1 // SPDX-License-Identifier: GPL-2.0-only 2 /* binder_alloc.c 3 * 4 * Android IPC Subsystem 5 * 6 * Copyright (C) 2007-2017 Google, Inc. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/list.h> 12 #include <linux/sched/mm.h> 13 #include <linux/module.h> 14 #include <linux/rtmutex.h> 15 #include <linux/rbtree.h> 16 #include <linux/seq_file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/list_lru.h> 21 #include <linux/ratelimit.h> 22 #include <asm/cacheflush.h> 23 #include <linux/uaccess.h> 24 #include <linux/highmem.h> 25 #include <linux/sizes.h> 26 #include "binder_alloc.h" 27 #include "binder_trace.h" 28 29 struct list_lru binder_alloc_lru; 30 31 static DEFINE_MUTEX(binder_alloc_mmap_lock); 32 33 enum { 34 BINDER_DEBUG_USER_ERROR = 1U << 0, 35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1, 36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2, 37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3, 38 }; 39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR; 40 41 module_param_named(debug_mask, binder_alloc_debug_mask, 42 uint, 0644); 43 44 #define binder_alloc_debug(mask, x...) \ 45 do { \ 46 if (binder_alloc_debug_mask & mask) \ 47 pr_info_ratelimited(x); \ 48 } while (0) 49 50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer) 51 { 52 return list_entry(buffer->entry.next, struct binder_buffer, entry); 53 } 54 55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer) 56 { 57 return list_entry(buffer->entry.prev, struct binder_buffer, entry); 58 } 59 60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc, 61 struct binder_buffer *buffer) 62 { 63 if (list_is_last(&buffer->entry, &alloc->buffers)) 64 return alloc->buffer + alloc->buffer_size - buffer->user_data; 65 return binder_buffer_next(buffer)->user_data - buffer->user_data; 66 } 67 68 static void binder_insert_free_buffer(struct binder_alloc *alloc, 69 struct binder_buffer *new_buffer) 70 { 71 struct rb_node **p = &alloc->free_buffers.rb_node; 72 struct rb_node *parent = NULL; 73 struct binder_buffer *buffer; 74 size_t buffer_size; 75 size_t new_buffer_size; 76 77 BUG_ON(!new_buffer->free); 78 79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer); 80 81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 82 "%d: add free buffer, size %zd, at %pK\n", 83 alloc->pid, new_buffer_size, new_buffer); 84 85 while (*p) { 86 parent = *p; 87 buffer = rb_entry(parent, struct binder_buffer, rb_node); 88 BUG_ON(!buffer->free); 89 90 buffer_size = binder_alloc_buffer_size(alloc, buffer); 91 92 if (new_buffer_size < buffer_size) 93 p = &parent->rb_left; 94 else 95 p = &parent->rb_right; 96 } 97 rb_link_node(&new_buffer->rb_node, parent, p); 98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers); 99 } 100 101 static void binder_insert_allocated_buffer_locked( 102 struct binder_alloc *alloc, struct binder_buffer *new_buffer) 103 { 104 struct rb_node **p = &alloc->allocated_buffers.rb_node; 105 struct rb_node *parent = NULL; 106 struct binder_buffer *buffer; 107 108 BUG_ON(new_buffer->free); 109 110 while (*p) { 111 parent = *p; 112 buffer = rb_entry(parent, struct binder_buffer, rb_node); 113 BUG_ON(buffer->free); 114 115 if (new_buffer->user_data < buffer->user_data) 116 p = &parent->rb_left; 117 else if (new_buffer->user_data > buffer->user_data) 118 p = &parent->rb_right; 119 else 120 BUG(); 121 } 122 rb_link_node(&new_buffer->rb_node, parent, p); 123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers); 124 } 125 126 static struct binder_buffer *binder_alloc_prepare_to_free_locked( 127 struct binder_alloc *alloc, 128 uintptr_t user_ptr) 129 { 130 struct rb_node *n = alloc->allocated_buffers.rb_node; 131 struct binder_buffer *buffer; 132 void __user *uptr; 133 134 uptr = (void __user *)user_ptr; 135 136 while (n) { 137 buffer = rb_entry(n, struct binder_buffer, rb_node); 138 BUG_ON(buffer->free); 139 140 if (uptr < buffer->user_data) 141 n = n->rb_left; 142 else if (uptr > buffer->user_data) 143 n = n->rb_right; 144 else { 145 /* 146 * Guard against user threads attempting to 147 * free the buffer when in use by kernel or 148 * after it's already been freed. 149 */ 150 if (!buffer->allow_user_free) 151 return ERR_PTR(-EPERM); 152 buffer->allow_user_free = 0; 153 return buffer; 154 } 155 } 156 return NULL; 157 } 158 159 /** 160 * binder_alloc_prepare_to_free() - get buffer given user ptr 161 * @alloc: binder_alloc for this proc 162 * @user_ptr: User pointer to buffer data 163 * 164 * Validate userspace pointer to buffer data and return buffer corresponding to 165 * that user pointer. Search the rb tree for buffer that matches user data 166 * pointer. 