1 // SPDX-License-Identifier: GPL-2.0-only 2 /* binder_alloc.c 3 * 4 * Android IPC Subsystem 5 * 6 * Copyright (C) 2007-2017 Google, Inc. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/list.h> 12 #include <linux/sched/mm.h> 13 #include <linux/module.h> 14 #include <linux/rtmutex.h> 15 #include <linux/rbtree.h> 16 #include <linux/seq_file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/list_lru.h> 21 #include <linux/ratelimit.h> 22 #include <asm/cacheflush.h> 23 #include <linux/uaccess.h> 24 #include <linux/highmem.h> 25 #include <linux/sizes.h> 26 #include "binder_alloc.h" 27 #include "binder_trace.h" 28 29 struct list_lru binder_alloc_lru; 30 31 static DEFINE_MUTEX(binder_alloc_mmap_lock); 32 33 enum { 34 BINDER_DEBUG_USER_ERROR = 1U << 0, 35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1, 36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2, 37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3, 38 }; 39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR; 40 41 module_param_named(debug_mask, binder_alloc_debug_mask, 42 uint, 0644); 43 44 #define binder_alloc_debug(mask, x...) \ 45 do { \ 46 if (binder_alloc_debug_mask & mask) \ 47 pr_info_ratelimited(x); \ 48 } while (0) 49 50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer) 51 { 52 return list_entry(buffer->entry.next, struct binder_buffer, entry); 53 } 54 55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer) 56 { 57 return list_entry(buffer->entry.prev, struct binder_buffer, entry); 58 } 59 60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc, 61 struct binder_buffer *buffer) 62 { 63 if (list_is_last(&buffer->entry, &alloc->buffers)) 64 return alloc->buffer + alloc->buffer_size - buffer->user_data; 65 return binder_buffer_next(buffer)->user_data - buffer->user_data; 66 } 67 68 static void binder_insert_free_buffer(struct binder_alloc *alloc, 69 struct binder_buffer *new_buffer) 70 { 71 struct rb_node **p = &alloc->free_buffers.rb_node; 72 struct rb_node *parent = NULL; 73 struct binder_buffer *buffer; 74 size_t buffer_size; 75 size_t new_buffer_size; 76 77 BUG_ON(!new_buffer->free); 78 79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer); 80 81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 82 "%d: add free buffer, size %zd, at %pK\n", 83 alloc->pid, new_buffer_size, new_buffer); 84 85 while (*p) { 86 parent = *p; 87 buffer = rb_entry(parent, struct binder_buffer, rb_node); 88 BUG_ON(!buffer->free); 89 90 buffer_size = binder_alloc_buffer_size(alloc, buffer); 91 92 if (new_buffer_size < buffer_size) 93 p = &parent->rb_left; 94 else 95 p = &parent->rb_right; 96 } 97 rb_link_node(&new_buffer->rb_node, parent, p); 98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers); 99 } 100 101 static void binder_insert_allocated_buffer_locked( 102 struct binder_alloc *alloc, struct binder_buffer *new_buffer) 103 { 104 struct rb_node **p = &alloc->allocated_buffers.rb_node; 105 struct rb_node *parent = NULL; 106 struct binder_buffer *buffer; 107 108 BUG_ON(new_buffer->free); 109 110 while (*p) { 111 parent = *p; 112 buffer = rb_entry(parent, struct binder_buffer, rb_node); 113 BUG_ON(buffer->free); 114 115 if (new_buffer->user_data < buffer->user_data) 116 p = &parent->rb_left; 117 else if (new_buffer->user_data > buffer->user_data) 118 p = &parent->rb_right; 119 else 120 BUG(); 121 } 122 rb_link_node(&new_buffer->rb_node, parent, p); 123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers); 124 } 125 126 static struct binder_buffer *binder_alloc_prepare_to_free_locked( 127 struct binder_alloc *alloc, 128 uintptr_t user_ptr) 129 { 130 struct rb_node *n = alloc->allocated_buffers.rb_node; 131 struct binder_buffer *buffer; 132 void __user *uptr; 133 134 uptr = (void __user *)user_ptr; 135 136 while (n) { 137 buffer = rb_entry(n, struct binder_buffer, rb_node); 138 BUG_ON(buffer->free); 139 140 if (uptr < buffer->user_data) 141 n = n->rb_left; 142 else if (uptr > buffer->user_data) 143 n = n->rb_right; 144 else { 145 /* 146 * Guard against user threads attempting to 147 * free the buffer when in use by kernel or 148 * after it's already been freed. 149 */ 150 if (!buffer->allow_user_free) 151 return ERR_PTR(-EPERM); 152 buffer->allow_user_free = 0; 153 return buffer; 154 } 155 } 156 return NULL; 157 } 158 159 /** 160 * binder_alloc_prepare_to_free() - get buffer given user ptr 161 * @alloc: binder_alloc for this proc 162 * @user_ptr: User pointer to buffer data 163 * 164 * Validate userspace pointer to buffer data and return buffer corresponding to 165 * that user pointer. Search the rb tree for buffer that matches user data 166 * pointer. 