1 // SPDX-License-Identifier: GPL-2.0-only 2 /* binder_alloc.c 3 * 4 * Android IPC Subsystem 5 * 6 * Copyright (C) 2007-2017 Google, Inc. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/list.h> 12 #include <linux/sched/mm.h> 13 #include <linux/module.h> 14 #include <linux/rtmutex.h> 15 #include <linux/rbtree.h> 16 #include <linux/seq_file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/list_lru.h> 21 #include <linux/ratelimit.h> 22 #include <asm/cacheflush.h> 23 #include <linux/uaccess.h> 24 #include <linux/highmem.h> 25 #include <linux/sizes.h> 26 #include "binder_alloc.h" 27 #include "binder_trace.h" 28 29 struct list_lru binder_alloc_lru; 30 31 static DEFINE_MUTEX(binder_alloc_mmap_lock); 32 33 enum { 34 BINDER_DEBUG_USER_ERROR = 1U << 0, 35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1, 36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2, 37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3, 38 }; 39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR; 40 41 module_param_named(debug_mask, binder_alloc_debug_mask, 42 uint, 0644); 43 44 #define binder_alloc_debug(mask, x...) \ 45 do { \ 46 if (binder_alloc_debug_mask & mask) \ 47 pr_info_ratelimited(x); \ 48 } while (0) 49 50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer) 51 { 52 return list_entry(buffer->entry.next, struct binder_buffer, entry); 53 } 54 55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer) 56 { 57 return list_entry(buffer->entry.prev, struct binder_buffer, entry); 58 } 59 60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc, 61 struct binder_buffer *buffer) 62 { 63 if (list_is_last(&buffer->entry, &alloc->buffers)) 64 return alloc->buffer + alloc->buffer_size - buffer->user_data; 65 return binder_buffer_next(buffer)->user_data - buffer->user_data; 66 } 67 68 static void binder_insert_free_buffer(struct binder_alloc *alloc, 69 struct binder_buffer *new_buffer) 70 { 71 struct rb_node **p = &alloc->free_buffers.rb_node; 72 struct rb_node *parent = NULL; 73 struct binder_buffer *buffer; 74 size_t buffer_size; 75 size_t new_buffer_size; 76 77 BUG_ON(!new_buffer->free); 78 79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer); 80 81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 82 "%d: add free buffer, size %zd, at %pK\n", 83 alloc->pid, new_buffer_size, new_buffer); 84 85 while (*p) { 86 parent = *p; 87 buffer = rb_entry(parent, struct binder_buffer, rb_node); 88 BUG_ON(!buffer->free); 89 90 buffer_size = binder_alloc_buffer_size(alloc, buffer); 91 92 if (new_buffer_size < buffer_size) 93 p = &parent->rb_left; 94 else 95 p = &parent->rb_right; 96 } 97 rb_link_node(&new_buffer->rb_node, parent, p); 98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers); 99 } 100 101 static void binder_insert_allocated_buffer_locked( 102 struct binder_alloc *alloc, struct binder_buffer *new_buffer) 103 { 104 struct rb_node **p = &alloc->allocated_buffers.rb_node; 105 struct rb_node *parent = NULL; 106 struct binder_buffer *buffer; 107 108 BUG_ON(new_buffer->free); 109 110 while (*p) { 111 parent = *p; 112 buffer = rb_entry(parent, struct binder_buffer, rb_node); 113 BUG_ON(buffer->free); 114 115 if (new_buffer->user_data < buffer->user_data) 116 p = &parent->rb_left; 117 else if (new_buffer->user_data > buffer->user_data) 118 p = &parent->rb_right; 119 else 120 BUG(); 121 } 122 rb_link_node(&new_buffer->rb_node, parent, p); 123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers); 124 } 125 126 static struct binder_buffer *binder_alloc_prepare_to_free_locked( 127 struct binder_alloc *alloc, 128 uintptr_t user_ptr) 129 { 130 struct rb_node *n = alloc->allocated_buffers.rb_node; 131 struct binder_buffer *buffer; 132 void __user *uptr; 133 134 uptr = (void __user *)user_ptr; 135 136 while (n) { 137 buffer = rb_entry(n, struct binder_buffer, rb_node); 138 BUG_ON(buffer->free); 139 140 if (uptr < buffer->user_data) 141 n = n->rb_left; 142 else if (uptr > buffer->user_data) 143 n = n->rb_right; 144 else { 145 /* 146 * Guard against user threads attempting to 147 * free the buffer when in use by kernel or 148 * after it's already been freed. 149 */ 150 if (!buffer->allow_user_free) 151 return ERR_PTR(-EPERM); 152 buffer->allow_user_free = 0; 153 return buffer; 154 } 155 } 156 return NULL; 157 } 158 159 /** 160 * binder_alloc_prepare_to_free() - get buffer given user ptr 161 * @alloc: binder_alloc for this proc 162 * @user_ptr: User pointer to buffer data 163 * 164 * Validate userspace pointer to buffer data and return buffer corresponding to 165 * that user pointer. Search the rb tree for buffer that matches user data 166 * pointer. 