1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3  *
4  * Android IPC Subsystem
5  *
6  * Copyright (C) 2007-2017 Google, Inc.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28 
29 struct list_lru binder_alloc_lru;
30 
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32 
33 enum {
34 	BINDER_DEBUG_USER_ERROR             = 1U << 0,
35 	BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
36 	BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
37 	BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40 
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42 		   uint, 0644);
43 
44 #define binder_alloc_debug(mask, x...) \
45 	do { \
46 		if (binder_alloc_debug_mask & mask) \
47 			pr_info_ratelimited(x); \
48 	} while (0)
49 
50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52 	return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54 
55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57 	return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59 
60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61 				       struct binder_buffer *buffer)
62 {
63 	if (list_is_last(&buffer->entry, &alloc->buffers))
64 		return alloc->buffer + alloc->buffer_size - buffer->user_data;
65 	return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67 
68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69 				      struct binder_buffer *new_buffer)
70 {
71 	struct rb_node **p = &alloc->free_buffers.rb_node;
72 	struct rb_node *parent = NULL;
73 	struct binder_buffer *buffer;
74 	size_t buffer_size;
75 	size_t new_buffer_size;
76 
77 	BUG_ON(!new_buffer->free);
78 
79 	new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80 
81 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82 		     "%d: add free buffer, size %zd, at %pK\n",
83 		      alloc->pid, new_buffer_size, new_buffer);
84 
85 	while (*p) {
86 		parent = *p;
87 		buffer = rb_entry(parent, struct binder_buffer, rb_node);
88 		BUG_ON(!buffer->free);
89 
90 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
91 
92 		if (new_buffer_size < buffer_size)
93 			p = &parent->rb_left;
94 		else
95 			p = &parent->rb_right;
96 	}
97 	rb_link_node(&new_buffer->rb_node, parent, p);
98 	rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100 
101 static void binder_insert_allocated_buffer_locked(
102 		struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104 	struct rb_node **p = &alloc->allocated_buffers.rb_node;
105 	struct rb_node *parent = NULL;
106 	struct binder_buffer *buffer;
107 
108 	BUG_ON(new_buffer->free);
109 
110 	while (*p) {
111 		parent = *p;
112 		buffer = rb_entry(parent, struct binder_buffer, rb_node);
113 		BUG_ON(buffer->free);
114 
115 		if (new_buffer->user_data < buffer->user_data)
116 			p = &parent->rb_left;
117 		else if (new_buffer->user_data > buffer->user_data)
118 			p = &parent->rb_right;
119 		else
120 			BUG();
121 	}
122 	rb_link_node(&new_buffer->rb_node, parent, p);
123 	rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125 
126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127 		struct binder_alloc *alloc,
128 		uintptr_t user_ptr)
129 {
130 	struct rb_node *n = alloc->allocated_buffers.rb_node;
131 	struct binder_buffer *buffer;
132 	void __user *uptr;
133 
134 	uptr = (void __user *)user_ptr;
135 
136 	while (n) {
137 		buffer = rb_entry(n, struct binder_buffer, rb_node);
138 		BUG_ON(buffer->free);
139 
140 		if (uptr < buffer->user_data)
141 			n = n->rb_left;
142 		else if (uptr > buffer->user_data)
143 			n = n->rb_right;
144 		else {
145 			/*
146 			 * Guard against user threads attempting to
147 			 * free the buffer when in use by kernel or
148 			 * after it's already been freed.
149 			 */
150 			if (!buffer->allow_user_free)
151 				return ERR_PTR(-EPERM);
152 			buffer->allow_user_free = 0;
153 			return buffer;
154 		}
155 	}
156 	return NULL;
157 }
158 
159 /**
160  * binder_alloc_prepare_to_free() - get buffer given user ptr
161  * @alloc:	binder_alloc for this proc
162  * @user_ptr:	User pointer to buffer data
163  *
164  * Validate userspace pointer to buffer data and return buffer corresponding to
165  * that user pointer. Search the rb tree for buffer that matches user data
166  * pointer.
