xref: /openbmc/linux/drivers/acpi/sleep.c (revision 63dc02bd)
1 /*
2  * sleep.c - ACPI sleep support.
3  *
4  * Copyright (c) 2005 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
5  * Copyright (c) 2004 David Shaohua Li <shaohua.li@intel.com>
6  * Copyright (c) 2000-2003 Patrick Mochel
7  * Copyright (c) 2003 Open Source Development Lab
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/delay.h>
14 #include <linux/irq.h>
15 #include <linux/dmi.h>
16 #include <linux/device.h>
17 #include <linux/suspend.h>
18 #include <linux/reboot.h>
19 #include <linux/acpi.h>
20 #include <linux/module.h>
21 #include <linux/pm_runtime.h>
22 
23 #include <asm/io.h>
24 
25 #include <acpi/acpi_bus.h>
26 #include <acpi/acpi_drivers.h>
27 
28 #include "internal.h"
29 #include "sleep.h"
30 
31 u8 wake_sleep_flags = ACPI_NO_OPTIONAL_METHODS;
32 static unsigned int gts, bfs;
33 static int set_param_wake_flag(const char *val, struct kernel_param *kp)
34 {
35 	int ret = param_set_int(val, kp);
36 
37 	if (ret)
38 		return ret;
39 
40 	if (kp->arg == (const char *)&gts) {
41 		if (gts)
42 			wake_sleep_flags |= ACPI_EXECUTE_GTS;
43 		else
44 			wake_sleep_flags &= ~ACPI_EXECUTE_GTS;
45 	}
46 	if (kp->arg == (const char *)&bfs) {
47 		if (bfs)
48 			wake_sleep_flags |= ACPI_EXECUTE_BFS;
49 		else
50 			wake_sleep_flags &= ~ACPI_EXECUTE_BFS;
51 	}
52 	return ret;
53 }
54 module_param_call(gts, set_param_wake_flag, param_get_int, &gts, 0644);
55 module_param_call(bfs, set_param_wake_flag, param_get_int, &bfs, 0644);
56 MODULE_PARM_DESC(gts, "Enable evaluation of _GTS on suspend.");
57 MODULE_PARM_DESC(bfs, "Enable evaluation of _BFS on resume".);
58 
59 static u8 sleep_states[ACPI_S_STATE_COUNT];
60 
61 static void acpi_sleep_tts_switch(u32 acpi_state)
62 {
63 	union acpi_object in_arg = { ACPI_TYPE_INTEGER };
64 	struct acpi_object_list arg_list = { 1, &in_arg };
65 	acpi_status status = AE_OK;
66 
67 	in_arg.integer.value = acpi_state;
68 	status = acpi_evaluate_object(NULL, "\\_TTS", &arg_list, NULL);
69 	if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
70 		/*
71 		 * OS can't evaluate the _TTS object correctly. Some warning
72 		 * message will be printed. But it won't break anything.
73 		 */
74 		printk(KERN_NOTICE "Failure in evaluating _TTS object\n");
75 	}
76 }
77 
78 static int tts_notify_reboot(struct notifier_block *this,
79 			unsigned long code, void *x)
80 {
81 	acpi_sleep_tts_switch(ACPI_STATE_S5);
82 	return NOTIFY_DONE;
83 }
84 
85 static struct notifier_block tts_notifier = {
86 	.notifier_call	= tts_notify_reboot,
87 	.next		= NULL,
88 	.priority	= 0,
89 };
90 
91 static int acpi_sleep_prepare(u32 acpi_state)
92 {
93 #ifdef CONFIG_ACPI_SLEEP
94 	/* do we have a wakeup address for S2 and S3? */
95 	if (acpi_state == ACPI_STATE_S3) {
96 		if (!acpi_wakeup_address) {
97 			return -EFAULT;
98 		}
99 		acpi_set_firmware_waking_vector(
100 				(acpi_physical_address)acpi_wakeup_address);
101 
102 	}
103 	ACPI_FLUSH_CPU_CACHE();
104 #endif
105 	printk(KERN_INFO PREFIX "Preparing to enter system sleep state S%d\n",
106 		acpi_state);
107 	acpi_enable_wakeup_devices(acpi_state);
108 	acpi_enter_sleep_state_prep(acpi_state);
109 	return 0;
110 }
111 
112 #ifdef CONFIG_ACPI_SLEEP
113 static u32 acpi_target_sleep_state = ACPI_STATE_S0;
114 
115 /*
116  * The ACPI specification wants us to save NVS memory regions during hibernation
117  * and to restore them during the subsequent resume.  Windows does that also for
118  * suspend to RAM.  However, it is known that this mechanism does not work on
119  * all machines, so we allow the user to disable it with the help of the
120  * 'acpi_sleep=nonvs' kernel command line option.