167 * 168 * Return: Pointer to buffer or NULL 169 */ 170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc, 171 uintptr_t user_ptr) 172 { 173 struct binder_buffer *buffer; 174 175 mutex_lock(&alloc->mutex); 176 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr); 177 mutex_unlock(&alloc->mutex); 178 return buffer; 179 } 180 181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate, 182 void __user *start, void __user *end) 183 { 184 void __user *page_addr; 185 unsigned long user_page_addr; 186 struct binder_lru_page *page; 187 struct vm_area_struct *vma = NULL; 188 struct mm_struct *mm = NULL; 189 bool need_mm = false; 190 191 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 192 "%d: %s pages %pK-%pK\n", alloc->pid, 193 allocate ? "allocate" : "free", start, end); 194 195 if (end <= start) 196 return 0; 197 198 trace_binder_update_page_range(alloc, allocate, start, end); 199 200 if (allocate == 0) 201 goto free_range; 202 203 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 204 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE]; 205 if (!page->page_ptr) { 206 need_mm = true; 207 break; 208 } 209 } 210 211 if (need_mm && mmget_not_zero(alloc->mm)) 212 mm = alloc->mm; 213 214 if (mm) { 215 mmap_read_lock(mm); 216 vma = vma_lookup(mm, alloc->vma_addr); 217 } 218 219 if (!vma && need_mm) { 220 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 221 "%d: binder_alloc_buf failed to map pages in userspace, no vma\n", 222 alloc->pid); 223 goto err_no_vma; 224 } 225 226 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) { 227 int ret; 228 bool on_lru; 229 size_t index; 230 231 index = (page_addr - alloc->buffer) / PAGE_SIZE; 232 page = &alloc->pages[index]; 233 234 if (page->page_ptr) { 235 trace_binder_alloc_lru_start(alloc, index); 236 237 on_lru = list_lru_del(&binder_alloc_lru, &page->lru); 238 WARN_ON(!on_lru); 239 240 trace_binder_alloc_lru_end(alloc, index); 241 continue; 242 } 243 244 if (WARN_ON(!vma)) 245 goto err_page_ptr_cleared; 246 247 trace_binder_alloc_page_start(alloc, index); 248 page->page_ptr = alloc_page(GFP_KERNEL | 249 __GFP_HIGHMEM | 250 __GFP_ZERO); 251 if (!page->page_ptr) { 252 pr_err("%d: binder_alloc_buf failed for page at %pK\n", 253 alloc->pid, page_addr); 254 goto err_alloc_page_failed; 255 } 256 page->alloc = alloc; 257 INIT_LIST_HEAD(&page->lru); 258 259 user_page_addr = (uintptr_t)page_addr; 260 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr); 261 if (ret) { 262 pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n", 263 alloc->pid, user_page_addr); 264 goto err_vm_insert_page_failed; 265 } 266 267 if (index + 1 > alloc->pages_high) 268 alloc->pages_high = index + 1; 269 270 trace_binder_alloc_page_end(alloc, index); 271 } 272 if (mm) { 273 mmap_read_unlock(mm); 274 mmput(mm); 275 } 276 return 0; 277 278 free_range: 279 for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) { 280 bool ret; 281 size_t index; 282 283 index = (page_addr - alloc->buffer) / PAGE_SIZE; 284 page = &alloc->pages[index]; 285 286 trace_binder_free_lru_start(alloc, index); 287 288 ret = list_lru_add(&binder_alloc_lru, &page->lru); 289 WARN_ON(!ret); 290 291 trace_binder_free_lru_end(alloc, index); 292 if (page_addr == start) 293 break; 294 continue; 295 296 err_vm_insert_page_failed: 297 __free_page(page->page_ptr); 298 page->page_ptr = NULL; 299 err_alloc_page_failed: 300 err_page_ptr_cleared: 301 if (page_addr == start) 302 break; 303 } 304 err_no_vma: 305 if (mm) { 306 mmap_read_unlock(mm); 307 mmput(mm); 308 } 309 return vma ? -ENOMEM : -ESRCH; 310 } 311 312 static inline struct vm_area_struct *binder_alloc_get_vma( 313 struct binder_alloc *alloc) 314 { 315 struct vm_area_struct *vma = NULL; 316 317 if (alloc->vma_addr) 318 vma = vma_lookup(alloc->mm, alloc->vma_addr); 319 320 return vma; 321 } 322 323 static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid) 324 { 325 /* 326 * Find the amount and size of buffers allocated by the current caller; 327 * The idea is that once we cross the threshold, whoever is responsible 328 * for the low async space is likely to try to send another async txn, 329 * and at some point we'll catch them in the act. This is more efficient 330 * than keeping a map per pid. 331 */ 332 struct rb_node *n; 333 struct binder_buffer *buffer; 334 size_t total_alloc_size = 0; 335 size_t num_buffers = 0; 336 337 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 338 n = rb_next(n)) { 339 buffer = rb_entry(n, struct binder_buffer, rb_node); 340 if (buffer->pid != pid) 341 continue; 342 if (!buffer->async_transaction) 343 continue; 344 total_alloc_size += binder_alloc_buffer_size(alloc, buffer) 345 + sizeof(struct binder_buffer); 346 num_buffers++; 347 } 348 349 /* 350 * Warn if this pid has more than 50 transactions, or more than 50% of 351 * async space (which is 25% of total buffer size). Oneway spam is only 352 * detected when the threshold is exceeded. 