1 /* 2 * sleep.c - ACPI sleep support. 3 * 4 * Copyright (c) 2005 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com> 5 * Copyright (c) 2004 David Shaohua Li <shaohua.li@intel.com> 6 * Copyright (c) 2000-2003 Patrick Mochel 7 * Copyright (c) 2003 Open Source Development Lab 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/delay.h> 14 #include <linux/irq.h> 15 #include <linux/dmi.h> 16 #include <linux/device.h> 17 #include <linux/suspend.h> 18 #include <linux/reboot.h> 19 20 #include <asm/io.h> 21 22 #include <acpi/acpi_bus.h> 23 #include <acpi/acpi_drivers.h> 24 25 #include "internal.h" 26 #include "sleep.h" 27 28 u8 sleep_states[ACPI_S_STATE_COUNT]; 29 30 static void acpi_sleep_tts_switch(u32 acpi_state) 31 { 32 union acpi_object in_arg = { ACPI_TYPE_INTEGER }; 33 struct acpi_object_list arg_list = { 1, &in_arg }; 34 acpi_status status = AE_OK; 35 36 in_arg.integer.value = acpi_state; 37 status = acpi_evaluate_object(NULL, "\\_TTS", &arg_list, NULL); 38 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { 39 /* 40 * OS can't evaluate the _TTS object correctly. Some warning 41 * message will be printed. But it won't break anything. 42 */ 43 printk(KERN_NOTICE "Failure in evaluating _TTS object\n"); 44 } 45 } 46 47 static int tts_notify_reboot(struct notifier_block *this, 48 unsigned long code, void *x) 49 { 50 acpi_sleep_tts_switch(ACPI_STATE_S5); 51 return NOTIFY_DONE; 52 } 53 54 static struct notifier_block tts_notifier = { 55 .notifier_call = tts_notify_reboot, 56 .next = NULL, 57 .priority = 0, 58 }; 59 60 static int acpi_sleep_prepare(u32 acpi_state) 61 { 62 #ifdef CONFIG_ACPI_SLEEP 63 /* do we have a wakeup address for S2 and S3? */ 64 if (acpi_state == ACPI_STATE_S3) { 65 if (!acpi_wakeup_address) { 66 return -EFAULT; 67 } 68 acpi_set_firmware_waking_vector( 69 (acpi_physical_address)acpi_wakeup_address); 70 71 } 72 ACPI_FLUSH_CPU_CACHE(); 73 acpi_enable_wakeup_device_prep(acpi_state); 74 #endif 75 printk(KERN_INFO PREFIX "Preparing to enter system sleep state S%d\n", 76 acpi_state); 77 acpi_enter_sleep_state_prep(acpi_state); 78 return 0; 79 } 80 81 #ifdef CONFIG_ACPI_SLEEP 82 static u32 acpi_target_sleep_state = ACPI_STATE_S0; 83 /* 84 * ACPI 1.0 wants us to execute _PTS before suspending devices, so we allow the 85 * user to request that behavior by using the 'acpi_old_suspend_ordering' 86 * kernel command line option that causes the following variable to be set. 87 */ 88 static bool old_suspend_ordering; 89 90 void __init acpi_old_suspend_ordering(void) 91 { 92 old_suspend_ordering = true; 93 } 94 95 /** 96 * acpi_pm_disable_gpes - Disable the GPEs. 97 */ 98 static int acpi_pm_disable_gpes(void) 99 { 100 acpi_disable_all_gpes(); 101 return 0; 102 } 103 104 /** 105 * __acpi_pm_prepare - Prepare the platform to enter the target state. 106 * 107 * If necessary, set the firmware waking vector and do arch-specific 108 * nastiness to get the wakeup code to the waking vector. 109 */ 110 static int __acpi_pm_prepare(void) 111 { 112 int error = acpi_sleep_prepare(acpi_target_sleep_state); 113 114 if (error) 115 acpi_target_sleep_state = ACPI_STATE_S0; 116 return error; 117 } 118 119 /** 120 * acpi_pm_prepare - Prepare the platform to enter the target sleep 121 * state and disable the GPEs. 122 */ 123 static int acpi_pm_prepare(void) 124 { 125 int error = __acpi_pm_prepare(); 126 127 if (!error) 128 acpi_disable_all_gpes(); 129 return error; 130 } 131 132 /** 133 * acpi_pm_finish - Instruct the platform to leave a sleep state. 