xref: /openbmc/linux/drivers/acpi/sleep.c (revision 05bcf503)
1 /*
2  * sleep.c - ACPI sleep support.
3  *
4  * Copyright (c) 2005 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
5  * Copyright (c) 2004 David Shaohua Li <shaohua.li@intel.com>
6  * Copyright (c) 2000-2003 Patrick Mochel
7  * Copyright (c) 2003 Open Source Development Lab
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/delay.h>
14 #include <linux/irq.h>
15 #include <linux/dmi.h>
16 #include <linux/device.h>
17 #include <linux/suspend.h>
18 #include <linux/reboot.h>
19 #include <linux/acpi.h>
20 #include <linux/module.h>
21 #include <linux/pm_runtime.h>
22 
23 #include <asm/io.h>
24 
25 #include <acpi/acpi_bus.h>
26 #include <acpi/acpi_drivers.h>
27 
28 #include "internal.h"
29 #include "sleep.h"
30 
31 static u8 sleep_states[ACPI_S_STATE_COUNT];
32 
33 static void acpi_sleep_tts_switch(u32 acpi_state)
34 {
35 	union acpi_object in_arg = { ACPI_TYPE_INTEGER };
36 	struct acpi_object_list arg_list = { 1, &in_arg };
37 	acpi_status status = AE_OK;
38 
39 	in_arg.integer.value = acpi_state;
40 	status = acpi_evaluate_object(NULL, "\\_TTS", &arg_list, NULL);
41 	if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
42 		/*
43 		 * OS can't evaluate the _TTS object correctly. Some warning
44 		 * message will be printed. But it won't break anything.
45 		 */
46 		printk(KERN_NOTICE "Failure in evaluating _TTS object\n");
47 	}
48 }
49 
50 static int tts_notify_reboot(struct notifier_block *this,
51 			unsigned long code, void *x)
52 {
53 	acpi_sleep_tts_switch(ACPI_STATE_S5);
54 	return NOTIFY_DONE;
55 }
56 
57 static struct notifier_block tts_notifier = {
58 	.notifier_call	= tts_notify_reboot,
59 	.next		= NULL,
60 	.priority	= 0,
61 };
62 
63 static int acpi_sleep_prepare(u32 acpi_state)
64 {
65 #ifdef CONFIG_ACPI_SLEEP
66 	/* do we have a wakeup address for S2 and S3? */
67 	if (acpi_state == ACPI_STATE_S3) {
68 		if (!acpi_wakeup_address)
69 			return -EFAULT;
70 		acpi_set_firmware_waking_vector(acpi_wakeup_address);
71 
72 	}
73 	ACPI_FLUSH_CPU_CACHE();
74 #endif
75 	printk(KERN_INFO PREFIX "Preparing to enter system sleep state S%d\n",
76 		acpi_state);
77 	acpi_enable_wakeup_devices(acpi_state);
78 	acpi_enter_sleep_state_prep(acpi_state);
79 	return 0;
80 }
81 
82 #ifdef CONFIG_ACPI_SLEEP
83 static u32 acpi_target_sleep_state = ACPI_STATE_S0;
84 static bool pwr_btn_event_pending;
85 
86 /*
87  * The ACPI specification wants us to save NVS memory regions during hibernation
88  * and to restore them during the subsequent resume.  Windows does that also for
89  * suspend to RAM.  However, it is known that this mechanism does not work on
90  * all machines, so we allow the user to disable it with the help of the
91  * 'acpi_sleep=nonvs' kernel command line option.
92  */
93 static bool nvs_nosave;
94 
95 void __init acpi_nvs_nosave(void)
96 {
97 	nvs_nosave = true;
98 }
99 
100 /*
101  * ACPI 1.0 wants us to execute _PTS before suspending devices, so we allow the
102  * user to request that behavior by using the 'acpi_old_suspend_ordering'
103  * kernel command line option that causes the following variable to be set.
104  */
105 static bool old_suspend_ordering;
106 
107 void __init acpi_old_suspend_ordering(void)
108 {
109 	old_suspend_ordering = true;
110 }
111 
112 /**
113  * acpi_pm_freeze - Disable the GPEs and suspend EC transactions.
114  */
115 static int acpi_pm_freeze(void)
116 {
117 	acpi_disable_all_gpes();
118 	acpi_os_wait_events_complete();
119 	acpi_ec_block_transactions();
120 	return 0;
121 }
122 
123 /**
124  * acpi_pre_suspend - Enable wakeup devices, "freeze" EC and save NVS.
