1 // SPDX-License-Identifier: GPL-2.0-only 2 /* binder_alloc.c 3 * 4 * Android IPC Subsystem 5 * 6 * Copyright (C) 2007-2017 Google, Inc. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/list.h> 12 #include <linux/sched/mm.h> 13 #include <linux/module.h> 14 #include <linux/rtmutex.h> 15 #include <linux/rbtree.h> 16 #include <linux/seq_file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/list_lru.h> 21 #include <linux/ratelimit.h> 22 #include <asm/cacheflush.h> 23 #include <linux/uaccess.h> 24 #include <linux/highmem.h> 25 #include <linux/sizes.h> 26 #include "binder_alloc.h" 27 #include "binder_trace.h" 28 29 struct list_lru binder_alloc_lru; 30 31 static DEFINE_MUTEX(binder_alloc_mmap_lock); 32 33 enum { 34 BINDER_DEBUG_USER_ERROR = 1U << 0, 35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1, 36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2, 37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3, 38 }; 39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR; 40 41 module_param_named(debug_mask, binder_alloc_debug_mask, 42 uint, 0644); 43 44 #define binder_alloc_debug(mask, x...) \ 45 do { \ 46 if (binder_alloc_debug_mask & mask) \ 47 pr_info_ratelimited(x); \ 48 } while (0) 49 50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer) 51 { 52 return list_entry(buffer->entry.next, struct binder_buffer, entry); 53 } 54 55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer) 56 { 57 return list_entry(buffer->entry.prev, struct binder_buffer, entry); 58 } 59 60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc, 61 struct binder_buffer *buffer) 62 { 63 if (list_is_last(&buffer->entry, &alloc->buffers)) 64 return alloc->buffer + alloc->buffer_size - buffer->user_data; 65 return binder_buffer_next(buffer)->user_data - buffer->user_data; 66 } 67 68 static void binder_insert_free_buffer(struct binder_alloc *alloc, 69 struct binder_buffer *new_buffer) 70 { 71 struct rb_node **p = &alloc->free_buffers.rb_node; 72 struct rb_node *parent = NULL; 73 struct binder_buffer *buffer; 74 size_t buffer_size; 75 size_t new_buffer_size; 76 77 BUG_ON(!new_buffer->free); 78 79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer); 80 81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 82 "%d: add free buffer, size %zd, at %pK\n", 83 alloc->pid, new_buffer_size, new_buffer); 84 85 while (*p) { 86 parent = *p; 87 buffer = rb_entry(parent, struct binder_buffer, rb_node); 88 BUG_ON(!buffer->free); 89 90 buffer_size = binder_alloc_buffer_size(alloc, buffer); 91 92 if (new_buffer_size < buffer_size) 93 p = &parent->rb_left; 94 else 95 p = &parent->rb_right; 96 } 97 rb_link_node(&new_buffer->rb_node, parent, p); 98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers); 99 } 100 101 static void binder_insert_allocated_buffer_locked( 102 struct binder_alloc *alloc, struct binder_buffer *new_buffer) 103 { 104 struct rb_node **p = &alloc->allocated_buffers.rb_node; 105 struct rb_node *parent = NULL; 106 struct binder_buffer *buffer; 107 108 BUG_ON(new_buffer->free); 109 110 while (*p) { 111 parent = *p; 112 buffer = rb_entry(parent, struct binder_buffer, rb_node); 113 BUG_ON(buffer->free); 114 115 if (new_buffer->user_data < buffer->user_data) 116 p = &parent->rb_left; 117 else if (new_buffer->user_data > buffer->user_data) 118 p = &parent->rb_right; 119 else 120 BUG(); 121 } 122 rb_link_node(&new_buffer->rb_node, parent, p); 123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers); 124 } 125 126 static struct binder_buffer *binder_alloc_prepare_to_free_locked( 127 struct binder_alloc *alloc, 128 uintptr_t user_ptr) 129 { 130 struct rb_node *n = alloc->allocated_buffers.rb_node; 131 struct binder_buffer *buffer; 132 void __user *uptr; 133 134 uptr = (void __user *)user_ptr; 135 136 while (n) { 137 buffer = rb_entry(n, struct binder_buffer, rb_node); 138 BUG_ON(buffer->free); 139 140 if (uptr < buffer->user_data) 141 n = n->rb_left; 142 else if (uptr > buffer->user_data) 143 n = n->rb_right; 144 else { 145 /* 146 * Guard against user threads attempting to 147 * free the buffer when in use by kernel or 148 * after it's already been freed. 149 */ 150 if (!buffer->allow_user_free) 151 return ERR_PTR(-EPERM); 152 buffer->allow_user_free = 0; 153 return buffer; 154 } 155 } 156 return NULL; 157 } 158 159 /** 160 * binder_alloc_prepare_to_free() - get buffer given user ptr 161 * @alloc: binder_alloc for this proc 162 * @user_ptr: User pointer to buffer data 163 * 164 * Validate userspace pointer to buffer data and return buffer corresponding to 165 * that user pointer. Search the rb tree for buffer that matches user data 166 * pointer. 