134 * 135 * This is called after we wake back up (or if entering the sleep state 136 * failed). 137 */ 138 static void acpi_pm_finish(void) 139 { 140 u32 acpi_state = acpi_target_sleep_state; 141 142 if (acpi_state == ACPI_STATE_S0) 143 return; 144 145 printk(KERN_INFO PREFIX "Waking up from system sleep state S%d\n", 146 acpi_state); 147 acpi_disable_wakeup_device(acpi_state); 148 acpi_leave_sleep_state(acpi_state); 149 150 /* reset firmware waking vector */ 151 acpi_set_firmware_waking_vector((acpi_physical_address) 0); 152 153 acpi_target_sleep_state = ACPI_STATE_S0; 154 } 155 156 /** 157 * acpi_pm_end - Finish up suspend sequence. 158 */ 159 static void acpi_pm_end(void) 160 { 161 /* 162 * This is necessary in case acpi_pm_finish() is not called during a 163 * failing transition to a sleep state. 164 */ 165 acpi_target_sleep_state = ACPI_STATE_S0; 166 acpi_sleep_tts_switch(acpi_target_sleep_state); 167 } 168 #else /* !CONFIG_ACPI_SLEEP */ 169 #define acpi_target_sleep_state ACPI_STATE_S0 170 #endif /* CONFIG_ACPI_SLEEP */ 171 172 #ifdef CONFIG_SUSPEND 173 /* 174 * According to the ACPI specification the BIOS should make sure that ACPI is 175 * enabled and SCI_EN bit is set on wake-up from S1 - S3 sleep states. Still, 176 * some BIOSes don't do that and therefore we use acpi_enable() to enable ACPI 177 * on such systems during resume. Unfortunately that doesn't help in 178 * particularly pathological cases in which SCI_EN has to be set directly on 179 * resume, although the specification states very clearly that this flag is 180 * owned by the hardware. The set_sci_en_on_resume variable will be set in such 181 * cases. 182 */ 183 static bool set_sci_en_on_resume; 184 185 extern void do_suspend_lowlevel(void); 186 187 static u32 acpi_suspend_states[] = { 188 [PM_SUSPEND_ON] = ACPI_STATE_S0, 189 [PM_SUSPEND_STANDBY] = ACPI_STATE_S1, 190 [PM_SUSPEND_MEM] = ACPI_STATE_S3, 191 [PM_SUSPEND_MAX] = ACPI_STATE_S5 192 }; 193 194 /** 195 * acpi_suspend_begin - Set the target system sleep state to the state 196 * associated with given @pm_state, if supported. 197 */ 198 static int acpi_suspend_begin(suspend_state_t pm_state) 199 { 200 u32 acpi_state = acpi_suspend_states[pm_state]; 201 int error = 0; 202 203 if (sleep_states[acpi_state]) { 204 acpi_target_sleep_state = acpi_state; 205 acpi_sleep_tts_switch(acpi_target_sleep_state); 206 } else { 207 printk(KERN_ERR "ACPI does not support this state: %d\n", 208 pm_state); 209 error = -ENOSYS; 210 } 211 return error; 212 } 213 214 /** 215 * acpi_suspend_enter - Actually enter a sleep state. 216 * @pm_state: ignored 217 * 218 * Flush caches and go to sleep. For STR we have to call arch-specific 219 * assembly, which in turn call acpi_enter_sleep_state(). 220 * It's unfortunate, but it works. Please fix if you're feeling frisky. 221 */ 222 static int acpi_suspend_enter(suspend_state_t pm_state) 223 { 224 acpi_status status = AE_OK; 225 unsigned long flags = 0; 226 u32 acpi_state = acpi_target_sleep_state; 227 228 ACPI_FLUSH_CPU_CACHE(); 229 230 /* Do arch specific saving of state. */ 231 if (acpi_state == ACPI_STATE_S3) { 232 int error = acpi_save_state_mem(); 233 234 if (error) 235 return error; 236 } 237 238 local_irq_save(flags); 239 acpi_enable_wakeup_device(acpi_state); 240 switch (acpi_state) { 241 case ACPI_STATE_S1: 242 barrier(); 243 status = acpi_enter_sleep_state(acpi_state); 244 break; 245 246 case