status for
3461  *	@params: timing parameters { interval, duratinon, timeout } in msec
3462  *	@deadline: deadline jiffies for the operation
3463  *
3464  *	Make sure SStatus of @link reaches stable state, determined by
3465  *	holding the same value where DET is not 1 for @duration polled
3466  *	every @interval, before @timeout.  Timeout constraints the
3467  *	beginning of the stable state.  Because DET gets stuck at 1 on
3468  *	some controllers after hot unplugging, this functions waits
3469  *	until timeout then returns 0 if DET is stable at 1.
3470  *
3471  *	@timeout is further limited by @deadline.  The sooner of the
3472  *	two is used.
3473  *
3474  *	LOCKING:
3475  *	Kernel thread context (may sleep)
3476  *
3477  *	RETURNS:
3478  *	0 on success, -errno on failure.
3479  */
3480 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3481 		       unsigned long deadline)
3482 {
3483 	unsigned long interval = params[0];
3484 	unsigned long duration = params[1];
3485 	unsigned long last_jiffies, t;
3486 	u32 last, cur;
3487 	int rc;
3488 
3489 	t = ata_deadline(jiffies, params[2]);
3490 	if (time_before(t, deadline))
3491 		deadline = t;
3492 
3493 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3494 		return rc;
3495 	cur &= 0xf;
3496 
3497 	last = cur;
3498 	last_jiffies = jiffies;
3499 
3500 	while (1) {
3501 		ata_msleep(link->ap, interval);
3502 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3503 			return rc;
3504 		cur &= 0xf;
3505 
3506 		/* DET stable? */
3507 		if (cur == last) {
3508 			if (cur == 1 && time_before(jiffies, deadline))
3509 				continue;
3510 			if (time_after(jiffies,
3511 				       ata_deadline(last_jiffies, duration)))
3512 				return 0;
3513 			continue;
3514 		}
3515 
3516 		/* unstable, start over */
3517 		last = cur;
3518 		last_jiffies = jiffies;
3519 
3520 		/* Check deadline.  If debouncing failed, return
3521 		 * -EPIPE to tell upper layer to lower link speed.
3522 		 */
3523 		if (time_after(jiffies, deadline))
3524 			return -EPIPE;
3525 	}
3526 }
3527 
3528 /**
3529  *	sata_link_resume - resume SATA link
3530  *	@link: ATA link to resume SATA
3531  *	@params: timing parameters { interval, duratinon, timeout } in msec
3532  *	@deadline: deadline jiffies for the operation
3533  *
3534  *	Resume SATA phy @link and debounce it.
3535  *
3536  *	LOCKING:
3537  *	Kernel thread context (may sleep)
3538  *
3539  *	RETURNS:
3540  *	0 on success, -errno on failure.
3541  */
3542 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3543 		     unsigned long deadline)
3544 {
3545 	int tries = ATA_LINK_RESUME_TRIES;
3546 	u32 scontrol, serror;
3547 	int rc;
3548 
3549 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3550 		return rc;
3551 
3552 	/*
3553 	 * Writes to SControl sometimes get ignored under certain
3554 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3555 	 * cleared.
3556 	 */
3557 	do {
3558 		scontrol = (scontrol & 0x0f0) | 0x300;
3559 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3560 			return rc;
3561 		/*
3562 		 * Some PHYs react badly if SStatus is pounded
3563 		 * immediately after resuming.  Delay 200ms before
3564 		 * debouncing.
3565 		 */
3566 		ata_msleep(link->ap, 200);
3567 
3568 		/* is SControl restored correctly? */
3569 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3570 			return rc;
3571 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3572 
3573 	if ((scontrol & 0xf0f) != 0x300) {
3574 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3575 			     scontrol);
3576 		return 0;
3577 	}
3578 
3579 	if (tries < ATA_LINK_RESUME_TRIES)
3580 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3581 			      ATA_LINK_RESUME_TRIES - tries);
3582 
3583 	if ((rc = sata_link_debounce(link, params, deadline)))
3584 		return rc;
3585 
3586 	/* clear SError, some PHYs require this even for SRST to work */
3587 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3588 		rc = sata_scr_write(link, SCR_ERROR, serror);
3589 
3590 	return rc != -EINVAL ? rc : 0;
3591 }
3592 
3593 /**
3594  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3595  *	@link: ATA link to manipulate SControl for
3596  *	@policy: LPM policy to configure
3597  *	@spm_wakeup: initiate LPM transition to active state
3598  *
3599  *	Manipulate the IPM field of the SControl register of @link
3600  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3601  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3602  *	the link.  This function also clears PHYRDY_CHG before
3603  *	returning.
3604  *
3605  *	LOCKING:
3606  *	EH context.
3607  *
3608  *	RETURNS:
3609  *	0 on succes, -errno otherwise.
3610  */
3611 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3612 		      bool spm_wakeup)
3613 {
3614 	struct ata_eh_context *ehc = &link->eh_context;
3615 	bool woken_up = false;
3616 	u32 scontrol;
3617 	int rc;
3618 
3619 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3620 	if (rc)
3621 		return rc;
3622 
3623 	switch (policy) {
3624 	case ATA_LPM_MAX_POWER:
3625 		/* disable all LPM transitions */
3626 		scontrol |= (0x7 << 8);
3627 		/* initiate transition to active state */
3628 		if (spm_wakeup) {
3629 			scontrol |= (0x4 << 12);
3630 			woken_up = true;
3631 		}
3632 		break;
3633 	case ATA_LPM_MED_POWER:
3634 		/* allow LPM to PARTIAL */
3635 		scontrol &= ~(0x1 << 8);
3636 		scontrol |= (0x6 << 8);
3637 		break;
3638 	case ATA_LPM_MIN_POWER:
3639 		if (ata_link_nr_enabled(link) > 0)
3640 			/* no restrictions on LPM transitions */
3641 			scontrol &= ~(0x7 << 8);
3642 		else {
3643 			/* empty port, power off */
3644 			scontrol &= ~0xf;
3645 			scontrol |= (0x1 << 2);
3646 		}
3647 		break;
3648 	default:
3649 		WARN_ON(1);
3650 	}
3651 
3652 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3653 	if (rc)
3654 		return rc;
3655 
3656 	/* give the link time to transit out of LPM state */
3657 	if (woken_up)
3658 		msleep(10);
3659 
3660 	/* clear PHYRDY_CHG from SError */
3661 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3662 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3663 }
3664 
3665 /**
3666  *	ata_std_prereset - prepare for reset
3667  *	@link: ATA link to be reset
3668  *	@deadline: deadline jiffies for the operation
3669  *
3670  *	@link is about to be reset.  Initialize it.  Failure from
3671  *	prereset makes libata abort whole reset sequence and give up
3672  *	that port, so prereset should be best-effort.  It does its
3673  *	best to prepare for reset sequence but if things go wrong, it
3674  *	should just whine, not fail.
3675  *
3676  *	LOCKING:
3677  *	Kernel thread context (may sleep)
3678  *
3679  *	RETURNS:
3680  *	0 on success, -errno otherwise.
3681  */
3682 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3683 {
3684 	struct ata_port *ap = link->ap;
3685 	struct ata_eh_context *ehc = &link->eh_context;
3686 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3687 	int rc;
3688 
3689 	/* if we're about to do hardreset, nothing more to do */
3690 	if (ehc->i.action & ATA_EH_HARDRESET)
3691 		return 0;
3692 
3693 	/* if SATA, resume link */
3694 	if (ap->flags & ATA_FLAG_SATA) {
3695 		rc = sata_link_resume(link, timing, deadline);
3696 		/* whine about phy resume failure but proceed */
3697 		if (rc && rc != -EOPNOTSUPP)
3698 			ata_link_warn(link,
3699 				      "failed to resume link for reset (errno=%d)\n",
3700 				      rc);
3701 	}
3702 
3703 	/* no point in trying softreset on offline link */
3704 	if (ata_phys_link_offline(link))
3705 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3706 
3707 	return 0;
3708 }
3709 
3710 /**
3711  *	sata_link_hardreset - reset link via SATA phy reset
3712  *	@link: link to reset
3713  *	@timing: timing parameters { interval, duratinon, timeout } in msec
3714  *	@deadline: deadline jiffies for the operation
3715  *	@online: optional out parameter indicating link onlineness
3716  *	@check_ready: optional callback to check link readiness
3717  *
3718  *	SATA phy-reset @link using DET bits of SControl register.
3719  *	After hardreset, link readiness is waited upon using
3720  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3721  *	allowed to not specify @check_ready and wait itself after this
3722  *	function returns.  Device classification is LLD's
3723  *	responsibility.
3724  *
3725  *	*@online is set to one iff reset succeeded and @link is online
3726  *	after reset.
3727  *
3728  *	LOCKING:
3729  *	Kernel thread context (may sleep)
3730  *
3731  *	RETURNS:
3732  *	0 on success, -errno otherwise.
3733  */
3734 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3735 			unsigned long deadline,
3736 			bool *online, int (*check_ready)(struct ata_link *))
3737 {
3738 	u32 scontrol;
3739 	int rc;
3740 
3741 	DPRINTK("ENTER\n");
3742 
3743 	if (online)
3744 		*online = false;
3745 
3746 	if (sata_set_spd_needed(link)) {
3747 		/* SATA spec says nothing about how to reconfigure
3748 		 * spd.  To be on the safe side, turn off phy during
3749 		 * reconfiguration.  This works for at least ICH7 AHCI
3750 		 * and Sil3124.
3751 		 */
3752 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3753 			goto out;
3754 
3755 		scontrol = (scontrol & 0x0f0) | 0x304;
3756 
3757 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3758 			goto out;
3759 
3760 		sata_set_spd(link);
3761 	}
3762 
3763 	/* issue phy wake/reset */
3764 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3765 		goto out;
3766 
3767 	scontrol = (scontrol & 0x0f0) | 0x301;
3768 
3769 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3770 		goto out;
3771 
3772 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3773 	 * 10.4.2 says at least 1 ms.
3774 	 */
3775 	ata_msleep(link->ap, 1);
3776 
3777 	/* bring link back */
3778 	rc = sata_link_resume(link, timing, deadline);
3779 	if (rc)
3780 		goto out;
3781 	/* if link is offline nothing more to do */
3782 	if (ata_phys_link_offline(link))
3783 		goto out;
3784 
3785 	/* Link is online.  From this point, -ENODEV too is an error. */
3786 	if (online)
3787 		*online = true;
3788 
3789 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3790 		/* If PMP is supported, we have to do follow-up SRST.
3791 		 * Some PMPs don't send D2H Reg FIS after hardreset if
3792 		 * the first port is empty.  Wait only for
3793 		 * ATA_TMOUT_PMP_SRST_WAIT.
3794 		 */
3795 		if (check_ready) {
3796 			unsigned long pmp_deadline;
3797 
3798 			pmp_deadline = ata_deadline(jiffies,
3799 						    ATA_TMOUT_PMP_SRST_WAIT);
3800 			if (time_after(pmp_deadline, deadline))
3801 				pmp_deadline = deadline;
3802 			ata_wait_ready(link, pmp_deadline, check_ready);
3803 		}
3804 		rc = -EAGAIN;
3805 		goto out;
3806 	}
3807 
3808 	rc = 0;
3809 	if (check_ready)
3810 		rc = ata_wait_ready(link, deadline, check_ready);
3811  out:
3812 	if (rc && rc != -EAGAIN) {
3813 		/* online is set iff link is online && reset succeeded */
3814 		if (online)
3815 			*online = false;
3816 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3817 	}
3818 	DPRINTK("EXIT, rc=%d\n", rc);
3819 	return rc;
3820 }
3821 
3822 /**
3823  *	sata_std_hardreset - COMRESET w/o waiting or classification
3824  *	@link: link to reset
3825  *	@class: resulting class of attached device
3826  *	@deadline: deadline jiffies for the operation
3827  *
3828  *	Standard SATA COMRESET w/o waiting or classification.
3829  *
3830  *	LOCKING:
3831  *	Kernel thread context (may sleep)
3832  *
3833  *	RETURNS:
3834  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3835  */
3836 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3837 		       unsigned long deadline)
3838 {
3839 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3840 	bool online;
3841 	int rc;
3842 
3843 	/* do hardreset */
3844 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3845 	return online ? -EAGAIN : rc;
3846 }
3847 
3848 /**
3849  *	ata_std_postreset - standard postreset callback
3850  *	@link: the target ata_link
3851  *	@classes: classes of attached devices
3852  *
3853  *	This function is invoked after a successful reset.  Note that
3854  *	the device might have been reset more than once using
3855  *	different reset methods before postreset is invoked.
3856  *
3857  *	LOCKING:
3858  *	Kernel thread context (may sleep)
3859  */
3860 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3861 {
3862 	u32 serror;
3863 
3864 	DPRINTK("ENTER\n");
3865 
3866 	/* reset complete, clear SError */
3867 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3868 		sata_scr_write(link, SCR_ERROR, serror);
3869 
3870 	/* print link status */
3871 	sata_print_link_status(link);
3872 
3873 	DPRINTK("EXIT\n");
3874 }
3875 
3876 /**
3877  *	ata_dev_same_device - Determine whether new ID matches configured device
3878  *	@dev: device to compare against
3879  *	@new_class: class of the new device
3880  *	@new_id: IDENTIFY page of the new device
3881  *
3882  *	Compare @new_class and @new_id against @dev and determine
3883  *	whether @dev is the device indicated by @new_class and
3884  *	@new_id.
