1 /* 2 * libata-core.c - helper library for ATA 3 * 4 * Maintained by: Jeff Garzik <jgarzik@pobox.com> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2004 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 * Standards documents from: 34 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 35 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 36 * http://www.sata-io.org (SATA) 37 * http://www.compactflash.org (CF) 38 * http://www.qic.org (QIC157 - Tape and DSC) 39 * http://www.ce-ata.org (CE-ATA: not supported) 40 * 41 */ 42 43 #include <linux/kernel.h> 44 #include <linux/module.h> 45 #include <linux/pci.h> 46 #include <linux/init.h> 47 #include <linux/list.h> 48 #include <linux/mm.h> 49 #include <linux/spinlock.h> 50 #include <linux/blkdev.h> 51 #include <linux/delay.h> 52 #include <linux/timer.h> 53 #include <linux/interrupt.h> 54 #include <linux/completion.h> 55 #include <linux/suspend.h> 56 #include <linux/workqueue.h> 57 #include <linux/scatterlist.h> 58 #include <linux/io.h> 59 #include <linux/async.h> 60 #include <linux/log2.h> 61 #include <linux/slab.h> 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_host.h> 65 #include <linux/libata.h> 66 #include <asm/byteorder.h> 67 #include <linux/cdrom.h> 68 #include <linux/ratelimit.h> 69 #include <linux/pm_runtime.h> 70 71 #include "libata.h" 72 #include "libata-transport.h" 73 74 /* debounce timing parameters in msecs { interval, duration, timeout } */ 75 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 }; 76 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 }; 77 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 }; 78 79 const struct ata_port_operations ata_base_port_ops = { 80 .prereset = ata_std_prereset, 81 .postreset = ata_std_postreset, 82 .error_handler = ata_std_error_handler, 83 .sched_eh = ata_std_sched_eh, 84 .end_eh = ata_std_end_eh, 85 }; 86 87 const struct ata_port_operations sata_port_ops = { 88 .inherits = &ata_base_port_ops, 89 90 .qc_defer = ata_std_qc_defer, 91 .hardreset = sata_std_hardreset, 92 }; 93 94 static unsigned int ata_dev_init_params(struct ata_device *dev, 95 u16 heads, u16 sectors); 96 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 97 static void ata_dev_xfermask(struct ata_device *dev); 98 static unsigned long ata_dev_blacklisted(const struct ata_device *dev); 99 100 atomic_t ata_print_id = ATOMIC_INIT(0); 101 102 struct ata_force_param { 103 const char *name; 104 unsigned int cbl; 105 int spd_limit; 106 unsigned long xfer_mask; 107 unsigned int horkage_on; 108 unsigned int horkage_off; 109 unsigned int lflags; 110 }; 111 112 struct ata_force_ent { 113 int port; 114 int device; 115 struct ata_force_param param; 116 }; 117 118 static struct ata_force_ent *ata_force_tbl; 119 static int ata_force_tbl_size; 120 121 static char ata_force_param_buf[PAGE_SIZE] __initdata; 122 /* param_buf is thrown away after initialization, disallow read */ 123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)"); 125 126 static int atapi_enabled = 1; 127 module_param(atapi_enabled, int, 0444); 128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 129 130 static int atapi_dmadir = 0; 131 module_param(atapi_dmadir, int, 0444); 132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 133 134 int atapi_passthru16 = 1; 135 module_param(atapi_passthru16, int, 0444); 136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 137 138 int libata_fua = 0; 139 module_param_named(fua, libata_fua, int, 0444); 140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 141 142 static int ata_ignore_hpa; 143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 145 146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 147 module_param_named(dma, libata_dma_mask, int, 0444); 148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 149 150 static int ata_probe_timeout; 151 module_param(ata_probe_timeout, int, 0444); 152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 153 154 int libata_noacpi = 0; 155 module_param_named(noacpi, libata_noacpi, int, 0444); 156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 157 158 int libata_allow_tpm = 0; 159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 161 162 static int atapi_an; 163 module_param(atapi_an, int, 0444); 164 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 165 166 MODULE_AUTHOR("Jeff Garzik"); 167 MODULE_DESCRIPTION("Library module for ATA devices"); 168 MODULE_LICENSE("GPL"); 169 MODULE_VERSION(DRV_VERSION); 170 171 172 static bool ata_sstatus_online(u32 sstatus) 173 { 174 return (sstatus & 0xf) == 0x3; 175 } 176 177 /** 178 * ata_link_next - link iteration helper 179 * @link: the previous link, NULL to start 180 * @ap: ATA port containing links to iterate 181 * @mode: iteration mode, one of ATA_LITER_* 182 * 183 * LOCKING: 184 * Host lock or EH context. 185 * 186 * RETURNS: 187 * Pointer to the next link. 188 */ 189 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 190 enum ata_link_iter_mode mode) 191 { 192 BUG_ON(mode != ATA_LITER_EDGE && 193 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 194 195 /* NULL link indicates start of iteration */ 196 if (!link) 197 switch (mode) { 198 case ATA_LITER_EDGE: 199 case ATA_LITER_PMP_FIRST: 200 if (sata_pmp_attached(ap)) 201 return ap->pmp_link; 202 /* fall through */ 203 case ATA_LITER_HOST_FIRST: 204 return &ap->link; 205 } 206 207 /* we just iterated over the host link, what's next? */ 208 if (link == &ap->link) 209 switch (mode) { 210 case ATA_LITER_HOST_FIRST: 211 if (sata_pmp_attached(ap)) 212 return ap->pmp_link; 213 /* fall through */ 214 case ATA_LITER_PMP_FIRST: 215 if (unlikely(ap->slave_link)) 216 return ap->slave_link; 217 /* fall through */ 218 case ATA_LITER_EDGE: 219 return NULL; 220 } 221 222 /* slave_link excludes PMP */ 223 if (unlikely(link == ap->slave_link)) 224 return NULL; 225 226 /* we were over a PMP link */ 227 if (++link < ap->pmp_link + ap->nr_pmp_links) 228 return link; 229 230 if (mode == ATA_LITER_PMP_FIRST) 231 return &ap->link; 232 233 return NULL; 234 } 235 236 /** 237 * ata_dev_next - device iteration helper 238 * @dev: the previous device, NULL to start 239 * @link: ATA link containing devices to iterate 240 * @mode: iteration mode, one of ATA_DITER_* 241 * 242 * LOCKING: 243 * Host lock or EH context. 244 * 245 * RETURNS: 246 * Pointer to the next device. 247 */ 248 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 249 enum ata_dev_iter_mode mode) 250 { 251 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 252 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 253 254 /* NULL dev indicates start of iteration */ 255 if (!dev) 256 switch (mode) { 257 case ATA_DITER_ENABLED: 258 case ATA_DITER_ALL: 259 dev = link->device; 260 goto check; 261 case ATA_DITER_ENABLED_REVERSE: 262 case ATA_DITER_ALL_REVERSE: 263 dev = link->device + ata_link_max_devices(link) - 1; 264 goto check; 265 } 266 267 next: 268 /* move to the next one */ 269 switch (mode) { 270 case ATA_DITER_ENABLED: 271 case ATA_DITER_ALL: 272 if (++dev < link->device + ata_link_max_devices(link)) 273 goto check; 274 return NULL; 275 case ATA_DITER_ENABLED_REVERSE: 276 case ATA_DITER_ALL_REVERSE: 277 if (--dev >= link->device) 278 goto check; 279 return NULL; 280 } 281 282 check: 283 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 284 !ata_dev_enabled(dev)) 285 goto next; 286 return dev; 287 } 288 289 /** 290 * ata_dev_phys_link - find physical link for a device 291 * @dev: ATA device to look up physical link for 292 * 293 * Look up physical link which @dev is attached to. Note that 294 * this is different from @dev->link only when @dev is on slave 295 * link. For all other cases, it's the same as @dev->link. 296 * 297 * LOCKING: 298 * Don't care. 299 * 300 * RETURNS: 301 * Pointer to the found physical link. 302 */ 303 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 304 { 305 struct ata_port *ap = dev->link->ap; 306 307 if (!ap->slave_link) 308 return dev->link; 309 if (!dev->devno) 310 return &ap->link; 311 return ap->slave_link; 312 } 313 314 /** 315 * ata_force_cbl - force cable type according to libata.force 316 * @ap: ATA port of interest 317 * 318 * Force cable type according to libata.force and whine about it. 319 * The last entry which has matching port number is used, so it 320 * can be specified as part of device force parameters. For 321 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 322 * same effect. 323 * 324 * LOCKING: 325 * EH context. 326 */ 327 void ata_force_cbl(struct ata_port *ap) 328 { 329 int i; 330 331 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 332 const struct ata_force_ent *fe = &ata_force_tbl[i]; 333 334 if (fe->port != -1 && fe->port != ap->print_id) 335 continue; 336 337 if (fe->param.cbl == ATA_CBL_NONE) 338 continue; 339 340 ap->cbl = fe->param.cbl; 341 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 342 return; 343 } 344 } 345 346 /** 347 * ata_force_link_limits - force link limits according to libata.force 348 * @link: ATA link of interest 349 * 350 * Force link flags and SATA spd limit according to libata.force 351 * and whine about it. When only the port part is specified 352 * (e.g. 1:), the limit applies to all links connected to both 353 * the host link and all fan-out ports connected via PMP. If the 354 * device part is specified as 0 (e.g. 1.00:), it specifies the 355 * first fan-out link not the host link. Device number 15 always 356 * points to the host link whether PMP is attached or not. If the 357 * controller has slave link, device number 16 points to it. 358 * 359 * LOCKING: 360 * EH context. 361 */ 362 static void ata_force_link_limits(struct ata_link *link) 363 { 364 bool did_spd = false; 365 int linkno = link->pmp; 366 int i; 367 368 if (ata_is_host_link(link)) 369 linkno += 15; 370 371 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 372 const struct ata_force_ent *fe = &ata_force_tbl[i]; 373 374 if (fe->port != -1 && fe->port != link->ap->print_id) 375 continue; 376 377 if (fe->device != -1 && fe->device != linkno) 378 continue; 379 380 /* only honor the first spd limit */ 381 if (!did_spd && fe->param.spd_limit) { 382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 383 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 384 fe->param.name); 385 did_spd = true; 386 } 387 388 /* let lflags stack */ 389 if (fe->param.lflags) { 390 link->flags |= fe->param.lflags; 391 ata_link_notice(link, 392 "FORCE: link flag 0x%x forced -> 0x%x\n", 393 fe->param.lflags, link->flags); 394 } 395 } 396 } 397 398 /** 399 * ata_force_xfermask - force xfermask according to libata.force 400 * @dev: ATA device of interest 401 * 402 * Force xfer_mask according to libata.force and whine about it. 403 * For consistency with link selection, device number 15 selects 404 * the first device connected to the host link. 405 * 406 * LOCKING: 407 * EH context. 408 */ 409 static void ata_force_xfermask(struct ata_device *dev) 410 { 411 int devno = dev->link->pmp + dev->devno; 412 int alt_devno = devno; 413 int i; 414 415 /* allow n.15/16 for devices attached to host port */ 416 if (ata_is_host_link(dev->link)) 417 alt_devno += 15; 418 419 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 420 const struct ata_force_ent *fe = &ata_force_tbl[i]; 421 unsigned long pio_mask, mwdma_mask, udma_mask; 422 423 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 424 continue; 425 426 if (fe->device != -1 && fe->device != devno && 427 fe->device != alt_devno) 428 continue; 429 430 if (!fe->param.xfer_mask) 431 continue; 432 433 ata_unpack_xfermask(fe->param.xfer_mask, 434 &pio_mask, &mwdma_mask, &udma_mask); 435 if (udma_mask) 436 dev->udma_mask = udma_mask; 437 else if (mwdma_mask) { 438 dev->udma_mask = 0; 439 dev->mwdma_mask = mwdma_mask; 440 } else { 441 dev->udma_mask = 0; 442 dev->mwdma_mask = 0; 443 dev->pio_mask = pio_mask; 444 } 445 446 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 447 fe->param.name); 448 return; 449 } 450 } 451 452 /** 453 * ata_force_horkage - force horkage according to libata.force 454 * @dev: ATA device of interest 455 * 456 * Force horkage according to libata.force and whine about it. 457 * For consistency with link selection, device number 15 selects 458 * the first device connected to the host link. 459 * 460 * LOCKING: 461 * EH context. 462 */ 463 static void ata_force_horkage(struct ata_device *dev) 464 { 465 int devno = dev->link->pmp + dev->devno; 466 int alt_devno = devno; 467 int i; 468 469 /* allow n.15/16 for devices attached to host port */ 470 if (ata_is_host_link(dev->link)) 471 alt_devno += 15; 472 473 for (i = 0; i < ata_force_tbl_size; i++) { 474 const struct ata_force_ent *fe = &ata_force_tbl[i]; 475 476 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 477 continue; 478 479 if (fe->device != -1 && fe->device != devno && 480 fe->device != alt_devno) 481 continue; 482 483 if (!(~dev->horkage & fe->param.horkage_on) && 484 !(dev->horkage & fe->param.horkage_off)) 485 continue; 486 487 dev->horkage |= fe->param.horkage_on; 488 dev->horkage &= ~fe->param.horkage_off; 489 490 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n", 491 fe->param.name); 492 } 493 } 494 495 /** 496 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 497 * @opcode: SCSI opcode 498 * 499 * Determine ATAPI command type from @opcode. 500 * 501 * LOCKING: 502 * None. 503 * 504 * RETURNS: 505 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 506 */ 507 int atapi_cmd_type(u8 opcode) 508 { 509 switch (opcode) { 510 case GPCMD_READ_10: 511 case GPCMD_READ_12: 512 return ATAPI_READ; 513 514 case GPCMD_WRITE_10: 515 case GPCMD_WRITE_12: 516 case GPCMD_WRITE_AND_VERIFY_10: 517 return ATAPI_WRITE; 518 519 case GPCMD_READ_CD: 520 case GPCMD_READ_CD_MSF: 521 return ATAPI_READ_CD; 522 523 case ATA_16: 524 case ATA_12: 525 if (atapi_passthru16) 526 return ATAPI_PASS_THRU; 527 /* fall thru */ 528 default: 529 return ATAPI_MISC; 530 } 531 } 532 533 /** 534 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure 535 * @tf: Taskfile to convert 536 * @pmp: Port multiplier port 537 * @is_cmd: This FIS is for command 538 * @fis: Buffer into which data will output 539 * 540 * Converts a standard ATA taskfile to a Serial ATA 541 * FIS structure (Register - Host to Device). 542 * 543 * LOCKING: 544 * Inherited from caller. 545 */ 546 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis) 547 { 548 fis[0] = 0x27; /* Register - Host to Device FIS */ 549 fis[1] = pmp & 0xf; /* Port multiplier number*/ 550 if (is_cmd) 551 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */ 552 553 fis[2] = tf->command; 554 fis[3] = tf->feature; 555 556 fis[4] = tf->lbal; 557 fis[5] = tf->lbam; 558 fis[6] = tf->lbah; 559 fis[7] = tf->device; 560 561 fis[8] = tf->hob_lbal; 562 fis[9] = tf->hob_lbam; 563 fis[10] = tf->hob_lbah; 564 fis[11] = tf->hob_feature; 565 566 fis[12] = tf->nsect; 567 fis[13] = tf->hob_nsect; 568 fis[14] = 0; 569 fis[15] = tf->ctl; 570 571 fis[16] = 0; 572 fis[17] = 0; 573 fis[18] = 0; 574 fis[19] = 0; 575 } 576 577 /** 578 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile 579 * @fis: Buffer from which data will be input 580 * @tf: Taskfile to output 581 * 582 * Converts a serial ATA FIS structure to a standard ATA taskfile. 583 * 584 * LOCKING: 585 * Inherited from caller. 586 */ 587 588 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) 589 { 590 tf->command = fis[2]; /* status */ 591 tf->feature = fis[3]; /* error */ 592 593 tf->lbal = fis[4]; 594 tf->lbam = fis[5]; 595 tf->lbah = fis[6]; 596 tf->device = fis[7]; 597 598 tf->hob_lbal = fis[8]; 599 tf->hob_lbam = fis[9]; 600 tf->hob_lbah = fis[10]; 601 602 tf->nsect = fis[12]; 603 tf->hob_nsect = fis[13]; 604 } 605 606 static const u8 ata_rw_cmds[] = { 607 /* pio multi */ 608 ATA_CMD_READ_MULTI, 609 ATA_CMD_WRITE_MULTI, 610 ATA_CMD_READ_MULTI_EXT, 611 ATA_CMD_WRITE_MULTI_EXT, 612 0, 613 0, 614 0, 615 ATA_CMD_WRITE_MULTI_FUA_EXT, 616 /* pio */ 617 ATA_CMD_PIO_READ, 618 ATA_CMD_PIO_WRITE, 619 ATA_CMD_PIO_READ_EXT, 620 ATA_CMD_PIO_WRITE_EXT, 621 0, 622 0, 623 0, 624 0, 625 /* dma */ 626 ATA_CMD_READ, 627 ATA_CMD_WRITE, 628 ATA_CMD_READ_EXT, 629 ATA_CMD_WRITE_EXT, 630 0, 631 0, 632 0, 633 ATA_CMD_WRITE_FUA_EXT 634 }; 635 636 /** 637 * ata_rwcmd_protocol - set taskfile r/w commands and protocol 638 * @tf: command to examine and configure 639 * @dev: device tf belongs to 640 * 641 * Examine the device configuration and tf->flags to calculate 642 * the proper read/write commands and protocol to use. 643 * 644 * LOCKING: 645 * caller. 646 */ 647 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev) 648 { 649 u8 cmd; 650 651 int index, fua, lba48, write; 652 653 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 654 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 655 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 656 657 if (dev->flags & ATA_DFLAG_PIO) { 658 tf->protocol = ATA_PROT_PIO; 659 index = dev->multi_count ? 0 : 8; 660 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 661 /* Unable to use DMA due to host limitation */ 662 tf->protocol = ATA_PROT_PIO; 663 index = dev->multi_count ? 0 : 8; 664 } else { 665 tf->protocol = ATA_PROT_DMA; 666 index = 16; 667 } 668 669 cmd = ata_rw_cmds[index + fua + lba48 + write]; 670 if (cmd) { 671 tf->command = cmd; 672 return 0; 673 } 674 return -1; 675 } 676 677 /** 678 * ata_tf_read_block - Read block address from ATA taskfile 679 * @tf: ATA taskfile of interest 680 * @dev: ATA device @tf belongs to 681 * 682 * LOCKING: 683 * None. 684 * 685 * Read block address from @tf. This function can handle all 686 * three address formats - LBA, LBA48 and CHS. tf->protocol and 687 * flags select the address format to use. 688 * 689 * RETURNS: 690 * Block address read from @tf. 691 */ 692 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev) 693 { 694 u64 block = 0; 695 696 if (tf->flags & ATA_TFLAG_LBA) { 697 if (tf->flags & ATA_TFLAG_LBA48) { 698 block |= (u64)tf->hob_lbah << 40; 699 block |= (u64)tf->hob_lbam << 32; 700 block |= (u64)tf->hob_lbal << 24; 701 } else 702 block |= (tf->device & 0xf) << 24; 703 704 block |= tf->lbah << 16; 705 block |= tf->lbam << 8; 706 block |= tf->lbal; 707 } else { 708 u32 cyl, head, sect; 709 710 cyl = tf->lbam | (tf->lbah << 8); 711 head = tf->device & 0xf; 712 sect = tf->lbal; 713 714 if (!sect) { 715 ata_dev_warn(dev, 716 "device reported invalid CHS sector 0\n"); 717 sect = 1; /* oh well */ 718 } 719 720 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 721 } 722 723 return block; 724 } 725 726 /** 727 * ata_build_rw_tf - Build ATA taskfile for given read/write request 728 * @tf: Target ATA taskfile 729 * @dev: ATA device @tf belongs to 730 * @block: Block address 731 * @n_block: Number of blocks 732 * @tf_flags: RW/FUA etc... 733 * @tag: tag 734 * 735 * LOCKING: 736 * None. 737 * 738 * Build ATA taskfile @tf for read/write request described by 739 * @block, @n_block, @tf_flags and @tag on @dev. 740 * 741 * RETURNS: 742 * 743 * 0 on success, -ERANGE if the request is too large for @dev, 744 * -EINVAL if the request is invalid. 745 */ 746 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, 747 u64 block, u32 n_block, unsigned int tf_flags, 748 unsigned int tag) 749 { 750 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 751 tf->flags |= tf_flags; 752 753 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) { 754 /* yay, NCQ */ 755 if (!lba_48_ok(block, n_block)) 756 return -ERANGE; 757 758 tf->protocol = ATA_PROT_NCQ; 759 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 760 761 if (tf->flags & ATA_TFLAG_WRITE) 762 tf->command = ATA_CMD_FPDMA_WRITE; 763 else 764 tf->command = ATA_CMD_FPDMA_READ; 765 766 tf->nsect = tag << 3; 767 tf->hob_feature = (n_block >> 8) & 0xff; 768 tf->feature = n_block & 0xff; 769 770 tf->hob_lbah = (block >> 40) & 0xff; 771 tf->hob_lbam = (block >> 32) & 0xff; 772 tf->hob_lbal = (block >> 24) & 0xff; 773 tf->lbah = (block >> 16) & 0xff; 774 tf->lbam = (block >> 8) & 0xff; 775 tf->lbal = block & 0xff; 776 777 tf->device = ATA_LBA; 778 if (tf->flags & ATA_TFLAG_FUA) 779 tf->device |= 1 << 7; 780 } else if (dev->flags & ATA_DFLAG_LBA) { 781 tf->flags |= ATA_TFLAG_LBA; 782 783 if (lba_28_ok(block, n_block)) { 784 /* use LBA28 */ 785 tf->device |= (block >> 24) & 0xf; 786 } else if (lba_48_ok(block, n_block)) { 787 if (!(dev->flags & ATA_DFLAG_LBA48)) 788 return -ERANGE; 789 790 /* use LBA48 */ 791 tf->flags |= ATA_TFLAG_LBA48; 792 793 tf->hob_nsect = (n_block >> 8) & 0xff; 794 795 tf->hob_lbah = (block >> 40) & 0xff; 796 tf->hob_lbam = (block >> 32) & 0xff; 797 tf->hob_lbal = (block >> 24) & 0xff; 798 } else 799 /* request too large even for LBA48 */ 800 return -ERANGE; 801 802 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 803 return -EINVAL; 804 805 tf->nsect = n_block & 0xff; 806 807 tf->lbah = (block >> 16) & 0xff; 808 tf->lbam = (block >> 8) & 0xff; 809 tf->lbal = block & 0xff; 810 811 tf->device |= ATA_LBA; 812 } else { 813 /* CHS */ 814 u32 sect, head, cyl, track; 815 816 /* The request -may- be too large for CHS addressing. */ 817 if (!lba_28_ok(block, n_block)) 818 return -ERANGE; 819 820 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0)) 821 return -EINVAL; 822 823 /* Convert LBA to CHS */ 824 track = (u32)block / dev->sectors; 825 cyl = track / dev->heads; 826 head = track % dev->heads; 827 sect = (u32)block % dev->sectors + 1; 828 829 DPRINTK("block %u track %u cyl %u head %u sect %u\n", 830 (u32)block, track, cyl, head, sect); 831 832 /* Check whether the converted CHS can fit. 833 Cylinder: 0-65535 834 Head: 0-15 835 Sector: 1-255*/ 836 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 837 return -ERANGE; 838 839 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 840 tf->lbal = sect; 841 tf->lbam = cyl; 842 tf->lbah = cyl >> 8; 843 tf->device |= head; 844 } 845 846 return 0; 847 } 848 849 /** 850 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 851 * @pio_mask: pio_mask 852 * @mwdma_mask: mwdma_mask 853 * @udma_mask: udma_mask 854 * 855 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 856 * unsigned int xfer_mask. 857 * 858 * LOCKING: 859 * None. 860 * 861 * RETURNS: 862 * Packed xfer_mask. 863 */ 864 unsigned long ata_pack_xfermask(unsigned long pio_mask, 865 unsigned long mwdma_mask, 866 unsigned long udma_mask) 867 { 868 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 869 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 870 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 871 } 872 873 /** 874 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 875 * @xfer_mask: xfer_mask to unpack 876 * @pio_mask: resulting pio_mask 877 * @mwdma_mask: resulting mwdma_mask 878 * @udma_mask: resulting udma_mask 879 * 880 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 881 * Any NULL distination masks will be ignored. 882 */ 883 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask, 884 unsigned long *mwdma_mask, unsigned long *udma_mask) 885 { 886 if (pio_mask) 887 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 888 if (mwdma_mask) 889 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 890 if (udma_mask) 891 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 892 } 893 894 static const struct ata_xfer_ent { 895 int shift, bits; 896 u8 base; 897 } ata_xfer_tbl[] = { 898 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 899 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 900 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 901 { -1, }, 902 }; 903 904 /** 905 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 906 * @xfer_mask: xfer_mask of interest 907 * 908 * Return matching XFER_* value for @xfer_mask. Only the highest 909 * bit of @xfer_mask is considered. 910 * 911 * LOCKING: 912 * None. 913 * 914 * RETURNS: 915 * Matching XFER_* value, 0xff if no match found. 916 */ 917 u8 ata_xfer_mask2mode(unsigned long xfer_mask) 918 { 919 int highbit = fls(xfer_mask) - 1; 920 const struct ata_xfer_ent *ent; 921 922 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 923 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 924 return ent->base + highbit - ent->shift; 925 return 0xff; 926 } 927 928 /** 929 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 930 * @xfer_mode: XFER_* of interest 931 * 932 * Return matching xfer_mask for @xfer_mode. 933 * 934 * LOCKING: 935 * None. 936 * 937 * RETURNS: 938 * Matching xfer_mask, 0 if no match found. 939 */ 940 unsigned long ata_xfer_mode2mask(u8 xfer_mode) 941 { 942 const struct ata_xfer_ent *ent; 943 944 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 945 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 946 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 947 & ~((1 << ent->shift) - 1); 948 return 0; 949 } 950 951 /** 952 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 953 * @xfer_mode: XFER_* of interest 954 * 955 * Return matching xfer_shift for @xfer_mode. 956 * 957 * LOCKING: 958 * None. 959 * 960 * RETURNS: 961 * Matching xfer_shift, -1 if no match found. 