1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3  *
4  * Android IPC Subsystem
5  *
6  * Copyright (C) 2007-2017 Google, Inc.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28 
29 struct list_lru binder_alloc_lru;
30 
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32 
33 enum {
34 	BINDER_DEBUG_USER_ERROR             = 1U << 0,
35 	BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
36 	BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
37 	BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40 
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42 		   uint, 0644);
43 
44 #define binder_alloc_debug(mask, x...) \
45 	do { \
46 		if (binder_alloc_debug_mask & mask) \
47 			pr_info_ratelimited(x); \
48 	} while (0)
49 
50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52 	return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54 
55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57 	return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59 
60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61 				       struct binder_buffer *buffer)
62 {
63 	if (list_is_last(&buffer->entry, &alloc->buffers))
64 		return alloc->buffer + alloc->buffer_size - buffer->user_data;
65 	return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67 
68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69 				      struct binder_buffer *new_buffer)
70 {
71 	struct rb_node **p = &alloc->free_buffers.rb_node;
72 	struct rb_node *parent = NULL;
73 	struct binder_buffer *buffer;
74 	size_t buffer_size;
75 	size_t new_buffer_size;
76 
77 	BUG_ON(!new_buffer->free);
78 
79 	new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80 
81 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82 		     "%d: add free buffer, size %zd, at %pK\n",
83 		      alloc->pid, new_buffer_size, new_buffer);
84 
85 	while (*p) {
86 		parent = *p;
87 		buffer = rb_entry(parent, struct binder_buffer, rb_node);
88 		BUG_ON(!buffer->free);
89 
90 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
91 
92 		if (new_buffer_size < buffer_size)
93 			p = &parent->rb_left;
94 		else
95 			p = &parent->rb_right;
96 	}
97 	rb_link_node(&new_buffer->rb_node, parent, p);
98 	rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100 
101 static void binder_insert_allocated_buffer_locked(
102 		struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104 	struct rb_node **p = &alloc->allocated_buffers.rb_node;
105 	struct rb_node *parent = NULL;
106 	struct binder_buffer *buffer;
107 
108 	BUG_ON(new_buffer->free);
109 
110 	while (*p) {
111 		parent = *p;
112 		buffer = rb_entry(parent, struct binder_buffer, rb_node);
113 		BUG_ON(buffer->free);
114 
115 		if (new_buffer->user_data < buffer->user_data)
116 			p = &parent->rb_left;
117 		else if (new_buffer->user_data > buffer->user_data)
118 			p = &parent->rb_right;
119 		else
120 			BUG();
121 	}
122 	rb_link_node(&new_buffer->rb_node, parent, p);
123 	rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125 
126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127 		struct binder_alloc *alloc,
128 		uintptr_t user_ptr)
129 {
130 	struct rb_node *n = alloc->allocated_buffers.rb_node;
131 	struct binder_buffer *buffer;
132 	void __user *uptr;
133 
134 	uptr = (void __user *)user_ptr;
135 
136 	while (n) {
137 		buffer = rb_entry(n, struct binder_buffer, rb_node);
138 		BUG_ON(buffer->free);
139 
140 		if (uptr < buffer->user_data)
141 			n = n->rb_left;
142 		else if (uptr > buffer->user_data)
143 			n = n->rb_right;
144 		else {
145 			/*
146 			 * Guard against user threads attempting to
147 			 * free the buffer when in use by kernel or
148 			 * after it's already been freed.
149 			 */
150 			if (!buffer->allow_user_free)
151 				return ERR_PTR(-EPERM);
152 			buffer->allow_user_free = 0;
153 			return buffer;
154 		}
155 	}
156 	return NULL;
157 }
158 
159 /**
160  * binder_alloc_prepare_to_free() - get buffer given user ptr
161  * @alloc:	binder_alloc for this proc
162  * @user_ptr:	User pointer to buffer data
163  *
164  * Validate userspace pointer to buffer data and return buffer corresponding to
165  * that user pointer. Search the rb tree for buffer that matches user data
166  * pointer.
