1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3 *
4 * Android IPC Subsystem
5 *
6 * Copyright (C) 2007-2017 Google, Inc.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28
29 struct list_lru binder_alloc_lru;
30
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32
33 enum {
34 BINDER_DEBUG_USER_ERROR = 1U << 0,
35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1,
36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2,
37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42 uint, 0644);
43
44 #define binder_alloc_debug(mask, x...) \
45 do { \
46 if (binder_alloc_debug_mask & mask) \
47 pr_info_ratelimited(x); \
48 } while (0)
49
binder_buffer_next(struct binder_buffer * buffer)50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52 return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54
binder_buffer_prev(struct binder_buffer * buffer)55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57 return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59
binder_alloc_buffer_size(struct binder_alloc * alloc,struct binder_buffer * buffer)60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61 struct binder_buffer *buffer)
62 {
63 if (list_is_last(&buffer->entry, &alloc->buffers))
64 return alloc->buffer + alloc->buffer_size - buffer->user_data;
65 return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67
binder_insert_free_buffer(struct binder_alloc * alloc,struct binder_buffer * new_buffer)68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69 struct binder_buffer *new_buffer)
70 {
71 struct rb_node **p = &alloc->free_buffers.rb_node;
72 struct rb_node *parent = NULL;
73 struct binder_buffer *buffer;
74 size_t buffer_size;
75 size_t new_buffer_size;
76
77 BUG_ON(!new_buffer->free);
78
79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80
81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82 "%d: add free buffer, size %zd, at %pK\n",
83 alloc->pid, new_buffer_size, new_buffer);
84
85 while (*p) {
86 parent = *p;
87 buffer = rb_entry(parent, struct binder_buffer, rb_node);
88 BUG_ON(!buffer->free);
89
90 buffer_size = binder_alloc_buffer_size(alloc, buffer);
91
92 if (new_buffer_size < buffer_size)
93 p = &parent->rb_left;
94 else
95 p = &parent->rb_right;
96 }
97 rb_link_node(&new_buffer->rb_node, parent, p);
98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100
binder_insert_allocated_buffer_locked(struct binder_alloc * alloc,struct binder_buffer * new_buffer)101 static void binder_insert_allocated_buffer_locked(
102 struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104 struct rb_node **p = &alloc->allocated_buffers.rb_node;
105 struct rb_node *parent = NULL;
106 struct binder_buffer *buffer;
107
108 BUG_ON(new_buffer->free);
109
110 while (*p) {
111 parent = *p;
112 buffer = rb_entry(parent, struct binder_buffer, rb_node);
113 BUG_ON(buffer->free);
114
115 if (new_buffer->user_data < buffer->user_data)
116 p = &parent->rb_left;
117 else if (new_buffer->user_data > buffer->user_data)
118 p = &parent->rb_right;
119 else
120 BUG();
121 }
122 rb_link_node(&new_buffer->rb_node, parent, p);
123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125
binder_alloc_prepare_to_free_locked(struct binder_alloc * alloc,uintptr_t user_ptr)126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127 struct binder_alloc *alloc,
128 uintptr_t user_ptr)
129 {
130 struct rb_node *n = alloc->allocated_buffers.rb_node;
131 struct binder_buffer *buffer;
132 void __user *uptr;
133
134 uptr = (void __user *)user_ptr;
135
136 while (n) {
137 buffer = rb_entry(n, struct binder_buffer, rb_node);
138 BUG_ON(buffer->free);
139
140 if (uptr < buffer->user_data)
141 n = n->rb_left;
142 else if (uptr > buffer->user_data)
143 n = n->rb_right;
144 else {
145 /*
146 * Guard against user threads attempting to
147 * free the buffer when in use by kernel or
148 * after it's already been freed.
149 */
150 if (!buffer->allow_user_free)
151 return ERR_PTR(-EPERM);
152 buffer->allow_user_free = 0;
153 return buffer;
154 }
155 }
156 return NULL;
157 }
158
159 /**
160 * binder_alloc_prepare_to_free() - get buffer given user ptr
161 * @alloc: binder_alloc for this proc
162 * @user_ptr: User pointer to buffer data
163 *
164 * Validate userspace pointer to buffer data and return buffer corresponding to
165 * that user pointer. Search the rb tree for buffer that matches user data
166 * pointer.