167  *
168  * Return:	Pointer to buffer or NULL
169  */
170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
171 						   uintptr_t user_ptr)
172 {
173 	struct binder_buffer *buffer;
174 
175 	mutex_lock(&alloc->mutex);
176 	buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
177 	mutex_unlock(&alloc->mutex);
178 	return buffer;
179 }
180 
181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
182 				    void __user *start, void __user *end)
183 {
184 	void __user *page_addr;
185 	unsigned long user_page_addr;
186 	struct binder_lru_page *page;
187 	struct vm_area_struct *vma = NULL;
188 	struct mm_struct *mm = NULL;
189 	bool need_mm = false;
190 
191 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
192 		     "%d: %s pages %pK-%pK\n", alloc->pid,
193 		     allocate ? "allocate" : "free", start, end);
194 
195 	if (end <= start)
196 		return 0;
197 
198 	trace_binder_update_page_range(alloc, allocate, start, end);
199 
200 	if (allocate == 0)
201 		goto free_range;
202 
203 	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
204 		page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
205 		if (!page->page_ptr) {
206 			need_mm = true;
207 			break;
208 		}
209 	}
210 
211 	if (need_mm && mmget_not_zero(alloc->vma_vm_mm))
212 		mm = alloc->vma_vm_mm;
213 
214 	if (mm) {
215 		mmap_read_lock(mm);
216 		vma = alloc->vma;
217 	}
218 
219 	if (!vma && need_mm) {
220 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
221 				   "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
222 				   alloc->pid);
223 		goto err_no_vma;
224 	}
225 
226 	for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
227 		int ret;
228 		bool on_lru;
229 		size_t index;
230 
231 		index = (page_addr - alloc->buffer) / PAGE_SIZE;
232 		page = &alloc->pages[index];
233 
234 		if (page->page_ptr) {
235 			trace_binder_alloc_lru_start(alloc, index);
236 
237 			on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
238 			WARN_ON(!on_lru);
239 
240 			trace_binder_alloc_lru_end(alloc, index);
241 			continue;
242 		}
243 
244 		if (WARN_ON(!vma))
245 			goto err_page_ptr_cleared;
246 
247 		trace_binder_alloc_page_start(alloc, index);
248 		page->page_ptr = alloc_page(GFP_KERNEL |
249 					    __GFP_HIGHMEM |
250 					    __GFP_ZERO);
251 		if (!page->page_ptr) {
252 			pr_err("%d: binder_alloc_buf failed for page at %pK\n",
253 				alloc->pid, page_addr);
254 			goto err_alloc_page_failed;
255 		}
256 		page->alloc = alloc;
257 		INIT_LIST_HEAD(&page->lru);
258 
259 		user_page_addr = (uintptr_t)page_addr;
260 		ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
261 		if (ret) {
262 			pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
263 			       alloc->pid, user_page_addr);
264 			goto err_vm_insert_page_failed;
265 		}
266 
267 		if (index + 1 > alloc->pages_high)
268 			alloc->pages_high = index + 1;
269 
270 		trace_binder_alloc_page_end(alloc, index);
271 	}
272 	if (mm) {
273 		mmap_read_unlock(mm);
274 		mmput(mm);
275 	}
276 	return 0;
277 
278 free_range:
279 	for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
280 		bool ret;
281 		size_t index;
282 
283 		index = (page_addr - alloc->buffer) / PAGE_SIZE;
284 		page = &alloc->pages[index];
285 
286 		trace_binder_free_lru_start(alloc, index);
287 
288 		ret = list_lru_add(&binder_alloc_lru, &page->lru);
289 		WARN_ON(!ret);
290 
291 		trace_binder_free_lru_end(alloc, index);
292 		if (page_addr == start)
293 			break;
294 		continue;
295 
296 err_vm_insert_page_failed:
297 		__free_page(page->page_ptr);
298 		page->page_ptr = NULL;
299 err_alloc_page_failed:
300 err_page_ptr_cleared:
301 		if (page_addr == start)
302 			break;
303 	}
304 err_no_vma:
305 	if (mm) {
306 		mmap_read_unlock(mm);
307 		mmput(mm);
308 	}
309 	return vma ? -ENOMEM : -ESRCH;
310 }
311 
312 
313 static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
314 		struct vm_area_struct *vma)
315 {
316 	if (vma)
317 		alloc->vma_vm_mm = vma->vm_mm;
318 	/*
319 	 * If we see alloc->vma is not NULL, buffer data structures set up
320 	 * completely. Look at smp_rmb side binder_alloc_get_vma.
321 	 * We also want to guarantee new alloc->vma_vm_mm is always visible
322 	 * if alloc->vma is set.
323 	 */
324 	smp_wmb();
325 	alloc->vma = vma;
326 }
327 
328 static inline struct vm_area_struct *binder_alloc_get_vma(
329 		struct binder_alloc *alloc)
330 {
331 	struct vm_area_struct *vma = NULL;
332 
333 	if (alloc->vma) {
334 		/* Look at description in binder_alloc_set_vma */
335 		smp_rmb();
336 		vma = alloc->vma;
337 	}
338 	return vma;
339 }
340 
341 static void debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
342 {
343 	/*
344 	 * Find the amount and size of buffers allocated by the current caller;
345 	 * The idea is that once we cross the threshold, whoever is responsible
346 	 * for the low async space is likely to try to send another async txn,
347 	 * and at some point we'll catch them in the act. This is more efficient
348 	 * than keeping a map per pid.
349 	 */
350 	struct rb_node *n;
351 	struct binder_buffer *buffer;
352 	size_t total_alloc_size = 0;
353 	size_t num_buffers = 0;
354 
355 	for (n = rb_first(&alloc->allocated_buffers); n != NULL;
356 		 n = rb_next(n)) {
357 		buffer = rb_entry(n, struct binder_buffer, rb_node);
358 		if (buffer->pid != pid)
359 			continue;
360 		if (!buffer->async_transaction)
361 			continue;
362 		total_alloc_size += binder_alloc_buffer_size(alloc, buffer)
363 			+ sizeof(struct binder_buffer);
364 		num_buffers++;
365 	}
366 
367 	/*
368 	 * Warn if this pid has more than 50 transactions, or more than 50% of
369 	 * async space (which is 25% of total buffer size).