167 * 168 * Return: Pointer to buffer or NULL 169 */ 170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc, 171 uintptr_t user_ptr) 172 { 173 struct binder_buffer *buffer; 174 175 mutex_lock(&alloc->mutex); 176 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr); 177 mutex_unlock(&alloc->mutex); 178 return buffer; 179 } 180 181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate, 182 void __user *start, void __user *end) 183 { 184 void __user *page_addr; 185 unsigned long user_page_addr; 186 struct binder_lru_page *page; 187 struct vm_area_struct *vma = NULL; 188 struct mm_struct *mm = NULL; 189 bool need_mm = false; 190 191 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 192 "%d: %s pages %pK-%pK\n", alloc->pid, 193 allocate ? "allocate" : "free", start, end); 194 195 if (end <= start) 196 return 0; 197 198 trace_binder_update_page_range(alloc, allocate, start, end); 199 200 if (allocate == 0) 201 goto free_range; 202 203 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 204 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE]; 205 if (!page->page_ptr) { 206 need_mm = true; 207 break; 208 } 209 } 210 211 if (need_mm && mmget_not_zero(alloc->mm)) 212 mm = alloc->mm; 213 214 if (mm) { 215 mmap_write_lock(mm); 216 vma = alloc->vma; 217 } 218 219 if (!vma && need_mm) { 220 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 221 "%d: binder_alloc_buf failed to map pages in userspace, no vma\n", 222 alloc->pid); 223 goto err_no_vma; 224 } 225 226 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 227 int ret; 228 bool on_lru; 229 size_t index; 230 231 index = (page_addr - alloc->buffer) / PAGE_SIZE; 232 page = &alloc->pages[index]; 233 234 if (page->page_ptr) { 235 trace_binder_alloc_lru_start(alloc, index); 236 237 on_lru = list_lru_del(&binder_alloc_lru, &page->lru); 238 WARN_ON(!on_lru); 239 240 trace_binder_alloc_lru_end(alloc, index); 241 continue; 242 } 243 244 if (WARN_ON(!vma)) 245 goto err_page_ptr_cleared; 246 247 trace_binder_alloc_page_start(alloc, index); 248 page->page_ptr = alloc_page(GFP_KERNEL | 249 __GFP_HIGHMEM | 250 __GFP_ZERO); 251 if (!page->page_ptr) { 252 pr_err("%d: binder_alloc_buf failed for page at %pK\n", 253 alloc->pid, page_addr); 254 goto err_alloc_page_failed; 255 } 256 page->alloc = alloc; 257 INIT_LIST_HEAD(&page->lru); 258 259 user_page_addr = (uintptr_t)page_addr; 260 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr); 261 if (ret) { 262 pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n", 263 alloc->pid, user_page_addr); 264 goto err_vm_insert_page_failed; 265 } 266 267 if (index + 1 > alloc->pages_high) 268 alloc->pages_high = index + 1; 269 270 trace_binder_alloc_page_end(alloc, index); 271 } 272 if (mm) { 273 mmap_write_unlock(mm); 274 mmput_async(mm); 275 } 276 return 0; 277 278 free_range: 279 for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) { 280 bool ret; 281 size_t index; 282 283 index = (page_addr - alloc->buffer) / PAGE_SIZE; 284 page = &alloc->pages[index]; 285 286 trace_binder_free_lru_start(alloc, index); 287 288 ret = list_lru_add(&binder_alloc_lru, &page->lru); 289 WARN_ON(!ret); 290 291 trace_binder_free_lru_end(alloc, index); 292 if (page_addr == start) 293 break; 294 continue; 295 296 err_vm_insert_page_failed: 297 __free_page(page->page_ptr); 298 page->page_ptr = NULL; 299 err_alloc_page_failed: 300 err_page_ptr_cleared: 301 if (page_addr == start) 302 break; 303 } 304 err_no_vma: 305 if (mm) { 306 mmap_write_unlock(mm); 307 mmput_async(mm); 308 } 309 return vma ? -ENOMEM : -ESRCH; 310 } 311 312 static inline void binder_alloc_set_vma(struct binder_alloc *alloc, 313 struct vm_area_struct *vma) 314 { 315 /* pairs with smp_load_acquire in binder_alloc_get_vma() */ 316 smp_store_release(&alloc->vma, vma); 317 } 318 319 static inline struct vm_area_struct *binder_alloc_get_vma( 320 struct binder_alloc *alloc) 321 { 322 /* pairs with smp_store_release in binder_alloc_set_vma() */ 323 return smp_load_acquire(&alloc->vma); 324 } 325 326 static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid) 327 { 328 /* 329 * Find the amount and size of buffers allocated by the current caller; 330 * The idea is that once we cross the threshold, whoever is responsible 331 * for the low async space is likely to try to send another async txn, 332 * and at some point we'll catch them in the act. This is more efficient 333 * than keeping a map per pid. 334 */ 335 struct rb_node *n; 336 struct binder_buffer *buffer; 337 size_t total_alloc_size = 0; 338 size_t num_buffers = 0; 339 340 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 341 n = rb_next(n)) { 342 buffer = rb_entry(n, struct binder_buffer, rb_node); 343 if (buffer->pid != pid) 344 continue; 345 if (!buffer->async_transaction) 346 continue; 347 total_alloc_size += binder_alloc_buffer_size(alloc, buffer); 348 num_buffers++; 349 } 350 351 /* 352 * Warn if this pid has more than 50 transactions, or more than 50% of 353 * async space (which is 25% of total buffer size). Oneway spam is only 354 * detected when the threshold is exceeded. 