121  */
122 static bool nvs_nosave;
123 
124 void __init acpi_nvs_nosave(void)
125 {
126 	nvs_nosave = true;
127 }
128 
129 /*
130  * ACPI 1.0 wants us to execute _PTS before suspending devices, so we allow the
131  * user to request that behavior by using the 'acpi_old_suspend_ordering'
132  * kernel command line option that causes the following variable to be set.
133  */
134 static bool old_suspend_ordering;
135 
136 void __init acpi_old_suspend_ordering(void)
137 {
138 	old_suspend_ordering = true;
139 }
140 
141 /**
142  * acpi_pm_freeze - Disable the GPEs and suspend EC transactions.
143  */
144 static int acpi_pm_freeze(void)
145 {
146 	acpi_disable_all_gpes();
147 	acpi_os_wait_events_complete(NULL);
148 	acpi_ec_block_transactions();
149 	return 0;
150 }
151 
152 /**
153  * acpi_pre_suspend - Enable wakeup devices, "freeze" EC and save NVS.
154  */
155 static int acpi_pm_pre_suspend(void)
156 {
157 	acpi_pm_freeze();
158 	return suspend_nvs_save();
159 }
160 
161 /**
162  *	__acpi_pm_prepare - Prepare the platform to enter the target state.
163  *
164  *	If necessary, set the firmware waking vector and do arch-specific
165  *	nastiness to get the wakeup code to the waking vector.
166  */
167 static int __acpi_pm_prepare(void)
168 {
169 	int error = acpi_sleep_prepare(acpi_target_sleep_state);
170 	if (error)
171 		acpi_target_sleep_state = ACPI_STATE_S0;
172 
173 	return error;
174 }
175 
176 /**
177  *	acpi_pm_prepare - Prepare the platform to enter the target sleep
178  *		state and disable the GPEs.
179  */
180 static int acpi_pm_prepare(void)
181 {
182 	int error = __acpi_pm_prepare();
183 	if (!error)
184 		error = acpi_pm_pre_suspend();
185 
186 	return error;
187 }
188 
189 /**
190  *	acpi_pm_finish - Instruct the platform to leave a sleep state.
191  *
192  *	This is called after we wake back up (or if entering the sleep state
193  *	failed).
194  */
195 static void acpi_pm_finish(void)
196 {
197 	u32 acpi_state = acpi_target_sleep_state;
198 
199 	acpi_ec_unblock_transactions();
200 	suspend_nvs_free();
201 
202 	if (acpi_state == ACPI_STATE_S0)
203 		return;
204 
205 	printk(KERN_INFO PREFIX "Waking up from system sleep state S%d\n",
206 		acpi_state);
207 	acpi_disable_wakeup_devices(acpi_state);
208 	acpi_leave_sleep_state(acpi_state);
209 
210 	/* reset firmware waking vector */
211 	acpi_set_firmware_waking_vector((acpi_physical_address) 0);
212 
213 	acpi_target_sleep_state = ACPI_STATE_S0;
214 }
215 
216 /**
217  *	acpi_pm_end - Finish up suspend sequence.
218  */
219 static void acpi_pm_end(void)
220 {
221 	/*
222 	 * This is necessary in case acpi_pm_finish() is not called during a
223 	 * failing transition to a sleep state.
224 	 */
225 	acpi_target_sleep_state = ACPI_STATE_S0;
226 	acpi_sleep_tts_switch(acpi_target_sleep_state);
227 }
228 #else /* !CONFIG_ACPI_SLEEP */
229 #define acpi_target_sleep_state	ACPI_STATE_S0
230 #endif /* CONFIG_ACPI_SLEEP */
231 
232 #ifdef CONFIG_SUSPEND
233 static u32 acpi_suspend_states[] = {
234 	[PM_SUSPEND_ON] = ACPI_STATE_S0,
235 	[PM_SUSPEND_STANDBY] = ACPI_STATE_S1,
236 	[PM_SUSPEND_MEM] = ACPI_STATE_S3,
237 	[PM_SUSPEND_MAX] = ACPI_STATE_S5
238 };
239 
240 /**
241  *	acpi_suspend_begin - Set the target system sleep state to the state
242  *		associated with given @pm_state, if supported.