167  *
168  * Return:	Pointer to buffer or NULL
169  */
170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
171 						   uintptr_t user_ptr)
172 {
173 	struct binder_buffer *buffer;
174 
175 	mutex_lock(&alloc->mutex);
176 	buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
177 	mutex_unlock(&alloc->mutex);
178 	return buffer;
179 }
180 
181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
182 				    void __user *start, void __user *end)
183 {
184 	void __user *page_addr;
185 	unsigned long user_page_addr;
186 	struct binder_lru_page *page;
187 	struct vm_area_struct *vma = NULL;
188 	struct mm_struct *mm = NULL;
189 	bool need_mm = false;
190 
191 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
192 		     "%d: %s pages %pK-%pK\n", alloc->pid,
193 		     allocate ? "allocate" : "free", start, end);
194 
195 	if (end <= start)
196 		return 0;
197 
198 	trace_binder_update_page_range(alloc, allocate, start, end);
199 
200 	if (allocate == 0)
201 		goto free_range;
202 
203 	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
204 		page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
205 		if (!page->page_ptr) {
206 			need_mm = true;
207 			break;
208 		}
209 	}
210 
211 	if (need_mm && mmget_not_zero(alloc->vma_vm_mm))
212 		mm = alloc->vma_vm_mm;
213 
214 	if (mm) {
215 		mmap_read_lock(mm);
216 		vma = vma_lookup(mm, alloc->vma_addr);
217 	}
218 
219 	if (!vma && need_mm) {
220 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
221 				   "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
222 				   alloc->pid);
223 		goto err_no_vma;
224 	}
225 
226 	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
227 		int ret;
228 		bool on_lru;
229 		size_t index;
230 
231 		index = (page_addr - alloc->buffer) / PAGE_SIZE;
232 		page = &alloc->pages[index];
233 
234 		if (page->page_ptr) {
235 			trace_binder_alloc_lru_start(alloc, index);
236 
237 			on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
238 			WARN_ON(!on_lru);
239 
240 			trace_binder_alloc_lru_end(alloc, index);
241 			continue;
242 		}
243 
244 		if (WARN_ON(!vma))
245 			goto err_page_ptr_cleared;
246 
247 		trace_binder_alloc_page_start(alloc, index);
248 		page->page_ptr = alloc_page(GFP_KERNEL |
249 					    __GFP_HIGHMEM |
250 					    __GFP_ZERO);
251 		if (!page->page_ptr) {
252 			pr_err("%d: binder_alloc_buf failed for page at %pK\n",
253 				alloc->pid, page_addr);
254 			goto err_alloc_page_failed;
255 		}
256 		page->alloc = alloc;
257 		INIT_LIST_HEAD(&page->lru);
258 
259 		user_page_addr = (uintptr_t)page_addr;
260 		ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
261 		if (ret) {
262 			pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
263 			       alloc->pid, user_page_addr);
264 			goto err_vm_insert_page_failed;
265 		}
266 
267 		if (index + 1 > alloc->pages_high)
268 			alloc->pages_high = index + 1;
269 
270 		trace_binder_alloc_page_end(alloc, index);
271 	}
272 	if (mm) {
273 		mmap_read_unlock(mm);
274 		mmput(mm);
275 	}
276 	return 0;
277 
278 free_range:
279 	for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
280 		bool ret;
281 		size_t index;
282 
283 		index = (page_addr - alloc->buffer) / PAGE_SIZE;
284 		page = &alloc->pages[index];
285 
286 		trace_binder_free_lru_start(alloc, index);
287 
288 		ret = list_lru_add(&binder_alloc_lru, &page->lru);
289 		WARN_ON(!ret);
290 
291 		trace_binder_free_lru_end(alloc, index);
292 		if (page_addr == start)
293 			break;
294 		continue;
295 
296 err_vm_insert_page_failed:
297 		__free_page(page->page_ptr);
298 		page->page_ptr = NULL;
299 err_alloc_page_failed:
300 err_page_ptr_cleared:
301 		if (page_addr == start)
302 			break;
303 	}
304 err_no_vma:
305 	if (mm) {
306 		mmap_read_unlock(mm);
307 		mmput(mm);
308 	}
309 	return vma ? -ENOMEM : -ESRCH;
310 }
311 
312 
313 static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
314 		struct vm_area_struct *vma)
315 {
316 	unsigned long vm_start = 0;
317 
318 	/*
319 	 * Allow clearing the vma with holding just the read lock to allow
320 	 * munmapping downgrade of the write lock before freeing and closing the
321 	 * file using binder_alloc_vma_close().
322 	 */
323 	if (vma) {
324 		vm_start = vma->vm_start;
325 		alloc->vma_vm_mm = vma->vm_mm;
326 		mmap_assert_write_locked(alloc->vma_vm_mm);
327 	} else {
328 		mmap_assert_locked(alloc->vma_vm_mm);
329 	}
330 
331 	alloc->vma_addr = vm_start;
332 }
333 
334 static inline struct vm_area_struct *binder_alloc_get_vma(
335 		struct binder_alloc *alloc)
336 {
337 	struct vm_area_struct *vma = NULL;
338 
339 	if (alloc->vma_addr)
340 		vma = vma_lookup(alloc->vma_vm_mm, alloc->vma_addr);
341 
342 	return vma;
343 }
344 
345 static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
346 {
347 	/*
348 	 * Find the amount and size of buffers allocated by the current caller;
349 	 * The idea is that once we cross the threshold, whoever is responsible
350 	 * for the low async space is likely to try to send another async txn,
351 	 * and at some point we'll catch them in the act. This is more efficient
352 	 * than keeping a map per pid.
353 	 */
354 	struct rb_node *n;
355 	struct binder_buffer *buffer;
356 	size_t total_alloc_size = 0;
357 	size_t num_buffers = 0;
358 
359 	for (n = rb_first(&alloc->allocated_buffers); n != NULL;
360 		 n = rb_next(n)) {
361 		buffer = rb_entry(n, struct binder_buffer, rb_node);
362 		if (buffer->pid != pid)
363 			continue;
364 		if (!buffer->async_transaction)
365 			continue;
366 		total_alloc_size += binder_alloc_buffer_size(alloc, buffer)
367 			+ sizeof(struct binder_buffer);
368 		num_buffers++;
369 	}
370 
371 	/*
372 	 * Warn if this pid has more than 50 transactions, or more than 50% of
373 	 * async space (which is 25% of total buffer size). Oneway spam is only
374 	 * detected when the threshold is exceeded.