125  */
126 static int acpi_pm_pre_suspend(void)
127 {
128 	acpi_pm_freeze();
129 	return suspend_nvs_save();
130 }
131 
132 /**
133  *	__acpi_pm_prepare - Prepare the platform to enter the target state.
134  *
135  *	If necessary, set the firmware waking vector and do arch-specific
136  *	nastiness to get the wakeup code to the waking vector.
137  */
138 static int __acpi_pm_prepare(void)
139 {
140 	int error = acpi_sleep_prepare(acpi_target_sleep_state);
141 	if (error)
142 		acpi_target_sleep_state = ACPI_STATE_S0;
143 
144 	return error;
145 }
146 
147 /**
148  *	acpi_pm_prepare - Prepare the platform to enter the target sleep
149  *		state and disable the GPEs.
150  */
151 static int acpi_pm_prepare(void)
152 {
153 	int error = __acpi_pm_prepare();
154 	if (!error)
155 		error = acpi_pm_pre_suspend();
156 
157 	return error;
158 }
159 
160 static int find_powerf_dev(struct device *dev, void *data)
161 {
162 	struct acpi_device *device = to_acpi_device(dev);
163 	const char *hid = acpi_device_hid(device);
164 
165 	return !strcmp(hid, ACPI_BUTTON_HID_POWERF);
166 }
167 
168 /**
169  *	acpi_pm_finish - Instruct the platform to leave a sleep state.
170  *
171  *	This is called after we wake back up (or if entering the sleep state
172  *	failed).
173  */
174 static void acpi_pm_finish(void)
175 {
176 	struct device *pwr_btn_dev;
177 	u32 acpi_state = acpi_target_sleep_state;
178 
179 	acpi_ec_unblock_transactions();
180 	suspend_nvs_free();
181 
182 	if (acpi_state == ACPI_STATE_S0)
183 		return;
184 
185 	printk(KERN_INFO PREFIX "Waking up from system sleep state S%d\n",
186 		acpi_state);
187 	acpi_disable_wakeup_devices(acpi_state);
188 	acpi_leave_sleep_state(acpi_state);
189 
190 	/* reset firmware waking vector */
191 	acpi_set_firmware_waking_vector((acpi_physical_address) 0);
192 
193 	acpi_target_sleep_state = ACPI_STATE_S0;
194 
195 	/* If we were woken with the fixed power button, provide a small
196 	 * hint to userspace in the form of a wakeup event on the fixed power
197 	 * button device (if it can be found).
198 	 *
199 	 * We delay the event generation til now, as the PM layer requires
200 	 * timekeeping to be running before we generate events. */
201 	if (!pwr_btn_event_pending)
202 		return;
203 
204 	pwr_btn_event_pending = false;
205 	pwr_btn_dev = bus_find_device(&acpi_bus_type, NULL, NULL,
206 				      find_powerf_dev);
207 	if (pwr_btn_dev) {
208 		pm_wakeup_event(pwr_btn_dev, 0);
209 		put_device(pwr_btn_dev);
210 	}
211 }
212 
213 /**
214  *	acpi_pm_end - Finish up suspend sequence.
215  */
216 static void acpi_pm_end(void)
217 {
218 	/*
219 	 * This is necessary in case acpi_pm_finish() is not called during a
220 	 * failing transition to a sleep state.
221 	 */
222 	acpi_target_sleep_state = ACPI_STATE_S0;
223 	acpi_sleep_tts_switch(acpi_target_sleep_state);
224 }
225 #else /* !CONFIG_ACPI_SLEEP */
226 #define acpi_target_sleep_state	ACPI_STATE_S0
227 #endif /* CONFIG_ACPI_SLEEP */
228 
229 #ifdef CONFIG_SUSPEND
230 static u32 acpi_suspend_states[] = {
231 	[PM_SUSPEND_ON] = ACPI_STATE_S0,
232 	[PM_SUSPEND_STANDBY] = ACPI_STATE_S1,
233 	[PM_SUSPEND_MEM] = ACPI_STATE_S3,
234 	[PM_SUSPEND_MAX] = ACPI_STATE_S5
235 };
236 
237 /**
238  *	acpi_suspend_begin - Set the target system sleep state to the state
239  *		associated with given @pm_state, if supported.
