1 // SPDX-License-Identifier: GPL-2.0-only 2 /* binder_alloc.c 3 * 4 * Android IPC Subsystem 5 * 6 * Copyright (C) 2007-2017 Google, Inc. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/list.h> 12 #include <linux/sched/mm.h> 13 #include <linux/module.h> 14 #include <linux/rtmutex.h> 15 #include <linux/rbtree.h> 16 #include <linux/seq_file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/list_lru.h> 21 #include <linux/ratelimit.h> 22 #include <asm/cacheflush.h> 23 #include <linux/uaccess.h> 24 #include <linux/highmem.h> 25 #include <linux/sizes.h> 26 #include "binder_alloc.h" 27 #include "binder_trace.h" 28 29 struct list_lru binder_alloc_lru; 30 31 static DEFINE_MUTEX(binder_alloc_mmap_lock); 32 33 enum { 34 BINDER_DEBUG_USER_ERROR = 1U << 0, 35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1, 36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2, 37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3, 38 }; 39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR; 40 41 module_param_named(debug_mask, binder_alloc_debug_mask, 42 uint, 0644); 43 44 #define binder_alloc_debug(mask, x...) \ 45 do { \ 46 if (binder_alloc_debug_mask & mask) \ 47 pr_info_ratelimited(x); \ 48 } while (0) 49 50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer) 51 { 52 return list_entry(buffer->entry.next, struct binder_buffer, entry); 53 } 54 55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer) 56 { 57 return list_entry(buffer->entry.prev, struct binder_buffer, entry); 58 } 59 60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc, 61 struct binder_buffer *buffer) 62 { 63 if (list_is_last(&buffer->entry, &alloc->buffers)) 64 return alloc->buffer + alloc->buffer_size - buffer->user_data; 65 return binder_buffer_next(buffer)->user_data - buffer->user_data; 66 } 67 68 static void binder_insert_free_buffer(struct binder_alloc *alloc, 69 struct binder_buffer *new_buffer) 70 { 71 struct rb_node **p = &alloc->free_buffers.rb_node; 72 struct rb_node *parent = NULL; 73 struct binder_buffer *buffer; 74 size_t buffer_size; 75 size_t new_buffer_size; 76 77 BUG_ON(!new_buffer->free); 78 79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer); 80 81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 82 "%d: add free buffer, size %zd, at %pK\n", 83 alloc->pid, new_buffer_size, new_buffer); 84 85 while (*p) { 86 parent = *p; 87 buffer = rb_entry(parent, struct binder_buffer, rb_node); 88 BUG_ON(!buffer->free); 89 90 buffer_size = binder_alloc_buffer_size(alloc, buffer); 91 92 if (new_buffer_size < buffer_size) 93 p = &parent->rb_left; 94 else 95 p = &parent->rb_right; 96 } 97 rb_link_node(&new_buffer->rb_node, parent, p); 98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers); 99 } 100 101 static void binder_insert_allocated_buffer_locked( 102 struct binder_alloc *alloc, struct binder_buffer *new_buffer) 103 { 104 struct rb_node **p = &alloc->allocated_buffers.rb_node; 105 struct rb_node *parent = NULL; 106 struct binder_buffer *buffer; 107 108 BUG_ON(new_buffer->free); 109 110 while (*p) { 111 parent = *p; 112 buffer = rb_entry(parent, struct binder_buffer, rb_node); 113 BUG_ON(buffer->free); 114 115 if (new_buffer->user_data < buffer->user_data) 116 p = &parent->rb_left; 117 else if (new_buffer->user_data > buffer->user_data) 118 p = &parent->rb_right; 119 else 120 BUG(); 121 } 122 rb_link_node(&new_buffer->rb_node, parent, p); 123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers); 124 } 125 126 static struct binder_buffer *binder_alloc_prepare_to_free_locked( 127 struct binder_alloc *alloc, 128 uintptr_t user_ptr) 129 { 130 struct rb_node *n = alloc->allocated_buffers.rb_node; 131 struct binder_buffer *buffer; 132 void __user *uptr; 133 134 uptr = (void __user *)user_ptr; 135 136 while (n) { 137 buffer = rb_entry(n, struct binder_buffer, rb_node); 138 BUG_ON(buffer->free); 139 140 if (uptr < buffer->user_data) 141 n = n->rb_left; 142 else if (uptr > buffer->user_data) 143 n = n->rb_right; 144 else { 145 /* 146 * Guard against user threads attempting to 147 * free the buffer when in use by kernel or 148 * after it's already been freed. 149 */ 150 if (!buffer->allow_user_free) 151 return ERR_PTR(-EPERM); 152 buffer->allow_user_free = 0; 153 return buffer; 154 } 155 } 156 return NULL; 157 } 158 159 /** 160 * binder_alloc_prepare_to_free() - get buffer given user ptr 161 * @alloc: binder_alloc for this proc 162 * @user_ptr: User pointer to buffer data 163 * 164 * Validate userspace pointer to buffer data and return buffer corresponding to 165 * that user pointer. Search the rb tree for buffer that matches user data 166 * pointer. 