167 *
168 * Return: Pointer to buffer or NULL
169 */
binder_alloc_prepare_to_free(struct binder_alloc * alloc,uintptr_t user_ptr)170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
171 uintptr_t user_ptr)
172 {
173 struct binder_buffer *buffer;
174
175 mutex_lock(&alloc->mutex);
176 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
177 mutex_unlock(&alloc->mutex);
178 return buffer;
179 }
180
binder_update_page_range(struct binder_alloc * alloc,int allocate,void __user * start,void __user * end)181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
182 void __user *start, void __user *end)
183 {
184 void __user *page_addr;
185 unsigned long user_page_addr;
186 struct binder_lru_page *page;
187 struct vm_area_struct *vma = NULL;
188 struct mm_struct *mm = NULL;
189 bool need_mm = false;
190
191 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
192 "%d: %s pages %pK-%pK\n", alloc->pid,
193 allocate ? "allocate" : "free", start, end);
194
195 if (end <= start)
196 return 0;
197
198 trace_binder_update_page_range(alloc, allocate, start, end);
199
200 if (allocate == 0)
201 goto free_range;
202
203 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
204 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
205 if (!page->page_ptr) {
206 need_mm = true;
207 break;
208 }
209 }
210
211 if (need_mm && mmget_not_zero(alloc->mm))
212 mm = alloc->mm;
213
214 if (mm) {
215 mmap_write_lock(mm);
216 vma = alloc->vma;
217 }
218
219 if (!vma && need_mm) {
220 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
221 "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
222 alloc->pid);
223 goto err_no_vma;
224 }
225
226 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
227 int ret;
228 bool on_lru;
229 size_t index;
230
231 index = (page_addr - alloc->buffer) / PAGE_SIZE;
232 page = &alloc->pages[index];
233
234 if (page->page_ptr) {
235 trace_binder_alloc_lru_start(alloc, index);
236
237 on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
238 WARN_ON(!on_lru);
239
240 trace_binder_alloc_lru_end(alloc, index);
241 continue;
242 }
243
244 if (WARN_ON(!vma))
245 goto err_page_ptr_cleared;
246
247 trace_binder_alloc_page_start(alloc, index);
248 page->page_ptr = alloc_page(GFP_KERNEL |
249 __GFP_HIGHMEM |
250 __GFP_ZERO);
251 if (!page->page_ptr) {
252 pr_err("%d: binder_alloc_buf failed for page at %pK\n",
253 alloc->pid, page_addr);
254 goto err_alloc_page_failed;
255 }
256 page->alloc = alloc;
257 INIT_LIST_HEAD(&page->lru);
258
259 user_page_addr = (uintptr_t)page_addr;
260 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
261 if (ret) {
262 pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
263 alloc->pid, user_page_addr);
264 goto err_vm_insert_page_failed;
265 }
266
267 if (index + 1 > alloc->pages_high)
268 alloc->pages_high = index + 1;
269
270 trace_binder_alloc_page_end(alloc, index);
271 }
272 if (mm) {
273 mmap_write_unlock(mm);
274 mmput_async(mm);
275 }
276 return 0;
277
278 free_range:
279 for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
280 bool ret;
281 size_t index;
282
283 index = (page_addr - alloc->buffer) / PAGE_SIZE;
284 page = &alloc->pages[index];
285
286 trace_binder_free_lru_start(alloc, index);
287
288 ret = list_lru_add(&binder_alloc_lru, &page->lru);
289 WARN_ON(!ret);
290
291 trace_binder_free_lru_end(alloc, index);
292 if (page_addr == start)
293 break;
294 continue;
295
296 err_vm_insert_page_failed:
297 __free_page(page->page_ptr);
298 page->page_ptr = NULL;
299 err_alloc_page_failed:
300 err_page_ptr_cleared:
301 if (page_addr == start)
302 break;
303 }
304 err_no_vma:
305 if (mm) {
306 mmap_write_unlock(mm);
307 mmput_async(mm);
308 }
309 return vma ? -ENOMEM : -ESRCH;
310 }
311
binder_alloc_set_vma(struct binder_alloc * alloc,struct vm_area_struct * vma)312 static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
313 struct vm_area_struct *vma)
314 {
315 /* pairs with smp_load_acquire in binder_alloc_get_vma() */
316 smp_store_release(&alloc->vma, vma);
317 }
318
binder_alloc_get_vma(struct binder_alloc * alloc)319 static inline struct vm_area_struct *binder_alloc_get_vma(
320 struct binder_alloc *alloc)
321 {
322 /* pairs with smp_store_release in binder_alloc_set_vma() */
323 return smp_load_acquire(&alloc->vma);
324 }
325
debug_low_async_space_locked(struct binder_alloc * alloc,int pid)326 static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
327 {
328 /*
329 * Find the amount and size of buffers allocated by the current caller;
330 * The idea is that once we cross the threshold, whoever is responsible
331 * for the low async space is likely to try to send another async txn,
332 * and at some point we'll catch them in the act. This is more efficient
333 * than keeping a map per pid.
334 */
335 struct rb_node *n;
336 struct binder_buffer *buffer;
337 size_t total_alloc_size = 0;
338 size_t num_buffers = 0;
339
340 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
341 n = rb_next(n)) {
342 buffer = rb_entry(n, struct binder_buffer, rb_node);
343 if (buffer->pid != pid)
344 continue;
345 if (!buffer->async_transaction)
346 continue;
347 total_alloc_size += binder_alloc_buffer_size(alloc, buffer);
348 num_buffers++;
349 }
350
351 /*
352 * Warn if this pid has more than 50 transactions, or more than 50% of
353 * async space (which is 25% of total buffer size). Oneway spam is only
354 * detected when the threshold is exceeded.