240  */
241 static int acpi_suspend_begin(suspend_state_t pm_state)
242 {
243 	u32 acpi_state = acpi_suspend_states[pm_state];
244 	int error = 0;
245 
246 	error = nvs_nosave ? 0 : suspend_nvs_alloc();
247 	if (error)
248 		return error;
249 
250 	if (sleep_states[acpi_state]) {
251 		acpi_target_sleep_state = acpi_state;
252 		acpi_sleep_tts_switch(acpi_target_sleep_state);
253 	} else {
254 		printk(KERN_ERR "ACPI does not support this state: %d\n",
255 			pm_state);
256 		error = -ENOSYS;
257 	}
258 	return error;
259 }
260 
261 /**
262  *	acpi_suspend_enter - Actually enter a sleep state.
263  *	@pm_state: ignored
264  *
265  *	Flush caches and go to sleep. For STR we have to call arch-specific
266  *	assembly, which in turn call acpi_enter_sleep_state().
267  *	It's unfortunate, but it works. Please fix if you're feeling frisky.
268  */
269 static int acpi_suspend_enter(suspend_state_t pm_state)
270 {
271 	acpi_status status = AE_OK;
272 	u32 acpi_state = acpi_target_sleep_state;
273 	int error;
274 
275 	ACPI_FLUSH_CPU_CACHE();
276 
277 	switch (acpi_state) {
278 	case ACPI_STATE_S1:
279 		barrier();
280 		status = acpi_enter_sleep_state(acpi_state);
281 		break;
282 
283 	case ACPI_STATE_S3:
284 		error = acpi_suspend_lowlevel();
285 		if (error)
286 			return error;
287 		pr_info(PREFIX "Low-level resume complete\n");
288 		break;
289 	}
290 
291 	/* This violates the spec but is required for bug compatibility. */
292 	acpi_write_bit_register(ACPI_BITREG_SCI_ENABLE, 1);
293 
294 	/* Reprogram control registers */
295 	acpi_leave_sleep_state_prep(acpi_state);
296 
297 	/* ACPI 3.0 specs (P62) says that it's the responsibility
298 	 * of the OSPM to clear the status bit [ implying that the
299 	 * POWER_BUTTON event should not reach userspace ]
300 	 *
301 	 * However, we do generate a small hint for userspace in the form of
302 	 * a wakeup event. We flag this condition for now and generate the
303 	 * event later, as we're currently too early in resume to be able to
304 	 * generate wakeup events.
305 	 */
306 	if (ACPI_SUCCESS(status) && (acpi_state == ACPI_STATE_S3)) {
307 		acpi_event_status pwr_btn_status;
308 
309 		acpi_get_event_status(ACPI_EVENT_POWER_BUTTON, &pwr_btn_status);
310 
311 		if (pwr_btn_status & ACPI_EVENT_FLAG_SET) {
312 			acpi_clear_event(ACPI_EVENT_POWER_BUTTON);
313 			/* Flag for later */
314 			pwr_btn_event_pending = true;
315 		}
316 	}
317 
318 	/*
319 	 * Disable and clear GPE status before interrupt is enabled. Some GPEs
320 	 * (like wakeup GPE) haven't handler, this can avoid such GPE misfire.
321 	 * acpi_leave_sleep_state will reenable specific GPEs later
322 	 */
323 	acpi_disable_all_gpes();
324 	/* Allow EC transactions to happen. */
325 	acpi_ec_unblock_transactions_early();
326 
327 	suspend_nvs_restore();
328 
329 	return ACPI_SUCCESS(status) ? 0 : -EFAULT;
330 }
331 
332 static int acpi_suspend_state_valid(suspend_state_t pm_state)
333 {
334 	u32 acpi_state;
335 
336 	switch (pm_state) {
337 	case PM_SUSPEND_ON:
338 	case PM_SUSPEND_STANDBY:
339 	case PM_SUSPEND_MEM:
340 		acpi_state = acpi_suspend_states[pm_state];
341 
342 		return sleep_states[acpi_state];
343 	default:
344 		return 0;
345 	}
346 }
347 
348 static const struct platform_suspend_ops acpi_suspend_ops = {
349 	.valid = acpi_suspend_state_valid,
350 	.begin = acpi_suspend_begin,
351 	.prepare_late = acpi_pm_prepare,
352 	.enter = acpi_suspend_enter,
353 	.wake = acpi_pm_finish,
354 	.end = acpi_pm_end,
355 };
356 
357 /**
358  *	acpi_suspend_begin_old - Set the target system sleep state to the
359  *		state associated with given @pm_state, if supported, and
360  *		execute the _PTS control method.  This function is used if the
361  *		pre-ACPI 2.0 suspend ordering has been requested.