962 */ 963 int ata_xfer_mode2shift(unsigned long xfer_mode) 964 { 965 const struct ata_xfer_ent *ent; 966 967 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 968 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 969 return ent->shift; 970 return -1; 971 } 972 973 /** 974 * ata_mode_string - convert xfer_mask to string 975 * @xfer_mask: mask of bits supported; only highest bit counts. 976 * 977 * Determine string which represents the highest speed 978 * (highest bit in @modemask). 979 * 980 * LOCKING: 981 * None. 982 * 983 * RETURNS: 984 * Constant C string representing highest speed listed in 985 * @mode_mask, or the constant C string "<n/a>". 986 */ 987 const char *ata_mode_string(unsigned long xfer_mask) 988 { 989 static const char * const xfer_mode_str[] = { 990 "PIO0", 991 "PIO1", 992 "PIO2", 993 "PIO3", 994 "PIO4", 995 "PIO5", 996 "PIO6", 997 "MWDMA0", 998 "MWDMA1", 999 "MWDMA2", 1000 "MWDMA3", 1001 "MWDMA4", 1002 "UDMA/16", 1003 "UDMA/25", 1004 "UDMA/33", 1005 "UDMA/44", 1006 "UDMA/66", 1007 "UDMA/100", 1008 "UDMA/133", 1009 "UDMA7", 1010 }; 1011 int highbit; 1012 1013 highbit = fls(xfer_mask) - 1; 1014 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1015 return xfer_mode_str[highbit]; 1016 return "<n/a>"; 1017 } 1018 1019 const char *sata_spd_string(unsigned int spd) 1020 { 1021 static const char * const spd_str[] = { 1022 "1.5 Gbps", 1023 "3.0 Gbps", 1024 "6.0 Gbps", 1025 }; 1026 1027 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1028 return "<unknown>"; 1029 return spd_str[spd - 1]; 1030 } 1031 1032 /** 1033 * ata_dev_classify - determine device type based on ATA-spec signature 1034 * @tf: ATA taskfile register set for device to be identified 1035 * 1036 * Determine from taskfile register contents whether a device is 1037 * ATA or ATAPI, as per "Signature and persistence" section 1038 * of ATA/PI spec (volume 1, sect 5.14). 1039 * 1040 * LOCKING: 1041 * None. 1042 * 1043 * RETURNS: 1044 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or 1045 * %ATA_DEV_UNKNOWN the event of failure. 1046 */ 1047 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1048 { 1049 /* Apple's open source Darwin code hints that some devices only 1050 * put a proper signature into the LBA mid/high registers, 1051 * So, we only check those. It's sufficient for uniqueness. 1052 * 1053 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1054 * signatures for ATA and ATAPI devices attached on SerialATA, 1055 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1056 * spec has never mentioned about using different signatures 1057 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1058 * Multiplier specification began to use 0x69/0x96 to identify 1059 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1060 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1061 * 0x69/0x96 shortly and described them as reserved for 1062 * SerialATA. 1063 * 1064 * We follow the current spec and consider that 0x69/0x96 1065 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1066 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1067 * SEMB signature. This is worked around in 1068 * ata_dev_read_id(). 1069 */ 1070 if ((tf->lbam == 0) && (tf->lbah == 0)) { 1071 DPRINTK("found ATA device by sig\n"); 1072 return ATA_DEV_ATA; 1073 } 1074 1075 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) { 1076 DPRINTK("found ATAPI device by sig\n"); 1077 return ATA_DEV_ATAPI; 1078 } 1079 1080 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) { 1081 DPRINTK("found PMP device by sig\n"); 1082 return ATA_DEV_PMP; 1083 } 1084 1085 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) { 1086 DPRINTK("found SEMB device by sig (could be ATA device)\n"); 1087 return ATA_DEV_SEMB; 1088 } 1089 1090 DPRINTK("unknown device\n"); 1091 return ATA_DEV_UNKNOWN; 1092 } 1093 1094 /** 1095 * ata_id_string - Convert IDENTIFY DEVICE page into string 1096 * @id: IDENTIFY DEVICE results we will examine 1097 * @s: string into which data is output 1098 * @ofs: offset into identify device page 1099 * @len: length of string to return. must be an even number. 1100 * 1101 * The strings in the IDENTIFY DEVICE page are broken up into 1102 * 16-bit chunks. Run through the string, and output each 1103 * 8-bit chunk linearly, regardless of platform. 1104 * 1105 * LOCKING: 1106 * caller. 1107 */ 1108 1109 void ata_id_string(const u16 *id, unsigned char *s, 1110 unsigned int ofs, unsigned int len) 1111 { 1112 unsigned int c; 1113 1114 BUG_ON(len & 1); 1115 1116 while (len > 0) { 1117 c = id[ofs] >> 8; 1118 *s = c; 1119 s++; 1120 1121 c = id[ofs] & 0xff; 1122 *s = c; 1123 s++; 1124 1125 ofs++; 1126 len -= 2; 1127 } 1128 } 1129 1130 /** 1131 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1132 * @id: IDENTIFY DEVICE results we will examine 1133 * @s: string into which data is output 1134 * @ofs: offset into identify device page 1135 * @len: length of string to return. must be an odd number. 1136 * 1137 * This function is identical to ata_id_string except that it 1138 * trims trailing spaces and terminates the resulting string with 1139 * null. @len must be actual maximum length (even number) + 1. 1140 * 1141 * LOCKING: 1142 * caller. 1143 */ 1144 void ata_id_c_string(const u16 *id, unsigned char *s, 1145 unsigned int ofs, unsigned int len) 1146 { 1147 unsigned char *p; 1148 1149 ata_id_string(id, s, ofs, len - 1); 1150 1151 p = s + strnlen(s, len - 1); 1152 while (p > s && p[-1] == ' ') 1153 p--; 1154 *p = '\0'; 1155 } 1156 1157 static u64 ata_id_n_sectors(const u16 *id) 1158 { 1159 if (ata_id_has_lba(id)) { 1160 if (ata_id_has_lba48(id)) 1161 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1162 else 1163 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1164 } else { 1165 if (ata_id_current_chs_valid(id)) 1166 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] * 1167 id[ATA_ID_CUR_SECTORS]; 1168 else 1169 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] * 1170 id[ATA_ID_SECTORS]; 1171 } 1172 } 1173 1174 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1175 { 1176 u64 sectors = 0; 1177 1178 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1179 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1180 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1181 sectors |= (tf->lbah & 0xff) << 16; 1182 sectors |= (tf->lbam & 0xff) << 8; 1183 sectors |= (tf->lbal & 0xff); 1184 1185 return sectors; 1186 } 1187 1188 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1189 { 1190 u64 sectors = 0; 1191 1192 sectors |= (tf->device & 0x0f) << 24; 1193 sectors |= (tf->lbah & 0xff) << 16; 1194 sectors |= (tf->lbam & 0xff) << 8; 1195 sectors |= (tf->lbal & 0xff); 1196 1197 return sectors; 1198 } 1199 1200 /** 1201 * ata_read_native_max_address - Read native max address 1202 * @dev: target device 1203 * @max_sectors: out parameter for the result native max address 1204 * 1205 * Perform an LBA48 or LBA28 native size query upon the device in 1206 * question. 1207 * 1208 * RETURNS: 1209 * 0 on success, -EACCES if command is aborted by the drive. 1210 * -EIO on other errors. 1211 */ 1212 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1213 { 1214 unsigned int err_mask; 1215 struct ata_taskfile tf; 1216 int lba48 = ata_id_has_lba48(dev->id); 1217 1218 ata_tf_init(dev, &tf); 1219 1220 /* always clear all address registers */ 1221 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1222 1223 if (lba48) { 1224 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1225 tf.flags |= ATA_TFLAG_LBA48; 1226 } else 1227 tf.command = ATA_CMD_READ_NATIVE_MAX; 1228 1229 tf.protocol |= ATA_PROT_NODATA; 1230 tf.device |= ATA_LBA; 1231 1232 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1233 if (err_mask) { 1234 ata_dev_warn(dev, 1235 "failed to read native max address (err_mask=0x%x)\n", 1236 err_mask); 1237 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 1238 return -EACCES; 1239 return -EIO; 1240 } 1241 1242 if (lba48) 1243 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1244 else 1245 *max_sectors = ata_tf_to_lba(&tf) + 1; 1246 if (dev->horkage & ATA_HORKAGE_HPA_SIZE) 1247 (*max_sectors)--; 1248 return 0; 1249 } 1250 1251 /** 1252 * ata_set_max_sectors - Set max sectors 1253 * @dev: target device 1254 * @new_sectors: new max sectors value to set for the device 1255 * 1256 * Set max sectors of @dev to @new_sectors. 1257 * 1258 * RETURNS: 1259 * 0 on success, -EACCES if command is aborted or denied (due to 1260 * previous non-volatile SET_MAX) by the drive. -EIO on other 1261 * errors. 1262 */ 1263 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1264 { 1265 unsigned int err_mask; 1266 struct ata_taskfile tf; 1267 int lba48 = ata_id_has_lba48(dev->id); 1268 1269 new_sectors--; 1270 1271 ata_tf_init(dev, &tf); 1272 1273 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1274 1275 if (lba48) { 1276 tf.command = ATA_CMD_SET_MAX_EXT; 1277 tf.flags |= ATA_TFLAG_LBA48; 1278 1279 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1280 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1281 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1282 } else { 1283 tf.command = ATA_CMD_SET_MAX; 1284 1285 tf.device |= (new_sectors >> 24) & 0xf; 1286 } 1287 1288 tf.protocol |= ATA_PROT_NODATA; 1289 tf.device |= ATA_LBA; 1290 1291 tf.lbal = (new_sectors >> 0) & 0xff; 1292 tf.lbam = (new_sectors >> 8) & 0xff; 1293 tf.lbah = (new_sectors >> 16) & 0xff; 1294 1295 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1296 if (err_mask) { 1297 ata_dev_warn(dev, 1298 "failed to set max address (err_mask=0x%x)\n", 1299 err_mask); 1300 if (err_mask == AC_ERR_DEV && 1301 (tf.feature & (ATA_ABORTED | ATA_IDNF))) 1302 return -EACCES; 1303 return -EIO; 1304 } 1305 1306 return 0; 1307 } 1308 1309 /** 1310 * ata_hpa_resize - Resize a device with an HPA set 1311 * @dev: Device to resize 1312 * 1313 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1314 * it if required to the full size of the media. The caller must check 1315 * the drive has the HPA feature set enabled. 1316 * 1317 * RETURNS: 1318 * 0 on success, -errno on failure. 1319 */ 1320 static int ata_hpa_resize(struct ata_device *dev) 1321 { 1322 struct ata_eh_context *ehc = &dev->link->eh_context; 1323 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 1324 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1325 u64 sectors = ata_id_n_sectors(dev->id); 1326 u64 native_sectors; 1327 int rc; 1328 1329 /* do we need to do it? */ 1330 if (dev->class != ATA_DEV_ATA || 1331 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1332 (dev->horkage & ATA_HORKAGE_BROKEN_HPA)) 1333 return 0; 1334 1335 /* read native max address */ 1336 rc = ata_read_native_max_address(dev, &native_sectors); 1337 if (rc) { 1338 /* If device aborted the command or HPA isn't going to 1339 * be unlocked, skip HPA resizing. 1340 */ 1341 if (rc == -EACCES || !unlock_hpa) { 1342 ata_dev_warn(dev, 1343 "HPA support seems broken, skipping HPA handling\n"); 1344 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1345 1346 /* we can continue if device aborted the command */ 1347 if (rc == -EACCES) 1348 rc = 0; 1349 } 1350 1351 return rc; 1352 } 1353 dev->n_native_sectors = native_sectors; 1354 1355 /* nothing to do? */ 1356 if (native_sectors <= sectors || !unlock_hpa) { 1357 if (!print_info || native_sectors == sectors) 1358 return 0; 1359 1360 if (native_sectors > sectors) 1361 ata_dev_info(dev, 1362 "HPA detected: current %llu, native %llu\n", 1363 (unsigned long long)sectors, 1364 (unsigned long long)native_sectors); 1365 else if (native_sectors < sectors) 1366 ata_dev_warn(dev, 1367 "native sectors (%llu) is smaller than sectors (%llu)\n", 1368 (unsigned long long)native_sectors, 1369 (unsigned long long)sectors); 1370 return 0; 1371 } 1372 1373 /* let's unlock HPA */ 1374 rc = ata_set_max_sectors(dev, native_sectors); 1375 if (rc == -EACCES) { 1376 /* if device aborted the command, skip HPA resizing */ 1377 ata_dev_warn(dev, 1378 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1379 (unsigned long long)sectors, 1380 (unsigned long long)native_sectors); 1381 dev->horkage |= ATA_HORKAGE_BROKEN_HPA; 1382 return 0; 1383 } else if (rc) 1384 return rc; 1385 1386 /* re-read IDENTIFY data */ 1387 rc = ata_dev_reread_id(dev, 0); 1388 if (rc) { 1389 ata_dev_err(dev, 1390 "failed to re-read IDENTIFY data after HPA resizing\n"); 1391 return rc; 1392 } 1393 1394 if (print_info) { 1395 u64 new_sectors = ata_id_n_sectors(dev->id); 1396 ata_dev_info(dev, 1397 "HPA unlocked: %llu -> %llu, native %llu\n", 1398 (unsigned long long)sectors, 1399 (unsigned long long)new_sectors, 1400 (unsigned long long)native_sectors); 1401 } 1402 1403 return 0; 1404 } 1405 1406 /** 1407 * ata_dump_id - IDENTIFY DEVICE info debugging output 1408 * @id: IDENTIFY DEVICE page to dump 1409 * 1410 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1411 * page. 1412 * 1413 * LOCKING: 1414 * caller. 1415 */ 1416 1417 static inline void ata_dump_id(const u16 *id) 1418 { 1419 DPRINTK("49==0x%04x " 1420 "53==0x%04x " 1421 "63==0x%04x " 1422 "64==0x%04x " 1423 "75==0x%04x \n", 1424 id[49], 1425 id[53], 1426 id[63], 1427 id[64], 1428 id[75]); 1429 DPRINTK("80==0x%04x " 1430 "81==0x%04x " 1431 "82==0x%04x " 1432 "83==0x%04x " 1433 "84==0x%04x \n", 1434 id[80], 1435 id[81], 1436 id[82], 1437 id[83], 1438 id[84]); 1439 DPRINTK("88==0x%04x " 1440 "93==0x%04x\n", 1441 id[88], 1442 id[93]); 1443 } 1444 1445 /** 1446 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1447 * @id: IDENTIFY data to compute xfer mask from 1448 * 1449 * Compute the xfermask for this device. This is not as trivial 1450 * as it seems if we must consider early devices correctly. 1451 * 1452 * FIXME: pre IDE drive timing (do we care ?). 1453 * 1454 * LOCKING: 1455 * None. 1456 * 1457 * RETURNS: 1458 * Computed xfermask 1459 */ 1460 unsigned long ata_id_xfermask(const u16 *id) 1461 { 1462 unsigned long pio_mask, mwdma_mask, udma_mask; 1463 1464 /* Usual case. Word 53 indicates word 64 is valid */ 1465 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1466 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1467 pio_mask <<= 3; 1468 pio_mask |= 0x7; 1469 } else { 1470 /* If word 64 isn't valid then Word 51 high byte holds 1471 * the PIO timing number for the maximum. Turn it into 1472 * a mask. 1473 */ 1474 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1475 if (mode < 5) /* Valid PIO range */ 1476 pio_mask = (2 << mode) - 1; 1477 else 1478 pio_mask = 1; 1479 1480 /* But wait.. there's more. Design your standards by 1481 * committee and you too can get a free iordy field to 1482 * process. However its the speeds not the modes that 1483 * are supported... Note drivers using the timing API 1484 * will get this right anyway 1485 */ 1486 } 1487 1488 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1489 1490 if (ata_id_is_cfa(id)) { 1491 /* 1492 * Process compact flash extended modes 1493 */ 1494 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1495 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1496 1497 if (pio) 1498 pio_mask |= (1 << 5); 1499 if (pio > 1) 1500 pio_mask |= (1 << 6); 1501 if (dma) 1502 mwdma_mask |= (1 << 3); 1503 if (dma > 1) 1504 mwdma_mask |= (1 << 4); 1505 } 1506 1507 udma_mask = 0; 1508 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1509 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1510 1511 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1512 } 1513 1514 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1515 { 1516 struct completion *waiting = qc->private_data; 1517 1518 complete(waiting); 1519 } 1520 1521 /** 1522 * ata_exec_internal_sg - execute libata internal command 1523 * @dev: Device to which the command is sent 1524 * @tf: Taskfile registers for the command and the result 1525 * @cdb: CDB for packet command 1526 * @dma_dir: Data tranfer direction of the command 1527 * @sgl: sg list for the data buffer of the command 1528 * @n_elem: Number of sg entries 1529 * @timeout: Timeout in msecs (0 for default) 1530 * 1531 * Executes libata internal command with timeout. @tf contains 1532 * command on entry and result on return. Timeout and error 1533 * conditions are reported via return value. No recovery action 1534 * is taken after a command times out. It's caller's duty to 1535 * clean up after timeout. 1536 * 1537 * LOCKING: 1538 * None. Should be called with kernel context, might sleep. 1539 * 1540 * RETURNS: 1541 * Zero on success, AC_ERR_* mask on failure 1542 */ 1543 unsigned ata_exec_internal_sg(struct ata_device *dev, 1544 struct ata_taskfile *tf, const u8 *cdb, 1545 int dma_dir, struct scatterlist *sgl, 1546 unsigned int n_elem, unsigned long timeout) 1547 { 1548 struct ata_link *link = dev->link; 1549 struct ata_port *ap = link->ap; 1550 u8 command = tf->command; 1551 int auto_timeout = 0; 1552 struct ata_queued_cmd *qc; 1553 unsigned int tag, preempted_tag; 1554 u32 preempted_sactive, preempted_qc_active; 1555 int preempted_nr_active_links; 1556 DECLARE_COMPLETION_ONSTACK(wait); 1557 unsigned long flags; 1558 unsigned int err_mask; 1559 int rc; 1560 1561 spin_lock_irqsave(ap->lock, flags); 1562 1563 /* no internal command while frozen */ 1564 if (ap->pflags & ATA_PFLAG_FROZEN) { 1565 spin_unlock_irqrestore(ap->lock, flags); 1566 return AC_ERR_SYSTEM; 1567 } 1568 1569 /* initialize internal qc */ 1570 1571 /* XXX: Tag 0 is used for drivers with legacy EH as some 1572 * drivers choke if any other tag is given. This breaks 1573 * ata_tag_internal() test for those drivers. Don't use new 1574 * EH stuff without converting to it. 1575 */ 1576 if (ap->ops->error_handler) 1577 tag = ATA_TAG_INTERNAL; 1578 else 1579 tag = 0; 1580 1581 if (test_and_set_bit(tag, &ap->qc_allocated)) 1582 BUG(); 1583 qc = __ata_qc_from_tag(ap, tag); 1584 1585 qc->tag = tag; 1586 qc->scsicmd = NULL; 1587 qc->ap = ap; 1588 qc->dev = dev; 1589 ata_qc_reinit(qc); 1590 1591 preempted_tag = link->active_tag; 1592 preempted_sactive = link->sactive; 1593 preempted_qc_active = ap->qc_active; 1594 preempted_nr_active_links = ap->nr_active_links; 1595 link->active_tag = ATA_TAG_POISON; 1596 link->sactive = 0; 1597 ap->qc_active = 0; 1598 ap->nr_active_links = 0; 1599 1600 /* prepare & issue qc */ 1601 qc->tf = *tf; 1602 if (cdb) 1603 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1604 qc->flags |= ATA_QCFLAG_RESULT_TF; 1605 qc->dma_dir = dma_dir; 1606 if (dma_dir != DMA_NONE) { 1607 unsigned int i, buflen = 0; 1608 struct scatterlist *sg; 1609 1610 for_each_sg(sgl, sg, n_elem, i) 1611 buflen += sg->length; 1612 1613 ata_sg_init(qc, sgl, n_elem); 1614 qc->nbytes = buflen; 1615 } 1616 1617 qc->private_data = &wait; 1618 qc->complete_fn = ata_qc_complete_internal; 1619 1620 ata_qc_issue(qc); 1621 1622 spin_unlock_irqrestore(ap->lock, flags); 1623 1624 if (!timeout) { 1625 if (ata_probe_timeout) 1626 timeout = ata_probe_timeout * 1000; 1627 else { 1628 timeout = ata_internal_cmd_timeout(dev, command); 1629 auto_timeout = 1; 1630 } 1631 } 1632 1633 if (ap->ops->error_handler) 1634 ata_eh_release(ap); 1635 1636 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1637 1638 if (ap->ops->error_handler) 1639 ata_eh_acquire(ap); 1640 1641 ata_sff_flush_pio_task(ap); 1642 1643 if (!rc) { 1644 spin_lock_irqsave(ap->lock, flags); 1645 1646 /* We're racing with irq here. If we lose, the 1647 * following test prevents us from completing the qc 1648 * twice. If we win, the port is frozen and will be 1649 * cleaned up by ->post_internal_cmd(). 1650 */ 1651 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1652 qc->err_mask |= AC_ERR_TIMEOUT; 1653 1654 if (ap->ops->error_handler) 1655 ata_port_freeze(ap); 1656 else 1657 ata_qc_complete(qc); 1658 1659 if (ata_msg_warn(ap)) 1660 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n", 1661 command); 1662 } 1663 1664 spin_unlock_irqrestore(ap->lock, flags); 1665 } 1666 1667 /* do post_internal_cmd */ 1668 if (ap->ops->post_internal_cmd) 1669 ap->ops->post_internal_cmd(qc); 1670 1671 /* perform minimal error analysis */ 1672 if (qc->flags & ATA_QCFLAG_FAILED) { 1673 if (qc->result_tf.command & (ATA_ERR | ATA_DF)) 1674 qc->err_mask |= AC_ERR_DEV; 1675 1676 if (!qc->err_mask) 1677 qc->err_mask |= AC_ERR_OTHER; 1678 1679 if (qc->err_mask & ~AC_ERR_OTHER) 1680 qc->err_mask &= ~AC_ERR_OTHER; 1681 } 1682 1683 /* finish up */ 1684 spin_lock_irqsave(ap->lock, flags); 1685 1686 *tf = qc->result_tf; 1687 err_mask = qc->err_mask; 1688 1689 ata_qc_free(qc); 1690 link->active_tag = preempted_tag; 1691 link->sactive = preempted_sactive; 1692 ap->qc_active = preempted_qc_active; 1693 ap->nr_active_links = preempted_nr_active_links; 1694 1695 spin_unlock_irqrestore(ap->lock, flags); 1696 1697 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1698 ata_internal_cmd_timed_out(dev, command); 1699 1700 return err_mask; 1701 } 1702 1703 /** 1704 * ata_exec_internal - execute libata internal command 1705 * @dev: Device to which the command is sent 1706 * @tf: Taskfile registers for the command and the result 1707 * @cdb: CDB for packet command 1708 * @dma_dir: Data tranfer direction of the command 1709 * @buf: Data buffer of the command 1710 * @buflen: Length of data buffer 1711 * @timeout: Timeout in msecs (0 for default) 1712 * 1713 * Wrapper around ata_exec_internal_sg() which takes simple 1714 * buffer instead of sg list. 1715 * 1716 * LOCKING: 1717 * None. Should be called with kernel context, might sleep. 1718 * 1719 * RETURNS: 1720 * Zero on success, AC_ERR_* mask on failure 1721 */ 1722 unsigned ata_exec_internal(struct ata_device *dev, 1723 struct ata_taskfile *tf, const u8 *cdb, 1724 int dma_dir, void *buf, unsigned int buflen, 1725 unsigned long timeout) 1726 { 1727 struct scatterlist *psg = NULL, sg; 1728 unsigned int n_elem = 0; 1729 1730 if (dma_dir != DMA_NONE) { 1731 WARN_ON(!buf); 1732 sg_init_one(&sg, buf, buflen); 1733 psg = &sg; 1734 n_elem++; 1735 } 1736 1737 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem, 1738 timeout); 1739 } 1740 1741 /** 1742 * ata_do_simple_cmd - execute simple internal command 1743 * @dev: Device to which the command is sent 1744 * @cmd: Opcode to execute 1745 * 1746 * Execute a 'simple' command, that only consists of the opcode 1747 * 'cmd' itself, without filling any other registers 1748 * 1749 * LOCKING: 1750 * Kernel thread context (may sleep). 1751 * 1752 * RETURNS: 1753 * Zero on success, AC_ERR_* mask on failure 1754 */ 1755 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd) 1756 { 1757 struct ata_taskfile tf; 1758 1759 ata_tf_init(dev, &tf); 1760 1761 tf.command = cmd; 1762 tf.flags |= ATA_TFLAG_DEVICE; 1763 tf.protocol = ATA_PROT_NODATA; 1764 1765 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1766 } 1767 1768 /** 1769 * ata_pio_need_iordy - check if iordy needed 1770 * @adev: ATA device 1771 * 1772 * Check if the current speed of the device requires IORDY. Used 1773 * by various controllers for chip configuration. 1774 */ 1775 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1776 { 1777 /* Don't set IORDY if we're preparing for reset. IORDY may 1778 * lead to controller lock up on certain controllers if the 1779 * port is not occupied. See bko#11703 for details. 1780 */ 1781 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1782 return 0; 1783 /* Controller doesn't support IORDY. Probably a pointless 1784 * check as the caller should know this. 1785 */ 1786 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1787 return 0; 1788 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1789 if (ata_id_is_cfa(adev->id) 1790 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1791 return 0; 1792 /* PIO3 and higher it is mandatory */ 1793 if (adev->pio_mode > XFER_PIO_2) 1794 return 1; 1795 /* We turn it on when possible */ 1796 if (ata_id_has_iordy(adev->id)) 1797 return 1; 1798 return 0; 1799 } 1800 1801 /** 1802 * ata_pio_mask_no_iordy - Return the non IORDY mask 1803 * @adev: ATA device 1804 * 1805 * Compute the highest mode possible if we are not using iordy. Return 1806 * -1 if no iordy mode is available. 1807 */ 1808 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1809 { 1810 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1811 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1812 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1813 /* Is the speed faster than the drive allows non IORDY ? */ 1814 if (pio) { 1815 /* This is cycle times not frequency - watch the logic! */ 1816 if (pio > 240) /* PIO2 is 240nS per cycle */ 1817 return 3 << ATA_SHIFT_PIO; 1818 return 7 << ATA_SHIFT_PIO; 1819 } 1820 } 1821 return 3 << ATA_SHIFT_PIO; 1822 } 1823 1824 /** 1825 * ata_do_dev_read_id - default ID read method 1826 * @dev: device 1827 * @tf: proposed taskfile 1828 * @id: data buffer 1829 * 1830 * Issue the identify taskfile and hand back the buffer containing 1831 * identify data. For some RAID controllers and for pre ATA devices 1832 * this function is wrapped or replaced by the driver 1833 */ 1834 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1835 struct ata_taskfile *tf, u16 *id) 1836 { 1837 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1838 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1839 } 1840 1841 /** 1842 * ata_dev_read_id - Read ID data from the specified device 1843 * @dev: target device 1844 * @p_class: pointer to class of the target device (may be changed) 1845 * @flags: ATA_READID_* flags 1846 * @id: buffer to read IDENTIFY data into 1847 * 1848 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1849 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1850 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1851 * for pre-ATA4 drives. 