355 */ 356 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) { 357 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 358 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n", 359 alloc->pid, pid, num_buffers, total_alloc_size); 360 if (!alloc->oneway_spam_detected) { 361 alloc->oneway_spam_detected = true; 362 return true; 363 } 364 } 365 return false; 366 } 367 368 static struct binder_buffer *binder_alloc_new_buf_locked( 369 struct binder_alloc *alloc, 370 size_t data_size, 371 size_t offsets_size, 372 size_t extra_buffers_size, 373 int is_async, 374 int pid) 375 { 376 struct rb_node *n = alloc->free_buffers.rb_node; 377 struct binder_buffer *buffer; 378 size_t buffer_size; 379 struct rb_node *best_fit = NULL; 380 void __user *has_page_addr; 381 void __user *end_page_addr; 382 size_t size, data_offsets_size; 383 int ret; 384 385 /* Check binder_alloc is fully initialized */ 386 if (!binder_alloc_get_vma(alloc)) { 387 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 388 "%d: binder_alloc_buf, no vma\n", 389 alloc->pid); 390 return ERR_PTR(-ESRCH); 391 } 392 393 data_offsets_size = ALIGN(data_size, sizeof(void *)) + 394 ALIGN(offsets_size, sizeof(void *)); 395 396 if (data_offsets_size < data_size || data_offsets_size < offsets_size) { 397 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 398 "%d: got transaction with invalid size %zd-%zd\n", 399 alloc->pid, data_size, offsets_size); 400 return ERR_PTR(-EINVAL); 401 } 402 size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *)); 403 if (size < data_offsets_size || size < extra_buffers_size) { 404 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 405 "%d: got transaction with invalid extra_buffers_size %zd\n", 406 alloc->pid, extra_buffers_size); 407 return ERR_PTR(-EINVAL); 408 } 409 410 /* Pad 0-size buffers so they get assigned unique addresses */ 411 size = max(size, sizeof(void *)); 412 413 if (is_async && alloc->free_async_space < size) { 414 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 415 "%d: binder_alloc_buf size %zd failed, no async space left\n", 416 alloc->pid, size); 417 return ERR_PTR(-ENOSPC); 418 } 419 420 while (n) { 421 buffer = rb_entry(n, struct binder_buffer, rb_node); 422 BUG_ON(!buffer->free); 423 buffer_size = binder_alloc_buffer_size(alloc, buffer); 424 425 if (size < buffer_size) { 426 best_fit = n; 427 n = n->rb_left; 428 } else if (size > buffer_size) 429 n = n->rb_right; 430 else { 431 best_fit = n; 432 break; 433 } 434 } 435 if (best_fit == NULL) { 436 size_t allocated_buffers = 0; 437 size_t largest_alloc_size = 0; 438 size_t total_alloc_size = 0; 439 size_t free_buffers = 0; 440 size_t largest_free_size = 0; 441 size_t total_free_size = 0; 442 443 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 444 n = rb_next(n)) { 445 buffer = rb_entry(n, struct binder_buffer, rb_node); 446 buffer_size = binder_alloc_buffer_size(alloc, buffer); 447 allocated_buffers++; 448 total_alloc_size += buffer_size; 449 if (buffer_size > largest_alloc_size) 450 largest_alloc_size = buffer_size; 451 } 452 for (n = rb_first(&alloc->free_buffers); n != NULL; 453 n = rb_next(n)) { 454 buffer = rb_entry(n, struct binder_buffer, rb_node); 455 buffer_size = binder_alloc_buffer_size(alloc, buffer); 456 free_buffers++; 457 total_free_size += buffer_size; 458 if (buffer_size > largest_free_size) 459 largest_free_size = buffer_size; 460 } 461 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 462 "%d: binder_alloc_buf size %zd failed, no address space\n", 463 alloc->pid, size); 464 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 465 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n", 466 total_alloc_size, allocated_buffers, 467 largest_alloc_size, total_free_size, 468 free_buffers, largest_free_size); 469 return ERR_PTR(-ENOSPC); 470 } 471 if (n == NULL) { 472 buffer = rb_entry(best_fit, struct binder_buffer, rb_node); 473 buffer_size = binder_alloc_buffer_size(alloc, buffer); 474 } 475 476 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 477 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n", 478 alloc->pid, size, buffer, buffer_size); 479 480 has_page_addr = (void __user *) 481 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK); 482 WARN_ON(n && buffer_size != size); 483 end_page_addr = 484 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size); 485 if (end_page_addr > has_page_addr) 486 end_page_addr = has_page_addr; 487 ret = binder_update_page_range(alloc, 1, (void __user *) 488 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr); 489 if (ret) 490 return ERR_PTR(ret); 491 492 if (buffer_size != size) { 493 struct binder_buffer *new_buffer; 494 495 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 496 if (!new_buffer) { 497 pr_err("%s: %d failed to alloc new buffer struct\n", 498 __func__, alloc->pid); 499 goto err_alloc_buf_struct_failed; 500 } 501 new_buffer->user_data = (u8 __user *)buffer->user_data + size; 502 list_add(&new_buffer->entry, &buffer->entry); 503 new_buffer->free = 1; 504 binder_insert_free_buffer(alloc, new_buffer); 505 } 506 507 rb_erase(best_fit, &alloc->free_buffers); 508 buffer->free = 0; 509 buffer->allow_user_free = 0; 510 binder_insert_allocated_buffer_locked(alloc, buffer); 511 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 512 "%d: binder_alloc_buf size %zd got %pK\n", 513 alloc->pid, size, buffer); 514 buffer->data_size = data_size; 515 buffer->offsets_size = offsets_size; 516 buffer->async_transaction = is_async; 517 buffer->extra_buffers_size = extra_buffers_size; 518 buffer->pid = pid; 519 buffer->oneway_spam_suspect = false; 520 if (is_async) { 521 alloc->free_async_space -= size; 522 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 523 "%d: binder_alloc_buf size %zd async free %zd\n", 524 alloc->pid, size, alloc->free_async_space); 525 if (alloc->free_async_space < alloc->buffer_size / 10) { 526 /* 527 * Start detecting spammers once we have less than 20% 528 * of async space left (which is less than 10% of total 529 * buffer size). 530 */ 531 buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid); 532 } else { 533 alloc->oneway_spam_detected = false; 534 } 535 } 536 return buffer; 537 538 err_alloc_buf_struct_failed: 539 binder_update_page_range(alloc, 0, (void __user *) 540 PAGE_ALIGN((uintptr_t)buffer->user_data), 541 end_page_addr); 542 return ERR_PTR(-ENOMEM); 543 } 544 545 /** 546 * binder_alloc_new_buf() - Allocate a new binder buffer 547 * @alloc: binder_alloc for this proc 548 * @data_size: size of user data buffer 549 * @offsets_size: user specified buffer offset 550 * @extra_buffers_size: size of extra space for meta-data (eg, security context) 551 * @is_async: buffer for async transaction 552 * @pid: pid to attribute allocation to (used for debugging) 553 * 554 * Allocate a new buffer given the requested sizes. Returns 555 * the kernel version of the buffer pointer. The size allocated 556 * is the sum of the three given sizes (each rounded up to 557 * pointer-sized boundary) 558 * 559 * Return: The allocated buffer or %ERR_PTR(-errno) if error 560 */ 561 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc, 562 size_t data_size, 563 size_t offsets_size, 564 size_t extra_buffers_size, 565 int is_async, 566 int pid) 567 { 568 struct binder_buffer *buffer; 569 570 mutex_lock(&alloc->mutex); 571 buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size, 572 extra_buffers_size, is_async, pid); 573 mutex_unlock(&alloc->mutex); 574 return buffer; 575 } 576 577 static void __user *buffer_start_page(struct binder_buffer *buffer) 578 { 579 return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK); 580 } 581 582 static void __user *prev_buffer_end_page(struct binder_buffer *buffer) 583 { 584 return (void __user *) 585 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK); 586 } 587 588 static void binder_delete_free_buffer(struct binder_alloc *alloc, 589 struct binder_buffer *buffer) 590 { 591 struct binder_buffer *prev, *next = NULL; 592 bool to_free = true; 593 594 BUG_ON(alloc->buffers.next == &buffer->entry); 595 prev = binder_buffer_prev(buffer); 596 BUG_ON(!prev->free); 597 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) { 598 to_free = false; 599 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 600 "%d: merge free, buffer %pK share page with %pK\n", 601 alloc->pid, buffer->user_data, 602 prev->user_data); 603 } 604 605 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 606 next = binder_buffer_next(buffer); 607 if (buffer_start_page(next) == buffer_start_page(buffer)) { 608 to_free = false; 609 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 610 "%d: merge free, buffer %pK share page with %pK\n", 611 alloc->pid, 612 buffer->user_data, 613 next->user_data); 614 } 615 } 616 617 if (PAGE_ALIGNED(buffer->user_data)) { 618 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 619 "%d: merge free, buffer start %pK is page aligned\n", 620 alloc->pid, buffer->user_data); 621 to_free = false; 622 } 623 624 if (to_free) { 625 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 626 "%d: merge free, buffer %pK do not share page with %pK or %pK\n", 627 alloc->pid, buffer->user_data, 628 prev->user_data, 629 next ? next->user_data : NULL); 630 binder_update_page_range(alloc, 0, buffer_start_page(buffer), 631 buffer_start_page(buffer) + PAGE_SIZE); 632 } 633 list_del(&buffer->entry); 634 