362  */
363 static int acpi_suspend_begin_old(suspend_state_t pm_state)
364 {
365 	int error = acpi_suspend_begin(pm_state);
366 	if (!error)
367 		error = __acpi_pm_prepare();
368 
369 	return error;
370 }
371 
372 /*
373  * The following callbacks are used if the pre-ACPI 2.0 suspend ordering has
374  * been requested.
375  */
376 static const struct platform_suspend_ops acpi_suspend_ops_old = {
377 	.valid = acpi_suspend_state_valid,
378 	.begin = acpi_suspend_begin_old,
379 	.prepare_late = acpi_pm_pre_suspend,
380 	.enter = acpi_suspend_enter,
381 	.wake = acpi_pm_finish,
382 	.end = acpi_pm_end,
383 	.recover = acpi_pm_finish,
384 };
385 
386 static int __init init_old_suspend_ordering(const struct dmi_system_id *d)
387 {
388 	old_suspend_ordering = true;
389 	return 0;
390 }
391 
392 static int __init init_nvs_nosave(const struct dmi_system_id *d)
393 {
394 	acpi_nvs_nosave();
395 	return 0;
396 }
397 
398 static struct dmi_system_id __initdata acpisleep_dmi_table[] = {
399 	{
400 	.callback = init_old_suspend_ordering,
401 	.ident = "Abit KN9 (nForce4 variant)",
402 	.matches = {
403 		DMI_MATCH(DMI_BOARD_VENDOR, "http://www.abit.com.tw/"),
404 		DMI_MATCH(DMI_BOARD_NAME, "KN9 Series(NF-CK804)"),
405 		},
406 	},
407 	{
408 	.callback = init_old_suspend_ordering,
409 	.ident = "HP xw4600 Workstation",
410 	.matches = {
411 		DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
412 		DMI_MATCH(DMI_PRODUCT_NAME, "HP xw4600 Workstation"),
413 		},
414 	},
415 	{
416 	.callback = init_old_suspend_ordering,
417 	.ident = "Asus Pundit P1-AH2 (M2N8L motherboard)",
418 	.matches = {
419 		DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
420 		DMI_MATCH(DMI_BOARD_NAME, "M2N8L"),
421 		},
422 	},
423 	{
424 	.callback = init_old_suspend_ordering,
425 	.ident = "Panasonic CF51-2L",
426 	.matches = {
427 		DMI_MATCH(DMI_BOARD_VENDOR,
428 				"Matsushita Electric Industrial Co.,Ltd."),
429 		DMI_MATCH(DMI_BOARD_NAME, "CF51-2L"),
430 		},
431 	},
432 	{
433 	.callback = init_nvs_nosave,
434 	.ident = "Sony Vaio VGN-FW21E",
435 	.matches = {
436 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
437 		DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW21E"),
438 		},
439 	},
440 	{
441 	.callback = init_nvs_nosave,
442 	.ident = "Sony Vaio VPCEB17FX",
443 	.matches = {
444 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
445 		DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB17FX"),
446 		},
447 	},
448 	{
449 	.callback = init_nvs_nosave,
450 	.ident = "Sony Vaio VGN-SR11M",
451 	.matches = {
452 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
453 		DMI_MATCH(DMI_PRODUCT_NAME, "VGN-SR11M"),
454 		},
455 	},
456 	{
457 	.callback = init_nvs_nosave,
458 	.ident = "Everex StepNote Series",
459 	.matches = {
460 		DMI_MATCH(DMI_SYS_VENDOR, "Everex Systems, Inc."),
461 		DMI_MATCH(DMI_PRODUCT_NAME, "Everex StepNote Series"),
462 		},
463 	},
464 	{
465 	.callback = init_nvs_nosave,
466 	.ident = "Sony Vaio VPCEB1Z1E",
467 	.matches = {
468 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
469 		DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB1Z1E"),
470 		},