ACPI_STATE_S3: 247 do_suspend_lowlevel(); 248 break; 249 } 250 251 /* If ACPI is not enabled by the BIOS, we need to enable it here. */ 252 if (set_sci_en_on_resume) 253 acpi_write_bit_register(ACPI_BITREG_SCI_ENABLE, 1); 254 else 255 acpi_enable(); 256 257 /* Reprogram control registers and execute _BFS */ 258 acpi_leave_sleep_state_prep(acpi_state); 259 260 /* ACPI 3.0 specs (P62) says that it's the responsibility 261 * of the OSPM to clear the status bit [ implying that the 262 * POWER_BUTTON event should not reach userspace ] 263 */ 264 if (ACPI_SUCCESS(status) && (acpi_state == ACPI_STATE_S3)) 265 acpi_clear_event(ACPI_EVENT_POWER_BUTTON); 266 267 /* 268 * Disable and clear GPE status before interrupt is enabled. Some GPEs 269 * (like wakeup GPE) haven't handler, this can avoid such GPE misfire. 270 * acpi_leave_sleep_state will reenable specific GPEs later 271 */ 272 acpi_disable_all_gpes(); 273 274 local_irq_restore(flags); 275 printk(KERN_DEBUG "Back to C!\n"); 276 277 /* restore processor state */ 278 if (acpi_state == ACPI_STATE_S3) 279 acpi_restore_state_mem(); 280 281 return ACPI_SUCCESS(status) ? 0 : -EFAULT; 282 } 283 284 static int acpi_suspend_state_valid(suspend_state_t pm_state) 285 { 286 u32 acpi_state; 287 288 switch (pm_state) { 289 case PM_SUSPEND_ON: 290 case PM_SUSPEND_STANDBY: 291 case PM_SUSPEND_MEM: 292 acpi_state = acpi_suspend_states[pm_state]; 293 294 return sleep_states[acpi_state]; 295 default: 296 return 0; 297 } 298 } 299 300 static struct platform_suspend_ops acpi_suspend_ops = { 301 .valid = acpi_suspend_state_valid, 302 .begin = acpi_suspend_begin, 303 .prepare_late = acpi_pm_prepare, 304 .enter = acpi_suspend_enter, 305 .wake = acpi_pm_finish, 306 .end = acpi_pm_end, 307 }; 308 309 /** 310 * acpi_suspend_begin_old - Set the target system sleep state to the 311 * state associated with given @pm_state, if supported, and 312 * execute the _PTS control method. This function is used if the 313 * pre-ACPI 2.0 suspend ordering has been requested. 314 */ 315 static int acpi_suspend_begin_old(suspend_state_t pm_state) 316 { 317 int error = acpi_suspend_begin(pm_state); 318 319 if (!error) 320 error = __acpi_pm_prepare(); 321 return error; 322 } 323 324 /* 325 * The following callbacks are used if the pre-ACPI 2.0 suspend ordering has 326 * been requested. 327 */ 328 static struct platform_suspend_ops acpi_suspend_ops_old = { 329 .valid = acpi_suspend_state_valid, 330 .begin = acpi_suspend_begin_old, 331 .prepare_late = acpi_pm_disable_gpes, 332 .enter = acpi_suspend_enter, 333 .wake = acpi_pm_finish, 334 .end = acpi_pm_end, 335 .recover = acpi_pm_finish, 336 }; 337 338 static int __init init_old_suspend_ordering(const struct dmi_system_id *d) 339 { 340 old_suspend_ordering = true; 341 return 0; 342 } 343 344 static int __init init_set_sci_en_on_resume(const struct dmi_system_id *d) 345 { 346 set_sci_en_on_resume = true; 347 return 0; 348 } 349 350 static struct dmi_system_id __initdata acpisleep_dmi_table[] = { 351 { 352 .callback = init_old_suspend_ordering, 353 .ident = "Abit KN9 (nForce4 variant)", 354 .matches = { 355 DMI_MATCH(DMI_BOARD_VENDOR, "http://www.abit.com.tw/"), 356 DMI_MATCH(DMI_BOARD_NAME, "KN9 Series(NF-CK804)"), 357 }, 358 }, 359 { 360 .callback = init_old_suspend_ordering, 361 .ident = "HP xw4600 Workstation", 362 .matches = { 363 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), 364 DMI_MATCH(DMI_PRODUCT_NAME, "HP xw4600 Workstation"), 365 }, 