243  */
244 static int acpi_suspend_begin(suspend_state_t pm_state)
245 {
246 	u32 acpi_state = acpi_suspend_states[pm_state];
247 	int error = 0;
248 
249 	error = nvs_nosave ? 0 : suspend_nvs_alloc();
250 	if (error)
251 		return error;
252 
253 	if (sleep_states[acpi_state]) {
254 		acpi_target_sleep_state = acpi_state;
255 		acpi_sleep_tts_switch(acpi_target_sleep_state);
256 	} else {
257 		printk(KERN_ERR "ACPI does not support this state: %d\n",
258 			pm_state);
259 		error = -ENOSYS;
260 	}
261 	return error;
262 }
263 
264 /**
265  *	acpi_suspend_enter - Actually enter a sleep state.
266  *	@pm_state: ignored
267  *
268  *	Flush caches and go to sleep. For STR we have to call arch-specific
269  *	assembly, which in turn call acpi_enter_sleep_state().
270  *	It's unfortunate, but it works. Please fix if you're feeling frisky.
271  */
272 static int acpi_suspend_enter(suspend_state_t pm_state)
273 {
274 	acpi_status status = AE_OK;
275 	u32 acpi_state = acpi_target_sleep_state;
276 	int error;
277 
278 	ACPI_FLUSH_CPU_CACHE();
279 
280 	switch (acpi_state) {
281 	case ACPI_STATE_S1:
282 		barrier();
283 		status = acpi_enter_sleep_state(acpi_state, wake_sleep_flags);
284 		break;
285 
286 	case ACPI_STATE_S3:
287 		error = acpi_suspend_lowlevel();
288 		if (error)
289 			return error;
290 		pr_info(PREFIX "Low-level resume complete\n");
291 		break;
292 	}
293 
294 	/* This violates the spec but is required for bug compatibility. */
295 	acpi_write_bit_register(ACPI_BITREG_SCI_ENABLE, 1);
296 
297 	/* Reprogram control registers and execute _BFS */
298 	acpi_leave_sleep_state_prep(acpi_state, wake_sleep_flags);
299 
300 	/* ACPI 3.0 specs (P62) says that it's the responsibility
301 	 * of the OSPM to clear the status bit [ implying that the
302 	 * POWER_BUTTON event should not reach userspace ]
303 	 */
304 	if (ACPI_SUCCESS(status) && (acpi_state == ACPI_STATE_S3))
305 		acpi_clear_event(ACPI_EVENT_POWER_BUTTON);
306 
307 	/*
308 	 * Disable and clear GPE status before interrupt is enabled. Some GPEs
309 	 * (like wakeup GPE) haven't handler, this can avoid such GPE misfire.
310 	 * acpi_leave_sleep_state will reenable specific GPEs later
311 	 */
312 	acpi_disable_all_gpes();
313 	/* Allow EC transactions to happen. */
314 	acpi_ec_unblock_transactions_early();
315 
316 	suspend_nvs_restore();
317 
318 	return ACPI_SUCCESS(status) ? 0 : -EFAULT;
319 }
320 
321 static int acpi_suspend_state_valid(suspend_state_t pm_state)
322 {
323 	u32 acpi_state;
324 
325 	switch (pm_state) {
326 	case PM_SUSPEND_ON:
327 	case PM_SUSPEND_STANDBY:
328 	case PM_SUSPEND_MEM:
329 		acpi_state = acpi_suspend_states[pm_state];
330 
331 		return sleep_states[acpi_state];
332 	default:
333 		return 0;
334 	}
335 }
336 
337 static const struct platform_suspend_ops acpi_suspend_ops = {
338 	.valid = acpi_suspend_state_valid,
339 	.begin = acpi_suspend_begin,
340 	.prepare_late = acpi_pm_prepare,
341 	.enter = acpi_suspend_enter,
342 	.wake = acpi_pm_finish,
343 	.end = acpi_pm_end,
344 };
345 
346 /**
347  *	acpi_suspend_begin_old - Set the target system sleep state to the
348  *		state associated with given @pm_state, if supported, and
349  *		execute the _PTS control method.  This function is used if the
350  *		pre-ACPI 2.0 suspend ordering has been requested.