3885  *
3886  *	LOCKING:
3887  *	None.
3888  *
3889  *	RETURNS:
3890  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3891  */
3892 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3893 			       const u16 *new_id)
3894 {
3895 	const u16 *old_id = dev->id;
3896 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3897 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3898 
3899 	if (dev->class != new_class) {
3900 		ata_dev_info(dev, "class mismatch %d != %d\n",
3901 			     dev->class, new_class);
3902 		return 0;
3903 	}
3904 
3905 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3906 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3907 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3908 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3909 
3910 	if (strcmp(model[0], model[1])) {
3911 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3912 			     model[0], model[1]);
3913 		return 0;
3914 	}
3915 
3916 	if (strcmp(serial[0], serial[1])) {
3917 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3918 			     serial[0], serial[1]);
3919 		return 0;
3920 	}
3921 
3922 	return 1;
3923 }
3924 
3925 /**
3926  *	ata_dev_reread_id - Re-read IDENTIFY data
3927  *	@dev: target ATA device
3928  *	@readid_flags: read ID flags
3929  *
3930  *	Re-read IDENTIFY page and make sure @dev is still attached to
3931  *	the port.
3932  *
3933  *	LOCKING:
3934  *	Kernel thread context (may sleep)
3935  *
3936  *	RETURNS:
3937  *	0 on success, negative errno otherwise
3938  */
3939 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3940 {
3941 	unsigned int class = dev->class;
3942 	u16 *id = (void *)dev->link->ap->sector_buf;
3943 	int rc;
3944 
3945 	/* read ID data */
3946 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3947 	if (rc)
3948 		return rc;
3949 
3950 	/* is the device still there? */
3951 	if (!ata_dev_same_device(dev, class, id))
3952 		return -ENODEV;
3953 
3954 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3955 	return 0;
3956 }
3957 
3958 /**
3959  *	ata_dev_revalidate - Revalidate ATA device
3960  *	@dev: device to revalidate
3961  *	@new_class: new class code
3962  *	@readid_flags: read ID flags
3963  *
3964  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3965  *	port and reconfigure it according to the new IDENTIFY page.
3966  *
3967  *	LOCKING:
3968  *	Kernel thread context (may sleep)
3969  *
3970  *	RETURNS:
3971  *	0 on success, negative errno otherwise
3972  */
3973 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3974 		       unsigned int readid_flags)
3975 {
3976 	u64 n_sectors = dev->n_sectors;
3977 	u64 n_native_sectors = dev->n_native_sectors;
3978 	int rc;
3979 
3980 	if (!ata_dev_enabled(dev))
3981 		return -ENODEV;
3982 
3983 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3984 	if (ata_class_enabled(new_class) &&
3985 	    new_class != ATA_DEV_ATA &&
3986 	    new_class != ATA_DEV_ATAPI &&
3987 	    new_class != ATA_DEV_SEMB) {
3988 		ata_dev_info(dev, "class mismatch %u != %u\n",
3989 			     dev->class, new_class);
3990 		rc = -ENODEV;
3991 		goto fail;
3992 	}
3993 
3994 	/* re-read ID */
3995 	rc = ata_dev_reread_id(dev, readid_flags);
3996 	if (rc)
3997 		goto fail;
3998 
3999 	/* configure device according to the new ID */
4000 	rc = ata_dev_configure(dev);
4001 	if (rc)
4002 		goto fail;
4003 
4004 	/* verify n_sectors hasn't changed */
4005 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4006 	    dev->n_sectors == n_sectors)
4007 		return 0;
4008 
4009 	/* n_sectors has changed */
4010 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4011 		     (unsigned long long)n_sectors,
4012 		     (unsigned long long)dev->n_sectors);
4013 
4014 	/*
4015 	 * Something could have caused HPA to be unlocked
4016 	 * involuntarily.  If n_native_sectors hasn't changed and the
4017 	 * new size matches it, keep the device.
4018 	 */
4019 	if (dev->n_native_sectors == n_native_sectors &&
4020 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4021 		ata_dev_warn(dev,
4022 			     "new n_sectors matches native, probably "
4023 			     "late HPA unlock, n_sectors updated\n");
4024 		/* use the larger n_sectors */
4025 		return 0;
4026 	}
4027 
4028 	/*
4029 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4030 	 * unlocking HPA in those cases.
4031 	 *
4032 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4033 	 */
4034 	if (dev->n_native_sectors == n_native_sectors &&
4035 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4036 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4037 		ata_dev_warn(dev,
4038 			     "old n_sectors matches native, probably "
4039 			     "late HPA lock, will try to unlock HPA\n");
4040 		/* try unlocking HPA */
4041 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4042 		rc = -EIO;
4043 	} else
4044 		rc = -ENODEV;
4045 
4046 	/* restore original n_[native_]sectors and fail */
4047 	dev->n_native_sectors = n_native_sectors;
4048 	dev->n_sectors = n_sectors;
4049  fail:
4050 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4051 	return rc;
4052 }
4053 
4054 struct ata_blacklist_entry {
4055 	const char *model_num;
4056 	const char *model_rev;
4057 	unsigned long horkage;
4058 };
4059 
4060 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4061 	/* Devices with DMA related problems under Linux */
4062 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4063 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4064 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4065 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4066 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4067 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4068 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4069 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4070 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4071 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4072 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4073 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4074 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4075 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4076 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4077 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4078 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4079 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4080 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4081 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4082 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4083 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4084 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4085 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4086 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4087 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4088 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4089 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4090 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4091 	/* Odd clown on sil3726/4726 PMPs */
4092 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4093 
4094 	/* Weird ATAPI devices */
4095 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4096 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4097 
4098 	/* Devices we expect to fail diagnostics */
4099 
4100 	/* Devices where NCQ should be avoided */
4101 	/* NCQ is slow */
4102 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4103 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4104 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4105 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4106 	/* NCQ is broken */
4107 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4108 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4109 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4110 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4111 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4112 
4113 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4114 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4115 						ATA_HORKAGE_FIRMWARE_WARN },
4116 
4117 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4118 						ATA_HORKAGE_FIRMWARE_WARN },
4119 
4120 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4121 						ATA_HORKAGE_FIRMWARE_WARN },
4122 
4123 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4124 						ATA_HORKAGE_FIRMWARE_WARN },
4125 
4126 	/* Blacklist entries taken from Silicon Image 3124/3132
4127 	   Windows driver .inf file - also several Linux problem reports */
4128 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4129 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4130 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4131 
4132 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4133 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4134 
4135 	/* devices which puke on READ_NATIVE_MAX */
4136 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4137 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4138 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4139 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4140 
4141 	/* this one allows HPA unlocking but fails IOs on the area */
4142 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4143 
4144 	/* Devices which report 1 sector over size HPA */
4145 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4146 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4147 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4148 
4149 	/* Devices which get the IVB wrong */
4150 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4151 	/* Maybe we should just blacklist TSSTcorp... */
4152 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4153 
4154 	/* Devices that do not need bridging limits applied */
4155 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4156 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4157 
4158 	/* Devices which aren't very happy with higher link speeds */
4159 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4160 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4161 
4162 	/*
4163 	 * Devices which choke on SETXFER.  Applies only if both the
4164 	 * device and controller are SATA.
4165 	 */
4166 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4167 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4168 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4169 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4170 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4171 
4172 	/* End Marker */
4173 	{ }
4174 };
4175 
4176 /**
4177  *	glob_match - match a text string against a glob-style pattern
4178  *	@text: the string to be examined
4179  *	@pattern: the glob-style pattern to be matched against
4180  *
4181  *	Either/both of text and pattern can be empty strings.
4182  *
4183  *	Match text against a glob-style pattern, with wildcards and simple sets:
4184  *
4185  *		?	matches any single character.
4186  *		*	matches any run of characters.
4187  *		[xyz]	matches a single character from the set: x, y, or z.
4188  *		[a-d]	matches a single character from the range: a, b, c, or d.
4189  *		[a-d0-9] matches a single character from either range.
4190  *
4191  *	The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4192  *	Behaviour with malformed patterns is undefined, though generally reasonable.
4193  *
4194  *	Sample patterns:  "SD1?",  "SD1[0-5]",  "*R0",  "SD*1?[012]*xx"
4195  *
4196  *	This function uses one level of recursion per '*' in pattern.
4197  *	Since it calls _nothing_ else, and has _no_ explicit local variables,
4198  *	this will not cause stack problems for any reasonable use here.
4199  *
4200  *	RETURNS:
4201  *	0 on match, 1 otherwise.
4202  */
4203 static int glob_match (const char *text, const char *pattern)
4204 {
4205 	do {
4206 		/* Match single character or a '?' wildcard */
4207 		if (*text == *pattern || *pattern == '?') {
4208 			if (!*pattern++)
4209 				return 0;  /* End of both strings: match */
4210 		} else {
4211 			/* Match single char against a '[' bracketed ']' pattern set */
4212 			if (!*text || *pattern != '[')
4213 				break;  /* Not a pattern set */
4214 			while (*++pattern && *pattern != ']' && *text != *pattern) {
4215 				if (*pattern == '-' && *(pattern - 1) != '[')
4216 					if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4217 						++pattern;
4218 						break;
4219 					}
4220 			}
4221 			if (!*pattern || *pattern == ']')
4222 				return 1;  /* No match */
4223 			while (*pattern && *pattern++ != ']');
4224 		}
4225 	} while (*++text && *pattern);
4226 
4227 	/* Match any run of chars against a '*' wildcard */
4228 	if (*pattern == '*') {
4229 		if (!*++pattern)
4230 			return 0;  /* Match: avoid recursion at end of pattern */
4231 		/* Loop to handle additional pattern chars after the wildcard */
4232 		while (*text) {
4233 			if (glob_match(text, pattern) == 0)
4234 				return 0;  /* Remainder matched */
4235 			++text;  /* Absorb (match) this char and try again */
4236 		}
4237 	}
4238 	if (!*text && !*pattern)
4239 		return 0;  /* End of both strings: match */
4240 	return 1;  /* No match */
4241 }
4242 
4243 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4244 {
4245 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4246 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4247 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4248 
4249 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4250 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4251 
4252 	while (ad->model_num) {
4253 		if (!glob_match(model_num, ad->model_num)) {
4254 			if (ad->model_rev == NULL)
4255 				return ad->horkage;
4256 			if (!glob_match(model_rev, ad->model_rev))
4257 				return ad->horkage;
4258 		}
4259 		ad++;
4260 	}
4261 	return 0;
4262 }
4263 
4264 static int ata_dma_blacklisted(const struct ata_device *dev)
4265 {
4266 	/* We don't support polling DMA.
4267 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4268 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4269 	 */
4270 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4271 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4272 		return 1;
4273 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4274 }
4275 
4276 /**
4277  *	ata_is_40wire		-	check drive side detection
4278  *	@dev: device
4279  *
4280  *	Perform drive side detection decoding, allowing for device vendors
4281  *	who can't follow the documentation.
4282  */
4283 
4284 static int ata_is_40wire(struct ata_device *dev)
4285 {
4286 	if (dev->horkage & ATA_HORKAGE_IVB)
4287 		return ata_drive_40wire_relaxed(dev->id);
4288 	return ata_drive_40wire(dev->id);
4289 }
4290 
4291 /**
4292  *	cable_is_40wire		-	40/80/SATA decider
4293  *	@ap: port to consider
4294  *
4295  *	This function encapsulates the policy for speed management
4296  *	in one place. At the moment we don't cache the result but
4297  *	there is a good case for setting ap->cbl to the result when
4298  *	we are called with unknown cables (and figuring out if it
4299  *	impacts hotplug at all).
4300  *
4301  *	Return 1 if the cable appears to be 40 wire.
4302  */
4303 
4304 static int cable_is_40wire(struct ata_port *ap)
4305 {
4306 	struct ata_link *link;
4307 	struct ata_device *dev;
4308 
4309 	/* If the controller thinks we are 40 wire, we are. */
4310 	if (ap->cbl == ATA_CBL_PATA40)
4311 		return 1;
4312 
4313 	/* If the controller thinks we are 80 wire, we are. */
4314 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4315 		return 0;
4316 
4317 	/* If the system is known to be 40 wire short cable (eg
4318 	 * laptop), then we allow 80 wire modes even if the drive
4319 	 * isn't sure.
4320 	 */
4321 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4322 		return 0;
4323 
4324 	/* If the controller doesn't know, we scan.
4325 	 *
4326 	 * Note: We look for all 40 wire detects at this point.  Any
4327 	 *       80 wire detect is taken to be 80 wire cable because
4328 	 * - in many setups only the one drive (slave if present) will
4329 	 *   give a valid detect
4330 	 * - if you have a non detect capable drive you don't want it
4331 	 *   to colour the choice
4332 	 */
4333 	ata_for_each_link(link, ap, EDGE) {
4334 		ata_for_each_dev(dev, link, ENABLED) {
4335 			if (!ata_is_40wire(dev))
4336 				return 0;
4337 		}
4338 	}
4339 	return 1;
4340 }
4341 
4342 /**
4343  *	ata_dev_xfermask - Compute supported xfermask of the given device
4344  *	@dev: Device to compute xfermask for
4345  *
4346  *	Compute supported xfermask of @dev and store it in
4347  *	dev->*_mask.  This function is responsible for applying all
4348  *	known limits including host controller limits, device
4349  *	blacklist, etc...