353 */ 354 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) { 355 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 356 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n", 357 alloc->pid, pid, num_buffers, total_alloc_size); 358 if (!alloc->oneway_spam_detected) { 359 alloc->oneway_spam_detected = true; 360 return true; 361 } 362 } 363 return false; 364 } 365 366 static struct binder_buffer *binder_alloc_new_buf_locked( 367 struct binder_alloc *alloc, 368 size_t data_size, 369 size_t offsets_size, 370 size_t extra_buffers_size, 371 int is_async, 372 int pid) 373 { 374 struct rb_node *n = alloc->free_buffers.rb_node; 375 struct binder_buffer *buffer; 376 size_t buffer_size; 377 struct rb_node *best_fit = NULL; 378 void __user *has_page_addr; 379 void __user *end_page_addr; 380 size_t size, data_offsets_size; 381 int ret; 382 383 mmap_read_lock(alloc->mm); 384 if (!binder_alloc_get_vma(alloc)) { 385 mmap_read_unlock(alloc->mm); 386 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 387 "%d: binder_alloc_buf, no vma\n", 388 alloc->pid); 389 return ERR_PTR(-ESRCH); 390 } 391 mmap_read_unlock(alloc->mm); 392 393 data_offsets_size = ALIGN(data_size, sizeof(void *)) + 394 ALIGN(offsets_size, sizeof(void *)); 395 396 if (data_offsets_size < data_size || data_offsets_size < offsets_size) { 397 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 398 "%d: got transaction with invalid size %zd-%zd\n", 399 alloc->pid, data_size, offsets_size); 400 return ERR_PTR(-EINVAL); 401 } 402 size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *)); 403 if (size < data_offsets_size || size < extra_buffers_size) { 404 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 405 "%d: got transaction with invalid extra_buffers_size %zd\n", 406 alloc->pid, extra_buffers_size); 407 return ERR_PTR(-EINVAL); 408 } 409 if (is_async && 410 alloc->free_async_space < size + sizeof(struct binder_buffer)) { 411 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 412 "%d: binder_alloc_buf size %zd failed, no async space left\n", 413 alloc->pid, size); 414 return ERR_PTR(-ENOSPC); 415 } 416 417 /* Pad 0-size buffers so they get assigned unique addresses */ 418 size = max(size, sizeof(void *)); 419 420 while (n) { 421 buffer = rb_entry(n, struct binder_buffer, rb_node); 422 BUG_ON(!buffer->free); 423 buffer_size = binder_alloc_buffer_size(alloc, buffer); 424 425 if (size < buffer_size) { 426 best_fit = n; 427 n = n->rb_left; 428 } else if (size > buffer_size) 429 n = n->rb_right; 430 else { 431 best_fit = n; 432 break; 433 } 434 } 435 if (best_fit == NULL) { 436 size_t allocated_buffers = 0; 437 size_t largest_alloc_size = 0; 438 size_t total_alloc_size = 0; 439 size_t free_buffers = 0; 440 size_t largest_free_size = 0; 441 size_t total_free_size = 0; 442 443 for (n = rb_first(&alloc->allocated_buffers); n != NULL; 444 n = rb_next(n)) { 445 buffer = rb_entry(n, struct binder_buffer, rb_node); 446 buffer_size = binder_alloc_buffer_size(alloc, buffer); 447 allocated_buffers++; 448 total_alloc_size += buffer_size; 449 if (buffer_size > largest_alloc_size) 450 largest_alloc_size = buffer_size; 451 } 452 for (n = rb_first(&alloc->free_buffers); n != NULL; 453 n = rb_next(n)) { 454 buffer = rb_entry(n, struct binder_buffer, rb_node); 455 buffer_size = binder_alloc_buffer_size(alloc, buffer); 456 free_buffers++; 457 total_free_size += buffer_size; 458 if (buffer_size > largest_free_size) 459 largest_free_size = buffer_size; 460 } 461 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 462 "%d: binder_alloc_buf size %zd failed, no address space\n", 463 alloc->pid, size); 464 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 465 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n", 466 total_alloc_size, allocated_buffers, 467 largest_alloc_size, total_free_size, 468 free_buffers, largest_free_size); 469 return ERR_PTR(-ENOSPC); 470 } 471 if (n == NULL) { 472 buffer = rb_entry(best_fit, struct binder_buffer, rb_node); 473 buffer_size = binder_alloc_buffer_size(alloc, buffer); 474 } 475 476 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 477 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n", 478 alloc->pid, size, buffer, buffer_size); 479 480 has_page_addr = (void __user *) 481 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK); 482 WARN_ON(n && buffer_size != size); 483 end_page_addr = 484 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size); 485 if (end_page_addr > has_page_addr) 486 end_page_addr = has_page_addr; 487 ret = binder_update_page_range(alloc, 1, (void __user *) 488 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr); 489 if (ret) 490 return ERR_PTR(ret); 491 492 if (buffer_size != size) { 493 struct