351  */
352 static int acpi_suspend_begin_old(suspend_state_t pm_state)
353 {
354 	int error = acpi_suspend_begin(pm_state);
355 	if (!error)
356 		error = __acpi_pm_prepare();
357 
358 	return error;
359 }
360 
361 /*
362  * The following callbacks are used if the pre-ACPI 2.0 suspend ordering has
363  * been requested.
364  */
365 static const struct platform_suspend_ops acpi_suspend_ops_old = {
366 	.valid = acpi_suspend_state_valid,
367 	.begin = acpi_suspend_begin_old,
368 	.prepare_late = acpi_pm_pre_suspend,
369 	.enter = acpi_suspend_enter,
370 	.wake = acpi_pm_finish,
371 	.end = acpi_pm_end,
372 	.recover = acpi_pm_finish,
373 };
374 
375 static int __init init_old_suspend_ordering(const struct dmi_system_id *d)
376 {
377 	old_suspend_ordering = true;
378 	return 0;
379 }
380 
381 static int __init init_nvs_nosave(const struct dmi_system_id *d)
382 {
383 	acpi_nvs_nosave();
384 	return 0;
385 }
386 
387 static struct dmi_system_id __initdata acpisleep_dmi_table[] = {
388 	{
389 	.callback = init_old_suspend_ordering,
390 	.ident = "Abit KN9 (nForce4 variant)",
391 	.matches = {
392 		DMI_MATCH(DMI_BOARD_VENDOR, "http://www.abit.com.tw/"),
393 		DMI_MATCH(DMI_BOARD_NAME, "KN9 Series(NF-CK804)"),
394 		},
395 	},
396 	{
397 	.callback = init_old_suspend_ordering,
398 	.ident = "HP xw4600 Workstation",
399 	.matches = {
400 		DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
401 		DMI_MATCH(DMI_PRODUCT_NAME, "HP xw4600 Workstation"),
402 		},
403 	},
404 	{
405 	.callback = init_old_suspend_ordering,
406 	.ident = "Asus Pundit P1-AH2 (M2N8L motherboard)",
407 	.matches = {
408 		DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
409 		DMI_MATCH(DMI_BOARD_NAME, "M2N8L"),
410 		},
411 	},
412 	{
413 	.callback = init_old_suspend_ordering,
414 	.ident = "Panasonic CF51-2L",
415 	.matches = {
416 		DMI_MATCH(DMI_BOARD_VENDOR,
417 				"Matsushita Electric Industrial Co.,Ltd."),
418 		DMI_MATCH(DMI_BOARD_NAME, "CF51-2L"),
419 		},
420 	},
421 	{
422 	.callback = init_nvs_nosave,
423 	.ident = "Sony Vaio VGN-FW21E",
424 	.matches = {
425 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
426 		DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW21E"),
427 		},
428 	},
429 	{
430 	.callback = init_nvs_nosave,
431 	.ident = "Sony Vaio VPCEB17FX",
432 	.matches = {
433 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
434 		DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB17FX"),
435 		},
436 	},
437 	{
438 	.callback = init_nvs_nosave,
439 	.ident = "Sony Vaio VGN-SR11M",
440 	.matches = {
441 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
442 		DMI_MATCH(DMI_PRODUCT_NAME, "VGN-SR11M"),
443 		},
444 	},
445 	{
446 	.callback = init_nvs_nosave,
447 	.ident = "Everex StepNote Series",
448 	.matches = {
449 		DMI_MATCH(DMI_SYS_VENDOR, "Everex Systems, Inc."),
450 		DMI_MATCH(DMI_PRODUCT_NAME, "Everex StepNote Series"),
451 		},
452 	},
453 	{
454 	.callback = init_nvs_nosave,
455 	.ident = "Sony Vaio VPCEB1Z1E",
456 	.matches = {
457 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
458 		DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB1Z1E"),
459 		},
460 	},
461 	{
462 	.callback = init_nvs_nosave,
463 	.ident = "Sony Vaio VGN-NW130D",
464 	.matches = {
465 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
466 		DMI_MATCH(DMI_PRODUCT_NAME, "VGN-NW130D"),
467 		},
468 	},
469 	{
470 	.callback = init_nvs_nosave,
471 	.ident = "Sony Vaio VPCCW29FX",
472 	.matches = {
473 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
474 		DMI_MATCH(DMI_PRODUCT_NAME, "VPCCW29FX"),
475 		},
476 	},
477 	{
478 	.callback = init_nvs_nosave,
479 	.ident = "Averatec AV1020-ED2",
480 	.matches = {
481 		DMI_MATCH(DMI_SYS_VENDOR, "AVERATEC"),
482 		DMI_MATCH(DMI_PRODUCT_NAME, "1000 Series"),
483 		},
484 	},
485 	{
486 	.callback = init_old_suspend_ordering,