1852 * 1853 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1854 * now we abort if we hit that case. 1855 * 1856 * LOCKING: 1857 * Kernel thread context (may sleep) 1858 * 1859 * RETURNS: 1860 * 0 on success, -errno otherwise. 1861 */ 1862 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1863 unsigned int flags, u16 *id) 1864 { 1865 struct ata_port *ap = dev->link->ap; 1866 unsigned int class = *p_class; 1867 struct ata_taskfile tf; 1868 unsigned int err_mask = 0; 1869 const char *reason; 1870 bool is_semb = class == ATA_DEV_SEMB; 1871 int may_fallback = 1, tried_spinup = 0; 1872 int rc; 1873 1874 if (ata_msg_ctl(ap)) 1875 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 1876 1877 retry: 1878 ata_tf_init(dev, &tf); 1879 1880 switch (class) { 1881 case ATA_DEV_SEMB: 1882 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1883 case ATA_DEV_ATA: 1884 tf.command = ATA_CMD_ID_ATA; 1885 break; 1886 case ATA_DEV_ATAPI: 1887 tf.command = ATA_CMD_ID_ATAPI; 1888 break; 1889 default: 1890 rc = -ENODEV; 1891 reason = "unsupported class"; 1892 goto err_out; 1893 } 1894 1895 tf.protocol = ATA_PROT_PIO; 1896 1897 /* Some devices choke if TF registers contain garbage. Make 1898 * sure those are properly initialized. 1899 */ 1900 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1901 1902 /* Device presence detection is unreliable on some 1903 * controllers. Always poll IDENTIFY if available. 1904 */ 1905 tf.flags |= ATA_TFLAG_POLLING; 1906 1907 if (ap->ops->read_id) 1908 err_mask = ap->ops->read_id(dev, &tf, id); 1909 else 1910 err_mask = ata_do_dev_read_id(dev, &tf, id); 1911 1912 if (err_mask) { 1913 if (err_mask & AC_ERR_NODEV_HINT) { 1914 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1915 return -ENOENT; 1916 } 1917 1918 if (is_semb) { 1919 ata_dev_info(dev, 1920 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1921 /* SEMB is not supported yet */ 1922 *p_class = ATA_DEV_SEMB_UNSUP; 1923 return 0; 1924 } 1925 1926 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) { 1927 /* Device or controller might have reported 1928 * the wrong device class. Give a shot at the 1929 * other IDENTIFY if the current one is 1930 * aborted by the device. 1931 */ 1932 if (may_fallback) { 1933 may_fallback = 0; 1934 1935 if (class == ATA_DEV_ATA) 1936 class = ATA_DEV_ATAPI; 1937 else 1938 class = ATA_DEV_ATA; 1939 goto retry; 1940 } 1941 1942 /* Control reaches here iff the device aborted 1943 * both flavors of IDENTIFYs which happens 1944 * sometimes with phantom devices. 1945 */ 1946 ata_dev_dbg(dev, 1947 "both IDENTIFYs aborted, assuming NODEV\n"); 1948 return -ENOENT; 1949 } 1950 1951 rc = -EIO; 1952 reason = "I/O error"; 1953 goto err_out; 1954 } 1955 1956 if (dev->horkage & ATA_HORKAGE_DUMP_ID) { 1957 ata_dev_dbg(dev, "dumping IDENTIFY data, " 1958 "class=%d may_fallback=%d tried_spinup=%d\n", 1959 class, may_fallback, tried_spinup); 1960 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 1961 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1962 } 1963 1964 /* Falling back doesn't make sense if ID data was read 1965 * successfully at least once. 1966 */ 1967 may_fallback = 0; 1968 1969 swap_buf_le16(id, ATA_ID_WORDS); 1970 1971 /* sanity check */ 1972 rc = -EINVAL; 1973 reason = "device reports invalid type"; 1974 1975 if (class == ATA_DEV_ATA) { 1976 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1977 goto err_out; 1978 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1979 ata_id_is_ata(id)) { 1980 ata_dev_dbg(dev, 1981 "host indicates ignore ATA devices, ignored\n"); 1982 return -ENOENT; 1983 } 1984 } else { 1985 if (ata_id_is_ata(id)) 1986 goto err_out; 1987 } 1988 1989 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1990 tried_spinup = 1; 1991 /* 1992 * Drive powered-up in standby mode, and requires a specific 1993 * SET_FEATURES spin-up subcommand before it will accept 1994 * anything other than the original IDENTIFY command. 1995 */ 1996 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1997 if (err_mask && id[2] != 0x738c) { 1998 rc = -EIO; 1999 reason = "SPINUP failed"; 2000 goto err_out; 2001 } 2002 /* 2003 * If the drive initially returned incomplete IDENTIFY info, 2004 * we now must reissue the IDENTIFY command. 2005 */ 2006 if (id[2] == 0x37c8) 2007 goto retry; 2008 } 2009 2010 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) { 2011 /* 2012 * The exact sequence expected by certain pre-ATA4 drives is: 2013 * SRST RESET 2014 * IDENTIFY (optional in early ATA) 2015 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 2016 * anything else.. 2017 * Some drives were very specific about that exact sequence. 2018 * 2019 * Note that ATA4 says lba is mandatory so the second check 2020 * should never trigger. 2021 */ 2022 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 2023 err_mask = ata_dev_init_params(dev, id[3], id[6]); 2024 if (err_mask) { 2025 rc = -EIO; 2026 reason = "INIT_DEV_PARAMS failed"; 2027 goto err_out; 2028 } 2029 2030 /* current CHS translation info (id[53-58]) might be 2031 * changed. reread the identify device info. 2032 */ 2033 flags &= ~ATA_READID_POSTRESET; 2034 goto retry; 2035 } 2036 } 2037 2038 *p_class = class; 2039 2040 return 0; 2041 2042 err_out: 2043 if (ata_msg_warn(ap)) 2044 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 2045 reason, err_mask); 2046 return rc; 2047 } 2048 2049 static int ata_do_link_spd_horkage(struct ata_device *dev) 2050 { 2051 struct ata_link *plink = ata_dev_phys_link(dev); 2052 u32 target, target_limit; 2053 2054 if (!sata_scr_valid(plink)) 2055 return 0; 2056 2057 if (dev->horkage & ATA_HORKAGE_1_5_GBPS) 2058 target = 1; 2059 else 2060 return 0; 2061 2062 target_limit = (1 << target) - 1; 2063 2064 /* if already on stricter limit, no need to push further */ 2065 if (plink->sata_spd_limit <= target_limit) 2066 return 0; 2067 2068 plink->sata_spd_limit = target_limit; 2069 2070 /* Request another EH round by returning -EAGAIN if link is 2071 * going faster than the target speed. Forward progress is 2072 * guaranteed by setting sata_spd_limit to target_limit above. 2073 */ 2074 if (plink->sata_spd > target) { 2075 ata_dev_info(dev, "applying link speed limit horkage to %s\n", 2076 sata_spd_string(target)); 2077 return -EAGAIN; 2078 } 2079 return 0; 2080 } 2081 2082 static inline u8 ata_dev_knobble(struct ata_device *dev) 2083 { 2084 struct ata_port *ap = dev->link->ap; 2085 2086 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK) 2087 return 0; 2088 2089 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2090 } 2091 2092 static int ata_dev_config_ncq(struct ata_device *dev, 2093 char *desc, size_t desc_sz) 2094 { 2095 struct ata_port *ap = dev->link->ap; 2096 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2097 unsigned int err_mask; 2098 char *aa_desc = ""; 2099 2100 if (!ata_id_has_ncq(dev->id)) { 2101 desc[0] = '\0'; 2102 return 0; 2103 } 2104 if (dev->horkage & ATA_HORKAGE_NONCQ) { 2105 snprintf(desc, desc_sz, "NCQ (not used)"); 2106 return 0; 2107 } 2108 if (ap->flags & ATA_FLAG_NCQ) { 2109 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1); 2110 dev->flags |= ATA_DFLAG_NCQ; 2111 } 2112 2113 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) && 2114 (ap->flags & ATA_FLAG_FPDMA_AA) && 2115 ata_id_has_fpdma_aa(dev->id)) { 2116 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2117 SATA_FPDMA_AA); 2118 if (err_mask) { 2119 ata_dev_err(dev, 2120 "failed to enable AA (error_mask=0x%x)\n", 2121 err_mask); 2122 if (err_mask != AC_ERR_DEV) { 2123 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA; 2124 return -EIO; 2125 } 2126 } else 2127 aa_desc = ", AA"; 2128 } 2129 2130 if (hdepth >= ddepth) 2131 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2132 else 2133 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2134 ddepth, aa_desc); 2135 return 0; 2136 } 2137 2138 /** 2139 * ata_dev_configure - Configure the specified ATA/ATAPI device 2140 * @dev: Target device to configure 2141 * 2142 * Configure @dev according to @dev->id. Generic and low-level 2143 * driver specific fixups are also applied. 2144 * 2145 * LOCKING: 2146 * Kernel thread context (may sleep) 2147 * 2148 * RETURNS: 2149 * 0 on success, -errno otherwise 2150 */ 2151 int ata_dev_configure(struct ata_device *dev) 2152 { 2153 struct ata_port *ap = dev->link->ap; 2154 struct ata_eh_context *ehc = &dev->link->eh_context; 2155 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO; 2156 const u16 *id = dev->id; 2157 unsigned long xfer_mask; 2158 unsigned int err_mask; 2159 char revbuf[7]; /* XYZ-99\0 */ 2160 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2161 char modelbuf[ATA_ID_PROD_LEN+1]; 2162 int rc; 2163 2164 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) { 2165 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__); 2166 return 0; 2167 } 2168 2169 if (ata_msg_probe(ap)) 2170 ata_dev_dbg(dev, "%s: ENTER\n", __func__); 2171 2172 /* set horkage */ 2173 dev->horkage |= ata_dev_blacklisted(dev); 2174 ata_force_horkage(dev); 2175 2176 if (dev->horkage & ATA_HORKAGE_DISABLE) { 2177 ata_dev_info(dev, "unsupported device, disabling\n"); 2178 ata_dev_disable(dev); 2179 return 0; 2180 } 2181 2182 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2183 dev->class == ATA_DEV_ATAPI) { 2184 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2185 atapi_enabled ? "not supported with this driver" 2186 : "disabled"); 2187 ata_dev_disable(dev); 2188 return 0; 2189 } 2190 2191 rc = ata_do_link_spd_horkage(dev); 2192 if (rc) 2193 return rc; 2194 2195 /* let ACPI work its magic */ 2196 rc = ata_acpi_on_devcfg(dev); 2197 if (rc) 2198 return rc; 2199 2200 /* massage HPA, do it early as it might change IDENTIFY data */ 2201 rc = ata_hpa_resize(dev); 2202 if (rc) 2203 return rc; 2204 2205 /* print device capabilities */ 2206 if (ata_msg_probe(ap)) 2207 ata_dev_dbg(dev, 2208 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2209 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2210 __func__, 2211 id[49], id[82], id[83], id[84], 2212 id[85], id[86], id[87], id[88]); 2213 2214 /* initialize to-be-configured parameters */ 2215 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2216 dev->max_sectors = 0; 2217 dev->cdb_len = 0; 2218 dev->n_sectors = 0; 2219 dev->cylinders = 0; 2220 dev->heads = 0; 2221 dev->sectors = 0; 2222 dev->multi_count = 0; 2223 2224 /* 2225 * common ATA, ATAPI feature tests 2226 */ 2227 2228 /* find max transfer mode; for printk only */ 2229 xfer_mask = ata_id_xfermask(id); 2230 2231 if (ata_msg_probe(ap)) 2232 ata_dump_id(id); 2233 2234 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2235 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2236 sizeof(fwrevbuf)); 2237 2238 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2239 sizeof(modelbuf)); 2240 2241 /* ATA-specific feature tests */ 2242 if (dev->class == ATA_DEV_ATA) { 2243 if (ata_id_is_cfa(id)) { 2244 /* CPRM may make this media unusable */ 2245 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2246 ata_dev_warn(dev, 2247 "supports DRM functions and may not be fully accessible\n"); 2248 snprintf(revbuf, 7, "CFA"); 2249 } else { 2250 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2251 /* Warn the user if the device has TPM extensions */ 2252 if (ata_id_has_tpm(id)) 2253 ata_dev_warn(dev, 2254 "supports DRM functions and may not be fully accessible\n"); 2255 } 2256 2257 dev->n_sectors = ata_id_n_sectors(id); 2258 2259 /* get current R/W Multiple count setting */ 2260 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2261 unsigned int max = dev->id[47] & 0xff; 2262 unsigned int cnt = dev->id[59] & 0xff; 2263 /* only recognize/allow powers of two here */ 2264 if (is_power_of_2(max) && is_power_of_2(cnt)) 2265 if (cnt <= max) 2266 dev->multi_count = cnt; 2267 } 2268 2269 if (ata_id_has_lba(id)) { 2270 const char *lba_desc; 2271 char ncq_desc[24]; 2272 2273 lba_desc = "LBA"; 2274 dev->flags |= ATA_DFLAG_LBA; 2275 if (ata_id_has_lba48(id)) { 2276 dev->flags |= ATA_DFLAG_LBA48; 2277 lba_desc = "LBA48"; 2278 2279 if (dev->n_sectors >= (1UL << 28) && 2280 ata_id_has_flush_ext(id)) 2281 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2282 } 2283 2284 /* config NCQ */ 2285 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2286 if (rc) 2287 return rc; 2288 2289 /* print device info to dmesg */ 2290 if (ata_msg_drv(ap) && print_info) { 2291 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2292 revbuf, modelbuf, fwrevbuf, 2293 ata_mode_string(xfer_mask)); 2294 ata_dev_info(dev, 2295 "%llu sectors, multi %u: %s %s\n", 2296 (unsigned long long)dev->n_sectors, 2297 dev->multi_count, lba_desc, ncq_desc); 2298 } 2299 } else { 2300 /* CHS */ 2301 2302 /* Default translation */ 2303 dev->cylinders = id[1]; 2304 dev->heads = id[3]; 2305 dev->sectors = id[6]; 2306 2307 if (ata_id_current_chs_valid(id)) { 2308 /* Current CHS translation is valid. */ 2309 dev->cylinders = id[54]; 2310 dev->heads = id[55]; 2311 dev->sectors = id[56]; 2312 } 2313 2314 /* print device info to dmesg */ 2315 if (ata_msg_drv(ap) && print_info) { 2316 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2317 revbuf, modelbuf, fwrevbuf, 2318 ata_mode_string(xfer_mask)); 2319 ata_dev_info(dev, 2320 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2321 (unsigned long long)dev->n_sectors, 2322 dev->multi_count, dev->cylinders, 2323 dev->heads, dev->sectors); 2324 } 2325 } 2326 2327 /* check and mark DevSlp capability */ 2328 if (ata_id_has_devslp(dev->id)) 2329 dev->flags |= ATA_DFLAG_DEVSLP; 2330 2331 /* Obtain SATA Settings page from Identify Device Data Log, 2332 * which contains DevSlp timing variables etc. 2333 * Exclude old devices with ata_id_has_ncq() 2334 */ 2335 if (ata_id_has_ncq(dev->id)) { 2336 err_mask = ata_read_log_page(dev, 2337 ATA_LOG_SATA_ID_DEV_DATA, 2338 ATA_LOG_SATA_SETTINGS, 2339 dev->sata_settings, 2340 1); 2341 if (err_mask) 2342 ata_dev_dbg(dev, 2343 "failed to get Identify Device Data, Emask 0x%x\n", 2344 err_mask); 2345 } 2346 2347 dev->cdb_len = 16; 2348 } 2349 2350 /* ATAPI-specific feature tests */ 2351 else if (dev->class == ATA_DEV_ATAPI) { 2352 const char *cdb_intr_string = ""; 2353 const char *atapi_an_string = ""; 2354 const char *dma_dir_string = ""; 2355 u32 sntf; 2356 2357 rc = atapi_cdb_len(id); 2358 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2359 if (ata_msg_warn(ap)) 2360 ata_dev_warn(dev, "unsupported CDB len\n"); 2361 rc = -EINVAL; 2362 goto err_out_nosup; 2363 } 2364 dev->cdb_len = (unsigned int) rc; 2365 2366 /* Enable ATAPI AN if both the host and device have 2367 * the support. If PMP is attached, SNTF is required 2368 * to enable ATAPI AN to discern between PHY status 2369 * changed notifications and ATAPI ANs. 2370 */ 2371 if (atapi_an && 2372 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 2373 (!sata_pmp_attached(ap) || 2374 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 2375 /* issue SET feature command to turn this on */ 2376 err_mask = ata_dev_set_feature(dev, 2377 SETFEATURES_SATA_ENABLE, SATA_AN); 2378 if (err_mask) 2379 ata_dev_err(dev, 2380 "failed to enable ATAPI AN (err_mask=0x%x)\n", 2381 err_mask); 2382 else { 2383 dev->flags |= ATA_DFLAG_AN; 2384 atapi_an_string = ", ATAPI AN"; 2385 } 2386 } 2387 2388 if (ata_id_cdb_intr(dev->id)) { 2389 dev->flags |= ATA_DFLAG_CDB_INTR; 2390 cdb_intr_string = ", CDB intr"; 2391 } 2392 2393 if (atapi_dmadir || atapi_id_dmadir(dev->id)) { 2394 dev->flags |= ATA_DFLAG_DMADIR; 2395 dma_dir_string = ", DMADIR"; 2396 } 2397 2398 if (ata_id_has_da(dev->id)) 2399 dev->flags |= ATA_DFLAG_DA; 2400 2401 /* print device info to dmesg */ 2402 if (ata_msg_drv(ap) && print_info) 2403 ata_dev_info(dev, 2404 "ATAPI: %s, %s, max %s%s%s%s\n", 2405 modelbuf, fwrevbuf, 2406 ata_mode_string(xfer_mask), 2407 cdb_intr_string, atapi_an_string, 2408 dma_dir_string); 2409 } 2410 2411 /* determine max_sectors */ 2412 dev->max_sectors = ATA_MAX_SECTORS; 2413 if (dev->flags & ATA_DFLAG_LBA48) 2414 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 2415 2416 /* Limit PATA drive on SATA cable bridge transfers to udma5, 2417 200 sectors */ 2418 if (ata_dev_knobble(dev)) { 2419 if (ata_msg_drv(ap) && print_info) 2420 ata_dev_info(dev, "applying bridge limits\n"); 2421 dev->udma_mask &= ATA_UDMA5; 2422 dev->max_sectors = ATA_MAX_SECTORS; 2423 } 2424 2425 if ((dev->class == ATA_DEV_ATAPI) && 2426 (atapi_command_packet_set(id) == TYPE_TAPE)) { 2427 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 2428 dev->horkage |= ATA_HORKAGE_STUCK_ERR; 2429 } 2430 2431 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128) 2432 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 2433 dev->max_sectors); 2434 2435 if (ap->ops->dev_config) 2436 ap->ops->dev_config(dev); 2437 2438 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) { 2439 /* Let the user know. We don't want to disallow opens for 2440 rescue purposes, or in case the vendor is just a blithering 2441 idiot. Do this after the dev_config call as some controllers 2442 with buggy firmware may want to avoid reporting false device 2443 bugs */ 2444 2445 if (print_info) { 2446 ata_dev_warn(dev, 2447 "Drive reports diagnostics failure. This may indicate a drive\n"); 2448 ata_dev_warn(dev, 2449 "fault or invalid emulation. Contact drive vendor for information.\n"); 2450 } 2451 } 2452 2453 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) { 2454 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 2455 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 2456 } 2457 2458 return 0; 2459 2460 err_out_nosup: 2461 if (ata_msg_probe(ap)) 2462 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__); 2463 return rc; 2464 } 2465 2466 /** 2467 * ata_cable_40wire - return 40 wire cable type 2468 * @ap: port 2469 * 2470 * Helper method for drivers which want to hardwire 40 wire cable 2471 * detection. 2472 */ 2473 2474 int ata_cable_40wire(struct ata_port *ap) 2475 { 2476 return ATA_CBL_PATA40; 2477 } 2478 2479 /** 2480 * ata_cable_80wire - return 80 wire cable type 2481 * @ap: port 2482 * 2483 * Helper method for drivers which want to hardwire 80 wire cable 2484 * detection. 2485 */ 2486 2487 int ata_cable_80wire(struct ata_port *ap) 2488 { 2489 return ATA_CBL_PATA80; 2490 } 2491 2492 /** 2493 * ata_cable_unknown - return unknown PATA cable. 2494 * @ap: port 2495 * 2496 * Helper method for drivers which have no PATA cable detection. 2497 */ 2498 2499 int ata_cable_unknown(struct ata_port *ap) 2500 { 2501 return ATA_CBL_PATA_UNK; 2502 } 2503 2504 /** 2505 * ata_cable_ignore - return ignored PATA cable. 2506 * @ap: port 2507 * 2508 * Helper method for drivers which don't use cable type to limit 2509 * transfer mode. 2510 */ 2511 int ata_cable_ignore(struct ata_port *ap) 2512 { 2513 return ATA_CBL_PATA_IGN; 2514 } 2515 2516 /** 2517 * ata_cable_sata - return SATA cable type 2518 * @ap: port 2519 * 2520 * Helper method for drivers which have SATA cables 2521 */ 2522 2523 int ata_cable_sata(struct ata_port *ap) 2524 { 2525 return ATA_CBL_SATA; 2526 } 2527 2528 /** 2529 * ata_bus_probe - Reset and probe ATA bus 2530 * @ap: Bus to probe 2531 * 2532 * Master ATA bus probing function. Initiates a hardware-dependent 2533 * bus reset, then attempts to identify any devices found on 2534 * the bus. 2535 * 2536 * LOCKING: 2537 * PCI/etc. bus probe sem. 2538 * 2539 * RETURNS: 2540 * Zero on success, negative errno otherwise. 2541 */ 2542 2543 int ata_bus_probe(struct ata_port *ap) 2544 { 2545 unsigned int classes[ATA_MAX_DEVICES]; 2546 int tries[ATA_MAX_DEVICES]; 2547 int rc; 2548 struct ata_device *dev; 2549 2550 ata_for_each_dev(dev, &ap->link, ALL) 2551 tries[dev->devno] = ATA_PROBE_MAX_TRIES; 2552 2553 retry: 2554 ata_for_each_dev(dev, &ap->link, ALL) { 2555 /* If we issue an SRST then an ATA drive (not ATAPI) 2556 * may change configuration and be in PIO0 timing. If 2557 * we do a hard reset (or are coming from power on) 2558 * this is true for ATA or ATAPI. Until we've set a 2559 * suitable controller mode we should not touch the 2560 * bus as we may be talking too fast. 2561 */ 2562 dev->pio_mode = XFER_PIO_0; 2563 2564 /* If the controller has a pio mode setup function 2565 * then use it to set the chipset to rights. Don't 2566 * touch the DMA setup as that will be dealt with when 2567 * configuring devices. 2568 */ 2569 if (ap->ops->set_piomode) 2570 ap->ops->set_piomode(ap, dev); 2571 } 2572 2573 /* reset and determine device classes */ 2574 ap->ops->phy_reset(ap); 2575 2576 ata_for_each_dev(dev, &ap->link, ALL) { 2577 if (dev->class != ATA_DEV_UNKNOWN) 2578 classes[dev->devno] = dev->class; 2579 else 2580 classes[dev->devno] = ATA_DEV_NONE; 2581 2582 dev->class = ATA_DEV_UNKNOWN; 2583 } 2584 2585 /* read IDENTIFY page and configure devices. We have to do the identify 2586 specific sequence bass-ackwards so that PDIAG- is released by 2587 the slave device */ 2588 2589 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) { 2590 if (tries[dev->devno]) 2591 dev->class = classes[dev->devno]; 2592 2593 if (!ata_dev_enabled(dev)) 2594 continue; 2595 2596 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET, 2597 dev->id); 2598 if (rc) 2599 goto fail; 2600 } 2601 2602 /* Now ask for the cable type as PDIAG- should have been released */ 2603 if (ap->ops->cable_detect) 2604 ap->cbl = ap->ops->cable_detect(ap); 2605 2606 /* We may have SATA bridge glue hiding here irrespective of 2607 * the reported cable types and sensed types. When SATA 2608 * drives indicate we have a bridge, we don't know which end 2609 * of the link the bridge is which is a problem. 2610 */ 2611 ata_for_each_dev(dev, &ap->link, ENABLED) 2612 if (ata_id_is_sata(dev->id)) 2613 ap->cbl = ATA_CBL_SATA; 2614 2615 /* After the identify sequence we can now set up the devices. We do 2616 this in the normal order so that the user doesn't get confused */ 2617 2618 ata_for_each_dev(dev, &ap->link, ENABLED) { 2619 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO; 2620 rc = ata_dev_configure(dev); 2621 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO; 2622 if (rc) 2623 goto fail; 2624 } 2625 2626 /* configure transfer mode */ 2627 rc = ata_set_mode(&ap->link, &dev); 2628 if (rc) 2629 goto fail; 2630 2631 ata_for_each_dev(dev, &ap->link, ENABLED) 2632 return 0; 2633 2634 return -ENODEV; 2635 2636 fail: 2637 tries[dev->devno]--; 2638 2639 switch (rc) { 2640 case -EINVAL: 2641 /* eeek, something went very wrong, give up */ 2642 tries[dev->devno] = 0; 2643 break; 2644 2645 case -ENODEV: 2646 /* give it just one more chance */ 2647 tries[dev->devno] = min(tries[dev->devno], 1); 2648 case -EIO: 2649 if (tries[dev->devno] == 1) { 2650 /* This is the last chance, better to slow 2651 * down than lose it. 2652 */ 2653 sata_down_spd_limit(&ap->link, 0); 2654 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO); 2655 } 2656 } 2657 2658 if (!tries[dev->devno]) 2659 ata_dev_disable(dev); 2660 2661 goto retry; 2662 } 2663 2664 /** 2665 * sata_print_link_status - Print SATA link status 2666 * @link: SATA link to printk link status about 2667 * 2668 * This function prints link speed and status of a SATA link. 2669 * 2670 * LOCKING: 2671 * None. 2672 */ 2673 static void sata_print_link_status(struct ata_link *link) 2674 { 2675 u32 sstatus, scontrol, tmp; 2676 2677 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 2678 return; 2679 sata_scr_read(link, SCR_CONTROL, &scontrol); 2680 2681 if (ata_phys_link_online(link)) { 2682 tmp = (sstatus >> 4) & 0xf; 2683 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 2684 sata_spd_string(tmp), sstatus, scontrol); 2685 } else { 2686 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 2687 sstatus, scontrol); 2688 } 2689 } 2690 2691 /** 2692 * ata_dev_pair - return other device on cable 2693 * @adev: device 2694 * 2695 * Obtain the other device on the same cable, or if none is 2696 * present NULL is returned 2697 */ 2698 2699 struct ata_device *ata_dev_pair(struct ata_device *adev) 2700 { 2701 struct ata_link *link = adev->link; 2702 struct ata_device *pair = &link->device[1 - adev->devno]; 2703 if (!ata_dev_enabled(pair)) 2704 return NULL; 2705 return pair; 2706 } 2707 2708 /** 2709 * sata_down_spd_limit - adjust SATA spd limit downward 2710 * @link: Link to adjust SATA spd limit for 2711 * @spd_limit: Additional limit 2712 * 2713 * Adjust SATA spd limit of @link downward. Note that this 2714 * function only adjusts the limit. The change must be applied 2715 * using sata_set_spd(). 