kfree(buffer); 635 } 636 637 static void binder_free_buf_locked(struct binder_alloc *alloc, 638 struct binder_buffer *buffer) 639 { 640 size_t size, buffer_size; 641 642 buffer_size = binder_alloc_buffer_size(alloc, buffer); 643 644 size = ALIGN(buffer->data_size, sizeof(void *)) + 645 ALIGN(buffer->offsets_size, sizeof(void *)) + 646 ALIGN(buffer->extra_buffers_size, sizeof(void *)); 647 648 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 649 "%d: binder_free_buf %pK size %zd buffer_size %zd\n", 650 alloc->pid, buffer, size, buffer_size); 651 652 BUG_ON(buffer->free); 653 BUG_ON(size > buffer_size); 654 BUG_ON(buffer->transaction != NULL); 655 BUG_ON(buffer->user_data < alloc->buffer); 656 BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size); 657 658 if (buffer->async_transaction) { 659 alloc->free_async_space += buffer_size; 660 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 661 "%d: binder_free_buf size %zd async free %zd\n", 662 alloc->pid, size, alloc->free_async_space); 663 } 664 665 binder_update_page_range(alloc, 0, 666 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data), 667 (void __user *)(((uintptr_t) 668 buffer->user_data + buffer_size) & PAGE_MASK)); 669 670 rb_erase(&buffer->rb_node, &alloc->allocated_buffers); 671 buffer->free = 1; 672 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 673 struct binder_buffer *next = binder_buffer_next(buffer); 674 675 if (next->free) { 676 rb_erase(&next->rb_node, &alloc->free_buffers); 677 binder_delete_free_buffer(alloc, next); 678 } 679 } 680 if (alloc->buffers.next != &buffer->entry) { 681 struct binder_buffer *prev = binder_buffer_prev(buffer); 682 683 if (prev->free) { 684 binder_delete_free_buffer(alloc, buffer); 685 rb_erase(&prev->rb_node, &alloc->free_buffers); 686 buffer = prev; 687 } 688 } 689 binder_insert_free_buffer(alloc, buffer); 690 } 691 692 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 693 struct binder_buffer *buffer); 694 /** 695 * binder_alloc_free_buf() - free a binder buffer 696 * @alloc: binder_alloc for this proc 697 * @buffer: kernel pointer to buffer 698 * 699 * Free the buffer allocated via binder_alloc_new_buf() 700 */ 701 void binder_alloc_free_buf(struct binder_alloc *alloc, 702 struct binder_buffer *buffer) 703 { 704 /* 705 * We could eliminate the call to binder_alloc_clear_buf() 706 * from binder_alloc_deferred_release() by moving this to 707 * binder_free_buf_locked(). However, that could 708 * increase contention for the alloc mutex if clear_on_free 709 * is used frequently for large buffers. The mutex is not 710 * needed for correctness here. 711 */ 712 if (buffer->clear_on_free) { 713 binder_alloc_clear_buf(alloc, buffer); 714 buffer->clear_on_free = false; 715 } 716 mutex_lock(&alloc->mutex); 717 binder_free_buf_locked(alloc, buffer); 718 mutex_unlock(&alloc->mutex); 719 } 720 721 /** 722 * binder_alloc_mmap_handler() - map virtual address space for proc 723 * @alloc: alloc structure for this proc 724 * @vma: vma passed to mmap() 725 * 726 * Called by binder_mmap() to initialize the space specified in 727 * vma for allocating binder buffers 728 * 729 * Return: 730 * 0 = success 731 * -EBUSY = address space already mapped 732 * -ENOMEM = failed to map memory to given address space 733 */ 734 int binder_alloc_mmap_handler(struct binder_alloc *alloc, 735 struct vm_area_struct *vma) 736 { 737 int ret; 738 const char *failure_string; 739 struct binder_buffer *buffer; 740 741 if (unlikely(vma->vm_mm != alloc->mm)) { 742 ret = -EINVAL; 743 failure_string = "invalid vma->vm_mm"; 744 goto err_invalid_mm; 745 } 746 747 mutex_lock(&binder_alloc_mmap_lock); 748 if (alloc->buffer_size) { 749 ret = -EBUSY; 750 failure_string = "already mapped"; 751 goto err_already_mapped; 752 } 753 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start, 754 SZ_4M); 755 mutex_unlock(&binder_alloc_mmap_lock); 756 757 alloc->buffer = (void __user *)vma->vm_start; 758 759 alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE, 760 sizeof(alloc->pages[0]), 761 GFP_KERNEL); 762 if (alloc->pages == NULL) { 763 ret = -ENOMEM; 764 failure_string = "alloc page array"; 765 goto err_alloc_pages_failed; 766 } 767 768 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 769 if (!buffer) { 770 ret = -ENOMEM; 771 failure_string = "alloc buffer struct"; 772 goto err_alloc_buf_struct_failed; 773 } 774 775 buffer->user_data = alloc->buffer; 776 list_add(&buffer->entry, &alloc->buffers); 777 buffer->free = 1; 778 binder_insert_free_buffer(alloc, buffer); 779 alloc->free_async_space = alloc->buffer_size / 2; 780 781 /* Signal binder_alloc is fully initialized */ 782 binder_alloc_set_vma(alloc, vma); 783 784 return 0; 785 786 err_alloc_buf_struct_failed: 787 kfree(alloc->pages); 788 alloc->pages = NULL; 789 err_alloc_pages_failed: 790 alloc->buffer = NULL; 791 mutex_lock(&binder_alloc_mmap_lock); 792 alloc->buffer_size = 0; 793 err_already_mapped: 794 mutex_unlock(&binder_alloc_mmap_lock); 795 err_invalid_mm: 796 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 797 "%s: %d %lx-%lx %s failed %d\n", __func__, 798 alloc->pid, vma->vm_start, vma->vm_end, 799 failure_string, ret); 800 return ret; 801 } 802 803 804 void binder_alloc_deferred_release(struct binder_alloc *alloc) 805 { 806 struct rb_node *n; 807 int buffers, page_count; 808 struct binder_buffer *buffer; 809 810 buffers = 0; 811 mutex_lock(&alloc->mutex); 812 BUG_ON(alloc->vma); 813 814 while ((n = rb_first(&alloc->allocated_buffers))) { 815 buffer = rb_entry(n, struct binder_buffer, rb_node); 816 817 /* Transaction should already have been freed */ 818 BUG_ON(buffer->transaction); 819 820 if (buffer->clear_on_free) { 821 binder_alloc_clear_buf(alloc, buffer); 822 buffer->clear_on_free = false; 823 } 824 binder_free_buf_locked(alloc, buffer); 825 buffers++; 826 } 827 828 while (!list_empty(&alloc->buffers)) { 829 buffer = list_first_entry(&alloc->buffers, 830 struct binder_buffer, entry); 831 WARN_ON(!buffer->free); 832 833 list_del(&buffer->entry); 834 WARN_ON_ONCE(!list_empty(&alloc->buffers)); 835 kfree(buffer); 836 } 837 838 page_count = 0; 839 if (alloc->pages) { 840 int i; 841 842 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 843 void __user *page_addr; 844 bool on_lru; 845 846 if (!alloc->pages[i].page_ptr) 847 continue; 848 849 on_lru = list_lru_del(&binder_alloc_lru, 850 &alloc->pages[i].lru); 851 page_addr = alloc->buffer + i * PAGE_SIZE; 852 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 853 "%s: %d: page %d at %pK %s\n", 854 __func__, alloc->pid, i, page_addr, 855 on_lru ? "on lru" : "active"); 856 __free_page(alloc->pages[i].page_ptr); 857 page_count++; 858 } 859 kfree(alloc->pages); 860 } 861 mutex_unlock(&alloc->mutex); 862 if (alloc->mm) 863 mmdrop(alloc->mm); 864 865 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE, 866 "%s: %d buffers %d, pages %d\n", 867 __func__, alloc->pid, buffers, page_count); 868 } 869 870 static void print_binder_buffer(struct seq_file *m, const char *prefix, 871 struct binder_buffer *buffer) 872 { 873 seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n", 874 prefix, buffer->debug_id, buffer->user_data, 875 buffer->data_size, buffer->offsets_size, 876 buffer->extra_buffers_size, 877 buffer->transaction ? "active" : "delivered"); 878 } 879 880 /** 881 * binder_alloc_print_allocated() - print buffer info 882 * @m: seq_file for output via seq_printf() 883 * @alloc: binder_alloc for this proc 884 * 885 * Prints information about every buffer associated with 886 * the binder_alloc state to the given seq_file 887 */ 888 void binder_alloc_print_allocated(struct seq_file *m, 889 struct binder_alloc *alloc) 890 { 891 struct rb_node *n; 892 893 mutex_lock(&alloc->mutex); 894 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 895 print_binder_buffer(m, " buffer", 896 rb_entry(n, struct binder_buffer, rb_node)); 897 mutex_unlock(&alloc->mutex); 898 } 899 900 /** 901 * binder_alloc_print_pages() - print page usage 902 * @m: seq_file for output via seq_printf() 903 * @alloc: binder_alloc for this proc 904 */ 905 void binder_alloc_print_pages(struct seq_file *m, 906 struct binder_alloc *alloc) 907 { 908 struct binder_lru_page *page; 909 int i; 910 int active = 0; 911 int lru = 0; 912 int free = 0; 913 914 mutex_lock(&alloc->mutex); 915 /* 916 * Make sure the binder_alloc is fully initialized, otherwise we might 917 * read inconsistent state. 918 */ 919 if (binder_alloc_get_vma(alloc) != NULL) { 920 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 921 page = &alloc->pages[i]; 922 if (!page->page_ptr) 923 free++; 924 else if (list_empty(&page->lru)) 925 active++; 926 else 927 lru++; 928 } 929 } 930 mutex_unlock(&alloc->mutex); 931 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free); 932 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high); 933 } 934 935 /** 936 * binder_alloc_get_allocated_count() - return count of buffers 937 * @alloc: binder_alloc for this proc 938 * 939 * Return: count of allocated buffers 940 */ 941 int binder_alloc_get_allocated_count(struct binder_alloc *alloc) 942 { 943 struct rb_node *n; 944 int count = 0; 945 946 mutex_lock(&alloc->mutex); 947 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 948 count++; 949 mutex_unlock(&alloc->mutex); 950 return count; 951 } 952 953 954 /** 955 * binder_alloc_vma_close() - invalidate address space 956 * @alloc: binder_alloc for this proc 957 * 958 * Called from binder_vma_close() when releasing address space. 959 * Clears alloc->vma to prevent new incoming transactions from 960 * allocating more buffers. 