167 * 168 * Return: Pointer to buffer or NULL 169 */ 170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc, 171 uintptr_t user_ptr) 172 { 173 struct binder_buffer *buffer; 174 175 mutex_lock(&alloc->mutex); 176 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr); 177 mutex_unlock(&alloc->mutex); 178 return buffer; 179 } 180 181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate, 182 void __user *start, void __user *end) 183 { 184 void __user *page_addr; 185 unsigned long user_page_addr; 186 struct binder_lru_page *page; 187 struct vm_area_struct *vma = NULL; 188 struct mm_struct *mm = NULL; 189 bool need_mm = false; 190 191 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 192 "%d: %s pages %pK-%pK\n", alloc->pid, 193 allocate ? "allocate" : "free", start, end); 194 195 if (end <= start) 196 return 0; 197 198 trace_binder_update_page_range(alloc, allocate, start, end); 199 200 if (allocate == 0) 201 goto free_range; 202 203 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 204 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE]; 205 if (!page->page_ptr) { 206 need_mm = true; 207 break; 208 } 209 } 210 211 if (need_mm && mmget_not_zero(alloc->mm)) 212 mm = alloc->mm; 213 214 if (mm) { 215 mmap_write_lock(mm); 216 vma = alloc->vma; 217 } 218 219 if (!vma && need_mm) { 220 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 221 "%d: binder_alloc_buf failed to map pages in userspace, no vma\n", 222 alloc->pid); 223 goto err_no_vma; 224 } 225 226 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 227 int ret; 228 bool on_lru; 229 size_t index; 230 231 index = (page_addr - alloc->buffer) / PAGE_SIZE; 232 page = &alloc->pages[index]; 233 234 if (page->page_ptr) { 235 trace_binder_alloc_lru_start(alloc, index); 236 237 on_lru = list_lru_del(&binder_alloc_lru, &page->lru); 238 WARN_ON(!on_lru); 239 240 trace_binder_alloc_lru_end(alloc, index); 241 continue; 242 } 243 244 if (WARN_ON(!vma)) 245 goto err_page_ptr_cleared; 246 247 trace_binder_alloc_page_start(alloc, index); 248 page->page_ptr = alloc_page(GFP_KERNEL | 249 __GFP_HIGHMEM | 250 __GFP_ZERO); 251 if (!page->page_ptr) { 252 pr_err("%d: binder_alloc_buf failed for page at %pK\n", 253 alloc->pid, page_addr); 254 goto err_alloc_page_failed; 255 } 256 page->alloc = alloc; 257 INIT_LIST_HEAD(&page->lru); 258 259 user_page_addr = (uintptr_t)page_addr; 260 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr); 261 if (ret) { 262 pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n", 263 alloc->pid, user_page_addr); 264 goto err_vm_insert_page_failed; 265 } 266 267 if (index + 1 > alloc->pages_high) 268 alloc->pages_high = index + 1; 269 270 trace_binder_alloc_page_end(alloc, index); 271 } 272 if (mm) { 273 mmap_write_unlock(mm); 274 mmput(mm); 275 } 276 return 0; 277 278 free_range: 279 for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) { 280 bool ret; 281 size_t index; 282 283 index = (page_addr - alloc->buffer) / PAGE_SIZE; 284 page = &alloc->pages[index]; 285 286 trace_binder_free_lru_start(alloc, index); 287 288 ret = list_lru_add(&binder_alloc_lru, &page->lru); 289 WARN_ON(!ret); 290 291 trace_binder_free_lru_end(alloc, index); 292 if (page_addr == start) 293 break; 294 continue; 295 296 err_vm_insert_page_failed: 297 __free_page(page->page_ptr); 298 page->page_ptr = NULL; 299 err_alloc_page_failed: 300 err_page_ptr_cleared: 301 if (page_addr == start) 302 break; 303 } 304 err_no_vma: 305 if (mm) { 306 mmap_write_unlock(mm); 307 mmput(mm); 308 } 309 return vma ? -ENOMEM : -ESRCH; 310 } 311 312 static inline void binder_alloc_set_vma(struct binder_alloc *alloc, 313 struct vm_area_struct *vma) 314 { 315 /* pairs with smp_load_acquire in binder_alloc_get_vma() */ 316 smp_store_release(&alloc->vma, vma); 317 } 318 319 static inline struct vm_area_struct *binder_alloc_get_vma( 320 struct binder_alloc *alloc) 321 { 322 /* pairs with smp_store_release in binder_alloc_set_vma() */ 323 return smp_load_acquire(&alloc->vma); 324 } 325 326 static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid) 327 { 328 /* 329 * Find the amount and size of buffers allocated by the current caller; 330 * The idea is that once we cross the threshold, whoever is responsible 331 * for the low async space is likely to try to send another async txn, 332 * and at some point we'll catch them in the act. This is more efficient 333 * than keeping a map per pid. 334 */ 335 struct rb_node *n; 336 struct binder_buffer *buffer; 337 size_t total_alloc_size = 0; 338 size_t num_buffers = 0; 339 340 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 341 n = rb_next(n)) { 342 buffer = rb_entry(n, struct binder_buffer, rb_node); 343 if (buffer->pid != pid) 344 continue; 345 if (!buffer->async_transaction) 346 continue; 347 total_alloc_size += binder_alloc_buffer_size(alloc, buffer) 348 + sizeof(struct binder_buffer); 349 num_buffers++; 350 } 351 352 /* 353 * Warn if this pid has more than 50 transactions, or more than 50% of 354 * async space (which is 25% of total buffer size). Oneway spam is only 355 * detected when the threshold is exceeded. 