471 	},
472 	{
473 	.callback = init_nvs_nosave,
474 	.ident = "Sony Vaio VGN-NW130D",
475 	.matches = {
476 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
477 		DMI_MATCH(DMI_PRODUCT_NAME, "VGN-NW130D"),
478 		},
479 	},
480 	{
481 	.callback = init_nvs_nosave,
482 	.ident = "Sony Vaio VPCCW29FX",
483 	.matches = {
484 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
485 		DMI_MATCH(DMI_PRODUCT_NAME, "VPCCW29FX"),
486 		},
487 	},
488 	{
489 	.callback = init_nvs_nosave,
490 	.ident = "Averatec AV1020-ED2",
491 	.matches = {
492 		DMI_MATCH(DMI_SYS_VENDOR, "AVERATEC"),
493 		DMI_MATCH(DMI_PRODUCT_NAME, "1000 Series"),
494 		},
495 	},
496 	{
497 	.callback = init_old_suspend_ordering,
498 	.ident = "Asus A8N-SLI DELUXE",
499 	.matches = {
500 		DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
501 		DMI_MATCH(DMI_BOARD_NAME, "A8N-SLI DELUXE"),
502 		},
503 	},
504 	{
505 	.callback = init_old_suspend_ordering,
506 	.ident = "Asus A8N-SLI Premium",
507 	.matches = {
508 		DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
509 		DMI_MATCH(DMI_BOARD_NAME, "A8N-SLI Premium"),
510 		},
511 	},
512 	{
513 	.callback = init_nvs_nosave,
514 	.ident = "Sony Vaio VGN-SR26GN_P",
515 	.matches = {
516 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
517 		DMI_MATCH(DMI_PRODUCT_NAME, "VGN-SR26GN_P"),
518 		},
519 	},
520 	{
521 	.callback = init_nvs_nosave,
522 	.ident = "Sony Vaio VGN-FW520F",
523 	.matches = {
524 		DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"),
525 		DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW520F"),
526 		},
527 	},
528 	{
529 	.callback = init_nvs_nosave,
530 	.ident = "Asus K54C",
531 	.matches = {
532 		DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
533 		DMI_MATCH(DMI_PRODUCT_NAME, "K54C"),
534 		},
535 	},
536 	{
537 	.callback = init_nvs_nosave,
538 	.ident = "Asus K54HR",
539 	.matches = {
540 		DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
541 		DMI_MATCH(DMI_PRODUCT_NAME, "K54HR"),
542 		},
543 	},
544 	{},
545 };
546 #endif /* CONFIG_SUSPEND */
547 
548 #ifdef CONFIG_HIBERNATION
549 static unsigned long s4_hardware_signature;
550 static struct acpi_table_facs *facs;
551 static bool nosigcheck;
552 
553 void __init acpi_no_s4_hw_signature(void)
554 {
555 	nosigcheck = true;
556 }
557 
558 static int acpi_hibernation_begin(void)
559 {
560 	int error;
561 
562 	error = nvs_nosave ? 0 : suspend_nvs_alloc();
563 	if (!error) {
564 		acpi_target_sleep_state = ACPI_STATE_S4;
565 		acpi_sleep_tts_switch(acpi_target_sleep_state);
566 	}
567 
568 	return error;
569 }
570 
571 static int acpi_hibernation_enter(void)
572 {
573 	acpi_status status = AE_OK;
574 
575 	ACPI_FLUSH_CPU_CACHE();
576 
577 	/* This shouldn't return.  If it returns, we have a problem */
578 	status = acpi_enter_sleep_state(ACPI_STATE_S4);
579 	/* Reprogram control registers */
580 	acpi_leave_sleep_state_prep(ACPI_STATE_S4);
581 
582 	return ACPI_SUCCESS(status) ? 0 : -EFAULT;
583 }
584 
585 static void acpi_hibernation_leave(void)
586 {
587 	/*
588 	 * If ACPI is not enabled by the BIOS and the boot kernel, we need to
589 	 * enable it here.