4350  *
4351  *	LOCKING:
4352  *	None.
4353  */
4354 static void ata_dev_xfermask(struct ata_device *dev)
4355 {
4356 	struct ata_link *link = dev->link;
4357 	struct ata_port *ap = link->ap;
4358 	struct ata_host *host = ap->host;
4359 	unsigned long xfer_mask;
4360 
4361 	/* controller modes available */
4362 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4363 				      ap->mwdma_mask, ap->udma_mask);
4364 
4365 	/* drive modes available */
4366 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4367 				       dev->mwdma_mask, dev->udma_mask);
4368 	xfer_mask &= ata_id_xfermask(dev->id);
4369 
4370 	/*
4371 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4372 	 *	cable
4373 	 */
4374 	if (ata_dev_pair(dev)) {
4375 		/* No PIO5 or PIO6 */
4376 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4377 		/* No MWDMA3 or MWDMA 4 */
4378 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4379 	}
4380 
4381 	if (ata_dma_blacklisted(dev)) {
4382 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4383 		ata_dev_warn(dev,
4384 			     "device is on DMA blacklist, disabling DMA\n");
4385 	}
4386 
4387 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4388 	    host->simplex_claimed && host->simplex_claimed != ap) {
4389 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4390 		ata_dev_warn(dev,
4391 			     "simplex DMA is claimed by other device, disabling DMA\n");
4392 	}
4393 
4394 	if (ap->flags & ATA_FLAG_NO_IORDY)
4395 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4396 
4397 	if (ap->ops->mode_filter)
4398 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4399 
4400 	/* Apply cable rule here.  Don't apply it early because when
4401 	 * we handle hot plug the cable type can itself change.
4402 	 * Check this last so that we know if the transfer rate was
4403 	 * solely limited by the cable.
4404 	 * Unknown or 80 wire cables reported host side are checked
4405 	 * drive side as well. Cases where we know a 40wire cable
4406 	 * is used safely for 80 are not checked here.
4407 	 */
4408 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4409 		/* UDMA/44 or higher would be available */
4410 		if (cable_is_40wire(ap)) {
4411 			ata_dev_warn(dev,
4412 				     "limited to UDMA/33 due to 40-wire cable\n");
4413 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4414 		}
4415 
4416 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4417 			    &dev->mwdma_mask, &dev->udma_mask);
4418 }
4419 
4420 /**
4421  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4422  *	@dev: Device to which command will be sent
4423  *
4424  *	Issue SET FEATURES - XFER MODE command to device @dev
4425  *	on port @ap.
4426  *
4427  *	LOCKING:
4428  *	PCI/etc. bus probe sem.
4429  *
4430  *	RETURNS:
4431  *	0 on success, AC_ERR_* mask otherwise.
4432  */
4433 
4434 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4435 {
4436 	struct ata_taskfile tf;
4437 	unsigned int err_mask;
4438 
4439 	/* set up set-features taskfile */
4440 	DPRINTK("set features - xfer mode\n");
4441 
4442 	/* Some controllers and ATAPI devices show flaky interrupt
4443 	 * behavior after setting xfer mode.  Use polling instead.
4444 	 */
4445 	ata_tf_init(dev, &tf);
4446 	tf.command = ATA_CMD_SET_FEATURES;
4447 	tf.feature = SETFEATURES_XFER;
4448 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4449 	tf.protocol = ATA_PROT_NODATA;
4450 	/* If we are using IORDY we must send the mode setting command */
4451 	if (ata_pio_need_iordy(dev))
4452 		tf.nsect = dev->xfer_mode;
4453 	/* If the device has IORDY and the controller does not - turn it off */
4454  	else if (ata_id_has_iordy(dev->id))
4455 		tf.nsect = 0x01;
4456 	else /* In the ancient relic department - skip all of this */
4457 		return 0;
4458 
4459 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4460 
4461 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4462 	return err_mask;
4463 }
4464 
4465 /**
4466  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4467  *	@dev: Device to which command will be sent
4468  *	@enable: Whether to enable or disable the feature
4469  *	@feature: The sector count represents the feature to set
4470  *
4471  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4472  *	on port @ap with sector count
4473  *
4474  *	LOCKING:
4475  *	PCI/etc. bus probe sem.
4476  *
4477  *	RETURNS:
4478  *	0 on success, AC_ERR_* mask otherwise.
4479  */
4480 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4481 {
4482 	struct ata_taskfile tf;
4483 	unsigned int err_mask;
4484 
4485 	/* set up set-features taskfile */
4486 	DPRINTK("set features - SATA features\n");
4487 
4488 	ata_tf_init(dev, &tf);
4489 	tf.command = ATA_CMD_SET_FEATURES;
4490 	tf.feature = enable;
4491 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4492 	tf.protocol = ATA_PROT_NODATA;
4493 	tf.nsect = feature;
4494 
4495 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4496 
4497 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4498 	return err_mask;
4499 }
4500 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4501 
4502 /**
4503  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4504  *	@dev: Device to which command will be sent
4505  *	@heads: Number of heads (taskfile parameter)
4506  *	@sectors: Number of sectors (taskfile parameter)
4507  *
4508  *	LOCKING:
4509  *	Kernel thread context (may sleep)
4510  *
4511  *	RETURNS:
4512  *	0 on success, AC_ERR_* mask otherwise.
4513  */
4514 static unsigned int ata_dev_init_params(struct ata_device *dev,
4515 					u16 heads, u16 sectors)
4516 {
4517 	struct ata_taskfile tf;
4518 	unsigned int err_mask;
4519 
4520 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4521 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4522 		return AC_ERR_INVALID;
4523 
4524 	/* set up init dev params taskfile */
4525 	DPRINTK("init dev params \n");
4526 
4527 	ata_tf_init(dev, &tf);
4528 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4529 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4530 	tf.protocol = ATA_PROT_NODATA;
4531 	tf.nsect = sectors;
4532 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4533 
4534 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4535 	/* A clean abort indicates an original or just out of spec drive
4536 	   and we should continue as we issue the setup based on the
4537 	   drive reported working geometry */
4538 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4539 		err_mask = 0;
4540 
4541 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4542 	return err_mask;
4543 }
4544 
4545 /**
4546  *	ata_sg_clean - Unmap DMA memory associated with command
4547  *	@qc: Command containing DMA memory to be released
4548  *
4549  *	Unmap all mapped DMA memory associated with this command.
4550  *
4551  *	LOCKING:
4552  *	spin_lock_irqsave(host lock)
4553  */
4554 void ata_sg_clean(struct ata_queued_cmd *qc)
4555 {
4556 	struct ata_port *ap = qc->ap;
4557 	struct scatterlist *sg = qc->sg;
4558 	int dir = qc->dma_dir;
4559 
4560 	WARN_ON_ONCE(sg == NULL);
4561 
4562 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4563 
4564 	if (qc->n_elem)
4565 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4566 
4567 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4568 	qc->sg = NULL;
4569 }
4570 
4571 /**
4572  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4573  *	@qc: Metadata associated with taskfile to check
4574  *
4575  *	Allow low-level driver to filter ATA PACKET commands, returning
4576  *	a status indicating whether or not it is OK to use DMA for the
4577  *	supplied PACKET command.
4578  *
4579  *	LOCKING:
4580  *	spin_lock_irqsave(host lock)
4581  *
4582  *	RETURNS: 0 when ATAPI DMA can be used
4583  *               nonzero otherwise
4584  */
4585 int atapi_check_dma(struct ata_queued_cmd *qc)
4586 {
4587 	struct ata_port *ap = qc->ap;
4588 
4589 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4590 	 * few ATAPI devices choke on such DMA requests.
4591 	 */
4592 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4593 	    unlikely(qc->nbytes & 15))
4594 		return 1;
4595 
4596 	if (ap->ops->check_atapi_dma)
4597 		return ap->ops->check_atapi_dma(qc);
4598 
4599 	return 0;
4600 }
4601 
4602 /**
4603  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4604  *	@qc: ATA command in question
4605  *
4606  *	Non-NCQ commands cannot run with any other command, NCQ or
4607  *	not.  As upper layer only knows the queue depth, we are
4608  *	responsible for maintaining exclusion.  This function checks
4609  *	whether a new command @qc can be issued.
4610  *
4611  *	LOCKING:
4612  *	spin_lock_irqsave(host lock)
4613  *
4614  *	RETURNS:
4615  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4616  */
4617 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4618 {
4619 	struct ata_link *link = qc->dev->link;
4620 
4621 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4622 		if (!ata_tag_valid(link->active_tag))
4623 			return 0;
4624 	} else {
4625 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4626 			return 0;
4627 	}
4628 
4629 	return ATA_DEFER_LINK;
4630 }
4631 
4632 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4633 
4634 /**
4635  *	ata_sg_init - Associate command with scatter-gather table.
4636  *	@qc: Command to be associated
4637  *	@sg: Scatter-gather table.
4638  *	@n_elem: Number of elements in s/g table.
4639  *
4640  *	Initialize the data-related elements of queued_cmd @qc
4641  *	to point to a scatter-gather table @sg, containing @n_elem
4642  *	elements.
4643  *
4644  *	LOCKING:
4645  *	spin_lock_irqsave(host lock)
4646  */
4647 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4648 		 unsigned int n_elem)
4649 {
4650 	qc->sg = sg;
4651 	qc->n_elem = n_elem;
4652 	qc->cursg = qc->sg;
4653 }
4654 
4655 /**
4656  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4657  *	@qc: Command with scatter-gather table to be mapped.
4658  *
4659  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4660  *
4661  *	LOCKING:
4662  *	spin_lock_irqsave(host lock)
4663  *
4664  *	RETURNS:
4665  *	Zero on success, negative on error.
4666  *
4667  */
4668 static int ata_sg_setup(struct ata_queued_cmd *qc)
4669 {
4670 	struct ata_port *ap = qc->ap;
4671 	unsigned int n_elem;
4672 
4673 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4674 
4675 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4676 	if (n_elem < 1)
4677 		return -1;
4678 
4679 	DPRINTK("%d sg elements mapped\n", n_elem);
4680 	qc->orig_n_elem = qc->n_elem;
4681 	qc->n_elem = n_elem;
4682 	qc->flags |= ATA_QCFLAG_DMAMAP;
4683 
4684 	return 0;
4685 }
4686 
4687 /**
4688  *	swap_buf_le16 - swap halves of 16-bit words in place
4689  *	@buf:  Buffer to swap
4690  *	@buf_words:  Number of 16-bit words in buffer.
4691  *
4692  *	Swap halves of 16-bit words if needed to convert from
4693  *	little-endian byte order to native cpu byte order, or
4694  *	vice-versa.
4695  *
4696  *	LOCKING:
4697  *	Inherited from caller.
4698  */
4699 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4700 {
4701 #ifdef __BIG_ENDIAN
4702 	unsigned int i;
4703 
4704 	for (i = 0; i < buf_words; i++)
4705 		buf[i] = le16_to_cpu(buf[i]);
4706 #endif /* __BIG_ENDIAN */
4707 }
4708 
4709 /**
4710  *	ata_qc_new - Request an available ATA command, for queueing
4711  *	@ap: target port
4712  *
4713  *	LOCKING:
4714  *	None.
4715  */
4716 
4717 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4718 {
4719 	struct ata_queued_cmd *qc = NULL;
4720 	unsigned int i;
4721 
4722 	/* no command while frozen */
4723 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4724 		return NULL;
4725 
4726 	/* the last tag is reserved for internal command. */
4727 	for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4728 		if (!test_and_set_bit(i, &ap->qc_allocated)) {
4729 			qc = __ata_qc_from_tag(ap, i);
4730 			break;
4731 		}
4732 
4733 	if (qc)
4734 		qc->tag = i;
4735 
4736 	return qc;
4737 }
4738 
4739 /**
4740  *	ata_qc_new_init - Request an available ATA command, and initialize it
4741  *	@dev: Device from whom we request an available command structure
4742  *
4743  *	LOCKING:
4744  *	None.
4745  */
4746 
4747 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4748 {
4749 	struct ata_port *ap = dev->link->ap;
4750 	struct ata_queued_cmd *qc;
4751 
4752 	qc = ata_qc_new(ap);
4753 	if (qc) {
4754 		qc->scsicmd = NULL;
4755 		qc->ap = ap;
4756 		qc->dev = dev;
4757 
4758 		ata_qc_reinit(qc);
4759 	}
4760 
4761 	return qc;
4762 }
4763 
4764 /**
4765  *	ata_qc_free - free unused ata_queued_cmd
4766  *	@qc: Command to complete
4767  *
4768  *	Designed to free unused ata_queued_cmd object
4769  *	in case something prevents using it.