356 */ 357 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) { 358 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 359 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n", 360 alloc->pid, pid, num_buffers, total_alloc_size); 361 if (!alloc->oneway_spam_detected) { 362 alloc->oneway_spam_detected = true; 363 return true; 364 } 365 } 366 return false; 367 } 368 369 static struct binder_buffer *binder_alloc_new_buf_locked( 370 struct binder_alloc *alloc, 371 size_t data_size, 372 size_t offsets_size, 373 size_t extra_buffers_size, 374 int is_async, 375 int pid) 376 { 377 struct rb_node *n = alloc->free_buffers.rb_node; 378 struct binder_buffer *buffer; 379 size_t buffer_size; 380 struct rb_node *best_fit = NULL; 381 void __user *has_page_addr; 382 void __user *end_page_addr; 383 size_t size, data_offsets_size; 384 int ret; 385 386 /* Check binder_alloc is fully initialized */ 387 if (!binder_alloc_get_vma(alloc)) { 388 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 389 "%d: binder_alloc_buf, no vma\n", 390 alloc->pid); 391 return ERR_PTR(-ESRCH); 392 } 393 394 data_offsets_size = ALIGN(data_size, sizeof(void *)) + 395 ALIGN(offsets_size, sizeof(void *)); 396 397 if (data_offsets_size < data_size || data_offsets_size < offsets_size) { 398 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 399 "%d: got transaction with invalid size %zd-%zd\n", 400 alloc->pid, data_size, offsets_size); 401 return ERR_PTR(-EINVAL); 402 } 403 size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *)); 404 if (size < data_offsets_size || size < extra_buffers_size) { 405 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 406 "%d: got transaction with invalid extra_buffers_size %zd\n", 407 alloc->pid, extra_buffers_size); 408 return ERR_PTR(-EINVAL); 409 } 410 if (is_async && 411 alloc->free_async_space < size + sizeof(struct binder_buffer)) { 412 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 413 "%d: binder_alloc_buf size %zd failed, no async space left\n", 414 alloc->pid, size); 415 return ERR_PTR(-ENOSPC); 416 } 417 418 /* Pad 0-size buffers so they get assigned unique addresses */ 419 size = max(size, sizeof(void *)); 420 421 while (n) { 422 buffer = rb_entry(n, struct binder_buffer, rb_node); 423 BUG_ON(!buffer->free); 424 buffer_size = binder_alloc_buffer_size(alloc, buffer); 425 426 if (size < buffer_size) { 427 best_fit = n; 428 n = n->rb_left; 429 } else if (size > buffer_size) 430 n = n->rb_right; 431 else { 432 best_fit = n; 433 break; 434 } 435 } 436 if (best_fit == NULL) { 437 size_t allocated_buffers = 0; 438 size_t largest_alloc_size = 0; 439 size_t total_alloc_size = 0; 440 size_t free_buffers = 0; 441 size_t largest_free_size = 0; 442 size_t total_free_size = 0; 443 444 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 445 n = rb_next(n)) { 446 buffer = rb_entry(n, struct binder_buffer, rb_node); 447 buffer_size = binder_alloc_buffer_size(alloc, buffer); 448 allocated_buffers++; 449 total_alloc_size += buffer_size; 450 if (buffer_size > largest_alloc_size) 451 largest_alloc_size = buffer_size; 452 } 453 for (n = rb_first(&alloc->free_buffers); n != NULL; 454 n = rb_next(n)) { 455 buffer = rb_entry(n, struct binder_buffer, rb_node); 456 buffer_size = binder_alloc_buffer_size(alloc, buffer); 457 free_buffers++; 458 total_free_size += buffer_size; 459 if (buffer_size > largest_free_size) 460 largest_free_size = buffer_size; 461 } 462 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 463 "%d: binder_alloc_buf size %zd failed, no address space\n", 464 alloc->pid, size); 465 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 466 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n", 467 total_alloc_size, allocated_buffers, 468 largest_alloc_size, total_free_size, 469 free_buffers, largest_free_size); 470 return ERR_PTR(-ENOSPC); 471 } 472 if (n == NULL) { 473 buffer = rb_entry(best_fit, struct binder_buffer, rb_node); 474 buffer_size = binder_alloc_buffer_size(alloc, buffer); 475 } 476 477 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 478 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n", 479 alloc->pid, size, buffer, buffer_size); 480 481 has_page_addr = (void __user *) 482 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK); 483 WARN_ON(n && buffer_size != size); 484 end_page_addr = 485 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size); 486 if (end_page_addr > has_page_addr) 487 end_page_addr = has_page_addr; 488 ret = binder_update_page_range(alloc, 1, (void __user *) 489 