590 	 */
591 	acpi_enable();
592 	/* Reprogram control registers */
593 	acpi_leave_sleep_state_prep(ACPI_STATE_S4);
594 	/* Check the hardware signature */
595 	if (facs && s4_hardware_signature != facs->hardware_signature) {
596 		printk(KERN_EMERG "ACPI: Hardware changed while hibernated, "
597 			"cannot resume!\n");
598 		panic("ACPI S4 hardware signature mismatch");
599 	}
600 	/* Restore the NVS memory area */
601 	suspend_nvs_restore();
602 	/* Allow EC transactions to happen. */
603 	acpi_ec_unblock_transactions_early();
604 }
605 
606 static void acpi_pm_thaw(void)
607 {
608 	acpi_ec_unblock_transactions();
609 	acpi_enable_all_runtime_gpes();
610 }
611 
612 static const struct platform_hibernation_ops acpi_hibernation_ops = {
613 	.begin = acpi_hibernation_begin,
614 	.end = acpi_pm_end,
615 	.pre_snapshot = acpi_pm_prepare,
616 	.finish = acpi_pm_finish,
617 	.prepare = acpi_pm_prepare,
618 	.enter = acpi_hibernation_enter,
619 	.leave = acpi_hibernation_leave,
620 	.pre_restore = acpi_pm_freeze,
621 	.restore_cleanup = acpi_pm_thaw,
622 };
623 
624 /**
625  *	acpi_hibernation_begin_old - Set the target system sleep state to
626  *		ACPI_STATE_S4 and execute the _PTS control method.  This
627  *		function is used if the pre-ACPI 2.0 suspend ordering has been
628  *		requested.
629  */
630 static int acpi_hibernation_begin_old(void)
631 {
632 	int error;
633 	/*
634 	 * The _TTS object should always be evaluated before the _PTS object.
635 	 * When the old_suspended_ordering is true, the _PTS object is
636 	 * evaluated in the acpi_sleep_prepare.
637 	 */
638 	acpi_sleep_tts_switch(ACPI_STATE_S4);
639 
640 	error = acpi_sleep_prepare(ACPI_STATE_S4);
641 
642 	if (!error) {
643 		if (!nvs_nosave)
644 			error = suspend_nvs_alloc();
645 		if (!error)
646 			acpi_target_sleep_state = ACPI_STATE_S4;
647 	}
648 	return error;
649 }
650 
651 /*
652  * The following callbacks are used if the pre-ACPI 2.0 suspend ordering has
653  * been requested.
654  */
655 static const struct platform_hibernation_ops acpi_hibernation_ops_old = {
656 	.begin = acpi_hibernation_begin_old,
657 	.end = acpi_pm_end,
658 	.pre_snapshot = acpi_pm_pre_suspend,
659 	.prepare = acpi_pm_freeze,
660 	.finish = acpi_pm_finish,
661 	.enter = acpi_hibernation_enter,
662 	.leave = acpi_hibernation_leave,
663 	.pre_restore = acpi_pm_freeze,
664 	.restore_cleanup = acpi_pm_thaw,
665 	.recover = acpi_pm_finish,
666 };
667 #endif /* CONFIG_HIBERNATION */
668 
669 int acpi_suspend(u32 acpi_state)
670 {
671 	suspend_state_t states[] = {
672 		[1] = PM_SUSPEND_STANDBY,
673 		[3] = PM_SUSPEND_MEM,
674 		[5] = PM_SUSPEND_MAX
675 	};
676 
677 	if (acpi_state < 6 && states[acpi_state])
678 		return pm_suspend(states[acpi_state]);
679 	if (acpi_state == 4)
680 		return hibernate();
681 	return -EINVAL;
682 }
683 
684 #ifdef CONFIG_PM
685 /**
686  *	acpi_pm_device_sleep_state - return preferred power state of ACPI device
687  *		in the system sleep state given by %acpi_target_sleep_state
688  *	@dev: device to examine; its driver model wakeup flags control
689  *		whether it should be able to wake up the system
690  *	@d_min_p: used to store the upper limit of allowed states range
691  *	@d_max_in: specify the lowest allowed states
692  *	Return value: preferred power state of the device on success, -ENODEV
693  *	(ie. if there's no 'struct acpi_device' for @dev) or -EINVAL on failure
694  *
695  *	Find the lowest power (highest number) ACPI device power state that
696  *	device @dev can be in while the system is in the sleep state represented
697  *	by %acpi_target_sleep_state.  If @wake is nonzero, the device should be
698  *	able to wake up the system from this sleep state.  If @d_min_p is set,
699  *	the highest power (lowest number) device power state of @dev allowed
700  *	in this system sleep state is stored at the location pointed to by it.
701  *
702  *	The caller must ensure that @dev is valid before using this function.
703  *	The caller is also responsible for figuring out if the device is
704  *	supposed to be able to wake up the system and passing this information
705  *	via @wake.
