1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #define pr_fmt(fmt) "ACPI: " fmt 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/acpi_viot.h> 15 #include <linux/iommu.h> 16 #include <linux/signal.h> 17 #include <linux/kthread.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/platform_data/x86/apple.h> 21 #include <linux/pgtable.h> 22 #include <linux/crc32.h> 23 #include <linux/dma-direct.h> 24 25 #include "internal.h" 26 #include "sleep.h" 27 28 #define ACPI_BUS_CLASS "system_bus" 29 #define ACPI_BUS_HID "LNXSYBUS" 30 #define ACPI_BUS_DEVICE_NAME "System Bus" 31 32 #define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0)) 33 34 static const char *dummy_hid = "device"; 35 36 static LIST_HEAD(acpi_dep_list); 37 static DEFINE_MUTEX(acpi_dep_list_lock); 38 LIST_HEAD(acpi_bus_id_list); 39 static DEFINE_MUTEX(acpi_scan_lock); 40 static LIST_HEAD(acpi_scan_handlers_list); 41 DEFINE_MUTEX(acpi_device_lock); 42 LIST_HEAD(acpi_wakeup_device_list); 43 static DEFINE_MUTEX(acpi_hp_context_lock); 44 45 /* 46 * The UART device described by the SPCR table is the only object which needs 47 * special-casing. Everything else is covered by ACPI namespace paths in STAO 48 * table. 49 */ 50 static u64 spcr_uart_addr; 51 52 void acpi_scan_lock_acquire(void) 53 { 54 mutex_lock(&acpi_scan_lock); 55 } 56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 57 58 void acpi_scan_lock_release(void) 59 { 60 mutex_unlock(&acpi_scan_lock); 61 } 62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 63 64 void acpi_lock_hp_context(void) 65 { 66 mutex_lock(&acpi_hp_context_lock); 67 } 68 69 void acpi_unlock_hp_context(void) 70 { 71 mutex_unlock(&acpi_hp_context_lock); 72 } 73 74 void acpi_initialize_hp_context(struct acpi_device *adev, 75 struct acpi_hotplug_context *hp, 76 int (*notify)(struct acpi_device *, u32), 77 void (*uevent)(struct acpi_device *, u32)) 78 { 79 acpi_lock_hp_context(); 80 hp->notify = notify; 81 hp->uevent = uevent; 82 acpi_set_hp_context(adev, hp); 83 acpi_unlock_hp_context(); 84 } 85 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 86 87 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 88 { 89 if (!handler) 90 return -EINVAL; 91 92 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 93 return 0; 94 } 95 96 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 97 const char *hotplug_profile_name) 98 { 99 int error; 100 101 error = acpi_scan_add_handler(handler); 102 if (error) 103 return error; 104 105 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 106 return 0; 107 } 108 109 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 110 { 111 struct acpi_device_physical_node *pn; 112 bool offline = true; 113 char *envp[] = { "EVENT=offline", NULL }; 114 115 /* 116 * acpi_container_offline() calls this for all of the container's 117 * children under the container's physical_node_lock lock. 118 */ 119 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 120 121 list_for_each_entry(pn, &adev->physical_node_list, node) 122 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 123 if (uevent) 124 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 125 126 offline = false; 127 break; 128 } 129 130 mutex_unlock(&adev->physical_node_lock); 131 return offline; 132 } 133 134 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 135 void **ret_p) 136 { 137 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 138 struct acpi_device_physical_node *pn; 139 bool second_pass = (bool)data; 140 acpi_status status = AE_OK; 141 142 if (!device) 143 return AE_OK; 144 145 if (device->handler && !device->handler->hotplug.enabled) { 146 *ret_p = &device->dev; 147 return AE_SUPPORT; 148 } 149 150 mutex_lock(&device->physical_node_lock); 151 152 list_for_each_entry(pn, &device->physical_node_list, node) { 153 int ret; 154 155 if (second_pass) { 156 /* Skip devices offlined by the first pass. */ 157 if (pn->put_online) 158 continue; 159 } else { 160 pn->put_online = false; 161 } 162 ret = device_offline(pn->dev); 163 if (ret >= 0) { 164 pn->put_online = !ret; 165 } else { 166 *ret_p = pn->dev; 167 if (second_pass) { 168 status = AE_ERROR; 169 break; 170 } 171 } 172 } 173 174 mutex_unlock(&device->physical_node_lock); 175 176 return status; 177 } 178 179 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 180 void **ret_p) 181 { 182 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 183 struct acpi_device_physical_node *pn; 184 185 if (!device) 186 return AE_OK; 187 188 mutex_lock(&device->physical_node_lock); 189 190 list_for_each_entry(pn, &device->physical_node_list, node) 191 if (pn->put_online) { 192 device_online(pn->dev); 193 pn->put_online = false; 194 } 195 196 mutex_unlock(&device->physical_node_lock); 197 198 return AE_OK; 199 } 200 201 static int acpi_scan_try_to_offline(struct acpi_device *device) 202 { 203 acpi_handle handle = device->handle; 204 struct device *errdev = NULL; 205 acpi_status status; 206 207 /* 208 * Carry out two passes here and ignore errors in the first pass, 209 * because if the devices in question are memory blocks and 210 * CONFIG_MEMCG is set, one of the blocks may hold data structures 211 * that the other blocks depend on, but it is not known in advance which 212 * block holds them. 213 * 214 * If the first pass is successful, the second one isn't needed, though. 215 */ 216 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 217 NULL, acpi_bus_offline, (void *)false, 218 (void **)&errdev); 219 if (status == AE_SUPPORT) { 220 dev_warn(errdev, "Offline disabled.\n"); 221 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 222 acpi_bus_online, NULL, NULL, NULL); 223 return -EPERM; 224 } 225 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 226 if (errdev) { 227 errdev = NULL; 228 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 229 NULL, acpi_bus_offline, (void *)true, 230 (void **)&errdev); 231 if (!errdev) 232 acpi_bus_offline(handle, 0, (void *)true, 233 (void **)&errdev); 234 235 if (errdev) { 236 dev_warn(errdev, "Offline failed.