167 * 168 * Return: Pointer to buffer or NULL 169 */ 170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc, 171 uintptr_t user_ptr) 172 { 173 struct binder_buffer *buffer; 174 175 mutex_lock(&alloc->mutex); 176 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr); 177 mutex_unlock(&alloc->mutex); 178 return buffer; 179 } 180 181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate, 182 void __user *start, void __user *end) 183 { 184 void __user *page_addr; 185 unsigned long user_page_addr; 186 struct binder_lru_page *page; 187 struct vm_area_struct *vma = NULL; 188 struct mm_struct *mm = NULL; 189 bool need_mm = false; 190 191 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 192 "%d: %s pages %pK-%pK\n", alloc->pid, 193 allocate ? "allocate" : "free", start, end); 194 195 if (end <= start) 196 return 0; 197 198 trace_binder_update_page_range(alloc, allocate, start, end); 199 200 if (allocate == 0) 201 goto free_range; 202 203 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 204 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE]; 205 if (!page->page_ptr) { 206 need_mm = true; 207 break; 208 } 209 } 210 211 if (need_mm && mmget_not_zero(alloc->vma_vm_mm)) 212 mm = alloc->vma_vm_mm; 213 214 if (mm) { 215 mmap_read_lock(mm); 216 vma = vma_lookup(mm, alloc->vma_addr); 217 } 218 219 if (!vma && need_mm) { 220 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 221 "%d: binder_alloc_buf failed to map pages in userspace, no vma\n", 222 alloc->pid); 223 goto err_no_vma; 224 } 225 226 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 227 int ret; 228 bool on_lru; 229 size_t index; 230 231 index = (page_addr - alloc->buffer) / PAGE_SIZE; 232 page = &alloc->pages[index]; 233 234 if (page->page_ptr) { 235 trace_binder_alloc_lru_start(alloc, index); 236 237 on_lru = list_lru_del(&binder_alloc_lru, &page->lru); 238 WARN_ON(!on_lru); 239 240 trace_binder_alloc_lru_end(alloc, index); 241 continue; 242 } 243 244 if (WARN_ON(!vma)) 245 goto err_page_ptr_cleared; 246 247 trace_binder_alloc_page_start(alloc, index); 248 page->page_ptr = alloc_page(GFP_KERNEL | 249 __GFP_HIGHMEM | 250 __GFP_ZERO); 251 if (!page->page_ptr) { 252 pr_err("%d: binder_alloc_buf failed for page at %pK\n", 253 alloc->pid, page_addr); 254 goto err_alloc_page_failed; 255 } 256 page->alloc = alloc; 257 INIT_LIST_HEAD(&page->lru); 258 259 user_page_addr = (uintptr_t)page_addr; 260 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr); 261 if (ret) { 262 pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n", 263 alloc->pid, user_page_addr); 264 goto err_vm_insert_page_failed; 265 } 266 267 if (index + 1 > alloc->pages_high) 268 alloc->pages_high = index + 1; 269 270 trace_binder_alloc_page_end(alloc, index); 271 } 272 if (mm) { 273 mmap_read_unlock(mm); 274 mmput(mm); 275 } 276 return 0; 277 278 free_range: 279 for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) { 280 bool ret; 281 size_t index; 282 283 index = (page_addr - alloc->buffer) / PAGE_SIZE; 284 page = &alloc->pages[index]; 285 286 trace_binder_free_lru_start(alloc, index); 287 288 ret = list_lru_add(&binder_alloc_lru, &page->lru); 289 WARN_ON(!ret); 290 291 trace_binder_free_lru_end(alloc, index); 292 if (page_addr == start) 293 break; 294 continue; 295 296 err_vm_insert_page_failed: 297 __free_page(page->page_ptr); 298 page->page_ptr = NULL; 299 err_alloc_page_failed: 300 err_page_ptr_cleared: 301 if (page_addr == start) 302 break; 303 } 304 err_no_vma: 305 if (mm) { 306 mmap_read_unlock(mm); 307 mmput(mm); 308 } 309 return vma ? -ENOMEM : -ESRCH; 310 } 311 312 313 static inline void binder_alloc_set_vma(struct binder_alloc *alloc, 314 struct vm_area_struct *vma) 315 { 316 unsigned long vm_start = 0; 317 318 /* 319 * Allow clearing the vma with holding just the read lock to allow 320 * munmapping downgrade of the write lock before freeing and closing the 321 * file using binder_alloc_vma_close(). 322 */ 323 if (vma) { 324 vm_start = vma->vm_start; 325 alloc->vma_vm_mm = vma->vm_mm; 326 mmap_assert_write_locked(alloc->vma_vm_mm); 327 } else { 328 mmap_assert_locked(alloc->vma_vm_mm); 329 } 330 331 alloc->vma_addr = vm_start; 332 } 333 334 static inline struct vm_area_struct *binder_alloc_get_vma( 335 struct binder_alloc *alloc) 336 { 337 struct vm_area_struct *vma = NULL; 338 339 if (alloc->vma_addr) 340 vma = vma_lookup(alloc->vma_vm_mm, alloc->vma_addr); 341 342 return vma; 343 } 344 345 static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid) 346 { 347 /* 348 * Find the amount and size of buffers allocated by the current caller; 349 * The idea is that once we cross the threshold, whoever is responsible 350 * for the low async space is likely to try to send another async txn, 351 * and at some point we'll catch them in the act. This is more efficient 352 * than keeping a map per pid. 353 */ 354 struct rb_node *n; 355 struct binder_buffer *buffer; 356 size_t total_alloc_size = 0; 357 size_t num_buffers = 0; 358 359 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 360 n = rb_next(n)) { 361 buffer = rb_entry(n, struct binder_buffer, rb_node); 362 if (buffer->pid != pid) 363 continue; 364 if (!buffer->async_transaction) 365 continue; 366 total_alloc_size += binder_alloc_buffer_size(alloc, buffer) 367 + sizeof(struct binder_buffer); 368 num_buffers++; 369 } 370 371 /* 372 * Warn if this pid has more than 50 transactions, or more than 50% of 373 * async space (which is 25% of total buffer size). Oneway spam is only 374 * detected when the threshold is exceeded. 