366 }, 367 { 368 .callback = init_set_sci_en_on_resume, 369 .ident = "Apple MacBook 1,1", 370 .matches = { 371 DMI_MATCH(DMI_SYS_VENDOR, "Apple Computer, Inc."), 372 DMI_MATCH(DMI_PRODUCT_NAME, "MacBook1,1"), 373 }, 374 }, 375 { 376 .callback = init_set_sci_en_on_resume, 377 .ident = "Apple MacMini 1,1", 378 .matches = { 379 DMI_MATCH(DMI_SYS_VENDOR, "Apple Computer, Inc."), 380 DMI_MATCH(DMI_PRODUCT_NAME, "Macmini1,1"), 381 }, 382 }, 383 { 384 .callback = init_old_suspend_ordering, 385 .ident = "Asus Pundit P1-AH2 (M2N8L motherboard)", 386 .matches = { 387 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."), 388 DMI_MATCH(DMI_BOARD_NAME, "M2N8L"), 389 }, 390 }, 391 { 392 .callback = init_set_sci_en_on_resume, 393 .ident = "Toshiba Satellite L300", 394 .matches = { 395 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), 396 DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"), 397 }, 398 }, 399 { 400 .callback = init_set_sci_en_on_resume, 401 .ident = "Hewlett-Packard HP G7000 Notebook PC", 402 .matches = { 403 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), 404 DMI_MATCH(DMI_PRODUCT_NAME, "HP G7000 Notebook PC"), 405 }, 406 }, 407 { 408 .callback = init_set_sci_en_on_resume, 409 .ident = "Hewlett-Packard HP Pavilion dv3 Notebook PC", 410 .matches = { 411 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), 412 DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion dv3 Notebook PC"), 413 }, 414 }, 415 { 416 .callback = init_old_suspend_ordering, 417 .ident = "Panasonic CF51-2L", 418 .matches = { 419 DMI_MATCH(DMI_BOARD_VENDOR, 420 "Matsushita Electric Industrial Co.,Ltd."), 421 DMI_MATCH(DMI_BOARD_NAME, "CF51-2L"), 422 }, 423 }, 424 {}, 425 }; 426 #endif /* CONFIG_SUSPEND */ 427 428 #ifdef CONFIG_HIBERNATION 429 /* 430 * The ACPI specification wants us to save NVS memory regions during hibernation 431 * and to restore them during the subsequent resume. However, it is not certain 432 * if this mechanism is going to work on all machines, so we allow the user to 433 * disable this mechanism using the 'acpi_sleep=s4_nonvs' kernel command line 434 * option. 435 */ 436 static bool s4_no_nvs; 437 438 void __init acpi_s4_no_nvs(void) 439 { 440 s4_no_nvs = true; 441 } 442 443 static unsigned long s4_hardware_signature; 444 static struct acpi_table_facs *facs; 445 static bool nosigcheck; 446 447 void __init acpi_no_s4_hw_signature(void) 448 { 449 nosigcheck = true; 450 } 451 452 static int acpi_hibernation_begin(void) 453 { 454 int error; 455 456 error = s4_no_nvs ? 0 : hibernate_nvs_alloc(); 457 if (!error) { 458 acpi_target_sleep_state = ACPI_STATE_S4; 459 acpi_sleep_tts_switch(acpi_target_sleep_state); 460 } 461 462 return error; 463 } 464 465 static int acpi_hibernation_pre_snapshot(void) 466 { 467 int error = acpi_pm_prepare(); 468 469 if (!error) 470 hibernate_nvs_save(); 471 472 return error; 473 } 474 475 static int acpi_hibernation_enter(void) 476 { 477 acpi_status status = AE_OK; 478 unsigned long flags = 0; 479 480 ACPI_FLUSH_CPU_CACHE(); 481 482 local_irq_save(flags); 483 acpi_enable_wakeup_device(ACPI_STATE_S4); 484 /* This shouldn't return. If it returns, we have a problem */ 485 status = acpi_enter_sleep_state(ACPI_STATE_S4); 486 /* Reprogram control registers and execute _BFS */ 487 acpi_leave_sleep_state_prep(ACPI_STATE_S4); 488 local_irq_restore(flags); 489 490 return ACPI_SUCCESS(status) ? 