\n"); 237 acpi_bus_online(handle, 0, NULL, NULL); 238 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 239 ACPI_UINT32_MAX, acpi_bus_online, 240 NULL, NULL, NULL); 241 return -EBUSY; 242 } 243 } 244 return 0; 245 } 246 247 static int acpi_scan_hot_remove(struct acpi_device *device) 248 { 249 acpi_handle handle = device->handle; 250 unsigned long long sta; 251 acpi_status status; 252 253 if (device->handler && device->handler->hotplug.demand_offline) { 254 if (!acpi_scan_is_offline(device, true)) 255 return -EBUSY; 256 } else { 257 int error = acpi_scan_try_to_offline(device); 258 if (error) 259 return error; 260 } 261 262 acpi_handle_debug(handle, "Ejecting\n"); 263 264 acpi_bus_trim(device); 265 266 acpi_evaluate_lck(handle, 0); 267 /* 268 * TBD: _EJD support. 269 */ 270 status = acpi_evaluate_ej0(handle); 271 if (status == AE_NOT_FOUND) 272 return -ENODEV; 273 else if (ACPI_FAILURE(status)) 274 return -EIO; 275 276 /* 277 * Verify if eject was indeed successful. If not, log an error 278 * message. No need to call _OST since _EJ0 call was made OK. 279 */ 280 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 281 if (ACPI_FAILURE(status)) { 282 acpi_handle_warn(handle, 283 "Status check after eject failed (0x%x)\n", status); 284 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 285 acpi_handle_warn(handle, 286 "Eject incomplete - status 0x%llx\n", sta); 287 } 288 289 return 0; 290 } 291 292 static int acpi_scan_device_not_present(struct acpi_device *adev) 293 { 294 if (!acpi_device_enumerated(adev)) { 295 dev_warn(&adev->dev, "Still not present\n"); 296 return -EALREADY; 297 } 298 acpi_bus_trim(adev); 299 return 0; 300 } 301 302 static int acpi_scan_device_check(struct acpi_device *adev) 303 { 304 int error; 305 306 acpi_bus_get_status(adev); 307 if (adev->status.present || adev->status.functional) { 308 /* 309 * This function is only called for device objects for which 310 * matching scan handlers exist. The only situation in which 311 * the scan handler is not attached to this device object yet 312 * is when the device has just appeared (either it wasn't 313 * present at all before or it was removed and then added 314 * again). 315 */ 316 if (adev->handler) { 317 dev_dbg(&adev->dev, "Already enumerated\n"); 318 return 0; 319 } 320 error = acpi_bus_scan(adev->handle); 321 if (error) { 322 dev_warn(&adev->dev, "Namespace scan failure\n"); 323 return error; 324 } 325 } else { 326 error = acpi_scan_device_not_present(adev); 327 } 328 return error; 329 } 330 331 static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used) 332 { 333 struct acpi_scan_handler *handler = adev->handler; 334 int error; 335 336 acpi_bus_get_status(adev); 337 if (!(adev->status.present || adev->status.functional)) { 338 acpi_scan_device_not_present(adev); 339 return 0; 340 } 341 if (handler && handler->hotplug.scan_dependent) 342 return handler->hotplug.scan_dependent(adev); 343 344 error = acpi_bus_scan(adev->handle); 345 if (error) { 346 dev_warn(&adev->dev, "Namespace scan failure\n"); 347 return error; 348 } 349 return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL); 350 } 351 352 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 353 { 354 switch (type) { 355 case ACPI_NOTIFY_BUS_CHECK: 356 return acpi_scan_bus_check(adev, NULL); 357 case ACPI_NOTIFY_DEVICE_CHECK: 358 return acpi_scan_device_check(adev); 359 case ACPI_NOTIFY_EJECT_REQUEST: 360 case ACPI_OST_EC_OSPM_EJECT: 361 if (adev->handler && !adev->handler->hotplug.enabled) { 362 dev_info(&adev->dev, "Eject disabled\n"); 363 return -EPERM; 364 } 365 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 366 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 367 return acpi_scan_hot_remove(adev); 368 } 369 return -EINVAL; 370 } 371 372 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 373 { 374 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 375 int error = -ENODEV; 376 377 lock_device_hotplug(); 378 mutex_lock(&acpi_scan_lock); 379 380 /* 381 * The device object's ACPI handle cannot become invalid as long as we 382 * are holding acpi_scan_lock, but it might have become invalid before 383 * that lock was acquired. 384 */ 385 if (adev->handle == INVALID_ACPI_HANDLE) 386 goto err_out; 387 388 if (adev->flags.is_dock_station) { 389 error = dock_notify(adev, src); 390 } else if (adev->flags.hotplug_notify) { 391 error = acpi_generic_hotplug_event(adev, src); 392 } else { 393 int (*notify)(struct acpi_device *, u32); 394 395 acpi_lock_hp_context(); 396 notify = adev->hp ? adev->hp->notify : NULL; 397 acpi_unlock_hp_context(); 398 /* 399 * There may be additional notify handlers for device objects 400 * without the .event() callback, so ignore them here. 401 */ 402 if (notify) 403 error = notify(adev, src); 404 else 405 goto out; 406 } 407 switch (error) { 408 case 0: 409 ost_code = ACPI_OST_SC_SUCCESS; 410 break; 411 case -EPERM: 412 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 413 break; 414 case -EBUSY: 415 ost_code = ACPI_OST_SC_DEVICE_BUSY; 416 break; 417 default: 418 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 419 break; 420 } 421 422 err_out: 423 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 424 425 out: 426 acpi_put_acpi_dev(adev); 427 mutex_unlock(&acpi_scan_lock); 428 unlock_device_hotplug(); 429 } 430 431 static void acpi_free_power_resources_lists(struct acpi_device *device) 432 { 433 int i; 434 435 if (device->wakeup.flags.valid) 436 acpi_power_resources_list_free(&device->wakeup.resources); 437 438 if (!device->power.flags.power_resources) 439 return; 440 441 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 442 struct acpi_device_power_state *ps = &device->power.states[i]; 443 acpi_power_resources_list_free(&ps->resources); 444 } 445 } 446 447 static void acpi_device_release(struct device *dev) 448 { 449 struct acpi_device *acpi_dev = to_acpi_device(dev); 450 451 acpi_free_properties(acpi_dev); 452 acpi_free_pnp_ids(&acpi_dev->pnp); 453 acpi_free_power_resources_lists(acpi_dev); 454 kfree(acpi_dev); 