370 	 */
371 	if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
372 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
373 			     "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
374 			      alloc->pid, pid, num_buffers, total_alloc_size);
375 	}
376 }
377 
378 static struct binder_buffer *binder_alloc_new_buf_locked(
379 				struct binder_alloc *alloc,
380 				size_t data_size,
381 				size_t offsets_size,
382 				size_t extra_buffers_size,
383 				int is_async,
384 				int pid)
385 {
386 	struct rb_node *n = alloc->free_buffers.rb_node;
387 	struct binder_buffer *buffer;
388 	size_t buffer_size;
389 	struct rb_node *best_fit = NULL;
390 	void __user *has_page_addr;
391 	void __user *end_page_addr;
392 	size_t size, data_offsets_size;
393 	int ret;
394 
395 	if (!binder_alloc_get_vma(alloc)) {
396 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
397 				   "%d: binder_alloc_buf, no vma\n",
398 				   alloc->pid);
399 		return ERR_PTR(-ESRCH);
400 	}
401 
402 	data_offsets_size = ALIGN(data_size, sizeof(void *)) +
403 		ALIGN(offsets_size, sizeof(void *));
404 
405 	if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
406 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
407 				"%d: got transaction with invalid size %zd-%zd\n",
408 				alloc->pid, data_size, offsets_size);
409 		return ERR_PTR(-EINVAL);
410 	}
411 	size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
412 	if (size < data_offsets_size || size < extra_buffers_size) {
413 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
414 				"%d: got transaction with invalid extra_buffers_size %zd\n",
415 				alloc->pid, extra_buffers_size);
416 		return ERR_PTR(-EINVAL);
417 	}
418 	if (is_async &&
419 	    alloc->free_async_space < size + sizeof(struct binder_buffer)) {
420 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
421 			     "%d: binder_alloc_buf size %zd failed, no async space left\n",
422 			      alloc->pid, size);
423 		return ERR_PTR(-ENOSPC);
424 	}
425 
426 	/* Pad 0-size buffers so they get assigned unique addresses */
427 	size = max(size, sizeof(void *));
428 
429 	while (n) {
430 		buffer = rb_entry(n, struct binder_buffer, rb_node);
431 		BUG_ON(!buffer->free);
432 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
433 
434 		if (size < buffer_size) {
435 			best_fit = n;
436 			n = n->rb_left;
437 		} else if (size > buffer_size)
438 			n = n->rb_right;
439 		else {
440 			best_fit = n;
441 			break;
442 		}
443 	}
444 	if (best_fit == NULL) {
445 		size_t allocated_buffers = 0;
446 		size_t largest_alloc_size = 0;
447 		size_t total_alloc_size = 0;
448 		size_t free_buffers = 0;
449 		size_t largest_free_size = 0;
450 		size_t total_free_size = 0;
451 
452 		for (n = rb_first(&alloc->allocated_buffers); n != NULL;
453 		     n = rb_next(n)) {
454 			buffer = rb_entry(n, struct binder_buffer, rb_node);
455 			buffer_size = binder_alloc_buffer_size(alloc, buffer);
456 			allocated_buffers++;
457 			total_alloc_size += buffer_size;
458 			if (buffer_size > largest_alloc_size)
459 				largest_alloc_size = buffer_size;
460 		}
461 		for (n = rb_first(&alloc->free_buffers); n != NULL;
462 		     n = rb_next(n)) {
463 			buffer = rb_entry(n, struct binder_buffer, rb_node);
464 			buffer_size = binder_alloc_buffer_size(alloc, buffer);
465 			free_buffers++;
466 			total_free_size += buffer_size;
467 			if (buffer_size > largest_free_size)
468 				largest_free_size = buffer_size;
469 		}
470 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
471 				   "%d: binder_alloc_buf size %zd failed, no address space\n",
472 				   alloc->pid, size);
473 		binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
474 				   "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
475 				   total_alloc_size, allocated_buffers,
476 				   largest_alloc_size, total_free_size,
477 				   free_buffers, largest_free_size);
478 		return ERR_PTR(-ENOSPC);
479 	}
480 	if (n == NULL) {
481 		buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
482 		buffer_size = binder_alloc_buffer_size(alloc, buffer);
483 	}
484 
485 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
486 		     "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
487 		      alloc->pid, size, buffer, buffer_size);
488 
489 	has_page_addr = (void __user *)
490 		(((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
491 	WARN_ON(n && buffer_size != size);
492 	end_page_addr =
493 		(void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
494 	if (end_page_addr > has_page_addr)
495 		end_page_addr = has_page_addr;
496 	ret = binder_update_page_range(alloc, 1, (void __user *)
497 		PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
498 	if (ret)
499 		return ERR_PTR(ret);
500 
501 	if (buffer_size != size) {
502 		struct binder_buffer *new_buffer;
503 
504 		new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
505 		if (!new_buffer) {
506 			pr_err("%s: %d failed to alloc new buffer struct\n",
507 			       __func__, alloc->pid);
508 			goto err_alloc_buf_struct_failed;
509 		}
510 		new_buffer->user_data = (u8 __user *)buffer->user_data + size;
511 		list_add(&new_buffer->entry, &buffer->entry);
512 		new_buffer->free = 1;
513 		binder_insert_free_buffer(alloc, new_buffer);
514 	}
515 
516 	rb_erase(best_fit, &alloc->free_buffers);
517 	buffer->free = 0;
518 	buffer->allow_user_free = 0;
519 	binder_insert_allocated_buffer_locked(alloc, buffer);
520 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
521 		     "%d: binder_alloc_buf size %zd got %pK\n",
522 		      alloc->pid, size, buffer);
523 	buffer->data_size = data_size;
524 	buffer->offsets_size = offsets_size;
525 	buffer->async_transaction = is_async;
526 	buffer->extra_buffers_size = extra_buffers_size;
527 	buffer->pid = pid;
528 	if (is_async) {
529 		alloc->free_async_space -= size + sizeof(struct binder_buffer);
530 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
531 			     "%d: binder_alloc_buf size %zd async free %zd\n",
532 			      alloc->pid, size, alloc->free_async_space);
533 		if (alloc->free_async_space < alloc->buffer_size / 10) {
534 			/*
535 			 * Start detecting spammers once we have less than 20%
536 			 * of async space left (which is less than 10% of total
537 			 * buffer size).