4770  *
4771  *	LOCKING:
4772  *	spin_lock_irqsave(host lock)
4773  */
4774 void ata_qc_free(struct ata_queued_cmd *qc)
4775 {
4776 	struct ata_port *ap;
4777 	unsigned int tag;
4778 
4779 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4780 	ap = qc->ap;
4781 
4782 	qc->flags = 0;
4783 	tag = qc->tag;
4784 	if (likely(ata_tag_valid(tag))) {
4785 		qc->tag = ATA_TAG_POISON;
4786 		clear_bit(tag, &ap->qc_allocated);
4787 	}
4788 }
4789 
4790 void __ata_qc_complete(struct ata_queued_cmd *qc)
4791 {
4792 	struct ata_port *ap;
4793 	struct ata_link *link;
4794 
4795 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4796 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4797 	ap = qc->ap;
4798 	link = qc->dev->link;
4799 
4800 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4801 		ata_sg_clean(qc);
4802 
4803 	/* command should be marked inactive atomically with qc completion */
4804 	if (qc->tf.protocol == ATA_PROT_NCQ) {
4805 		link->sactive &= ~(1 << qc->tag);
4806 		if (!link->sactive)
4807 			ap->nr_active_links--;
4808 	} else {
4809 		link->active_tag = ATA_TAG_POISON;
4810 		ap->nr_active_links--;
4811 	}
4812 
4813 	/* clear exclusive status */
4814 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4815 		     ap->excl_link == link))
4816 		ap->excl_link = NULL;
4817 
4818 	/* atapi: mark qc as inactive to prevent the interrupt handler
4819 	 * from completing the command twice later, before the error handler
4820 	 * is called. (when rc != 0 and atapi request sense is needed)
4821 	 */
4822 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4823 	ap->qc_active &= ~(1 << qc->tag);
4824 
4825 	/* call completion callback */
4826 	qc->complete_fn(qc);
4827 }
4828 
4829 static void fill_result_tf(struct ata_queued_cmd *qc)
4830 {
4831 	struct ata_port *ap = qc->ap;
4832 
4833 	qc->result_tf.flags = qc->tf.flags;
4834 	ap->ops->qc_fill_rtf(qc);
4835 }
4836 
4837 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4838 {
4839 	struct ata_device *dev = qc->dev;
4840 
4841 	if (ata_is_nodata(qc->tf.protocol))
4842 		return;
4843 
4844 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4845 		return;
4846 
4847 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4848 }
4849 
4850 /**
4851  *	ata_qc_complete - Complete an active ATA command
4852  *	@qc: Command to complete
4853  *
4854  *	Indicate to the mid and upper layers that an ATA command has
4855  *	completed, with either an ok or not-ok status.
4856  *
4857  *	Refrain from calling this function multiple times when
4858  *	successfully completing multiple NCQ commands.
4859  *	ata_qc_complete_multiple() should be used instead, which will
4860  *	properly update IRQ expect state.
4861  *
4862  *	LOCKING:
4863  *	spin_lock_irqsave(host lock)
4864  */
4865 void ata_qc_complete(struct ata_queued_cmd *qc)
4866 {
4867 	struct ata_port *ap = qc->ap;
4868 
4869 	/* XXX: New EH and old EH use different mechanisms to
4870 	 * synchronize EH with regular execution path.
4871 	 *
4872 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4873 	 * Normal execution path is responsible for not accessing a
4874 	 * failed qc.  libata core enforces the rule by returning NULL
4875 	 * from ata_qc_from_tag() for failed qcs.
4876 	 *
4877 	 * Old EH depends on ata_qc_complete() nullifying completion
4878 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4879 	 * not synchronize with interrupt handler.  Only PIO task is
4880 	 * taken care of.
4881 	 */
4882 	if (ap->ops->error_handler) {
4883 		struct ata_device *dev = qc->dev;
4884 		struct ata_eh_info *ehi = &dev->link->eh_info;
4885 
4886 		if (unlikely(qc->err_mask))
4887 			qc->flags |= ATA_QCFLAG_FAILED;
4888 
4889 		/*
4890 		 * Finish internal commands without any further processing
4891 		 * and always with the result TF filled.
4892 		 */
4893 		if (unlikely(ata_tag_internal(qc->tag))) {
4894 			fill_result_tf(qc);
4895 			__ata_qc_complete(qc);
4896 			return;
4897 		}
4898 
4899 		/*
4900 		 * Non-internal qc has failed.  Fill the result TF and
4901 		 * summon EH.
4902 		 */
4903 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4904 			fill_result_tf(qc);
4905 			ata_qc_schedule_eh(qc);
4906 			return;
4907 		}
4908 
4909 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4910 
4911 		/* read result TF if requested */
4912 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4913 			fill_result_tf(qc);
4914 
4915 		/* Some commands need post-processing after successful
4916 		 * completion.
4917 		 */
4918 		switch (qc->tf.command) {
4919 		case ATA_CMD_SET_FEATURES:
4920 			if (qc->tf.feature != SETFEATURES_WC_ON &&
4921 			    qc->tf.feature != SETFEATURES_WC_OFF)
4922 				break;
4923 			/* fall through */
4924 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4925 		case ATA_CMD_SET_MULTI: /* multi_count changed */
4926 			/* revalidate device */
4927 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4928 			ata_port_schedule_eh(ap);
4929 			break;
4930 
4931 		case ATA_CMD_SLEEP:
4932 			dev->flags |= ATA_DFLAG_SLEEPING;
4933 			break;
4934 		}
4935 
4936 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4937 			ata_verify_xfer(qc);
4938 
4939 		__ata_qc_complete(qc);
4940 	} else {
4941 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4942 			return;
4943 
4944 		/* read result TF if failed or requested */
4945 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4946 			fill_result_tf(qc);
4947 
4948 		__ata_qc_complete(qc);
4949 	}
4950 }
4951 
4952 /**
4953  *	ata_qc_complete_multiple - Complete multiple qcs successfully
4954  *	@ap: port in question
4955  *	@qc_active: new qc_active mask
4956  *
4957  *	Complete in-flight commands.  This functions is meant to be
4958  *	called from low-level driver's interrupt routine to complete
4959  *	requests normally.  ap->qc_active and @qc_active is compared
4960  *	and commands are completed accordingly.
4961  *
4962  *	Always use this function when completing multiple NCQ commands
4963  *	from IRQ handlers instead of calling ata_qc_complete()
4964  *	multiple times to keep IRQ expect status properly in sync.
4965  *
4966  *	LOCKING:
4967  *	spin_lock_irqsave(host lock)
4968  *
4969  *	RETURNS:
4970  *	Number of completed commands on success, -errno otherwise.
4971  */
4972 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4973 {
4974 	int nr_done = 0;
4975 	u32 done_mask;
4976 
4977 	done_mask = ap->qc_active ^ qc_active;
4978 
4979 	if (unlikely(done_mask & qc_active)) {
4980 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4981 			     ap->qc_active, qc_active);
4982 		return -EINVAL;
4983 	}
4984 
4985 	while (done_mask) {
4986 		struct ata_queued_cmd *qc;
4987 		unsigned int tag = __ffs(done_mask);
4988 
4989 		qc = ata_qc_from_tag(ap, tag);
4990 		if (qc) {
4991 			ata_qc_complete(qc);
4992 			nr_done++;
4993 		}
4994 		done_mask &= ~(1 << tag);
4995 	}
4996 
4997 	return nr_done;
4998 }
4999 
5000 /**
5001  *	ata_qc_issue - issue taskfile to device
5002  *	@qc: command to issue to device
5003  *
5004  *	Prepare an ATA command to submission to device.
5005  *	This includes mapping the data into a DMA-able
5006  *	area, filling in the S/G table, and finally
5007  *	writing the taskfile to hardware, starting the command.
5008  *
5009  *	LOCKING:
5010  *	spin_lock_irqsave(host lock)
5011  */
5012 void ata_qc_issue(struct ata_queued_cmd *qc)
5013 {
5014 	struct ata_port *ap = qc->ap;
5015 	struct ata_link *link = qc->dev->link;
5016 	u8 prot = qc->tf.protocol;
5017 
5018 	/* Make sure only one non-NCQ command is outstanding.  The
5019 	 * check is skipped for old EH because it reuses active qc to
5020 	 * request ATAPI sense.
5021 	 */
5022 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5023 
5024 	if (ata_is_ncq(prot)) {
5025 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5026 
5027 		if (!link->sactive)
5028 			ap->nr_active_links++;
5029 		link->sactive |= 1 << qc->tag;
5030 	} else {
5031 		WARN_ON_ONCE(link->sactive);
5032 
5033 		ap->nr_active_links++;
5034 		link->active_tag = qc->tag;
5035 	}
5036 
5037 	qc->flags |= ATA_QCFLAG_ACTIVE;
5038 	ap->qc_active |= 1 << qc->tag;
5039 
5040 	/*
5041 	 * We guarantee to LLDs that they will have at least one
5042 	 * non-zero sg if the command is a data command.
5043 	 */
5044 	if (WARN_ON_ONCE(ata_is_data(prot) &&
5045 			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5046 		goto sys_err;
5047 
5048 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5049 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5050 		if (ata_sg_setup(qc))
5051 			goto sys_err;
5052 
5053 	/* if device is sleeping, schedule reset and abort the link */
5054 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5055 		link->eh_info.action |= ATA_EH_RESET;
5056 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5057 		ata_link_abort(link);
5058 		return;
5059 	}
5060 
5061 	ap->ops->qc_prep(qc);
5062 
5063 	qc->err_mask |= ap->ops->qc_issue(qc);
5064 	if (unlikely(qc->err_mask))
5065 		goto err;
5066 	return;
5067 
5068 sys_err:
5069 	qc->err_mask |= AC_ERR_SYSTEM;
5070 err:
5071 	ata_qc_complete(qc);
5072 }
5073 
5074 /**
5075  *	sata_scr_valid - test whether SCRs are accessible
5076  *	@link: ATA link to test SCR accessibility for
5077  *
5078  *	Test whether SCRs are accessible for @link.
5079  *
5080  *	LOCKING:
5081  *	None.
5082  *
5083  *	RETURNS:
5084  *	1 if SCRs are accessible, 0 otherwise.
5085  */
5086 int sata_scr_valid(struct ata_link *link)
5087 {
5088 	struct ata_port *ap = link->ap;
5089 
5090 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5091 }
5092 
5093 /**
5094  *	sata_scr_read - read SCR register of the specified port
5095  *	@link: ATA link to read SCR for
5096  *	@reg: SCR to read
5097  *	@val: Place to store read value
5098  *
5099  *	Read SCR register @reg of @link into *@val.  This function is
5100  *	guaranteed to succeed if @link is ap->link, the cable type of
5101  *	the port is SATA and the port implements ->scr_read.
5102  *
5103  *	LOCKING:
5104  *	None if @link is ap->link.  Kernel thread context otherwise.
5105  *
5106  *	RETURNS:
5107  *	0 on success, negative errno on failure.
5108  */
5109 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5110 {
5111 	if (ata_is_host_link(link)) {
5112 		if (sata_scr_valid(link))
5113 			return link->ap->ops->scr_read(link, reg, val);
5114 		return -EOPNOTSUPP;
5115 	}
5116 
5117 	return sata_pmp_scr_read(link, reg, val);
5118 }
5119 
5120 /**
5121  *	sata_scr_write - write SCR register of the specified port
5122  *	@link: ATA link to write SCR for
5123  *	@reg: SCR to write
5124  *	@val: value to write
5125  *
5126  *	Write @val to SCR register @reg of @link.  This function is
5127  *	guaranteed to succeed if @link is ap->link, the cable type of
5128  *	the port is SATA and the port implements ->scr_read.
5129  *
5130  *	LOCKING:
5131  *	None if @link is ap->link.  Kernel thread context otherwise.
5132  *
5133  *	RETURNS:
5134  *	0 on success, negative errno on failure.
5135  */
5136 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5137 {
5138 	if (ata_is_host_link(link)) {
5139 		if (sata_scr_valid(link))
5140 			return link->ap->ops->scr_write(link, reg, val);
5141 		return -EOPNOTSUPP;
5142 	}
5143 
5144 	return sata_pmp_scr_write(link, reg, val);
5145 }
5146 
5147 /**
5148  *	sata_scr_write_flush - write SCR register of the specified port and flush
5149  *	@link: ATA link to write SCR for
5150  *	@reg: SCR to write
5151  *	@val: value to write
5152  *
5153  *	This function is identical to sata_scr_write() except that this
5154  *	function performs flush after writing to the register.
5155  *
5156  *	LOCKING:
5157  *	None if @link is ap->link.  Kernel thread context otherwise.
5158  *
5159  *	RETURNS:
5160  *	0 on success, negative errno on failure.
5161  */
5162 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5163 {
5164 	if (ata_is_host_link(link)) {
5165 		int rc;
5166 
5167 		if (sata_scr_valid(link)) {
5168 			rc = link->ap->ops->scr_write(link, reg, val);
5169 			if (rc == 0)
5170 				rc = link->ap->ops->scr_read(link, reg, &val);
5171 			return rc;
5172 		}
5173 		return -EOPNOTSUPP;
5174 	}
5175 
5176 	return sata_pmp_scr_write(link, reg, val);
5177 }
5178 
5179 /**
5180  *	ata_phys_link_online - test whether the given link is online
5181  *	@link: ATA link to test
5182  *
5183  *	Test whether @link is online.  Note that this function returns
5184  *	0 if online status of @link cannot be obtained, so
5185  *	ata_link_online(link) != !ata_link_offline(link).
5186  *
5187  *	LOCKING:
5188  *	None.
5189  *
5190  *	RETURNS:
5191  *	True if the port online status is available and online.
5192  */
5193 bool ata_phys_link_online(struct ata_link *link)
5194 {
5195 	u32 sstatus;
5196 
5197 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5198 	    ata_sstatus_online(sstatus))
5199 		return true;
5200 	return false;
5201 }
5202 
5203 /**
5204  *	ata_phys_link_offline - test whether the given link is offline
5205  *	@link: ATA link to test
5206  *
5207  *	Test whether @link is offline.  Note that this function
5208  *	returns 0 if offline status of @link cannot be obtained, so
5209  *	ata_link_online(link) != !ata_link_offline(link).