binder_buffer *new_buffer; 494 495 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 496 if (!new_buffer) { 497 pr_err("%s: %d failed to alloc new buffer struct\n", 498 __func__, alloc->pid); 499 goto err_alloc_buf_struct_failed; 500 } 501 new_buffer->user_data = (u8 __user *)buffer->user_data + size; 502 list_add(&new_buffer->entry, &buffer->entry); 503 new_buffer->free = 1; 504 binder_insert_free_buffer(alloc, new_buffer); 505 } 506 507 rb_erase(best_fit, &alloc->free_buffers); 508 buffer->free = 0; 509 buffer->allow_user_free = 0; 510 binder_insert_allocated_buffer_locked(alloc, buffer); 511 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 512 "%d: binder_alloc_buf size %zd got %pK\n", 513 alloc->pid, size, buffer); 514 buffer->data_size = data_size; 515 buffer->offsets_size = offsets_size; 516 buffer->async_transaction = is_async; 517 buffer->extra_buffers_size = extra_buffers_size; 518 buffer->pid = pid; 519 buffer->oneway_spam_suspect = false; 520 if (is_async) { 521 alloc->free_async_space -= size + sizeof(struct binder_buffer); 522 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 523 "%d: binder_alloc_buf size %zd async free %zd\n", 524 alloc->pid, size, alloc->free_async_space); 525 if (alloc->free_async_space < alloc->buffer_size / 10) { 526 /* 527 * Start detecting spammers once we have less than 20% 528 * of async space left (which is less than 10% of total 529 * buffer size). 530 */ 531 buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid); 532 } else { 533 alloc->oneway_spam_detected = false; 534 } 535 } 536 return buffer; 537 538 err_alloc_buf_struct_failed: 539 binder_update_page_range(alloc, 0, (void __user *) 540 PAGE_ALIGN((uintptr_t)buffer->user_data), 541 end_page_addr); 542 return ERR_PTR(-ENOMEM); 543 } 544 545 /** 546 * binder_alloc_new_buf() - Allocate a new binder buffer 547 * @alloc: binder_alloc for this proc 548 * @data_size: size of user data buffer 549 * @offsets_size: user specified buffer offset 550 * @extra_buffers_size: size of extra space for meta-data (eg, security context) 551 * @is_async: buffer for async transaction 552 * @pid: pid to attribute allocation to (used for debugging) 553 * 554 * Allocate a new buffer given the requested sizes. Returns 555 * the kernel version of the buffer pointer. The size allocated 556 * is the sum of the three given sizes (each rounded up to 557 * pointer-sized boundary) 558 * 559 * Return: The allocated buffer or %NULL if error 560 */ 561 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc, 562 size_t data_size, 563 size_t offsets_size, 564 size_t extra_buffers_size, 565 int is_async, 566 int pid) 567 { 568 struct binder_buffer *buffer; 569 570 mutex_lock(&alloc->mutex); 571 buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size, 572 extra_buffers_size, is_async, pid); 573 mutex_unlock(&alloc->mutex); 574 return buffer; 575 } 576 577 static void __user *buffer_start_page(struct binder_buffer *buffer) 578 { 579 return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK); 580 } 581 582 static void __user *prev_buffer_end_page(struct binder_buffer *buffer) 583 { 584 return (void __user *) 585 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK); 586 } 587 588 static void binder_delete_free_buffer(struct binder_alloc *alloc, 589 struct binder_buffer *buffer) 590 { 591 struct binder_buffer *prev, *next = NULL; 592 bool to_free = true; 593 594 BUG_ON(alloc->buffers.next == &buffer->entry); 595 prev = binder_buffer_prev(buffer); 596 BUG_ON(!prev->free); 597 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) { 598 to_free = false; 599 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 600 "%d: merge free, buffer %pK share page with %pK\n", 601 alloc->pid, buffer->user_data, 602 prev->user_data); 603 } 604 605 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 606 next = binder_buffer_next(buffer); 607 if (buffer_start_page(next) == buffer_start_page(buffer)) { 608 to_free = false; 609 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 610 "%d: merge free, buffer %pK share page with %pK\n", 611 alloc->pid, 612 buffer->user_data, 613 next->user_data); 614 } 615 } 616 617 if (PAGE_ALIGNED(buffer->user_data)) { 618 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 619 "%d: merge free, buffer start %pK is page aligned\n", 620 alloc->pid, buffer->user_data); 621 to_free = false; 622 } 623 624 if (to_free) { 625 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 626 "%d: merge free, buffer %pK do not share page with %pK or %pK\n", 627 alloc->pid, buffer->user_data, 628 prev->user_data, 629 next ? next->user_data : NULL); 630 binder_update_page_range(alloc, 0, buffer_start_page(buffer), 631 buffer_start_page(buffer) + PAGE_SIZE); 632 } 633 list_del(&buffer->entry); 