375 	 */
376 	if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
377 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
378 			     "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
379 			      alloc->pid, pid, num_buffers, total_alloc_size);
380 		if (!alloc->oneway_spam_detected) {
381 			alloc->oneway_spam_detected = true;
382 			return true;
383 		}
384 	}
385 	return false;
386 }
387 
388 static struct binder_buffer *binder_alloc_new_buf_locked(
389 				struct binder_alloc *alloc,
390 				size_t data_size,
391 				size_t offsets_size,
392 				size_t extra_buffers_size,
393 				int is_async,
394 				int pid)
395 {
396 	struct rb_node *n = alloc->free_buffers.rb_node;
397 	struct binder_buffer *buffer;
398 	size_t buffer_size;
399 	struct rb_node *best_fit = NULL;
400 	void __user *has_page_addr;
401 	void __user *end_page_addr;
402 	size_t size, data_offsets_size;
403 	int ret;
404 
405 	if (!binder_alloc_get_vma(alloc)) {
406 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
407 				   "%d: binder_alloc_buf, no vma\n",
408 				   alloc->pid);
409 		return ERR_PTR(-ESRCH);
410 	}
411 
412 	data_offsets_size = ALIGN(data_size, sizeof(void *)) +
413 		ALIGN(offsets_size, sizeof(void *));
414 
415 	if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
416 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
417 				"%d: got transaction with invalid size %zd-%zd\n",
418 				alloc->pid, data_size, offsets_size);
419 		return ERR_PTR(-EINVAL);
420 	}
421 	size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
422 	if (size < data_offsets_size || size < extra_buffers_size) {
423 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
424 				"%d: got transaction with invalid extra_buffers_size %zd\n",
425 				alloc->pid, extra_buffers_size);
426 		return ERR_PTR(-EINVAL);
427 	}
428 	if (is_async &&
429 	    alloc->free_async_space < size + sizeof(struct binder_buffer)) {
430 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
431 			     "%d: binder_alloc_buf size %zd failed, no async space left\n",
432 			      alloc->pid, size);
433 		return ERR_PTR(-ENOSPC);
434 	}
435 
436 	/* Pad 0-size buffers so they get assigned unique addresses */
437 	size = max(size, sizeof(void *));
438 
439 	while (n) {
440 		buffer = rb_entry(n, struct binder_buffer, rb_node);
441 		BUG_ON(!buffer->free);
442 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
443 
444 		if (size < buffer_size) {
445 			best_fit = n;
446 			n = n->rb_left;
447 		} else if (size > buffer_size)
448 			n = n->rb_right;
449 		else {
450 			best_fit = n;
451 			break;
452 		}
453 	}
454 	if (best_fit == NULL) {
455 		size_t allocated_buffers = 0;
456 		size_t largest_alloc_size = 0;
457 		size_t total_alloc_size = 0;
458 		size_t free_buffers = 0;
459 		size_t largest_free_size = 0;
460 		size_t total_free_size = 0;
461 
462 		for (n = rb_first(&alloc->allocated_buffers); n != NULL;
463 		     n = rb_next(n)) {
464 			buffer = rb_entry(n, struct binder_buffer, rb_node);
465 			buffer_size = binder_alloc_buffer_size(alloc, buffer);
466 			allocated_buffers++;
467 			total_alloc_size += buffer_size;
468 			if (buffer_size > largest_alloc_size)
469 				largest_alloc_size = buffer_size;
470 		}
471 		for (n = rb_first(&alloc->free_buffers); n != NULL;
472 		     n = rb_next(n)) {
473 			buffer = rb_entry(n, struct binder_buffer, rb_node);
474 			buffer_size = binder_alloc_buffer_size(alloc, buffer);
475 			free_buffers++;
476 			total_free_size += buffer_size;
477 			if (buffer_size > largest_free_size)
478 				largest_free_size = buffer_size;
479 		}
480 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
481 				   "%d: binder_alloc_buf size %zd failed, no address space\n",
482 				   alloc->pid, size);
483 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
484 				   "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
485 				   total_alloc_size, allocated_buffers,
486 				   largest_alloc_size, total_free_size,
487 				   free_buffers, largest_free_size);
488 		return ERR_PTR(-ENOSPC);
489 	}
490 	if (n == NULL) {
491 		buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
492 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
493 	}
494 
495 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
496 		     "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
497 		      alloc->pid, size, buffer, buffer_size);
498 
499 	has_page_addr = (void __user *)
500 		(((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
501 	WARN_ON(n && buffer_size != size);
502 	end_page_addr =
503 		(void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
504 	if (end_page_addr > has_page_addr)
505 		end_page_addr = has_page_addr;
506 	ret = binder_update_page_range(alloc, 1, (void __user *)
507 		PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
508 	if (ret)
509 		return ERR_PTR(ret);
510 
511 	if (buffer_size != size) {
512 		struct binder_buffer *new_buffer;
513 
514 		new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
515 		if (!new_buffer) {
516 			pr_err("%s: %d failed to alloc new buffer struct\n",
517 			       __func__, alloc->pid);
518 			goto err_alloc_buf_struct_failed;
519 		}
520 		new_buffer->user_data = (u8 __user *)buffer->user_data + size;
521 		list_add(&new_buffer->entry, &buffer->entry);
522 		new_buffer->free = 1;
523 		binder_insert_free_buffer(alloc, new_buffer);
524 	}
525 
526 	rb_erase(best_fit, &alloc->free_buffers);
527 	buffer->free = 0;
528 	buffer->allow_user_free = 0;
529 	binder_insert_allocated_buffer_locked(alloc, buffer);
530 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
531 		     "%d: binder_alloc_buf size %zd got %pK\n",
532 		      alloc->pid, size, buffer);
533 	buffer->data_size = data_size;
534 	buffer->offsets_size = offsets_size;
535 	buffer->async_transaction = is_async;
536 	buffer->extra_buffers_size = extra_buffers_size;
537 	buffer->pid = pid;
538 	buffer->oneway_spam_suspect = false;
539 	if (is_async) {
540 		alloc->free_async_space -= size + sizeof(struct binder_buffer);
541 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
542 			     "%d: binder_alloc_buf size %zd async free %zd\n",
543 			      alloc->pid, size, alloc->free_async_space);
544 		if (alloc->free_async_space < alloc->buffer_size / 10) {
545 			/*
546 			 * Start detecting spammers once we have less than 20%
547 			 * of async space left (which is less than 10% of total
548 			 * buffer size).