355 */
356 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
357 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
358 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
359 alloc->pid, pid, num_buffers, total_alloc_size);
360 if (!alloc->oneway_spam_detected) {
361 alloc->oneway_spam_detected = true;
362 return true;
363 }
364 }
365 return false;
366 }
367
binder_alloc_new_buf_locked(struct binder_alloc * alloc,size_t data_size,size_t offsets_size,size_t extra_buffers_size,int is_async,int pid)368 static struct binder_buffer *binder_alloc_new_buf_locked(
369 struct binder_alloc *alloc,
370 size_t data_size,
371 size_t offsets_size,
372 size_t extra_buffers_size,
373 int is_async,
374 int pid)
375 {
376 struct rb_node *n = alloc->free_buffers.rb_node;
377 struct binder_buffer *buffer;
378 size_t buffer_size;
379 struct rb_node *best_fit = NULL;
380 void __user *has_page_addr;
381 void __user *end_page_addr;
382 size_t size, data_offsets_size;
383 int ret;
384
385 /* Check binder_alloc is fully initialized */
386 if (!binder_alloc_get_vma(alloc)) {
387 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
388 "%d: binder_alloc_buf, no vma\n",
389 alloc->pid);
390 return ERR_PTR(-ESRCH);
391 }
392
393 data_offsets_size = ALIGN(data_size, sizeof(void *)) +
394 ALIGN(offsets_size, sizeof(void *));
395
396 if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
397 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
398 "%d: got transaction with invalid size %zd-%zd\n",
399 alloc->pid, data_size, offsets_size);
400 return ERR_PTR(-EINVAL);
401 }
402 size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
403 if (size < data_offsets_size || size < extra_buffers_size) {
404 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
405 "%d: got transaction with invalid extra_buffers_size %zd\n",
406 alloc->pid, extra_buffers_size);
407 return ERR_PTR(-EINVAL);
408 }
409
410 /* Pad 0-size buffers so they get assigned unique addresses */
411 size = max(size, sizeof(void *));
412
413 if (is_async && alloc->free_async_space < size) {
414 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
415 "%d: binder_alloc_buf size %zd failed, no async space left\n",
416 alloc->pid, size);
417 return ERR_PTR(-ENOSPC);
418 }
419
420 while (n) {
421 buffer = rb_entry(n, struct binder_buffer, rb_node);
422 BUG_ON(!buffer->free);
423 buffer_size = binder_alloc_buffer_size(alloc, buffer);
424
425 if (size < buffer_size) {
426 best_fit = n;
427 n = n->rb_left;
428 } else if (size > buffer_size)
429 n = n->rb_right;
430 else {
431 best_fit = n;
432 break;
433 }
434 }
435 if (best_fit == NULL) {
436 size_t allocated_buffers = 0;
437 size_t largest_alloc_size = 0;
438 size_t total_alloc_size = 0;
439 size_t free_buffers = 0;
440 size_t largest_free_size = 0;
441 size_t total_free_size = 0;
442
443 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
444 n = rb_next(n)) {
445 buffer = rb_entry(n, struct binder_buffer, rb_node);
446 buffer_size = binder_alloc_buffer_size(alloc, buffer);
447 allocated_buffers++;
448 total_alloc_size += buffer_size;
449 if (buffer_size > largest_alloc_size)
450 largest_alloc_size = buffer_size;
451 }
452 for (n = rb_first(&alloc->free_buffers); n != NULL;
453 n = rb_next(n)) {
454 buffer = rb_entry(n, struct binder_buffer, rb_node);
455 buffer_size = binder_alloc_buffer_size(alloc, buffer);
456 free_buffers++;
457 total_free_size += buffer_size;
458 if (buffer_size > largest_free_size)
459 largest_free_size = buffer_size;
460 }
461 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
462 "%d: binder_alloc_buf size %zd failed, no address space\n",
463 alloc->pid, size);
464 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
465 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
466 total_alloc_size, allocated_buffers,
467 largest_alloc_size, total_free_size,
468 free_buffers, largest_free_size);
469 return ERR_PTR(-ENOSPC);
470 }
471 if (n == NULL) {
472 buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
473 buffer_size = binder_alloc_buffer_size(alloc, buffer);
474 }
475
476 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
477 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
478 alloc->pid, size, buffer, buffer_size);
479
480 has_page_addr = (void __user *)
481 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
482 WARN_ON(n && buffer_size != size);
483 end_page_addr =
484 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
485 if (end_page_addr > has_page_addr)
486 end_page_addr = has_page_addr;
487 ret = binder_update_page_range(alloc, 1, (void __user *)
488 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
489 if (ret)
490 return ERR_PTR(ret);
491
492 if (buffer_size != size) {
493 struct binder_buffer *new_buffer;
494
495 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
496 if (!new_buffer) {
497 pr_err("%s: %d failed to alloc new buffer struct\n",
498 __func__, alloc->pid);
499 goto err_alloc_buf_struct_failed;
500 }
501 new_buffer->user_data = (u8 __user *)buffer->user_data + size;
502 list_add(&new_buffer->entry, &buffer->entry);
503 new_buffer->free = 1;
504 binder_insert_free_buffer(alloc, new_buffer);
505 }
506
507 rb_erase(best_fit, &alloc->free_buffers);
508 buffer->free = 0;
509 buffer->allow_user_free = 0;
510 binder_insert_allocated_buffer_locked(alloc, buffer);
511 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
512 "%d: binder_alloc_buf size %zd got %pK\n",
513 alloc->pid, size, buffer);
514 buffer->data_size = data_size;
515 buffer->offsets_size = offsets_size;
516 buffer->async_transaction = is_async;
517 buffer->extra_buffers_size = extra_buffers_size;
518 buffer->pid = pid;
519 buffer->oneway_spam_suspect = false;
520 if (is_async) {
521 alloc->free_async_space -= size;
522 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
523 "%d: binder_alloc_buf size %zd async free %zd\n",
524 alloc->pid, size, alloc->free_async_space);
525 if (alloc->free_async_space < alloc->buffer_size / 10) {
526 /*
527 * Start detecting spammers once we have less than 20%
528 * of async space left (which is less than 10% of total
529 * buffer size).