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr); 490 if (ret) 491 return ERR_PTR(ret); 492 493 if (buffer_size != size) { 494 struct binder_buffer *new_buffer; 495 496 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 497 if (!new_buffer) { 498 pr_err("%s: %d failed to alloc new buffer struct\n", 499 __func__, alloc->pid); 500 goto err_alloc_buf_struct_failed; 501 } 502 new_buffer->user_data = (u8 __user *)buffer->user_data + size; 503 list_add(&new_buffer->entry, &buffer->entry); 504 new_buffer->free = 1; 505 binder_insert_free_buffer(alloc, new_buffer); 506 } 507 508 rb_erase(best_fit, &alloc->free_buffers); 509 buffer->free = 0; 510 buffer->allow_user_free = 0; 511 binder_insert_allocated_buffer_locked(alloc, buffer); 512 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 513 "%d: binder_alloc_buf size %zd got %pK\n", 514 alloc->pid, size, buffer); 515 buffer->data_size = data_size; 516 buffer->offsets_size = offsets_size; 517 buffer->async_transaction = is_async; 518 buffer->extra_buffers_size = extra_buffers_size; 519 buffer->pid = pid; 520 buffer->oneway_spam_suspect = false; 521 if (is_async) { 522 alloc->free_async_space -= size + sizeof(struct binder_buffer); 523 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 524 "%d: binder_alloc_buf size %zd async free %zd\n", 525 alloc->pid, size, alloc->free_async_space); 526 if (alloc->free_async_space < alloc->buffer_size / 10) { 527 /* 528 * Start detecting spammers once we have less than 20% 529 * of async space left (which is less than 10% of total 530 * buffer size). 531 */ 532 buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid); 533 } else { 534 alloc->oneway_spam_detected = false; 535 } 536 } 537 return buffer; 538 539 err_alloc_buf_struct_failed: 540 binder_update_page_range(alloc, 0, (void __user *) 541 PAGE_ALIGN((uintptr_t)buffer->user_data), 542 end_page_addr); 543 return ERR_PTR(-ENOMEM); 544 } 545 546 /** 547 * binder_alloc_new_buf() - Allocate a new binder buffer 548 * @alloc: binder_alloc for this proc 549 * @data_size: size of user data buffer 550 * @offsets_size: user specified buffer offset 551 * @extra_buffers_size: size of extra space for meta-data (eg, security context) 552 * @is_async: buffer for async transaction 553 * @pid: pid to attribute allocation to (used for debugging) 554 * 555 * Allocate a new buffer given the requested sizes. Returns 556 * the kernel version of the buffer pointer. The size allocated 557 * is the sum of the three given sizes (each rounded up to 558 * pointer-sized boundary) 559 * 560 * Return: The allocated buffer or %NULL if error 561 */ 562 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc, 563 size_t data_size, 564 size_t offsets_size, 565 size_t extra_buffers_size, 566 int is_async, 567 int pid) 568 { 569 struct binder_buffer *buffer; 570 571 mutex_lock(&alloc->mutex); 572 buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size, 573 extra_buffers_size, is_async, pid); 574 mutex_unlock(&alloc->mutex); 575 return buffer; 576 } 577 578 static void __user *buffer_start_page(struct binder_buffer *buffer) 579 { 580 return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK); 581 } 582 583 static void __user *prev_buffer_end_page(struct binder_buffer *buffer) 584 { 585 return (void __user *) 586 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK); 587 } 588 589 static void binder_delete_free_buffer(struct binder_alloc *alloc, 590 struct binder_buffer *buffer) 591 { 592 struct binder_buffer *prev, *next = NULL; 593 bool to_free = true; 594 595 BUG_ON(alloc->buffers.next == &buffer->entry); 596 prev = binder_buffer_prev(buffer); 597 BUG_ON(!prev->free); 598 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) { 599 to_free = false; 600 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 601 "%d: merge free, buffer %pK share page with %pK\n", 602 alloc->pid, buffer->user_data, 603 prev->user_data); 604 } 605 606 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 607 next = binder_buffer_next(buffer); 608 if (buffer_start_page(next) == buffer_start_page(buffer)) { 609 to_free = false; 610 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 611 "%d: merge free, buffer %pK share page with %pK\n", 612 alloc->pid, 613 buffer->user_data, 614 next->user_data); 615 } 616 } 617 618 if (PAGE_ALIGNED(buffer->user_data)) { 619 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 620 "%d: merge free, buffer start %pK is page aligned\n", 621 alloc->pid, buffer->user_data); 622 to_free = false; 623 } 624 625 if (to_free) { 626 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 627 "%d: merge free, buffer %pK do not share page with %pK or %pK\n", 628 alloc->pid, buffer->user_data, 629 prev->user_data, 630 next ? next->user_data : NULL); 