538 			 */
539 			debug_low_async_space_locked(alloc, pid);
540 		}
541 	}
542 	return buffer;
543 
544 err_alloc_buf_struct_failed:
545 	binder_update_page_range(alloc, 0, (void __user *)
546 				 PAGE_ALIGN((uintptr_t)buffer->user_data),
547 				 end_page_addr);
548 	return ERR_PTR(-ENOMEM);
549 }
550 
551 /**
552  * binder_alloc_new_buf() - Allocate a new binder buffer
553  * @alloc:              binder_alloc for this proc
554  * @data_size:          size of user data buffer
555  * @offsets_size:       user specified buffer offset
556  * @extra_buffers_size: size of extra space for meta-data (eg, security context)
557  * @is_async:           buffer for async transaction
558  * @pid:				pid to attribute allocation to (used for debugging)
559  *
560  * Allocate a new buffer given the requested sizes. Returns
561  * the kernel version of the buffer pointer. The size allocated
562  * is the sum of the three given sizes (each rounded up to
563  * pointer-sized boundary)
564  *
565  * Return:	The allocated buffer or %NULL if error
566  */
567 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
568 					   size_t data_size,
569 					   size_t offsets_size,
570 					   size_t extra_buffers_size,
571 					   int is_async,
572 					   int pid)
573 {
574 	struct binder_buffer *buffer;
575 
576 	mutex_lock(&alloc->mutex);
577 	buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
578 					     extra_buffers_size, is_async, pid);
579 	mutex_unlock(&alloc->mutex);
580 	return buffer;
581 }
582 
583 static void __user *buffer_start_page(struct binder_buffer *buffer)
584 {
585 	return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
586 }
587 
588 static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
589 {
590 	return (void __user *)
591 		(((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
592 }
593 
594 static void binder_delete_free_buffer(struct binder_alloc *alloc,
595 				      struct binder_buffer *buffer)
596 {
597 	struct binder_buffer *prev, *next = NULL;
598 	bool to_free = true;
599 
600 	BUG_ON(alloc->buffers.next == &buffer->entry);
601 	prev = binder_buffer_prev(buffer);
602 	BUG_ON(!prev->free);
603 	if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
604 		to_free = false;
605 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
606 				   "%d: merge free, buffer %pK share page with %pK\n",
607 				   alloc->pid, buffer->user_data,
608 				   prev->user_data);
609 	}
610 
611 	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
612 		next = binder_buffer_next(buffer);
613 		if (buffer_start_page(next) == buffer_start_page(buffer)) {
614 			to_free = false;
615 			binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
616 					   "%d: merge free, buffer %pK share page with %pK\n",
617 					   alloc->pid,
618 					   buffer->user_data,
619 					   next->user_data);
620 		}
621 	}
622 
623 	if (PAGE_ALIGNED(buffer->user_data)) {
624 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
625 				   "%d: merge free, buffer start %pK is page aligned\n",
626 				   alloc->pid, buffer->user_data);
627 		to_free = false;
628 	}
629 
630 	if (to_free) {
631 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
632 				   "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
633 				   alloc->pid, buffer->user_data,
634 				   prev->user_data,
635 				   next ? next->user_data : NULL);
636 		binder_update_page_range(alloc, 0, buffer_start_page(buffer),
637 					 buffer_start_page(buffer) + PAGE_SIZE);
638 	}
639 	list_del(&buffer->entry);
640 	kfree(buffer);
641 }
642 
643 static void binder_free_buf_locked(struct binder_alloc *alloc,
644 				   struct binder_buffer *buffer)
645 {
646 	size_t size, buffer_size;
647 
648 	buffer_size = binder_alloc_buffer_size(alloc, buffer);
649 
650 	size = ALIGN(buffer->data_size, sizeof(void *)) +
651 		ALIGN(buffer->offsets_size, sizeof(void *)) +
652 		ALIGN(buffer->extra_buffers_size, sizeof(void *));
653 
654 	binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
655 		     "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
656 		      alloc->pid, buffer, size, buffer_size);
657 
658 	BUG_ON(buffer->free);
659 	BUG_ON(size > buffer_size);
660 	BUG_ON(buffer->transaction != NULL);
661 	BUG_ON(buffer->user_data < alloc->buffer);
662 	BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
663 
664 	if (buffer->async_transaction) {
665 		alloc->free_async_space += size + sizeof(struct binder_buffer);
666 
667 		binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
668 			     "%d: binder_free_buf size %zd async free %zd\n",
669 			      alloc->pid, size, alloc->free_async_space);
670 	}
671 