530 */
531 buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid);
532 } else {
533 alloc->oneway_spam_detected = false;
534 }
535 }
536 return buffer;
537
538 err_alloc_buf_struct_failed:
539 binder_update_page_range(alloc, 0, (void __user *)
540 PAGE_ALIGN((uintptr_t)buffer->user_data),
541 end_page_addr);
542 return ERR_PTR(-ENOMEM);
543 }
544
545 /**
546 * binder_alloc_new_buf() - Allocate a new binder buffer
547 * @alloc: binder_alloc for this proc
548 * @data_size: size of user data buffer
549 * @offsets_size: user specified buffer offset
550 * @extra_buffers_size: size of extra space for meta-data (eg, security context)
551 * @is_async: buffer for async transaction
552 * @pid: pid to attribute allocation to (used for debugging)
553 *
554 * Allocate a new buffer given the requested sizes. Returns
555 * the kernel version of the buffer pointer. The size allocated
556 * is the sum of the three given sizes (each rounded up to
557 * pointer-sized boundary)
558 *
559 * Return: The allocated buffer or %ERR_PTR(-errno) if error
560 */
binder_alloc_new_buf(struct binder_alloc * alloc,size_t data_size,size_t offsets_size,size_t extra_buffers_size,int is_async,int pid)561 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
562 size_t data_size,
563 size_t offsets_size,
564 size_t extra_buffers_size,
565 int is_async,
566 int pid)
567 {
568 struct binder_buffer *buffer;
569
570 mutex_lock(&alloc->mutex);
571 buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
572 extra_buffers_size, is_async, pid);
573 mutex_unlock(&alloc->mutex);
574 return buffer;
575 }
576
buffer_start_page(struct binder_buffer * buffer)577 static void __user *buffer_start_page(struct binder_buffer *buffer)
578 {
579 return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
580 }
581
prev_buffer_end_page(struct binder_buffer * buffer)582 static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
583 {
584 return (void __user *)
585 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
586 }
587
binder_delete_free_buffer(struct binder_alloc * alloc,struct binder_buffer * buffer)588 static void binder_delete_free_buffer(struct binder_alloc *alloc,
589 struct binder_buffer *buffer)
590 {
591 struct binder_buffer *prev, *next = NULL;
592 bool to_free = true;
593
594 BUG_ON(alloc->buffers.next == &buffer->entry);
595 prev = binder_buffer_prev(buffer);
596 BUG_ON(!prev->free);
597 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
598 to_free = false;
599 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
600 "%d: merge free, buffer %pK share page with %pK\n",
601 alloc->pid, buffer->user_data,
602 prev->user_data);
603 }
604
605 if (!list_is_last(&buffer->entry, &alloc->buffers)) {
606 next = binder_buffer_next(buffer);
607 if (buffer_start_page(next) == buffer_start_page(buffer)) {
608 to_free = false;
609 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
610 "%d: merge free, buffer %pK share page with %pK\n",
611 alloc->pid,
612 buffer->user_data,
613 next->user_data);
614 }
615 }
616
617 if (PAGE_ALIGNED(buffer->user_data)) {
618 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
619 "%d: merge free, buffer start %pK is page aligned\n",
620 alloc->pid, buffer->user_data);
621 to_free = false;
622 }
623
624 if (to_free) {
625 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
626 "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
627 alloc->pid, buffer->user_data,
628 prev->user_data,
629 next ? next->user_data : NULL);
630 binder_update_page_range(alloc, 0, buffer_start_page(buffer),
631 buffer_start_page(buffer) + PAGE_SIZE);
632 }
633 list_del(&buffer->entry);
634 kfree(buffer);
635 }
636
binder_free_buf_locked(struct binder_alloc * alloc,struct binder_buffer * buffer)637 static void binder_free_buf_locked(struct binder_alloc *alloc,
638 struct binder_buffer *buffer)
639 {
640 size_t size, buffer_size;
641
642 buffer_size = binder_alloc_buffer_size(alloc, buffer);
643
644 size = ALIGN(buffer->data_size, sizeof(void *)) +
645 ALIGN(buffer->offsets_size, sizeof(void *)) +
646 ALIGN(buffer->extra_buffers_size, sizeof(void *));
647
648 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
649 "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
650 alloc->pid, buffer, size, buffer_size);
651
652 BUG_ON(buffer->free);
653 BUG_ON(size > buffer_size);
654 BUG_ON(buffer->transaction != NULL);
655 BUG_ON(buffer->user_data < alloc->buffer);
656 BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
657
658 if (buffer->async_transaction) {
659 alloc->free_async_space += buffer_size;
660 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
661 "%d: binder_free_buf size %zd async free %zd\n",
662 alloc->pid, size, alloc->free_async_space);
663 }
664
665 binder_update_page_range(alloc, 0,
666 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
667 (void __user *)(((uintptr_t)
668 buffer->user_data + buffer_size) & PAGE_MASK));
669
670 rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
671 buffer->free = 1;
672 if (!list_is_last(&buffer->entry, &alloc->buffers)) {
673 struct binder_buffer *next = binder_buffer_next(buffer);
674
675 if (next->free) {
676 rb_erase(&next->rb_node, &alloc->free_buffers);
677 binder_delete_free_buffer(alloc, next);
678 }
679 }
680 if (alloc->buffers.next != &buffer->entry) {
681 struct binder_buffer *prev = binder_buffer_prev(buffer);
682
683 if (prev->free) {
684 binder_delete_free_buffer(alloc, buffer);
685 rb_erase(&prev->rb_node, &alloc->free_buffers);
686 buffer = prev;
687 }
688 }
689 binder_insert_free_buffer(alloc, buffer);
690 }
691
692 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
693 struct binder_buffer *buffer);
694 /**
695 * binder_alloc_free_buf() - free a binder buffer
696 * @alloc: binder_alloc for this proc
697 * @buffer: kernel pointer to buffer
698 *
699 * Free the buffer allocated via binder_alloc_new_buf()
700 */
binder_alloc_free_buf(struct binder_alloc * alloc,struct binder_buffer * buffer)701 void binder_alloc_free_buf(struct binder_alloc *alloc,
702 struct binder_buffer *buffer)
703 {
704 /*
705 * We could eliminate the call to binder_alloc_clear_buf()
706 * from binder_alloc_deferred_release() by moving this to
707 * binder_free_buf_locked(). However, that could
708 * increase contention for the alloc mutex if clear_on_free
709 * is used frequently for large buffers. The mutex is not
710 * needed for correctness here.