634 kfree(buffer); 635 } 636 637 static void binder_free_buf_locked(struct binder_alloc *alloc, 638 struct binder_buffer *buffer) 639 { 640 size_t size, buffer_size; 641 642 buffer_size = binder_alloc_buffer_size(alloc, buffer); 643 644 size = ALIGN(buffer->data_size, sizeof(void *)) + 645 ALIGN(buffer->offsets_size, sizeof(void *)) + 646 ALIGN(buffer->extra_buffers_size, sizeof(void *)); 647 648 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 649 "%d: binder_free_buf %pK size %zd buffer_size %zd\n", 650 alloc->pid, buffer, size, buffer_size); 651 652 BUG_ON(buffer->free); 653 BUG_ON(size > buffer_size); 654 BUG_ON(buffer->transaction != NULL); 655 BUG_ON(buffer->user_data < alloc->buffer); 656 BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size); 657 658 if (buffer->async_transaction) { 659 alloc->free_async_space += buffer_size + sizeof(struct binder_buffer); 660 661 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC, 662 "%d: binder_free_buf size %zd async free %zd\n", 663 alloc->pid, size, alloc->free_async_space); 664 } 665 666 binder_update_page_range(alloc, 0, 667 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data), 668 (void __user *)(((uintptr_t) 669 buffer->user_data + buffer_size) & PAGE_MASK)); 670 671 rb_erase(&buffer->rb_node, &alloc->allocated_buffers); 672 buffer->free = 1; 673 if (!list_is_last(&buffer->entry, &alloc->buffers)) { 674 struct binder_buffer *next = binder_buffer_next(buffer); 675 676 if (next->free) { 677 rb_erase(&next->rb_node, &alloc->free_buffers); 678 binder_delete_free_buffer(alloc, next); 679 } 680 } 681 if (alloc->buffers.next != &buffer->entry) { 682 struct binder_buffer *prev = binder_buffer_prev(buffer); 683 684 if (prev->free) { 685 binder_delete_free_buffer(alloc, buffer); 686 rb_erase(&prev->rb_node, &alloc->free_buffers); 687 buffer = prev; 688 } 689 } 690 binder_insert_free_buffer(alloc, buffer); 691 } 692 693 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 694 struct binder_buffer *buffer); 695 /** 696 * binder_alloc_free_buf() - free a binder buffer 697 * @alloc: binder_alloc for this proc 698 * @buffer: kernel pointer to buffer 699 * 700 * Free the buffer allocated via binder_alloc_new_buf() 701 */ 702 void binder_alloc_free_buf(struct binder_alloc *alloc, 703 struct binder_buffer *buffer) 704 { 705 /* 706 * We could eliminate the call to binder_alloc_clear_buf() 707 * from binder_alloc_deferred_release() by moving this to 708 * binder_alloc_free_buf_locked(). However, that could 709 * increase contention for the alloc mutex if clear_on_free 710 * is used frequently for large buffers. The mutex is not 711 * needed for correctness here. 712 */ 713 if (buffer->clear_on_free) { 714 binder_alloc_clear_buf(alloc, buffer); 715 buffer->clear_on_free = false; 716 } 717 mutex_lock(&alloc->mutex); 718 binder_free_buf_locked(alloc, buffer); 719 mutex_unlock(&alloc->mutex); 720 } 721 722 /** 723 * binder_alloc_mmap_handler() - map virtual address space for proc 724 * @alloc: alloc structure for this proc 725 * @vma: vma passed to mmap() 726 * 727 * Called by binder_mmap() to initialize the space specified in 728 * vma for allocating binder buffers 729 * 730 * Return: 731 * 0 = success 732 * -EBUSY = address space already mapped 733 * -ENOMEM = failed to map memory to given address space 734 */ 735 int binder_alloc_mmap_handler(struct binder_alloc *alloc, 736 struct vm_area_struct *vma) 737 { 738 int ret; 739 const char *failure_string; 740 struct binder_buffer *buffer; 741 742 if (unlikely(vma->vm_mm != alloc->mm)) { 743 ret = -EINVAL; 744 failure_string = "invalid vma->vm_mm"; 745 goto err_invalid_mm; 746 } 747 748 mutex_lock(&binder_alloc_mmap_lock); 749 if (alloc->buffer_size) { 750 ret = -EBUSY; 751 failure_string = "already mapped"; 752 goto err_already_mapped; 753 } 754 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start, 755 SZ_4M); 756 mutex_unlock(&binder_alloc_mmap_lock); 757 758 alloc->buffer = (void __user *)vma->vm_start; 759 760 alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE, 761 sizeof(alloc->pages[0]), 762 GFP_KERNEL); 763 if (alloc->pages == NULL) { 764 ret = -ENOMEM; 765 failure_string = "alloc page array"; 766 goto err_alloc_pages_failed; 767 } 768 769 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 770 if (!buffer) { 771 ret = -ENOMEM; 772 failure_string = "alloc buffer struct"; 773 goto err_alloc_buf_struct_failed; 774 } 775 776 buffer->user_data = alloc->buffer; 777 list_add(&buffer->entry, &alloc->buffers); 778 buffer->free = 1; 779 binder_insert_free_buffer(alloc, buffer); 780 alloc->free_async_space = alloc->buffer_size / 2; 781 alloc->vma_addr = vma->vm_start; 782 783 return 0; 784 785 err_alloc_buf_struct_failed: 786 kfree(alloc->pages); 