455 } 456 457 static void acpi_device_del(struct acpi_device *device) 458 { 459 struct acpi_device_bus_id *acpi_device_bus_id; 460 461 mutex_lock(&acpi_device_lock); 462 463 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 464 if (!strcmp(acpi_device_bus_id->bus_id, 465 acpi_device_hid(device))) { 466 ida_free(&acpi_device_bus_id->instance_ida, 467 device->pnp.instance_no); 468 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 469 list_del(&acpi_device_bus_id->node); 470 kfree_const(acpi_device_bus_id->bus_id); 471 kfree(acpi_device_bus_id); 472 } 473 break; 474 } 475 476 list_del(&device->wakeup_list); 477 478 mutex_unlock(&acpi_device_lock); 479 480 acpi_power_add_remove_device(device, false); 481 acpi_device_remove_files(device); 482 if (device->remove) 483 device->remove(device); 484 485 device_del(&device->dev); 486 } 487 488 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 489 490 static LIST_HEAD(acpi_device_del_list); 491 static DEFINE_MUTEX(acpi_device_del_lock); 492 493 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 494 { 495 for (;;) { 496 struct acpi_device *adev; 497 498 mutex_lock(&acpi_device_del_lock); 499 500 if (list_empty(&acpi_device_del_list)) { 501 mutex_unlock(&acpi_device_del_lock); 502 break; 503 } 504 adev = list_first_entry(&acpi_device_del_list, 505 struct acpi_device, del_list); 506 list_del(&adev->del_list); 507 508 mutex_unlock(&acpi_device_del_lock); 509 510 blocking_notifier_call_chain(&acpi_reconfig_chain, 511 ACPI_RECONFIG_DEVICE_REMOVE, adev); 512 513 acpi_device_del(adev); 514 /* 515 * Drop references to all power resources that might have been 516 * used by the device. 517 */ 518 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 519 acpi_dev_put(adev); 520 } 521 } 522 523 /** 524 * acpi_scan_drop_device - Drop an ACPI device object. 525 * @handle: Handle of an ACPI namespace node, not used. 526 * @context: Address of the ACPI device object to drop. 527 * 528 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 529 * namespace node the device object pointed to by @context is attached to. 530 * 531 * The unregistration is carried out asynchronously to avoid running 532 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 533 * ensure the correct ordering (the device objects must be unregistered in the 534 * same order in which the corresponding namespace nodes are deleted). 535 */ 536 static void acpi_scan_drop_device(acpi_handle handle, void *context) 537 { 538 static DECLARE_WORK(work, acpi_device_del_work_fn); 539 struct acpi_device *adev = context; 540 541 mutex_lock(&acpi_device_del_lock); 542 543 /* 544 * Use the ACPI hotplug workqueue which is ordered, so this work item 545 * won't run after any hotplug work items submitted subsequently. That 546 * prevents attempts to register device objects identical to those being 547 * deleted from happening concurrently (such attempts result from 548 * hotplug events handled via the ACPI hotplug workqueue). It also will 549 * run after all of the work items submitted previously, which helps 550 * those work items to ensure that they are not accessing stale device 551 * objects. 552 */ 553 if (list_empty(&acpi_device_del_list)) 554 acpi_queue_hotplug_work(&work); 555 556 list_add_tail(&adev->del_list, &acpi_device_del_list); 557 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 558 adev->handle = INVALID_ACPI_HANDLE; 559 560 mutex_unlock(&acpi_device_del_lock); 561 } 562 563 static struct acpi_device *handle_to_device(acpi_handle handle, 564 void (*callback)(void *)) 565 { 566 struct acpi_device *adev = NULL; 567 acpi_status status; 568 569 status = acpi_get_data_full(handle, acpi_scan_drop_device, 570 (void **)&adev, callback); 571 if (ACPI_FAILURE(status) || !adev) { 572 acpi_handle_debug(handle, "No context!\n"); 573 return NULL; 574 } 575 return adev; 576 } 577 578 /** 579 * acpi_fetch_acpi_dev - Retrieve ACPI device object. 580 * @handle: ACPI handle associated with the requested ACPI device object. 581 * 582 * Return a pointer to the ACPI device object associated with @handle, if 583 * present, or NULL otherwise. 584 */ 585 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle) 586 { 587 return handle_to_device(handle, NULL); 588 } 589 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev); 590 591 static void get_acpi_device(void *dev) 592 { 593 acpi_dev_get(dev); 594 } 595 596 /** 597 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it. 598 * @handle: ACPI handle associated with the requested ACPI device object. 599 * 600 * Return a pointer to the ACPI device object associated with @handle and bump 601 * up that object's reference counter (under the ACPI Namespace lock), if 602 * present, or return NULL otherwise. 603 * 604 * The ACPI device object reference acquired by this function needs to be 605 * dropped via acpi_dev_put(). 606 */ 607 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle) 608 { 609 return handle_to_device(handle, get_acpi_device); 610 } 611 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev); 612 613 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 614 { 615 struct acpi_device_bus_id *acpi_device_bus_id; 616 617 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 618 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 619 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 620 return acpi_device_bus_id; 621 } 622 return NULL; 623 } 624 625 static int acpi_device_set_name(struct acpi_device *device, 626 struct acpi_device_bus_id *acpi_device_bus_id) 627 { 628 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 629 int result; 630 631 result = ida_alloc(instance_ida, GFP_KERNEL); 632 if (result < 0) 633 return result; 634 635 device->pnp.instance_no = result; 636 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 637 return 0; 638 } 639 640 int acpi_tie_acpi_dev(struct acpi_device *adev) 641 { 642 acpi_handle handle = adev->handle; 643 acpi_status status; 644 645 if (!handle) 646 return 0; 647 648 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 649 if (ACPI_FAILURE(status)) { 650 acpi_handle_err(handle, "Unable to attach device data\n"); 651 return -ENODEV; 652 } 653 654 return 0; 655 } 656 657 static void acpi_store_pld_crc(struct acpi_device *adev) 658 { 659 struct acpi_pld_info *pld; 660 acpi_status status; 661 662 status = acpi_get_physical_device_location(adev->handle, &pld); 663 if (ACPI_FAILURE(status)) 664 return; 665 666 adev->pld_crc = crc32(~0, pld, sizeof(*pld)); 667 ACPI_FREE(pld); 668 } 669 670 int acpi_device_add(struct acpi_device *device) 671 { 672 struct acpi_device_bus_id *acpi_device_bus_id; 673 int result; 674 675 /* 676 * Linkage 677 * ------- 678 * Link this device to its parent and siblings. 