711 */
712 if (buffer->clear_on_free) {
713 binder_alloc_clear_buf(alloc, buffer);
714 buffer->clear_on_free = false;
715 }
716 mutex_lock(&alloc->mutex);
717 binder_free_buf_locked(alloc, buffer);
718 mutex_unlock(&alloc->mutex);
719 }
720
721 /**
722 * binder_alloc_mmap_handler() - map virtual address space for proc
723 * @alloc: alloc structure for this proc
724 * @vma: vma passed to mmap()
725 *
726 * Called by binder_mmap() to initialize the space specified in
727 * vma for allocating binder buffers
728 *
729 * Return:
730 * 0 = success
731 * -EBUSY = address space already mapped
732 * -ENOMEM = failed to map memory to given address space
733 */
binder_alloc_mmap_handler(struct binder_alloc * alloc,struct vm_area_struct * vma)734 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
735 struct vm_area_struct *vma)
736 {
737 int ret;
738 const char *failure_string;
739 struct binder_buffer *buffer;
740
741 if (unlikely(vma->vm_mm != alloc->mm)) {
742 ret = -EINVAL;
743 failure_string = "invalid vma->vm_mm";
744 goto err_invalid_mm;
745 }
746
747 mutex_lock(&binder_alloc_mmap_lock);
748 if (alloc->buffer_size) {
749 ret = -EBUSY;
750 failure_string = "already mapped";
751 goto err_already_mapped;
752 }
753 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
754 SZ_4M);
755 mutex_unlock(&binder_alloc_mmap_lock);
756
757 alloc->buffer = (void __user *)vma->vm_start;
758
759 alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
760 sizeof(alloc->pages[0]),
761 GFP_KERNEL);
762 if (alloc->pages == NULL) {
763 ret = -ENOMEM;
764 failure_string = "alloc page array";
765 goto err_alloc_pages_failed;
766 }
767
768 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
769 if (!buffer) {
770 ret = -ENOMEM;
771 failure_string = "alloc buffer struct";
772 goto err_alloc_buf_struct_failed;
773 }
774
775 buffer->user_data = alloc->buffer;
776 list_add(&buffer->entry, &alloc->buffers);
777 buffer->free = 1;
778 binder_insert_free_buffer(alloc, buffer);
779 alloc->free_async_space = alloc->buffer_size / 2;
780
781 /* Signal binder_alloc is fully initialized */
782 binder_alloc_set_vma(alloc, vma);
783
784 return 0;
785
786 err_alloc_buf_struct_failed:
787 kfree(alloc->pages);
788 alloc->pages = NULL;
789 err_alloc_pages_failed:
790 alloc->buffer = NULL;
791 mutex_lock(&binder_alloc_mmap_lock);
792 alloc->buffer_size = 0;
793 err_already_mapped:
794 mutex_unlock(&binder_alloc_mmap_lock);
795 err_invalid_mm:
796 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
797 "%s: %d %lx-%lx %s failed %d\n", __func__,
798 alloc->pid, vma->vm_start, vma->vm_end,
799 failure_string, ret);
800 return ret;
801 }
802
803
binder_alloc_deferred_release(struct binder_alloc * alloc)804 void binder_alloc_deferred_release(struct binder_alloc *alloc)
805 {
806 struct rb_node *n;
807 int buffers, page_count;
808 struct binder_buffer *buffer;
809
810 buffers = 0;
811 mutex_lock(&alloc->mutex);
812 BUG_ON(alloc->vma);
813
814 while ((n = rb_first(&alloc->allocated_buffers))) {
815 buffer = rb_entry(n, struct binder_buffer, rb_node);
816
817 /* Transaction should already have been freed */
818 BUG_ON(buffer->transaction);
819
820 if (buffer->clear_on_free) {
821 binder_alloc_clear_buf(alloc, buffer);
822 buffer->clear_on_free = false;
823 }
824 binder_free_buf_locked(alloc, buffer);
825 buffers++;
826 }
827
828 while (!list_empty(&alloc->buffers)) {
829 buffer = list_first_entry(&alloc->buffers,
830 struct binder_buffer, entry);
831 WARN_ON(!buffer->free);
832
833 list_del(&buffer->entry);
834 WARN_ON_ONCE(!list_empty(&alloc->buffers));
835 kfree(buffer);
836 }
837
838 page_count = 0;
839 if (alloc->pages) {
840 int i;
841
842 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
843 void __user *page_addr;
844 bool on_lru;
845
846 if (!alloc->pages[i].page_ptr)
847 continue;
848
849 on_lru = list_lru_del(&binder_alloc_lru,
850 &alloc->pages[i].lru);
851 page_addr = alloc->buffer + i * PAGE_SIZE;