5210  *
5211  *	LOCKING:
5212  *	None.
5213  *
5214  *	RETURNS:
5215  *	True if the port offline status is available and offline.
5216  */
5217 bool ata_phys_link_offline(struct ata_link *link)
5218 {
5219 	u32 sstatus;
5220 
5221 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5222 	    !ata_sstatus_online(sstatus))
5223 		return true;
5224 	return false;
5225 }
5226 
5227 /**
5228  *	ata_link_online - test whether the given link is online
5229  *	@link: ATA link to test
5230  *
5231  *	Test whether @link is online.  This is identical to
5232  *	ata_phys_link_online() when there's no slave link.  When
5233  *	there's a slave link, this function should only be called on
5234  *	the master link and will return true if any of M/S links is
5235  *	online.
5236  *
5237  *	LOCKING:
5238  *	None.
5239  *
5240  *	RETURNS:
5241  *	True if the port online status is available and online.
5242  */
5243 bool ata_link_online(struct ata_link *link)
5244 {
5245 	struct ata_link *slave = link->ap->slave_link;
5246 
5247 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5248 
5249 	return ata_phys_link_online(link) ||
5250 		(slave && ata_phys_link_online(slave));
5251 }
5252 
5253 /**
5254  *	ata_link_offline - test whether the given link is offline
5255  *	@link: ATA link to test
5256  *
5257  *	Test whether @link is offline.  This is identical to
5258  *	ata_phys_link_offline() when there's no slave link.  When
5259  *	there's a slave link, this function should only be called on
5260  *	the master link and will return true if both M/S links are
5261  *	offline.
5262  *
5263  *	LOCKING:
5264  *	None.
5265  *
5266  *	RETURNS:
5267  *	True if the port offline status is available and offline.
5268  */
5269 bool ata_link_offline(struct ata_link *link)
5270 {
5271 	struct ata_link *slave = link->ap->slave_link;
5272 
5273 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5274 
5275 	return ata_phys_link_offline(link) &&
5276 		(!slave || ata_phys_link_offline(slave));
5277 }
5278 
5279 #ifdef CONFIG_PM
5280 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5281 			       unsigned int action, unsigned int ehi_flags,
5282 			       int *async)
5283 {
5284 	struct ata_link *link;
5285 	unsigned long flags;
5286 	int rc = 0;
5287 
5288 	/* Previous resume operation might still be in
5289 	 * progress.  Wait for PM_PENDING to clear.
5290 	 */
5291 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5292 		if (async) {
5293 			*async = -EAGAIN;
5294 			return 0;
5295 		}
5296 		ata_port_wait_eh(ap);
5297 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5298 	}
5299 
5300 	/* request PM ops to EH */
5301 	spin_lock_irqsave(ap->lock, flags);
5302 
5303 	ap->pm_mesg = mesg;
5304 	if (async)
5305 		ap->pm_result = async;
5306 	else
5307 		ap->pm_result = &rc;
5308 
5309 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5310 	ata_for_each_link(link, ap, HOST_FIRST) {
5311 		link->eh_info.action |= action;
5312 		link->eh_info.flags |= ehi_flags;
5313 	}
5314 
5315 	ata_port_schedule_eh(ap);
5316 
5317 	spin_unlock_irqrestore(ap->lock, flags);
5318 
5319 	/* wait and check result */
5320 	if (!async) {
5321 		ata_port_wait_eh(ap);
5322 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5323 	}
5324 
5325 	return rc;
5326 }
5327 
5328 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5329 {
5330 	unsigned int ehi_flags = ATA_EHI_QUIET;
5331 	int rc;
5332 
5333 	/*
5334 	 * On some hardware, device fails to respond after spun down
5335 	 * for suspend.  As the device won't be used before being
5336 	 * resumed, we don't need to touch the device.  Ask EH to skip
5337 	 * the usual stuff and proceed directly to suspend.
5338 	 *
5339 	 * http://thread.gmane.org/gmane.linux.ide/46764
5340 	 */
5341 	if (mesg.event == PM_EVENT_SUSPEND)
5342 		ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5343 
5344 	rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5345 	return rc;
5346 }
5347 
5348 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5349 {
5350 	struct ata_port *ap = to_ata_port(dev);
5351 
5352 	return __ata_port_suspend_common(ap, mesg, NULL);
5353 }
5354 
5355 static int ata_port_suspend(struct device *dev)
5356 {
5357 	if (pm_runtime_suspended(dev))
5358 		return 0;
5359 
5360 	return ata_port_suspend_common(dev, PMSG_SUSPEND);
5361 }
5362 
5363 static int ata_port_do_freeze(struct device *dev)
5364 {
5365 	if (pm_runtime_suspended(dev))
5366 		pm_runtime_resume(dev);
5367 
5368 	return ata_port_suspend_common(dev, PMSG_FREEZE);
5369 }
5370 
5371 static int ata_port_poweroff(struct device *dev)
5372 {
5373 	if (pm_runtime_suspended(dev))
5374 		return 0;
5375 
5376 	return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5377 }
5378 
5379 static int __ata_port_resume_common(struct ata_port *ap, int *async)
5380 {
5381 	int rc;
5382 
5383 	rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5384 		ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5385 	return rc;
5386 }
5387 
5388 static int ata_port_resume_common(struct device *dev)
5389 {
5390 	struct ata_port *ap = to_ata_port(dev);
5391 
5392 	return __ata_port_resume_common(ap, NULL);
5393 }
5394 
5395 static int ata_port_resume(struct device *dev)
5396 {
5397 	int rc;
5398 
5399 	rc = ata_port_resume_common(dev);
5400 	if (!rc) {
5401 		pm_runtime_disable(dev);
5402 		pm_runtime_set_active(dev);
5403 		pm_runtime_enable(dev);
5404 	}
5405 
5406 	return rc;
5407 }
5408 
5409 static int ata_port_runtime_idle(struct device *dev)
5410 {
5411 	return pm_runtime_suspend(dev);
5412 }
5413 
5414 static const struct dev_pm_ops ata_port_pm_ops = {
5415 	.suspend = ata_port_suspend,
5416 	.resume = ata_port_resume,
5417 	.freeze = ata_port_do_freeze,
5418 	.thaw = ata_port_resume,
5419 	.poweroff = ata_port_poweroff,
5420 	.restore = ata_port_resume,
5421 
5422 	.runtime_suspend = ata_port_suspend,
5423 	.runtime_resume = ata_port_resume_common,
5424 	.runtime_idle = ata_port_runtime_idle,
5425 };
5426 
5427 /* sas ports don't participate in pm runtime management of ata_ports,
5428  * and need to resume ata devices at the domain level, not the per-port
5429  * level. sas suspend/resume is async to allow parallel port recovery
5430  * since sas has multiple ata_port instances per Scsi_Host.
5431  */
5432 int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5433 {
5434 	return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5435 }
5436 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5437 
5438 int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5439 {
5440 	return __ata_port_resume_common(ap, async);
5441 }
5442 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5443 
5444 
5445 /**
5446  *	ata_host_suspend - suspend host
5447  *	@host: host to suspend
5448  *	@mesg: PM message
5449  *
5450  *	Suspend @host.  Actual operation is performed by port suspend.
5451  */
5452 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5453 {
5454 	host->dev->power.power_state = mesg;
5455 	return 0;
5456 }
5457 
5458 /**
5459  *	ata_host_resume - resume host
5460  *	@host: host to resume
5461  *
5462  *	Resume @host.  Actual operation is performed by port resume.
5463  */
5464 void ata_host_resume(struct ata_host *host)
5465 {
5466 	host->dev->power.power_state = PMSG_ON;
5467 }
5468 #endif
5469 
5470 struct device_type ata_port_type = {
5471 	.name = "ata_port",
5472 #ifdef CONFIG_PM
5473 	.pm = &ata_port_pm_ops,
5474 #endif
5475 };
5476 
5477 /**
5478  *	ata_dev_init - Initialize an ata_device structure
5479  *	@dev: Device structure to initialize
5480  *
5481  *	Initialize @dev in preparation for probing.
5482  *
5483  *	LOCKING:
5484  *	Inherited from caller.
5485  */
5486 void ata_dev_init(struct ata_device *dev)
5487 {
5488 	struct ata_link *link = ata_dev_phys_link(dev);
5489 	struct ata_port *ap = link->ap;
5490 	unsigned long flags;
5491 
5492 	/* SATA spd limit is bound to the attached device, reset together */
5493 	link->sata_spd_limit = link->hw_sata_spd_limit;
5494 	link->sata_spd = 0;
5495 
5496 	/* High bits of dev->flags are used to record warm plug
5497 	 * requests which occur asynchronously.  Synchronize using
5498 	 * host lock.
5499 	 */
5500 	spin_lock_irqsave(ap->lock, flags);
5501 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5502 	dev->horkage = 0;
5503 	spin_unlock_irqrestore(ap->lock, flags);
5504 
5505 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5506 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5507 	dev->pio_mask = UINT_MAX;
5508 	dev->mwdma_mask = UINT_MAX;
5509 	dev->udma_mask = UINT_MAX;
5510 }
5511 
5512 /**
5513  *	ata_link_init - Initialize an ata_link structure
5514  *	@ap: ATA port link is attached to
5515  *	@link: Link structure to initialize
5516  *	@pmp: Port multiplier port number
5517  *
5518  *	Initialize @link.
5519  *
5520  *	LOCKING:
5521  *	Kernel thread context (may sleep)
5522  */
5523 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5524 {
5525 	int i;
5526 
5527 	/* clear everything except for devices */
5528 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5529 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5530 
5531 	link->ap = ap;
5532 	link->pmp = pmp;
5533 	link->active_tag = ATA_TAG_POISON;
5534 	link->hw_sata_spd_limit = UINT_MAX;
5535 
5536 	/* can't use iterator, ap isn't initialized yet */
5537 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5538 		struct ata_device *dev = &link->device[i];
5539 
5540 		dev->link = link;
5541 		dev->devno = dev - link->device;
5542 #ifdef CONFIG_ATA_ACPI
5543 		dev->gtf_filter = ata_acpi_gtf_filter;
5544 #endif
5545 		ata_dev_init(dev);
5546 	}
5547 }
5548 
5549 /**
5550  *	sata_link_init_spd - Initialize link->sata_spd_limit
5551  *	@link: Link to configure sata_spd_limit for
5552  *
5553  *	Initialize @link->[hw_]sata_spd_limit to the currently
5554  *	configured value.
5555  *
5556  *	LOCKING:
5557  *	Kernel thread context (may sleep).
5558  *
5559  *	RETURNS:
5560  *	0 on success, -errno on failure.
5561  */
5562 int sata_link_init_spd(struct ata_link *link)
5563 {
5564 	u8 spd;
5565 	int rc;
5566 
5567 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5568 	if (rc)
5569 		return rc;
5570 
5571 	spd = (link->saved_scontrol >> 4) & 0xf;
5572 	if (spd)
5573 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5574 
5575 	ata_force_link_limits(link);
5576 
5577 	link->sata_spd_limit = link->hw_sata_spd_limit;
5578 
5579 	return 0;
5580 }
5581 
5582 /**
5583  *	ata_port_alloc - allocate and initialize basic ATA port resources
5584  *	@host: ATA host this allocated port belongs to
5585  *
5586  *	Allocate and initialize basic ATA port resources.
5587  *
5588  *	RETURNS:
5589  *	Allocate ATA port on success, NULL on failure.
5590  *
5591  *	LOCKING:
5592  *	Inherited from calling layer (may sleep).
5593  */
5594 struct ata_port *ata_port_alloc(struct ata_host *host)
5595 {
5596 	struct ata_port *ap;
5597 
5598 	DPRINTK("ENTER\n");
5599 
5600 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5601 	if (!ap)
5602 		return NULL;
5603 
5604 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5605 	ap->lock = &host->lock;
5606 	ap->print_id = -1;
5607 	ap->host = host;
5608 	ap->dev = host->dev;
5609 
5610 #if defined(ATA_VERBOSE_DEBUG)
5611 	/* turn on all debugging levels */
5612 	ap->msg_enable = 0x00FF;
5613 #elif defined(ATA_DEBUG)
5614 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5615 #else
5616 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5617 #endif
5618 
5619 	mutex_init(&ap->scsi_scan_mutex);
5620 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5621 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5622 	INIT_LIST_HEAD(&ap->eh_done_q);
5623 	init_waitqueue_head(&ap->eh_wait_q);
5624 	init_completion(&ap->park_req_pending);
5625 	init_timer_deferrable(&ap->fastdrain_timer);
5626 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5627 	ap->fastdrain_timer.data = (unsigned long)ap;
5628 
5629 	ap->cbl = ATA_CBL_NONE;
5630 
5631 	ata_link_init(ap, &ap->link, 0);
5632 
5633 #ifdef ATA_IRQ_TRAP
5634 	ap->stats.unhandled_irq = 1;
5635 	ap->stats.idle_irq = 1;
5636 #endif
5637 	ata_sff_port_init(ap);
5638 
5639 	return ap;
5640 }
5641 
5642 static void ata_host_release(struct device *gendev, void *res)
5643 {
5644 	struct ata_host *host = dev_get_drvdata(gendev);
5645 	int i;
5646 
5647 	for (i = 0; i < host->n_ports; i++) {
5648 		struct ata_port *ap = host->ports[i];
5649 
5650 		if (!ap)
5651 			continue;
5652 
5653 		if (ap->scsi_host)
5654 			scsi_host_put(ap->scsi_host);
5655 
5656 		kfree(ap->pmp_link);
5657 		kfree(ap->slave_link);
5658 		kfree(ap);
5659 		host->ports[i] = NULL;
5660 	}
5661 
5662 	dev_set_drvdata(gendev, NULL);
5663 }
5664 
5665 /**
5666  *	ata_host_alloc - allocate and init basic ATA host resources
5667  *	@dev: generic device this host is associated with
5668  *	@max_ports: maximum number of ATA ports associated with this host
5669  *
5670  *	Allocate and initialize basic ATA host resources.  LLD calls
5671  *	this function to allocate a host, initializes it fully and
5672  *	attaches it using ata_host_register().