679 */ 680 INIT_LIST_HEAD(&device->wakeup_list); 681 INIT_LIST_HEAD(&device->physical_node_list); 682 INIT_LIST_HEAD(&device->del_list); 683 mutex_init(&device->physical_node_lock); 684 685 mutex_lock(&acpi_device_lock); 686 687 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 688 if (acpi_device_bus_id) { 689 result = acpi_device_set_name(device, acpi_device_bus_id); 690 if (result) 691 goto err_unlock; 692 } else { 693 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 694 GFP_KERNEL); 695 if (!acpi_device_bus_id) { 696 result = -ENOMEM; 697 goto err_unlock; 698 } 699 acpi_device_bus_id->bus_id = 700 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 701 if (!acpi_device_bus_id->bus_id) { 702 kfree(acpi_device_bus_id); 703 result = -ENOMEM; 704 goto err_unlock; 705 } 706 707 ida_init(&acpi_device_bus_id->instance_ida); 708 709 result = acpi_device_set_name(device, acpi_device_bus_id); 710 if (result) { 711 kfree_const(acpi_device_bus_id->bus_id); 712 kfree(acpi_device_bus_id); 713 goto err_unlock; 714 } 715 716 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 717 } 718 719 if (device->wakeup.flags.valid) 720 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 721 722 acpi_store_pld_crc(device); 723 724 mutex_unlock(&acpi_device_lock); 725 726 result = device_add(&device->dev); 727 if (result) { 728 dev_err(&device->dev, "Error registering device\n"); 729 goto err; 730 } 731 732 result = acpi_device_setup_files(device); 733 if (result) 734 pr_err("Error creating sysfs interface for device %s\n", 735 dev_name(&device->dev)); 736 737 return 0; 738 739 err: 740 mutex_lock(&acpi_device_lock); 741 742 list_del(&device->wakeup_list); 743 744 err_unlock: 745 mutex_unlock(&acpi_device_lock); 746 747 acpi_detach_data(device->handle, acpi_scan_drop_device); 748 749 return result; 750 } 751 752 /* -------------------------------------------------------------------------- 753 Device Enumeration 754 -------------------------------------------------------------------------- */ 755 static bool acpi_info_matches_ids(struct acpi_device_info *info, 756 const char * const ids[]) 757 { 758 struct acpi_pnp_device_id_list *cid_list = NULL; 759 int i, index; 760 761 if (!(info->valid & ACPI_VALID_HID)) 762 return false; 763 764 index = match_string(ids, -1, info->hardware_id.string); 765 if (index >= 0) 766 return true; 767 768 if (info->valid & ACPI_VALID_CID) 769 cid_list = &info->compatible_id_list; 770 771 if (!cid_list) 772 return false; 773 774 for (i = 0; i < cid_list->count; i++) { 775 index = match_string(ids, -1, cid_list->ids[i].string); 776 if (index >= 0) 777 return true; 778 } 779 780 return false; 781 } 782 783 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 784 static const char * const acpi_ignore_dep_ids[] = { 785 "PNP0D80", /* Windows-compatible System Power Management Controller */ 786 "INT33BD", /* Intel Baytrail Mailbox Device */ 787 "LATT2021", /* Lattice FW Update Client Driver */ 788 NULL 789 }; 790 791 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */ 792 static const char * const acpi_honor_dep_ids[] = { 793 "INT3472", /* Camera sensor PMIC / clk and regulator info */ 794 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */ 795 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */ 796 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */ 797 NULL 798 }; 799 800 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle) 801 { 802 struct acpi_device *adev; 803 804 /* 805 * Fixed hardware devices do not appear in the namespace and do not 806 * have handles, but we fabricate acpi_devices for them, so we have 807 * to deal with them specially. 808 */ 809 if (!handle) 810 return acpi_root; 811 812 do { 813 acpi_status status; 814 815 status = acpi_get_parent(handle, &handle); 816 if (ACPI_FAILURE(status)) { 817 if (status != AE_NULL_ENTRY) 818 return acpi_root; 819 820 return NULL; 821 } 822 adev = acpi_fetch_acpi_dev(handle); 823 } while (!adev); 824 return adev; 825 } 826 827 acpi_status 828 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 829 { 830 acpi_status status; 831 acpi_handle tmp; 832 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 833 union acpi_object *obj; 834 835 status = acpi_get_handle(handle, "_EJD", &tmp); 836 if (ACPI_FAILURE(status)) 837 return status; 838 839 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 840 if (ACPI_SUCCESS(status)) { 841 obj = buffer.pointer; 842 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 843 ejd); 844 kfree(buffer.pointer); 845 } 846 return status; 847 } 848 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 849 850 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 851 { 852 acpi_handle handle = dev->handle; 853 struct acpi_device_wakeup *wakeup = &dev->wakeup; 854 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 855 union acpi_object *package = NULL; 856 union acpi_object *element = NULL; 857 acpi_status status; 858 int err = -ENODATA; 859 860 INIT_LIST_HEAD(&wakeup->resources); 861 862 /* _PRW */ 863 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 864 if (ACPI_FAILURE(status)) { 865 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 866 acpi_format_exception(status)); 867 return err; 868 } 869 870 package = (union acpi_object *)buffer.pointer; 871 872 if (!package || package->package.count < 2) 873 goto out; 874 875 element = &(package->package.elements[0]); 876 if (!element) 877 goto out; 878 879 if (element->type == ACPI_TYPE_PACKAGE) { 880 if ((element->package.count < 2) || 881 (element->package.elements[0].type != 882 ACPI_TYPE_LOCAL_REFERENCE) 883 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 884 goto out; 885 886 wakeup->gpe_device = 887 element->package.elements[0].reference.handle; 888 wakeup->gpe_number = 889 (u32) element->package.elements[1].integer.value; 890 } else if (element->type == ACPI_TYPE_INTEGER) { 891 wakeup->gpe_device = NULL; 892 wakeup->gpe_number = element->integer.value; 893 } else { 894 goto out; 895 } 896 897 element = &(package->package.elements[1]); 898 if (element->type != ACPI_TYPE_INTEGER) 899 goto out; 900 901 wakeup->sleep_state = element->integer.value; 902 903 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 904 if (err) 905 goto out; 906 907 if (!list_empty(&wakeup->resources)) { 908 int sleep_state; 909 910 err = acpi_power_wakeup_list_init(&wakeup->resources, 911 &sleep_state); 912 if (err) { 913 acpi_handle_warn(handle, "Retrieving current states " 914 "of wakeup power resources failed\n"); 915 acpi_power_resources_list_free(&wakeup->resources); 916 goto out; 917 } 918 if (sleep_state < wakeup->sleep_state) { 919 acpi_handle_warn(handle, "Overriding _PRW sleep state " 920 "(S%d) by S%d from power resources\n", 921 (int)wakeup->sleep_state, sleep_state); 922 wakeup->sleep_state = sleep_state; 923 } 924 } 925 926 out: 927 kfree(buffer.pointer); 928 return err; 929 } 930 931 /* Do not use a button for S5 wakeup */ 932 #define ACPI_AVOID_WAKE_FROM_S5 BIT(0) 933 934 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 935 { 936 static const struct acpi_device_id button_device_ids[] = { 937 {"PNP0C0C", 0}, /* Power button */ 938 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */ 939 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */ 940 {"", 0}, 941 }; 942 struct acpi_device_wakeup *wakeup = &device->wakeup; 943 const struct acpi_device_id *match; 944 acpi_status status; 945 946 wakeup->flags.notifier_present = 0; 947 948 /* Power button, Lid switch always enable wakeup */ 949 match = acpi_match_acpi_device(button_device_ids, device); 950 if (match) { 951 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) && 952 wakeup->sleep_state == ACPI_STATE_S5) 953 wakeup->sleep_state = ACPI_STATE_S4; 954 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 955 device_set_wakeup_capable(&device->dev, true); 956 return true; 957 } 958 959 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 960 wakeup->gpe_number); 961 return ACPI_SUCCESS(status); 962 } 963 964 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 965 { 966 int err; 967 968 /* Presence of _PRW indicates wake capable */ 969 if (!acpi_has_method(device->handle, "_PRW")) 970 return; 971 972 err = acpi_bus_extract_wakeup_device_power_package(device); 973 if (err) { 974 dev_err(&device->dev, "Unable to extract wakeup power resources"); 975 return; 976 } 977 978 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 979 device->wakeup.prepare_count = 0; 980 /* 981 * Call _PSW/_DSW object to disable its ability to wake the sleeping 982 * system for the ACPI device with the _PRW object. 983 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 984 * So it is necessary to call _DSW object first. Only when it is not 985 * present will the _PSW object used. 986 */ 987 err = acpi_device_sleep_wake(device, 0, 0, 0); 988 if (err) 989 pr_debug("error in _DSW or _PSW evaluation\n"); 990 } 991 992 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 993 { 994 struct acpi_device_power_state *ps = &device->power.states[state]; 995 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 996 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 997 acpi_status status; 998 999 INIT_LIST_HEAD(&ps->resources); 1000 1001 /* Evaluate "_PRx" to get referenced power resources */ 1002 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 1003 if (ACPI_SUCCESS(status)) { 1004 union acpi_object *package = buffer.pointer; 1005 1006 if (buffer.length && package 1007 && package->type == ACPI_TYPE_PACKAGE 1008 && package->package.count) 1009 acpi_extract_power_resources(package, 0, &ps->resources); 1010 1011 ACPI_FREE(buffer.pointer); 1012 } 1013 1014 /* Evaluate "_PSx" to see if we can do explicit sets */ 1015 pathname[2] = 'S'; 1016 if (acpi_has_method(device->handle, pathname)) 1017 ps->flags.explicit_set = 1; 1018 1019 /* State is valid if there are means to put the device into it. */ 1020 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1021 ps->flags.valid = 1; 1022 1023 ps->power = -1; /* Unknown - driver assigned */ 1024 ps->latency = -1; /* Unknown - driver assigned */ 1025 } 1026 1027 static void acpi_bus_get_power_flags(struct acpi_device *device) 1028 { 1029 unsigned long long dsc = ACPI_STATE_D0; 1030 u32 i; 1031 1032 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1033 if (!acpi_has_method(device->handle, "_PS0") && 1034 !acpi_has_method(device->handle, "_PR0")) 1035 return; 1036 1037 device->flags.power_manageable = 1; 1038 1039 /* 1040 * Power Management Flags 1041 */ 1042 if (acpi_has_method(device->handle, "_PSC")) 1043 device->power.flags.explicit_get = 1; 1044 1045 if (acpi_has_method(device->handle, "_IRC")) 1046 device->power.flags.inrush_current = 1; 1047 1048 if (acpi_has_method(device->handle, "_DSW")) 1049 device->power.flags.dsw_present = 1; 1050 1051 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc); 1052 device->power.state_for_enumeration = dsc; 1053 1054 /* 1055 * Enumerate supported power management states 1056 */ 1057 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1058 acpi_bus_init_power_state(device, i); 1059 1060 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1061 1062 /* Set the defaults for D0 and D3hot (always supported). */ 1063 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1064 device->power.states[ACPI_STATE_D0].power = 100; 1065 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1066 1067 /* 1068 * Use power resources only if the D0 list of them is populated, because 1069 * some platforms may provide _PR3 only to indicate D3cold support and 1070 * in those cases the power resources list returned by it may be bogus. 