0 : -EFAULT; 491 } 492 493 static void acpi_hibernation_finish(void) 494 { 495 hibernate_nvs_free(); 496 acpi_pm_finish(); 497 } 498 499 static void acpi_hibernation_leave(void) 500 { 501 /* 502 * If ACPI is not enabled by the BIOS and the boot kernel, we need to 503 * enable it here. 504 */ 505 acpi_enable(); 506 /* Reprogram control registers and execute _BFS */ 507 acpi_leave_sleep_state_prep(ACPI_STATE_S4); 508 /* Check the hardware signature */ 509 if (facs && s4_hardware_signature != facs->hardware_signature) { 510 printk(KERN_EMERG "ACPI: Hardware changed while hibernated, " 511 "cannot resume!\n"); 512 panic("ACPI S4 hardware signature mismatch"); 513 } 514 /* Restore the NVS memory area */ 515 hibernate_nvs_restore(); 516 } 517 518 static void acpi_pm_enable_gpes(void) 519 { 520 acpi_enable_all_runtime_gpes(); 521 } 522 523 static struct platform_hibernation_ops acpi_hibernation_ops = { 524 .begin = acpi_hibernation_begin, 525 .end = acpi_pm_end, 526 .pre_snapshot = acpi_hibernation_pre_snapshot, 527 .finish = acpi_hibernation_finish, 528 .prepare = acpi_pm_prepare, 529 .enter = acpi_hibernation_enter, 530 .leave = acpi_hibernation_leave, 531 .pre_restore = acpi_pm_disable_gpes, 532 .restore_cleanup = acpi_pm_enable_gpes, 533 }; 534 535 /** 536 * acpi_hibernation_begin_old - Set the target system sleep state to 537 * ACPI_STATE_S4 and execute the _PTS control method. This 538 * function is used if the pre-ACPI 2.0 suspend ordering has been 539 * requested. 540 */ 541 static int acpi_hibernation_begin_old(void) 542 { 543 int error; 544 /* 545 * The _TTS object should always be evaluated before the _PTS object. 546 * When the old_suspended_ordering is true, the _PTS object is 547 * evaluated in the acpi_sleep_prepare. 548 */ 549 acpi_sleep_tts_switch(ACPI_STATE_S4); 550 551 error = acpi_sleep_prepare(ACPI_STATE_S4); 552 553 if (!error) { 554 if (!s4_no_nvs) 555 error = hibernate_nvs_alloc(); 556 if (!error) 557 acpi_target_sleep_state = ACPI_STATE_S4; 558 } 559 return error; 560 } 561 562 static int acpi_hibernation_pre_snapshot_old(void) 563 { 564 int error = acpi_pm_disable_gpes(); 565 566 if (!error) 567 hibernate_nvs_save(); 568 569 return error; 570 } 571 572 /* 573 * The following callbacks are used if the pre-ACPI 2.0 suspend ordering has 574 * been requested. 575 */ 576 static struct platform_hibernation_ops acpi_hibernation_ops_old = { 577 .begin = acpi_hibernation_begin_old, 578 .end = acpi_pm_end, 579 .pre_snapshot = acpi_hibernation_pre_snapshot_old, 580 .finish = acpi_hibernation_finish, 581 .prepare = acpi_pm_disable_gpes, 582 .enter = acpi_hibernation_enter, 583 .leave = acpi_hibernation_leave, 584 .pre_restore = acpi_pm_disable_gpes, 585 .restore_cleanup = acpi_pm_enable_gpes, 586 .recover = acpi_pm_finish, 587 }; 588 #endif /* CONFIG_HIBERNATION */ 589 590 int acpi_suspend(u32 acpi_state) 591 { 592 suspend_state_t states[] = { 593 [1] = PM_SUSPEND_STANDBY, 594 [3] = PM_SUSPEND_MEM, 595 [5] = PM_SUSPEND_MAX 596 }; 597 598 if (acpi_state < 6 && states[acpi_state]) 599 return pm_suspend(states[acpi_state]); 600 if (acpi_state == 4) 601 return hibernate(); 602 return -EINVAL; 603 } 604 605 #ifdef CONFIG_PM_SLEEP 606 /** 607 * acpi_pm_device_sleep_state - return preferred power state of ACPI device 608 * in the system sleep state given by %acpi_target_sleep_state 609 * @dev: device to examine; its driver model wakeup flags control 610 * whether it should be able to wake up the system 611 * @d_min_p: used to store the upper limit of allowed states