5673  *
5674  *	@max_ports ports are allocated and host->n_ports is
5675  *	initialized to @max_ports.  The caller is allowed to decrease
5676  *	host->n_ports before calling ata_host_register().  The unused
5677  *	ports will be automatically freed on registration.
5678  *
5679  *	RETURNS:
5680  *	Allocate ATA host on success, NULL on failure.
5681  *
5682  *	LOCKING:
5683  *	Inherited from calling layer (may sleep).
5684  */
5685 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5686 {
5687 	struct ata_host *host;
5688 	size_t sz;
5689 	int i;
5690 
5691 	DPRINTK("ENTER\n");
5692 
5693 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5694 		return NULL;
5695 
5696 	/* alloc a container for our list of ATA ports (buses) */
5697 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5698 	/* alloc a container for our list of ATA ports (buses) */
5699 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5700 	if (!host)
5701 		goto err_out;
5702 
5703 	devres_add(dev, host);
5704 	dev_set_drvdata(dev, host);
5705 
5706 	spin_lock_init(&host->lock);
5707 	mutex_init(&host->eh_mutex);
5708 	host->dev = dev;
5709 	host->n_ports = max_ports;
5710 
5711 	/* allocate ports bound to this host */
5712 	for (i = 0; i < max_ports; i++) {
5713 		struct ata_port *ap;
5714 
5715 		ap = ata_port_alloc(host);
5716 		if (!ap)
5717 			goto err_out;
5718 
5719 		ap->port_no = i;
5720 		host->ports[i] = ap;
5721 	}
5722 
5723 	devres_remove_group(dev, NULL);
5724 	return host;
5725 
5726  err_out:
5727 	devres_release_group(dev, NULL);
5728 	return NULL;
5729 }
5730 
5731 /**
5732  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5733  *	@dev: generic device this host is associated with
5734  *	@ppi: array of ATA port_info to initialize host with
5735  *	@n_ports: number of ATA ports attached to this host
5736  *
5737  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5738  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5739  *	last entry will be used for the remaining ports.
5740  *
5741  *	RETURNS:
5742  *	Allocate ATA host on success, NULL on failure.
5743  *
5744  *	LOCKING:
5745  *	Inherited from calling layer (may sleep).
5746  */
5747 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5748 				      const struct ata_port_info * const * ppi,
5749 				      int n_ports)
5750 {
5751 	const struct ata_port_info *pi;
5752 	struct ata_host *host;
5753 	int i, j;
5754 
5755 	host = ata_host_alloc(dev, n_ports);
5756 	if (!host)
5757 		return NULL;
5758 
5759 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5760 		struct ata_port *ap = host->ports[i];
5761 
5762 		if (ppi[j])
5763 			pi = ppi[j++];
5764 
5765 		ap->pio_mask = pi->pio_mask;
5766 		ap->mwdma_mask = pi->mwdma_mask;
5767 		ap->udma_mask = pi->udma_mask;
5768 		ap->flags |= pi->flags;
5769 		ap->link.flags |= pi->link_flags;
5770 		ap->ops = pi->port_ops;
5771 
5772 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5773 			host->ops = pi->port_ops;
5774 	}
5775 
5776 	return host;
5777 }
5778 
5779 /**
5780  *	ata_slave_link_init - initialize slave link
5781  *	@ap: port to initialize slave link for
5782  *
5783  *	Create and initialize slave link for @ap.  This enables slave
5784  *	link handling on the port.
5785  *
5786  *	In libata, a port contains links and a link contains devices.
5787  *	There is single host link but if a PMP is attached to it,
5788  *	there can be multiple fan-out links.  On SATA, there's usually
5789  *	a single device connected to a link but PATA and SATA
5790  *	controllers emulating TF based interface can have two - master
5791  *	and slave.
5792  *
5793  *	However, there are a few controllers which don't fit into this
5794  *	abstraction too well - SATA controllers which emulate TF
5795  *	interface with both master and slave devices but also have
5796  *	separate SCR register sets for each device.  These controllers
5797  *	need separate links for physical link handling
5798  *	(e.g. onlineness, link speed) but should be treated like a
5799  *	traditional M/S controller for everything else (e.g. command
5800  *	issue, softreset).
5801  *
5802  *	slave_link is libata's way of handling this class of
5803  *	controllers without impacting core layer too much.  For
5804  *	anything other than physical link handling, the default host
5805  *	link is used for both master and slave.  For physical link
5806  *	handling, separate @ap->slave_link is used.  All dirty details
5807  *	are implemented inside libata core layer.  From LLD's POV, the
5808  *	only difference is that prereset, hardreset and postreset are
5809  *	called once more for the slave link, so the reset sequence
5810  *	looks like the following.
5811  *
5812  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5813  *	softreset(M) -> postreset(M) -> postreset(S)
5814  *
5815  *	Note that softreset is called only for the master.  Softreset
5816  *	resets both M/S by definition, so SRST on master should handle
5817  *	both (the standard method will work just fine).
5818  *
5819  *	LOCKING:
5820  *	Should be called before host is registered.
5821  *
5822  *	RETURNS:
5823  *	0 on success, -errno on failure.
5824  */
5825 int ata_slave_link_init(struct ata_port *ap)
5826 {
5827 	struct ata_link *link;
5828 
5829 	WARN_ON(ap->slave_link);
5830 	WARN_ON(ap->flags & ATA_FLAG_PMP);
5831 
5832 	link = kzalloc(sizeof(*link), GFP_KERNEL);
5833 	if (!link)
5834 		return -ENOMEM;
5835 
5836 	ata_link_init(ap, link, 1);
5837 	ap->slave_link = link;
5838 	return 0;
5839 }
5840 
5841 static void ata_host_stop(struct device *gendev, void *res)
5842 {
5843 	struct ata_host *host = dev_get_drvdata(gendev);
5844 	int i;
5845 
5846 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5847 
5848 	for (i = 0; i < host->n_ports; i++) {
5849 		struct ata_port *ap = host->ports[i];
5850 
5851 		if (ap->ops->port_stop)
5852 			ap->ops->port_stop(ap);
5853 	}
5854 
5855 	if (host->ops->host_stop)
5856 		host->ops->host_stop(host);
5857 }
5858 
5859 /**
5860  *	ata_finalize_port_ops - finalize ata_port_operations
5861  *	@ops: ata_port_operations to finalize
5862  *
5863  *	An ata_port_operations can inherit from another ops and that
5864  *	ops can again inherit from another.  This can go on as many
5865  *	times as necessary as long as there is no loop in the
5866  *	inheritance chain.
5867  *
5868  *	Ops tables are finalized when the host is started.  NULL or
5869  *	unspecified entries are inherited from the closet ancestor
5870  *	which has the method and the entry is populated with it.
5871  *	After finalization, the ops table directly points to all the
5872  *	methods and ->inherits is no longer necessary and cleared.
5873  *
5874  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5875  *
5876  *	LOCKING:
5877  *	None.
5878  */
5879 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5880 {
5881 	static DEFINE_SPINLOCK(lock);
5882 	const struct ata_port_operations *cur;
5883 	void **begin = (void **)ops;
5884 	void **end = (void **)&ops->inherits;
5885 	void **pp;
5886 
5887 	if (!ops || !ops->inherits)
5888 		return;
5889 
5890 	spin_lock(&lock);
5891 
5892 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5893 		void **inherit = (void **)cur;
5894 
5895 		for (pp = begin; pp < end; pp++, inherit++)
5896 			if (!*pp)
5897 				*pp = *inherit;
5898 	}
5899 
5900 	for (pp = begin; pp < end; pp++)
5901 		if (IS_ERR(*pp))
5902 			*pp = NULL;
5903 
5904 	ops->inherits = NULL;
5905 
5906 	spin_unlock(&lock);
5907 }
5908 
5909 /**
5910  *	ata_host_start - start and freeze ports of an ATA host
5911  *	@host: ATA host to start ports for
5912  *
5913  *	Start and then freeze ports of @host.  Started status is
5914  *	recorded in host->flags, so this function can be called
5915  *	multiple times.  Ports are guaranteed to get started only
5916  *	once.  If host->ops isn't initialized yet, its set to the
5917  *	first non-dummy port ops.
5918  *
5919  *	LOCKING:
5920  *	Inherited from calling layer (may sleep).
5921  *
5922  *	RETURNS:
5923  *	0 if all ports are started successfully, -errno otherwise.
5924  */
5925 int ata_host_start(struct ata_host *host)
5926 {
5927 	int have_stop = 0;
5928 	void *start_dr = NULL;
5929 	int i, rc;
5930 
5931 	if (host->flags & ATA_HOST_STARTED)
5932 		return 0;
5933 
5934 	ata_finalize_port_ops(host->ops);
5935 
5936 	for (i = 0; i < host->n_ports; i++) {
5937 		struct ata_port *ap = host->ports[i];
5938 
5939 		ata_finalize_port_ops(ap->ops);
5940 
5941 		if (!host->ops && !ata_port_is_dummy(ap))
5942 			host->ops = ap->ops;
5943 
5944 		if (ap->ops->port_stop)
5945 			have_stop = 1;
5946 	}
5947 
5948 	if (host->ops->host_stop)
5949 		have_stop = 1;
5950 
5951 	if (have_stop) {
5952 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5953 		if (!start_dr)
5954 			return -ENOMEM;
5955 	}
5956 
5957 	for (i = 0; i < host->n_ports; i++) {
5958 		struct ata_port *ap = host->ports[i];
5959 
5960 		if (ap->ops->port_start) {
5961 			rc = ap->ops->port_start(ap);
5962 			if (rc) {
5963 				if (rc != -ENODEV)
5964 					dev_err(host->dev,
5965 						"failed to start port %d (errno=%d)\n",
5966 						i, rc);
5967 				goto err_out;
5968 			}
5969 		}
5970 		ata_eh_freeze_port(ap);
5971 	}
5972 
5973 	if (start_dr)
5974 		devres_add(host->dev, start_dr);
5975 	host->flags |= ATA_HOST_STARTED;
5976 	return 0;
5977 
5978  err_out:
5979 	while (--i >= 0) {
5980 		struct ata_port *ap = host->ports[i];
5981 
5982 		if (ap->ops->port_stop)
5983 			ap->ops->port_stop(ap);
5984 	}
5985 	devres_free(start_dr);
5986 	return rc;
5987 }
5988 
5989 /**
5990  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
5991  *	@host:	host to initialize
5992  *	@dev:	device host is attached to
5993  *	@ops:	port_ops
5994  *
5995  */
5996 void ata_host_init(struct ata_host *host, struct device *dev,
5997 		   struct ata_port_operations *ops)
5998 {
5999 	spin_lock_init(&host->lock);
6000 	mutex_init(&host->eh_mutex);
6001 	host->dev = dev;
6002 	host->ops = ops;
6003 }
6004 
6005 void __ata_port_probe(struct ata_port *ap)
6006 {
6007 	struct ata_eh_info *ehi = &ap->link.eh_info;
6008 	unsigned long flags;
6009 
6010 	/* kick EH for boot probing */
6011 	spin_lock_irqsave(ap->lock, flags);
6012 
6013 	ehi->probe_mask |= ATA_ALL_DEVICES;
6014 	ehi->action |= ATA_EH_RESET;
6015 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6016 
6017 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6018 	ap->pflags |= ATA_PFLAG_LOADING;
6019 	ata_port_schedule_eh(ap);
6020 
6021 	spin_unlock_irqrestore(ap->lock, flags);
6022 }
6023 
6024 int ata_port_probe(struct ata_port *ap)
6025 {
6026 	int rc = 0;
6027 
6028 	if (ap->ops->error_handler) {
6029 		__ata_port_probe(ap);
6030 		ata_port_wait_eh(ap);
6031 	} else {
6032 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6033 		rc = ata_bus_probe(ap);
6034 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6035 	}
6036 	return rc;
6037 }
6038 
6039 
6040 static void async_port_probe(void *data, async_cookie_t cookie)
6041 {
6042 	struct ata_port *ap = data;
6043 
6044 	/*
6045 	 * If we're not allowed to scan this host in parallel,
6046 	 * we need to wait until all previous scans have completed
6047 	 * before going further.
6048 	 * Jeff Garzik says this is only within a controller, so we
6049 	 * don't need to wait for port 0, only for later ports.