631 binder_update_page_range(alloc, 0, buffer_start_page(buffer), 632 buffer_start_page(buffer) + PAGE_SIZE); 633 } 634 list_del(&buffer->entry); 635 kfree(buffer); 636 } 637 638 static void binder_free_buf_locked(struct binder_alloc *alloc, 639 struct binder_buffer *buffer) 640 { 641 size_t size, buffer_size; 642 643 buffer_size = binder_alloc_buffer_size(alloc, buffer); 644 645 size = ALIGN(buffer->data_size, sizeof(void *)) + 646 ALIGN(buffer->offsets_size, sizeof(void *)) + 647 ALIGN(buffer->extra_buffers_size, sizeof(void *)); 648 649 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 650 "%d: binder_free_buf %pK size %zd buffer_size %zd\n", 651 alloc->pid, buffer, size, buffer_size); 652 653 BUG_ON(buffer->free); 654 BUG_ON(size > buffer_size); 655 BUG_ON(buffer->transaction != NULL); 656 BUG_ON(buffer->user_data < alloc->buffer); 657 BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size); 658 659 if (buffer->async_transaction) { 660 alloc->free_async_space += buffer_size + sizeof(struct binder_buffer); 661 662 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 663 "%d: binder_free_buf size %zd async free %zd\n", 664 alloc->pid, size, alloc->free_async_space); 665 } 666 667 binder_update_page_range(alloc, 0, 668 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data), 669 (void __user *)(((uintptr_t) 670 buffer->user_data + buffer_size) & PAGE_MASK)); 671 672 rb_erase(&buffer->rb_node, &alloc->allocated_buffers); 673 buffer->free = 1; 674 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 675 struct binder_buffer *next = binder_buffer_next(buffer); 676 677 if (next->free) { 678 rb_erase(&next->rb_node, &alloc->free_buffers); 679 binder_delete_free_buffer(alloc, next); 680 } 681 } 682 if (alloc->buffers.next != &buffer->entry) { 683 struct binder_buffer *prev = binder_buffer_prev(buffer); 684 685 if (prev->free) { 686 binder_delete_free_buffer(alloc, buffer); 687 rb_erase(&prev->rb_node, &alloc->free_buffers); 688 buffer = prev; 689 } 690 } 691 binder_insert_free_buffer(alloc, buffer); 692 } 693 694 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 695 struct binder_buffer *buffer); 696 /** 697 * binder_alloc_free_buf() - free a binder buffer 698 * @alloc: binder_alloc for this proc 699 * @buffer: kernel pointer to buffer 700 * 701 * Free the buffer allocated via binder_alloc_new_buf() 702 */ 703 void binder_alloc_free_buf(struct binder_alloc *alloc, 704 struct binder_buffer *buffer) 705 { 706 /* 707 * We could eliminate the call to binder_alloc_clear_buf() 708 * from binder_alloc_deferred_release() by moving this to 709 * binder_alloc_free_buf_locked(). However, that could 710 * increase contention for the alloc mutex if clear_on_free 711 * is used frequently for large buffers. The mutex is not 712 * needed for correctness here. 713 */ 714 if (buffer->clear_on_free) { 715 binder_alloc_clear_buf(alloc, buffer); 716 buffer->clear_on_free = false; 717 } 718 mutex_lock(&alloc->mutex); 719 binder_free_buf_locked(alloc, buffer); 720 mutex_unlock(&alloc->mutex); 721 } 722 723 /** 724 * binder_alloc_mmap_handler() - map virtual address space for proc 725 * @alloc: alloc structure for this proc 726 * @vma: vma passed to mmap() 727 * 728 * Called by binder_mmap() to initialize the space specified in 729 * vma for allocating binder buffers 730 * 731 * Return: 732 * 0 = success 733 * -EBUSY = address space already mapped 734 * -ENOMEM = failed to map memory to given address space 735 */ 736 int binder_alloc_mmap_handler(struct binder_alloc *alloc, 737 struct vm_area_struct *vma) 738 { 739 int ret; 740 const char *failure_string; 741 struct binder_buffer *buffer; 742 743 if (unlikely(vma->vm_mm != alloc->mm)) { 744 ret = -EINVAL; 745 failure_string = "invalid vma->vm_mm"; 746 goto err_invalid_mm; 747 } 748 749 mutex_lock(&binder_alloc_mmap_lock); 750 if (alloc->buffer_size) { 751 ret = -EBUSY; 752 failure_string = "already mapped"; 753 goto err_already_mapped; 754 } 755 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start, 756 SZ_4M); 757 mutex_unlock(&binder_alloc_mmap_lock); 758 759 alloc->buffer = (void __user *)vma->vm_start; 760 761 alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE, 762 sizeof(alloc->pages[0]), 763 GFP_KERNEL); 764 if (alloc->pages == NULL) { 765 ret = -ENOMEM; 766 failure_string = "alloc page array"; 767 goto err_alloc_pages_failed; 768 } 769 770 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 771 if (!buffer) { 772 ret = -ENOMEM; 773 failure_string = "alloc buffer struct"; 774 goto err_alloc_buf_struct_failed; 775 } 776 777 buffer->user_data = alloc->buffer; 778 list_add(&buffer->entry, &alloc->buffers); 779 buffer->free = 1; 780 binder_insert_free_buffer(alloc, buffer); 781 alloc->free_async_space = alloc->buffer_size / 2; 782 783 /* Signal binder_alloc is fully initialized */ 784 binder_alloc_set_vma(alloc, vma); 785 786 return 0; 787 788 err_alloc_buf_struct_failed: 789 kfree(alloc->pages); 790 alloc->pages = NULL; 791 err_alloc_pages_failed: 792 alloc->buffer = NULL; 793 mutex_lock(&binder_alloc_mmap_lock); 794 alloc->buffer_size = 0; 795 err_already_mapped: 796 mutex_unlock(&binder_alloc_mmap_lock); 797 err_invalid_mm: 798 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 799 "%s: %d %lx-%lx %s failed %d\n", __func__, 800 alloc->pid, vma->vm_start, vma->vm_end, 801 failure_string, ret); 802 return ret; 803 } 804 805 806 void binder_alloc_deferred_release(struct binder_alloc *alloc) 807 { 808 struct rb_node *n; 809 int buffers, page_count; 810 struct binder_buffer *buffer; 811 812 buffers = 0; 813 mutex_lock(&alloc->mutex); 814 BUG_ON(alloc->vma); 815 816 while ((n = rb_first(&alloc->allocated_buffers))) { 817 buffer = rb_entry(n, struct binder_buffer, rb_node); 818 819 /* Transaction should already have been freed */ 820 BUG_ON(buffer->transaction); 821 822 if (buffer->clear_on_free) { 823 binder_alloc_clear_buf(alloc, buffer); 824 buffer->clear_on_free = false; 825 } 826 binder_free_buf_locked(alloc, buffer); 827 buffers++; 828 } 829 830 while (!list_empty(&alloc->buffers)) { 831 buffer = list_first_entry(&alloc->buffers, 832 struct binder_buffer, entry); 833 WARN_ON(!buffer->free); 834 835 list_del(&buffer->entry); 836 WARN_ON_ONCE(!list_empty(&alloc->buffers)); 837 kfree(buffer); 838 } 839 840 page_count = 0; 841 if (alloc->pages) { 842 int i; 843 844 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 845 void __user *page_addr; 846 bool on_lru; 847 848 if (!alloc->pages[i].page_ptr) 849 continue; 850 851 on_lru = list_lru_del(&binder_alloc_lru, 852 &alloc->pages[i].lru); 853 page_addr = alloc->buffer + i * PAGE_SIZE; 854 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 855 "%s: %d: page %d at %pK %s\n", 856 __func__, alloc->pid, i, page_addr, 857 on_lru ? "on lru" : "active"); 858 __free_page(alloc->pages[i].page_ptr); 859 page_count++; 860 } 861 kfree(alloc->pages); 862 } 863 mutex_unlock(&alloc->mutex); 864 if (alloc->mm) 865 mmdrop(alloc->mm); 866 867 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE, 868 "%s: %d buffers %d, pages %d\n", 869 __func__, alloc->pid, buffers, page_count); 870 } 871 872 static void print_binder_buffer(struct seq_file *m, const char *prefix, 873 struct binder_buffer *buffer) 874 { 875 seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n", 876 prefix, buffer->debug_id, buffer->user_data, 877 buffer->data_size, buffer->offsets_size, 878 buffer->extra_buffers_size, 879 buffer->transaction ? "active" : "delivered"); 880 } 881 882 /** 883 * binder_alloc_print_allocated() - print buffer info 884 * @m: seq_file for output via seq_printf() 885 * @alloc: binder_alloc for this proc 886 * 887 * Prints information about every buffer associated with 888 * the binder_alloc state to the given seq_file 889 */ 890 void binder_alloc_print_allocated(struct seq_file *m, 891 struct binder_alloc *alloc) 892 { 893 struct rb_node *n; 894 895 mutex_lock(&alloc->mutex); 896 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 897 print_binder_buffer(m, " buffer", 898 rb_entry(n, struct binder_buffer, rb_node)); 899 mutex_unlock(&alloc->mutex); 900 } 901 902 /** 903 * binder_alloc_print_pages() - print page usage 904 * @m: seq_file for output via seq_printf() 905 * @alloc: binder_alloc for this proc 906 */ 907 void binder_alloc_print_pages(struct seq_file *m, 908 struct binder_alloc *alloc) 909 { 910 struct binder_lru_page *page; 911 int i; 912 int active = 0; 913 int lru = 0; 914 int free = 0; 915 916 mutex_lock(&alloc->mutex); 917 /* 918 * Make sure the binder_alloc is fully initialized, otherwise we might 919 * read inconsistent state. 920 */ 921 if (binder_alloc_get_vma(alloc) != NULL) { 922 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 923 page = &alloc->pages[i]; 924 if (!page->page_ptr) 925 free++; 926 else if (list_empty(&page->lru)) 927 active++; 928 else 929 lru++; 930 } 931 } 932 mutex_unlock(&alloc->mutex); 933 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free); 934 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high); 935 } 936 937 /** 938 * binder_alloc_get_allocated_count() - return count of buffers 939 * @alloc: binder_alloc for this proc 940 * 941 * Return: count of allocated buffers 942 */ 943 int binder_alloc_get_allocated_count(struct binder_alloc *alloc) 944 { 945 struct rb_node *n; 946 int count = 0; 947 948 mutex_lock(&alloc->mutex); 949 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 950 count++; 951 mutex_unlock(&alloc->mutex); 952 return count; 953 } 954 955 956 /** 957 * binder_alloc_vma_close() - invalidate address space 958 * @alloc: binder_alloc for this proc 959 * 960 * Called from binder_vma_close() when releasing address space. 