549 			 */
550 			buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid);
551 		} else {
552 			alloc->oneway_spam_detected = false;
553 		}
554 	}
555 	return buffer;
556 
557 err_alloc_buf_struct_failed:
558 	binder_update_page_range(alloc, 0, (void __user *)
559 				 PAGE_ALIGN((uintptr_t)buffer->user_data),
560 				 end_page_addr);
561 	return ERR_PTR(-ENOMEM);
562 }
563 
564 /**
565  * binder_alloc_new_buf() - Allocate a new binder buffer
566  * @alloc:              binder_alloc for this proc
567  * @data_size:          size of user data buffer
568  * @offsets_size:       user specified buffer offset
569  * @extra_buffers_size: size of extra space for meta-data (eg, security context)
570  * @is_async:           buffer for async transaction
571  * @pid:				pid to attribute allocation to (used for debugging)
572  *
573  * Allocate a new buffer given the requested sizes. Returns
574  * the kernel version of the buffer pointer. The size allocated
575  * is the sum of the three given sizes (each rounded up to
576  * pointer-sized boundary)
577  *
578  * Return:	The allocated buffer or %NULL if error
579  */
580 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
581 					   size_t data_size,
582 					   size_t offsets_size,
583 					   size_t extra_buffers_size,
584 					   int is_async,
585 					   int pid)
586 {
587 	struct binder_buffer *buffer;
588 
589 	mutex_lock(&alloc->mutex);
590 	buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
591 					     extra_buffers_size, is_async, pid);
592 	mutex_unlock(&alloc->mutex);
593 	return buffer;
594 }
595 
596 static void __user *buffer_start_page(struct binder_buffer *buffer)
597 {
598 	return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
599 }
600 
601 static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
602 {
603 	return (void __user *)
604 		(((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
605 }
606 
607 static void binder_delete_free_buffer(struct binder_alloc *alloc,
608 				      struct binder_buffer *buffer)
609 {
610 	struct binder_buffer *prev, *next = NULL;
611 	bool to_free = true;
612 
613 	BUG_ON(alloc->buffers.next == &buffer->entry);
614 	prev = binder_buffer_prev(buffer);
615 	BUG_ON(!prev->free);
616 	if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
617 		to_free = false;
618 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
619 				   "%d: merge free, buffer %pK share page with %pK\n",
620 				   alloc->pid, buffer->user_data,
621 				   prev->user_data);
622 	}
623 
624 	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
625 		next = binder_buffer_next(buffer);
626 		if (buffer_start_page(next) == buffer_start_page(buffer)) {
627 			to_free = false;
628 			binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
629 					   "%d: merge free, buffer %pK share page with %pK\n",
630 					   alloc->pid,
631 					   buffer->user_data,
632 					   next->user_data);
633 		}
634 	}
635 
636 	if (PAGE_ALIGNED(buffer->user_data)) {
637 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
638 				   "%d: merge free, buffer start %pK is page aligned\n",
639 				   alloc->pid, buffer->user_data);
640 		to_free = false;
641 	}
642 
643 	if (to_free) {
644 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
645 				   "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
646 				   alloc->pid, buffer->user_data,
647 				   prev->user_data,
648 				   next ? next->user_data : NULL);
649 		binder_update_page_range(alloc, 0, buffer_start_page(buffer),
650 					 buffer_start_page(buffer) + PAGE_SIZE);
651 	}
652 	list_del(&buffer->entry);
653 	kfree(buffer);
654 }
655 
656 static void binder_free_buf_locked(struct binder_alloc *alloc,
657 				   struct binder_buffer *buffer)
658 {
659 	size_t size, buffer_size;
660 
661 	buffer_size = binder_alloc_buffer_size(alloc, buffer);
662 
663 	size = ALIGN(buffer->data_size, sizeof(void *)) +
664 		ALIGN(buffer->offsets_size, sizeof(void *)) +
665 		ALIGN(buffer->extra_buffers_size, sizeof(void *));
666 
667 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
668 		     "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
669 		      alloc->pid, buffer, size, buffer_size);
670 
671 	BUG_ON(buffer->free);
672 	BUG_ON(size > buffer_size);
673 	BUG_ON(buffer->transaction != NULL);
674 	BUG_ON(buffer->user_data < alloc->buffer);
675 	BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
676 
677 	if (buffer->async_transaction) {
678 		alloc->free_async_space += buffer_size + sizeof(struct binder_buffer);
679 
680 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