375 */ 376 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) { 377 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 378 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n", 379 alloc->pid, pid, num_buffers, total_alloc_size); 380 if (!alloc->oneway_spam_detected) { 381 alloc->oneway_spam_detected = true; 382 return true; 383 } 384 } 385 return false; 386 } 387 388 static struct binder_buffer *binder_alloc_new_buf_locked( 389 struct binder_alloc *alloc, 390 size_t data_size, 391 size_t offsets_size, 392 size_t extra_buffers_size, 393 int is_async, 394 int pid) 395 { 396 struct rb_node *n = alloc->free_buffers.rb_node; 397 struct binder_buffer *buffer; 398 size_t buffer_size; 399 struct rb_node *best_fit = NULL; 400 void __user *has_page_addr; 401 void __user *end_page_addr; 402 size_t size, data_offsets_size; 403 int ret; 404 405 if (!binder_alloc_get_vma(alloc)) { 406 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 407 "%d: binder_alloc_buf, no vma\n", 408 alloc->pid); 409 return ERR_PTR(-ESRCH); 410 } 411 412 data_offsets_size = ALIGN(data_size, sizeof(void *)) + 413 ALIGN(offsets_size, sizeof(void *)); 414 415 if (data_offsets_size < data_size || data_offsets_size < offsets_size) { 416 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 417 "%d: got transaction with invalid size %zd-%zd\n", 418 alloc->pid, data_size, offsets_size); 419 return ERR_PTR(-EINVAL); 420 } 421 size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *)); 422 if (size < data_offsets_size || size < extra_buffers_size) { 423 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 424 "%d: got transaction with invalid extra_buffers_size %zd\n", 425 alloc->pid, extra_buffers_size); 426 return ERR_PTR(-EINVAL); 427 } 428 if (is_async && 429 alloc->free_async_space < size + sizeof(struct binder_buffer)) { 430 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 431 "%d: binder_alloc_buf size %zd failed, no async space left\n", 432 alloc->pid, size); 433 return ERR_PTR(-ENOSPC); 434 } 435 436 /* Pad 0-size buffers so they get assigned unique addresses */ 437 size = max(size, sizeof(void *)); 438 439 while (n) { 440 buffer = rb_entry(n, struct binder_buffer, rb_node); 441 BUG_ON(!buffer->free); 442 buffer_size = binder_alloc_buffer_size(alloc, buffer); 443 444 if (size < buffer_size) { 445 best_fit = n; 446 n = n->rb_left; 447 } else if (size > buffer_size) 448 n = n->rb_right; 449 else { 450 best_fit = n; 451 break; 452 } 453 } 454 if (best_fit == NULL) { 455 size_t allocated_buffers = 0; 456 size_t largest_alloc_size = 0; 457 size_t total_alloc_size = 0; 458 size_t free_buffers = 0; 459 size_t largest_free_size = 0; 460 size_t total_free_size = 0; 461 462 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 463 n = rb_next(n)) { 464 buffer = rb_entry(n, struct binder_buffer, rb_node); 465 buffer_size = binder_alloc_buffer_size(alloc, buffer); 466 allocated_buffers++; 467 total_alloc_size += buffer_size; 468 if (buffer_size > largest_alloc_size) 469 largest_alloc_size = buffer_size; 470 } 471 for (n = rb_first(&alloc->free_buffers); n != NULL; 472 n = rb_next(n)) { 473 buffer = rb_entry(n, struct binder_buffer, rb_node); 474 buffer_size = binder_alloc_buffer_size(alloc, buffer); 475 free_buffers++; 476 total_free_size += buffer_size; 477 if (buffer_size > largest_free_size) 478 largest_free_size = buffer_size; 479 } 480 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 481 "%d: binder_alloc_buf size %zd failed, no address space\n", 482 alloc->pid, size); 483 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 484 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n", 485 total_alloc_size, allocated_buffers, 486 largest_alloc_size, total_free_size, 487 free_buffers, largest_free_size); 488 return ERR_PTR(-ENOSPC); 489 } 490 if (n == NULL) { 491 buffer = rb_entry(best_fit, struct binder_buffer, rb_node); 492 buffer_size = binder_alloc_buffer_size(alloc, buffer); 493 } 494 495 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 496 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n", 497 alloc->pid, size, buffer, buffer_size); 498 499 has_page_addr = (void __user *) 500 