1071 */ 1072 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1073 device->power.flags.power_resources = 1; 1074 /* 1075 * D3cold is supported if the D3hot list of power resources is 1076 * not empty. 1077 */ 1078 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1079 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1080 } 1081 1082 if (acpi_bus_init_power(device)) 1083 device->flags.power_manageable = 0; 1084 } 1085 1086 static void acpi_bus_get_flags(struct acpi_device *device) 1087 { 1088 /* Presence of _STA indicates 'dynamic_status' */ 1089 if (acpi_has_method(device->handle, "_STA")) 1090 device->flags.dynamic_status = 1; 1091 1092 /* Presence of _RMV indicates 'removable' */ 1093 if (acpi_has_method(device->handle, "_RMV")) 1094 device->flags.removable = 1; 1095 1096 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1097 if (acpi_has_method(device->handle, "_EJD") || 1098 acpi_has_method(device->handle, "_EJ0")) 1099 device->flags.ejectable = 1; 1100 } 1101 1102 static void acpi_device_get_busid(struct acpi_device *device) 1103 { 1104 char bus_id[5] = { '?', 0 }; 1105 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1106 int i = 0; 1107 1108 /* 1109 * Bus ID 1110 * ------ 1111 * The device's Bus ID is simply the object name. 1112 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1113 */ 1114 if (!acpi_dev_parent(device)) { 1115 strcpy(device->pnp.bus_id, "ACPI"); 1116 return; 1117 } 1118 1119 switch (device->device_type) { 1120 case ACPI_BUS_TYPE_POWER_BUTTON: 1121 strcpy(device->pnp.bus_id, "PWRF"); 1122 break; 1123 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1124 strcpy(device->pnp.bus_id, "SLPF"); 1125 break; 1126 case ACPI_BUS_TYPE_ECDT_EC: 1127 strcpy(device->pnp.bus_id, "ECDT"); 1128 break; 1129 default: 1130 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1131 /* Clean up trailing underscores (if any) */ 1132 for (i = 3; i > 1; i--) { 1133 if (bus_id[i] == '_') 1134 bus_id[i] = '\0'; 1135 else 1136 break; 1137 } 1138 strcpy(device->pnp.bus_id, bus_id); 1139 break; 1140 } 1141 } 1142 1143 /* 1144 * acpi_ata_match - see if an acpi object is an ATA device 1145 * 1146 * If an acpi object has one of the ACPI ATA methods defined, 1147 * then we can safely call it an ATA device. 1148 */ 1149 bool acpi_ata_match(acpi_handle handle) 1150 { 1151 return acpi_has_method(handle, "_GTF") || 1152 acpi_has_method(handle, "_GTM") || 1153 acpi_has_method(handle, "_STM") || 1154 acpi_has_method(handle, "_SDD"); 1155 } 1156 1157 /* 1158 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1159 * 1160 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1161 * then we can safely call it an ejectable drive bay 1162 */ 1163 bool acpi_bay_match(acpi_handle handle) 1164 { 1165 acpi_handle phandle; 1166 1167 if (!acpi_has_method(handle, "_EJ0")) 1168 return false; 1169 if (acpi_ata_match(handle)) 1170 return true; 1171 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1172 return false; 1173 1174 return acpi_ata_match(phandle); 1175 } 1176 1177 bool acpi_device_is_battery(struct acpi_device *adev) 1178 { 1179 struct acpi_hardware_id *hwid; 1180 1181 list_for_each_entry(hwid, &adev->pnp.ids, list) 1182 if (!strcmp("PNP0C0A", hwid->id)) 1183 return true; 1184 1185 return false; 1186 } 1187 1188 static bool is_ejectable_bay(struct acpi_device *adev) 1189 { 1190 acpi_handle handle = adev->handle; 1191 1192 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1193 return true; 1194 1195 return acpi_bay_match(handle); 1196 } 1197 1198 /* 1199 * acpi_dock_match - see if an acpi object has a _DCK method 1200 */ 1201 bool acpi_dock_match(acpi_handle handle) 1202 { 1203 return acpi_has_method(handle, "_DCK"); 1204 } 1205 1206 static acpi_status 1207 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1208 void **return_value) 1209 { 1210 long *cap = context; 1211 1212 if (acpi_has_method(handle, "_BCM") && 1213 acpi_has_method(handle, "_BCL")) { 1214 acpi_handle_debug(handle, "Found generic backlight support\n"); 1215 *cap |= ACPI_VIDEO_BACKLIGHT; 1216 /* We have backlight support, no need to scan further */ 1217 return AE_CTRL_TERMINATE; 1218 } 1219 return 0; 1220 } 1221 1222 /* Returns true if the ACPI object is a video device which can be 1223 * handled by video.ko. 1224 * The device will get a Linux specific CID added in scan.c to 1225 * identify the device as an ACPI graphics device 1226 * Be aware that the graphics device may not be physically present 1227 * Use acpi_video_get_capabilities() to detect general ACPI video 1228 * capabilities of present cards 1229 */ 1230 long acpi_is_video_device(acpi_handle handle) 1231 { 1232 long video_caps = 0; 1233 1234 /* Is this device able to support video switching ? */ 1235 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1236 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1237 1238 /* Is this device able to retrieve a video ROM ? */ 1239 if (acpi_has_method(handle, "_ROM")) 1240 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1241 1242 /* Is this device able to configure which video head to be POSTed ? */ 1243 if (acpi_has_method(handle, "_VPO") && 1244 acpi_has_method(handle, "_GPD") && 1245 acpi_has_method(handle, "_SPD")) 1246 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1247 1248 /* Only check for backlight functionality if one of the above hit. */ 1249 if (video_caps) 1250 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1251 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1252 &video_caps, NULL); 1253 1254 return video_caps; 1255 } 1256 EXPORT_SYMBOL(acpi_is_video_device); 1257 1258 const char *acpi_device_hid(struct acpi_device *device) 1259 { 1260 struct acpi_hardware_id *hid; 1261 1262 if (list_empty(&device->pnp.ids)) 1263 return dummy_hid; 1264 1265 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list); 1266 return hid->id; 1267 } 1268 EXPORT_SYMBOL(acpi_device_hid); 1269 1270 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1271 { 1272 struct acpi_hardware_id *id; 1273 1274 id = kmalloc(sizeof(*id), GFP_KERNEL); 1275 if (!id) 1276 return; 1277 1278 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1279 if (!id->id) { 1280 kfree(id); 1281 return; 1282 } 1283 1284 list_add_tail(&id->list, &pnp->ids); 1285 pnp->type.hardware_id = 1; 1286 } 1287 1288 /* 1289 * Old IBM workstations have a DSDT bug wherein the SMBus object 1290 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1291 * prefix. Work around this. 1292 */ 1293 static bool acpi_ibm_smbus_match(acpi_handle handle) 1294 { 1295 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1296 struct acpi_buffer path = { sizeof(node_name), node_name }; 1297 1298 if (!dmi_name_in_vendors("IBM")) 1299 return false; 1300 1301 /* Look for SMBS object */ 1302 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1303 strcmp("SMBS", path.pointer)) 1304 return false; 1305 1306 /* Does it have the necessary (but misnamed) methods? */ 1307 if (acpi_has_method(handle, "SBI") && 1308 acpi_has_method(handle, "SBR") && 1309 acpi_has_method(handle, "SBW")) 1310 return true; 1311 1312 return false; 1313 } 1314 1315 static bool acpi_object_is_system_bus(acpi_handle handle) 1316 { 1317 acpi_handle tmp; 1318 1319 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1320 tmp == handle) 1321 return true; 1322 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1323 tmp == handle) 1324 return true; 1325 1326 return false; 1327 } 1328 1329 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1330 int device_type) 1331 { 1332 struct acpi_device_info *info = NULL; 1333 struct acpi_pnp_device_id_list *cid_list; 1334 int i; 1335 1336 switch (device_type) { 1337 case ACPI_BUS_TYPE_DEVICE: 1338 if (handle == ACPI_ROOT_OBJECT) { 1339 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1340 break; 1341 } 1342 1343 acpi_get_object_info(handle, &info); 1344 if (!info) { 1345 pr_err("%s: Error reading device info\n", __func__); 1346 return; 1347 } 1348 1349 if (info->valid & ACPI_VALID_HID) { 1350 acpi_add_id(pnp, info->hardware_id.string); 1351 pnp->type.platform_id = 1; 1352 } 1353 if (info->valid & ACPI_VALID_CID) { 1354 cid_list = &info->compatible_id_list; 1355 for (i = 0; i < cid_list->count; i++) 1356 acpi_add_id(pnp, cid_list->ids[i].string); 1357 } 1358 if (info->valid & ACPI_VALID_ADR) { 1359 pnp->bus_address = info->address; 1360 pnp->type.bus_address = 1; 1361 } 1362 if (info->valid & ACPI_VALID_UID) 1363 pnp->unique_id = kstrdup(info->unique_id.string, 1364 GFP_KERNEL); 1365 if (info->valid & ACPI_VALID_CLS) 1366 acpi_add_id(pnp, info->class_code.string); 1367 1368 kfree(info); 1369 1370 /* 1371 * Some devices don't reliably have _HIDs & _CIDs, so add 1372 * synthetic HIDs to make sure drivers can find them. 1373 */ 1374 if (acpi_is_video_device(handle)) { 1375 acpi_add_id(pnp, ACPI_VIDEO_HID); 1376 pnp->type.backlight = 1; 1377 break; 1378 } 1379 if (acpi_bay_match(handle)) 1380 acpi_add_id(pnp, ACPI_BAY_HID); 1381 else if (acpi_dock_match(handle)) 1382 acpi_add_id(pnp, ACPI_DOCK_HID); 1383 else if (acpi_ibm_smbus_match(handle)) 1384 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1385 else if (list_empty(&pnp->ids) && 1386 acpi_object_is_system_bus(handle)) { 1387 /* \_SB, \_TZ, LNXSYBUS */ 1388 acpi_add_id(pnp, ACPI_BUS_HID); 1389 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1390 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1391 } 1392 1393 break; 1394 case ACPI_BUS_TYPE_POWER: 1395 acpi_add_id(pnp, ACPI_POWER_HID); 1396 break; 1397 case ACPI_BUS_TYPE_PROCESSOR: 1398 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1399 break; 1400 case ACPI_BUS_TYPE_THERMAL: 1401 acpi_add_id(pnp, ACPI_THERMAL_HID); 1402 break; 1403 case ACPI_BUS_TYPE_POWER_BUTTON: 1404 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1405 break; 1406 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1407 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1408 break; 1409 case ACPI_BUS_TYPE_ECDT_EC: 1410 acpi_add_id(pnp, ACPI_ECDT_HID); 1411 break; 1412 } 1413 } 1414 1415 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1416 { 1417 struct acpi_hardware_id *id, *tmp; 1418 1419 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1420 kfree_const(id->id); 1421 kfree(id); 1422 } 1423 kfree(pnp->unique_id); 1424 } 1425 1426 /** 1427 * acpi_dma_supported - Check DMA support for the specified device. 1428 * @adev: The pointer to acpi device 1429 * 1430 * Return false if DMA is not supported. Otherwise, return true 1431 */ 1432 bool acpi_dma_supported(const struct acpi_device *adev) 1433 { 1434 if (!adev) 1435 return false; 1436 1437 if (adev->flags.cca_seen) 1438 return true; 1439 1440 /* 1441 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1442 * DMA on "Intel platforms". Presumably that includes all x86 and 1443 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1444 */ 1445 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1446 return true; 1447 1448 return false; 1449 } 1450 1451 /** 1452 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1453 * @adev: The pointer to acpi device 1454 * 1455 * Return enum dev_dma_attr. 1456 */ 1457 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1458 { 1459 if (!acpi_dma_supported(adev)) 1460 return DEV_DMA_NOT_SUPPORTED; 1461 1462 if (adev->flags.coherent_dma) 1463 return DEV_DMA_COHERENT; 1464 else 1465 return DEV_DMA_NON_COHERENT; 1466 } 1467 1468 /** 1469 * acpi_dma_get_range() - Get device DMA parameters. 1470 * 1471 * @dev: device to configure 1472 * @map: pointer to DMA ranges result 1473 * 1474 * Evaluate DMA regions and return pointer to DMA regions on 1475 * parsing success; it does not update the passed in values on failure. 1476 * 1477 * Return 0 on success, < 0 on failure. 