706  */
707 
708 int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
709 {
710 	acpi_handle handle = DEVICE_ACPI_HANDLE(dev);
711 	struct acpi_device *adev;
712 	char acpi_method[] = "_SxD";
713 	unsigned long long d_min, d_max;
714 
715 	if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3)
716 		return -EINVAL;
717 	if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &adev))) {
718 		printk(KERN_DEBUG "ACPI handle has no context!\n");
719 		return -ENODEV;
720 	}
721 
722 	acpi_method[2] = '0' + acpi_target_sleep_state;
723 	/*
724 	 * If the sleep state is S0, the lowest limit from ACPI is D3,
725 	 * but if the device has _S0W, we will use the value from _S0W
726 	 * as the lowest limit from ACPI.  Finally, we will constrain
727 	 * the lowest limit with the specified one.
728 	 */
729 	d_min = ACPI_STATE_D0;
730 	d_max = ACPI_STATE_D3;
731 
732 	/*
733 	 * If present, _SxD methods return the minimum D-state (highest power
734 	 * state) we can use for the corresponding S-states.  Otherwise, the
735 	 * minimum D-state is D0 (ACPI 3.x).
736 	 *
737 	 * NOTE: We rely on acpi_evaluate_integer() not clobbering the integer
738 	 * provided -- that's our fault recovery, we ignore retval.
739 	 */
740 	if (acpi_target_sleep_state > ACPI_STATE_S0)
741 		acpi_evaluate_integer(handle, acpi_method, NULL, &d_min);
742 
743 	/*
744 	 * If _PRW says we can wake up the system from the target sleep state,
745 	 * the D-state returned by _SxD is sufficient for that (we assume a
746 	 * wakeup-aware driver if wake is set).  Still, if _SxW exists
747 	 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
748 	 * can wake the system.  _S0W may be valid, too.
749 	 */
750 	if (acpi_target_sleep_state == ACPI_STATE_S0 ||
751 	    (device_may_wakeup(dev) && adev->wakeup.flags.valid &&
752 	     adev->wakeup.sleep_state >= acpi_target_sleep_state)) {
753 		acpi_status status;
754 
755 		acpi_method[3] = 'W';
756 		status = acpi_evaluate_integer(handle, acpi_method, NULL,
757 						&d_max);
758 		if (ACPI_FAILURE(status)) {
759 			if (acpi_target_sleep_state != ACPI_STATE_S0 ||
760 			    status != AE_NOT_FOUND)
761 				d_max = d_min;
762 		} else if (d_max < d_min) {
763 			/* Warn the user of the broken DSDT */
764 			printk(KERN_WARNING "ACPI: Wrong value from %s\n",
765 				acpi_method);
766 			/* Sanitize it */
767 			d_min = d_max;
768 		}
769 	}
770 
771 	if (d_max_in < d_min)
772 		return -EINVAL;
773 	if (d_min_p)
774 		*d_min_p = d_min;
775 	/* constrain d_max with specified lowest limit (max number) */
776 	if (d_max > d_max_in) {
777 		for (d_max = d_max_in; d_max > d_min; d_max--) {
778 			if (adev->power.states[d_max].flags.valid)
779 				break;
780 		}
781 	}
782 	return d_max;
783 }
784 EXPORT_SYMBOL(acpi_pm_device_sleep_state);
785 #endif /* CONFIG_PM */
786 
787 #ifdef CONFIG_PM_SLEEP
788 /**
789  * acpi_pm_device_run_wake - Enable/disable wake-up for given device.
790  * @phys_dev: Device to enable/disable the platform to wake-up the system for.
791  * @enable: Whether enable or disable the wake-up functionality.
792  *
793  * Find the ACPI device object corresponding to @pci_dev and try to
794  * enable/disable the GPE associated with it.