2716 * 2717 * If @spd_limit is non-zero, the speed is limited to equal to or 2718 * lower than @spd_limit if such speed is supported. If 2719 * @spd_limit is slower than any supported speed, only the lowest 2720 * supported speed is allowed. 2721 * 2722 * LOCKING: 2723 * Inherited from caller. 2724 * 2725 * RETURNS: 2726 * 0 on success, negative errno on failure 2727 */ 2728 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit) 2729 { 2730 u32 sstatus, spd, mask; 2731 int rc, bit; 2732 2733 if (!sata_scr_valid(link)) 2734 return -EOPNOTSUPP; 2735 2736 /* If SCR can be read, use it to determine the current SPD. 2737 * If not, use cached value in link->sata_spd. 2738 */ 2739 rc = sata_scr_read(link, SCR_STATUS, &sstatus); 2740 if (rc == 0 && ata_sstatus_online(sstatus)) 2741 spd = (sstatus >> 4) & 0xf; 2742 else 2743 spd = link->sata_spd; 2744 2745 mask = link->sata_spd_limit; 2746 if (mask <= 1) 2747 return -EINVAL; 2748 2749 /* unconditionally mask off the highest bit */ 2750 bit = fls(mask) - 1; 2751 mask &= ~(1 << bit); 2752 2753 /* Mask off all speeds higher than or equal to the current 2754 * one. Force 1.5Gbps if current SPD is not available. 2755 */ 2756 if (spd > 1) 2757 mask &= (1 << (spd - 1)) - 1; 2758 else 2759 mask &= 1; 2760 2761 /* were we already at the bottom? */ 2762 if (!mask) 2763 return -EINVAL; 2764 2765 if (spd_limit) { 2766 if (mask & ((1 << spd_limit) - 1)) 2767 mask &= (1 << spd_limit) - 1; 2768 else { 2769 bit = ffs(mask) - 1; 2770 mask = 1 << bit; 2771 } 2772 } 2773 2774 link->sata_spd_limit = mask; 2775 2776 ata_link_warn(link, "limiting SATA link speed to %s\n", 2777 sata_spd_string(fls(mask))); 2778 2779 return 0; 2780 } 2781 2782 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol) 2783 { 2784 struct ata_link *host_link = &link->ap->link; 2785 u32 limit, target, spd; 2786 2787 limit = link->sata_spd_limit; 2788 2789 /* Don't configure downstream link faster than upstream link. 2790 * It doesn't speed up anything and some PMPs choke on such 2791 * configuration. 2792 */ 2793 if (!ata_is_host_link(link) && host_link->sata_spd) 2794 limit &= (1 << host_link->sata_spd) - 1; 2795 2796 if (limit == UINT_MAX) 2797 target = 0; 2798 else 2799 target = fls(limit); 2800 2801 spd = (*scontrol >> 4) & 0xf; 2802 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4); 2803 2804 return spd != target; 2805 } 2806 2807 /** 2808 * sata_set_spd_needed - is SATA spd configuration needed 2809 * @link: Link in question 2810 * 2811 * Test whether the spd limit in SControl matches 2812 * @link->sata_spd_limit. This function is used to determine 2813 * whether hardreset is necessary to apply SATA spd 2814 * configuration. 2815 * 2816 * LOCKING: 2817 * Inherited from caller. 2818 * 2819 * RETURNS: 2820 * 1 if SATA spd configuration is needed, 0 otherwise. 2821 */ 2822 static int sata_set_spd_needed(struct ata_link *link) 2823 { 2824 u32 scontrol; 2825 2826 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 2827 return 1; 2828 2829 return __sata_set_spd_needed(link, &scontrol); 2830 } 2831 2832 /** 2833 * sata_set_spd - set SATA spd according to spd limit 2834 * @link: Link to set SATA spd for 2835 * 2836 * Set SATA spd of @link according to sata_spd_limit. 2837 * 2838 * LOCKING: 2839 * Inherited from caller. 2840 * 2841 * RETURNS: 2842 * 0 if spd doesn't need to be changed, 1 if spd has been 2843 * changed. Negative errno if SCR registers are inaccessible. 2844 */ 2845 int sata_set_spd(struct ata_link *link) 2846 { 2847 u32 scontrol; 2848 int rc; 2849 2850 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 2851 return rc; 2852 2853 if (!__sata_set_spd_needed(link, &scontrol)) 2854 return 0; 2855 2856 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 2857 return rc; 2858 2859 return 1; 2860 } 2861 2862 /* 2863 * This mode timing computation functionality is ported over from 2864 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik 2865 */ 2866 /* 2867 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). 2868 * These were taken from ATA/ATAPI-6 standard, rev 0a, except 2869 * for UDMA6, which is currently supported only by Maxtor drives. 2870 * 2871 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0. 2872 */ 2873 2874 static const struct ata_timing ata_timing[] = { 2875 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */ 2876 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 }, 2877 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 }, 2878 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 }, 2879 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 }, 2880 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 }, 2881 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 }, 2882 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 }, 2883 2884 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 }, 2885 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 }, 2886 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 }, 2887 2888 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 }, 2889 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 }, 2890 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 }, 2891 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 }, 2892 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 }, 2893 2894 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */ 2895 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 }, 2896 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 }, 2897 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 }, 2898 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 }, 2899 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 }, 2900 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 }, 2901 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 }, 2902 2903 { 0xFF } 2904 }; 2905 2906 #define ENOUGH(v, unit) (((v)-1)/(unit)+1) 2907 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0) 2908 2909 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) 2910 { 2911 q->setup = EZ(t->setup * 1000, T); 2912 q->act8b = EZ(t->act8b * 1000, T); 2913 q->rec8b = EZ(t->rec8b * 1000, T); 2914 q->cyc8b = EZ(t->cyc8b * 1000, T); 2915 q->active = EZ(t->active * 1000, T); 2916 q->recover = EZ(t->recover * 1000, T); 2917 q->dmack_hold = EZ(t->dmack_hold * 1000, T); 2918 q->cycle = EZ(t->cycle * 1000, T); 2919 q->udma = EZ(t->udma * 1000, UT); 2920 } 2921 2922 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, 2923 struct ata_timing *m, unsigned int what) 2924 { 2925 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); 2926 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); 2927 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); 2928 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); 2929 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); 2930 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); 2931 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold); 2932 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); 2933 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); 2934 } 2935 2936 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode) 2937 { 2938 const struct ata_timing *t = ata_timing; 2939 2940 while (xfer_mode > t->mode) 2941 t++; 2942 2943 if (xfer_mode == t->mode) 2944 return t; 2945 2946 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n", 2947 __func__, xfer_mode); 2948 2949 return NULL; 2950 } 2951 2952 int ata_timing_compute(struct ata_device *adev, unsigned short speed, 2953 struct ata_timing *t, int T, int UT) 2954 { 2955 const u16 *id = adev->id; 2956 const struct ata_timing *s; 2957 struct ata_timing p; 2958 2959 /* 2960 * Find the mode. 2961 */ 2962 2963 if (!(s = ata_timing_find_mode(speed))) 2964 return -EINVAL; 2965 2966 memcpy(t, s, sizeof(*s)); 2967 2968 /* 2969 * If the drive is an EIDE drive, it can tell us it needs extended 2970 * PIO/MW_DMA cycle timing. 2971 */ 2972 2973 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ 2974 memset(&p, 0, sizeof(p)); 2975 2976 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) { 2977 if (speed <= XFER_PIO_2) 2978 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO]; 2979 else if ((speed <= XFER_PIO_4) || 2980 (speed == XFER_PIO_5 && !ata_id_is_cfa(id))) 2981 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY]; 2982 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) 2983 p.cycle = id[ATA_ID_EIDE_DMA_MIN]; 2984 2985 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); 2986 } 2987 2988 /* 2989 * Convert the timing to bus clock counts. 2990 */ 2991 2992 ata_timing_quantize(t, t, T, UT); 2993 2994 /* 2995 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, 2996 * S.M.A.R.T * and some other commands. We have to ensure that the 2997 * DMA cycle timing is slower/equal than the fastest PIO timing. 2998 */ 2999 3000 if (speed > XFER_PIO_6) { 3001 ata_timing_compute(adev, adev->pio_mode, &p, T, UT); 3002 ata_timing_merge(&p, t, t, ATA_TIMING_ALL); 3003 } 3004 3005 /* 3006 * Lengthen active & recovery time so that cycle time is correct. 3007 */ 3008 3009 if (t->act8b + t->rec8b < t->cyc8b) { 3010 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; 3011 t->rec8b = t->cyc8b - t->act8b; 3012 } 3013 3014 if (t->active + t->recover < t->cycle) { 3015 t->active += (t->cycle - (t->active + t->recover)) / 2; 3016 t->recover = t->cycle - t->active; 3017 } 3018 3019 /* In a few cases quantisation may produce enough errors to 3020 leave t->cycle too low for the sum of active and recovery 3021 if so we must correct this */ 3022 if (t->active + t->recover > t->cycle) 3023 t->cycle = t->active + t->recover; 3024 3025 return 0; 3026 } 3027 3028 /** 3029 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3030 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3031 * @cycle: cycle duration in ns 3032 * 3033 * Return matching xfer mode for @cycle. The returned mode is of 3034 * the transfer type specified by @xfer_shift. If @cycle is too 3035 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3036 * than the fastest known mode, the fasted mode is returned. 3037 * 3038 * LOCKING: 3039 * None. 3040 * 3041 * RETURNS: 3042 * Matching xfer_mode, 0xff if no match found. 3043 */ 3044 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3045 { 3046 u8 base_mode = 0xff, last_mode = 0xff; 3047 const struct ata_xfer_ent *ent; 3048 const struct ata_timing *t; 3049 3050 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3051 if (ent->shift == xfer_shift) 3052 base_mode = ent->base; 3053 3054 for (t = ata_timing_find_mode(base_mode); 3055 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3056 unsigned short this_cycle; 3057 3058 switch (xfer_shift) { 3059 case ATA_SHIFT_PIO: 3060 case ATA_SHIFT_MWDMA: 3061 this_cycle = t->cycle; 3062 break; 3063 case ATA_SHIFT_UDMA: 3064 this_cycle = t->udma; 3065 break; 3066 default: 3067 return 0xff; 3068 } 3069 3070 if (cycle > this_cycle) 3071 break; 3072 3073 last_mode = t->mode; 3074 } 3075 3076 return last_mode; 3077 } 3078 3079 /** 3080 * ata_down_xfermask_limit - adjust dev xfer masks downward 3081 * @dev: Device to adjust xfer masks 3082 * @sel: ATA_DNXFER_* selector 3083 * 3084 * Adjust xfer masks of @dev downward. Note that this function 3085 * does not apply the change. Invoking ata_set_mode() afterwards 3086 * will apply the limit. 3087 * 3088 * LOCKING: 3089 * Inherited from caller. 3090 * 3091 * RETURNS: 3092 * 0 on success, negative errno on failure 3093 */ 3094 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3095 { 3096 char buf[32]; 3097 unsigned long orig_mask, xfer_mask; 3098 unsigned long pio_mask, mwdma_mask, udma_mask; 3099 int quiet, highbit; 3100 3101 quiet = !!(sel & ATA_DNXFER_QUIET); 3102 sel &= ~ATA_DNXFER_QUIET; 3103 3104 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3105 dev->mwdma_mask, 3106 dev->udma_mask); 3107 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3108 3109 switch (sel) { 3110 case ATA_DNXFER_PIO: 3111 highbit = fls(pio_mask) - 1; 3112 pio_mask &= ~(1 << highbit); 3113 break; 3114 3115 case ATA_DNXFER_DMA: 3116 if (udma_mask) { 3117 highbit = fls(udma_mask) - 1; 3118 udma_mask &= ~(1 << highbit); 3119 if (!udma_mask) 3120 return -ENOENT; 3121 } else if (mwdma_mask) { 3122 highbit = fls(mwdma_mask) - 1; 3123 mwdma_mask &= ~(1 << highbit); 3124 if (!mwdma_mask) 3125 return -ENOENT; 3126 } 3127 break; 3128 3129 case ATA_DNXFER_40C: 3130 udma_mask &= ATA_UDMA_MASK_40C; 3131 break; 3132 3133 case ATA_DNXFER_FORCE_PIO0: 3134 pio_mask &= 1; 3135 case ATA_DNXFER_FORCE_PIO: 3136 mwdma_mask = 0; 3137 udma_mask = 0; 3138 break; 3139 3140 default: 3141 BUG(); 3142 } 3143 3144 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3145 3146 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3147 return -ENOENT; 3148 3149 if (!quiet) { 3150 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3151 snprintf(buf, sizeof(buf), "%s:%s", 3152 ata_mode_string(xfer_mask), 3153 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3154 else 3155 snprintf(buf, sizeof(buf), "%s", 3156 ata_mode_string(xfer_mask)); 3157 3158 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3159 } 3160 3161 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3162 &dev->udma_mask); 3163 3164 return 0; 3165 } 3166 3167 static int ata_dev_set_mode(struct ata_device *dev) 3168 { 3169 struct ata_port *ap = dev->link->ap; 3170 struct ata_eh_context *ehc = &dev->link->eh_context; 3171 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER; 3172 const char *dev_err_whine = ""; 3173 int ign_dev_err = 0; 3174 unsigned int err_mask = 0; 3175 int rc; 3176 3177 dev->flags &= ~ATA_DFLAG_PIO; 3178 if (dev->xfer_shift == ATA_SHIFT_PIO) 3179 dev->flags |= ATA_DFLAG_PIO; 3180 3181 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3182 dev_err_whine = " (SET_XFERMODE skipped)"; 3183 else { 3184 if (nosetxfer) 3185 ata_dev_warn(dev, 3186 "NOSETXFER but PATA detected - can't " 3187 "skip SETXFER, might malfunction\n"); 3188 err_mask = ata_dev_set_xfermode(dev); 3189 } 3190 3191 if (err_mask & ~AC_ERR_DEV) 3192 goto fail; 3193 3194 /* revalidate */ 3195 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3196 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3197 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3198 if (rc) 3199 return rc; 3200 3201 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3202 /* Old CFA may refuse this command, which is just fine */ 3203 if (ata_id_is_cfa(dev->id)) 3204 ign_dev_err = 1; 3205 /* Catch several broken garbage emulations plus some pre 3206 ATA devices */ 3207 if (ata_id_major_version(dev->id) == 0 && 3208 dev->pio_mode <= XFER_PIO_2) 3209 ign_dev_err = 1; 3210 /* Some very old devices and some bad newer ones fail 3211 any kind of SET_XFERMODE request but support PIO0-2 3212 timings and no IORDY */ 3213 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3214 ign_dev_err = 1; 3215 } 3216 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3217 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3218 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3219 dev->dma_mode == XFER_MW_DMA_0 && 3220 (dev->id[63] >> 8) & 1) 3221 ign_dev_err = 1; 3222 3223 /* if the device is actually configured correctly, ignore dev err */ 3224 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3225 ign_dev_err = 1; 3226 3227 if (err_mask & AC_ERR_DEV) { 3228 if (!ign_dev_err) 3229 goto fail; 3230 else 3231 dev_err_whine = " (device error ignored)"; 3232 } 3233 3234 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n", 3235 dev->xfer_shift, (int)dev->xfer_mode); 3236 3237 ata_dev_info(dev, "configured for %s%s\n", 3238 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3239 dev_err_whine); 3240 3241 return 0; 3242 3243 fail: 3244 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3245 return -EIO; 3246 } 3247 3248 /** 3249 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3250 * @link: link on which timings will be programmed 3251 * @r_failed_dev: out parameter for failed device 3252 * 3253 * Standard implementation of the function used to tune and set 3254 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3255 * ata_dev_set_mode() fails, pointer to the failing device is 3256 * returned in @r_failed_dev. 3257 * 3258 * LOCKING: 3259 * PCI/etc. bus probe sem. 3260 * 3261 * RETURNS: 3262 * 0 on success, negative errno otherwise 3263 */ 3264 3265 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3266 { 3267 struct ata_port *ap = link->ap; 3268 struct ata_device *dev; 3269 int rc = 0, used_dma = 0, found = 0; 3270 3271 /* step 1: calculate xfer_mask */ 3272 ata_for_each_dev(dev, link, ENABLED) { 3273 unsigned long pio_mask, dma_mask; 3274 unsigned int mode_mask; 3275 3276 mode_mask = ATA_DMA_MASK_ATA; 3277 if (dev->class == ATA_DEV_ATAPI) 3278 mode_mask = ATA_DMA_MASK_ATAPI; 3279 else if (ata_id_is_cfa(dev->id)) 3280 mode_mask = ATA_DMA_MASK_CFA; 3281 3282 ata_dev_xfermask(dev); 3283 ata_force_xfermask(dev); 3284 3285 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3286 3287 if (libata_dma_mask & mode_mask) 3288 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3289 dev->udma_mask); 3290 else 3291 dma_mask = 0; 3292 3293 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3294 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3295 3296 found = 1; 3297 if (ata_dma_enabled(dev)) 3298 used_dma = 1; 3299 } 3300 if (!found) 3301 goto out; 3302 3303 /* step 2: always set host PIO timings */ 3304 ata_for_each_dev(dev, link, ENABLED) { 3305 if (dev->pio_mode == 0xff) { 3306 ata_dev_warn(dev, "no PIO support\n"); 3307 rc = -EINVAL; 3308 goto out; 3309 } 3310 3311 dev->xfer_mode = dev->pio_mode; 3312 dev->xfer_shift = ATA_SHIFT_PIO; 3313 if (ap->ops->set_piomode) 3314 ap->ops->set_piomode(ap, dev); 3315 } 3316 3317 /* step 3: set host DMA timings */ 3318 ata_for_each_dev(dev, link, ENABLED) { 3319 if (!ata_dma_enabled(dev)) 3320 continue; 3321 3322 dev->xfer_mode = dev->dma_mode; 3323 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3324 if (ap->ops->set_dmamode) 3325 ap->ops->set_dmamode(ap, dev); 3326 } 3327 3328 /* step 4: update devices' xfer mode */ 3329 ata_for_each_dev(dev, link, ENABLED) { 3330 rc = ata_dev_set_mode(dev); 3331 if (rc) 3332 goto out; 3333 } 3334 3335 /* Record simplex status. If we selected DMA then the other 3336 * host channels are not permitted to do so. 3337 */ 3338 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3339 ap->host->simplex_claimed = ap; 3340 3341 out: 3342 if (rc) 3343 *r_failed_dev = dev; 3344 return rc; 3345 } 3346 3347 /** 3348 * ata_wait_ready - wait for link to become ready 3349 * @link: link to be waited on 3350 * @deadline: deadline jiffies for the operation 3351 * @check_ready: callback to check link readiness 3352 * 3353 * Wait for @link to become ready. @check_ready should return 3354 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3355 * link doesn't seem to be occupied, other errno for other error 3356 * conditions. 3357 * 3358 * Transient -ENODEV conditions are allowed for 3359 * ATA_TMOUT_FF_WAIT. 3360 * 3361 * LOCKING: 3362 * EH context. 3363 * 3364 * RETURNS: 3365 * 0 if @linke is ready before @deadline; otherwise, -errno. 3366 */ 3367 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3368 int (*check_ready)(struct ata_link *link)) 3369 { 3370 unsigned long start = jiffies; 3371 unsigned long nodev_deadline; 3372 int warned = 0; 3373 3374 /* choose which 0xff timeout to use, read comment in libata.h */ 3375 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3376 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3377 else 3378 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3379 3380 /* Slave readiness can't be tested separately from master. On 3381 * M/S emulation configuration, this function should be called 3382 * only on the master and it will handle both master and slave. 3383 */ 3384 WARN_ON(link == link->ap->slave_link); 3385 3386 if (time_after(nodev_deadline, deadline)) 3387 nodev_deadline = deadline; 3388 3389 while (1) { 3390 unsigned long now = jiffies; 3391 int ready, tmp; 3392 3393 ready = tmp = check_ready(link); 3394 if (ready > 0) 3395 return 0; 3396 3397 /* 3398 * -ENODEV could be transient. Ignore -ENODEV if link 3399 * is online. Also, some SATA devices take a long 3400 * time to clear 0xff after reset. Wait for 3401 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3402 * offline. 3403 * 3404 * Note that some PATA controllers (pata_ali) explode 3405 * if status register is read more than once when 3406 * there's no device attached. 3407 */ 3408 if (ready == -ENODEV) { 3409 if (ata_link_online(link)) 3410 ready = 0; 3411 else if ((link->ap->flags & ATA_FLAG_SATA) && 3412 !ata_link_offline(link) && 3413 time_before(now, nodev_deadline)) 3414 ready = 0; 3415 } 3416 3417 if (ready) 3418 return ready; 3419 if (time_after(now, deadline)) 3420 return -EBUSY; 3421 3422 if (!warned && time_after(now, start + 5 * HZ) && 3423 (deadline - now > 3 * HZ)) { 3424 ata_link_warn(link, 3425 "link is slow to respond, please be patient " 3426 "(ready=%d)\n", tmp); 3427 warned = 1; 3428 } 3429 3430 ata_msleep(link->ap, 50); 3431 } 3432 } 3433 3434 /** 3435 * ata_wait_after_reset - wait for link to become ready after reset 3436 * @link: link to be waited on 3437 * @deadline: deadline jiffies for the operation 3438 * @check_ready: callback to check link readiness 3439 * 3440 * Wait for @link to become ready after reset. 3441 * 3442 * LOCKING: 3443 * EH context. 3444 * 3445 * RETURNS: 3446 * 0 if @linke is ready before @deadline; otherwise, -errno. 3447 */ 3448 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3449 int (*check_ready)(struct ata_link *link)) 3450 { 3451 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3452 3453 return ata_wait_ready(link, deadline, check_ready); 3454 } 3455 3456 /** 3457 * sata_link_debounce - debounce SATA phy status 3458 * @link: ATA link to debounce SATA phy status for 3459 * @params: timing parameters { interval, duratinon, timeout } in msec 3460 * @deadline: deadline jiffies for the operation 3461 * 3462 * Make sure SStatus of @link reaches stable state, determined by 3463 * holding the same value where DET is not 1 for @duration polled 3464 * every @interval, before @timeout. Timeout constraints the 3465 * beginning of the stable state. Because DET gets stuck at 1 on 3466 * some controllers after hot unplugging, this functions waits 3467 * until timeout then returns 0 if DET is stable at 1. 3468 * 3469 * @timeout is further limited by @deadline. The sooner of the 3470 * two is used. 3471 * 3472 * LOCKING: 3473 * Kernel thread context (may sleep) 3474 * 3475 * RETURNS: 3476 * 0 on success, -errno on failure. 3477 */ 3478 int sata_link_debounce(struct ata_link *link, const unsigned long *params, 3479 unsigned long deadline) 3480 { 3481 unsigned long interval = params[0]; 3482 unsigned long duration = params[1]; 3483 unsigned long last_jiffies, t; 3484 u32 last, cur; 3485 int rc; 3486 3487 t = ata_deadline(jiffies, params[2]); 3488 if (time_before(t, deadline)) 3489 deadline = t; 3490 3491 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3492 return rc; 3493 cur &= 0xf; 3494 3495 last = cur; 3496 last_jiffies = jiffies; 3497 3498 while (1) { 3499 ata_msleep(link->ap, interval); 3500 if ((rc = sata_scr_read(link, SCR_STATUS, &cur))) 3501 return rc; 3502 cur &= 0xf; 3503 3504 /* DET stable? */ 3505 if (cur == last) { 3506 if (cur == 1 && time_before(jiffies, deadline)) 3507 continue; 3508 if (time_after(jiffies, 3509 ata_deadline(last_jiffies, duration))) 3510 return 0; 3511 continue; 3512 } 3513 3514 /* unstable, start over */ 3515 last = cur; 3516 last_jiffies = jiffies; 3517 3518 /* Check deadline. If debouncing failed, return 3519 * -EPIPE to tell upper layer to lower link speed. 3520 */ 3521 if (time_after(jiffies, deadline)) 3522 return -EPIPE; 3523 } 3524 } 3525 3526 /** 3527 * sata_link_resume - resume SATA link 3528 * @link: ATA link to resume SATA 3529 * @params: timing parameters { interval, duratinon, timeout } in msec 3530 * @deadline: deadline jiffies for the operation 3531 * 3532 * Resume SATA phy @link and debounce it. 3533 * 3534 * LOCKING: 3535 * Kernel thread context (may sleep) 3536 * 3537 * RETURNS: 3538 * 0 on success, -errno on failure. 3539 */ 3540 int sata_link_resume(struct ata_link *link, const unsigned long *params, 3541 unsigned long deadline) 3542 { 3543 int tries = ATA_LINK_RESUME_TRIES; 3544 u32 scontrol, serror; 3545 int rc; 3546 3547 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3548 return rc; 3549 3550 /* 3551 * Writes to SControl sometimes get ignored under certain 3552 * controllers (ata_piix SIDPR). Make sure DET actually is 3553 * cleared. 3554 */ 3555 do { 3556 scontrol = (scontrol & 0x0f0) | 0x300; 3557 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3558 return rc; 3559 /* 3560 * Some PHYs react badly if SStatus is pounded 3561 * immediately after resuming. Delay 200ms before 3562 * debouncing. 