672 	binder_update_page_range(alloc, 0,
673 		(void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
674 		(void __user *)(((uintptr_t)
675 			  buffer->user_data + buffer_size) & PAGE_MASK));
676 
677 	rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
678 	buffer->free = 1;
679 	if (!list_is_last(&buffer->entry, &alloc->buffers)) {
680 		struct binder_buffer *next = binder_buffer_next(buffer);
681 
682 		if (next->free) {
683 			rb_erase(&next->rb_node, &alloc->free_buffers);
684 			binder_delete_free_buffer(alloc, next);
685 		}
686 	}
687 	if (alloc->buffers.next != &buffer->entry) {
688 		struct binder_buffer *prev = binder_buffer_prev(buffer);
689 
690 		if (prev->free) {
691 			binder_delete_free_buffer(alloc, buffer);
692 			rb_erase(&prev->rb_node, &alloc->free_buffers);
693 			buffer = prev;
694 		}
695 	}
696 	binder_insert_free_buffer(alloc, buffer);
697 }
698 
699 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
700 				   struct binder_buffer *buffer);
701 /**
702  * binder_alloc_free_buf() - free a binder buffer
703  * @alloc:	binder_alloc for this proc
704  * @buffer:	kernel pointer to buffer
705  *
706  * Free the buffer allocated via binder_alloc_new_buf()
707  */
708 void binder_alloc_free_buf(struct binder_alloc *alloc,
709 			    struct binder_buffer *buffer)
710 {
711 	/*
712 	 * We could eliminate the call to binder_alloc_clear_buf()
713 	 * from binder_alloc_deferred_release() by moving this to
714 	 * binder_alloc_free_buf_locked(). However, that could
715 	 * increase contention for the alloc mutex if clear_on_free
716 	 * is used frequently for large buffers. The mutex is not
717 	 * needed for correctness here.
718 	 */
719 	if (buffer->clear_on_free) {
720 		binder_alloc_clear_buf(alloc, buffer);
721 		buffer->clear_on_free = false;
722 	}
723 	mutex_lock(&alloc->mutex);
724 	binder_free_buf_locked(alloc, buffer);
725 	mutex_unlock(&alloc->mutex);
726 }
727 
728 /**
729  * binder_alloc_mmap_handler() - map virtual address space for proc
730  * @alloc:	alloc structure for this proc
731  * @vma:	vma passed to mmap()
732  *
733  * Called by binder_mmap() to initialize the space specified in
734  * vma for allocating binder buffers
735  *
736  * Return:
737  *      0 = success
738  *      -EBUSY = address space already mapped
739  *      -ENOMEM = failed to map memory to given address space
740  */
741 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
742 			      struct vm_area_struct *vma)
743 {
744 	int ret;
745 	const char *failure_string;
746 	struct binder_buffer *buffer;
747 
748 	mutex_lock(&binder_alloc_mmap_lock);
749 	if (alloc->buffer_size) {
750 		ret = -EBUSY;
751 		failure_string = "already mapped";
752 		goto err_already_mapped;
753 	}
754 	alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
755 				   SZ_4M);
756 	mutex_unlock(&binder_alloc_mmap_lock);
757 
758 	alloc->buffer = (void __user *)vma->vm_start;
759 
760 	alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
761 			       sizeof(alloc->pages[0]),
762 			       GFP_KERNEL);
763 	if (alloc->pages == NULL) {
764 		ret = -ENOMEM;
765 		failure_string = "alloc page array";
766 		goto err_alloc_pages_failed;
767 	}
768 
769 	buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
770 	if (!buffer) {
771 		ret = -ENOMEM;
772 		failure_string = "alloc buffer struct";
773 		goto err_alloc_buf_struct_failed;
774 	}
775 
776 	buffer->user_data = alloc->buffer;
777 	list_add(&buffer->entry, &alloc->buffers);
778 	buffer->free = 1;
779 	binder_insert_free_buffer(alloc, buffer);
780 	alloc->free_async_space = alloc->buffer_size / 2;
781 	binder_alloc_set_vma(alloc, vma);
782 	mmgrab(alloc->vma_vm_mm);
783 
784 	return 0;
785 
786 err_alloc_buf_struct_failed:
787 	kfree(alloc->pages);
788 	alloc->pages = NULL;
789 err_alloc_pages_failed:
790 	alloc->buffer = NULL;
791 	mutex_lock(&binder_alloc_mmap_lock);
792 	alloc->buffer_size = 0;
793 err_already_mapped:
794 	mutex_unlock(&binder_alloc_mmap_lock);
795 	binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
796 			   "%s: %d %lx-%lx %s failed %d\n", __func__,
797 			   alloc->pid, vma->vm_start, vma->vm_end,
798 			   failure_string, ret);
799 	return ret;
800 }
801 
802 
803 void binder_alloc_deferred_release(struct binder_alloc *alloc)
804 {
805 	struct rb_node *n;
806 	int buffers, page_count;
807 	struct binder_buffer *buffer;
808 
809 	buffers = 0;
810 	mutex_lock(&alloc->mutex);
811 	BUG_ON(alloc->vma);
812 
813 	while ((n = rb_first(&alloc->allocated_buffers))) {
814 		buffer = rb_entry(n, struct binder_buffer, rb_node);
815 
816 		/* Transaction should already have been freed */
817 		BUG_ON(buffer->transaction);
818 