681 			     "%d: binder_free_buf size %zd async free %zd\n",
682 			      alloc->pid, size, alloc->free_async_space);
683 	}
684 
685 	binder_update_page_range(alloc, 0,
686 		(void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
687 		(void __user *)(((uintptr_t)
688 			  buffer->user_data + buffer_size) & PAGE_MASK));
689 
690 	rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
691 	buffer->free = 1;
692 	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
693 		struct binder_buffer *next = binder_buffer_next(buffer);
694 
695 		if (next->free) {
696 			rb_erase(&next->rb_node, &alloc->free_buffers);
697 			binder_delete_free_buffer(alloc, next);
698 		}
699 	}
700 	if (alloc->buffers.next != &buffer->entry) {
701 		struct binder_buffer *prev = binder_buffer_prev(buffer);
702 
703 		if (prev->free) {
704 			binder_delete_free_buffer(alloc, buffer);
705 			rb_erase(&prev->rb_node, &alloc->free_buffers);
706 			buffer = prev;
707 		}
708 	}
709 	binder_insert_free_buffer(alloc, buffer);
710 }
711 
712 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
713 				   struct binder_buffer *buffer);
714 /**
715  * binder_alloc_free_buf() - free a binder buffer
716  * @alloc:	binder_alloc for this proc
717  * @buffer:	kernel pointer to buffer
718  *
719  * Free the buffer allocated via binder_alloc_new_buf()
720  */
721 void binder_alloc_free_buf(struct binder_alloc *alloc,
722 			    struct binder_buffer *buffer)
723 {
724 	/*
725 	 * We could eliminate the call to binder_alloc_clear_buf()
726 	 * from binder_alloc_deferred_release() by moving this to
727 	 * binder_alloc_free_buf_locked(). However, that could
728 	 * increase contention for the alloc mutex if clear_on_free
729 	 * is used frequently for large buffers. The mutex is not
730 	 * needed for correctness here.
731 	 */
732 	if (buffer->clear_on_free) {
733 		binder_alloc_clear_buf(alloc, buffer);
734 		buffer->clear_on_free = false;
735 	}
736 	mutex_lock(&alloc->mutex);
737 	binder_free_buf_locked(alloc, buffer);
738 	mutex_unlock(&alloc->mutex);
739 }
740 
741 /**
742  * binder_alloc_mmap_handler() - map virtual address space for proc
743  * @alloc:	alloc structure for this proc
744  * @vma:	vma passed to mmap()
745  *
746  * Called by binder_mmap() to initialize the space specified in
747  * vma for allocating binder buffers
748  *
749  * Return:
750  *      0 = success
751  *      -EBUSY = address space already mapped
752  *      -ENOMEM = failed to map memory to given address space
753  */
754 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
755 			      struct vm_area_struct *vma)
756 {
757 	int ret;
758 	const char *failure_string;
759 	struct binder_buffer *buffer;
760 
761 	mutex_lock(&binder_alloc_mmap_lock);
762 	if (alloc->buffer_size) {
763 		ret = -EBUSY;
764 		failure_string = "already mapped";
765 		goto err_already_mapped;
766 	}
767 	alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
768 				   SZ_4M);
769 	mutex_unlock(&binder_alloc_mmap_lock);
770 
771 	alloc->buffer = (void __user *)vma->vm_start;
772 
773 	alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
774 			       sizeof(alloc->pages[0]),
775 			       GFP_KERNEL);
776 	if (alloc->pages == NULL) {
777 		ret = -ENOMEM;
778 		failure_string = "alloc page array";
779 		goto err_alloc_pages_failed;
780 	}
781 
782 	buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
783 	if (!buffer) {
784 		ret = -ENOMEM;
785 		failure_string = "alloc buffer struct";
786 		goto err_alloc_buf_struct_failed;
787 	}
788 
789 	buffer->user_data = alloc->buffer;
790 	list_add(&buffer->entry, &alloc->buffers);
791 	buffer->free = 1;
792 	binder_insert_free_buffer(alloc, buffer);
793 	alloc->free_async_space = alloc->buffer_size / 2;
794 	binder_alloc_set_vma(alloc, vma);
795 	mmgrab(alloc->vma_vm_mm);
796 
797 	return 0;
798 
799 err_alloc_buf_struct_failed:
800 	kfree(alloc->pages);
801 	alloc->pages = NULL;
802 err_alloc_pages_failed:
803 	alloc->buffer = NULL;
804 	mutex_lock(&binder_alloc_mmap_lock);
805 	alloc->buffer_size = 0;
806 err_already_mapped:
807 	mutex_unlock(&binder_alloc_mmap_lock);
808 	binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
809 			   "%s: %d %lx-%lx %s failed %d\n", __func__,
810 			   alloc->pid, vma->vm_start, vma->vm_end,
811 			   failure_string, ret);
812 	return ret;
813 }
814 
815 
816 void binder_alloc_deferred_release(struct binder_alloc *alloc)
817 {
818 	struct rb_node *n;
819 	int buffers, page_count;
820 	struct binder_buffer *buffer;
821 
822 	buffers = 0;