3563 */ 3564 ata_msleep(link->ap, 200); 3565 3566 /* is SControl restored correctly? */ 3567 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3568 return rc; 3569 } while ((scontrol & 0xf0f) != 0x300 && --tries); 3570 3571 if ((scontrol & 0xf0f) != 0x300) { 3572 ata_link_warn(link, "failed to resume link (SControl %X)\n", 3573 scontrol); 3574 return 0; 3575 } 3576 3577 if (tries < ATA_LINK_RESUME_TRIES) 3578 ata_link_warn(link, "link resume succeeded after %d retries\n", 3579 ATA_LINK_RESUME_TRIES - tries); 3580 3581 if ((rc = sata_link_debounce(link, params, deadline))) 3582 return rc; 3583 3584 /* clear SError, some PHYs require this even for SRST to work */ 3585 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror))) 3586 rc = sata_scr_write(link, SCR_ERROR, serror); 3587 3588 return rc != -EINVAL ? rc : 0; 3589 } 3590 3591 /** 3592 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields 3593 * @link: ATA link to manipulate SControl for 3594 * @policy: LPM policy to configure 3595 * @spm_wakeup: initiate LPM transition to active state 3596 * 3597 * Manipulate the IPM field of the SControl register of @link 3598 * according to @policy. If @policy is ATA_LPM_MAX_POWER and 3599 * @spm_wakeup is %true, the SPM field is manipulated to wake up 3600 * the link. This function also clears PHYRDY_CHG before 3601 * returning. 3602 * 3603 * LOCKING: 3604 * EH context. 3605 * 3606 * RETURNS: 3607 * 0 on succes, -errno otherwise. 3608 */ 3609 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy, 3610 bool spm_wakeup) 3611 { 3612 struct ata_eh_context *ehc = &link->eh_context; 3613 bool woken_up = false; 3614 u32 scontrol; 3615 int rc; 3616 3617 rc = sata_scr_read(link, SCR_CONTROL, &scontrol); 3618 if (rc) 3619 return rc; 3620 3621 switch (policy) { 3622 case ATA_LPM_MAX_POWER: 3623 /* disable all LPM transitions */ 3624 scontrol |= (0x7 << 8); 3625 /* initiate transition to active state */ 3626 if (spm_wakeup) { 3627 scontrol |= (0x4 << 12); 3628 woken_up = true; 3629 } 3630 break; 3631 case ATA_LPM_MED_POWER: 3632 /* allow LPM to PARTIAL */ 3633 scontrol &= ~(0x1 << 8); 3634 scontrol |= (0x6 << 8); 3635 break; 3636 case ATA_LPM_MIN_POWER: 3637 if (ata_link_nr_enabled(link) > 0) 3638 /* no restrictions on LPM transitions */ 3639 scontrol &= ~(0x7 << 8); 3640 else { 3641 /* empty port, power off */ 3642 scontrol &= ~0xf; 3643 scontrol |= (0x1 << 2); 3644 } 3645 break; 3646 default: 3647 WARN_ON(1); 3648 } 3649 3650 rc = sata_scr_write(link, SCR_CONTROL, scontrol); 3651 if (rc) 3652 return rc; 3653 3654 /* give the link time to transit out of LPM state */ 3655 if (woken_up) 3656 msleep(10); 3657 3658 /* clear PHYRDY_CHG from SError */ 3659 ehc->i.serror &= ~SERR_PHYRDY_CHG; 3660 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG); 3661 } 3662 3663 /** 3664 * ata_std_prereset - prepare for reset 3665 * @link: ATA link to be reset 3666 * @deadline: deadline jiffies for the operation 3667 * 3668 * @link is about to be reset. Initialize it. Failure from 3669 * prereset makes libata abort whole reset sequence and give up 3670 * that port, so prereset should be best-effort. It does its 3671 * best to prepare for reset sequence but if things go wrong, it 3672 * should just whine, not fail. 3673 * 3674 * LOCKING: 3675 * Kernel thread context (may sleep) 3676 * 3677 * RETURNS: 3678 * 0 on success, -errno otherwise. 3679 */ 3680 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3681 { 3682 struct ata_port *ap = link->ap; 3683 struct ata_eh_context *ehc = &link->eh_context; 3684 const unsigned long *timing = sata_ehc_deb_timing(ehc); 3685 int rc; 3686 3687 /* if we're about to do hardreset, nothing more to do */ 3688 if (ehc->i.action & ATA_EH_HARDRESET) 3689 return 0; 3690 3691 /* if SATA, resume link */ 3692 if (ap->flags & ATA_FLAG_SATA) { 3693 rc = sata_link_resume(link, timing, deadline); 3694 /* whine about phy resume failure but proceed */ 3695 if (rc && rc != -EOPNOTSUPP) 3696 ata_link_warn(link, 3697 "failed to resume link for reset (errno=%d)\n", 3698 rc); 3699 } 3700 3701 /* no point in trying softreset on offline link */ 3702 if (ata_phys_link_offline(link)) 3703 ehc->i.action &= ~ATA_EH_SOFTRESET; 3704 3705 return 0; 3706 } 3707 3708 /** 3709 * sata_link_hardreset - reset link via SATA phy reset 3710 * @link: link to reset 3711 * @timing: timing parameters { interval, duratinon, timeout } in msec 3712 * @deadline: deadline jiffies for the operation 3713 * @online: optional out parameter indicating link onlineness 3714 * @check_ready: optional callback to check link readiness 3715 * 3716 * SATA phy-reset @link using DET bits of SControl register. 3717 * After hardreset, link readiness is waited upon using 3718 * ata_wait_ready() if @check_ready is specified. LLDs are 3719 * allowed to not specify @check_ready and wait itself after this 3720 * function returns. Device classification is LLD's 3721 * responsibility. 3722 * 3723 * *@online is set to one iff reset succeeded and @link is online 3724 * after reset. 3725 * 3726 * LOCKING: 3727 * Kernel thread context (may sleep) 3728 * 3729 * RETURNS: 3730 * 0 on success, -errno otherwise. 3731 */ 3732 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing, 3733 unsigned long deadline, 3734 bool *online, int (*check_ready)(struct ata_link *)) 3735 { 3736 u32 scontrol; 3737 int rc; 3738 3739 DPRINTK("ENTER\n"); 3740 3741 if (online) 3742 *online = false; 3743 3744 if (sata_set_spd_needed(link)) { 3745 /* SATA spec says nothing about how to reconfigure 3746 * spd. To be on the safe side, turn off phy during 3747 * reconfiguration. This works for at least ICH7 AHCI 3748 * and Sil3124. 3749 */ 3750 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3751 goto out; 3752 3753 scontrol = (scontrol & 0x0f0) | 0x304; 3754 3755 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol))) 3756 goto out; 3757 3758 sata_set_spd(link); 3759 } 3760 3761 /* issue phy wake/reset */ 3762 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol))) 3763 goto out; 3764 3765 scontrol = (scontrol & 0x0f0) | 0x301; 3766 3767 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol))) 3768 goto out; 3769 3770 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1 3771 * 10.4.2 says at least 1 ms. 3772 */ 3773 ata_msleep(link->ap, 1); 3774 3775 /* bring link back */ 3776 rc = sata_link_resume(link, timing, deadline); 3777 if (rc) 3778 goto out; 3779 /* if link is offline nothing more to do */ 3780 if (ata_phys_link_offline(link)) 3781 goto out; 3782 3783 /* Link is online. From this point, -ENODEV too is an error. */ 3784 if (online) 3785 *online = true; 3786 3787 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) { 3788 /* If PMP is supported, we have to do follow-up SRST. 3789 * Some PMPs don't send D2H Reg FIS after hardreset if 3790 * the first port is empty. Wait only for 3791 * ATA_TMOUT_PMP_SRST_WAIT. 3792 */ 3793 if (check_ready) { 3794 unsigned long pmp_deadline; 3795 3796 pmp_deadline = ata_deadline(jiffies, 3797 ATA_TMOUT_PMP_SRST_WAIT); 3798 if (time_after(pmp_deadline, deadline)) 3799 pmp_deadline = deadline; 3800 ata_wait_ready(link, pmp_deadline, check_ready); 3801 } 3802 rc = -EAGAIN; 3803 goto out; 3804 } 3805 3806 rc = 0; 3807 if (check_ready) 3808 rc = ata_wait_ready(link, deadline, check_ready); 3809 out: 3810 if (rc && rc != -EAGAIN) { 3811 /* online is set iff link is online && reset succeeded */ 3812 if (online) 3813 *online = false; 3814 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc); 3815 } 3816 DPRINTK("EXIT, rc=%d\n", rc); 3817 return rc; 3818 } 3819 3820 /** 3821 * sata_std_hardreset - COMRESET w/o waiting or classification 3822 * @link: link to reset 3823 * @class: resulting class of attached device 3824 * @deadline: deadline jiffies for the operation 3825 * 3826 * Standard SATA COMRESET w/o waiting or classification. 3827 * 3828 * LOCKING: 3829 * Kernel thread context (may sleep) 3830 * 3831 * RETURNS: 3832 * 0 if link offline, -EAGAIN if link online, -errno on errors. 3833 */ 3834 int sata_std_hardreset(struct ata_link *link, unsigned int *class, 3835 unsigned long deadline) 3836 { 3837 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context); 3838 bool online; 3839 int rc; 3840 3841 /* do hardreset */ 3842 rc = sata_link_hardreset(link, timing, deadline, &online, NULL); 3843 return online ? -EAGAIN : rc; 3844 } 3845 3846 /** 3847 * ata_std_postreset - standard postreset callback 3848 * @link: the target ata_link 3849 * @classes: classes of attached devices 3850 * 3851 * This function is invoked after a successful reset. Note that 3852 * the device might have been reset more than once using 3853 * different reset methods before postreset is invoked. 3854 * 3855 * LOCKING: 3856 * Kernel thread context (may sleep) 3857 */ 3858 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3859 { 3860 u32 serror; 3861 3862 DPRINTK("ENTER\n"); 3863 3864 /* reset complete, clear SError */ 3865 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3866 sata_scr_write(link, SCR_ERROR, serror); 3867 3868 /* print link status */ 3869 sata_print_link_status(link); 3870 3871 DPRINTK("EXIT\n"); 3872 } 3873 3874 /** 3875 * ata_dev_same_device - Determine whether new ID matches configured device 3876 * @dev: device to compare against 3877 * @new_class: class of the new device 3878 * @new_id: IDENTIFY page of the new device 3879 * 3880 * Compare @new_class and @new_id against @dev and determine 3881 * whether @dev is the device indicated by @new_class and 3882 * @new_id. 3883 * 3884 * LOCKING: 3885 * None. 3886 * 3887 * RETURNS: 3888 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3889 */ 3890 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3891 const u16 *new_id) 3892 { 3893 const u16 *old_id = dev->id; 3894 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3895 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3896 3897 if (dev->class != new_class) { 3898 ata_dev_info(dev, "class mismatch %d != %d\n", 3899 dev->class, new_class); 3900 return 0; 3901 } 3902 3903 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3904 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3905 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3906 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3907 3908 if (strcmp(model[0], model[1])) { 3909 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3910 model[0], model[1]); 3911 return 0; 3912 } 3913 3914 if (strcmp(serial[0], serial[1])) { 3915 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3916 serial[0], serial[1]); 3917 return 0; 3918 } 3919 3920 return 1; 3921 } 3922 3923 /** 3924 * ata_dev_reread_id - Re-read IDENTIFY data 3925 * @dev: target ATA device 3926 * @readid_flags: read ID flags 3927 * 3928 * Re-read IDENTIFY page and make sure @dev is still attached to 3929 * the port. 3930 * 3931 * LOCKING: 3932 * Kernel thread context (may sleep) 3933 * 3934 * RETURNS: 3935 * 0 on success, negative errno otherwise 3936 */ 3937 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3938 { 3939 unsigned int class = dev->class; 3940 u16 *id = (void *)dev->link->ap->sector_buf; 3941 int rc; 3942 3943 /* read ID data */ 3944 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3945 if (rc) 3946 return rc; 3947 3948 /* is the device still there? */ 3949 if (!ata_dev_same_device(dev, class, id)) 3950 return -ENODEV; 3951 3952 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3953 return 0; 3954 } 3955 3956 /** 3957 * ata_dev_revalidate - Revalidate ATA device 3958 * @dev: device to revalidate 3959 * @new_class: new class code 3960 * @readid_flags: read ID flags 3961 * 3962 * Re-read IDENTIFY page, make sure @dev is still attached to the 3963 * port and reconfigure it according to the new IDENTIFY page. 3964 * 3965 * LOCKING: 3966 * Kernel thread context (may sleep) 3967 * 3968 * RETURNS: 3969 * 0 on success, negative errno otherwise 3970 */ 3971 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3972 unsigned int readid_flags) 3973 { 3974 u64 n_sectors = dev->n_sectors; 3975 u64 n_native_sectors = dev->n_native_sectors; 3976 int rc; 3977 3978 if (!ata_dev_enabled(dev)) 3979 return -ENODEV; 3980 3981 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3982 if (ata_class_enabled(new_class) && 3983 new_class != ATA_DEV_ATA && 3984 new_class != ATA_DEV_ATAPI && 3985 new_class != ATA_DEV_SEMB) { 3986 ata_dev_info(dev, "class mismatch %u != %u\n", 3987 dev->class, new_class); 3988 rc = -ENODEV; 3989 goto fail; 3990 } 3991 3992 /* re-read ID */ 3993 rc = ata_dev_reread_id(dev, readid_flags); 3994 if (rc) 3995 goto fail; 3996 3997 /* configure device according to the new ID */ 3998 rc = ata_dev_configure(dev); 3999 if (rc) 4000 goto fail; 4001 4002 /* verify n_sectors hasn't changed */ 4003 if (dev->class != ATA_DEV_ATA || !n_sectors || 4004 dev->n_sectors == n_sectors) 4005 return 0; 4006 4007 /* n_sectors has changed */ 4008 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 4009 (unsigned long long)n_sectors, 4010 (unsigned long long)dev->n_sectors); 4011 4012 /* 4013 * Something could have caused HPA to be unlocked 4014 * involuntarily. If n_native_sectors hasn't changed and the 4015 * new size matches it, keep the device. 4016 */ 4017 if (dev->n_native_sectors == n_native_sectors && 4018 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 4019 ata_dev_warn(dev, 4020 "new n_sectors matches native, probably " 4021 "late HPA unlock, n_sectors updated\n"); 4022 /* use the larger n_sectors */ 4023 return 0; 4024 } 4025 4026 /* 4027 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 4028 * unlocking HPA in those cases. 4029 * 4030 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 4031 */ 4032 if (dev->n_native_sectors == n_native_sectors && 4033 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 4034 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) { 4035 ata_dev_warn(dev, 4036 "old n_sectors matches native, probably " 4037 "late HPA lock, will try to unlock HPA\n"); 4038 /* try unlocking HPA */ 4039 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 4040 rc = -EIO; 4041 } else 4042 rc = -ENODEV; 4043 4044 /* restore original n_[native_]sectors and fail */ 4045 dev->n_native_sectors = n_native_sectors; 4046 dev->n_sectors = n_sectors; 4047 fail: 4048 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4049 return rc; 4050 } 4051 4052 struct ata_blacklist_entry { 4053 const char *model_num; 4054 const char *model_rev; 4055 unsigned long horkage; 4056 }; 4057 4058 static const struct ata_blacklist_entry ata_device_blacklist [] = { 4059 /* Devices with DMA related problems under Linux */ 4060 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA }, 4061 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA }, 4062 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA }, 4063 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA }, 4064 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA }, 4065 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA }, 4066 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA }, 4067 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA }, 4068 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA }, 4069 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA }, 4070 { "CRD-84", NULL, ATA_HORKAGE_NODMA }, 4071 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA }, 4072 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA }, 4073 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA }, 4074 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA }, 4075 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA }, 4076 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA }, 4077 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA }, 4078 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA }, 4079 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA }, 4080 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA }, 4081 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA }, 4082 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA }, 4083 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA }, 4084 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA }, 4085 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA }, 4086 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA }, 4087 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA }, 4088 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA }, 4089 /* Odd clown on sil3726/4726 PMPs */ 4090 { "Config Disk", NULL, ATA_HORKAGE_DISABLE }, 4091 4092 /* Weird ATAPI devices */ 4093 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 }, 4094 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA }, 4095 4096 /* Devices we expect to fail diagnostics */ 4097 4098 /* Devices where NCQ should be avoided */ 4099 /* NCQ is slow */ 4100 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ }, 4101 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, }, 4102 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4103 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ }, 4104 /* NCQ is broken */ 4105 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ }, 4106 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ }, 4107 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ }, 4108 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ }, 4109 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ }, 4110 4111 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4112 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4113 ATA_HORKAGE_FIRMWARE_WARN }, 4114 4115 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4116 ATA_HORKAGE_FIRMWARE_WARN }, 4117 4118 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4119 ATA_HORKAGE_FIRMWARE_WARN }, 4120 4121 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ | 4122 ATA_HORKAGE_FIRMWARE_WARN }, 4123 4124 /* Blacklist entries taken from Silicon Image 3124/3132 4125 Windows driver .inf file - also several Linux problem reports */ 4126 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, }, 4127 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, }, 4128 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, }, 4129 4130 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4131 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, }, 4132 4133 /* devices which puke on READ_NATIVE_MAX */ 4134 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, }, 4135 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA }, 4136 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA }, 4137 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA }, 4138 4139 /* this one allows HPA unlocking but fails IOs on the area */ 4140 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA }, 4141 4142 /* Devices which report 1 sector over size HPA */ 4143 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4144 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4145 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, }, 4146 4147 /* Devices which get the IVB wrong */ 4148 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, }, 4149 /* Maybe we should just blacklist TSSTcorp... */ 4150 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, }, 4151 4152 /* Devices that do not need bridging limits applied */ 4153 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4154 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, }, 4155 4156 /* Devices which aren't very happy with higher link speeds */ 4157 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, }, 4158 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, }, 4159 4160 /* 4161 * Devices which choke on SETXFER. Applies only if both the 4162 * device and controller are SATA. 4163 */ 4164 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER }, 4165 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER }, 4166 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER }, 4167 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER }, 4168 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER }, 4169 4170 /* End Marker */ 4171 { } 4172 }; 4173 4174 /** 4175 * glob_match - match a text string against a glob-style pattern 4176 * @text: the string to be examined 4177 * @pattern: the glob-style pattern to be matched against 4178 * 4179 * Either/both of text and pattern can be empty strings. 4180 * 4181 * Match text against a glob-style pattern, with wildcards and simple sets: 4182 * 4183 * ? matches any single character. 4184 * * matches any run of characters. 4185 * [xyz] matches a single character from the set: x, y, or z. 4186 * [a-d] matches a single character from the range: a, b, c, or d. 4187 * [a-d0-9] matches a single character from either range. 4188 * 4189 * The special characters ?, [, -, or *, can be matched using a set, eg. [*] 4190 * Behaviour with malformed patterns is undefined, though generally reasonable. 4191 * 4192 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx" 4193 * 4194 * This function uses one level of recursion per '*' in pattern. 4195 * Since it calls _nothing_ else, and has _no_ explicit local variables, 4196 * this will not cause stack problems for any reasonable use here. 4197 * 4198 * RETURNS: 4199 * 0 on match, 1 otherwise. 4200 */ 4201 static int glob_match (const char *text, const char *pattern) 4202 { 4203 do { 4204 /* Match single character or a '?' wildcard */ 4205 if (*text == *pattern || *pattern == '?') { 4206 if (!*pattern++) 4207 return 0; /* End of both strings: match */ 4208 } else { 4209 /* Match single char against a '[' bracketed ']' pattern set */ 4210 if (!*text || *pattern != '[') 4211 break; /* Not a pattern set */ 4212 while (*++pattern && *pattern != ']' && *text != *pattern) { 4213 if (*pattern == '-' && *(pattern - 1) != '[') 4214 if (*text > *(pattern - 1) && *text < *(pattern + 1)) { 4215 ++pattern; 4216 break; 4217 } 4218 } 4219 if (!*pattern || *pattern == ']') 4220 return 1; /* No match */ 4221 while (*pattern && *pattern++ != ']'); 4222 } 4223 } while (*++text && *pattern); 4224 4225 /* Match any run of chars against a '*' wildcard */ 4226 if (*pattern == '*') { 4227 if (!*++pattern) 4228 return 0; /* Match: avoid recursion at end of pattern */ 4229 /* Loop to handle additional pattern chars after the wildcard */ 4230 while (*text) { 4231 if (glob_match(text, pattern) == 0) 4232 return 0; /* Remainder matched */ 4233 ++text; /* Absorb (match) this char and try again */ 4234 } 4235 } 4236 if (!*text && !*pattern) 4237 return 0; /* End of both strings: match */ 4238 return 1; /* No match */ 4239 } 4240 4241 static unsigned long ata_dev_blacklisted(const struct ata_device *dev) 4242 { 4243 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4244 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4245 const struct ata_blacklist_entry *ad = ata_device_blacklist; 4246 4247 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4248 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4249 4250 while (ad->model_num) { 4251 if (!glob_match(model_num, ad->model_num)) { 4252 if (ad->model_rev == NULL) 4253 return ad->horkage; 4254 if (!glob_match(model_rev, ad->model_rev)) 4255 return ad->horkage; 4256 } 4257 ad++; 4258 } 4259 return 0; 4260 } 4261 4262 static int ata_dma_blacklisted(const struct ata_device *dev) 4263 { 4264 /* We don't support polling DMA. 4265 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO) 4266 * if the LLDD handles only interrupts in the HSM_ST_LAST state. 4267 */ 4268 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4269 (dev->flags & ATA_DFLAG_CDB_INTR)) 4270 return 1; 4271 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0; 4272 } 4273 4274 /** 4275 * ata_is_40wire - check drive side detection 4276 * @dev: device 4277 * 4278 * Perform drive side detection decoding, allowing for device vendors 4279 * who can't follow the documentation. 4280 */ 4281 4282 static int ata_is_40wire(struct ata_device *dev) 4283 { 4284 if (dev->horkage & ATA_HORKAGE_IVB) 4285 return ata_drive_40wire_relaxed(dev->id); 4286 return ata_drive_40wire(dev->id); 4287 } 4288 4289 /** 4290 * cable_is_40wire - 40/80/SATA decider 4291 * @ap: port to consider 4292 * 4293 * This function encapsulates the policy for speed management 4294 * in one place. At the moment we don't cache the result but 4295 * there is a good case for setting ap->cbl to the result when 4296 * we are called with unknown cables (and figuring out if it 4297 * impacts hotplug at all). 