852 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
853 "%s: %d: page %d at %pK %s\n",
854 __func__, alloc->pid, i, page_addr,
855 on_lru ? "on lru" : "active");
856 __free_page(alloc->pages[i].page_ptr);
857 page_count++;
858 }
859 kfree(alloc->pages);
860 }
861 mutex_unlock(&alloc->mutex);
862 if (alloc->mm)
863 mmdrop(alloc->mm);
864
865 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
866 "%s: %d buffers %d, pages %d\n",
867 __func__, alloc->pid, buffers, page_count);
868 }
869
print_binder_buffer(struct seq_file * m,const char * prefix,struct binder_buffer * buffer)870 static void print_binder_buffer(struct seq_file *m, const char *prefix,
871 struct binder_buffer *buffer)
872 {
873 seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
874 prefix, buffer->debug_id, buffer->user_data,
875 buffer->data_size, buffer->offsets_size,
876 buffer->extra_buffers_size,
877 buffer->transaction ? "active" : "delivered");
878 }
879
880 /**
881 * binder_alloc_print_allocated() - print buffer info
882 * @m: seq_file for output via seq_printf()
883 * @alloc: binder_alloc for this proc
884 *
885 * Prints information about every buffer associated with
886 * the binder_alloc state to the given seq_file
887 */
binder_alloc_print_allocated(struct seq_file * m,struct binder_alloc * alloc)888 void binder_alloc_print_allocated(struct seq_file *m,
889 struct binder_alloc *alloc)
890 {
891 struct rb_node *n;
892
893 mutex_lock(&alloc->mutex);
894 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
895 print_binder_buffer(m, " buffer",
896 rb_entry(n, struct binder_buffer, rb_node));
897 mutex_unlock(&alloc->mutex);
898 }
899
900 /**
901 * binder_alloc_print_pages() - print page usage
902 * @m: seq_file for output via seq_printf()
903 * @alloc: binder_alloc for this proc
904 */
binder_alloc_print_pages(struct seq_file * m,struct binder_alloc * alloc)905 void binder_alloc_print_pages(struct seq_file *m,
906 struct binder_alloc *alloc)
907 {
908 struct binder_lru_page *page;
909 int i;
910 int active = 0;
911 int lru = 0;
912 int free = 0;
913
914 mutex_lock(&alloc->mutex);
915 /*
916 * Make sure the binder_alloc is fully initialized, otherwise we might
917 * read inconsistent state.
918 */
919 if (binder_alloc_get_vma(alloc) != NULL) {
920 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
921 page = &alloc->pages[i];
922 if (!page->page_ptr)
923 free++;
924 else if (list_empty(&page->lru))
925 active++;
926 else
927 lru++;
928 }
929 }
930 mutex_unlock(&alloc->mutex);
931 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free);
932 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high);
933 }
934
935 /**
936 * binder_alloc_get_allocated_count() - return count of buffers
937 * @alloc: binder_alloc for this proc
938 *
939 * Return: count of allocated buffers
940 */
binder_alloc_get_allocated_count(struct binder_alloc * alloc)941 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
942 {
943 struct rb_node *n;
944 int count = 0;
945
946 mutex_lock(&alloc->mutex);
947 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
948 count++;
949 mutex_unlock(&alloc->mutex);
950 return count;
951 }
952
953
954 /**
955 * binder_alloc_vma_close() - invalidate address space
956 * @alloc: binder_alloc for this proc
957 *
958 * Called from binder_vma_close() when releasing address space.
959 * Clears alloc->vma to prevent new incoming transactions from
960 * allocating more buffers.
961 */
binder_alloc_vma_close(struct binder_alloc * alloc)962 void binder_alloc_vma_close(struct binder_alloc *alloc)
963 {
964 binder_alloc_set_vma(alloc, NULL);
965 }
966
967 /**
968 * binder_alloc_free_page() - shrinker callback to free pages
969 * @item: item to free
970 * @lock: lock protecting the item
971 * @cb_arg: callback argument
972 *
973 * Called from list_lru_walk() in binder_shrink_scan() to free
974 * up pages when the system is under memory pressure.