167 * 168 * Return: Pointer to buffer or NULL 169 */ 170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc, 171 uintptr_t user_ptr) 172 { 173 struct binder_buffer *buffer; 174 175 mutex_lock(&alloc->mutex); 176 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr); 177 mutex_unlock(&alloc->mutex); 178 return buffer; 179 } 180 181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate, 182 void __user *start, void __user *end) 183 { 184 void __user *page_addr; 185 unsigned long user_page_addr; 186 struct binder_lru_page *page; 187 struct vm_area_struct *vma = NULL; 188 struct mm_struct *mm = NULL; 189 bool need_mm = false; 190 191 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 192 "%d: %s pages %pK-%pK\n", alloc->pid, 193 allocate ? "allocate" : "free", start, end); 194 195 if (end <= start) 196 return 0; 197 198 trace_binder_update_page_range(alloc, allocate, start, end); 199 200 if (allocate == 0) 201 goto free_range; 202 203 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 204 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE]; 205 if (!page->page_ptr) { 206 need_mm = true; 207 break; 208 } 209 } 210 211 if (need_mm && mmget_not_zero(alloc->vma_vm_mm)) 212 mm = alloc->vma_vm_mm; 213 214 if (mm) { 215 mmap_read_lock(mm); 216 vma = vma_lookup(mm, alloc->vma_addr); 217 } 218 219 if (!vma && need_mm) { 220 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 221 "%d: binder_alloc_buf failed to map pages in userspace, no vma\n", 222 alloc->pid); 223 goto err_no_vma; 224 } 225 226 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 227 int ret; 228 bool on_lru; 229 size_t index; 230 231 index = (page_addr - alloc->buffer) / PAGE_SIZE; 232 page = &alloc->pages[index]; 233 234 if (page->page_ptr) { 235 trace_binder_alloc_lru_start(alloc, index); 236 237 on_lru = list_lru_del(&binder_alloc_lru, &page->lru); 238 WARN_ON(!on_lru); 239 240 trace_binder_alloc_lru_end(alloc, index); 241 continue; 242 } 243 244 if (WARN_ON(!vma)) 245 goto err_page_ptr_cleared; 246 247 trace_binder_alloc_page_start(alloc, index); 248 page->page_ptr = alloc_page(GFP_KERNEL | 249 __GFP_HIGHMEM | 250 __GFP_ZERO); 251 if (!page->page_ptr) { 252 pr_err("%d: binder_alloc_buf failed for page at %pK\n", 253 alloc->pid, page_addr); 254 goto err_alloc_page_failed; 255 } 256 page->alloc = alloc; 257 INIT_LIST_HEAD(&page->lru); 258 259 user_page_addr = (uintptr_t)page_addr; 260 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr); 261 if (ret) { 262 pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n", 263 alloc->pid, user_page_addr); 264 goto err_vm_insert_page_failed; 265 } 266 267 if (index + 1 > alloc->pages_high) 268 alloc->pages_high = index + 1; 269 270 trace_binder_alloc_page_end(alloc, index); 271 } 272 if (mm) { 273 mmap_read_unlock(mm); 274 mmput(mm); 275 } 276 return 0; 277 278 free_range: 279 for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) { 280 bool ret; 281 size_t index; 282 283 index = (page_addr - alloc->buffer) / PAGE_SIZE; 284 page = &alloc->pages[index]; 285 286 trace_binder_free_lru_start(alloc, index); 287 288 ret = list_lru_add(&binder_alloc_lru, &page->lru); 289 WARN_ON(!ret); 290 291 trace_binder_free_lru_end(alloc, index); 292 if (page_addr == start) 293 break; 294 continue; 295 296 err_vm_insert_page_failed: 297 __free_page(page->page_ptr); 298 page->page_ptr = NULL; 299 err_alloc_page_failed: 300 err_page_ptr_cleared: 301 if (page_addr == start) 302 break; 303 } 304 err_no_vma: 305 if (mm) { 306 mmap_read_unlock(mm); 307 mmput(mm); 308 } 309 return vma ? -ENOMEM : -ESRCH; 310 } 311 312 313 static inline void binder_alloc_set_vma(struct binder_alloc *alloc, 314 struct vm_area_struct *vma) 315 { 316 unsigned long vm_start = 0; 317 318 /* 319 * Allow clearing the vma with holding just the read lock to allow 320 * munmapping downgrade of the write lock before freeing and closing the 321 * file using binder_alloc_vma_close(). 322 */ 323 if (vma) { 324 vm_start = vma->vm_start; 325 alloc->vma_vm_mm = vma->vm_mm; 326 mmap_assert_write_locked(alloc->vma_vm_mm); 327 } else { 328 mmap_assert_locked(alloc->vma_vm_mm); 329 } 330 331 alloc->vma_addr = vm_start; 332 } 333 334 static inline struct vm_area_struct *binder_alloc_get_vma( 335 struct binder_alloc *alloc) 336 { 337 struct vm_area_struct *vma = NULL; 338 339 if (alloc->vma_addr) 340 vma = vma_lookup(alloc->vma_vm_mm, alloc->vma_addr); 341 342 return vma; 343 } 344 345 static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid) 346 { 347 /* 348 * Find the amount and size of buffers allocated by the current caller; 349 * The idea is that once we cross the threshold, whoever is responsible 350 * for the low async space is likely to try to send another async txn, 351 * and at some point we'll catch them in the act. This is more efficient 352 * than keeping a map per pid. 353 */ 354 struct rb_node *n; 355 struct binder_buffer *buffer; 356 size_t total_alloc_size = 0; 357 size_t num_buffers = 0; 358 359 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 360 n = rb_next(n)) { 361 buffer = rb_entry(n, struct binder_buffer, rb_node); 362 if (buffer->pid != pid) 363 continue; 364 if (!buffer->async_transaction) 365 continue; 366 total_alloc_size += binder_alloc_buffer_size(alloc, buffer) 367 + sizeof(struct binder_buffer); 368 num_buffers++; 369 } 370 371 /* 372 * Warn if this pid has more than 50 transactions, or more than 50% of 373 * async space (which is 25% of total buffer size). Oneway spam is only 374 * detected when the threshold is exceeded. 