795  */
796 int acpi_pm_device_run_wake(struct device *phys_dev, bool enable)
797 {
798 	struct acpi_device *dev;
799 	acpi_handle handle;
800 
801 	if (!device_run_wake(phys_dev))
802 		return -EINVAL;
803 
804 	handle = DEVICE_ACPI_HANDLE(phys_dev);
805 	if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &dev))) {
806 		dev_dbg(phys_dev, "ACPI handle has no context in %s!\n",
807 			__func__);
808 		return -ENODEV;
809 	}
810 
811 	if (enable) {
812 		acpi_enable_wakeup_device_power(dev, ACPI_STATE_S0);
813 		acpi_enable_gpe(dev->wakeup.gpe_device, dev->wakeup.gpe_number);
814 	} else {
815 		acpi_disable_gpe(dev->wakeup.gpe_device, dev->wakeup.gpe_number);
816 		acpi_disable_wakeup_device_power(dev);
817 	}
818 
819 	return 0;
820 }
821 EXPORT_SYMBOL(acpi_pm_device_run_wake);
822 
823 /**
824  *	acpi_pm_device_sleep_wake - enable or disable the system wake-up
825  *                                  capability of given device
826  *	@dev: device to handle
827  *	@enable: 'true' - enable, 'false' - disable the wake-up capability
828  */
829 int acpi_pm_device_sleep_wake(struct device *dev, bool enable)
830 {
831 	acpi_handle handle;
832 	struct acpi_device *adev;
833 	int error;
834 
835 	if (!device_can_wakeup(dev))
836 		return -EINVAL;
837 
838 	handle = DEVICE_ACPI_HANDLE(dev);
839 	if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &adev))) {
840 		dev_dbg(dev, "ACPI handle has no context in %s!\n", __func__);
841 		return -ENODEV;
842 	}
843 
844 	error = enable ?
845 		acpi_enable_wakeup_device_power(adev, acpi_target_sleep_state) :
846 		acpi_disable_wakeup_device_power(adev);
847 	if (!error)
848 		dev_info(dev, "wake-up capability %s by ACPI\n",
849 				enable ? "enabled" : "disabled");
850 
851 	return error;
852 }
853 #endif  /* CONFIG_PM_SLEEP */
854 
855 static void acpi_power_off_prepare(void)
856 {
857 	/* Prepare to power off the system */
858 	acpi_sleep_prepare(ACPI_STATE_S5);
859 	acpi_disable_all_gpes();
860 }
861 
862 static void acpi_power_off(void)
863 {
864 	/* acpi_sleep_prepare(ACPI_STATE_S5) should have already been called */
865 	printk(KERN_DEBUG "%s called\n", __func__);
866 	local_irq_disable();
867 	acpi_enter_sleep_state(ACPI_STATE_S5);
868 }
869 
870 int __init acpi_sleep_init(void)
871 {
872 	acpi_status status;
873 	u8 type_a, type_b;
874 #ifdef CONFIG_SUSPEND
875 	int i = 0;
876 
877 	dmi_check_system(acpisleep_dmi_table);
878 #endif
879 
880 	if (acpi_disabled)
881 		return 0;
882 
883 	sleep_states[ACPI_STATE_S0] = 1;
884 	printk(KERN_INFO PREFIX "(supports S0");
885 
886 #ifdef CONFIG_SUSPEND
887 	for (i = ACPI_STATE_S1; i < ACPI_STATE_S4; i++) {
888 		status = acpi_get_sleep_type_data(i, &type_a, &type_b);
889 		if (ACPI_SUCCESS(status)) {
890 			sleep_states[i] = 1;
891 			printk(KERN_CONT " S%d", i);
892 		}
893 	}
894 
895 	suspend_set_ops(old_suspend_ordering ?
896 		&acpi_suspend_ops_old : &acpi_suspend_ops);
897 #endif
898 
899 #ifdef CONFIG_HIBERNATION
900 	status = acpi_get_sleep_type_data(ACPI_STATE_S4, &type_a, &type_b);
901 	if (ACPI_SUCCESS(status)) {
902 		hibernation_set_ops(old_suspend_ordering ?
903 			&acpi_hibernation_ops_old : &acpi_hibernation_ops);
904 		sleep_states[ACPI_STATE_S4] = 1;
905 		printk(KERN_CONT " S4");
906 		if (!nosigcheck) {
907 			acpi_get_table(ACPI_SIG_FACS, 1,
908 				(struct acpi_table_header **)&facs);
909 			if (facs)
910 				s4_hardware_signature =
911 					facs->hardware_signature;
912 		}
913 	}
914 #endif
915 	status = acpi_get_sleep_type_data(ACPI_STATE_S5, &type_a, &type_b);
916 	if (ACPI_SUCCESS(status)) {
917 		sleep_states[ACPI_STATE_S5] = 1;
918 		printk(KERN_CONT " S5");
919 		pm_power_off_prepare = acpi_power_off_prepare;
920 		pm_power_off = acpi_power_off;
921 	}
922 	printk(KERN_CONT ")\n");
923 	/*
924 	 * Register the tts_notifier to reboot notifier list so that the _TTS
925 	 * object can also be evaluated when the system enters S5.
926 	 */
927 	register_reboot_notifier(&tts_notifier);
928 	return 0;
929 }
930