787 alloc->pages = NULL; 788 err_alloc_pages_failed: 789 alloc->buffer = NULL; 790 mutex_lock(&binder_alloc_mmap_lock); 791 alloc->buffer_size = 0; 792 err_already_mapped: 793 mutex_unlock(&binder_alloc_mmap_lock); 794 err_invalid_mm: 795 binder_alloc_debug(BINDER_DEBUG_USER_ERROR, 796 "%s: %d %lx-%lx %s failed %d\n", __func__, 797 alloc->pid, vma->vm_start, vma->vm_end, 798 failure_string, ret); 799 return ret; 800 } 801 802 803 void binder_alloc_deferred_release(struct binder_alloc *alloc) 804 { 805 struct rb_node *n; 806 int buffers, page_count; 807 struct binder_buffer *buffer; 808 809 buffers = 0; 810 mutex_lock(&alloc->mutex); 811 BUG_ON(alloc->vma_addr && 812 vma_lookup(alloc->mm, alloc->vma_addr)); 813 814 while ((n = rb_first(&alloc->allocated_buffers))) { 815 buffer = rb_entry(n, struct binder_buffer, rb_node); 816 817 /* Transaction should already have been freed */ 818 BUG_ON(buffer->transaction); 819 820 if (buffer->clear_on_free) { 821 binder_alloc_clear_buf(alloc, buffer); 822 buffer->clear_on_free = false; 823 } 824 binder_free_buf_locked(alloc, buffer); 825 buffers++; 826 } 827 828 while (!list_empty(&alloc->buffers)) { 829 buffer = list_first_entry(&alloc->buffers, 830 struct binder_buffer, entry); 831 WARN_ON(!buffer->free); 832 833 list_del(&buffer->entry); 834 WARN_ON_ONCE(!list_empty(&alloc->buffers)); 835 kfree(buffer); 836 } 837 838 page_count = 0; 839 if (alloc->pages) { 840 int i; 841 842 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 843 void __user *page_addr; 844 bool on_lru; 845 846 if (!alloc->pages[i].page_ptr) 847 continue; 848 849 on_lru = list_lru_del(&binder_alloc_lru, 850 &alloc->pages[i].lru); 851 page_addr = alloc->buffer + i * PAGE_SIZE; 852 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC, 853 "%s: %d: page %d at %pK %s\n", 854 __func__, alloc->pid, i, page_addr, 855 on_lru ? "on lru" : "active"); 856 __free_page(alloc->pages[i].page_ptr); 857 page_count++; 858 } 859 kfree(alloc->pages); 860 } 861 mutex_unlock(&alloc->mutex); 862 if (alloc->mm) 863 mmdrop(alloc->mm); 864 865 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE, 866 "%s: %d buffers %d, pages %d\n", 867 __func__, alloc->pid, buffers, page_count); 868 } 869 870 static void print_binder_buffer(struct seq_file *m, const char *prefix, 871 struct binder_buffer *buffer) 872 { 873 seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n", 874 prefix, buffer->debug_id, buffer->user_data, 875 buffer->data_size, buffer->offsets_size, 876 buffer->extra_buffers_size, 877 buffer->transaction ? "active" : "delivered"); 878 } 879 880 /** 881 * binder_alloc_print_allocated() - print buffer info 882 * @m: seq_file for output via seq_printf() 883 * @alloc: binder_alloc for this proc 884 * 885 * Prints information about every buffer associated with 886 * the binder_alloc state to the given seq_file 887 */ 888 void binder_alloc_print_allocated(struct seq_file *m, 889 struct binder_alloc *alloc) 890 { 891 struct rb_node *n; 892 893 mutex_lock(&alloc->mutex); 894 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 895 print_binder_buffer(m, " buffer", 896 rb_entry(n, struct binder_buffer, rb_node)); 897 mutex_unlock(&alloc->mutex); 898 } 899 900 /** 901 * binder_alloc_print_pages() - print page usage 902 * @m: seq_file for output via seq_printf() 903 * @alloc: binder_alloc for this proc 904 */ 905 void binder_alloc_print_pages(struct seq_file *m, 906 struct binder_alloc *alloc) 907 { 908 struct binder_lru_page *page; 909 int i; 910 int active = 0; 911 int lru = 0; 912 int free = 0; 913 914 mutex_lock(&alloc->mutex); 915 /* 916 * Make sure the binder_alloc is fully initialized, otherwise we might 917 * read inconsistent state. 918 */ 919 920 mmap_read_lock(alloc->mm); 921 if (binder_alloc_get_vma(alloc) == NULL) { 922 mmap_read_unlock(alloc->mm); 923 goto uninitialized; 924 } 925 926 mmap_read_unlock(alloc->mm); 927 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) { 928 page = &alloc->pages[i]; 929 if (!page->page_ptr) 930 free++; 931 else if (list_empty(&page->lru)) 932 active++; 933 else 934 lru++; 935 } 936 937 uninitialized: 938 mutex_unlock(&alloc->mutex); 939 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free); 940 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high); 941 } 942 943 /** 944 * binder_alloc_get_allocated_count() - return count of buffers 945 * @alloc: binder_alloc for this proc 946 * 947 * Return: count of allocated buffers 948 */ 949 int binder_alloc_get_allocated_count(struct binder_alloc *alloc) 950 { 951 struct rb_node *n; 952 int count = 0; 953 954 mutex_lock(&alloc->mutex); 955 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n)) 956 count++; 957 mutex_unlock(&alloc->mutex); 958 return count; 959 } 960 961 962 /** 963 * binder_alloc_vma_close() - invalidate address space 964 * @alloc: binder_alloc for this proc 965 * 966 * Called from binder_vma_close() when releasing address space. 