4298 * 4299 * Return 1 if the cable appears to be 40 wire. 4300 */ 4301 4302 static int cable_is_40wire(struct ata_port *ap) 4303 { 4304 struct ata_link *link; 4305 struct ata_device *dev; 4306 4307 /* If the controller thinks we are 40 wire, we are. */ 4308 if (ap->cbl == ATA_CBL_PATA40) 4309 return 1; 4310 4311 /* If the controller thinks we are 80 wire, we are. */ 4312 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4313 return 0; 4314 4315 /* If the system is known to be 40 wire short cable (eg 4316 * laptop), then we allow 80 wire modes even if the drive 4317 * isn't sure. 4318 */ 4319 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4320 return 0; 4321 4322 /* If the controller doesn't know, we scan. 4323 * 4324 * Note: We look for all 40 wire detects at this point. Any 4325 * 80 wire detect is taken to be 80 wire cable because 4326 * - in many setups only the one drive (slave if present) will 4327 * give a valid detect 4328 * - if you have a non detect capable drive you don't want it 4329 * to colour the choice 4330 */ 4331 ata_for_each_link(link, ap, EDGE) { 4332 ata_for_each_dev(dev, link, ENABLED) { 4333 if (!ata_is_40wire(dev)) 4334 return 0; 4335 } 4336 } 4337 return 1; 4338 } 4339 4340 /** 4341 * ata_dev_xfermask - Compute supported xfermask of the given device 4342 * @dev: Device to compute xfermask for 4343 * 4344 * Compute supported xfermask of @dev and store it in 4345 * dev->*_mask. This function is responsible for applying all 4346 * known limits including host controller limits, device 4347 * blacklist, etc... 4348 * 4349 * LOCKING: 4350 * None. 4351 */ 4352 static void ata_dev_xfermask(struct ata_device *dev) 4353 { 4354 struct ata_link *link = dev->link; 4355 struct ata_port *ap = link->ap; 4356 struct ata_host *host = ap->host; 4357 unsigned long xfer_mask; 4358 4359 /* controller modes available */ 4360 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4361 ap->mwdma_mask, ap->udma_mask); 4362 4363 /* drive modes available */ 4364 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4365 dev->mwdma_mask, dev->udma_mask); 4366 xfer_mask &= ata_id_xfermask(dev->id); 4367 4368 /* 4369 * CFA Advanced TrueIDE timings are not allowed on a shared 4370 * cable 4371 */ 4372 if (ata_dev_pair(dev)) { 4373 /* No PIO5 or PIO6 */ 4374 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4375 /* No MWDMA3 or MWDMA 4 */ 4376 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4377 } 4378 4379 if (ata_dma_blacklisted(dev)) { 4380 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4381 ata_dev_warn(dev, 4382 "device is on DMA blacklist, disabling DMA\n"); 4383 } 4384 4385 if ((host->flags & ATA_HOST_SIMPLEX) && 4386 host->simplex_claimed && host->simplex_claimed != ap) { 4387 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4388 ata_dev_warn(dev, 4389 "simplex DMA is claimed by other device, disabling DMA\n"); 4390 } 4391 4392 if (ap->flags & ATA_FLAG_NO_IORDY) 4393 xfer_mask &= ata_pio_mask_no_iordy(dev); 4394 4395 if (ap->ops->mode_filter) 4396 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4397 4398 /* Apply cable rule here. Don't apply it early because when 4399 * we handle hot plug the cable type can itself change. 4400 * Check this last so that we know if the transfer rate was 4401 * solely limited by the cable. 4402 * Unknown or 80 wire cables reported host side are checked 4403 * drive side as well. Cases where we know a 40wire cable 4404 * is used safely for 80 are not checked here. 4405 */ 4406 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4407 /* UDMA/44 or higher would be available */ 4408 if (cable_is_40wire(ap)) { 4409 ata_dev_warn(dev, 4410 "limited to UDMA/33 due to 40-wire cable\n"); 4411 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4412 } 4413 4414 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4415 &dev->mwdma_mask, &dev->udma_mask); 4416 } 4417 4418 /** 4419 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4420 * @dev: Device to which command will be sent 4421 * 4422 * Issue SET FEATURES - XFER MODE command to device @dev 4423 * on port @ap. 4424 * 4425 * LOCKING: 4426 * PCI/etc. bus probe sem. 4427 * 4428 * RETURNS: 4429 * 0 on success, AC_ERR_* mask otherwise. 4430 */ 4431 4432 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4433 { 4434 struct ata_taskfile tf; 4435 unsigned int err_mask; 4436 4437 /* set up set-features taskfile */ 4438 DPRINTK("set features - xfer mode\n"); 4439 4440 /* Some controllers and ATAPI devices show flaky interrupt 4441 * behavior after setting xfer mode. Use polling instead. 4442 */ 4443 ata_tf_init(dev, &tf); 4444 tf.command = ATA_CMD_SET_FEATURES; 4445 tf.feature = SETFEATURES_XFER; 4446 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4447 tf.protocol = ATA_PROT_NODATA; 4448 /* If we are using IORDY we must send the mode setting command */ 4449 if (ata_pio_need_iordy(dev)) 4450 tf.nsect = dev->xfer_mode; 4451 /* If the device has IORDY and the controller does not - turn it off */ 4452 else if (ata_id_has_iordy(dev->id)) 4453 tf.nsect = 0x01; 4454 else /* In the ancient relic department - skip all of this */ 4455 return 0; 4456 4457 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4458 4459 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4460 return err_mask; 4461 } 4462 4463 /** 4464 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES 4465 * @dev: Device to which command will be sent 4466 * @enable: Whether to enable or disable the feature 4467 * @feature: The sector count represents the feature to set 4468 * 4469 * Issue SET FEATURES - SATA FEATURES command to device @dev 4470 * on port @ap with sector count 4471 * 4472 * LOCKING: 4473 * PCI/etc. bus probe sem. 4474 * 4475 * RETURNS: 4476 * 0 on success, AC_ERR_* mask otherwise. 4477 */ 4478 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature) 4479 { 4480 struct ata_taskfile tf; 4481 unsigned int err_mask; 4482 4483 /* set up set-features taskfile */ 4484 DPRINTK("set features - SATA features\n"); 4485 4486 ata_tf_init(dev, &tf); 4487 tf.command = ATA_CMD_SET_FEATURES; 4488 tf.feature = enable; 4489 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4490 tf.protocol = ATA_PROT_NODATA; 4491 tf.nsect = feature; 4492 4493 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4494 4495 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4496 return err_mask; 4497 } 4498 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4499 4500 /** 4501 * ata_dev_init_params - Issue INIT DEV PARAMS command 4502 * @dev: Device to which command will be sent 4503 * @heads: Number of heads (taskfile parameter) 4504 * @sectors: Number of sectors (taskfile parameter) 4505 * 4506 * LOCKING: 4507 * Kernel thread context (may sleep) 4508 * 4509 * RETURNS: 4510 * 0 on success, AC_ERR_* mask otherwise. 4511 */ 4512 static unsigned int ata_dev_init_params(struct ata_device *dev, 4513 u16 heads, u16 sectors) 4514 { 4515 struct ata_taskfile tf; 4516 unsigned int err_mask; 4517 4518 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4519 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4520 return AC_ERR_INVALID; 4521 4522 /* set up init dev params taskfile */ 4523 DPRINTK("init dev params \n"); 4524 4525 ata_tf_init(dev, &tf); 4526 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4527 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4528 tf.protocol = ATA_PROT_NODATA; 4529 tf.nsect = sectors; 4530 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4531 4532 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4533 /* A clean abort indicates an original or just out of spec drive 4534 and we should continue as we issue the setup based on the 4535 drive reported working geometry */ 4536 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED)) 4537 err_mask = 0; 4538 4539 DPRINTK("EXIT, err_mask=%x\n", err_mask); 4540 return err_mask; 4541 } 4542 4543 /** 4544 * ata_sg_clean - Unmap DMA memory associated with command 4545 * @qc: Command containing DMA memory to be released 4546 * 4547 * Unmap all mapped DMA memory associated with this command. 4548 * 4549 * LOCKING: 4550 * spin_lock_irqsave(host lock) 4551 */ 4552 void ata_sg_clean(struct ata_queued_cmd *qc) 4553 { 4554 struct ata_port *ap = qc->ap; 4555 struct scatterlist *sg = qc->sg; 4556 int dir = qc->dma_dir; 4557 4558 WARN_ON_ONCE(sg == NULL); 4559 4560 VPRINTK("unmapping %u sg elements\n", qc->n_elem); 4561 4562 if (qc->n_elem) 4563 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4564 4565 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4566 qc->sg = NULL; 4567 } 4568 4569 /** 4570 * atapi_check_dma - Check whether ATAPI DMA can be supported 4571 * @qc: Metadata associated with taskfile to check 4572 * 4573 * Allow low-level driver to filter ATA PACKET commands, returning 4574 * a status indicating whether or not it is OK to use DMA for the 4575 * supplied PACKET command. 4576 * 4577 * LOCKING: 4578 * spin_lock_irqsave(host lock) 4579 * 4580 * RETURNS: 0 when ATAPI DMA can be used 4581 * nonzero otherwise 4582 */ 4583 int atapi_check_dma(struct ata_queued_cmd *qc) 4584 { 4585 struct ata_port *ap = qc->ap; 4586 4587 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4588 * few ATAPI devices choke on such DMA requests. 4589 */ 4590 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) && 4591 unlikely(qc->nbytes & 15)) 4592 return 1; 4593 4594 if (ap->ops->check_atapi_dma) 4595 return ap->ops->check_atapi_dma(qc); 4596 4597 return 0; 4598 } 4599 4600 /** 4601 * ata_std_qc_defer - Check whether a qc needs to be deferred 4602 * @qc: ATA command in question 4603 * 4604 * Non-NCQ commands cannot run with any other command, NCQ or 4605 * not. As upper layer only knows the queue depth, we are 4606 * responsible for maintaining exclusion. This function checks 4607 * whether a new command @qc can be issued. 4608 * 4609 * LOCKING: 4610 * spin_lock_irqsave(host lock) 4611 * 4612 * RETURNS: 4613 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4614 */ 4615 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4616 { 4617 struct ata_link *link = qc->dev->link; 4618 4619 if (qc->tf.protocol == ATA_PROT_NCQ) { 4620 if (!ata_tag_valid(link->active_tag)) 4621 return 0; 4622 } else { 4623 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4624 return 0; 4625 } 4626 4627 return ATA_DEFER_LINK; 4628 } 4629 4630 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { } 4631 4632 /** 4633 * ata_sg_init - Associate command with scatter-gather table. 4634 * @qc: Command to be associated 4635 * @sg: Scatter-gather table. 4636 * @n_elem: Number of elements in s/g table. 4637 * 4638 * Initialize the data-related elements of queued_cmd @qc 4639 * to point to a scatter-gather table @sg, containing @n_elem 4640 * elements. 4641 * 4642 * LOCKING: 4643 * spin_lock_irqsave(host lock) 4644 */ 4645 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4646 unsigned int n_elem) 4647 { 4648 qc->sg = sg; 4649 qc->n_elem = n_elem; 4650 qc->cursg = qc->sg; 4651 } 4652 4653 /** 4654 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4655 * @qc: Command with scatter-gather table to be mapped. 4656 * 4657 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4658 * 4659 * LOCKING: 4660 * spin_lock_irqsave(host lock) 4661 * 4662 * RETURNS: 4663 * Zero on success, negative on error. 4664 * 4665 */ 4666 static int ata_sg_setup(struct ata_queued_cmd *qc) 4667 { 4668 struct ata_port *ap = qc->ap; 4669 unsigned int n_elem; 4670 4671 VPRINTK("ENTER, ata%u\n", ap->print_id); 4672 4673 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4674 if (n_elem < 1) 4675 return -1; 4676 4677 DPRINTK("%d sg elements mapped\n", n_elem); 4678 qc->orig_n_elem = qc->n_elem; 4679 qc->n_elem = n_elem; 4680 qc->flags |= ATA_QCFLAG_DMAMAP; 4681 4682 return 0; 4683 } 4684 4685 /** 4686 * swap_buf_le16 - swap halves of 16-bit words in place 4687 * @buf: Buffer to swap 4688 * @buf_words: Number of 16-bit words in buffer. 4689 * 4690 * Swap halves of 16-bit words if needed to convert from 4691 * little-endian byte order to native cpu byte order, or 4692 * vice-versa. 4693 * 4694 * LOCKING: 4695 * Inherited from caller. 4696 */ 4697 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4698 { 4699 #ifdef __BIG_ENDIAN 4700 unsigned int i; 4701 4702 for (i = 0; i < buf_words; i++) 4703 buf[i] = le16_to_cpu(buf[i]); 4704 #endif /* __BIG_ENDIAN */ 4705 } 4706 4707 /** 4708 * ata_qc_new - Request an available ATA command, for queueing 4709 * @ap: target port 4710 * 4711 * LOCKING: 4712 * None. 4713 */ 4714 4715 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) 4716 { 4717 struct ata_queued_cmd *qc = NULL; 4718 unsigned int i; 4719 4720 /* no command while frozen */ 4721 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN)) 4722 return NULL; 4723 4724 /* the last tag is reserved for internal command. */ 4725 for (i = 0; i < ATA_MAX_QUEUE - 1; i++) 4726 if (!test_and_set_bit(i, &ap->qc_allocated)) { 4727 qc = __ata_qc_from_tag(ap, i); 4728 break; 4729 } 4730 4731 if (qc) 4732 qc->tag = i; 4733 4734 return qc; 4735 } 4736 4737 /** 4738 * ata_qc_new_init - Request an available ATA command, and initialize it 4739 * @dev: Device from whom we request an available command structure 4740 * 4741 * LOCKING: 4742 * None. 4743 */ 4744 4745 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev) 4746 { 4747 struct ata_port *ap = dev->link->ap; 4748 struct ata_queued_cmd *qc; 4749 4750 qc = ata_qc_new(ap); 4751 if (qc) { 4752 qc->scsicmd = NULL; 4753 qc->ap = ap; 4754 qc->dev = dev; 4755 4756 ata_qc_reinit(qc); 4757 } 4758 4759 return qc; 4760 } 4761 4762 /** 4763 * ata_qc_free - free unused ata_queued_cmd 4764 * @qc: Command to complete 4765 * 4766 * Designed to free unused ata_queued_cmd object 4767 * in case something prevents using it. 4768 * 4769 * LOCKING: 4770 * spin_lock_irqsave(host lock) 4771 */ 4772 void ata_qc_free(struct ata_queued_cmd *qc) 4773 { 4774 struct ata_port *ap; 4775 unsigned int tag; 4776 4777 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4778 ap = qc->ap; 4779 4780 qc->flags = 0; 4781 tag = qc->tag; 4782 if (likely(ata_tag_valid(tag))) { 4783 qc->tag = ATA_TAG_POISON; 4784 clear_bit(tag, &ap->qc_allocated); 4785 } 4786 } 4787 4788 void __ata_qc_complete(struct ata_queued_cmd *qc) 4789 { 4790 struct ata_port *ap; 4791 struct ata_link *link; 4792 4793 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */ 4794 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)); 4795 ap = qc->ap; 4796 link = qc->dev->link; 4797 4798 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4799 ata_sg_clean(qc); 4800 4801 /* command should be marked inactive atomically with qc completion */ 4802 if (qc->tf.protocol == ATA_PROT_NCQ) { 4803 link->sactive &= ~(1 << qc->tag); 4804 if (!link->sactive) 4805 ap->nr_active_links--; 4806 } else { 4807 link->active_tag = ATA_TAG_POISON; 4808 ap->nr_active_links--; 4809 } 4810 4811 /* clear exclusive status */ 4812 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4813 ap->excl_link == link)) 4814 ap->excl_link = NULL; 4815 4816 /* atapi: mark qc as inactive to prevent the interrupt handler 4817 * from completing the command twice later, before the error handler 4818 * is called. (when rc != 0 and atapi request sense is needed) 4819 */ 4820 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4821 ap->qc_active &= ~(1 << qc->tag); 4822 4823 /* call completion callback */ 4824 qc->complete_fn(qc); 4825 } 4826 4827 static void fill_result_tf(struct ata_queued_cmd *qc) 4828 { 4829 struct ata_port *ap = qc->ap; 4830 4831 qc->result_tf.flags = qc->tf.flags; 4832 ap->ops->qc_fill_rtf(qc); 4833 } 4834 4835 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4836 { 4837 struct ata_device *dev = qc->dev; 4838 4839 if (ata_is_nodata(qc->tf.protocol)) 4840 return; 4841 4842 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4843 return; 4844 4845 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4846 } 4847 4848 /** 4849 * ata_qc_complete - Complete an active ATA command 4850 * @qc: Command to complete 4851 * 4852 * Indicate to the mid and upper layers that an ATA command has 4853 * completed, with either an ok or not-ok status. 4854 * 4855 * Refrain from calling this function multiple times when 4856 * successfully completing multiple NCQ commands. 4857 * ata_qc_complete_multiple() should be used instead, which will 4858 * properly update IRQ expect state. 4859 * 4860 * LOCKING: 4861 * spin_lock_irqsave(host lock) 4862 */ 4863 void ata_qc_complete(struct ata_queued_cmd *qc) 4864 { 4865 struct ata_port *ap = qc->ap; 4866 4867 /* XXX: New EH and old EH use different mechanisms to 4868 * synchronize EH with regular execution path. 4869 * 4870 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED. 4871 * Normal execution path is responsible for not accessing a 4872 * failed qc. libata core enforces the rule by returning NULL 4873 * from ata_qc_from_tag() for failed qcs. 4874 * 4875 * Old EH depends on ata_qc_complete() nullifying completion 4876 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does 4877 * not synchronize with interrupt handler. Only PIO task is 4878 * taken care of. 4879 */ 4880 if (ap->ops->error_handler) { 4881 struct ata_device *dev = qc->dev; 4882 struct ata_eh_info *ehi = &dev->link->eh_info; 4883 4884 if (unlikely(qc->err_mask)) 4885 qc->flags |= ATA_QCFLAG_FAILED; 4886 4887 /* 4888 * Finish internal commands without any further processing 4889 * and always with the result TF filled. 4890 */ 4891 if (unlikely(ata_tag_internal(qc->tag))) { 4892 fill_result_tf(qc); 4893 __ata_qc_complete(qc); 4894 return; 4895 } 4896 4897 /* 4898 * Non-internal qc has failed. Fill the result TF and 4899 * summon EH. 4900 */ 4901 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) { 4902 fill_result_tf(qc); 4903 ata_qc_schedule_eh(qc); 4904 return; 4905 } 4906 4907 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN); 4908 4909 /* read result TF if requested */ 4910 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4911 fill_result_tf(qc); 4912 4913 /* Some commands need post-processing after successful 4914 * completion. 4915 */ 4916 switch (qc->tf.command) { 4917 case ATA_CMD_SET_FEATURES: 4918 if (qc->tf.feature != SETFEATURES_WC_ON && 4919 qc->tf.feature != SETFEATURES_WC_OFF) 4920 break; 4921 /* fall through */ 4922 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4923 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4924 /* revalidate device */ 4925 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4926 ata_port_schedule_eh(ap); 4927 break; 4928 4929 case ATA_CMD_SLEEP: 4930 dev->flags |= ATA_DFLAG_SLEEPING; 4931 break; 4932 } 4933 4934 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4935 ata_verify_xfer(qc); 4936 4937 __ata_qc_complete(qc); 4938 } else { 4939 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED) 4940 return; 4941 4942 /* read result TF if failed or requested */ 4943 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF) 4944 fill_result_tf(qc); 4945 4946 __ata_qc_complete(qc); 4947 } 4948 } 4949 4950 /** 4951 * ata_qc_complete_multiple - Complete multiple qcs successfully 4952 * @ap: port in question 4953 * @qc_active: new qc_active mask 4954 * 4955 * Complete in-flight commands. This functions is meant to be 4956 * called from low-level driver's interrupt routine to complete 4957 * requests normally. ap->qc_active and @qc_active is compared 4958 * and commands are completed accordingly. 4959 * 4960 * Always use this function when completing multiple NCQ commands 4961 * from IRQ handlers instead of calling ata_qc_complete() 4962 * multiple times to keep IRQ expect status properly in sync. 4963 * 4964 * LOCKING: 4965 * spin_lock_irqsave(host lock) 4966 * 4967 * RETURNS: 4968 * Number of completed commands on success, -errno otherwise. 4969 */ 4970 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active) 4971 { 4972 int nr_done = 0; 4973 u32 done_mask; 4974 4975 done_mask = ap->qc_active ^ qc_active; 4976 4977 if (unlikely(done_mask & qc_active)) { 4978 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n", 4979 ap->qc_active, qc_active); 4980 return -EINVAL; 4981 } 4982 4983 while (done_mask) { 4984 struct ata_queued_cmd *qc; 4985 unsigned int tag = __ffs(done_mask); 4986 4987 qc = ata_qc_from_tag(ap, tag); 4988 if (qc) { 4989 ata_qc_complete(qc); 4990 nr_done++; 4991 } 4992 done_mask &= ~(1 << tag); 4993 } 4994 4995 return nr_done; 4996 } 4997 4998 /** 4999 * ata_qc_issue - issue taskfile to device 5000 * @qc: command to issue to device 5001 * 5002 * Prepare an ATA command to submission to device. 5003 * This includes mapping the data into a DMA-able 5004 * area, filling in the S/G table, and finally 5005 * writing the taskfile to hardware, starting the command. 5006 * 5007 * LOCKING: 5008 * spin_lock_irqsave(host lock) 5009 */ 5010 void ata_qc_issue(struct ata_queued_cmd *qc) 5011 { 5012 struct ata_port *ap = qc->ap; 5013 struct ata_link *link = qc->dev->link; 5014 u8 prot = qc->tf.protocol; 5015 5016 /* Make sure only one non-NCQ command is outstanding. The 5017 * check is skipped for old EH because it reuses active qc to 5018 * request ATAPI sense. 5019 */ 5020 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag)); 5021 5022 if (ata_is_ncq(prot)) { 5023 WARN_ON_ONCE(link->sactive & (1 << qc->tag)); 5024 5025 if (!link->sactive) 5026 ap->nr_active_links++; 5027 link->sactive |= 1 << qc->tag; 5028 } else { 5029 WARN_ON_ONCE(link->sactive); 5030 5031 ap->nr_active_links++; 5032 link->active_tag = qc->tag; 5033 } 5034 5035 qc->flags |= ATA_QCFLAG_ACTIVE; 5036 ap->qc_active |= 1 << qc->tag; 5037 5038 /* 5039 * We guarantee to LLDs that they will have at least one 5040 * non-zero sg if the command is a data command. 5041 */ 5042 if (WARN_ON_ONCE(ata_is_data(prot) && 5043 (!qc->sg || !qc->n_elem || !qc->nbytes))) 5044 goto sys_err; 5045 5046 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5047 (ap->flags & ATA_FLAG_PIO_DMA))) 5048 if (ata_sg_setup(qc)) 5049 goto sys_err; 5050 5051 /* if device is sleeping, schedule reset and abort the link */ 5052 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5053 link->eh_info.action |= ATA_EH_RESET; 5054 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5055 ata_link_abort(link); 5056 return; 5057 } 5058 5059 ap->ops->qc_prep(qc); 5060 5061 qc->err_mask |= ap->ops->qc_issue(qc); 5062 if (unlikely(qc->err_mask)) 5063 goto err; 5064 return; 5065 5066 sys_err: 5067 qc->err_mask |= AC_ERR_SYSTEM; 5068 err: 5069 ata_qc_complete(qc); 5070 } 5071 5072 /** 5073 * sata_scr_valid - test whether SCRs are accessible 5074 * @link: ATA link to test SCR accessibility for 5075 * 5076 * Test whether SCRs are accessible for @link. 5077 * 5078 * LOCKING: 5079 * None. 5080 * 5081 * RETURNS: 5082 * 1 if SCRs are accessible, 0 otherwise. 5083 */ 5084 int sata_scr_valid(struct ata_link *link) 5085 { 5086 struct ata_port *ap = link->ap; 5087 5088 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read; 5089 } 5090 5091 /** 5092 * sata_scr_read - read SCR register of the specified port 5093 * @link: ATA link to read SCR for 5094 * @reg: SCR to read 5095 * @val: Place to store read value 5096 * 5097 * Read SCR register @reg of @link into *@val. This function is 5098 * guaranteed to succeed if @link is ap->link, the cable type of 5099 * the port is SATA and the port implements ->scr_read. 5100 * 5101 * LOCKING: 5102 * None if @link is ap->link. Kernel thread context otherwise. 5103 * 5104 * RETURNS: 5105 * 0 on success, negative errno on failure. 5106 */ 5107 int sata_scr_read(struct ata_link *link, int reg, u32 *val) 5108 { 5109 if (ata_is_host_link(link)) { 5110 if (sata_scr_valid(link)) 5111 return link->ap->ops->scr_read(link, reg, val); 5112 return -EOPNOTSUPP; 5113 } 5114 5115 return sata_pmp_scr_read(link, reg, val); 5116 } 5117 5118 /** 5119 * sata_scr_write - write SCR register of the specified port 5120 * @link: ATA link to write SCR for 5121 * @reg: SCR to write 5122 * @val: value to write 5123 * 5124 * Write @val to SCR register @reg of @link. This function is 5125 * guaranteed to succeed if @link is ap->link, the cable type of 5126 * the port is SATA and the port implements ->scr_read. 5127 * 5128 * LOCKING: 5129 * None if @link is ap->link. Kernel thread context otherwise. 5130 * 5131 * RETURNS: 5132 * 0 on success, negative errno on failure. 5133 */ 5134 int sata_scr_write(struct ata_link *link, int reg, u32 val) 5135 { 5136 if (ata_is_host_link(link)) { 5137 if (sata_scr_valid(link)) 5138 return link->ap->ops->scr_write(link, reg, val); 5139 return -EOPNOTSUPP; 5140 } 5141 5142 return sata_pmp_scr_write(link, reg, val); 5143 } 5144 5145 /** 5146 * sata_scr_write_flush - write SCR register of the specified port and flush 5147 * @link: ATA link to write SCR for 5148 * @reg: SCR to write 5149 * @val: value to write 5150 * 5151 * This function is identical to sata_scr_write() except that this 5152 * function performs flush after writing to the register. 5153 * 5154 * LOCKING: 5155 * None if @link is ap->link. Kernel thread context otherwise. 5156 * 5157 * RETURNS: 5158 * 0 on success, negative errno on failure. 5159 */ 5160 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val) 5161 { 5162 if (ata_is_host_link(link)) { 5163 int rc; 5164 5165 if (sata_scr_valid(link)) { 5166 rc = link->ap->ops->scr_write(link, reg, val); 5167 if (rc == 0) 5168 rc = link->ap->ops->scr_read(link, reg, &val); 5169 return rc; 5170 } 5171 return -EOPNOTSUPP; 5172 } 5173 5174 return sata_pmp_scr_write(link, reg, val); 5175 } 5176 5177 /** 5178 * ata_phys_link_online - test whether the given link is online 5179 * @link: ATA link to test 5180 * 5181 * Test whether @link is online. Note that this function returns 5182 * 0 if online status of @link cannot be obtained, so 5183 * ata_link_online(link) != !ata_link_offline(link). 