6050 	 */
6051 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6052 		async_synchronize_cookie(cookie);
6053 
6054 	(void)ata_port_probe(ap);
6055 
6056 	/* in order to keep device order, we need to synchronize at this point */
6057 	async_synchronize_cookie(cookie);
6058 
6059 	ata_scsi_scan_host(ap, 1);
6060 }
6061 
6062 /**
6063  *	ata_host_register - register initialized ATA host
6064  *	@host: ATA host to register
6065  *	@sht: template for SCSI host
6066  *
6067  *	Register initialized ATA host.  @host is allocated using
6068  *	ata_host_alloc() and fully initialized by LLD.  This function
6069  *	starts ports, registers @host with ATA and SCSI layers and
6070  *	probe registered devices.
6071  *
6072  *	LOCKING:
6073  *	Inherited from calling layer (may sleep).
6074  *
6075  *	RETURNS:
6076  *	0 on success, -errno otherwise.
6077  */
6078 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6079 {
6080 	int i, rc;
6081 
6082 	/* host must have been started */
6083 	if (!(host->flags & ATA_HOST_STARTED)) {
6084 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6085 		WARN_ON(1);
6086 		return -EINVAL;
6087 	}
6088 
6089 	/* Blow away unused ports.  This happens when LLD can't
6090 	 * determine the exact number of ports to allocate at
6091 	 * allocation time.
6092 	 */
6093 	for (i = host->n_ports; host->ports[i]; i++)
6094 		kfree(host->ports[i]);
6095 
6096 	/* give ports names and add SCSI hosts */
6097 	for (i = 0; i < host->n_ports; i++)
6098 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6099 
6100 
6101 	/* Create associated sysfs transport objects  */
6102 	for (i = 0; i < host->n_ports; i++) {
6103 		rc = ata_tport_add(host->dev,host->ports[i]);
6104 		if (rc) {
6105 			goto err_tadd;
6106 		}
6107 	}
6108 
6109 	rc = ata_scsi_add_hosts(host, sht);
6110 	if (rc)
6111 		goto err_tadd;
6112 
6113 	/* set cable, sata_spd_limit and report */
6114 	for (i = 0; i < host->n_ports; i++) {
6115 		struct ata_port *ap = host->ports[i];
6116 		unsigned long xfer_mask;
6117 
6118 		/* set SATA cable type if still unset */
6119 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6120 			ap->cbl = ATA_CBL_SATA;
6121 
6122 		/* init sata_spd_limit to the current value */
6123 		sata_link_init_spd(&ap->link);
6124 		if (ap->slave_link)
6125 			sata_link_init_spd(ap->slave_link);
6126 
6127 		/* print per-port info to dmesg */
6128 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6129 					      ap->udma_mask);
6130 
6131 		if (!ata_port_is_dummy(ap)) {
6132 			ata_port_info(ap, "%cATA max %s %s\n",
6133 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6134 				      ata_mode_string(xfer_mask),
6135 				      ap->link.eh_info.desc);
6136 			ata_ehi_clear_desc(&ap->link.eh_info);
6137 		} else
6138 			ata_port_info(ap, "DUMMY\n");
6139 	}
6140 
6141 	/* perform each probe asynchronously */
6142 	for (i = 0; i < host->n_ports; i++) {
6143 		struct ata_port *ap = host->ports[i];
6144 		async_schedule(async_port_probe, ap);
6145 	}
6146 
6147 	return 0;
6148 
6149  err_tadd:
6150 	while (--i >= 0) {
6151 		ata_tport_delete(host->ports[i]);
6152 	}
6153 	return rc;
6154 
6155 }
6156 
6157 /**
6158  *	ata_host_activate - start host, request IRQ and register it
6159  *	@host: target ATA host
6160  *	@irq: IRQ to request
6161  *	@irq_handler: irq_handler used when requesting IRQ
6162  *	@irq_flags: irq_flags used when requesting IRQ
6163  *	@sht: scsi_host_template to use when registering the host
6164  *
6165  *	After allocating an ATA host and initializing it, most libata
6166  *	LLDs perform three steps to activate the host - start host,
6167  *	request IRQ and register it.  This helper takes necessasry
6168  *	arguments and performs the three steps in one go.
6169  *
6170  *	An invalid IRQ skips the IRQ registration and expects the host to
6171  *	have set polling mode on the port. In this case, @irq_handler
6172  *	should be NULL.
6173  *
6174  *	LOCKING:
6175  *	Inherited from calling layer (may sleep).
6176  *
6177  *	RETURNS:
6178  *	0 on success, -errno otherwise.
6179  */
6180 int ata_host_activate(struct ata_host *host, int irq,
6181 		      irq_handler_t irq_handler, unsigned long irq_flags,
6182 		      struct scsi_host_template *sht)
6183 {
6184 	int i, rc;
6185 
6186 	rc = ata_host_start(host);
6187 	if (rc)
6188 		return rc;
6189 
6190 	/* Special case for polling mode */
6191 	if (!irq) {
6192 		WARN_ON(irq_handler);
6193 		return ata_host_register(host, sht);
6194 	}
6195 
6196 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6197 			      dev_driver_string(host->dev), host);
6198 	if (rc)
6199 		return rc;
6200 
6201 	for (i = 0; i < host->n_ports; i++)
6202 		ata_port_desc(host->ports[i], "irq %d", irq);
6203 
6204 	rc = ata_host_register(host, sht);
6205 	/* if failed, just free the IRQ and leave ports alone */
6206 	if (rc)
6207 		devm_free_irq(host->dev, irq, host);
6208 
6209 	return rc;
6210 }
6211 
6212 /**
6213  *	ata_port_detach - Detach ATA port in prepration of device removal
6214  *	@ap: ATA port to be detached
6215  *
6216  *	Detach all ATA devices and the associated SCSI devices of @ap;
6217  *	then, remove the associated SCSI host.  @ap is guaranteed to
6218  *	be quiescent on return from this function.
6219  *
6220  *	LOCKING:
6221  *	Kernel thread context (may sleep).
6222  */
6223 static void ata_port_detach(struct ata_port *ap)
6224 {
6225 	unsigned long flags;
6226 
6227 	if (!ap->ops->error_handler)
6228 		goto skip_eh;
6229 
6230 	/* tell EH we're leaving & flush EH */
6231 	spin_lock_irqsave(ap->lock, flags);
6232 	ap->pflags |= ATA_PFLAG_UNLOADING;
6233 	ata_port_schedule_eh(ap);
6234 	spin_unlock_irqrestore(ap->lock, flags);
6235 
6236 	/* wait till EH commits suicide */
6237 	ata_port_wait_eh(ap);
6238 
6239 	/* it better be dead now */
6240 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6241 
6242 	cancel_delayed_work_sync(&ap->hotplug_task);
6243 
6244  skip_eh:
6245 	if (ap->pmp_link) {
6246 		int i;
6247 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6248 			ata_tlink_delete(&ap->pmp_link[i]);
6249 	}
6250 	ata_tport_delete(ap);
6251 
6252 	/* remove the associated SCSI host */
6253 	scsi_remove_host(ap->scsi_host);
6254 }
6255 
6256 /**
6257  *	ata_host_detach - Detach all ports of an ATA host
6258  *	@host: Host to detach
6259  *
6260  *	Detach all ports of @host.
6261  *
6262  *	LOCKING:
6263  *	Kernel thread context (may sleep).
6264  */
6265 void ata_host_detach(struct ata_host *host)
6266 {
6267 	int i;
6268 
6269 	for (i = 0; i < host->n_ports; i++)
6270 		ata_port_detach(host->ports[i]);
6271 
6272 	/* the host is dead now, dissociate ACPI */
6273 	ata_acpi_dissociate(host);
6274 }
6275 
6276 #ifdef CONFIG_PCI
6277 
6278 /**
6279  *	ata_pci_remove_one - PCI layer callback for device removal
6280  *	@pdev: PCI device that was removed
6281  *
6282  *	PCI layer indicates to libata via this hook that hot-unplug or
6283  *	module unload event has occurred.  Detach all ports.  Resource
6284  *	release is handled via devres.
6285  *
6286  *	LOCKING:
6287  *	Inherited from PCI layer (may sleep).
6288  */
6289 void ata_pci_remove_one(struct pci_dev *pdev)
6290 {
6291 	struct ata_host *host = pci_get_drvdata(pdev);
6292 
6293 	ata_host_detach(host);
6294 }
6295 
6296 /* move to PCI subsystem */
6297 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6298 {
6299 	unsigned long tmp = 0;
6300 
6301 	switch (bits->width) {
6302 	case 1: {
6303 		u8 tmp8 = 0;
6304 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6305 		tmp = tmp8;
6306 		break;
6307 	}
6308 	case 2: {
6309 		u16 tmp16 = 0;
6310 		pci_read_config_word(pdev, bits->reg, &tmp16);
6311 		tmp = tmp16;
6312 		break;
6313 	}
6314 	case 4: {
6315 		u32 tmp32 = 0;
6316 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6317 		tmp = tmp32;
6318 		break;
6319 	}
6320 
6321 	default:
6322 		return -EINVAL;
6323 	}
6324 
6325 	tmp &= bits->mask;
6326 
6327 	return (tmp == bits->val) ? 1 : 0;
6328 }
6329 
6330 #ifdef CONFIG_PM
6331 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6332 {
6333 	pci_save_state(pdev);
6334 	pci_disable_device(pdev);
6335 
6336 	if (mesg.event & PM_EVENT_SLEEP)
6337 		pci_set_power_state(pdev, PCI_D3hot);
6338 }
6339 
6340 int ata_pci_device_do_resume(struct pci_dev *pdev)
6341 {
6342 	int rc;
6343 
6344 	pci_set_power_state(pdev, PCI_D0);
6345 	pci_restore_state(pdev);
6346 
6347 	rc = pcim_enable_device(pdev);
6348 	if (rc) {
6349 		dev_err(&pdev->dev,
6350 			"failed to enable device after resume (%d)\n", rc);
6351 		return rc;
6352 	}
6353 
6354 	pci_set_master(pdev);
6355 	return 0;
6356 }
6357 
6358 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6359 {
6360 	struct ata_host *host = pci_get_drvdata(pdev);
6361 	int rc = 0;
6362 
6363 	rc = ata_host_suspend(host, mesg);
6364 	if (rc)
6365 		return rc;
6366 
6367 	ata_pci_device_do_suspend(pdev, mesg);
6368 
6369 	return 0;
6370 }
6371 
6372 int ata_pci_device_resume(struct pci_dev *pdev)
6373 {
6374 	struct ata_host *host = pci_get_drvdata(pdev);
6375 	int rc;
6376 
6377 	rc = ata_pci_device_do_resume(pdev);
6378 	if (rc == 0)
6379 		ata_host_resume(host);
6380 	return rc;
6381 }
6382 #endif /* CONFIG_PM */
6383 
6384 #endif /* CONFIG_PCI */
6385 
6386 /**
6387  *	ata_platform_remove_one - Platform layer callback for device removal
6388  *	@pdev: Platform device that was removed
6389  *
6390  *	Platform layer indicates to libata via this hook that hot-unplug or
6391  *	module unload event has occurred.  Detach all ports.  Resource
6392  *	release is handled via devres.
6393  *
6394  *	LOCKING:
6395  *	Inherited from platform layer (may sleep).
6396  */
6397 int ata_platform_remove_one(struct platform_device *pdev)
6398 {
6399 	struct ata_host *host = platform_get_drvdata(pdev);
6400 
6401 	ata_host_detach(host);
6402 
6403 	return 0;
6404 }
6405 
6406 static int __init ata_parse_force_one(char **cur,
6407 				      struct ata_force_ent *force_ent,
6408 				      const char **reason)
6409 {
6410 	/* FIXME: Currently, there's no way to tag init const data and
6411 	 * using __initdata causes build failure on some versions of
6412 	 * gcc.  Once __initdataconst is implemented, add const to the
6413 	 * following structure.