819 		if (buffer->clear_on_free) {
820 			binder_alloc_clear_buf(alloc, buffer);
821 			buffer->clear_on_free = false;
822 		}
823 		binder_free_buf_locked(alloc, buffer);
824 		buffers++;
825 	}
826 
827 	while (!list_empty(&alloc->buffers)) {
828 		buffer = list_first_entry(&alloc->buffers,
829 					  struct binder_buffer, entry);
830 		WARN_ON(!buffer->free);
831 
832 		list_del(&buffer->entry);
833 		WARN_ON_ONCE(!list_empty(&alloc->buffers));
834 		kfree(buffer);
835 	}
836 
837 	page_count = 0;
838 	if (alloc->pages) {
839 		int i;
840 
841 		for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
842 			void __user *page_addr;
843 			bool on_lru;
844 
845 			if (!alloc->pages[i].page_ptr)
846 				continue;
847 
848 			on_lru = list_lru_del(&binder_alloc_lru,
849 					      &alloc->pages[i].lru);
850 			page_addr = alloc->buffer + i * PAGE_SIZE;
851 			binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
852 				     "%s: %d: page %d at %pK %s\n",
853 				     __func__, alloc->pid, i, page_addr,
854 				     on_lru ? "on lru" : "active");
855 			__free_page(alloc->pages[i].page_ptr);
856 			page_count++;
857 		}
858 		kfree(alloc->pages);
859 	}
860 	mutex_unlock(&alloc->mutex);
861 	if (alloc->vma_vm_mm)
862 		mmdrop(alloc->vma_vm_mm);
863 
864 	binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
865 		     "%s: %d buffers %d, pages %d\n",
866 		     __func__, alloc->pid, buffers, page_count);
867 }
868 
869 static void print_binder_buffer(struct seq_file *m, const char *prefix,
870 				struct binder_buffer *buffer)
871 {
872 	seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
873 		   prefix, buffer->debug_id, buffer->user_data,
874 		   buffer->data_size, buffer->offsets_size,
875 		   buffer->extra_buffers_size,
876 		   buffer->transaction ? "active" : "delivered");
877 }
878 
879 /**
880  * binder_alloc_print_allocated() - print buffer info
881  * @m:     seq_file for output via seq_printf()
882  * @alloc: binder_alloc for this proc
883  *
884  * Prints information about every buffer associated with
885  * the binder_alloc state to the given seq_file
886  */
887 void binder_alloc_print_allocated(struct seq_file *m,
888 				  struct binder_alloc *alloc)
889 {
890 	struct rb_node *n;
891 
892 	mutex_lock(&alloc->mutex);
893 	for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
894 		print_binder_buffer(m, "  buffer",
895 				    rb_entry(n, struct binder_buffer, rb_node));
896 	mutex_unlock(&alloc->mutex);
897 }
898 
899 /**
900  * binder_alloc_print_pages() - print page usage
901  * @m:     seq_file for output via seq_printf()
902  * @alloc: binder_alloc for this proc
903  */
904 void binder_alloc_print_pages(struct seq_file *m,
905 			      struct binder_alloc *alloc)
906 {
907 	struct binder_lru_page *page;
908 	int i;
909 	int active = 0;
910 	int lru = 0;
911 	int free = 0;
912 
913 	mutex_lock(&alloc->mutex);
914 	/*
915 	 * Make sure the binder_alloc is fully initialized, otherwise we might
916 	 * read inconsistent state.
917 	 */
918 	if (binder_alloc_get_vma(alloc) != NULL) {
919 		for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
920 			page = &alloc->pages[i];
921 			if (!page->page_ptr)
922 				free++;
923 			else if (list_empty(&page->lru))
924 				active++;
925 			else
926 				lru++;
927 		}
928 	}
929 	mutex_unlock(&alloc->mutex);
930 	seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
931 	seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
932 }
933 
934 /**
935  * binder_alloc_get_allocated_count() - return count of buffers
936  * @alloc: binder_alloc for this proc
937  *
938  * Return: count of allocated buffers
939  */
940 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
941 {
942 	struct rb_node *n;
943 	int count = 0;
944 
945 	mutex_lock(&alloc->mutex);
946 	for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
947 		count++;
948 	mutex_unlock(&alloc->mutex);
949 	return count;
950 }
951 
952 
953 /**
954  * binder_alloc_vma_close() - invalidate address space
955  * @alloc: binder_alloc for this proc
956  *
957  * Called from binder_vma_close() when releasing address space.
958  * Clears alloc->vma to prevent new incoming transactions from
959  * allocating more buffers.
960  */
961 void binder_alloc_vma_close(struct binder_alloc *alloc)
962 {
963 	binder_alloc_set_vma(alloc, NULL);
964 }
965 
966 /**
967  * binder_alloc_free_page() - shrinker callback to free pages
968  * @item:   item to free
969  * @lock:   lock protecting the item
970  * @cb_arg: callback argument
971  *
972  * Called from list_lru_walk() in binder_shrink_scan() to free
973  * up pages when the system is under memory pressure.