375 */ 376 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) { 377 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 378 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n", 379 alloc->pid, pid, num_buffers, total_alloc_size); 380 if (!alloc->oneway_spam_detected) { 381 alloc->oneway_spam_detected = true; 382 return true; 383 } 384 } 385 return false; 386 } 387 388 static struct binder_buffer *binder_alloc_new_buf_locked( 389 struct binder_alloc *alloc, 390 size_t data_size, 391 size_t offsets_size, 392 size_t extra_buffers_size, 393 int is_async, 394 int pid) 395 { 396 struct rb_node *n = alloc->free_buffers.rb_node; 397 struct binder_buffer *buffer; 398 size_t buffer_size; 399 struct rb_node *best_fit = NULL; 400 void __user *has_page_addr; 401 void __user *end_page_addr; 402 size_t size, data_offsets_size; 403 int ret; 404 405 mmap_read_lock(alloc->vma_vm_mm); 406 if (!binder_alloc_get_vma(alloc)) { 407 mmap_read_unlock(alloc->vma_vm_mm); 408 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 409 "%d: binder_alloc_buf, no vma\n", 410 alloc->pid); 411 return ERR_PTR(-ESRCH); 412 } 413 mmap_read_unlock(alloc->vma_vm_mm); 414 415 data_offsets_size = ALIGN(data_size, sizeof(void *)) + 416 ALIGN(offsets_size, sizeof(void *)); 417 418 if (data_offsets_size < data_size || data_offsets_size < offsets_size) { 419 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 420 "%d: got transaction with invalid size %zd-%zd\n", 421 alloc->pid, data_size, offsets_size); 422 return ERR_PTR(-EINVAL); 423 } 424 size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *)); 425 if (size < data_offsets_size || size < extra_buffers_size) { 426 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 427 "%d: got transaction with invalid extra_buffers_size %zd\n", 428 alloc->pid, extra_buffers_size); 429 return ERR_PTR(-EINVAL); 430 } 431 if (is_async && 432 alloc->free_async_space < size + sizeof(struct binder_buffer)) { 433 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 434 "%d: binder_alloc_buf size %zd failed, no async space left\n", 435 alloc->pid, size); 436 return ERR_PTR(-ENOSPC); 437 } 438 439 /* Pad 0-size buffers so they get assigned unique addresses */ 440 size = max(size, sizeof(void *)); 441 442 while (n) { 443 buffer = rb_entry(n, struct binder_buffer, rb_node); 444 BUG_ON(!buffer->free); 445 buffer_size = binder_alloc_buffer_size(alloc, buffer); 446 447 if (size < buffer_size) { 448 best_fit = n; 449 n = n->rb_left; 450 } else if (size > buffer_size) 451 n = n->rb_right; 452 else { 453 best_fit = n; 454 break; 455 } 456 } 457 if (best_fit == NULL) { 458 size_t allocated_buffers = 0; 459 size_t largest_alloc_size = 0; 460 size_t total_alloc_size = 0; 461 size_t free_buffers = 0; 462 size_t largest_free_size = 0; 463 size_t total_free_size = 0; 464 465 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 466 n = rb_next(n)) { 467 buffer = rb_entry(n, struct binder_buffer, rb_node); 468 buffer_size = binder_alloc_buffer_size(alloc, buffer); 469 allocated_buffers++; 470 total_alloc_size += buffer_size; 471 if (buffer_size > largest_alloc_size) 472 largest_alloc_size = buffer_size; 473 } 474 for (n = rb_first(&alloc->free_buffers); n != NULL; 475 n = rb_next(n)) { 476 buffer = rb_entry(n, struct binder_buffer, rb_node); 477 buffer_size = binder_alloc_buffer_size(alloc, buffer); 478 free_buffers++; 479 total_free_size += buffer_size; 480 if (buffer_size > largest_free_size) 481 largest_free_size = buffer_size; 482 } 483 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 484 "%d: binder_alloc_buf size %zd failed, no address space\n", 485 alloc->pid, size); 486 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 487 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n", 488 total_alloc_size, allocated_buffers, 489 largest_alloc_size, total_free_size, 490 free_buffers, largest_free_size); 491 return ERR_PTR(-ENOSPC); 492 } 493 if (n == NULL) { 494 buffer = rb_entry(best_fit, struct binder_buffer, rb_node); 495 buffer_size = binder_alloc_buffer_size(alloc, buffer); 496 } 497 498 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 499 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n", 500 alloc->pid, size, buffer, buffer_size); 501 502 has_page_addr = (void __user *) 503 