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK); 501 WARN_ON(n && buffer_size != size); 502 end_page_addr = 503 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size); 504 if (end_page_addr > has_page_addr) 505 end_page_addr = has_page_addr; 506 ret = binder_update_page_range(alloc, 1, (void __user *) 507 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr); 508 if (ret) 509 return ERR_PTR(ret); 510 511 if (buffer_size != size) { 512 struct binder_buffer *new_buffer; 513 514 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 515 if (!new_buffer) { 516 pr_err("%s: %d failed to alloc new buffer struct\n", 517 __func__, alloc->pid); 518 goto err_alloc_buf_struct_failed; 519 } 520 new_buffer->user_data = (u8 __user *)buffer->user_data + size; 521 list_add(&new_buffer->entry, &buffer->entry); 522 new_buffer->free = 1; 523 binder_insert_free_buffer(alloc, new_buffer); 524 } 525 526 rb_erase(best_fit, &alloc->free_buffers); 527 buffer->free = 0; 528 buffer->allow_user_free = 0; 529 binder_insert_allocated_buffer_locked(alloc, buffer); 530 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 531 "%d: binder_alloc_buf size %zd got %pK\n", 532 alloc->pid, size, buffer); 533 buffer->data_size = data_size; 534 buffer->offsets_size = offsets_size; 535 buffer->async_transaction = is_async; 536 buffer->extra_buffers_size = extra_buffers_size; 537 buffer->pid = pid; 538 buffer->oneway_spam_suspect = false; 539 if (is_async) { 540 alloc->free_async_space -= size + sizeof(struct binder_buffer); 541 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 542 "%d: binder_alloc_buf size %zd async free %zd\n", 543 alloc->pid, size, alloc->free_async_space); 544 if (alloc->free_async_space < alloc->buffer_size / 10) { 545 /* 546 * Start detecting spammers once we have less than 20% 547 * of async space left (which is less than 10% of total 548 * buffer size). 549 */ 550 buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid); 551 } else { 552 alloc->oneway_spam_detected = false; 553 } 554 } 555 return buffer; 556 557 err_alloc_buf_struct_failed: 558 binder_update_page_range(alloc, 0, (void __user *) 559 PAGE_ALIGN((uintptr_t)buffer->user_data), 560 end_page_addr); 561 return ERR_PTR(-ENOMEM); 562 } 563 564 /** 565 * binder_alloc_new_buf() - Allocate a new binder buffer 566 * @alloc: binder_alloc for this proc 567 * @data_size: size of user data buffer 568 * @offsets_size: user specified buffer offset 569 * @extra_buffers_size: size of extra space for meta-data (eg, security context) 570 * @is_async: buffer for async transaction 571 * @pid: pid to attribute allocation to (used for debugging) 572 * 573 * Allocate a new buffer given the requested sizes. Returns 574 * the kernel version of the buffer pointer. The size allocated 575 * is the sum of the three given sizes (each rounded up to 576 * pointer-sized boundary) 577 * 578 * Return: The allocated buffer or %NULL if error 579 */ 580 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc, 581 size_t data_size, 582 size_t offsets_size, 583 size_t extra_buffers_size, 584 int is_async, 585 int pid) 586 { 587 struct binder_buffer *buffer; 588 589 mutex_lock(&alloc->mutex); 590 buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size, 591 extra_buffers_size, is_async, pid); 592 mutex_unlock(&alloc->mutex); 593 return buffer; 594 } 595 596 static void __user *buffer_start_page(struct binder_buffer *buffer) 597 { 598 return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK); 599 } 600 601 static void __user *prev_buffer_end_page(struct binder_buffer *buffer) 602 { 603 return (void __user *) 604 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK); 605 } 606 607 static void binder_delete_free_buffer(struct binder_alloc *alloc, 608 struct binder_buffer *buffer) 609 { 610 struct binder_buffer *prev, *next = NULL; 611 bool to_free = true; 612 613 BUG_ON(alloc->buffers.next == &buffer->entry); 614 prev = binder_buffer_prev(buffer); 615 BUG_ON(!prev->free); 616 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) { 617 to_free = false; 618 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 619 "%d: merge free, buffer %pK share page with %pK\n", 620 alloc->pid, buffer->user_data, 621 prev->user_data); 622 } 623 624 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 625 next = binder_buffer_next(buffer); 626 if (buffer_start_page(next) == buffer_start_page(buffer)) { 627 to_free = false; 628 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 629 "%d: merge free, buffer %pK share page with %pK\n", 630 alloc->pid, 631 buffer->user_data, 632 next->user_data); 633 } 634 } 635 636 if (PAGE_ALIGNED(buffer->user_data)) { 637 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 638 "%d: merge free, buffer start %pK is page aligned\n", 639 alloc->pid, buffer->user_data); 