961 */ 962 void binder_alloc_vma_close(struct binder_alloc *alloc) 963 { 964 binder_alloc_set_vma(alloc, NULL); 965 } 966 967 /** 968 * binder_alloc_free_page() - shrinker callback to free pages 969 * @item: item to free 970 * @lock: lock protecting the item 971 * @cb_arg: callback argument 972 * 973 * Called from list_lru_walk() in binder_shrink_scan() to free 974 * up pages when the system is under memory pressure. 975 */ 976 enum lru_status binder_alloc_free_page(struct list_head *item, 977 struct list_lru_one *lru, 978 spinlock_t *lock, 979 void *cb_arg) 980 __must_hold(lock) 981 { 982 struct mm_struct *mm = NULL; 983 struct binder_lru_page *page = container_of(item, 984 struct binder_lru_page, 985 lru); 986 struct binder_alloc *alloc; 987 uintptr_t page_addr; 988 size_t index; 989 struct vm_area_struct *vma; 990 991 alloc = page->alloc; 992 if (!mutex_trylock(&alloc->mutex)) 993 goto err_get_alloc_mutex_failed; 994 995 if (!page->page_ptr) 996 goto err_page_already_freed; 997 998 index = page - alloc->pages; 999 page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE; 1000 1001 mm = alloc->mm; 1002 if (!mmget_not_zero(mm)) 1003 goto err_mmget; 1004 if (!mmap_read_trylock(mm)) 1005 goto err_mmap_read_lock_failed; 1006 vma = vma_lookup(mm, page_addr); 1007 if (vma && vma != binder_alloc_get_vma(alloc)) 1008 goto err_invalid_vma; 1009 1010 list_lru_isolate(lru, item); 1011 spin_unlock(lock); 1012 1013 if (vma) { 1014 trace_binder_unmap_user_start(alloc, index); 1015 1016 zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL); 1017 1018 trace_binder_unmap_user_end(alloc, index); 1019 } 1020 mmap_read_unlock(mm); 1021 mmput_async(mm); 1022 1023 trace_binder_unmap_kernel_start(alloc, index); 1024 1025 __free_page(page->page_ptr); 1026 page->page_ptr = NULL; 1027 1028 trace_binder_unmap_kernel_end(alloc, index); 1029 1030 spin_lock(lock); 1031 mutex_unlock(&alloc->mutex); 1032 return LRU_REMOVED_RETRY; 1033 1034 err_invalid_vma: 1035 mmap_read_unlock(mm); 1036 err_mmap_read_lock_failed: 1037 mmput_async(mm); 1038 err_mmget: 1039 err_page_already_freed: 1040 mutex_unlock(&alloc->mutex); 1041 err_get_alloc_mutex_failed: 1042 return LRU_SKIP; 1043 } 1044 1045 static unsigned long 1046 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1047 { 1048 return list_lru_count(&binder_alloc_lru); 1049 } 1050 1051 static unsigned long 1052 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1053 { 1054 return list_lru_walk(&binder_alloc_lru, binder_alloc_free_page, 1055 NULL, sc->nr_to_scan); 1056 } 1057 1058 static struct shrinker binder_shrinker = { 1059 .count_objects = binder_shrink_count, 1060 .scan_objects = binder_shrink_scan, 1061 .seeks = DEFAULT_SEEKS, 1062 }; 1063 1064 /** 1065 * binder_alloc_init() - called by binder_open() for per-proc initialization 1066 * @alloc: binder_alloc for this proc 1067 * 1068 * Called from binder_open() to initialize binder_alloc fields for 1069 * new binder proc 1070 */ 1071 void binder_alloc_init(struct binder_alloc *alloc) 1072 { 1073 alloc->pid = current->group_leader->pid; 1074 alloc->mm = current->mm; 1075 mmgrab(alloc->mm); 1076 mutex_init(&alloc->mutex); 1077 INIT_LIST_HEAD(&alloc->buffers); 1078 } 1079 1080 int binder_alloc_shrinker_init(void) 1081 { 1082 int ret = list_lru_init(&binder_alloc_lru); 1083 1084 if (ret == 0) { 1085 ret = register_shrinker(&binder_shrinker, "android-binder"); 1086 if (ret) 1087 list_lru_destroy(&binder_alloc_lru); 1088 } 1089 return ret; 1090 } 1091 1092 void binder_alloc_shrinker_exit(void) 1093 { 1094 unregister_shrinker(&binder_shrinker); 1095 list_lru_destroy(&binder_alloc_lru); 1096 } 1097 1098 /** 1099 * check_buffer() - verify that buffer/offset is safe to access 1100 * @alloc: binder_alloc for this proc 1101 * @buffer: binder buffer to be accessed 1102 * @offset: offset into @buffer data 1103 * @bytes: bytes to access from offset 1104 * 1105 * Check that the @offset/@bytes are within the size of the given 1106 * @buffer and that the buffer is currently active and not freeable. 1107 * Offsets must also be multiples of sizeof(u32). The kernel is 1108 * allowed to touch the buffer in two cases: 1109 * 1110 * 1) when the buffer is being created: 1111 * (buffer->free == 0 && buffer->allow_user_free == 0) 1112 * 2) when the buffer is being torn down: 1113 * (buffer->free == 0 && buffer->transaction == NULL). 