487 	.ident = "Asus A8N-SLI DELUXE",
488 	.matches = {
489 		DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
490 		DMI_MATCH(DMI_BOARD_NAME, "A8N-SLI DELUXE"),
491 		},
492 	},
493 	{
494 	.callback = init_old_suspend_ordering,
495 	.ident = "Asus A8N-SLI Premium",
496 	.matches = {
497 		DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
498 		DMI_MATCH(DMI_BOARD_NAME, "A8N-SLI Premium"),
499 		},
500 	},
501 	{
502 	.callback = init_nvs_nosave,
503 	.ident = "Sony Vaio VGN-SR26GN_P",
504 	.matches = {
505 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
506 		DMI_MATCH(DMI_PRODUCT_NAME, "VGN-SR26GN_P"),
507 		},
508 	},
509 	{
510 	.callback = init_nvs_nosave,
511 	.ident = "Sony Vaio VGN-FW520F",
512 	.matches = {
513 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
514 		DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW520F"),
515 		},
516 	},
517 	{
518 	.callback = init_nvs_nosave,
519 	.ident = "Asus K54C",
520 	.matches = {
521 		DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
522 		DMI_MATCH(DMI_PRODUCT_NAME, "K54C"),
523 		},
524 	},
525 	{
526 	.callback = init_nvs_nosave,
527 	.ident = "Asus K54HR",
528 	.matches = {
529 		DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
530 		DMI_MATCH(DMI_PRODUCT_NAME, "K54HR"),
531 		},
532 	},
533 	{},
534 };
535 #endif /* CONFIG_SUSPEND */
536 
537 #ifdef CONFIG_HIBERNATION
538 static unsigned long s4_hardware_signature;
539 static struct acpi_table_facs *facs;
540 static bool nosigcheck;
541 
542 void __init acpi_no_s4_hw_signature(void)
543 {
544 	nosigcheck = true;
545 }
546 
547 static int acpi_hibernation_begin(void)
548 {
549 	int error;
550 
551 	error = nvs_nosave ? 0 : suspend_nvs_alloc();
552 	if (!error) {
553 		acpi_target_sleep_state = ACPI_STATE_S4;
554 		acpi_sleep_tts_switch(acpi_target_sleep_state);
555 	}
556 
557 	return error;
558 }
559 
560 static int acpi_hibernation_enter(void)
561 {
562 	acpi_status status = AE_OK;
563 
564 	ACPI_FLUSH_CPU_CACHE();
565 
566 	/* This shouldn't return.  If it returns, we have a problem */
567 	status = acpi_enter_sleep_state(ACPI_STATE_S4, wake_sleep_flags);
568 	/* Reprogram control registers and execute _BFS */
569 	acpi_leave_sleep_state_prep(ACPI_STATE_S4, wake_sleep_flags);
570 
571 	return ACPI_SUCCESS(status) ? 0 : -EFAULT;
572 }
573 
574 static void acpi_hibernation_leave(void)
575 {
576 	/*
577 	 * If ACPI is not enabled by the BIOS and the boot kernel, we need to
578 	 * enable it here.
579 	 */
580 	acpi_enable();
581 	/* Reprogram control registers and execute _BFS */
582 	acpi_leave_sleep_state_prep(ACPI_STATE_S4, wake_sleep_flags);
583 	/* Check the hardware signature */
584 	if (facs && s4_hardware_signature != facs->hardware_signature) {
585 		printk(KERN_EMERG "ACPI: Hardware changed while hibernated, "
586 			"cannot resume!\n");
587 		panic("ACPI S4 hardware signature mismatch");
588 	}
589 	/* Restore the NVS memory area */
590 	suspend_nvs_restore();
591 	/* Allow EC transactions to happen. */
592 	acpi_ec_unblock_transactions_early();
593 }
594 
595 static void acpi_pm_thaw(void)
596 {
597 	acpi_ec_unblock_transactions();
598 	acpi_enable_all_runtime_gpes();
599 }
600 
601 static const struct platform_hibernation_ops acpi_hibernation_ops = {
602 	.begin = acpi_hibernation_begin,
603 	.end = acpi_pm_end,
604 	.pre_snapshot = acpi_pm_prepare,
605 	.finish = acpi_pm_finish,
606 	.prepare = acpi_pm_prepare,
607 	.enter = acpi_hibernation_enter,
608 	.leave = acpi_hibernation_leave,
609 	.pre_restore = acpi_pm_freeze,
610 	.restore_cleanup = acpi_pm_thaw,
611 };
612 
613 /**
614  *	acpi_hibernation_begin_old - Set the target system sleep state to
615  *		ACPI_STATE_S4 and execute the _PTS control method.  This
616  *		function is used if the pre-ACPI 2.0 suspend ordering has been
617  *		requested.