967 * Clears alloc->vma to prevent new incoming transactions from 968 * allocating more buffers. 969 */ 970 void binder_alloc_vma_close(struct binder_alloc *alloc) 971 { 972 alloc->vma_addr = 0; 973 } 974 975 /** 976 * binder_alloc_free_page() - shrinker callback to free pages 977 * @item: item to free 978 * @lock: lock protecting the item 979 * @cb_arg: callback argument 980 * 981 * Called from list_lru_walk() in binder_shrink_scan() to free 982 * up pages when the system is under memory pressure. 983 */ 984 enum lru_status binder_alloc_free_page(struct list_head *item, 985 struct list_lru_one *lru, 986 spinlock_t *lock, 987 void *cb_arg) 988 __must_hold(lock) 989 { 990 struct mm_struct *mm = NULL; 991 struct binder_lru_page *page = container_of(item, 992 struct binder_lru_page, 993 lru); 994 struct binder_alloc *alloc; 995 uintptr_t page_addr; 996 size_t index; 997 struct vm_area_struct *vma; 998 999 alloc = page->alloc; 1000 if (!mutex_trylock(&alloc->mutex)) 1001 goto err_get_alloc_mutex_failed; 1002 1003 if (!page->page_ptr) 1004 goto err_page_already_freed; 1005 1006 index = page - alloc->pages; 1007 page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE; 1008 1009 mm = alloc->mm; 1010 if (!mmget_not_zero(mm)) 1011 goto err_mmget; 1012 if (!mmap_read_trylock(mm)) 1013 goto err_mmap_read_lock_failed; 1014 vma = binder_alloc_get_vma(alloc); 1015 1016 list_lru_isolate(lru, item); 1017 spin_unlock(lock); 1018 1019 if (vma) { 1020 trace_binder_unmap_user_start(alloc, index); 1021 1022 zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL); 1023 1024 trace_binder_unmap_user_end(alloc, index); 1025 } 1026 mmap_read_unlock(mm); 1027 mmput_async(mm); 1028 1029 trace_binder_unmap_kernel_start(alloc, index); 1030 1031 __free_page(page->page_ptr); 1032 page->page_ptr = NULL; 1033 1034 trace_binder_unmap_kernel_end(alloc, index); 1035 1036 spin_lock(lock); 1037 mutex_unlock(&alloc->mutex); 1038 return LRU_REMOVED_RETRY; 1039 1040 err_mmap_read_lock_failed: 1041 mmput_async(mm); 1042 err_mmget: 1043 err_page_already_freed: 1044 mutex_unlock(&alloc->mutex); 1045 err_get_alloc_mutex_failed: 1046 return LRU_SKIP; 1047 } 1048 1049 static unsigned long 1050 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1051 { 1052 return list_lru_count(&binder_alloc_lru); 1053 } 1054 1055 static unsigned long 1056 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1057 { 1058 return list_lru_walk(&binder_alloc_lru, binder_alloc_free_page, 1059 NULL, sc->nr_to_scan); 1060 } 1061 1062 static struct shrinker binder_shrinker = { 1063 .count_objects = binder_shrink_count, 1064 .scan_objects = binder_shrink_scan, 1065 .seeks = DEFAULT_SEEKS, 1066 }; 1067 1068 /** 1069 * binder_alloc_init() - called by binder_open() for per-proc initialization 1070 * @alloc: binder_alloc for this proc 1071 * 1072 * Called from binder_open() to initialize binder_alloc fields for 1073 * new binder proc 1074 */ 1075 void binder_alloc_init(struct binder_alloc *alloc) 1076 { 1077 alloc->pid = current->group_leader->pid; 1078 alloc->mm = current->mm; 1079 mmgrab(alloc->mm); 1080 mutex_init(&alloc->mutex); 1081 INIT_LIST_HEAD(&alloc->buffers); 1082 } 1083 1084 int binder_alloc_shrinker_init(void) 1085 { 1086 int ret = list_lru_init(&binder_alloc_lru); 1087 1088 if (ret == 0) { 1089 ret = register_shrinker(&binder_shrinker, "android-binder"); 1090 if (ret) 1091 list_lru_destroy(&binder_alloc_lru); 1092 } 1093 return ret; 1094 } 1095 1096 /** 1097 * check_buffer() - verify that buffer/offset is safe to access 1098 * @alloc: binder_alloc for this proc 1099 * @buffer: binder buffer to be accessed 1100 * @offset: offset into @buffer data 1101 * @bytes: bytes to access from offset 1102 * 1103 * Check that the @offset/@bytes are within the size of the given 1104 * @buffer and that the buffer is currently active and not freeable. 1105 * Offsets must also be multiples of sizeof(u32). The kernel is 1106 * allowed to touch the buffer in two cases: 1107 * 1108 * 1) when the buffer is being created: 1109 * (buffer->free == 0 && buffer->allow_user_free == 0) 1110 * 2) when the buffer is being torn down: 1111 * (buffer->free == 0 && buffer->transaction == NULL). 