961 * Clears alloc->vma to prevent new incoming transactions from 962 * allocating more buffers. 963 */ 964 void binder_alloc_vma_close(struct binder_alloc *alloc) 965 { 966 binder_alloc_set_vma(alloc, NULL); 967 } 968 969 /** 970 * binder_alloc_free_page() - shrinker callback to free pages 971 * @item: item to free 972 * @lock: lock protecting the item 973 * @cb_arg: callback argument 974 * 975 * Called from list_lru_walk() in binder_shrink_scan() to free 976 * up pages when the system is under memory pressure. 977 */ 978 enum lru_status binder_alloc_free_page(struct list_head *item, 979 struct list_lru_one *lru, 980 spinlock_t *lock, 981 void *cb_arg) 982 __must_hold(lock) 983 { 984 struct mm_struct *mm = NULL; 985 struct binder_lru_page *page = container_of(item, 986 struct binder_lru_page, 987 lru); 988 struct binder_alloc *alloc; 989 uintptr_t page_addr; 990 size_t index; 991 struct vm_area_struct *vma; 992 993 alloc = page->alloc; 994 if (!mutex_trylock(&alloc->mutex)) 995 goto err_get_alloc_mutex_failed; 996 997 if (!page->page_ptr) 998 goto err_page_already_freed; 999 1000 index = page - alloc->pages; 1001 page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE; 1002 1003 mm = alloc->mm; 1004 if (!mmget_not_zero(mm)) 1005 goto err_mmget; 1006 if (!mmap_read_trylock(mm)) 1007 goto err_mmap_read_lock_failed; 1008 vma = binder_alloc_get_vma(alloc); 1009 1010 list_lru_isolate(lru, item); 1011 spin_unlock(lock); 1012 1013 if (vma) { 1014 trace_binder_unmap_user_start(alloc, index); 1015 1016 zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL); 1017 1018 trace_binder_unmap_user_end(alloc, index); 1019 } 1020 mmap_read_unlock(mm); 1021 mmput_async(mm); 1022 1023 trace_binder_unmap_kernel_start(alloc, index); 1024 1025 __free_page(page->page_ptr); 1026 page->page_ptr = NULL; 1027 1028 trace_binder_unmap_kernel_end(alloc, index); 1029 1030 spin_lock(lock); 1031 mutex_unlock(&alloc->mutex); 1032 return LRU_REMOVED_RETRY; 1033 1034 err_mmap_read_lock_failed: 1035 mmput_async(mm); 1036 err_mmget: 1037 err_page_already_freed: 1038 mutex_unlock(&alloc->mutex); 1039 err_get_alloc_mutex_failed: 1040 return LRU_SKIP; 1041 } 1042 1043 static unsigned long 1044 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1045 { 1046 return list_lru_count(&binder_alloc_lru); 1047 } 1048 1049 static unsigned long 1050 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1051 { 1052 return list_lru_walk(&binder_alloc_lru, binder_alloc_free_page, 1053 NULL, sc->nr_to_scan); 1054 } 1055 1056 static struct shrinker binder_shrinker = { 1057 .count_objects = binder_shrink_count, 1058 .scan_objects = binder_shrink_scan, 1059 .seeks = DEFAULT_SEEKS, 1060 }; 1061 1062 /** 1063 * binder_alloc_init() - called by binder_open() for per-proc initialization 1064 * @alloc: binder_alloc for this proc 1065 * 1066 * Called from binder_open() to initialize binder_alloc fields for 1067 * new binder proc 1068 */ 1069 void binder_alloc_init(struct binder_alloc *alloc) 1070 { 1071 alloc->pid = current->group_leader->pid; 1072 alloc->mm = current->mm; 1073 mmgrab(alloc->mm); 1074 mutex_init(&alloc->mutex); 1075 INIT_LIST_HEAD(&alloc->buffers); 1076 } 1077 1078 int binder_alloc_shrinker_init(void) 1079 { 1080 int ret = list_lru_init(&binder_alloc_lru); 1081 1082 if (ret == 0) { 1083 ret = register_shrinker(&binder_shrinker, "android-binder"); 1084 if (ret) 1085 list_lru_destroy(&binder_alloc_lru); 1086 } 1087 return ret; 1088 } 1089 1090 /** 1091 * check_buffer() - verify that buffer/offset is safe to access 1092 * @alloc: binder_alloc for this proc 1093 * @buffer: binder buffer to be accessed 1094 * @offset: offset into @buffer data 1095 * @bytes: bytes to access from offset 1096 * 1097 * Check that the @offset/@bytes are within the size of the given 1098 * @buffer and that the buffer is currently active and not freeable. 1099 * Offsets must also be multiples of sizeof(u32). The kernel is 1100 * allowed to touch the buffer in two cases: 1101 * 1102 * 1) when the buffer is being created: 1103 * (buffer->free == 0 && buffer->allow_user_free == 0) 1104 * 2) when the buffer is being torn down: 1105 * (buffer->free == 0 && buffer->transaction == NULL). 