618  */
619 static int acpi_hibernation_begin_old(void)
620 {
621 	int error;
622 	/*
623 	 * The _TTS object should always be evaluated before the _PTS object.
624 	 * When the old_suspended_ordering is true, the _PTS object is
625 	 * evaluated in the acpi_sleep_prepare.
626 	 */
627 	acpi_sleep_tts_switch(ACPI_STATE_S4);
628 
629 	error = acpi_sleep_prepare(ACPI_STATE_S4);
630 
631 	if (!error) {
632 		if (!nvs_nosave)
633 			error = suspend_nvs_alloc();
634 		if (!error)
635 			acpi_target_sleep_state = ACPI_STATE_S4;
636 	}
637 	return error;
638 }
639 
640 /*
641  * The following callbacks are used if the pre-ACPI 2.0 suspend ordering has
642  * been requested.
643  */
644 static const struct platform_hibernation_ops acpi_hibernation_ops_old = {
645 	.begin = acpi_hibernation_begin_old,
646 	.end = acpi_pm_end,
647 	.pre_snapshot = acpi_pm_pre_suspend,
648 	.prepare = acpi_pm_freeze,
649 	.finish = acpi_pm_finish,
650 	.enter = acpi_hibernation_enter,
651 	.leave = acpi_hibernation_leave,
652 	.pre_restore = acpi_pm_freeze,
653 	.restore_cleanup = acpi_pm_thaw,
654 	.recover = acpi_pm_finish,
655 };
656 #endif /* CONFIG_HIBERNATION */
657 
658 int acpi_suspend(u32 acpi_state)
659 {
660 	suspend_state_t states[] = {
661 		[1] = PM_SUSPEND_STANDBY,
662 		[3] = PM_SUSPEND_MEM,
663 		[5] = PM_SUSPEND_MAX
664 	};
665 
666 	if (acpi_state < 6 && states[acpi_state])
667 		return pm_suspend(states[acpi_state]);
668 	if (acpi_state == 4)
669 		return hibernate();
670 	return -EINVAL;
671 }
672 
673 #ifdef CONFIG_PM
674 /**
675  *	acpi_pm_device_sleep_state - return preferred power state of ACPI device
676  *		in the system sleep state given by %acpi_target_sleep_state
677  *	@dev: device to examine; its driver model wakeup flags control
678  *		whether it should be able to wake up the system
679  *	@d_min_p: used to store the upper limit of allowed states range
680  *	Return value: preferred power state of the device on success, -ENODEV on
681  *		failure (ie. if there's no 'struct acpi_device' for @dev)
682  *
683  *	Find the lowest power (highest number) ACPI device power state that
684  *	device @dev can be in while the system is in the sleep state represented
685  *	by %acpi_target_sleep_state.  If @wake is nonzero, the device should be
686  *	able to wake up the system from this sleep state.  If @d_min_p is set,
687  *	the highest power (lowest number) device power state of @dev allowed
688  *	in this system sleep state is stored at the location pointed to by it.
689  *
690  *	The caller must ensure that @dev is valid before using this function.
691  *	The caller is also responsible for figuring out if the device is
692  *	supposed to be able to wake up the system and passing this information
693  *	via @wake.
694  */
695 
696 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p)
697 {
698 	acpi_handle handle = DEVICE_ACPI_HANDLE(dev);
699 	struct acpi_device *adev;
700 	char acpi_method[] = "_SxD";
701 	unsigned long long d_min, d_max;
702 
703 	if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &adev))) {
704 		printk(KERN_DEBUG "ACPI handle has no context!\n");
705 		return -ENODEV;
706 	}
707 
708 	acpi_method[2] = '0' + acpi_target_sleep_state;
709 	/*
710 	 * If the sleep state is S0, we will return D3, but if the device has
711 	 * _S0W, we will use the value from _S0W
712 	 */
713 	d_min = ACPI_STATE_D0;
714 	d_max = ACPI_STATE_D3;
715 
716 	/*
717 	 * If present, _SxD methods return the minimum D-state (highest power
718 	 * state) we can use for the corresponding S-states.  Otherwise, the
719 	 * minimum D-state is D0 (ACPI 3.x).