1112 * 1113 * Return: true if the buffer is safe to access 1114 */ 1115 static inline bool check_buffer(struct binder_alloc *alloc, 1116 struct binder_buffer *buffer, 1117 binder_size_t offset, size_t bytes) 1118 { 1119 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer); 1120 1121 return buffer_size >= bytes && 1122 offset <= buffer_size - bytes && 1123 IS_ALIGNED(offset, sizeof(u32)) && 1124 !buffer->free && 1125 (!buffer->allow_user_free || !buffer->transaction); 1126 } 1127 1128 /** 1129 * binder_alloc_get_page() - get kernel pointer for given buffer offset 1130 * @alloc: binder_alloc for this proc 1131 * @buffer: binder buffer to be accessed 1132 * @buffer_offset: offset into @buffer data 1133 * @pgoffp: address to copy final page offset to 1134 * 1135 * Lookup the struct page corresponding to the address 1136 * at @buffer_offset into @buffer->user_data. If @pgoffp is not 1137 * NULL, the byte-offset into the page is written there. 1138 * 1139 * The caller is responsible to ensure that the offset points 1140 * to a valid address within the @buffer and that @buffer is 1141 * not freeable by the user. Since it can't be freed, we are 1142 * guaranteed that the corresponding elements of @alloc->pages[] 1143 * cannot change. 1144 * 1145 * Return: struct page 1146 */ 1147 static struct page *binder_alloc_get_page(struct binder_alloc *alloc, 1148 struct binder_buffer *buffer, 1149 binder_size_t buffer_offset, 1150 pgoff_t *pgoffp) 1151 { 1152 binder_size_t buffer_space_offset = buffer_offset + 1153 (buffer->user_data - alloc->buffer); 1154 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK; 1155 size_t index = buffer_space_offset >> PAGE_SHIFT; 1156 struct binder_lru_page *lru_page; 1157 1158 lru_page = &alloc->pages[index]; 1159 *pgoffp = pgoff; 1160 return lru_page->page_ptr; 1161 } 1162 1163 /** 1164 * binder_alloc_clear_buf() - zero out buffer 1165 * @alloc: binder_alloc for this proc 1166 * @buffer: binder buffer to be cleared 1167 * 1168 * memset the given buffer to 0 1169 */ 1170 static void binder_alloc_clear_buf(struct binder_alloc *alloc, 1171 struct binder_buffer *buffer) 1172 { 1173 size_t bytes = binder_alloc_buffer_size(alloc, buffer); 1174 binder_size_t buffer_offset = 0; 1175 1176 while (bytes) { 1177 unsigned long size; 1178 struct page *page; 1179 pgoff_t pgoff; 1180 1181 page = binder_alloc_get_page(alloc, buffer, 1182 buffer_offset, &pgoff); 1183 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1184 memset_page(page, pgoff, 0, size); 1185 bytes -= size; 1186 buffer_offset += size; 1187 } 1188 } 1189 1190 /** 1191 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user 1192 * @alloc: binder_alloc for this proc 1193 * @buffer: binder buffer to be accessed 1194 * @buffer_offset: offset into @buffer data 1195 * @from: userspace pointer to source buffer 1196 * @bytes: bytes to copy 1197 * 1198 * Copy bytes from source userspace to target buffer. 1199 * 1200 * Return: bytes remaining to be copied 1201 */ 1202 unsigned long 1203 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc, 1204 struct binder_buffer *buffer, 1205 binder_size_t buffer_offset, 1206 const void __user *from, 1207 size_t bytes) 1208 { 1209 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1210 return bytes; 1211 1212 while (bytes) { 1213 unsigned long size; 1214 unsigned long ret; 1215 struct page *page; 1216 pgoff_t pgoff; 1217 void *kptr; 1218 1219 page = binder_alloc_get_page(alloc, buffer, 1220 buffer_offset, &pgoff); 1221 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1222 kptr = kmap_local_page(page) + pgoff; 1223 ret = copy_from_user(kptr, from, size); 1224 kunmap_local(kptr); 1225 if (ret) 1226 return bytes - size + ret; 1227 bytes -= size; 1228 from += size; 1229 buffer_offset += size; 1230 } 1231 return 0; 1232 } 1233 1234 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc, 1235 bool to_buffer, 1236 struct binder_buffer *buffer, 1237 binder_size_t buffer_offset, 1238 void *ptr, 1239 size_t bytes) 1240 { 1241 /* All copies must be 32-bit aligned and 32-bit size */ 1242 if (!check_buffer(alloc, buffer, buffer_offset, bytes)) 1243 return -EINVAL; 1244 1245 while (bytes) { 1246 unsigned long size; 1247 struct page *page; 1248 pgoff_t pgoff; 1249 1250 page = binder_alloc_get_page(alloc, buffer, 1251 buffer_offset, &pgoff); 1252 size = min_t(size_t, bytes, PAGE_SIZE - pgoff); 1253 if (to_buffer) 1254 memcpy_to_page(page, pgoff, ptr, size); 1255 else 1256 memcpy_from_page(ptr, page, pgoff, size); 1257 bytes -= size; 1258 pgoff = 0; 1259 ptr = ptr + size; 1260 buffer_offset += size; 1261 } 1262 return 0; 1263 } 1264 1265 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc, 1266 struct binder_buffer *buffer, 1267 binder_size_t buffer_offset, 1268 void *src, 1269 size_t bytes) 1270 { 1271 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset, 1272 src, bytes); 1273 } 1274 1275 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc, 1276 void *dest, 1277 struct binder_buffer *buffer, 1278 binder_size_t buffer_offset, 1279 size_t bytes) 1280 { 1281 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset, 1282 dest, bytes); 1283 } 1284 1285