974  */
975 enum lru_status binder_alloc_free_page(struct list_head *item,
976 				       struct list_lru_one *lru,
977 				       spinlock_t *lock,
978 				       void *cb_arg)
979 	__must_hold(lock)
980 {
981 	struct mm_struct *mm = NULL;
982 	struct binder_lru_page *page = container_of(item,
983 						    struct binder_lru_page,
984 						    lru);
985 	struct binder_alloc *alloc;
986 	uintptr_t page_addr;
987 	size_t index;
988 	struct vm_area_struct *vma;
989 
990 	alloc = page->alloc;
991 	if (!mutex_trylock(&alloc->mutex))
992 		goto err_get_alloc_mutex_failed;
993 
994 	if (!page->page_ptr)
995 		goto err_page_already_freed;
996 
997 	index = page - alloc->pages;
998 	page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
999 
1000 	mm = alloc->vma_vm_mm;
1001 	if (!mmget_not_zero(mm))
1002 		goto err_mmget;
1003 	if (!mmap_read_trylock(mm))
1004 		goto err_mmap_read_lock_failed;
1005 	vma = binder_alloc_get_vma(alloc);
1006 
1007 	list_lru_isolate(lru, item);
1008 	spin_unlock(lock);
1009 
1010 	if (vma) {
1011 		trace_binder_unmap_user_start(alloc, index);
1012 
1013 		zap_page_range(vma, page_addr, PAGE_SIZE);
1014 
1015 		trace_binder_unmap_user_end(alloc, index);
1016 	}
1017 	mmap_read_unlock(mm);
1018 	mmput_async(mm);
1019 
1020 	trace_binder_unmap_kernel_start(alloc, index);
1021 
1022 	__free_page(page->page_ptr);
1023 	page->page_ptr = NULL;
1024 
1025 	trace_binder_unmap_kernel_end(alloc, index);
1026 
1027 	spin_lock(lock);
1028 	mutex_unlock(&alloc->mutex);
1029 	return LRU_REMOVED_RETRY;
1030 
1031 err_mmap_read_lock_failed:
1032 	mmput_async(mm);
1033 err_mmget:
1034 err_page_already_freed:
1035 	mutex_unlock(&alloc->mutex);
1036 err_get_alloc_mutex_failed:
1037 	return LRU_SKIP;
1038 }
1039 
1040 static unsigned long
1041 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1042 {
1043 	unsigned long ret = list_lru_count(&binder_alloc_lru);
1044 	return ret;
1045 }
1046 
1047 static unsigned long
1048 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1049 {
1050 	unsigned long ret;
1051 
1052 	ret = list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
1053 			    NULL, sc->nr_to_scan);
1054 	return ret;
1055 }
1056 
1057 static struct shrinker binder_shrinker = {
1058 	.count_objects = binder_shrink_count,
1059 	.scan_objects = binder_shrink_scan,
1060 	.seeks = DEFAULT_SEEKS,
1061 };
1062 
1063 /**
1064  * binder_alloc_init() - called by binder_open() for per-proc initialization
1065  * @alloc: binder_alloc for this proc
1066  *
1067  * Called from binder_open() to initialize binder_alloc fields for
1068  * new binder proc
1069  */
1070 void binder_alloc_init(struct binder_alloc *alloc)
1071 {
1072 	alloc->pid = current->group_leader->pid;
1073 	mutex_init(&alloc->mutex);
1074 	INIT_LIST_HEAD(&alloc->buffers);
1075 }
1076 
1077 int binder_alloc_shrinker_init(void)
1078 {
1079 	int ret = list_lru_init(&binder_alloc_lru);
1080 
1081 	if (ret == 0) {
1082 		ret = register_shrinker(&binder_shrinker);
1083 		if (ret)
1084 			list_lru_destroy(&binder_alloc_lru);
1085 	}
1086 	return ret;
1087 }
1088 
1089 /**
1090  * check_buffer() - verify that buffer/offset is safe to access
1091  * @alloc: binder_alloc for this proc
1092  * @buffer: binder buffer to be accessed
1093  * @offset: offset into @buffer data
1094  * @bytes: bytes to access from offset
1095  *
1096  * Check that the @offset/@bytes are within the size of the given
1097  * @buffer and that the buffer is currently active and not freeable.
1098  * Offsets must also be multiples of sizeof(u32). The kernel is
1099  * allowed to touch the buffer in two cases:
1100  *
1101  * 1) when the buffer is being created:
1102  *     (buffer->free == 0 && buffer->allow_user_free == 0)
1103  * 2) when the buffer is being torn down:
1104  *     (buffer->free == 0 && buffer->transaction == NULL).
1105  *
1106  * Return: true if the buffer is safe to access
1107  */
1108 static inline bool check_buffer(struct binder_alloc *alloc,
1109 				struct binder_buffer *buffer,
1110 				binder_size_t offset, size_t bytes)
1111 {
1112 	size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1113 
1114 	return buffer_size >= bytes &&
1115 		offset <= buffer_size - bytes &&
1116 		IS_ALIGNED(offset, sizeof(u32)) &&
1117 		!buffer->free &&
1118 		(!buffer->allow_user_free || !buffer->transaction);
1119 }
1120 
1121 /**
1122  * binder_alloc_get_page() - get kernel pointer for given buffer offset
1123  * @alloc: binder_alloc for this proc
1124  * @buffer: binder buffer to be accessed
1125  * @buffer_offset: offset into @buffer data
1126  * @pgoffp: address to copy final page offset to
1127  *
1128  * Lookup the struct page corresponding to the address
1129  * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1130  * NULL, the byte-offset into the page is written there.