range 612 * Return value: preferred power state of the device on success, -ENODEV on 613 * failure (ie. if there's no 'struct acpi_device' for @dev) 614 * 615 * Find the lowest power (highest number) ACPI device power state that 616 * device @dev can be in while the system is in the sleep state represented 617 * by %acpi_target_sleep_state. If @wake is nonzero, the device should be 618 * able to wake up the system from this sleep state. If @d_min_p is set, 619 * the highest power (lowest number) device power state of @dev allowed 620 * in this system sleep state is stored at the location pointed to by it. 621 * 622 * The caller must ensure that @dev is valid before using this function. 623 * The caller is also responsible for figuring out if the device is 624 * supposed to be able to wake up the system and passing this information 625 * via @wake. 626 */ 627 628 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p) 629 { 630 acpi_handle handle = DEVICE_ACPI_HANDLE(dev); 631 struct acpi_device *adev; 632 char acpi_method[] = "_SxD"; 633 unsigned long long d_min, d_max; 634 635 if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &adev))) { 636 printk(KERN_DEBUG "ACPI handle has no context!\n"); 637 return -ENODEV; 638 } 639 640 acpi_method[2] = '0' + acpi_target_sleep_state; 641 /* 642 * If the sleep state is S0, we will return D3, but if the device has 643 * _S0W, we will use the value from _S0W 644 */ 645 d_min = ACPI_STATE_D0; 646 d_max = ACPI_STATE_D3; 647 648 /* 649 * If present, _SxD methods return the minimum D-state (highest power 650 * state) we can use for the corresponding S-states. Otherwise, the 651 * minimum D-state is D0 (ACPI 3.x). 652 * 653 * NOTE: We rely on acpi_evaluate_integer() not clobbering the integer 654 * provided -- that's our fault recovery, we ignore retval. 655 */ 656 if (acpi_target_sleep_state > ACPI_STATE_S0) 657 acpi_evaluate_integer(handle, acpi_method, NULL, &d_min); 658 659 /* 660 * If _PRW says we can wake up the system from the target sleep state, 661 * the D-state returned by _SxD is sufficient for that (we assume a 662 * wakeup-aware driver if wake is set). Still, if _SxW exists 663 * (ACPI 3.x), it should return the maximum (lowest power) D-state that 664 * can wake the system. _S0W may be valid, too. 665 */ 666 if (acpi_target_sleep_state == ACPI_STATE_S0 || 667 (device_may_wakeup(dev) && adev->wakeup.state.enabled && 668 adev->wakeup.sleep_state <= acpi_target_sleep_state)) { 669 acpi_status status; 670 671 acpi_method[3] = 'W'; 672 status = acpi_evaluate_integer(handle, acpi_method, NULL, 673 &d_max); 674 if (ACPI_FAILURE(status)) { 675 d_max = d_min; 676 } else if (d_max < d_min) { 677 /* Warn the user of the broken DSDT */ 678 printk(KERN_WARNING "ACPI: Wrong value from %s\n", 679 acpi_method); 680 /* Sanitize it */ 681 d_min = d_max; 682 } 683 } 684 685 if (d_min_p) 686 *d_min_p = d_min; 687 return d_max; 688 } 689 690 /** 691 * acpi_pm_device_sleep_wake - enable or disable the system wake-up 692 * capability of given device 693 * @dev: device to handle 694 * @enable: 'true' - enable, 'false' - disable the wake-up capability 695 */ 696 int acpi_pm_device_sleep_wake(struct device *dev, bool enable) 697 { 698 acpi_handle handle; 699 struct acpi_device *adev; 700 int error; 701 702 if (!device_can_wakeup(dev)) 703 return -EINVAL; 704 705 handle = DEVICE_ACPI_HANDLE(dev); 706 if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &adev))) { 707 dev_dbg(dev, "ACPI handle has no context in %s!