823 	mutex_lock(&alloc->mutex);
824 	BUG_ON(alloc->vma_addr &&
825 	       vma_lookup(alloc->vma_vm_mm, alloc->vma_addr));
826 
827 	while ((n = rb_first(&alloc->allocated_buffers))) {
828 		buffer = rb_entry(n, struct binder_buffer, rb_node);
829 
830 		/* Transaction should already have been freed */
831 		BUG_ON(buffer->transaction);
832 
833 		if (buffer->clear_on_free) {
834 			binder_alloc_clear_buf(alloc, buffer);
835 			buffer->clear_on_free = false;
836 		}
837 		binder_free_buf_locked(alloc, buffer);
838 		buffers++;
839 	}
840 
841 	while (!list_empty(&alloc->buffers)) {
842 		buffer = list_first_entry(&alloc->buffers,
843 					  struct binder_buffer, entry);
844 		WARN_ON(!buffer->free);
845 
846 		list_del(&buffer->entry);
847 		WARN_ON_ONCE(!list_empty(&alloc->buffers));
848 		kfree(buffer);
849 	}
850 
851 	page_count = 0;
852 	if (alloc->pages) {
853 		int i;
854 
855 		for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
856 			void __user *page_addr;
857 			bool on_lru;
858 
859 			if (!alloc->pages[i].page_ptr)
860 				continue;
861 
862 			on_lru = list_lru_del(&binder_alloc_lru,
863 					      &alloc->pages[i].lru);
864 			page_addr = alloc->buffer + i * PAGE_SIZE;
865 			binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
866 				     "%s: %d: page %d at %pK %s\n",
867 				     __func__, alloc->pid, i, page_addr,
868 				     on_lru ? "on lru" : "active");
869 			__free_page(alloc->pages[i].page_ptr);
870 			page_count++;
871 		}
872 		kfree(alloc->pages);
873 	}
874 	mutex_unlock(&alloc->mutex);
875 	if (alloc->vma_vm_mm)
876 		mmdrop(alloc->vma_vm_mm);
877 
878 	binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
879 		     "%s: %d buffers %d, pages %d\n",
880 		     __func__, alloc->pid, buffers, page_count);
881 }
882 
883 static void print_binder_buffer(struct seq_file *m, const char *prefix,
884 				struct binder_buffer *buffer)
885 {
886 	seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
887 		   prefix, buffer->debug_id, buffer->user_data,
888 		   buffer->data_size, buffer->offsets_size,
889 		   buffer->extra_buffers_size,
890 		   buffer->transaction ? "active" : "delivered");
891 }
892 
893 /**
894  * binder_alloc_print_allocated() - print buffer info
895  * @m:     seq_file for output via seq_printf()
896  * @alloc: binder_alloc for this proc
897  *
898  * Prints information about every buffer associated with
899  * the binder_alloc state to the given seq_file
900  */
901 void binder_alloc_print_allocated(struct seq_file *m,
902 				  struct binder_alloc *alloc)
903 {
904 	struct rb_node *n;
905 
906 	mutex_lock(&alloc->mutex);
907 	for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
908 		print_binder_buffer(m, "  buffer",
909 				    rb_entry(n, struct binder_buffer, rb_node));
910 	mutex_unlock(&alloc->mutex);
911 }
912 
913 /**
914  * binder_alloc_print_pages() - print page usage
915  * @m:     seq_file for output via seq_printf()
916  * @alloc: binder_alloc for this proc
917  */
918 void binder_alloc_print_pages(struct seq_file *m,
919 			      struct binder_alloc *alloc)
920 {
921 	struct binder_lru_page *page;
922 	int i;
923 	int active = 0;
924 	int lru = 0;
925 	int free = 0;
926 
927 	mutex_lock(&alloc->mutex);
928 	/*
929 	 * Make sure the binder_alloc is fully initialized, otherwise we might
930 	 * read inconsistent state.
931 	 */
932 	if (binder_alloc_get_vma(alloc) != NULL) {
933 		for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
934 			page = &alloc->pages[i];
935 			if (!page->page_ptr)
936 				free++;
937 			else if (list_empty(&page->lru))
938 				active++;
939 			else
940 				lru++;
941 		}
942 	}
943 	mutex_unlock(&alloc->mutex);
944 	seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
945 	seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
946 }
947 
948 /**
949  * binder_alloc_get_allocated_count() - return count of buffers
950  * @alloc: binder_alloc for this proc
951  *
952  * Return: count of allocated buffers
953  */
954 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
955 {
956 	struct rb_node *n;
957 	int count = 0;
958 
959 	mutex_lock(&alloc->mutex);
960 	for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
961 		count++;
962 	mutex_unlock(&alloc->mutex);
963 	return count;
964 }
965 
966 
967 /**
968  * binder_alloc_vma_close() - invalidate address space
969  * @alloc: binder_alloc for this proc
970  *
971  * Called from binder_vma_close() when releasing address space.
972  * Clears alloc->vma to prevent new incoming transactions from
973  * allocating more buffers.