640 to_free = false; 641 } 642 643 if (to_free) { 644 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 645 "%d: merge free, buffer %pK do not share page with %pK or %pK\n", 646 alloc->pid, buffer->user_data, 647 prev->user_data, 648 next ? next->user_data : NULL); 649 binder_update_page_range(alloc, 0, buffer_start_page(buffer), 650 buffer_start_page(buffer) + PAGE_SIZE); 651 } 652 list_del(&buffer->entry); 653 kfree(buffer); 654 } 655 656 static void binder_free_buf_locked(struct binder_alloc *alloc, 657 struct binder_buffer *buffer) 658 { 659 size_t size, buffer_size; 660 661 buffer_size = binder_alloc_buffer_size(alloc, buffer); 662 663 size = ALIGN(buffer->data_size, sizeof(void *)) + 664 ALIGN(buffer->offsets_size, sizeof(void *)) + 665 ALIGN(buffer->extra_buffers_size, sizeof(void *)); 666 667 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 668 "%d: binder_free_buf %pK size %zd buffer_size %zd\n", 669 alloc->pid, buffer, size, buffer_size); 670 671 BUG_ON(buffer->free); 672 BUG_ON(size > buffer_size); 673 BUG_ON(buffer->transaction != NULL); 674 BUG_ON(buffer->user_data < alloc->buffer); 675 BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size); 676 677 if (buffer->async_transaction) { 678 alloc->free_async_space += buffer_size + sizeof(struct binder_buffer); 679 680 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 681 "%d: binder_free_buf size %zd async free %zd\n", 682 alloc->pid, size, alloc->free_async_space); 683 } 684 685 binder_update_page_range(alloc, 0, 686 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data), 687 (void __user *)(((uintptr_t) 688 buffer->user_data + buffer_size) & PAGE_MASK)); 689 690 rb_erase(&buffer->rb_node, &alloc->allocated_buffers); 691 buffer->free = 1; 692 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 693 struct binder_buffer *next = binder_buffer_next(buffer); 694 695 if (next->free) { 696 rb_erase(&next->rb_node, &alloc->free_buffers); 697 binder_delete_free_buffer(alloc, next); 698 } 699 } 700 if (alloc->buffers.next != &buffer->entry) { 701 struct binder_buffer *prev = binder_buffer_prev(buffer); 702 703 if (prev->free) { 704 binder_delete_free_buffer(alloc, buffer); 705 rb_erase(&prev->rb_node, &alloc->free_buffers); 706 buffer = prev; 707 } 708 } 709 binder_insert_free_buffer(alloc, buffer); 710 } 711 712 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 713 struct binder_buffer *buffer); 714 /** 715 * binder_alloc_free_buf() - free a binder buffer 716 * @alloc: binder_alloc for this proc 717 * @buffer: kernel pointer to buffer 718 * 719 * Free the buffer allocated via binder_alloc_new_buf() 720 */ 721 void binder_alloc_free_buf(struct binder_alloc *alloc, 722 struct binder_buffer *buffer) 723 { 724 /* 725 * We could eliminate the call to binder_alloc_clear_buf() 726 * from binder_alloc_deferred_release() by moving this to 727 * binder_alloc_free_buf_locked(). However, that could 728 * increase contention for the alloc mutex if clear_on_free 729 * is used frequently for large buffers. The mutex is not 730 * needed for correctness here. 731 */ 732 if (buffer->clear_on_free) { 733 binder_alloc_clear_buf(alloc, buffer); 734 buffer->clear_on_free = false; 735 } 736 mutex_lock(&alloc->mutex); 737 binder_free_buf_locked(alloc, buffer); 738 mutex_unlock(&alloc->mutex); 739 } 740 741 /** 742 * binder_alloc_mmap_handler() - map virtual address space for proc 743 * @alloc: alloc structure for this proc 744 * @vma: vma passed to mmap() 745 * 746 * Called by binder_mmap() to initialize the space specified in 747 * vma for allocating binder buffers 748 * 749 * Return: 750 * 0 = success 751 * -EBUSY = address space already mapped 752 * -ENOMEM = failed to map memory to given address space 753 */ 754 int binder_alloc_mmap_handler(struct binder_alloc *alloc, 755 struct vm_area_struct *vma) 756 { 757 int ret; 758 const char *failure_string; 759 struct binder_buffer *buffer; 760 761 mutex_lock(&binder_alloc_mmap_lock); 762 if (alloc->buffer_size) { 763 ret = -EBUSY; 764 failure_string = "already mapped"; 765 goto err_already_mapped; 766 } 767 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start, 768 SZ_4M); 769 mutex_unlock(&binder_alloc_mmap_lock); 770 771 alloc->buffer = (void __user *)vma->vm_start; 772 773 alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE, 774 sizeof(alloc->pages[0]), 775 GFP_KERNEL); 776 if (alloc->pages == NULL) { 777 ret = -ENOMEM; 778 failure_string = "alloc page array"; 779 goto err_alloc_pages_failed; 780 } 781 782 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 783 if (!buffer) { 784 ret = -ENOMEM; 785 failure_string = "alloc buffer struct"; 786 goto err_alloc_buf_struct_failed; 787 } 788 789 buffer->user_data = alloc->buffer; 790 list_add(&buffer->entry, &alloc->buffers); 