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK); 504 WARN_ON(n && buffer_size != size); 505 end_page_addr = 506 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size); 507 if (end_page_addr > has_page_addr) 508 end_page_addr = has_page_addr; 509 ret = binder_update_page_range(alloc, 1, (void __user *) 510 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr); 511 if (ret) 512 return ERR_PTR(ret); 513 514 if (buffer_size != size) { 515 struct binder_buffer *new_buffer; 516 517 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 518 if (!new_buffer) { 519 pr_err("%s: %d failed to alloc new buffer struct\n", 520 __func__, alloc->pid); 521 goto err_alloc_buf_struct_failed; 522 } 523 new_buffer->user_data = (u8 __user *)buffer->user_data + size; 524 list_add(&new_buffer->entry, &buffer->entry); 525 new_buffer->free = 1; 526 binder_insert_free_buffer(alloc, new_buffer); 527 } 528 529 rb_erase(best_fit, &alloc->free_buffers); 530 buffer->free = 0; 531 buffer->allow_user_free = 0; 532 binder_insert_allocated_buffer_locked(alloc, buffer); 533 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 534 "%d: binder_alloc_buf size %zd got %pK\n", 535 alloc->pid, size, buffer); 536 buffer->data_size = data_size; 537 buffer->offsets_size = offsets_size; 538 buffer->async_transaction = is_async; 539 buffer->extra_buffers_size = extra_buffers_size; 540 buffer->pid = pid; 541 buffer->oneway_spam_suspect = false; 542 if (is_async) { 543 alloc->free_async_space -= size + sizeof(struct binder_buffer); 544 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 545 "%d: binder_alloc_buf size %zd async free %zd\n", 546 alloc->pid, size, alloc->free_async_space); 547 if (alloc->free_async_space < alloc->buffer_size / 10) { 548 /* 549 * Start detecting spammers once we have less than 20% 550 * of async space left (which is less than 10% of total 551 * buffer size). 552 */ 553 buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid); 554 } else { 555 alloc->oneway_spam_detected = false; 556 } 557 } 558 return buffer; 559 560 err_alloc_buf_struct_failed: 561 binder_update_page_range(alloc, 0, (void __user *) 562 PAGE_ALIGN((uintptr_t)buffer->user_data), 563 end_page_addr); 564 return ERR_PTR(-ENOMEM); 565 } 566 567 /** 568 * binder_alloc_new_buf() - Allocate a new binder buffer 569 * @alloc: binder_alloc for this proc 570 * @data_size: size of user data buffer 571 * @offsets_size: user specified buffer offset 572 * @extra_buffers_size: size of extra space for meta-data (eg, security context) 573 * @is_async: buffer for async transaction 574 * @pid: pid to attribute allocation to (used for debugging) 575 * 576 * Allocate a new buffer given the requested sizes. Returns 577 * the kernel version of the buffer pointer. The size allocated 578 * is the sum of the three given sizes (each rounded up to 579 * pointer-sized boundary) 580 * 581 * Return: The allocated buffer or %NULL if error 582 */ 583 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc, 584 size_t data_size, 585 size_t offsets_size, 586 size_t extra_buffers_size, 587 int is_async, 588 int pid) 589 { 590 struct binder_buffer *buffer; 591 592 mutex_lock(&alloc->mutex); 593 buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size, 594 extra_buffers_size, is_async, pid); 595 mutex_unlock(&alloc->mutex); 596 return buffer; 597 } 598 599 static void __user *buffer_start_page(struct binder_buffer *buffer) 600 { 601 return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK); 602 } 603 604 static void __user *prev_buffer_end_page(struct binder_buffer *buffer) 605 { 606 return (void __user *) 607 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK); 608 } 609 610 static void binder_delete_free_buffer(struct binder_alloc *alloc, 611 struct binder_buffer *buffer) 612 { 613 struct binder_buffer *prev, *next = NULL; 614 bool to_free = true; 615 616 BUG_ON(alloc->buffers.next == &buffer->entry); 617 prev = binder_buffer_prev(buffer); 618 BUG_ON(!prev->free); 619 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) { 620 to_free = false; 621 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 622 "%d: merge free, buffer %pK share page with %pK\n", 623 alloc->pid, buffer->user_data, 624 prev->user_data); 625 } 626 627 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 628 next = binder_buffer_next(buffer); 629 if (buffer_start_page(next) == buffer_start_page(buffer)) { 630 to_free = false; 631 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 632 "%d: merge free, buffer %pK share page with %pK\n", 633 alloc->pid, 634 buffer->user_data, 635 next->user_data); 636 } 637 } 638 639 if (PAGE_ALIGNED(buffer->user_data)) { 640 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 641 "%d: merge free, buffer start %pK is page aligned\n", 642 alloc->pid, buffer->user_data); 643 to_free = false; 644 } 645 