974  */
975 void binder_alloc_vma_close(struct binder_alloc *alloc)
976 {
977 	binder_alloc_set_vma(alloc, NULL);
978 }
979 
980 /**
981  * binder_alloc_free_page() - shrinker callback to free pages
982  * @item:   item to free
983  * @lock:   lock protecting the item
984  * @cb_arg: callback argument
985  *
986  * Called from list_lru_walk() in binder_shrink_scan() to free
987  * up pages when the system is under memory pressure.
988  */
989 enum lru_status binder_alloc_free_page(struct list_head *item,
990 				       struct list_lru_one *lru,
991 				       spinlock_t *lock,
992 				       void *cb_arg)
993 	__must_hold(lock)
994 {
995 	struct mm_struct *mm = NULL;
996 	struct binder_lru_page *page = container_of(item,
997 						    struct binder_lru_page,
998 						    lru);
999 	struct binder_alloc *alloc;
1000 	uintptr_t page_addr;
1001 	size_t index;
1002 	struct vm_area_struct *vma;
1003 
1004 	alloc = page->alloc;
1005 	if (!mutex_trylock(&alloc->mutex))
1006 		goto err_get_alloc_mutex_failed;
1007 
1008 	if (!page->page_ptr)
1009 		goto err_page_already_freed;
1010 
1011 	index = page - alloc->pages;
1012 	page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
1013 
1014 	mm = alloc->vma_vm_mm;
1015 	if (!mmget_not_zero(mm))
1016 		goto err_mmget;
1017 	if (!mmap_read_trylock(mm))
1018 		goto err_mmap_read_lock_failed;
1019 	vma = binder_alloc_get_vma(alloc);
1020 
1021 	list_lru_isolate(lru, item);
1022 	spin_unlock(lock);
1023 
1024 	if (vma) {
1025 		trace_binder_unmap_user_start(alloc, index);
1026 
1027 		zap_page_range(vma, page_addr, PAGE_SIZE);
1028 
1029 		trace_binder_unmap_user_end(alloc, index);
1030 	}
1031 	mmap_read_unlock(mm);
1032 	mmput_async(mm);
1033 
1034 	trace_binder_unmap_kernel_start(alloc, index);
1035 
1036 	__free_page(page->page_ptr);
1037 	page->page_ptr = NULL;
1038 
1039 	trace_binder_unmap_kernel_end(alloc, index);
1040 
1041 	spin_lock(lock);
1042 	mutex_unlock(&alloc->mutex);
1043 	return LRU_REMOVED_RETRY;
1044 
1045 err_mmap_read_lock_failed:
1046 	mmput_async(mm);
1047 err_mmget:
1048 err_page_already_freed:
1049 	mutex_unlock(&alloc->mutex);
1050 err_get_alloc_mutex_failed:
1051 	return LRU_SKIP;
1052 }
1053 
1054 static unsigned long
1055 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1056 {
1057 	return list_lru_count(&binder_alloc_lru);
1058 }
1059 
1060 static unsigned long
1061 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1062 {
1063 	return list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
1064 			    NULL, sc->nr_to_scan);
1065 }
1066 
1067 static struct shrinker binder_shrinker = {
1068 	.count_objects = binder_shrink_count,
1069 	.scan_objects = binder_shrink_scan,
1070 	.seeks = DEFAULT_SEEKS,
1071 };
1072 
1073 /**
1074  * binder_alloc_init() - called by binder_open() for per-proc initialization
1075  * @alloc: binder_alloc for this proc
1076  *
1077  * Called from binder_open() to initialize binder_alloc fields for
1078  * new binder proc
1079  */
1080 void binder_alloc_init(struct binder_alloc *alloc)
1081 {
1082 	alloc->pid = current->group_leader->pid;
1083 	mutex_init(&alloc->mutex);
1084 	INIT_LIST_HEAD(&alloc->buffers);
1085 }
1086 
1087 int binder_alloc_shrinker_init(void)
1088 {
1089 	int ret = list_lru_init(&binder_alloc_lru);
1090 
1091 	if (ret == 0) {
1092 		ret = register_shrinker(&binder_shrinker, "android-binder");
1093 		if (ret)
1094 			list_lru_destroy(&binder_alloc_lru);
1095 	}
1096 	return ret;
1097 }
1098 
1099 /**
1100  * check_buffer() - verify that buffer/offset is safe to access
1101  * @alloc: binder_alloc for this proc
1102  * @buffer: binder buffer to be accessed
1103  * @offset: offset into @buffer data
1104  * @bytes: bytes to access from offset
1105  *
1106  * Check that the @offset/@bytes are within the size of the given
1107  * @buffer and that the buffer is currently active and not freeable.
1108  * Offsets must also be multiples of sizeof(u32). The kernel is
1109  * allowed to touch the buffer in two cases:
1110  *
1111  * 1) when the buffer is being created:
1112  *     (buffer->free == 0 && buffer->allow_user_free == 0)
1113  * 2) when the buffer is being torn down:
1114  *     (buffer->free == 0 && buffer->transaction == NULL).