1114 * 1115 * Return: true if the buffer is safe to access 1116 */ 1117 static inline bool check_buffer(struct binder_alloc *alloc, 1118 struct binder_buffer *buffer, 1119 binder_size_t offset, size_t bytes) 1120 { 1121 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer); 1122 1123 return buffer_size >= bytes && 1124 offset <= buffer_size - bytes && 1125 IS_ALIGNED(offset, sizeof(u32)) && 1126 !buffer->free && 1127 (!buffer->allow_user_free || !buffer->transaction); 1128 } 1129 1130 /** 1131 * binder_alloc_get_page() - get kernel pointer for given buffer offset 1132 * @alloc: binder_alloc for this proc 1133 * @buffer: binder buffer to be accessed 1134 * @buffer_offset: offset into @buffer data 1135 * @pgoffp: address to copy final page offset to 1136 * 1137 * Lookup the struct page corresponding to the address 1138 * at @buffer_offset into @buffer->user_data. If @pgoffp is not 1139 * NULL, the byte-offset into the page is written there. 1140 * 1141 * The caller is responsible to ensure that the offset points 1142 * to a valid address within the @buffer and that @buffer is 1143 * not freeable by the user. Since it can't be freed, we are 1144 * guaranteed that the corresponding elements of @alloc->pages[] 1145 * cannot change. 1146 * 1147 * Return: struct page 1148 */ 1149 static struct page *binder_alloc_get_page(struct binder_alloc *alloc, 1150 struct binder_buffer *buffer, 1151 binder_size_t buffer_offset, 1152 pgoff_t *pgoffp) 1153 { 1154 binder_size_t buffer_space_offset = buffer_offset + 1155 (buffer->user_data - alloc->buffer); 1156 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK; 1157 size_t index = buffer_space_offset >> PAGE_SHIFT; 1158 struct binder_lru_page *lru_page; 1159 1160 lru_page = &alloc->pages[index]; 1161 *pgoffp = pgoff; 1162 return lru_page->page_ptr; 1163 } 1164 1165 /** 1166 * binder_alloc_clear_buf() - zero out buffer 1167 * @alloc: binder_alloc for this proc 1168 * @buffer: binder buffer to be cleared 1169 * 1170 * memset the given buffer to 0 1171 */ 1172 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 1173 struct binder_buffer *buffer) 1174 { 1175 size_t bytes = binder_alloc_buffer_size(alloc, buffer); 1176 binder_size_t buffer_offset = 0; 1177 1178 while (bytes) { 1179 unsigned long size; 1180 struct page *page; 1181 pgoff_t pgoff; 1182 1183 page = binder_alloc_get_page(alloc, buffer, 1184 buffer_offset, &pgoff); 1185 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1186 memset_page(page, pgoff, 0, size); 1187 bytes -= size; 1188 buffer_offset += size; 1189 } 1190 } 1191 1192 /** 1193 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user 1194 * @alloc: binder_alloc for this proc 1195 * @buffer: binder buffer to be accessed 1196 * @buffer_offset: offset into @buffer data 1197 * @from: userspace pointer to source buffer 1198 * @bytes: bytes to copy 1199 * 1200 * Copy bytes from source userspace to target buffer. 1201 * 1202 * Return: bytes remaining to be copied 1203 */ 1204 unsigned long 1205 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc, 1206 struct binder_buffer *buffer, 1207 binder_size_t buffer_offset, 1208 const void __user *from, 1209 size_t bytes) 1210 { 1211 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1212 return bytes; 1213 1214 while (bytes) { 1215 unsigned long size; 1216 unsigned long ret; 1217 struct page *page; 1218 pgoff_t pgoff; 1219 void *kptr; 1220 1221 page = binder_alloc_get_page(alloc, buffer, 1222 buffer_offset, &pgoff); 1223 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1224 kptr = kmap_local_page(page) + pgoff; 1225 ret = copy_from_user(kptr, from, size); 1226 kunmap_local(kptr); 1227 if (ret) 1228 return bytes - size + ret; 1229 bytes -= size; 1230 from += size; 1231 buffer_offset += size; 1232 } 1233 return 0; 1234 } 1235 1236 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc, 1237 bool to_buffer, 1238 struct binder_buffer *buffer, 1239 binder_size_t buffer_offset, 1240 void *ptr, 1241 size_t bytes) 1242 { 1243 /* All copies must be 32-bit aligned and 32-bit size */ 1244 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1245 return -EINVAL; 1246 1247 while (bytes) { 1248 unsigned long size; 1249 struct page *page; 1250 pgoff_t pgoff; 1251 1252 page = binder_alloc_get_page(alloc, buffer, 1253 buffer_offset, &pgoff); 1254 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1255 if (to_buffer) 1256 memcpy_to_page(page, pgoff, ptr, size); 1257 else 1258 memcpy_from_page(ptr, page, pgoff, size); 1259 bytes -= size; 1260 pgoff = 0; 1261 ptr = ptr + size; 1262 buffer_offset += size; 1263 } 1264 return 0; 1265 } 1266 1267 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc, 1268 struct binder_buffer *buffer, 1269 binder_size_t buffer_offset, 1270 void *src, 1271 size_t bytes) 1272 { 1273 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset, 1274 src, bytes); 1275 } 1276 1277 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc, 1278 void *dest, 1279 struct binder_buffer *buffer, 1280 binder_size_t buffer_offset, 1281 size_t bytes) 1282 { 1283 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset, 1284 dest, bytes); 1285 } 1286 1287