5184 * 5185 * LOCKING: 5186 * None. 5187 * 5188 * RETURNS: 5189 * True if the port online status is available and online. 5190 */ 5191 bool ata_phys_link_online(struct ata_link *link) 5192 { 5193 u32 sstatus; 5194 5195 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5196 ata_sstatus_online(sstatus)) 5197 return true; 5198 return false; 5199 } 5200 5201 /** 5202 * ata_phys_link_offline - test whether the given link is offline 5203 * @link: ATA link to test 5204 * 5205 * Test whether @link is offline. Note that this function 5206 * returns 0 if offline status of @link cannot be obtained, so 5207 * ata_link_online(link) != !ata_link_offline(link). 5208 * 5209 * LOCKING: 5210 * None. 5211 * 5212 * RETURNS: 5213 * True if the port offline status is available and offline. 5214 */ 5215 bool ata_phys_link_offline(struct ata_link *link) 5216 { 5217 u32 sstatus; 5218 5219 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5220 !ata_sstatus_online(sstatus)) 5221 return true; 5222 return false; 5223 } 5224 5225 /** 5226 * ata_link_online - test whether the given link is online 5227 * @link: ATA link to test 5228 * 5229 * Test whether @link is online. This is identical to 5230 * ata_phys_link_online() when there's no slave link. When 5231 * there's a slave link, this function should only be called on 5232 * the master link and will return true if any of M/S links is 5233 * online. 5234 * 5235 * LOCKING: 5236 * None. 5237 * 5238 * RETURNS: 5239 * True if the port online status is available and online. 5240 */ 5241 bool ata_link_online(struct ata_link *link) 5242 { 5243 struct ata_link *slave = link->ap->slave_link; 5244 5245 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5246 5247 return ata_phys_link_online(link) || 5248 (slave && ata_phys_link_online(slave)); 5249 } 5250 5251 /** 5252 * ata_link_offline - test whether the given link is offline 5253 * @link: ATA link to test 5254 * 5255 * Test whether @link is offline. This is identical to 5256 * ata_phys_link_offline() when there's no slave link. When 5257 * there's a slave link, this function should only be called on 5258 * the master link and will return true if both M/S links are 5259 * offline. 5260 * 5261 * LOCKING: 5262 * None. 5263 * 5264 * RETURNS: 5265 * True if the port offline status is available and offline. 5266 */ 5267 bool ata_link_offline(struct ata_link *link) 5268 { 5269 struct ata_link *slave = link->ap->slave_link; 5270 5271 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5272 5273 return ata_phys_link_offline(link) && 5274 (!slave || ata_phys_link_offline(slave)); 5275 } 5276 5277 #ifdef CONFIG_PM 5278 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5279 unsigned int action, unsigned int ehi_flags, 5280 int *async) 5281 { 5282 struct ata_link *link; 5283 unsigned long flags; 5284 int rc = 0; 5285 5286 /* Previous resume operation might still be in 5287 * progress. Wait for PM_PENDING to clear. 5288 */ 5289 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5290 if (async) { 5291 *async = -EAGAIN; 5292 return 0; 5293 } 5294 ata_port_wait_eh(ap); 5295 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5296 } 5297 5298 /* request PM ops to EH */ 5299 spin_lock_irqsave(ap->lock, flags); 5300 5301 ap->pm_mesg = mesg; 5302 if (async) 5303 ap->pm_result = async; 5304 else 5305 ap->pm_result = &rc; 5306 5307 ap->pflags |= ATA_PFLAG_PM_PENDING; 5308 ata_for_each_link(link, ap, HOST_FIRST) { 5309 link->eh_info.action |= action; 5310 link->eh_info.flags |= ehi_flags; 5311 } 5312 5313 ata_port_schedule_eh(ap); 5314 5315 spin_unlock_irqrestore(ap->lock, flags); 5316 5317 /* wait and check result */ 5318 if (!async) { 5319 ata_port_wait_eh(ap); 5320 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING); 5321 } 5322 5323 return rc; 5324 } 5325 5326 static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async) 5327 { 5328 unsigned int ehi_flags = ATA_EHI_QUIET; 5329 int rc; 5330 5331 /* 5332 * On some hardware, device fails to respond after spun down 5333 * for suspend. As the device won't be used before being 5334 * resumed, we don't need to touch the device. Ask EH to skip 5335 * the usual stuff and proceed directly to suspend. 5336 * 5337 * http://thread.gmane.org/gmane.linux.ide/46764 5338 */ 5339 if (mesg.event == PM_EVENT_SUSPEND) 5340 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY; 5341 5342 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, async); 5343 return rc; 5344 } 5345 5346 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg) 5347 { 5348 struct ata_port *ap = to_ata_port(dev); 5349 5350 return __ata_port_suspend_common(ap, mesg, NULL); 5351 } 5352 5353 static int ata_port_suspend(struct device *dev) 5354 { 5355 if (pm_runtime_suspended(dev)) 5356 return 0; 5357 5358 return ata_port_suspend_common(dev, PMSG_SUSPEND); 5359 } 5360 5361 static int ata_port_do_freeze(struct device *dev) 5362 { 5363 if (pm_runtime_suspended(dev)) 5364 pm_runtime_resume(dev); 5365 5366 return ata_port_suspend_common(dev, PMSG_FREEZE); 5367 } 5368 5369 static int ata_port_poweroff(struct device *dev) 5370 { 5371 if (pm_runtime_suspended(dev)) 5372 return 0; 5373 5374 return ata_port_suspend_common(dev, PMSG_HIBERNATE); 5375 } 5376 5377 static int __ata_port_resume_common(struct ata_port *ap, int *async) 5378 { 5379 int rc; 5380 5381 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET, 5382 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async); 5383 return rc; 5384 } 5385 5386 static int ata_port_resume_common(struct device *dev) 5387 { 5388 struct ata_port *ap = to_ata_port(dev); 5389 5390 return __ata_port_resume_common(ap, NULL); 5391 } 5392 5393 static int ata_port_resume(struct device *dev) 5394 { 5395 int rc; 5396 5397 rc = ata_port_resume_common(dev); 5398 if (!rc) { 5399 pm_runtime_disable(dev); 5400 pm_runtime_set_active(dev); 5401 pm_runtime_enable(dev); 5402 } 5403 5404 return rc; 5405 } 5406 5407 static int ata_port_runtime_idle(struct device *dev) 5408 { 5409 return pm_runtime_suspend(dev); 5410 } 5411 5412 static const struct dev_pm_ops ata_port_pm_ops = { 5413 .suspend = ata_port_suspend, 5414 .resume = ata_port_resume, 5415 .freeze = ata_port_do_freeze, 5416 .thaw = ata_port_resume, 5417 .poweroff = ata_port_poweroff, 5418 .restore = ata_port_resume, 5419 5420 .runtime_suspend = ata_port_suspend, 5421 .runtime_resume = ata_port_resume_common, 5422 .runtime_idle = ata_port_runtime_idle, 5423 }; 5424 5425 /* sas ports don't participate in pm runtime management of ata_ports, 5426 * and need to resume ata devices at the domain level, not the per-port 5427 * level. sas suspend/resume is async to allow parallel port recovery 5428 * since sas has multiple ata_port instances per Scsi_Host. 5429 */ 5430 int ata_sas_port_async_suspend(struct ata_port *ap, int *async) 5431 { 5432 return __ata_port_suspend_common(ap, PMSG_SUSPEND, async); 5433 } 5434 EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend); 5435 5436 int ata_sas_port_async_resume(struct ata_port *ap, int *async) 5437 { 5438 return __ata_port_resume_common(ap, async); 5439 } 5440 EXPORT_SYMBOL_GPL(ata_sas_port_async_resume); 5441 5442 5443 /** 5444 * ata_host_suspend - suspend host 5445 * @host: host to suspend 5446 * @mesg: PM message 5447 * 5448 * Suspend @host. Actual operation is performed by port suspend. 5449 */ 5450 int ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5451 { 5452 host->dev->power.power_state = mesg; 5453 return 0; 5454 } 5455 5456 /** 5457 * ata_host_resume - resume host 5458 * @host: host to resume 5459 * 5460 * Resume @host. Actual operation is performed by port resume. 5461 */ 5462 void ata_host_resume(struct ata_host *host) 5463 { 5464 host->dev->power.power_state = PMSG_ON; 5465 } 5466 #endif 5467 5468 struct device_type ata_port_type = { 5469 .name = "ata_port", 5470 #ifdef CONFIG_PM 5471 .pm = &ata_port_pm_ops, 5472 #endif 5473 }; 5474 5475 /** 5476 * ata_dev_init - Initialize an ata_device structure 5477 * @dev: Device structure to initialize 5478 * 5479 * Initialize @dev in preparation for probing. 5480 * 5481 * LOCKING: 5482 * Inherited from caller. 5483 */ 5484 void ata_dev_init(struct ata_device *dev) 5485 { 5486 struct ata_link *link = ata_dev_phys_link(dev); 5487 struct ata_port *ap = link->ap; 5488 unsigned long flags; 5489 5490 /* SATA spd limit is bound to the attached device, reset together */ 5491 link->sata_spd_limit = link->hw_sata_spd_limit; 5492 link->sata_spd = 0; 5493 5494 /* High bits of dev->flags are used to record warm plug 5495 * requests which occur asynchronously. Synchronize using 5496 * host lock. 5497 */ 5498 spin_lock_irqsave(ap->lock, flags); 5499 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5500 dev->horkage = 0; 5501 spin_unlock_irqrestore(ap->lock, flags); 5502 5503 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5504 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5505 dev->pio_mask = UINT_MAX; 5506 dev->mwdma_mask = UINT_MAX; 5507 dev->udma_mask = UINT_MAX; 5508 } 5509 5510 /** 5511 * ata_link_init - Initialize an ata_link structure 5512 * @ap: ATA port link is attached to 5513 * @link: Link structure to initialize 5514 * @pmp: Port multiplier port number 5515 * 5516 * Initialize @link. 5517 * 5518 * LOCKING: 5519 * Kernel thread context (may sleep) 5520 */ 5521 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5522 { 5523 int i; 5524 5525 /* clear everything except for devices */ 5526 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5527 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5528 5529 link->ap = ap; 5530 link->pmp = pmp; 5531 link->active_tag = ATA_TAG_POISON; 5532 link->hw_sata_spd_limit = UINT_MAX; 5533 5534 /* can't use iterator, ap isn't initialized yet */ 5535 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5536 struct ata_device *dev = &link->device[i]; 5537 5538 dev->link = link; 5539 dev->devno = dev - link->device; 5540 #ifdef CONFIG_ATA_ACPI 5541 dev->gtf_filter = ata_acpi_gtf_filter; 5542 #endif 5543 ata_dev_init(dev); 5544 } 5545 } 5546 5547 /** 5548 * sata_link_init_spd - Initialize link->sata_spd_limit 5549 * @link: Link to configure sata_spd_limit for 5550 * 5551 * Initialize @link->[hw_]sata_spd_limit to the currently 5552 * configured value. 5553 * 5554 * LOCKING: 5555 * Kernel thread context (may sleep). 5556 * 5557 * RETURNS: 5558 * 0 on success, -errno on failure. 5559 */ 5560 int sata_link_init_spd(struct ata_link *link) 5561 { 5562 u8 spd; 5563 int rc; 5564 5565 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5566 if (rc) 5567 return rc; 5568 5569 spd = (link->saved_scontrol >> 4) & 0xf; 5570 if (spd) 5571 link->hw_sata_spd_limit &= (1 << spd) - 1; 5572 5573 ata_force_link_limits(link); 5574 5575 link->sata_spd_limit = link->hw_sata_spd_limit; 5576 5577 return 0; 5578 } 5579 5580 /** 5581 * ata_port_alloc - allocate and initialize basic ATA port resources 5582 * @host: ATA host this allocated port belongs to 5583 * 5584 * Allocate and initialize basic ATA port resources. 5585 * 5586 * RETURNS: 5587 * Allocate ATA port on success, NULL on failure. 5588 * 5589 * LOCKING: 5590 * Inherited from calling layer (may sleep). 5591 */ 5592 struct ata_port *ata_port_alloc(struct ata_host *host) 5593 { 5594 struct ata_port *ap; 5595 5596 DPRINTK("ENTER\n"); 5597 5598 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5599 if (!ap) 5600 return NULL; 5601 5602 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5603 ap->lock = &host->lock; 5604 ap->print_id = -1; 5605 ap->host = host; 5606 ap->dev = host->dev; 5607 5608 #if defined(ATA_VERBOSE_DEBUG) 5609 /* turn on all debugging levels */ 5610 ap->msg_enable = 0x00FF; 5611 #elif defined(ATA_DEBUG) 5612 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR; 5613 #else 5614 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN; 5615 #endif 5616 5617 mutex_init(&ap->scsi_scan_mutex); 5618 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5619 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5620 INIT_LIST_HEAD(&ap->eh_done_q); 5621 init_waitqueue_head(&ap->eh_wait_q); 5622 init_completion(&ap->park_req_pending); 5623 init_timer_deferrable(&ap->fastdrain_timer); 5624 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn; 5625 ap->fastdrain_timer.data = (unsigned long)ap; 5626 5627 ap->cbl = ATA_CBL_NONE; 5628 5629 ata_link_init(ap, &ap->link, 0); 5630 5631 #ifdef ATA_IRQ_TRAP 5632 ap->stats.unhandled_irq = 1; 5633 ap->stats.idle_irq = 1; 5634 #endif 5635 ata_sff_port_init(ap); 5636 5637 return ap; 5638 } 5639 5640 static void ata_host_release(struct device *gendev, void *res) 5641 { 5642 struct ata_host *host = dev_get_drvdata(gendev); 5643 int i; 5644 5645 for (i = 0; i < host->n_ports; i++) { 5646 struct ata_port *ap = host->ports[i]; 5647 5648 if (!ap) 5649 continue; 5650 5651 if (ap->scsi_host) 5652 scsi_host_put(ap->scsi_host); 5653 5654 kfree(ap->pmp_link); 5655 kfree(ap->slave_link); 5656 kfree(ap); 5657 host->ports[i] = NULL; 5658 } 5659 5660 dev_set_drvdata(gendev, NULL); 5661 } 5662 5663 /** 5664 * ata_host_alloc - allocate and init basic ATA host resources 5665 * @dev: generic device this host is associated with 5666 * @max_ports: maximum number of ATA ports associated with this host 5667 * 5668 * Allocate and initialize basic ATA host resources. LLD calls 5669 * this function to allocate a host, initializes it fully and 5670 * attaches it using ata_host_register(). 5671 * 5672 * @max_ports ports are allocated and host->n_ports is 5673 * initialized to @max_ports. The caller is allowed to decrease 5674 * host->n_ports before calling ata_host_register(). The unused 5675 * ports will be automatically freed on registration. 5676 * 5677 * RETURNS: 5678 * Allocate ATA host on success, NULL on failure. 5679 * 5680 * LOCKING: 5681 * Inherited from calling layer (may sleep). 5682 */ 5683 struct ata_host *ata_host_alloc(struct device *dev, int max_ports) 5684 { 5685 struct ata_host *host; 5686 size_t sz; 5687 int i; 5688 5689 DPRINTK("ENTER\n"); 5690 5691 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 5692 return NULL; 5693 5694 /* alloc a container for our list of ATA ports (buses) */ 5695 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *); 5696 /* alloc a container for our list of ATA ports (buses) */ 5697 host = devres_alloc(ata_host_release, sz, GFP_KERNEL); 5698 if (!host) 5699 goto err_out; 5700 5701 devres_add(dev, host); 5702 dev_set_drvdata(dev, host); 5703 5704 spin_lock_init(&host->lock); 5705 mutex_init(&host->eh_mutex); 5706 host->dev = dev; 5707 host->n_ports = max_ports; 5708 5709 /* allocate ports bound to this host */ 5710 for (i = 0; i < max_ports; i++) { 5711 struct ata_port *ap; 5712 5713 ap = ata_port_alloc(host); 5714 if (!ap) 5715 goto err_out; 5716 5717 ap->port_no = i; 5718 host->ports[i] = ap; 5719 } 5720 5721 devres_remove_group(dev, NULL); 5722 return host; 5723 5724 err_out: 5725 devres_release_group(dev, NULL); 5726 return NULL; 5727 } 5728 5729 /** 5730 * ata_host_alloc_pinfo - alloc host and init with port_info array 5731 * @dev: generic device this host is associated with 5732 * @ppi: array of ATA port_info to initialize host with 5733 * @n_ports: number of ATA ports attached to this host 5734 * 5735 * Allocate ATA host and initialize with info from @ppi. If NULL 5736 * terminated, @ppi may contain fewer entries than @n_ports. The 5737 * last entry will be used for the remaining ports. 5738 * 5739 * RETURNS: 5740 * Allocate ATA host on success, NULL on failure. 5741 * 5742 * LOCKING: 5743 * Inherited from calling layer (may sleep). 5744 */ 5745 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5746 const struct ata_port_info * const * ppi, 5747 int n_ports) 5748 { 5749 const struct ata_port_info *pi; 5750 struct ata_host *host; 5751 int i, j; 5752 5753 host = ata_host_alloc(dev, n_ports); 5754 if (!host) 5755 return NULL; 5756 5757 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) { 5758 struct ata_port *ap = host->ports[i]; 5759 5760 if (ppi[j]) 5761 pi = ppi[j++]; 5762 5763 ap->pio_mask = pi->pio_mask; 5764 ap->mwdma_mask = pi->mwdma_mask; 5765 ap->udma_mask = pi->udma_mask; 5766 ap->flags |= pi->flags; 5767 ap->link.flags |= pi->link_flags; 5768 ap->ops = pi->port_ops; 5769 5770 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5771 host->ops = pi->port_ops; 5772 } 5773 5774 return host; 5775 } 5776 5777 /** 5778 * ata_slave_link_init - initialize slave link 5779 * @ap: port to initialize slave link for 5780 * 5781 * Create and initialize slave link for @ap. This enables slave 5782 * link handling on the port. 5783 * 5784 * In libata, a port contains links and a link contains devices. 5785 * There is single host link but if a PMP is attached to it, 5786 * there can be multiple fan-out links. On SATA, there's usually 5787 * a single device connected to a link but PATA and SATA 5788 * controllers emulating TF based interface can have two - master 5789 * and slave. 5790 * 5791 * However, there are a few controllers which don't fit into this 5792 * abstraction too well - SATA controllers which emulate TF 5793 * interface with both master and slave devices but also have 5794 * separate SCR register sets for each device. These controllers 5795 * need separate links for physical link handling 5796 * (e.g. onlineness, link speed) but should be treated like a 5797 * traditional M/S controller for everything else (e.g. command 5798 * issue, softreset). 5799 * 5800 * slave_link is libata's way of handling this class of 5801 * controllers without impacting core layer too much. For 5802 * anything other than physical link handling, the default host 5803 * link is used for both master and slave. For physical link 5804 * handling, separate @ap->slave_link is used. All dirty details 5805 * are implemented inside libata core layer. From LLD's POV, the 5806 * only difference is that prereset, hardreset and postreset are 5807 * called once more for the slave link, so the reset sequence 5808 * looks like the following. 5809 * 5810 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) -> 5811 * softreset(M) -> postreset(M) -> postreset(S) 5812 * 5813 * Note that softreset is called only for the master. Softreset 5814 * resets both M/S by definition, so SRST on master should handle 5815 * both (the standard method will work just fine). 5816 * 5817 * LOCKING: 5818 * Should be called before host is registered. 5819 * 5820 * RETURNS: 5821 * 0 on success, -errno on failure. 5822 */ 5823 int ata_slave_link_init(struct ata_port *ap) 5824 { 5825 struct ata_link *link; 5826 5827 WARN_ON(ap->slave_link); 5828 WARN_ON(ap->flags & ATA_FLAG_PMP); 5829 5830 link = kzalloc(sizeof(*link), GFP_KERNEL); 5831 if (!link) 5832 return -ENOMEM; 5833 5834 ata_link_init(ap, link, 1); 5835 ap->slave_link = link; 5836 return 0; 5837 } 5838 5839 static void ata_host_stop(struct device *gendev, void *res) 5840 { 5841 struct ata_host *host = dev_get_drvdata(gendev); 5842 int i; 5843 5844 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5845 5846 for (i = 0; i < host->n_ports; i++) { 5847 struct ata_port *ap = host->ports[i]; 5848 5849 if (ap->ops->port_stop) 5850 ap->ops->port_stop(ap); 5851 } 5852 5853 if (host->ops->host_stop) 5854 host->ops->host_stop(host); 5855 } 5856 5857 /** 5858 * ata_finalize_port_ops - finalize ata_port_operations 5859 * @ops: ata_port_operations to finalize 5860 * 5861 * An ata_port_operations can inherit from another ops and that 5862 * ops can again inherit from another. This can go on as many 5863 * times as necessary as long as there is no loop in the 5864 * inheritance chain. 5865 * 5866 * Ops tables are finalized when the host is started. NULL or 5867 * unspecified entries are inherited from the closet ancestor 5868 * which has the method and the entry is populated with it. 5869 * After finalization, the ops table directly points to all the 5870 * methods and ->inherits is no longer necessary and cleared. 5871 * 5872 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5873 * 5874 * LOCKING: 5875 * None. 5876 */ 5877 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5878 { 5879 static DEFINE_SPINLOCK(lock); 5880 const struct ata_port_operations *cur; 5881 void **begin = (void **)ops; 5882 void **end = (void **)&ops->inherits; 5883 void **pp; 5884 5885 if (!ops || !ops->inherits) 5886 return; 5887 5888 spin_lock(&lock); 5889 5890 for (cur = ops->inherits; cur; cur = cur->inherits) { 5891 void **inherit = (void **)cur; 5892 5893 for (pp = begin; pp < end; pp++, inherit++) 5894 if (!*pp) 5895 *pp = *inherit; 5896 } 5897 5898 for (pp = begin; pp < end; pp++) 5899 if (IS_ERR(*pp)) 5900 *pp = NULL; 5901 5902 ops->inherits = NULL; 5903 5904 spin_unlock(&lock); 5905 } 5906 5907 /** 5908 * ata_host_start - start and freeze ports of an ATA host 5909 * @host: ATA host to start ports for 5910 * 5911 * Start and then freeze ports of @host. Started status is 5912 * recorded in host->flags, so this function can be called 5913 * multiple times. Ports are guaranteed to get started only 5914 * once. If host->ops isn't initialized yet, its set to the 5915 * first non-dummy port ops. 5916 * 5917 * LOCKING: 5918 * Inherited from calling layer (may sleep). 5919 * 5920 * RETURNS: 5921 * 0 if all ports are started successfully, -errno otherwise. 5922 */ 5923 int ata_host_start(struct ata_host *host) 5924 { 5925 int have_stop = 0; 5926 void *start_dr = NULL; 5927 int i, rc; 5928 5929 if (host->flags & ATA_HOST_STARTED) 5930 return 0; 5931 5932 ata_finalize_port_ops(host->ops); 5933 5934 for (i = 0; i < host->n_ports; i++) { 5935 struct ata_port *ap = host->ports[i]; 5936 5937 ata_finalize_port_ops(ap->ops); 5938 5939 if (!host->ops && !ata_port_is_dummy(ap)) 5940 host->ops = ap->ops; 5941 5942 if (ap->ops->port_stop) 5943 have_stop = 1; 5944 } 5945 5946 if (host->ops->host_stop) 5947 have_stop = 1; 5948 5949 if (have_stop) { 5950 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5951 if (!start_dr) 5952 return -ENOMEM; 5953 } 5954 5955 for (i = 0; i < host->n_ports; i++) { 5956 struct ata_port *ap = host->ports[i]; 5957 5958 if (ap->ops->port_start) { 5959 rc = ap->ops->port_start(ap); 5960 if (rc) { 5961 if (rc != -ENODEV) 5962 dev_err(host->dev, 5963 "failed to start port %d (errno=%d)\n", 5964 i, rc); 5965 goto err_out; 5966 } 5967 } 5968 ata_eh_freeze_port(ap); 5969 } 5970 5971 if (start_dr) 5972 devres_add(host->dev, start_dr); 5973 host->flags |= ATA_HOST_STARTED; 5974 return 0; 5975 5976 err_out: 5977 while (--i >= 0) { 5978 struct ata_port *ap = host->ports[i]; 5979 5980 if (ap->ops->port_stop) 5981 ap->ops->port_stop(ap); 5982 } 5983 devres_free(start_dr); 5984 return rc; 5985 } 5986 5987 /** 5988 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas) 5989 * @host: host to initialize 5990 * @dev: device host is attached to 5991 * @ops: port_ops 5992 * 5993 */ 5994 void ata_host_init(struct ata_host *host, struct device *dev, 5995 struct ata_port_operations *ops) 5996 { 5997 spin_lock_init(&host->lock); 5998 mutex_init(&host->eh_mutex); 5999 host->dev = dev; 6000 host->ops = ops; 6001 } 6002 6003 void __ata_port_probe(struct ata_port *ap) 6004 { 6005 struct ata_eh_info *ehi = &ap->link.eh_info; 6006 unsigned long flags; 6007 6008 /* kick EH for boot probing */ 6009 spin_lock_irqsave(ap->lock, flags); 6010 6011 ehi->probe_mask |= ATA_ALL_DEVICES; 6012 ehi->action |= ATA_EH_RESET; 6013 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6014 6015 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6016 ap->pflags |= ATA_PFLAG_LOADING; 6017 ata_port_schedule_eh(ap); 6018 6019 spin_unlock_irqrestore(ap->lock, flags); 6020 } 6021 6022 int ata_port_probe(struct ata_port *ap) 6023 { 6024 int rc = 0; 6025 6026 if (ap->ops->error_handler) { 6027 __ata_port_probe(ap); 6028 ata_port_wait_eh(ap); 6029 } else { 6030 DPRINTK("ata%u: bus probe begin\n", ap->print_id); 6031 rc = ata_bus_probe(ap); 6032 DPRINTK("ata%u: bus probe end\n", ap->print_id); 6033 } 6034 return rc; 6035 } 6036 6037 6038 static void async_port_probe(void *data, async_cookie_t cookie) 6039 { 6040 struct ata_port *ap = data; 6041 6042 /* 6043 * If we're not allowed to scan this host in parallel, 6044 * we need to wait until all previous scans have completed 6045 * before going further. 6046 * Jeff Garzik says this is only within a controller, so we 6047 * don't need to wait for port 0, only for later ports. 6048 */ 6049 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6050 async_synchronize_cookie(cookie); 6051 6052 (void)ata_port_probe(ap); 6053 6054 /* in order to keep device order, we need to synchronize at this point */ 6055 async_synchronize_cookie(cookie); 6056 6057 ata_scsi_scan_host(ap, 1); 6058 } 6059 6060 /** 6061 * ata_host_register - register initialized ATA host 6062 * @host: ATA host to register 6063 * @sht: template for SCSI host 6064 * 6065 * Register initialized ATA host. @host is allocated using 6066 * ata_host_alloc() and fully initialized by LLD. This function 6067 * starts ports, registers @host with ATA and SCSI layers and 6068 * probe registered devices. 