1115  *
1116  * Return: true if the buffer is safe to access
1117  */
1118 static inline bool check_buffer(struct binder_alloc *alloc,
1119 				struct binder_buffer *buffer,
1120 				binder_size_t offset, size_t bytes)
1121 {
1122 	size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1123 
1124 	return buffer_size >= bytes &&
1125 		offset <= buffer_size - bytes &&
1126 		IS_ALIGNED(offset, sizeof(u32)) &&
1127 		!buffer->free &&
1128 		(!buffer->allow_user_free || !buffer->transaction);
1129 }
1130 
1131 /**
1132  * binder_alloc_get_page() - get kernel pointer for given buffer offset
1133  * @alloc: binder_alloc for this proc
1134  * @buffer: binder buffer to be accessed
1135  * @buffer_offset: offset into @buffer data
1136  * @pgoffp: address to copy final page offset to
1137  *
1138  * Lookup the struct page corresponding to the address
1139  * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1140  * NULL, the byte-offset into the page is written there.
1141  *
1142  * The caller is responsible to ensure that the offset points
1143  * to a valid address within the @buffer and that @buffer is
1144  * not freeable by the user. Since it can't be freed, we are
1145  * guaranteed that the corresponding elements of @alloc->pages[]
1146  * cannot change.
1147  *
1148  * Return: struct page
1149  */
1150 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1151 					  struct binder_buffer *buffer,
1152 					  binder_size_t buffer_offset,
1153 					  pgoff_t *pgoffp)
1154 {
1155 	binder_size_t buffer_space_offset = buffer_offset +
1156 		(buffer->user_data - alloc->buffer);
1157 	pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1158 	size_t index = buffer_space_offset >> PAGE_SHIFT;
1159 	struct binder_lru_page *lru_page;
1160 
1161 	lru_page = &alloc->pages[index];
1162 	*pgoffp = pgoff;
1163 	return lru_page->page_ptr;
1164 }
1165 
1166 /**
1167  * binder_alloc_clear_buf() - zero out buffer
1168  * @alloc: binder_alloc for this proc
1169  * @buffer: binder buffer to be cleared
1170  *
1171  * memset the given buffer to 0
1172  */
1173 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1174 				   struct binder_buffer *buffer)
1175 {
1176 	size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1177 	binder_size_t buffer_offset = 0;
1178 
1179 	while (bytes) {
1180 		unsigned long size;
1181 		struct page *page;
1182 		pgoff_t pgoff;
1183 
1184 		page = binder_alloc_get_page(alloc, buffer,
1185 					     buffer_offset, &pgoff);
1186 		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1187 		memset_page(page, pgoff, 0, size);
1188 		bytes -= size;
1189 		buffer_offset += size;
1190 	}
1191 }
1192 
1193 /**
1194  * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1195  * @alloc: binder_alloc for this proc
1196  * @buffer: binder buffer to be accessed
1197  * @buffer_offset: offset into @buffer data
1198  * @from: userspace pointer to source buffer
1199  * @bytes: bytes to copy
1200  *
1201  * Copy bytes from source userspace to target buffer.
1202  *
1203  * Return: bytes remaining to be copied
1204  */
1205 unsigned long
1206 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1207 				 struct binder_buffer *buffer,
1208 				 binder_size_t buffer_offset,
1209 				 const void __user *from,
1210 				 size_t bytes)
1211 {
1212 	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1213 		return bytes;
1214 
1215 	while (bytes) {
1216 		unsigned long size;
1217 		unsigned long ret;
1218 		struct page *page;
1219 		pgoff_t pgoff;
1220 		void *kptr;
1221 
1222 		page = binder_alloc_get_page(alloc, buffer,
1223 					     buffer_offset, &pgoff);
1224 		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1225 		kptr = kmap_local_page(page) + pgoff;
1226 		ret = copy_from_user(kptr, from, size);
1227 		kunmap_local(kptr);
1228 		if (ret)
1229 			return bytes - size + ret;
1230 		bytes -= size;
1231 		from += size;
1232 		buffer_offset += size;
1233 	}
1234 	return 0;
1235 }
1236 
1237 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1238 				       bool to_buffer,
1239 				       struct binder_buffer *buffer,
1240 				       binder_size_t buffer_offset,
1241 				       void *ptr,
1242 				       size_t bytes)
1243 {
1244 	/* All copies must be 32-bit aligned and 32-bit size */
1245 	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1246 		return -EINVAL;
1247 
1248 	while (bytes) {
1249 		unsigned long size;
1250 		struct page *page;
1251 		pgoff_t pgoff;
1252 
1253 		page = binder_alloc_get_page(alloc, buffer,
1254 					     buffer_offset, &pgoff);
1255 		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1256 		if (to_buffer)
1257 			memcpy_to_page(page, pgoff, ptr, size);
1258 		else
1259 			memcpy_from_page(ptr, page, pgoff, size);
1260 		bytes -= size;
1261 		pgoff = 0;
1262 		ptr = ptr + size;
1263 		buffer_offset += size;
1264 	}
1265 	return 0;
1266 }
1267 
1268 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1269 				struct binder_buffer *buffer,
1270 				binder_size_t buffer_offset,
1271 				void *src,
1272 				size_t bytes)
1273 {
1274 	return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1275 					   src, bytes);
1276 }
1277 
1278 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1279 				  void *dest,
1280 				  struct binder_buffer *buffer,
1281 				  binder_size_t buffer_offset,
1282 				  size_t bytes)
1283 {
1284 	return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1285 					   dest, bytes);
1286 }
1287 
1288