791 buffer->free = 1; 792 binder_insert_free_buffer(alloc, buffer); 793 alloc->free_async_space = alloc->buffer_size / 2; 794 binder_alloc_set_vma(alloc, vma); 795 mmgrab(alloc->vma_vm_mm); 796 797 return 0; 798 799 err_alloc_buf_struct_failed: 800 kfree(alloc->pages); 801 alloc->pages = NULL; 802 err_alloc_pages_failed: 803 alloc->buffer = NULL; 804 mutex_lock(&binder_alloc_mmap_lock); 805 alloc->buffer_size = 0; 806 err_already_mapped: 807 mutex_unlock(&binder_alloc_mmap_lock); 808 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 809 "%s: %d %lx-%lx %s failed %d\n", __func__, 810 alloc->pid, vma->vm_start, vma->vm_end, 811 failure_string, ret); 812 return ret; 813 } 814 815 816 void binder_alloc_deferred_release(struct binder_alloc *alloc) 817 { 818 struct rb_node *n; 819 int buffers, page_count; 820 struct binder_buffer *buffer; 821 822 buffers = 0; 823 mutex_lock(&alloc->mutex); 824 BUG_ON(alloc->vma_addr && 825 vma_lookup(alloc->vma_vm_mm, alloc->vma_addr)); 826 827 while ((n = rb_first(&alloc->allocated_buffers))) { 828 buffer = rb_entry(n, struct binder_buffer, rb_node); 829 830 /* Transaction should already have been freed */ 831 BUG_ON(buffer->transaction); 832 833 if (buffer->clear_on_free) { 834 binder_alloc_clear_buf(alloc, buffer); 835 buffer->clear_on_free = false; 836 } 837 binder_free_buf_locked(alloc, buffer); 838 buffers++; 839 } 840 841 while (!list_empty(&alloc->buffers)) { 842 buffer = list_first_entry(&alloc->buffers, 843 struct binder_buffer, entry); 844 WARN_ON(!buffer->free); 845 846 list_del(&buffer->entry); 847 WARN_ON_ONCE(!list_empty(&alloc->buffers)); 848 kfree(buffer); 849 } 850 851 page_count = 0; 852 if (alloc->pages) { 853 int i; 854 855 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 856 void __user *page_addr; 857 bool on_lru; 858 859 if (!alloc->pages[i].page_ptr) 860 continue; 861 862 on_lru = list_lru_del(&binder_alloc_lru, 863 &alloc->pages[i].lru); 864 page_addr = alloc->buffer + i * PAGE_SIZE; 865 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 866 "%s: %d: page %d at %pK %s\n", 867 __func__, alloc->pid, i, page_addr, 868 on_lru ? "on lru" : "active"); 869 __free_page(alloc->pages[i].page_ptr); 870 page_count++; 871 } 872 kfree(alloc->pages); 873 } 874 mutex_unlock(&alloc->mutex); 875 if (alloc->vma_vm_mm) 876 mmdrop(alloc->vma_vm_mm); 877 878 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE, 879 "%s: %d buffers %d, pages %d\n", 880 __func__, alloc->pid, buffers, page_count); 881 } 882 883 static void print_binder_buffer(struct seq_file *m, const char *prefix, 884 struct binder_buffer *buffer) 885 { 886 seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n", 887 prefix, buffer->debug_id, buffer->user_data, 888 buffer->data_size, buffer->offsets_size, 889 buffer->extra_buffers_size, 890 buffer->transaction ? "active" : "delivered"); 891 } 892 893 /** 894 * binder_alloc_print_allocated() - print buffer info 895 * @m: seq_file for output via seq_printf() 896 * @alloc: binder_alloc for this proc 897 * 898 * Prints information about every buffer associated with 899 * the binder_alloc state to the given seq_file 900 */ 901 void binder_alloc_print_allocated(struct seq_file *m, 902 struct binder_alloc *alloc) 903 { 904 struct rb_node *n; 905 906 mutex_lock(&alloc->mutex); 907 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 908 print_binder_buffer(m, " buffer", 909 rb_entry(n, struct binder_buffer, rb_node)); 910 mutex_unlock(&alloc->mutex); 911 } 912 913 /** 914 * binder_alloc_print_pages() - print page usage 915 * @m: seq_file for output via seq_printf() 916 * @alloc: binder_alloc for this proc 917 */ 918 void binder_alloc_print_pages(struct seq_file *m, 919 struct binder_alloc *alloc) 920 { 921 struct binder_lru_page *page; 922 int i; 923 int active = 0; 924 int lru = 0; 925 int free = 0; 926 927 mutex_lock(&alloc->mutex); 928 /* 929 * Make sure the binder_alloc is fully initialized, otherwise we might 930 * read inconsistent state. 931 */ 932 if (binder_alloc_get_vma(alloc) != NULL) { 933 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 934 page = &alloc->pages[i]; 935 if (!page->page_ptr) 936 free++; 937 else if (list_empty(&page->lru)) 938 active++; 939 else 940 lru++; 941 } 942 } 943 mutex_unlock(&alloc->mutex); 944 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free); 945 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high); 946 } 947 948 /** 949 * binder_alloc_get_allocated_count() - return count of buffers 950 * @alloc: binder_alloc for this proc 951 * 952 * Return: count of allocated buffers 953 */ 954 int binder_alloc_get_allocated_count(struct binder_alloc *alloc) 955 { 956 struct rb_node *n; 957 int count = 0; 958 959 mutex_lock(&alloc->mutex); 960 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 961 count++; 962 mutex_unlock(&alloc->mutex); 963 return count; 964 } 965 966 967 /** 968 * binder_alloc_vma_close() - invalidate address space 969 * @alloc: binder_alloc for this proc 970 * 971 * Called from binder_vma_close() when releasing address space. 