1106 * 1107 * Return: true if the buffer is safe to access 1108 */ 1109 static inline bool check_buffer(struct binder_alloc *alloc, 1110 struct binder_buffer *buffer, 1111 binder_size_t offset, size_t bytes) 1112 { 1113 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer); 1114 1115 return buffer_size >= bytes && 1116 offset <= buffer_size - bytes && 1117 IS_ALIGNED(offset, sizeof(u32)) && 1118 !buffer->free && 1119 (!buffer->allow_user_free || !buffer->transaction); 1120 } 1121 1122 /** 1123 * binder_alloc_get_page() - get kernel pointer for given buffer offset 1124 * @alloc: binder_alloc for this proc 1125 * @buffer: binder buffer to be accessed 1126 * @buffer_offset: offset into @buffer data 1127 * @pgoffp: address to copy final page offset to 1128 * 1129 * Lookup the struct page corresponding to the address 1130 * at @buffer_offset into @buffer->user_data. If @pgoffp is not 1131 * NULL, the byte-offset into the page is written there. 1132 * 1133 * The caller is responsible to ensure that the offset points 1134 * to a valid address within the @buffer and that @buffer is 1135 * not freeable by the user. Since it can't be freed, we are 1136 * guaranteed that the corresponding elements of @alloc->pages[] 1137 * cannot change. 1138 * 1139 * Return: struct page 1140 */ 1141 static struct page *binder_alloc_get_page(struct binder_alloc *alloc, 1142 struct binder_buffer *buffer, 1143 binder_size_t buffer_offset, 1144 pgoff_t *pgoffp) 1145 { 1146 binder_size_t buffer_space_offset = buffer_offset + 1147 (buffer->user_data - alloc->buffer); 1148 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK; 1149 size_t index = buffer_space_offset >> PAGE_SHIFT; 1150 struct binder_lru_page *lru_page; 1151 1152 lru_page = &alloc->pages[index]; 1153 *pgoffp = pgoff; 1154 return lru_page->page_ptr; 1155 } 1156 1157 /** 1158 * binder_alloc_clear_buf() - zero out buffer 1159 * @alloc: binder_alloc for this proc 1160 * @buffer: binder buffer to be cleared 1161 * 1162 * memset the given buffer to 0 1163 */ 1164 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 1165 struct binder_buffer *buffer) 1166 { 1167 size_t bytes = binder_alloc_buffer_size(alloc, buffer); 1168 binder_size_t buffer_offset = 0; 1169 1170 while (bytes) { 1171 unsigned long size; 1172 struct page *page; 1173 pgoff_t pgoff; 1174 1175 page = binder_alloc_get_page(alloc, buffer, 1176 buffer_offset, &pgoff); 1177 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1178 memset_page(page, pgoff, 0, size); 1179 bytes -= size; 1180 buffer_offset += size; 1181 } 1182 } 1183 1184 /** 1185 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user 1186 * @alloc: binder_alloc for this proc 1187 * @buffer: binder buffer to be accessed 1188 * @buffer_offset: offset into @buffer data 1189 * @from: userspace pointer to source buffer 1190 * @bytes: bytes to copy 1191 * 1192 * Copy bytes from source userspace to target buffer. 1193 * 1194 * Return: bytes remaining to be copied 1195 */ 1196 unsigned long 1197 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc, 1198 struct binder_buffer *buffer, 1199 binder_size_t buffer_offset, 1200 const void __user *from, 1201 size_t bytes) 1202 { 1203 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1204 return bytes; 1205 1206 while (bytes) { 1207 unsigned long size; 1208 unsigned long ret; 1209 struct page *page; 1210 pgoff_t pgoff; 1211 void *kptr; 1212 1213 page = binder_alloc_get_page(alloc, buffer, 1214 buffer_offset, &pgoff); 1215 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1216 kptr = kmap_local_page(page) + pgoff; 1217 ret = copy_from_user(kptr, from, size); 1218 kunmap_local(kptr); 1219 if (ret) 1220 return bytes - size + ret; 1221 bytes -= size; 1222 from += size; 1223 buffer_offset += size; 1224 } 1225 return 0; 1226 } 1227 1228 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc, 1229 bool to_buffer, 1230 struct binder_buffer *buffer, 1231 binder_size_t buffer_offset, 1232 void *ptr, 1233 size_t bytes) 1234 { 1235 /* All copies must be 32-bit aligned and 32-bit size */ 1236 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1237 return -EINVAL; 1238 1239 while (bytes) { 1240 unsigned long size; 1241 struct page *page; 1242 pgoff_t pgoff; 1243 1244 page = binder_alloc_get_page(alloc, buffer, 1245 buffer_offset, &pgoff); 1246 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1247 if (to_buffer) 1248 memcpy_to_page(page, pgoff, ptr, size); 1249 else 1250 memcpy_from_page(ptr, page, pgoff, size); 1251 bytes -= size; 1252 pgoff = 0; 1253 ptr = ptr + size; 1254 buffer_offset += size; 1255 } 1256 return 0; 1257 } 1258 1259 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc, 1260 struct binder_buffer *buffer, 1261 binder_size_t buffer_offset, 1262 void *src, 1263 size_t bytes) 1264 { 1265 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset, 1266 src, bytes); 1267 } 1268 1269 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc, 1270 void *dest, 1271 struct binder_buffer *buffer, 1272 binder_size_t buffer_offset, 1273 size_t bytes) 1274 { 1275 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset, 1276 dest, bytes); 1277 } 1278 1279