720 	 *
721 	 * NOTE: We rely on acpi_evaluate_integer() not clobbering the integer
722 	 * provided -- that's our fault recovery, we ignore retval.
723 	 */
724 	if (acpi_target_sleep_state > ACPI_STATE_S0)
725 		acpi_evaluate_integer(handle, acpi_method, NULL, &d_min);
726 
727 	/*
728 	 * If _PRW says we can wake up the system from the target sleep state,
729 	 * the D-state returned by _SxD is sufficient for that (we assume a
730 	 * wakeup-aware driver if wake is set).  Still, if _SxW exists
731 	 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
732 	 * can wake the system.  _S0W may be valid, too.
733 	 */
734 	if (acpi_target_sleep_state == ACPI_STATE_S0 ||
735 	    (device_may_wakeup(dev) &&
736 	     adev->wakeup.sleep_state <= acpi_target_sleep_state)) {
737 		acpi_status status;
738 
739 		acpi_method[3] = 'W';
740 		status = acpi_evaluate_integer(handle, acpi_method, NULL,
741 						&d_max);
742 		if (ACPI_FAILURE(status)) {
743 			if (acpi_target_sleep_state != ACPI_STATE_S0 ||
744 			    status != AE_NOT_FOUND)
745 				d_max = d_min;
746 		} else if (d_max < d_min) {
747 			/* Warn the user of the broken DSDT */
748 			printk(KERN_WARNING "ACPI: Wrong value from %s\n",
749 				acpi_method);
750 			/* Sanitize it */
751 			d_min = d_max;
752 		}
753 	}
754 
755 	if (d_min_p)
756 		*d_min_p = d_min;
757 	return d_max;
758 }
759 #endif /* CONFIG_PM */
760 
761 #ifdef CONFIG_PM_SLEEP
762 /**
763  * acpi_pm_device_run_wake - Enable/disable wake-up for given device.
764  * @phys_dev: Device to enable/disable the platform to wake-up the system for.
765  * @enable: Whether enable or disable the wake-up functionality.
766  *
767  * Find the ACPI device object corresponding to @pci_dev and try to
768  * enable/disable the GPE associated with it.
769  */
770 int acpi_pm_device_run_wake(struct device *phys_dev, bool enable)
771 {
772 	struct acpi_device *dev;
773 	acpi_handle handle;
774 
775 	if (!device_run_wake(phys_dev))
776 		return -EINVAL;
777 
778 	handle = DEVICE_ACPI_HANDLE(phys_dev);
779 	if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &dev))) {
780 		dev_dbg(phys_dev, "ACPI handle has no context in %s!\n",
781 			__func__);
782 		return -ENODEV;
783 	}
784 
785 	if (enable) {
786 		acpi_enable_wakeup_device_power(dev, ACPI_STATE_S0);
787 		acpi_enable_gpe(dev->wakeup.gpe_device, dev->wakeup.gpe_number);
788 	} else {
789 		acpi_disable_gpe(dev->wakeup.gpe_device, dev->wakeup.gpe_number);
790 		acpi_disable_wakeup_device_power(dev);
791 	}
792 
793 	return 0;
794 }
795 
796 /**
797  *	acpi_pm_device_sleep_wake - enable or disable the system wake-up
798  *                                  capability of given device
799  *	@dev: device to handle
800  *	@enable: 'true' - enable, 'false' - disable the wake-up capability
801  */
802 int acpi_pm_device_sleep_wake(struct device *dev, bool enable)
803 {
804 	acpi_handle handle;
805 	struct acpi_device *adev;
806 	int error;
807 
808 	if (!device_can_wakeup(dev))
809 		return -EINVAL;
810 
811 	handle = DEVICE_ACPI_HANDLE(dev);
812 	if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &adev))) {
813 		dev_dbg(dev, "ACPI handle has no context in %s!\n", __func__);
814 		return -ENODEV;
815 	}
816 
817 	error = enable ?