972 * Clears alloc->vma to prevent new incoming transactions from 973 * allocating more buffers. 974 */ 975 void binder_alloc_vma_close(struct binder_alloc *alloc) 976 { 977 binder_alloc_set_vma(alloc, NULL); 978 } 979 980 /** 981 * binder_alloc_free_page() - shrinker callback to free pages 982 * @item: item to free 983 * @lock: lock protecting the item 984 * @cb_arg: callback argument 985 * 986 * Called from list_lru_walk() in binder_shrink_scan() to free 987 * up pages when the system is under memory pressure. 988 */ 989 enum lru_status binder_alloc_free_page(struct list_head *item, 990 struct list_lru_one *lru, 991 spinlock_t *lock, 992 void *cb_arg) 993 __must_hold(lock) 994 { 995 struct mm_struct *mm = NULL; 996 struct binder_lru_page *page = container_of(item, 997 struct binder_lru_page, 998 lru); 999 struct binder_alloc *alloc; 1000 uintptr_t page_addr; 1001 size_t index; 1002 struct vm_area_struct *vma; 1003 1004 alloc = page->alloc; 1005 if (!mutex_trylock(&alloc->mutex)) 1006 goto err_get_alloc_mutex_failed; 1007 1008 if (!page->page_ptr) 1009 goto err_page_already_freed; 1010 1011 index = page - alloc->pages; 1012 page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE; 1013 1014 mm = alloc->vma_vm_mm; 1015 if (!mmget_not_zero(mm)) 1016 goto err_mmget; 1017 if (!mmap_read_trylock(mm)) 1018 goto err_mmap_read_lock_failed; 1019 vma = binder_alloc_get_vma(alloc); 1020 1021 list_lru_isolate(lru, item); 1022 spin_unlock(lock); 1023 1024 if (vma) { 1025 trace_binder_unmap_user_start(alloc, index); 1026 1027 zap_page_range(vma, page_addr, PAGE_SIZE); 1028 1029 trace_binder_unmap_user_end(alloc, index); 1030 } 1031 mmap_read_unlock(mm); 1032 mmput_async(mm); 1033 1034 trace_binder_unmap_kernel_start(alloc, index); 1035 1036 __free_page(page->page_ptr); 1037 page->page_ptr = NULL; 1038 1039 trace_binder_unmap_kernel_end(alloc, index); 1040 1041 spin_lock(lock); 1042 mutex_unlock(&alloc->mutex); 1043 return LRU_REMOVED_RETRY; 1044 1045 err_mmap_read_lock_failed: 1046 mmput_async(mm); 1047 err_mmget: 1048 err_page_already_freed: 1049 mutex_unlock(&alloc->mutex); 1050 err_get_alloc_mutex_failed: 1051 return LRU_SKIP; 1052 } 1053 1054 static unsigned long 1055 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1056 { 1057 return list_lru_count(&binder_alloc_lru); 1058 } 1059 1060 static unsigned long 1061 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1062 { 1063 return list_lru_walk(&binder_alloc_lru, binder_alloc_free_page, 1064 NULL, sc->nr_to_scan); 1065 } 1066 1067 static struct shrinker binder_shrinker = { 1068 .count_objects = binder_shrink_count, 1069 .scan_objects = binder_shrink_scan, 1070 .seeks = DEFAULT_SEEKS, 1071 }; 1072 1073 /** 1074 * binder_alloc_init() - called by binder_open() for per-proc initialization 1075 * @alloc: binder_alloc for this proc 1076 * 1077 * Called from binder_open() to initialize binder_alloc fields for 1078 * new binder proc 1079 */ 1080 void binder_alloc_init(struct binder_alloc *alloc) 1081 { 1082 alloc->pid = current->group_leader->pid; 1083 mutex_init(&alloc->mutex); 1084 INIT_LIST_HEAD(&alloc->buffers); 1085 } 1086 1087 int binder_alloc_shrinker_init(void) 1088 { 1089 int ret = list_lru_init(&binder_alloc_lru); 1090 1091 if (ret == 0) { 1092 ret = register_shrinker(&binder_shrinker, "android-binder"); 1093 if (ret) 1094 list_lru_destroy(&binder_alloc_lru); 1095 } 1096 return ret; 1097 } 1098 1099 /** 1100 * check_buffer() - verify that buffer/offset is safe to access 1101 * @alloc: binder_alloc for this proc 1102 * @buffer: binder buffer to be accessed 1103 * @offset: offset into @buffer data 1104 * @bytes: bytes to access from offset 1105 * 1106 * Check that the @offset/@bytes are within the size of the given 1107 * @buffer and that the buffer is currently active and not freeable. 1108 * Offsets must also be multiples of sizeof(u32). The kernel is 1109 * allowed to touch the buffer in two cases: 1110 * 1111 * 1) when the buffer is being created: 1112 * (buffer->free == 0 && buffer->allow_user_free == 0) 1113 * 2) when the buffer is being torn down: 1114 * (buffer->free == 0 && buffer->transaction == NULL). 