975 */
binder_alloc_free_page(struct list_head * item,struct list_lru_one * lru,spinlock_t * lock,void * cb_arg)976 enum lru_status binder_alloc_free_page(struct list_head *item,
977 struct list_lru_one *lru,
978 spinlock_t *lock,
979 void *cb_arg)
980 __must_hold(lock)
981 {
982 struct mm_struct *mm = NULL;
983 struct binder_lru_page *page = container_of(item,
984 struct binder_lru_page,
985 lru);
986 struct binder_alloc *alloc;
987 uintptr_t page_addr;
988 size_t index;
989 struct vm_area_struct *vma;
990
991 alloc = page->alloc;
992 if (!mutex_trylock(&alloc->mutex))
993 goto err_get_alloc_mutex_failed;
994
995 if (!page->page_ptr)
996 goto err_page_already_freed;
997
998 index = page - alloc->pages;
999 page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
1000
1001 mm = alloc->mm;
1002 if (!mmget_not_zero(mm))
1003 goto err_mmget;
1004 if (!mmap_read_trylock(mm))
1005 goto err_mmap_read_lock_failed;
1006 vma = vma_lookup(mm, page_addr);
1007 if (vma && vma != binder_alloc_get_vma(alloc))
1008 goto err_invalid_vma;
1009
1010 list_lru_isolate(lru, item);
1011 spin_unlock(lock);
1012
1013 if (vma) {
1014 trace_binder_unmap_user_start(alloc, index);
1015
1016 zap_page_range_single(vma, page_addr, PAGE_SIZE, NULL);
1017
1018 trace_binder_unmap_user_end(alloc, index);
1019 }
1020 mmap_read_unlock(mm);
1021 mmput_async(mm);
1022
1023 trace_binder_unmap_kernel_start(alloc, index);
1024
1025 __free_page(page->page_ptr);
1026 page->page_ptr = NULL;
1027
1028 trace_binder_unmap_kernel_end(alloc, index);
1029
1030 spin_lock(lock);
1031 mutex_unlock(&alloc->mutex);
1032 return LRU_REMOVED_RETRY;
1033
1034 err_invalid_vma:
1035 mmap_read_unlock(mm);
1036 err_mmap_read_lock_failed:
1037 mmput_async(mm);
1038 err_mmget:
1039 err_page_already_freed:
1040 mutex_unlock(&alloc->mutex);
1041 err_get_alloc_mutex_failed:
1042 return LRU_SKIP;
1043 }
1044
1045 static unsigned long
binder_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1046 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1047 {
1048 return list_lru_count(&binder_alloc_lru);
1049 }
1050
1051 static unsigned long
binder_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1052 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1053 {
1054 return list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
1055 NULL, sc->nr_to_scan);
1056 }
1057
1058 static struct shrinker binder_shrinker = {
1059 .count_objects = binder_shrink_count,
1060 .scan_objects = binder_shrink_scan,
1061 .seeks = DEFAULT_SEEKS,
1062 };
1063
1064 /**
1065 * binder_alloc_init() - called by binder_open() for per-proc initialization
1066 * @alloc: binder_alloc for this proc
1067 *
1068 * Called from binder_open() to initialize binder_alloc fields for
1069 * new binder proc
1070 */
binder_alloc_init(struct binder_alloc * alloc)1071 void binder_alloc_init(struct binder_alloc *alloc)
1072 {
1073 alloc->pid = current->group_leader->pid;
1074 alloc->mm = current->mm;
1075 mmgrab(alloc->mm);
1076 mutex_init(&alloc->mutex);
1077 INIT_LIST_HEAD(&alloc->buffers);
1078 }
1079
binder_alloc_shrinker_init(void)1080 int binder_alloc_shrinker_init(void)
1081 {
1082 int ret = list_lru_init(&binder_alloc_lru);
1083
1084 if (ret == 0) {
1085 ret = register_shrinker(&binder_shrinker, "android-binder");
1086 if (ret)
1087 list_lru_destroy(&binder_alloc_lru);
1088 }
1089 return ret;
1090 }
1091
binder_alloc_shrinker_exit(void)1092 void binder_alloc_shrinker_exit(void)
1093 {
1094 unregister_shrinker(&binder_shrinker);
1095 list_lru_destroy(&binder_alloc_lru);
1096 }
1097
1098 /**
1099 * check_buffer() - verify that buffer/offset is safe to access
1100 * @alloc: binder_alloc for this proc
1101 * @buffer: binder buffer to be accessed
1102 * @offset: offset into @buffer data
1103 * @bytes: bytes to access from offset
1104 *
1105 * Check that the @offset/@bytes are within the size of the given
1106 * @buffer and that the buffer is currently active and not freeable.
1107 * Offsets must also be multiples of sizeof(u32). The kernel is
1108 * allowed to touch the buffer in two cases:
1109 *
1110 * 1) when the buffer is being created:
1111 * (buffer->free == 0 && buffer->allow_user_free == 0)
1112 * 2) when the buffer is being torn down:
1113 * (buffer->free == 0 && buffer->transaction == NULL).
1114 *
1115 * Return: true if the buffer is safe to access
1116 */
check_buffer(struct binder_alloc * alloc,struct binder_buffer * buffer,binder_size_t offset,size_t bytes)1117 static inline bool check_buffer(struct binder_alloc *alloc,
1118 struct binder_buffer *buffer,
1119 binder_size_t offset, size_t bytes)
1120 {
1121 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1122
1123 return buffer_size >= bytes &&
1124 offset <= buffer_size - bytes &&
1125 IS_ALIGNED(offset, sizeof(u32)) &&
1126 !buffer->free &&
1127 (!buffer->allow_user_free || !buffer->transaction);
1128 }
1129
1130 /**
1131 * binder_alloc_get_page() - get kernel pointer for given buffer offset
1132 * @alloc: binder_alloc for this proc
1133 * @buffer: binder buffer to be accessed
1134 * @buffer_offset: offset into @buffer data
1135 * @pgoffp: address to copy final page offset to
1136 *
1137 * Lookup the struct page corresponding to the address
1138 * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1139 * NULL, the byte-offset into the page is written there.