818 		acpi_enable_wakeup_device_power(adev, acpi_target_sleep_state) :
819 		acpi_disable_wakeup_device_power(adev);
820 	if (!error)
821 		dev_info(dev, "wake-up capability %s by ACPI\n",
822 				enable ? "enabled" : "disabled");
823 
824 	return error;
825 }
826 #endif  /* CONFIG_PM_SLEEP */
827 
828 static void acpi_power_off_prepare(void)
829 {
830 	/* Prepare to power off the system */
831 	acpi_sleep_prepare(ACPI_STATE_S5);
832 	acpi_disable_all_gpes();
833 }
834 
835 static void acpi_power_off(void)
836 {
837 	/* acpi_sleep_prepare(ACPI_STATE_S5) should have already been called */
838 	printk(KERN_DEBUG "%s called\n", __func__);
839 	local_irq_disable();
840 	acpi_enter_sleep_state(ACPI_STATE_S5, wake_sleep_flags);
841 }
842 
843 /*
844  * ACPI 2.0 created the optional _GTS and _BFS,
845  * but industry adoption has been neither rapid nor broad.
846  *
847  * Linux gets into trouble when it executes poorly validated
848  * paths through the BIOS, so disable _GTS and _BFS by default,
849  * but do speak up and offer the option to enable them.
850  */
851 static void __init acpi_gts_bfs_check(void)
852 {
853 	acpi_handle dummy;
854 
855 	if (ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, METHOD_PATHNAME__GTS, &dummy)))
856 	{
857 		printk(KERN_NOTICE PREFIX "BIOS offers _GTS\n");
858 		printk(KERN_NOTICE PREFIX "If \"acpi.gts=1\" improves suspend, "
859 			"please notify linux-acpi@vger.kernel.org\n");
860 	}
861 	if (ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, METHOD_PATHNAME__BFS, &dummy)))
862 	{
863 		printk(KERN_NOTICE PREFIX "BIOS offers _BFS\n");
864 		printk(KERN_NOTICE PREFIX "If \"acpi.bfs=1\" improves resume, "
865 			"please notify linux-acpi@vger.kernel.org\n");
866 	}
867 }
868 
869 int __init acpi_sleep_init(void)
870 {
871 	acpi_status status;
872 	u8 type_a, type_b;
873 #ifdef CONFIG_SUSPEND
874 	int i = 0;
875 
876 	dmi_check_system(acpisleep_dmi_table);
877 #endif
878 
879 	if (acpi_disabled)
880 		return 0;
881 
882 	sleep_states[ACPI_STATE_S0] = 1;
883 	printk(KERN_INFO PREFIX "(supports S0");
884 
885 #ifdef CONFIG_SUSPEND
886 	for (i = ACPI_STATE_S1; i < ACPI_STATE_S4; i++) {
887 		status = acpi_get_sleep_type_data(i, &type_a, &type_b);
888 		if (ACPI_SUCCESS(status)) {
889 			sleep_states[i] = 1;
890 			printk(" S%d", i);
891 		}
892 	}
893 
894 	suspend_set_ops(old_suspend_ordering ?
895 		&acpi_suspend_ops_old : &acpi_suspend_ops);
896 #endif
897 
898 #ifdef CONFIG_HIBERNATION
899 	status = acpi_get_sleep_type_data(ACPI_STATE_S4, &type_a, &type_b);
900 	if (ACPI_SUCCESS(status)) {
901 		hibernation_set_ops(old_suspend_ordering ?
902 			&acpi_hibernation_ops_old : &acpi_hibernation_ops);
903 		sleep_states[ACPI_STATE_S4] = 1;
904 		printk(" S4");
905 		if (!nosigcheck) {
906 			acpi_get_table(ACPI_SIG_FACS, 1,
907 				(struct acpi_table_header **)&facs);
908 			if (facs)
909 				s4_hardware_signature =
910 					facs->hardware_signature;
911 		}
912 	}
913 #endif
914 	status = acpi_get_sleep_type_data(ACPI_STATE_S5, &type_a, &type_b);
915 	if (ACPI_SUCCESS(status)) {
916 		sleep_states[ACPI_STATE_S5] = 1;
917 		printk(" S5");
918 		pm_power_off_prepare = acpi_power_off_prepare;
919 		pm_power_off = acpi_power_off;
920 	}
921 	printk(")\n");
922 	/*
923 	 * Register the tts_notifier to reboot notifier list so that the _TTS
924 	 * object can also be evaluated when the system enters S5.
925 	 */
926 	register_reboot_notifier(&tts_notifier);
927 	acpi_gts_bfs_check();
928 	return 0;
929 }
930