646 if (to_free) { 647 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 648 "%d: merge free, buffer %pK do not share page with %pK or %pK\n", 649 alloc->pid, buffer->user_data, 650 prev->user_data, 651 next ? next->user_data : NULL); 652 binder_update_page_range(alloc, 0, buffer_start_page(buffer), 653 buffer_start_page(buffer) + PAGE_SIZE); 654 } 655 list_del(&buffer->entry); 656 kfree(buffer); 657 } 658 659 static void binder_free_buf_locked(struct binder_alloc *alloc, 660 struct binder_buffer *buffer) 661 { 662 size_t size, buffer_size; 663 664 buffer_size = binder_alloc_buffer_size(alloc, buffer); 665 666 size = ALIGN(buffer->data_size, sizeof(void *)) + 667 ALIGN(buffer->offsets_size, sizeof(void *)) + 668 ALIGN(buffer->extra_buffers_size, sizeof(void *)); 669 670 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 671 "%d: binder_free_buf %pK size %zd buffer_size %zd\n", 672 alloc->pid, buffer, size, buffer_size); 673 674 BUG_ON(buffer->free); 675 BUG_ON(size > buffer_size); 676 BUG_ON(buffer->transaction != NULL); 677 BUG_ON(buffer->user_data < alloc->buffer); 678 BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size); 679 680 if (buffer->async_transaction) { 681 alloc->free_async_space += buffer_size + sizeof(struct binder_buffer); 682 683 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 684 "%d: binder_free_buf size %zd async free %zd\n", 685 alloc->pid, size, alloc->free_async_space); 686 } 687 688 binder_update_page_range(alloc, 0, 689 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data), 690 (void __user *)(((uintptr_t) 691 buffer->user_data + buffer_size) & PAGE_MASK)); 692 693 rb_erase(&buffer->rb_node, &alloc->allocated_buffers); 694 buffer->free = 1; 695 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 696 struct binder_buffer *next = binder_buffer_next(buffer); 697 698 if (next->free) { 699 rb_erase(&next->rb_node, &alloc->free_buffers); 700 binder_delete_free_buffer(alloc, next); 701 } 702 } 703 if (alloc->buffers.next != &buffer->entry) { 704 struct binder_buffer *prev = binder_buffer_prev(buffer); 705 706 if (prev->free) { 707 binder_delete_free_buffer(alloc, buffer); 708 rb_erase(&prev->rb_node, &alloc->free_buffers); 709 buffer = prev; 710 } 711 } 712 binder_insert_free_buffer(alloc, buffer); 713 } 714 715 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 716 struct binder_buffer *buffer); 717 /** 718 * binder_alloc_free_buf() - free a binder buffer 719 * @alloc: binder_alloc for this proc 720 * @buffer: kernel pointer to buffer 721 * 722 * Free the buffer allocated via binder_alloc_new_buf() 723 */ 724 void binder_alloc_free_buf(struct binder_alloc *alloc, 725 struct binder_buffer *buffer) 726 { 727 /* 728 * We could eliminate the call to binder_alloc_clear_buf() 729 * from binder_alloc_deferred_release() by moving this to 730 * binder_alloc_free_buf_locked(). However, that could 731 * increase contention for the alloc mutex if clear_on_free 732 * is used frequently for large buffers. The mutex is not 733 * needed for correctness here. 734 */ 735 if (buffer->clear_on_free) { 736 binder_alloc_clear_buf(alloc, buffer); 737 buffer->clear_on_free = false; 738 } 739 mutex_lock(&alloc->mutex); 740 binder_free_buf_locked(alloc, buffer); 741 mutex_unlock(&alloc->mutex); 742 } 743 744 /** 745 * binder_alloc_mmap_handler() - map virtual address space for proc 746 * @alloc: alloc structure for this proc 747 * @vma: vma passed to mmap() 748 * 749 * Called by binder_mmap() to initialize the space specified in 750 * vma for allocating binder buffers 751 * 752 * Return: 753 * 0 = success 754 * -EBUSY = address space already mapped 755 * -ENOMEM = failed to map memory to given address space 756 */ 757 int binder_alloc_mmap_handler(struct binder_alloc *alloc, 758 struct vm_area_struct *vma) 759 { 760 int ret; 761 const char *failure_string; 762 struct binder_buffer *buffer; 763 764 mutex_lock(&binder_alloc_mmap_lock); 765 if (alloc->buffer_size) { 766 ret = -EBUSY; 767 failure_string = "already mapped"; 768 goto err_already_mapped; 769 } 770 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start, 771 SZ_4M); 772 mutex_unlock(&binder_alloc_mmap_lock); 773 774 alloc->buffer = (void __user *)vma->vm_start; 775 776 alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE, 777 sizeof(alloc->pages[0]), 778 GFP_KERNEL); 779 if (alloc->pages == NULL) { 780 ret = -ENOMEM; 781 failure_string = "alloc page array"; 782 goto err_alloc_pages_failed; 783 } 784 785 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 786 if (!buffer) { 787 ret = -ENOMEM; 788 failure_string = "alloc buffer struct"; 789 goto err_alloc_buf_struct_failed; 790 } 791 792 buffer->user_data = alloc->buffer; 793 list_add(&buffer->entry, &alloc->buffers); 794 buffer->free = 1; 795 binder_insert_free_buffer(alloc, buffer); 