\n", __func__); 708 return -ENODEV; 709 } 710 711 error = enable ? 712 acpi_enable_wakeup_device_power(adev, acpi_target_sleep_state) : 713 acpi_disable_wakeup_device_power(adev); 714 if (!error) 715 dev_info(dev, "wake-up capability %s by ACPI\n", 716 enable ? "enabled" : "disabled"); 717 718 return error; 719 } 720 #endif 721 722 static void acpi_power_off_prepare(void) 723 { 724 /* Prepare to power off the system */ 725 acpi_sleep_prepare(ACPI_STATE_S5); 726 acpi_disable_all_gpes(); 727 } 728 729 static void acpi_power_off(void) 730 { 731 /* acpi_sleep_prepare(ACPI_STATE_S5) should have already been called */ 732 printk(KERN_DEBUG "%s called\n", __func__); 733 local_irq_disable(); 734 acpi_enable_wakeup_device(ACPI_STATE_S5); 735 acpi_enter_sleep_state(ACPI_STATE_S5); 736 } 737 738 /* 739 * ACPI 2.0 created the optional _GTS and _BFS, 740 * but industry adoption has been neither rapid nor broad. 741 * 742 * Linux gets into trouble when it executes poorly validated 743 * paths through the BIOS, so disable _GTS and _BFS by default, 744 * but do speak up and offer the option to enable them. 745 */ 746 void __init acpi_gts_bfs_check(void) 747 { 748 acpi_handle dummy; 749 750 if (ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, METHOD_NAME__GTS, &dummy))) 751 { 752 printk(KERN_NOTICE PREFIX "BIOS offers _GTS\n"); 753 printk(KERN_NOTICE PREFIX "If \"acpi.gts=1\" improves suspend, " 754 "please notify linux-acpi@vger.kernel.org\n"); 755 } 756 if (ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, METHOD_NAME__BFS, &dummy))) 757 { 758 printk(KERN_NOTICE PREFIX "BIOS offers _BFS\n"); 759 printk(KERN_NOTICE PREFIX "If \"acpi.bfs=1\" improves resume, " 760 "please notify linux-acpi@vger.kernel.org\n"); 761 } 762 } 763 764 int __init acpi_sleep_init(void) 765 { 766 acpi_status status; 767 u8 type_a, type_b; 768 #ifdef CONFIG_SUSPEND 769 int i = 0; 770 771 dmi_check_system(acpisleep_dmi_table); 772 #endif 773 774 if (acpi_disabled) 775 return 0; 776 777 sleep_states[ACPI_STATE_S0] = 1; 778 printk(KERN_INFO PREFIX "(supports S0"); 779 780 #ifdef CONFIG_SUSPEND 781 for (i = ACPI_STATE_S1; i < ACPI_STATE_S4; i++) { 782 status = acpi_get_sleep_type_data(i, &type_a, &type_b); 783 if (ACPI_SUCCESS(status)) { 784 sleep_states[i] = 1; 785 printk(" S%d", i); 786 } 787 } 788 789 suspend_set_ops(old_suspend_ordering ? 790 &acpi_suspend_ops_old : &acpi_suspend_ops); 791 #endif 792 793 #ifdef CONFIG_HIBERNATION 794 status = acpi_get_sleep_type_data(ACPI_STATE_S4, &type_a, &type_b); 795 if (ACPI_SUCCESS(status)) { 796 hibernation_set_ops(old_suspend_ordering ? 797 &acpi_hibernation_ops_old : &acpi_hibernation_ops); 798 sleep_states[ACPI_STATE_S4] = 1; 799 printk(" S4"); 800 if (!nosigcheck) { 801 acpi_get_table(ACPI_SIG_FACS, 1, 802 (struct acpi_table_header **)&facs); 803 if (facs) 804 s4_hardware_signature = 805 facs->hardware_signature; 806 } 807 } 808 #endif 809 status = acpi_get_sleep_type_data(ACPI_STATE_S5, &type_a, &type_b); 810 if (ACPI_SUCCESS(status)) { 811 sleep_states[ACPI_STATE_S5] = 1; 812 printk(" S5"); 813 pm_power_off_prepare = acpi_power_off_prepare; 814 pm_power_off = acpi_power_off; 815 } 816 printk(")\n"); 817 /* 818 * Register the tts_notifier to reboot notifier list so that the _TTS 819 * object can also be evaluated when the system enters S5. 820 */ 821 register_reboot_notifier(&tts_notifier); 822 acpi_gts_bfs_check(); 823 return 0; 824 } 825