1140 *
1141 * The caller is responsible to ensure that the offset points
1142 * to a valid address within the @buffer and that @buffer is
1143 * not freeable by the user. Since it can't be freed, we are
1144 * guaranteed that the corresponding elements of @alloc->pages[]
1145 * cannot change.
1146 *
1147 * Return: struct page
1148 */
binder_alloc_get_page(struct binder_alloc * alloc,struct binder_buffer * buffer,binder_size_t buffer_offset,pgoff_t * pgoffp)1149 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1150 struct binder_buffer *buffer,
1151 binder_size_t buffer_offset,
1152 pgoff_t *pgoffp)
1153 {
1154 binder_size_t buffer_space_offset = buffer_offset +
1155 (buffer->user_data - alloc->buffer);
1156 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1157 size_t index = buffer_space_offset >> PAGE_SHIFT;
1158 struct binder_lru_page *lru_page;
1159
1160 lru_page = &alloc->pages[index];
1161 *pgoffp = pgoff;
1162 return lru_page->page_ptr;
1163 }
1164
1165 /**
1166 * binder_alloc_clear_buf() - zero out buffer
1167 * @alloc: binder_alloc for this proc
1168 * @buffer: binder buffer to be cleared
1169 *
1170 * memset the given buffer to 0
1171 */
binder_alloc_clear_buf(struct binder_alloc * alloc,struct binder_buffer * buffer)1172 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1173 struct binder_buffer *buffer)
1174 {
1175 size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1176 binder_size_t buffer_offset = 0;
1177
1178 while (bytes) {
1179 unsigned long size;
1180 struct page *page;
1181 pgoff_t pgoff;
1182
1183 page = binder_alloc_get_page(alloc, buffer,
1184 buffer_offset, &pgoff);
1185 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1186 memset_page(page, pgoff, 0, size);
1187 bytes -= size;
1188 buffer_offset += size;
1189 }
1190 }
1191
1192 /**
1193 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1194 * @alloc: binder_alloc for this proc
1195 * @buffer: binder buffer to be accessed
1196 * @buffer_offset: offset into @buffer data
1197 * @from: userspace pointer to source buffer
1198 * @bytes: bytes to copy
1199 *
1200 * Copy bytes from source userspace to target buffer.
1201 *
1202 * Return: bytes remaining to be copied
1203 */
1204 unsigned long
binder_alloc_copy_user_to_buffer(struct binder_alloc * alloc,struct binder_buffer * buffer,binder_size_t buffer_offset,const void __user * from,size_t bytes)1205 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1206 struct binder_buffer *buffer,
1207 binder_size_t buffer_offset,
1208 const void __user *from,
1209 size_t bytes)
1210 {
1211 if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1212 return bytes;
1213
1214 while (bytes) {
1215 unsigned long size;
1216 unsigned long ret;
1217 struct page *page;
1218 pgoff_t pgoff;
1219 void *kptr;
1220
1221 page = binder_alloc_get_page(alloc, buffer,
1222 buffer_offset, &pgoff);
1223 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1224 kptr = kmap_local_page(page) + pgoff;
1225 ret = copy_from_user(kptr, from, size);
1226 kunmap_local(kptr);
1227 if (ret)
1228 return bytes - size + ret;
1229 bytes -= size;
1230 from += size;
1231 buffer_offset += size;
1232 }
1233 return 0;
1234 }
1235
binder_alloc_do_buffer_copy(struct binder_alloc * alloc,bool to_buffer,struct binder_buffer * buffer,binder_size_t buffer_offset,void * ptr,size_t bytes)1236 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1237 bool to_buffer,
1238 struct binder_buffer *buffer,
1239 binder_size_t buffer_offset,
1240 void *ptr,
1241 size_t bytes)
1242 {
1243 /* All copies must be 32-bit aligned and 32-bit size */
1244 if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1245 return -EINVAL;
1246
1247 while (bytes) {
1248 unsigned long size;
1249 struct page *page;
1250 pgoff_t pgoff;
1251
1252 page = binder_alloc_get_page(alloc, buffer,
1253 buffer_offset, &pgoff);
1254 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1255 if (to_buffer)
1256 memcpy_to_page(page, pgoff, ptr, size);
1257 else
1258 memcpy_from_page(ptr, page, pgoff, size);
1259 bytes -= size;
1260 pgoff = 0;
1261 ptr = ptr + size;
1262 buffer_offset += size;
1263 }
1264 return 0;
1265 }
1266
binder_alloc_copy_to_buffer(struct binder_alloc * alloc,struct binder_buffer * buffer,binder_size_t buffer_offset,void * src,size_t bytes)1267 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1268 struct binder_buffer *buffer,
1269 binder_size_t buffer_offset,
1270 void *src,
1271 size_t bytes)
1272 {
1273 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1274 src, bytes);
1275 }
1276
binder_alloc_copy_from_buffer(struct binder_alloc * alloc,void * dest,struct binder_buffer * buffer,binder_size_t buffer_offset,size_t bytes)1277 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1278 void *dest,
1279 struct binder_buffer *buffer,
1280 binder_size_t buffer_offset,
1281 size_t bytes)
1282 {
1283 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1284 dest, bytes);
1285 }
1286
1287