796 alloc->free_async_space = alloc->buffer_size / 2; 797 binder_alloc_set_vma(alloc, vma); 798 mmgrab(alloc->vma_vm_mm); 799 800 return 0; 801 802 err_alloc_buf_struct_failed: 803 kfree(alloc->pages); 804 alloc->pages = NULL; 805 err_alloc_pages_failed: 806 alloc->buffer = NULL; 807 mutex_lock(&binder_alloc_mmap_lock); 808 alloc->buffer_size = 0; 809 err_already_mapped: 810 mutex_unlock(&binder_alloc_mmap_lock); 811 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 812 "%s: %d %lx-%lx %s failed %d\n", __func__, 813 alloc->pid, vma->vm_start, vma->vm_end, 814 failure_string, ret); 815 return ret; 816 } 817 818 819 void binder_alloc_deferred_release(struct binder_alloc *alloc) 820 { 821 struct rb_node *n; 822 int buffers, page_count; 823 struct binder_buffer *buffer; 824 825 buffers = 0; 826 mutex_lock(&alloc->mutex); 827 BUG_ON(alloc->vma_addr && 828 vma_lookup(alloc->vma_vm_mm, alloc->vma_addr)); 829 830 while ((n = rb_first(&alloc->allocated_buffers))) { 831 buffer = rb_entry(n, struct binder_buffer, rb_node); 832 833 /* Transaction should already have been freed */ 834 BUG_ON(buffer->transaction); 835 836 if (buffer->clear_on_free) { 837 binder_alloc_clear_buf(alloc, buffer); 838 buffer->clear_on_free = false; 839 } 840 binder_free_buf_locked(alloc, buffer); 841 buffers++; 842 } 843 844 while (!list_empty(&alloc->buffers)) { 845 buffer = list_first_entry(&alloc->buffers, 846 struct binder_buffer, entry); 847 WARN_ON(!buffer->free); 848 849 list_del(&buffer->entry); 850 WARN_ON_ONCE(!list_empty(&alloc->buffers)); 851 kfree(buffer); 852 } 853 854 page_count = 0; 855 if (alloc->pages) { 856 int i; 857 858 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 859 void __user *page_addr; 860 bool on_lru; 861 862 if (!alloc->pages[i].page_ptr) 863 continue; 864 865 on_lru = list_lru_del(&binder_alloc_lru, 866 &alloc->pages[i].lru); 867 page_addr = alloc->buffer + i * PAGE_SIZE; 868 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 869 "%s: %d: page %d at %pK %s\n", 870 __func__, alloc->pid, i, page_addr, 871 on_lru ? "on lru" : "active"); 872 __free_page(alloc->pages[i].page_ptr); 873 page_count++; 874 } 875 kfree(alloc->pages); 876 } 877 mutex_unlock(&alloc->mutex); 878 if (alloc->vma_vm_mm) 879 mmdrop(alloc->vma_vm_mm); 880 881 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE, 882 "%s: %d buffers %d, pages %d\n", 883 __func__, alloc->pid, buffers, page_count); 884 } 885 886 static void print_binder_buffer(struct seq_file *m, const char *prefix, 887 struct binder_buffer *buffer) 888 { 889 seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n", 890 prefix, buffer->debug_id, buffer->user_data, 891 buffer->data_size, buffer->offsets_size, 892 buffer->extra_buffers_size, 893 buffer->transaction ? "active" : "delivered"); 894 } 895 896 /** 897 * binder_alloc_print_allocated() - print buffer info 898 * @m: seq_file for output via seq_printf() 899 * @alloc: binder_alloc for this proc 900 * 901 * Prints information about every buffer associated with 902 * the binder_alloc state to the given seq_file 903 */ 904 void binder_alloc_print_allocated(struct seq_file *m, 905 struct binder_alloc *alloc) 906 { 907 struct rb_node *n; 908 909 mutex_lock(&alloc->mutex); 910 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 911 print_binder_buffer(m, " buffer", 912 rb_entry(n, struct binder_buffer, rb_node)); 913 mutex_unlock(&alloc->mutex); 914 } 915 916 /** 917 * binder_alloc_print_pages() - print page usage 918 * @m: seq_file for output via seq_printf() 919 * @alloc: binder_alloc for this proc 920 */ 921 void binder_alloc_print_pages(struct seq_file *m, 922 struct binder_alloc *alloc) 923 { 924 struct binder_lru_page *page; 925 int i; 926 int active = 0; 927 int lru = 0; 928 int free = 0; 929 930 mutex_lock(&alloc->mutex); 931 /* 932 * Make sure the binder_alloc is fully initialized, otherwise we might 933 * read inconsistent state. 934 */ 935 936 mmap_read_lock(alloc->vma_vm_mm); 937 if (binder_alloc_get_vma(alloc) == NULL) { 938 mmap_read_unlock(alloc->vma_vm_mm); 939 goto uninitialized; 940 } 941 942 mmap_read_unlock(alloc->vma_vm_mm); 943 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 944 page = &alloc->pages[i]; 945 if (!page->page_ptr) 946 free++; 947 else if (list_empty(&page->lru)) 948 active++; 949 else 950 lru++; 951 } 952 953 uninitialized: 954 mutex_unlock(&alloc->mutex); 955 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free); 956 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high); 957 } 958 959 /** 960 * binder_alloc_get_allocated_count() - return count of buffers 961 * @alloc: binder_alloc for this proc 962 * 963 * Return: count of allocated buffers 964 */ 965 int binder_alloc_get_allocated_count(struct binder_alloc *alloc) 966 { 967 struct rb_node *n; 968 int count = 0; 969 970 mutex_lock(&alloc->mutex); 971 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 972 count++; 973 mutex_unlock(&alloc->mutex); 974 return count; 975 } 976 977 978 /** 979 * binder_alloc_vma_close() - invalidate address space 980 * @alloc: binder_alloc for this proc 981 * 982 * Called from binder_vma_close() when releasing address space. 