6069 * 6070 * LOCKING: 6071 * Inherited from calling layer (may sleep). 6072 * 6073 * RETURNS: 6074 * 0 on success, -errno otherwise. 6075 */ 6076 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht) 6077 { 6078 int i, rc; 6079 6080 /* host must have been started */ 6081 if (!(host->flags & ATA_HOST_STARTED)) { 6082 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6083 WARN_ON(1); 6084 return -EINVAL; 6085 } 6086 6087 /* Blow away unused ports. This happens when LLD can't 6088 * determine the exact number of ports to allocate at 6089 * allocation time. 6090 */ 6091 for (i = host->n_ports; host->ports[i]; i++) 6092 kfree(host->ports[i]); 6093 6094 /* give ports names and add SCSI hosts */ 6095 for (i = 0; i < host->n_ports; i++) 6096 host->ports[i]->print_id = atomic_inc_return(&ata_print_id); 6097 6098 6099 /* Create associated sysfs transport objects */ 6100 for (i = 0; i < host->n_ports; i++) { 6101 rc = ata_tport_add(host->dev,host->ports[i]); 6102 if (rc) { 6103 goto err_tadd; 6104 } 6105 } 6106 6107 rc = ata_scsi_add_hosts(host, sht); 6108 if (rc) 6109 goto err_tadd; 6110 6111 /* set cable, sata_spd_limit and report */ 6112 for (i = 0; i < host->n_ports; i++) { 6113 struct ata_port *ap = host->ports[i]; 6114 unsigned long xfer_mask; 6115 6116 /* set SATA cable type if still unset */ 6117 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6118 ap->cbl = ATA_CBL_SATA; 6119 6120 /* init sata_spd_limit to the current value */ 6121 sata_link_init_spd(&ap->link); 6122 if (ap->slave_link) 6123 sata_link_init_spd(ap->slave_link); 6124 6125 /* print per-port info to dmesg */ 6126 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6127 ap->udma_mask); 6128 6129 if (!ata_port_is_dummy(ap)) { 6130 ata_port_info(ap, "%cATA max %s %s\n", 6131 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6132 ata_mode_string(xfer_mask), 6133 ap->link.eh_info.desc); 6134 ata_ehi_clear_desc(&ap->link.eh_info); 6135 } else 6136 ata_port_info(ap, "DUMMY\n"); 6137 } 6138 6139 /* perform each probe asynchronously */ 6140 for (i = 0; i < host->n_ports; i++) { 6141 struct ata_port *ap = host->ports[i]; 6142 async_schedule(async_port_probe, ap); 6143 } 6144 6145 return 0; 6146 6147 err_tadd: 6148 while (--i >= 0) { 6149 ata_tport_delete(host->ports[i]); 6150 } 6151 return rc; 6152 6153 } 6154 6155 /** 6156 * ata_host_activate - start host, request IRQ and register it 6157 * @host: target ATA host 6158 * @irq: IRQ to request 6159 * @irq_handler: irq_handler used when requesting IRQ 6160 * @irq_flags: irq_flags used when requesting IRQ 6161 * @sht: scsi_host_template to use when registering the host 6162 * 6163 * After allocating an ATA host and initializing it, most libata 6164 * LLDs perform three steps to activate the host - start host, 6165 * request IRQ and register it. This helper takes necessasry 6166 * arguments and performs the three steps in one go. 6167 * 6168 * An invalid IRQ skips the IRQ registration and expects the host to 6169 * have set polling mode on the port. In this case, @irq_handler 6170 * should be NULL. 6171 * 6172 * LOCKING: 6173 * Inherited from calling layer (may sleep). 6174 * 6175 * RETURNS: 6176 * 0 on success, -errno otherwise. 6177 */ 6178 int ata_host_activate(struct ata_host *host, int irq, 6179 irq_handler_t irq_handler, unsigned long irq_flags, 6180 struct scsi_host_template *sht) 6181 { 6182 int i, rc; 6183 6184 rc = ata_host_start(host); 6185 if (rc) 6186 return rc; 6187 6188 /* Special case for polling mode */ 6189 if (!irq) { 6190 WARN_ON(irq_handler); 6191 return ata_host_register(host, sht); 6192 } 6193 6194 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6195 dev_driver_string(host->dev), host); 6196 if (rc) 6197 return rc; 6198 6199 for (i = 0; i < host->n_ports; i++) 6200 ata_port_desc(host->ports[i], "irq %d", irq); 6201 6202 rc = ata_host_register(host, sht); 6203 /* if failed, just free the IRQ and leave ports alone */ 6204 if (rc) 6205 devm_free_irq(host->dev, irq, host); 6206 6207 return rc; 6208 } 6209 6210 /** 6211 * ata_port_detach - Detach ATA port in prepration of device removal 6212 * @ap: ATA port to be detached 6213 * 6214 * Detach all ATA devices and the associated SCSI devices of @ap; 6215 * then, remove the associated SCSI host. @ap is guaranteed to 6216 * be quiescent on return from this function. 6217 * 6218 * LOCKING: 6219 * Kernel thread context (may sleep). 6220 */ 6221 static void ata_port_detach(struct ata_port *ap) 6222 { 6223 unsigned long flags; 6224 6225 if (!ap->ops->error_handler) 6226 goto skip_eh; 6227 6228 /* tell EH we're leaving & flush EH */ 6229 spin_lock_irqsave(ap->lock, flags); 6230 ap->pflags |= ATA_PFLAG_UNLOADING; 6231 ata_port_schedule_eh(ap); 6232 spin_unlock_irqrestore(ap->lock, flags); 6233 6234 /* wait till EH commits suicide */ 6235 ata_port_wait_eh(ap); 6236 6237 /* it better be dead now */ 6238 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6239 6240 cancel_delayed_work_sync(&ap->hotplug_task); 6241 6242 skip_eh: 6243 if (ap->pmp_link) { 6244 int i; 6245 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6246 ata_tlink_delete(&ap->pmp_link[i]); 6247 } 6248 ata_tport_delete(ap); 6249 6250 /* remove the associated SCSI host */ 6251 scsi_remove_host(ap->scsi_host); 6252 } 6253 6254 /** 6255 * ata_host_detach - Detach all ports of an ATA host 6256 * @host: Host to detach 6257 * 6258 * Detach all ports of @host. 6259 * 6260 * LOCKING: 6261 * Kernel thread context (may sleep). 6262 */ 6263 void ata_host_detach(struct ata_host *host) 6264 { 6265 int i; 6266 6267 for (i = 0; i < host->n_ports; i++) 6268 ata_port_detach(host->ports[i]); 6269 6270 /* the host is dead now, dissociate ACPI */ 6271 ata_acpi_dissociate(host); 6272 } 6273 6274 #ifdef CONFIG_PCI 6275 6276 /** 6277 * ata_pci_remove_one - PCI layer callback for device removal 6278 * @pdev: PCI device that was removed 6279 * 6280 * PCI layer indicates to libata via this hook that hot-unplug or 6281 * module unload event has occurred. Detach all ports. Resource 6282 * release is handled via devres. 6283 * 6284 * LOCKING: 6285 * Inherited from PCI layer (may sleep). 6286 */ 6287 void ata_pci_remove_one(struct pci_dev *pdev) 6288 { 6289 struct device *dev = &pdev->dev; 6290 struct ata_host *host = dev_get_drvdata(dev); 6291 6292 ata_host_detach(host); 6293 } 6294 6295 /* move to PCI subsystem */ 6296 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6297 { 6298 unsigned long tmp = 0; 6299 6300 switch (bits->width) { 6301 case 1: { 6302 u8 tmp8 = 0; 6303 pci_read_config_byte(pdev, bits->reg, &tmp8); 6304 tmp = tmp8; 6305 break; 6306 } 6307 case 2: { 6308 u16 tmp16 = 0; 6309 pci_read_config_word(pdev, bits->reg, &tmp16); 6310 tmp = tmp16; 6311 break; 6312 } 6313 case 4: { 6314 u32 tmp32 = 0; 6315 pci_read_config_dword(pdev, bits->reg, &tmp32); 6316 tmp = tmp32; 6317 break; 6318 } 6319 6320 default: 6321 return -EINVAL; 6322 } 6323 6324 tmp &= bits->mask; 6325 6326 return (tmp == bits->val) ? 1 : 0; 6327 } 6328 6329 #ifdef CONFIG_PM 6330 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6331 { 6332 pci_save_state(pdev); 6333 pci_disable_device(pdev); 6334 6335 if (mesg.event & PM_EVENT_SLEEP) 6336 pci_set_power_state(pdev, PCI_D3hot); 6337 } 6338 6339 int ata_pci_device_do_resume(struct pci_dev *pdev) 6340 { 6341 int rc; 6342 6343 pci_set_power_state(pdev, PCI_D0); 6344 pci_restore_state(pdev); 6345 6346 rc = pcim_enable_device(pdev); 6347 if (rc) { 6348 dev_err(&pdev->dev, 6349 "failed to enable device after resume (%d)\n", rc); 6350 return rc; 6351 } 6352 6353 pci_set_master(pdev); 6354 return 0; 6355 } 6356 6357 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6358 { 6359 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6360 int rc = 0; 6361 6362 rc = ata_host_suspend(host, mesg); 6363 if (rc) 6364 return rc; 6365 6366 ata_pci_device_do_suspend(pdev, mesg); 6367 6368 return 0; 6369 } 6370 6371 int ata_pci_device_resume(struct pci_dev *pdev) 6372 { 6373 struct ata_host *host = dev_get_drvdata(&pdev->dev); 6374 int rc; 6375 6376 rc = ata_pci_device_do_resume(pdev); 6377 if (rc == 0) 6378 ata_host_resume(host); 6379 return rc; 6380 } 6381 #endif /* CONFIG_PM */ 6382 6383 #endif /* CONFIG_PCI */ 6384 6385 static int __init ata_parse_force_one(char **cur, 6386 struct ata_force_ent *force_ent, 6387 const char **reason) 6388 { 6389 /* FIXME: Currently, there's no way to tag init const data and 6390 * using __initdata causes build failure on some versions of 6391 * gcc. Once __initdataconst is implemented, add const to the 6392 * following structure. 6393 */ 6394 static struct ata_force_param force_tbl[] __initdata = { 6395 { "40c", .cbl = ATA_CBL_PATA40 }, 6396 { "80c", .cbl = ATA_CBL_PATA80 }, 6397 { "short40c", .cbl = ATA_CBL_PATA40_SHORT }, 6398 { "unk", .cbl = ATA_CBL_PATA_UNK }, 6399 { "ign", .cbl = ATA_CBL_PATA_IGN }, 6400 { "sata", .cbl = ATA_CBL_SATA }, 6401 { "1.5Gbps", .spd_limit = 1 }, 6402 { "3.0Gbps", .spd_limit = 2 }, 6403 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ }, 6404 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ }, 6405 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID }, 6406 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) }, 6407 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) }, 6408 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) }, 6409 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) }, 6410 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) }, 6411 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) }, 6412 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) }, 6413 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) }, 6414 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) }, 6415 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) }, 6416 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) }, 6417 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) }, 6418 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6419 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6420 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) }, 6421 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6422 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6423 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) }, 6424 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6425 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6426 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) }, 6427 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6428 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6429 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) }, 6430 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6431 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6432 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) }, 6433 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6434 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6435 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) }, 6436 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6437 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6438 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) }, 6439 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) }, 6440 { "nohrst", .lflags = ATA_LFLAG_NO_HRST }, 6441 { "nosrst", .lflags = ATA_LFLAG_NO_SRST }, 6442 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST }, 6443 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE }, 6444 }; 6445 char *start = *cur, *p = *cur; 6446 char *id, *val, *endp; 6447 const struct ata_force_param *match_fp = NULL; 6448 int nr_matches = 0, i; 6449 6450 /* find where this param ends and update *cur */ 6451 while (*p != '\0' && *p != ',') 6452 p++; 6453 6454 if (*p == '\0') 6455 *cur = p; 6456 else 6457 *cur = p + 1; 6458 6459 *p = '\0'; 6460 6461 /* parse */ 6462 p = strchr(start, ':'); 6463 if (!p) { 6464 val = strstrip(start); 6465 goto parse_val; 6466 } 6467 *p = '\0'; 6468 6469 id = strstrip(start); 6470 val = strstrip(p + 1); 6471 6472 /* parse id */ 6473 p = strchr(id, '.'); 6474 if (p) { 6475 *p++ = '\0'; 6476 force_ent->device = simple_strtoul(p, &endp, 10); 6477 if (p == endp || *endp != '\0') { 6478 *reason = "invalid device"; 6479 return -EINVAL; 6480 } 6481 } 6482 6483 force_ent->port = simple_strtoul(id, &endp, 10); 6484 if (p == endp || *endp != '\0') { 6485 *reason = "invalid port/link"; 6486 return -EINVAL; 6487 } 6488 6489 parse_val: 6490 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6491 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6492 const struct ata_force_param *fp = &force_tbl[i]; 6493 6494 if (strncasecmp(val, fp->name, strlen(val))) 6495 continue; 6496 6497 nr_matches++; 6498 match_fp = fp; 6499 6500 if (strcasecmp(val, fp->name) == 0) { 6501 nr_matches = 1; 6502 break; 6503 } 6504 } 6505 6506 if (!nr_matches) { 6507 *reason = "unknown value"; 6508 return -EINVAL; 6509 } 6510 if (nr_matches > 1) { 6511 *reason = "ambigious value"; 6512 return -EINVAL; 6513 } 6514 6515 force_ent->param = *match_fp; 6516 6517 return 0; 6518 } 6519 6520 static void __init ata_parse_force_param(void) 6521 { 6522 int idx = 0, size = 1; 6523 int last_port = -1, last_device = -1; 6524 char *p, *cur, *next; 6525 6526 /* calculate maximum number of params and allocate force_tbl */ 6527 for (p = ata_force_param_buf; *p; p++) 6528 if (*p == ',') 6529 size++; 6530 6531 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL); 6532 if (!ata_force_tbl) { 6533 printk(KERN_WARNING "ata: failed to extend force table, " 6534 "libata.force ignored\n"); 6535 return; 6536 } 6537 6538 /* parse and populate the table */ 6539 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6540 const char *reason = ""; 6541 struct ata_force_ent te = { .port = -1, .device = -1 }; 6542 6543 next = cur; 6544 if (ata_parse_force_one(&next, &te, &reason)) { 6545 printk(KERN_WARNING "ata: failed to parse force " 6546 "parameter \"%s\" (%s)\n", 6547 cur, reason); 6548 continue; 6549 } 6550 6551 if (te.port == -1) { 6552 te.port = last_port; 6553 te.device = last_device; 6554 } 6555 6556 ata_force_tbl[idx++] = te; 6557 6558 last_port = te.port; 6559 last_device = te.device; 6560 } 6561 6562 ata_force_tbl_size = idx; 6563 } 6564 6565 static int __init ata_init(void) 6566 { 6567 int rc; 6568 6569 ata_parse_force_param(); 6570 6571 ata_acpi_register(); 6572 6573 rc = ata_sff_init(); 6574 if (rc) { 6575 kfree(ata_force_tbl); 6576 return rc; 6577 } 6578 6579 libata_transport_init(); 6580 ata_scsi_transport_template = ata_attach_transport(); 6581 if (!ata_scsi_transport_template) { 6582 ata_sff_exit(); 6583 rc = -ENOMEM; 6584 goto err_out; 6585 } 6586 6587 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6588 return 0; 6589 6590 err_out: 6591 return rc; 6592 } 6593 6594 static void __exit ata_exit(void) 6595 { 6596 ata_release_transport(ata_scsi_transport_template); 6597 libata_transport_exit(); 6598 ata_sff_exit(); 6599 ata_acpi_unregister(); 6600 kfree(ata_force_tbl); 6601 } 6602 6603 subsys_initcall(ata_init); 6604 module_exit(ata_exit); 6605 6606 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6607 6608 int ata_ratelimit(void) 6609 { 6610 return __ratelimit(&ratelimit); 6611 } 6612 6613 /** 6614 * ata_msleep - ATA EH owner aware msleep 6615 * @ap: ATA port to attribute the sleep to 6616 * @msecs: duration to sleep in milliseconds 6617 * 6618 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6619 * ownership is released before going to sleep and reacquired 6620 * after the sleep is complete. IOW, other ports sharing the 6621 * @ap->host will be allowed to own the EH while this task is 6622 * sleeping. 6623 * 6624 * LOCKING: 6625 * Might sleep. 6626 */ 6627 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6628 { 6629 bool owns_eh = ap && ap->host->eh_owner == current; 6630 6631 if (owns_eh) 6632 ata_eh_release(ap); 6633 6634 msleep(msecs); 6635 6636 if (owns_eh) 6637 ata_eh_acquire(ap); 6638 } 6639 6640 /** 6641 * ata_wait_register - wait until register value changes 6642 * @ap: ATA port to wait register for, can be NULL 6643 * @reg: IO-mapped register 6644 * @mask: Mask to apply to read register value 6645 * @val: Wait condition 6646 * @interval: polling interval in milliseconds 6647 * @timeout: timeout in milliseconds 6648 * 6649 * Waiting for some bits of register to change is a common 6650 * operation for ATA controllers. This function reads 32bit LE 6651 * IO-mapped register @reg and tests for the following condition. 6652 * 6653 * (*@reg & mask) != val 6654 * 6655 * If the condition is met, it returns; otherwise, the process is 6656 * repeated after @interval_msec until timeout. 6657 * 6658 * LOCKING: 6659 * Kernel thread context (may sleep) 6660 * 6661 * RETURNS: 6662 * The final register value. 6663 */ 6664 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6665 unsigned long interval, unsigned long timeout) 6666 { 6667 unsigned long deadline; 6668 u32 tmp; 6669 6670 tmp = ioread32(reg); 6671 6672 /* Calculate timeout _after_ the first read to make sure 6673 * preceding writes reach the controller before starting to 6674 * eat away the timeout. 6675 */ 6676 deadline = ata_deadline(jiffies, timeout); 6677 6678 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6679 ata_msleep(ap, interval); 6680 tmp = ioread32(reg); 6681 } 6682 6683 return tmp; 6684 } 6685 6686 /* 6687 * Dummy port_ops 6688 */ 6689 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6690 { 6691 return AC_ERR_SYSTEM; 6692 } 6693 6694 static void ata_dummy_error_handler(struct ata_port *ap) 6695 { 6696 /* truly dummy */ 6697 } 6698 6699 struct ata_port_operations ata_dummy_port_ops = { 6700 .qc_prep = ata_noop_qc_prep, 6701 .qc_issue = ata_dummy_qc_issue, 6702 .error_handler = ata_dummy_error_handler, 6703 .sched_eh = ata_std_sched_eh, 6704 .end_eh = ata_std_end_eh, 6705 }; 6706 6707 const struct ata_port_info ata_dummy_port_info = { 6708 .port_ops = &ata_dummy_port_ops, 6709 }; 6710 6711 /* 6712 * Utility print functions 6713 */ 6714 int ata_port_printk(const struct ata_port *ap, const char *level, 6715 const char *fmt, ...) 6716 { 6717 struct va_format vaf; 6718 va_list args; 6719 int r; 6720 6721 va_start(args, fmt); 6722 6723 vaf.fmt = fmt; 6724 vaf.va = &args; 6725 6726 r = printk("%sata%u: %pV", level, ap->print_id, &vaf); 6727 6728 va_end(args); 6729 6730 return r; 6731 } 6732 EXPORT_SYMBOL(ata_port_printk); 6733 6734 int ata_link_printk(const struct ata_link *link, const char *level, 6735 const char *fmt, ...) 6736 { 6737 struct va_format vaf; 6738 va_list args; 6739 int r; 6740 6741 va_start(args, fmt); 6742 6743 vaf.fmt = fmt; 6744 vaf.va = &args; 6745 6746 if (sata_pmp_attached(link->ap) || link->ap->slave_link) 6747 r = printk("%sata%u.%02u: %pV", 6748 level, link->ap->print_id, link->pmp, &vaf); 6749 else 6750 r = printk("%sata%u: %pV", 6751 level, link->ap->print_id, &vaf); 6752 6753 va_end(args); 6754 6755 return r; 6756 } 6757 EXPORT_SYMBOL(ata_link_printk); 6758 6759 int ata_dev_printk(const struct ata_device *dev, const char *level, 6760 const char *fmt, ...) 6761 { 6762 struct va_format vaf; 6763 va_list args; 6764 int r; 6765 6766 va_start(args, fmt); 6767 6768 vaf.fmt = fmt; 6769 vaf.va = &args; 6770 6771 r = printk("%sata%u.%02u: %pV", 6772 level, dev->link->ap->print_id, dev->link->pmp + dev->devno, 6773 &vaf); 6774 6775 va_end(args); 6776 6777 return r; 6778 } 6779 EXPORT_SYMBOL(ata_dev_printk); 6780 6781 void ata_print_version(const struct device *dev, const char *version) 6782 { 6783 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6784 } 6785 EXPORT_SYMBOL(ata_print_version); 6786 6787 /* 6788 * libata is essentially a library of internal helper functions for 6789 * low-level ATA host controller drivers. As such, the API/ABI is 6790 * likely to change as new drivers are added and updated. 6791 * Do not depend on ABI/API stability. 6792 */ 6793 EXPORT_SYMBOL_GPL(sata_deb_timing_normal); 6794 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug); 6795 EXPORT_SYMBOL_GPL(sata_deb_timing_long); 6796 EXPORT_SYMBOL_GPL(ata_base_port_ops); 6797 EXPORT_SYMBOL_GPL(sata_port_ops); 6798 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6799 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6800 EXPORT_SYMBOL_GPL(ata_link_next); 6801 EXPORT_SYMBOL_GPL(ata_dev_next); 6802 EXPORT_SYMBOL_GPL(ata_std_bios_param); 6803 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); 6804 EXPORT_SYMBOL_GPL(ata_host_init); 6805 EXPORT_SYMBOL_GPL(ata_host_alloc); 6806 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 6807 EXPORT_SYMBOL_GPL(ata_slave_link_init); 6808 EXPORT_SYMBOL_GPL(ata_host_start); 6809 EXPORT_SYMBOL_GPL(ata_host_register); 6810 EXPORT_SYMBOL_GPL(ata_host_activate); 6811 EXPORT_SYMBOL_GPL(ata_host_detach); 6812 EXPORT_SYMBOL_GPL(ata_sg_init); 6813 EXPORT_SYMBOL_GPL(ata_qc_complete); 6814 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple); 6815 EXPORT_SYMBOL_GPL(atapi_cmd_type); 6816 EXPORT_SYMBOL_GPL(ata_tf_to_fis); 6817 EXPORT_SYMBOL_GPL(ata_tf_from_fis); 6818 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 6819 EXPORT_SYMBOL_GPL(ata_unpack_xfermask); 6820 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 6821 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 6822 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 6823 EXPORT_SYMBOL_GPL(ata_mode_string); 6824 EXPORT_SYMBOL_GPL(ata_id_xfermask); 6825 EXPORT_SYMBOL_GPL(ata_do_set_mode); 6826 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 6827 EXPORT_SYMBOL_GPL(ata_noop_qc_prep); 6828 EXPORT_SYMBOL_GPL(ata_dev_disable); 6829 EXPORT_SYMBOL_GPL(sata_set_spd); 6830 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 6831 EXPORT_SYMBOL_GPL(sata_link_debounce); 6832 EXPORT_SYMBOL_GPL(sata_link_resume); 6833 EXPORT_SYMBOL_GPL(sata_link_scr_lpm); 6834 EXPORT_SYMBOL_GPL(ata_std_prereset); 6835 EXPORT_SYMBOL_GPL(sata_link_hardreset); 6836 EXPORT_SYMBOL_GPL(sata_std_hardreset); 6837 EXPORT_SYMBOL_GPL(ata_std_postreset); 6838 EXPORT_SYMBOL_GPL(ata_dev_classify); 6839 EXPORT_SYMBOL_GPL(ata_dev_pair); 6840 EXPORT_SYMBOL_GPL(ata_ratelimit); 6841 EXPORT_SYMBOL_GPL(ata_msleep); 6842 EXPORT_SYMBOL_GPL(ata_wait_register); 6843 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); 6844 EXPORT_SYMBOL_GPL(ata_scsi_slave_config); 6845 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); 6846 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth); 6847 EXPORT_SYMBOL_GPL(__ata_change_queue_depth); 6848 EXPORT_SYMBOL_GPL(sata_scr_valid); 6849 EXPORT_SYMBOL_GPL(sata_scr_read); 6850 EXPORT_SYMBOL_GPL(sata_scr_write); 6851 EXPORT_SYMBOL_GPL(sata_scr_write_flush); 6852 EXPORT_SYMBOL_GPL(ata_link_online); 6853 EXPORT_SYMBOL_GPL(ata_link_offline); 6854 #ifdef CONFIG_PM 6855 EXPORT_SYMBOL_GPL(ata_host_suspend); 6856 EXPORT_SYMBOL_GPL(ata_host_resume); 6857 #endif /* CONFIG_PM */ 6858 EXPORT_SYMBOL_GPL(ata_id_string); 6859 EXPORT_SYMBOL_GPL(ata_id_c_string); 6860 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 6861 EXPORT_SYMBOL_GPL(ata_scsi_simulate); 6862 6863 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 6864 EXPORT_SYMBOL_GPL(ata_timing_find_mode); 6865 EXPORT_SYMBOL_GPL(ata_timing_compute); 6866 EXPORT_SYMBOL_GPL(ata_timing_merge); 6867 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode); 6868 6869 #ifdef CONFIG_PCI 6870 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6871 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6872 #ifdef CONFIG_PM 6873 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6874 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6875 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6876 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6877 #endif /* CONFIG_PM */ 6878 #endif /* CONFIG_PCI */ 6879 6880 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc); 6881 EXPORT_SYMBOL_GPL(ata_ehi_push_desc); 6882 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc); 6883 EXPORT_SYMBOL_GPL(ata_port_desc); 6884 #ifdef CONFIG_PCI 6885 EXPORT_SYMBOL_GPL(ata_port_pbar_desc); 6886 #endif /* CONFIG_PCI */ 6887 EXPORT_SYMBOL_GPL(ata_port_schedule_eh); 6888 EXPORT_SYMBOL_GPL(ata_link_abort); 6889 EXPORT_SYMBOL_GPL(ata_port_abort); 6890 EXPORT_SYMBOL_GPL(ata_port_freeze); 6891 EXPORT_SYMBOL_GPL(sata_async_notification); 6892 EXPORT_SYMBOL_GPL(ata_eh_freeze_port); 6893 EXPORT_SYMBOL_GPL(ata_eh_thaw_port); 6894 EXPORT_SYMBOL_GPL(ata_eh_qc_complete); 6895 EXPORT_SYMBOL_GPL(ata_eh_qc_retry); 6896 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error); 6897 EXPORT_SYMBOL_GPL(ata_do_eh); 6898 EXPORT_SYMBOL_GPL(ata_std_error_handler); 6899 6900 EXPORT_SYMBOL_GPL(ata_cable_40wire); 6901 EXPORT_SYMBOL_GPL(ata_cable_80wire); 6902 EXPORT_SYMBOL_GPL(ata_cable_unknown); 6903 EXPORT_SYMBOL_GPL(ata_cable_ignore); 6904 EXPORT_SYMBOL_GPL(ata_cable_sata); 6905