1115 * 1116 * Return: true if the buffer is safe to access 1117 */ 1118 static inline bool check_buffer(struct binder_alloc *alloc, 1119 struct binder_buffer *buffer, 1120 binder_size_t offset, size_t bytes) 1121 { 1122 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer); 1123 1124 return buffer_size >= bytes && 1125 offset <= buffer_size - bytes && 1126 IS_ALIGNED(offset, sizeof(u32)) && 1127 !buffer->free && 1128 (!buffer->allow_user_free || !buffer->transaction); 1129 } 1130 1131 /** 1132 * binder_alloc_get_page() - get kernel pointer for given buffer offset 1133 * @alloc: binder_alloc for this proc 1134 * @buffer: binder buffer to be accessed 1135 * @buffer_offset: offset into @buffer data 1136 * @pgoffp: address to copy final page offset to 1137 * 1138 * Lookup the struct page corresponding to the address 1139 * at @buffer_offset into @buffer->user_data. If @pgoffp is not 1140 * NULL, the byte-offset into the page is written there. 1141 * 1142 * The caller is responsible to ensure that the offset points 1143 * to a valid address within the @buffer and that @buffer is 1144 * not freeable by the user. Since it can't be freed, we are 1145 * guaranteed that the corresponding elements of @alloc->pages[] 1146 * cannot change. 1147 * 1148 * Return: struct page 1149 */ 1150 static struct page *binder_alloc_get_page(struct binder_alloc *alloc, 1151 struct binder_buffer *buffer, 1152 binder_size_t buffer_offset, 1153 pgoff_t *pgoffp) 1154 { 1155 binder_size_t buffer_space_offset = buffer_offset + 1156 (buffer->user_data - alloc->buffer); 1157 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK; 1158 size_t index = buffer_space_offset >> PAGE_SHIFT; 1159 struct binder_lru_page *lru_page; 1160 1161 lru_page = &alloc->pages[index]; 1162 *pgoffp = pgoff; 1163 return lru_page->page_ptr; 1164 } 1165 1166 /** 1167 * binder_alloc_clear_buf() - zero out buffer 1168 * @alloc: binder_alloc for this proc 1169 * @buffer: binder buffer to be cleared 1170 * 1171 * memset the given buffer to 0 1172 */ 1173 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 1174 struct binder_buffer *buffer) 1175 { 1176 size_t bytes = binder_alloc_buffer_size(alloc, buffer); 1177 binder_size_t buffer_offset = 0; 1178 1179 while (bytes) { 1180 unsigned long size; 1181 struct page *page; 1182 pgoff_t pgoff; 1183 1184 page = binder_alloc_get_page(alloc, buffer, 1185 buffer_offset, &pgoff); 1186 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1187 memset_page(page, pgoff, 0, size); 1188 bytes -= size; 1189 buffer_offset += size; 1190 } 1191 } 1192 1193 /** 1194 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user 1195 * @alloc: binder_alloc for this proc 1196 * @buffer: binder buffer to be accessed 1197 * @buffer_offset: offset into @buffer data 1198 * @from: userspace pointer to source buffer 1199 * @bytes: bytes to copy 1200 * 1201 * Copy bytes from source userspace to target buffer. 1202 * 1203 * Return: bytes remaining to be copied 1204 */ 1205 unsigned long 1206 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc, 1207 struct binder_buffer *buffer, 1208 binder_size_t buffer_offset, 1209 const void __user *from, 1210 size_t bytes) 1211 { 1212 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1213 return bytes; 1214 1215 while (bytes) { 1216 unsigned long size; 1217 unsigned long ret; 1218 struct page *page; 1219 pgoff_t pgoff; 1220 void *kptr; 1221 1222 page = binder_alloc_get_page(alloc, buffer, 1223 buffer_offset, &pgoff); 1224 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1225 kptr = kmap_local_page(page) + pgoff; 1226 ret = copy_from_user(kptr, from, size); 1227 kunmap_local(kptr); 1228 if (ret) 1229 return bytes - size + ret; 1230 bytes -= size; 1231 from += size; 1232 buffer_offset += size; 1233 } 1234 return 0; 1235 } 1236 1237 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc, 1238 bool to_buffer, 1239 struct binder_buffer *buffer, 1240 binder_size_t buffer_offset, 1241 void *ptr, 1242 size_t bytes) 1243 { 1244 /* All copies must be 32-bit aligned and 32-bit size */ 1245 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1246 return -EINVAL; 1247 1248 while (bytes) { 1249 unsigned long size; 1250 struct page *page; 1251 pgoff_t pgoff; 1252 1253 page = binder_alloc_get_page(alloc, buffer, 1254 buffer_offset, &pgoff); 1255 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1256 if (to_buffer) 1257 memcpy_to_page(page, pgoff, ptr, size); 1258 else 1259 memcpy_from_page(ptr, page, pgoff, size); 1260 bytes -= size; 1261 pgoff = 0; 1262 ptr = ptr + size; 1263 buffer_offset += size; 1264 } 1265 return 0; 1266 } 1267 1268 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc, 1269 struct binder_buffer *buffer, 1270 binder_size_t buffer_offset, 1271 void *src, 1272 size_t bytes) 1273 { 1274 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset, 1275 src, bytes); 1276 } 1277 1278 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc, 1279 void *dest, 1280 struct binder_buffer *buffer, 1281 binder_size_t buffer_offset, 1282 size_t bytes) 1283 { 1284 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset, 1285 dest, bytes); 1286 } 1287 1288