983 * Clears alloc->vma to prevent new incoming transactions from 984 * allocating more buffers. 985 */ 986 void binder_alloc_vma_close(struct binder_alloc *alloc) 987 { 988 binder_alloc_set_vma(alloc, NULL); 989 } 990 991 /** 992 * binder_alloc_free_page() - shrinker callback to free pages 993 * @item: item to free 994 * @lock: lock protecting the item 995 * @cb_arg: callback argument 996 * 997 * Called from list_lru_walk() in binder_shrink_scan() to free 998 * up pages when the system is under memory pressure. 999 */ 1000 enum lru_status binder_alloc_free_page(struct list_head *item, 1001 struct list_lru_one *lru, 1002 spinlock_t *lock, 1003 void *cb_arg) 1004 __must_hold(lock) 1005 { 1006 struct mm_struct *mm = NULL; 1007 struct binder_lru_page *page = container_of(item, 1008 struct binder_lru_page, 1009 lru); 1010 struct binder_alloc *alloc; 1011 uintptr_t page_addr; 1012 size_t index; 1013 struct vm_area_struct *vma; 1014 1015 alloc = page->alloc; 1016 if (!mutex_trylock(&alloc->mutex)) 1017 goto err_get_alloc_mutex_failed; 1018 1019 if (!page->page_ptr) 1020 goto err_page_already_freed; 1021 1022 index = page - alloc->pages; 1023 page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE; 1024 1025 mm = alloc->vma_vm_mm; 1026 if (!mmget_not_zero(mm)) 1027 goto err_mmget; 1028 if (!mmap_read_trylock(mm)) 1029 goto err_mmap_read_lock_failed; 1030 vma = binder_alloc_get_vma(alloc); 1031 1032 list_lru_isolate(lru, item); 1033 spin_unlock(lock); 1034 1035 if (vma) { 1036 trace_binder_unmap_user_start(alloc, index); 1037 1038 zap_page_range(vma, page_addr, PAGE_SIZE); 1039 1040 trace_binder_unmap_user_end(alloc, index); 1041 } 1042 mmap_read_unlock(mm); 1043 mmput_async(mm); 1044 1045 trace_binder_unmap_kernel_start(alloc, index); 1046 1047 __free_page(page->page_ptr); 1048 page->page_ptr = NULL; 1049 1050 trace_binder_unmap_kernel_end(alloc, index); 1051 1052 spin_lock(lock); 1053 mutex_unlock(&alloc->mutex); 1054 return LRU_REMOVED_RETRY; 1055 1056 err_mmap_read_lock_failed: 1057 mmput_async(mm); 1058 err_mmget: 1059 err_page_already_freed: 1060 mutex_unlock(&alloc->mutex); 1061 err_get_alloc_mutex_failed: 1062 return LRU_SKIP; 1063 } 1064 1065 static unsigned long 1066 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1067 { 1068 return list_lru_count(&binder_alloc_lru); 1069 } 1070 1071 static unsigned long 1072 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1073 { 1074 return list_lru_walk(&binder_alloc_lru, binder_alloc_free_page, 1075 NULL, sc->nr_to_scan); 1076 } 1077 1078 static struct shrinker binder_shrinker = { 1079 .count_objects = binder_shrink_count, 1080 .scan_objects = binder_shrink_scan, 1081 .seeks = DEFAULT_SEEKS, 1082 }; 1083 1084 /** 1085 * binder_alloc_init() - called by binder_open() for per-proc initialization 1086 * @alloc: binder_alloc for this proc 1087 * 1088 * Called from binder_open() to initialize binder_alloc fields for 1089 * new binder proc 1090 */ 1091 void binder_alloc_init(struct binder_alloc *alloc) 1092 { 1093 alloc->pid = current->group_leader->pid; 1094 mutex_init(&alloc->mutex); 1095 INIT_LIST_HEAD(&alloc->buffers); 1096 } 1097 1098 int binder_alloc_shrinker_init(void) 1099 { 1100 int ret = list_lru_init(&binder_alloc_lru); 1101 1102 if (ret == 0) { 1103 ret = register_shrinker(&binder_shrinker, "android-binder"); 1104 if (ret) 1105 list_lru_destroy(&binder_alloc_lru); 1106 } 1107 return ret; 1108 } 1109 1110 /** 1111 * check_buffer() - verify that buffer/offset is safe to access 1112 * @alloc: binder_alloc for this proc 1113 * @buffer: binder buffer to be accessed 1114 * @offset: offset into @buffer data 1115 * @bytes: bytes to access from offset 1116 * 1117 * Check that the @offset/@bytes are within the size of the given 1118 * @buffer and that the buffer is currently active and not freeable. 1119 * Offsets must also be multiples of sizeof(u32). The kernel is 1120 * allowed to touch the buffer in two cases: 1121 * 1122 * 1) when the buffer is being created: 1123 * (buffer->free == 0 && buffer->allow_user_free == 0) 1124 * 2) when the buffer is being torn down: 1125 * (buffer->free == 0 && buffer->transaction == NULL). 