1131  *
1132  * The caller is responsible to ensure that the offset points
1133  * to a valid address within the @buffer and that @buffer is
1134  * not freeable by the user. Since it can't be freed, we are
1135  * guaranteed that the corresponding elements of @alloc->pages[]
1136  * cannot change.
1137  *
1138  * Return: struct page
1139  */
1140 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1141 					  struct binder_buffer *buffer,
1142 					  binder_size_t buffer_offset,
1143 					  pgoff_t *pgoffp)
1144 {
1145 	binder_size_t buffer_space_offset = buffer_offset +
1146 		(buffer->user_data - alloc->buffer);
1147 	pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1148 	size_t index = buffer_space_offset >> PAGE_SHIFT;
1149 	struct binder_lru_page *lru_page;
1150 
1151 	lru_page = &alloc->pages[index];
1152 	*pgoffp = pgoff;
1153 	return lru_page->page_ptr;
1154 }
1155 
1156 /**
1157  * binder_alloc_clear_buf() - zero out buffer
1158  * @alloc: binder_alloc for this proc
1159  * @buffer: binder buffer to be cleared
1160  *
1161  * memset the given buffer to 0
1162  */
1163 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1164 				   struct binder_buffer *buffer)
1165 {
1166 	size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1167 	binder_size_t buffer_offset = 0;
1168 
1169 	while (bytes) {
1170 		unsigned long size;
1171 		struct page *page;
1172 		pgoff_t pgoff;
1173 		void *kptr;
1174 
1175 		page = binder_alloc_get_page(alloc, buffer,
1176 					     buffer_offset, &pgoff);
1177 		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1178 		kptr = kmap(page) + pgoff;
1179 		memset(kptr, 0, size);
1180 		kunmap(page);
1181 		bytes -= size;
1182 		buffer_offset += size;
1183 	}
1184 }
1185 
1186 /**
1187  * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1188  * @alloc: binder_alloc for this proc
1189  * @buffer: binder buffer to be accessed
1190  * @buffer_offset: offset into @buffer data
1191  * @from: userspace pointer to source buffer
1192  * @bytes: bytes to copy
1193  *
1194  * Copy bytes from source userspace to target buffer.
1195  *
1196  * Return: bytes remaining to be copied
1197  */
1198 unsigned long
1199 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1200 				 struct binder_buffer *buffer,
1201 				 binder_size_t buffer_offset,
1202 				 const void __user *from,
1203 				 size_t bytes)
1204 {
1205 	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1206 		return bytes;
1207 
1208 	while (bytes) {
1209 		unsigned long size;
1210 		unsigned long ret;
1211 		struct page *page;
1212 		pgoff_t pgoff;
1213 		void *kptr;
1214 
1215 		page = binder_alloc_get_page(alloc, buffer,
1216 					     buffer_offset, &pgoff);
1217 		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1218 		kptr = kmap(page) + pgoff;
1219 		ret = copy_from_user(kptr, from, size);
1220 		kunmap(page);
1221 		if (ret)
1222 			return bytes - size + ret;
1223 		bytes -= size;
1224 		from += size;
1225 		buffer_offset += size;
1226 	}
1227 	return 0;
1228 }
1229 
1230 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1231 				       bool to_buffer,
1232 				       struct binder_buffer *buffer,
1233 				       binder_size_t buffer_offset,
1234 				       void *ptr,
1235 				       size_t bytes)
1236 {
1237 	/* All copies must be 32-bit aligned and 32-bit size */
1238 	if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1239 		return -EINVAL;
1240 
1241 	while (bytes) {
1242 		unsigned long size;
1243 		struct page *page;
1244 		pgoff_t pgoff;
1245 		void *tmpptr;
1246 		void *base_ptr;
1247 
1248 		page = binder_alloc_get_page(alloc, buffer,
1249 					     buffer_offset, &pgoff);
1250 		size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1251 		base_ptr = kmap_atomic(page);
1252 		tmpptr = base_ptr + pgoff;
1253 		if (to_buffer)
1254 			memcpy(tmpptr, ptr, size);
1255 		else
1256 			memcpy(ptr, tmpptr, size);
1257 		/*
1258 		 * kunmap_atomic() takes care of flushing the cache
1259 		 * if this device has VIVT cache arch
1260 		 */
1261 		kunmap_atomic(base_ptr);
1262 		bytes -= size;
1263 		pgoff = 0;
1264 		ptr = ptr + size;
1265 		buffer_offset += size;
1266 	}
1267 	return 0;
1268 }
1269 
1270 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1271 				struct binder_buffer *buffer,
1272 				binder_size_t buffer_offset,
1273 				void *src,
1274 				size_t bytes)
1275 {
1276 	return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1277 					   src, bytes);
1278 }
1279 
1280 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1281 				  void *dest,
1282 				  struct binder_buffer *buffer,
1283 				  binder_size_t buffer_offset,
1284 				  size_t bytes)
1285 {
1286 	return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1287 					   dest, bytes);
1288 }
1289 
1290