6414 	 */
6415 	static struct ata_force_param force_tbl[] __initdata = {
6416 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6417 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6418 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6419 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6420 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6421 		{ "sata",	.cbl		= ATA_CBL_SATA },
6422 		{ "1.5Gbps",	.spd_limit	= 1 },
6423 		{ "3.0Gbps",	.spd_limit	= 2 },
6424 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6425 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6426 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6427 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6428 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6429 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6430 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6431 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6432 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6433 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6434 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6435 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6436 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6437 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6438 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6439 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6440 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6441 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6442 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6443 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6444 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6445 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6446 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6447 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6448 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6449 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6450 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6451 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6452 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6453 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6454 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6455 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6456 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6457 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6458 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6459 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6460 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6461 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6462 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6463 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6464 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6465 	};
6466 	char *start = *cur, *p = *cur;
6467 	char *id, *val, *endp;
6468 	const struct ata_force_param *match_fp = NULL;
6469 	int nr_matches = 0, i;
6470 
6471 	/* find where this param ends and update *cur */
6472 	while (*p != '\0' && *p != ',')
6473 		p++;
6474 
6475 	if (*p == '\0')
6476 		*cur = p;
6477 	else
6478 		*cur = p + 1;
6479 
6480 	*p = '\0';
6481 
6482 	/* parse */
6483 	p = strchr(start, ':');
6484 	if (!p) {
6485 		val = strstrip(start);
6486 		goto parse_val;
6487 	}
6488 	*p = '\0';
6489 
6490 	id = strstrip(start);
6491 	val = strstrip(p + 1);
6492 
6493 	/* parse id */
6494 	p = strchr(id, '.');
6495 	if (p) {
6496 		*p++ = '\0';
6497 		force_ent->device = simple_strtoul(p, &endp, 10);
6498 		if (p == endp || *endp != '\0') {
6499 			*reason = "invalid device";
6500 			return -EINVAL;
6501 		}
6502 	}
6503 
6504 	force_ent->port = simple_strtoul(id, &endp, 10);
6505 	if (p == endp || *endp != '\0') {
6506 		*reason = "invalid port/link";
6507 		return -EINVAL;
6508 	}
6509 
6510  parse_val:
6511 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6512 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6513 		const struct ata_force_param *fp = &force_tbl[i];
6514 
6515 		if (strncasecmp(val, fp->name, strlen(val)))
6516 			continue;
6517 
6518 		nr_matches++;
6519 		match_fp = fp;
6520 
6521 		if (strcasecmp(val, fp->name) == 0) {
6522 			nr_matches = 1;
6523 			break;
6524 		}
6525 	}
6526 
6527 	if (!nr_matches) {
6528 		*reason = "unknown value";
6529 		return -EINVAL;
6530 	}
6531 	if (nr_matches > 1) {
6532 		*reason = "ambigious value";
6533 		return -EINVAL;
6534 	}
6535 
6536 	force_ent->param = *match_fp;
6537 
6538 	return 0;
6539 }
6540 
6541 static void __init ata_parse_force_param(void)
6542 {
6543 	int idx = 0, size = 1;
6544 	int last_port = -1, last_device = -1;
6545 	char *p, *cur, *next;
6546 
6547 	/* calculate maximum number of params and allocate force_tbl */
6548 	for (p = ata_force_param_buf; *p; p++)
6549 		if (*p == ',')
6550 			size++;
6551 
6552 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6553 	if (!ata_force_tbl) {
6554 		printk(KERN_WARNING "ata: failed to extend force table, "
6555 		       "libata.force ignored\n");
6556 		return;
6557 	}
6558 
6559 	/* parse and populate the table */
6560 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6561 		const char *reason = "";
6562 		struct ata_force_ent te = { .port = -1, .device = -1 };
6563 
6564 		next = cur;
6565 		if (ata_parse_force_one(&next, &te, &reason)) {
6566 			printk(KERN_WARNING "ata: failed to parse force "
6567 			       "parameter \"%s\" (%s)\n",
6568 			       cur, reason);
6569 			continue;
6570 		}
6571 
6572 		if (te.port == -1) {
6573 			te.port = last_port;
6574 			te.device = last_device;
6575 		}
6576 
6577 		ata_force_tbl[idx++] = te;
6578 
6579 		last_port = te.port;
6580 		last_device = te.device;
6581 	}
6582 
6583 	ata_force_tbl_size = idx;
6584 }
6585 
6586 static int __init ata_init(void)
6587 {
6588 	int rc;
6589 
6590 	ata_parse_force_param();
6591 
6592 	ata_acpi_register();
6593 
6594 	rc = ata_sff_init();
6595 	if (rc) {
6596 		kfree(ata_force_tbl);
6597 		return rc;
6598 	}
6599 
6600 	libata_transport_init();
6601 	ata_scsi_transport_template = ata_attach_transport();
6602 	if (!ata_scsi_transport_template) {
6603 		ata_sff_exit();
6604 		rc = -ENOMEM;
6605 		goto err_out;
6606 	}
6607 
6608 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6609 	return 0;
6610 
6611 err_out:
6612 	return rc;
6613 }
6614 
6615 static void __exit ata_exit(void)
6616 {
6617 	ata_release_transport(ata_scsi_transport_template);
6618 	libata_transport_exit();
6619 	ata_sff_exit();
6620 	ata_acpi_unregister();
6621 	kfree(ata_force_tbl);
6622 }
6623 
6624 subsys_initcall(ata_init);
6625 module_exit(ata_exit);
6626 
6627 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6628 
6629 int ata_ratelimit(void)
6630 {
6631 	return __ratelimit(&ratelimit);
6632 }
6633 
6634 /**
6635  *	ata_msleep - ATA EH owner aware msleep
6636  *	@ap: ATA port to attribute the sleep to
6637  *	@msecs: duration to sleep in milliseconds
6638  *
6639  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6640  *	ownership is released before going to sleep and reacquired
6641  *	after the sleep is complete.  IOW, other ports sharing the
6642  *	@ap->host will be allowed to own the EH while this task is
6643  *	sleeping.
6644  *
6645  *	LOCKING:
6646  *	Might sleep.
6647  */
6648 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6649 {
6650 	bool owns_eh = ap && ap->host->eh_owner == current;
6651 
6652 	if (owns_eh)
6653 		ata_eh_release(ap);
6654 
6655 	msleep(msecs);
6656 
6657 	if (owns_eh)
6658 		ata_eh_acquire(ap);
6659 }
6660 
6661 /**
6662  *	ata_wait_register - wait until register value changes
6663  *	@ap: ATA port to wait register for, can be NULL
6664  *	@reg: IO-mapped register
6665  *	@mask: Mask to apply to read register value
6666  *	@val: Wait condition
6667  *	@interval: polling interval in milliseconds
6668  *	@timeout: timeout in milliseconds
6669  *
6670  *	Waiting for some bits of register to change is a common
6671  *	operation for ATA controllers.  This function reads 32bit LE
6672  *	IO-mapped register @reg and tests for the following condition.
6673  *
6674  *	(*@reg & mask) != val
6675  *
6676  *	If the condition is met, it returns; otherwise, the process is
6677  *	repeated after @interval_msec until timeout.
6678  *
6679  *	LOCKING:
6680  *	Kernel thread context (may sleep)
6681  *
6682  *	RETURNS:
6683  *	The final register value.
6684  */
6685 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6686 		      unsigned long interval, unsigned long timeout)
6687 {
6688 	unsigned long deadline;
6689 	u32 tmp;
6690 
6691 	tmp = ioread32(reg);
6692 
6693 	/* Calculate timeout _after_ the first read to make sure
6694 	 * preceding writes reach the controller before starting to
6695 	 * eat away the timeout.
6696 	 */
6697 	deadline = ata_deadline(jiffies, timeout);
6698 
6699 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6700 		ata_msleep(ap, interval);
6701 		tmp = ioread32(reg);
6702 	}
6703 
6704 	return tmp;
6705 }
6706 
6707 /*
6708  * Dummy port_ops
6709  */
6710 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6711 {
6712 	return AC_ERR_SYSTEM;
6713 }
6714 
6715 static void ata_dummy_error_handler(struct ata_port *ap)
6716 {
6717 	/* truly dummy */
6718 }
6719 
6720 struct ata_port_operations ata_dummy_port_ops = {
6721 	.qc_prep		= ata_noop_qc_prep,
6722 	.qc_issue		= ata_dummy_qc_issue,
6723 	.error_handler		= ata_dummy_error_handler,
6724 	.sched_eh		= ata_std_sched_eh,
6725 	.end_eh			= ata_std_end_eh,
6726 };
6727 
6728 const struct ata_port_info ata_dummy_port_info = {
6729 	.port_ops		= &ata_dummy_port_ops,
6730 };
6731 
6732 /*
6733  * Utility print functions
6734  */
6735 int ata_port_printk(const struct ata_port *ap, const char *level,
6736 		    const char *fmt, ...)
6737 {
6738 	struct va_format vaf;
6739 	va_list args;
6740 	int r;
6741 
6742 	va_start(args, fmt);
6743 
6744 	vaf.fmt = fmt;
6745 	vaf.va = &args;
6746 
6747 	r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6748 
6749 	va_end(args);
6750 
6751 	return r;
6752 }
6753 EXPORT_SYMBOL(ata_port_printk);
6754 
6755 int ata_link_printk(const struct ata_link *link, const char *level,
6756 		    const char *fmt, ...)
6757 {
6758 	struct va_format vaf;
6759 	va_list args;
6760 	int r;
6761 
6762 	va_start(args, fmt);
6763 
6764 	vaf.fmt = fmt;
6765 	vaf.va = &args;
6766 
6767 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6768 		r = printk("%sata%u.%02u: %pV",
6769 			   level, link->ap->print_id, link->pmp, &vaf);
6770 	else
6771 		r = printk("%sata%u: %pV",
6772 			   level, link->ap->print_id, &vaf);
6773 
6774 	va_end(args);
6775 
6776 	return r;
6777 }
6778 EXPORT_SYMBOL(ata_link_printk);
6779 
6780 int ata_dev_printk(const struct ata_device *dev, const char *level,
6781 		    const char *fmt, ...)
6782 {
6783 	struct va_format vaf;
6784 	va_list args;
6785 	int r;
6786 
6787 	va_start(args, fmt);
6788 
6789 	vaf.fmt = fmt;
6790 	vaf.va = &args;
6791 
6792 	r = printk("%sata%u.%02u: %pV",
6793 		   level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6794 		   &vaf);
6795 
6796 	va_end(args);
6797 
6798 	return r;
6799 }
6800 EXPORT_SYMBOL(ata_dev_printk);
6801 
6802 void ata_print_version(const struct device *dev, const char *version)
6803 {
6804 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6805 }
6806 EXPORT_SYMBOL(ata_print_version);
6807 
6808 /*
6809  * libata is essentially a library of internal helper functions for
6810  * low-level ATA host controller drivers.  As such, the API/ABI is
6811  * likely to change as new drivers are added and updated.
6812  * Do not depend on ABI/API stability.
6813  */
6814 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6815 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6816 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6817 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6818 EXPORT_SYMBOL_GPL(sata_port_ops);
6819 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6820 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6821 EXPORT_SYMBOL_GPL(ata_link_next);
6822 EXPORT_SYMBOL_GPL(ata_dev_next);
6823 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6824 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6825 EXPORT_SYMBOL_GPL(ata_host_init);
6826 EXPORT_SYMBOL_GPL(ata_host_alloc);
6827 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6828 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6829 EXPORT_SYMBOL_GPL(ata_host_start);
6830 EXPORT_SYMBOL_GPL(ata_host_register);
6831 EXPORT_SYMBOL_GPL(ata_host_activate);
6832 EXPORT_SYMBOL_GPL(ata_host_detach);
6833 EXPORT_SYMBOL_GPL(ata_sg_init);
6834 EXPORT_SYMBOL_GPL(ata_qc_complete);
6835 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6836 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6837 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6838 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6839 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6840 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6841 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6842 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6843 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6844 EXPORT_SYMBOL_GPL(ata_mode_string);
6845 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6846 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6847 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6848 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6849 EXPORT_SYMBOL_GPL(ata_dev_disable);
6850 EXPORT_SYMBOL_GPL(sata_set_spd);
6851 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6852 EXPORT_SYMBOL_GPL(sata_link_debounce);
6853 EXPORT_SYMBOL_GPL(sata_link_resume);
6854 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6855 EXPORT_SYMBOL_GPL(ata_std_prereset);
6856 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6857 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6858 EXPORT_SYMBOL_GPL(ata_std_postreset);
6859 EXPORT_SYMBOL_GPL(ata_dev_classify);
6860 EXPORT_SYMBOL_GPL(ata_dev_pair);
6861 EXPORT_SYMBOL_GPL(ata_ratelimit);
6862 EXPORT_SYMBOL_GPL(ata_msleep);
6863 EXPORT_SYMBOL_GPL(ata_wait_register);
6864 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6865 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6866 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6867 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6868 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6869 EXPORT_SYMBOL_GPL(sata_scr_valid);
6870 EXPORT_SYMBOL_GPL(sata_scr_read);
6871 EXPORT_SYMBOL_GPL(sata_scr_write);
6872 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6873 EXPORT_SYMBOL_GPL(ata_link_online);
6874 EXPORT_SYMBOL_GPL(ata_link_offline);
6875 #ifdef CONFIG_PM
6876 EXPORT_SYMBOL_GPL(ata_host_suspend);
6877 EXPORT_SYMBOL_GPL(ata_host_resume);
6878 #endif /* CONFIG_PM */
6879 EXPORT_SYMBOL_GPL(ata_id_string);
6880 EXPORT_SYMBOL_GPL(ata_id_c_string);
6881 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6882 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6883 
6884 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6885 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6886 EXPORT_SYMBOL_GPL(ata_timing_compute);
6887 EXPORT_SYMBOL_GPL(ata_timing_merge);
6888 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6889 
6890 #ifdef CONFIG_PCI
6891 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6892 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6893 #ifdef CONFIG_PM
6894 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6895 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6896 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6897 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6898 #endif /* CONFIG_PM */
6899 #endif /* CONFIG_PCI */
6900 
6901 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6902 
6903 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6904 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6905 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6906 EXPORT_SYMBOL_GPL(ata_port_desc);
6907 #ifdef CONFIG_PCI
6908 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6909 #endif /* CONFIG_PCI */
6910 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6911 EXPORT_SYMBOL_GPL(ata_link_abort);
6912 EXPORT_SYMBOL_GPL(ata_port_abort);
6913 EXPORT_SYMBOL_GPL(ata_port_freeze);
6914 EXPORT_SYMBOL_GPL(sata_async_notification);
6915 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6916 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6917 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6918 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6919 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6920 EXPORT_SYMBOL_GPL(ata_do_eh);
6921 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6922 
6923 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6924 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6925 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6926 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6927 EXPORT_SYMBOL_GPL(ata_cable_sata);
6928