1126 * 1127 * Return: true if the buffer is safe to access 1128 */ 1129 static inline bool check_buffer(struct binder_alloc *alloc, 1130 struct binder_buffer *buffer, 1131 binder_size_t offset, size_t bytes) 1132 { 1133 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer); 1134 1135 return buffer_size >= bytes && 1136 offset <= buffer_size - bytes && 1137 IS_ALIGNED(offset, sizeof(u32)) && 1138 !buffer->free && 1139 (!buffer->allow_user_free || !buffer->transaction); 1140 } 1141 1142 /** 1143 * binder_alloc_get_page() - get kernel pointer for given buffer offset 1144 * @alloc: binder_alloc for this proc 1145 * @buffer: binder buffer to be accessed 1146 * @buffer_offset: offset into @buffer data 1147 * @pgoffp: address to copy final page offset to 1148 * 1149 * Lookup the struct page corresponding to the address 1150 * at @buffer_offset into @buffer->user_data. If @pgoffp is not 1151 * NULL, the byte-offset into the page is written there. 1152 * 1153 * The caller is responsible to ensure that the offset points 1154 * to a valid address within the @buffer and that @buffer is 1155 * not freeable by the user. Since it can't be freed, we are 1156 * guaranteed that the corresponding elements of @alloc->pages[] 1157 * cannot change. 1158 * 1159 * Return: struct page 1160 */ 1161 static struct page *binder_alloc_get_page(struct binder_alloc *alloc, 1162 struct binder_buffer *buffer, 1163 binder_size_t buffer_offset, 1164 pgoff_t *pgoffp) 1165 { 1166 binder_size_t buffer_space_offset = buffer_offset + 1167 (buffer->user_data - alloc->buffer); 1168 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK; 1169 size_t index = buffer_space_offset >> PAGE_SHIFT; 1170 struct binder_lru_page *lru_page; 1171 1172 lru_page = &alloc->pages[index]; 1173 *pgoffp = pgoff; 1174 return lru_page->page_ptr; 1175 } 1176 1177 /** 1178 * binder_alloc_clear_buf() - zero out buffer 1179 * @alloc: binder_alloc for this proc 1180 * @buffer: binder buffer to be cleared 1181 * 1182 * memset the given buffer to 0 1183 */ 1184 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 1185 struct binder_buffer *buffer) 1186 { 1187 size_t bytes = binder_alloc_buffer_size(alloc, buffer); 1188 binder_size_t buffer_offset = 0; 1189 1190 while (bytes) { 1191 unsigned long size; 1192 struct page *page; 1193 pgoff_t pgoff; 1194 1195 page = binder_alloc_get_page(alloc, buffer, 1196 buffer_offset, &pgoff); 1197 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1198 memset_page(page, pgoff, 0, size); 1199 bytes -= size; 1200 buffer_offset += size; 1201 } 1202 } 1203 1204 /** 1205 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user 1206 * @alloc: binder_alloc for this proc 1207 * @buffer: binder buffer to be accessed 1208 * @buffer_offset: offset into @buffer data 1209 * @from: userspace pointer to source buffer 1210 * @bytes: bytes to copy 1211 * 1212 * Copy bytes from source userspace to target buffer. 1213 * 1214 * Return: bytes remaining to be copied 1215 */ 1216 unsigned long 1217 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc, 1218 struct binder_buffer *buffer, 1219 binder_size_t buffer_offset, 1220 const void __user *from, 1221 size_t bytes) 1222 { 1223 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1224 return bytes; 1225 1226 while (bytes) { 1227 unsigned long size; 1228 unsigned long ret; 1229 struct page *page; 1230 pgoff_t pgoff; 1231 void *kptr; 1232 1233 page = binder_alloc_get_page(alloc, buffer, 1234 buffer_offset, &pgoff); 1235 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1236 kptr = kmap_local_page(page) + pgoff; 1237 ret = copy_from_user(kptr, from, size); 1238 kunmap_local(kptr); 1239 if (ret) 1240 return bytes - size + ret; 1241 bytes -= size; 1242 from += size; 1243 buffer_offset += size; 1244 } 1245 return 0; 1246 } 1247 1248 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc, 1249 bool to_buffer, 1250 struct binder_buffer *buffer, 1251 binder_size_t buffer_offset, 1252 void *ptr, 1253 size_t bytes) 1254 { 1255 /* All copies must be 32-bit aligned and 32-bit size */ 1256 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1257 return -EINVAL; 1258 1259 while (bytes) { 1260 unsigned long size; 1261 struct page *page; 1262 pgoff_t pgoff; 1263 1264 page = binder_alloc_get_page(alloc, buffer, 1265 buffer_offset, &pgoff); 1266 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1267 if (to_buffer) 1268 memcpy_to_page(page, pgoff, ptr, size); 1269 else 1270 memcpy_from_page(ptr, page, pgoff, size); 1271 bytes -= size; 1272 pgoff = 0; 1273 ptr = ptr + size; 1274 buffer_offset += size; 1275 } 1276 return 0; 1277 } 1278 1279 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc, 1280 struct binder_buffer *buffer, 1281 binder_size_t buffer_offset, 1282 void *src, 1283 size_t bytes) 1284 { 1285 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset, 1286 src, bytes); 1287 } 1288 1289 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc, 1290 void *dest, 1291 struct binder_buffer *buffer, 1292 binder_size_t buffer_offset, 1293 size_t bytes) 1294 { 1295 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset, 1296 dest, bytes); 1297 } 1298 1299