1478 */ 1479 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map) 1480 { 1481 struct acpi_device *adev; 1482 LIST_HEAD(list); 1483 struct resource_entry *rentry; 1484 int ret; 1485 struct device *dma_dev = dev; 1486 struct bus_dma_region *r; 1487 1488 /* 1489 * Walk the device tree chasing an ACPI companion with a _DMA 1490 * object while we go. Stop if we find a device with an ACPI 1491 * companion containing a _DMA method. 1492 */ 1493 do { 1494 adev = ACPI_COMPANION(dma_dev); 1495 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1496 break; 1497 1498 dma_dev = dma_dev->parent; 1499 } while (dma_dev); 1500 1501 if (!dma_dev) 1502 return -ENODEV; 1503 1504 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1505 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1506 return -EINVAL; 1507 } 1508 1509 ret = acpi_dev_get_dma_resources(adev, &list); 1510 if (ret > 0) { 1511 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL); 1512 if (!r) { 1513 ret = -ENOMEM; 1514 goto out; 1515 } 1516 1517 *map = r; 1518 1519 list_for_each_entry(rentry, &list, node) { 1520 if (rentry->res->start >= rentry->res->end) { 1521 kfree(*map); 1522 *map = NULL; 1523 ret = -EINVAL; 1524 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1525 goto out; 1526 } 1527 1528 r->cpu_start = rentry->res->start; 1529 r->dma_start = rentry->res->start - rentry->offset; 1530 r->size = resource_size(rentry->res); 1531 r->offset = rentry->offset; 1532 r++; 1533 } 1534 } 1535 out: 1536 acpi_dev_free_resource_list(&list); 1537 1538 return ret >= 0 ? 0 : ret; 1539 } 1540 1541 #ifdef CONFIG_IOMMU_API 1542 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1543 struct fwnode_handle *fwnode, 1544 const struct iommu_ops *ops) 1545 { 1546 int ret = iommu_fwspec_init(dev, fwnode, ops); 1547 1548 if (!ret) 1549 ret = iommu_fwspec_add_ids(dev, &id, 1); 1550 1551 return ret; 1552 } 1553 1554 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev) 1555 { 1556 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1557 1558 return fwspec ? fwspec->ops : NULL; 1559 } 1560 1561 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1562 const u32 *id_in) 1563 { 1564 int err; 1565 const struct iommu_ops *ops; 1566 1567 /* Serialise to make dev->iommu stable under our potential fwspec */ 1568 mutex_lock(&iommu_probe_device_lock); 1569 /* 1570 * If we already translated the fwspec there is nothing left to do, 1571 * return the iommu_ops. 1572 */ 1573 ops = acpi_iommu_fwspec_ops(dev); 1574 if (ops) { 1575 mutex_unlock(&iommu_probe_device_lock); 1576 return ops; 1577 } 1578 1579 err = iort_iommu_configure_id(dev, id_in); 1580 if (err && err != -EPROBE_DEFER) 1581 err = viot_iommu_configure(dev); 1582 mutex_unlock(&iommu_probe_device_lock); 1583 1584 /* 1585 * If we have reason to believe the IOMMU driver missed the initial 1586 * iommu_probe_device() call for dev, replay it to get things in order. 1587 */ 1588 if (!err && dev->bus) 1589 err = iommu_probe_device(dev); 1590 1591 /* Ignore all other errors apart from EPROBE_DEFER */ 1592 if (err == -EPROBE_DEFER) { 1593 return ERR_PTR(err); 1594 } else if (err) { 1595 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err); 1596 return NULL; 1597 } 1598 return acpi_iommu_fwspec_ops(dev); 1599 } 1600 1601 #else /* !CONFIG_IOMMU_API */ 1602 1603 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1604 struct fwnode_handle *fwnode, 1605 const struct iommu_ops *ops) 1606 { 1607 return -ENODEV; 1608 } 1609 1610 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1611 const u32 *id_in) 1612 { 1613 return NULL; 1614 } 1615 1616 #endif /* !CONFIG_IOMMU_API */ 1617 1618 /** 1619 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1620 * @dev: The pointer to the device 1621 * @attr: device dma attributes 1622 * @input_id: input device id const value pointer 1623 */ 1624 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1625 const u32 *input_id) 1626 { 1627 const struct iommu_ops *iommu; 1628 1629 if (attr == DEV_DMA_NOT_SUPPORTED) { 1630 set_dma_ops(dev, &dma_dummy_ops); 1631 return 0; 1632 } 1633 1634 acpi_arch_dma_setup(dev); 1635 1636 iommu = acpi_iommu_configure_id(dev, input_id); 1637 if (PTR_ERR(iommu) == -EPROBE_DEFER) 1638 return -EPROBE_DEFER; 1639 1640 arch_setup_dma_ops(dev, 0, U64_MAX, 1641 iommu, attr == DEV_DMA_COHERENT); 1642 1643 return 0; 1644 } 1645 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1646 1647 static void acpi_init_coherency(struct acpi_device *adev) 1648 { 1649 unsigned long long cca = 0; 1650 acpi_status status; 1651 struct acpi_device *parent = acpi_dev_parent(adev); 1652 1653 if (parent && parent->flags.cca_seen) { 1654 /* 1655 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1656 * already saw one. 1657 */ 1658 adev->flags.cca_seen = 1; 1659 cca = parent->flags.coherent_dma; 1660 } else { 1661 status = acpi_evaluate_integer(adev->handle, "_CCA", 1662 NULL, &cca); 1663 if (ACPI_SUCCESS(status)) 1664 adev->flags.cca_seen = 1; 1665 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1666 /* 1667 * If architecture does not specify that _CCA is 1668 * required for DMA-able devices (e.g. x86), 1669 * we default to _CCA=1. 1670 */ 1671 cca = 1; 1672 else 1673 acpi_handle_debug(adev->handle, 1674 "ACPI device is missing _CCA.\n"); 1675 } 1676 1677 adev->flags.coherent_dma = cca; 1678 } 1679 1680 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1681 { 1682 bool *is_serial_bus_slave_p = data; 1683 1684 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1685 return 1; 1686 1687 *is_serial_bus_slave_p = true; 1688 1689 /* no need to do more checking */ 1690 return -1; 1691 } 1692 1693 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1694 { 1695 struct acpi_device *parent = acpi_dev_parent(device); 1696 static const struct acpi_device_id indirect_io_hosts[] = { 1697 {"HISI0191", 0}, 1698 {} 1699 }; 1700 1701 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1702 } 1703 1704 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1705 { 1706 struct list_head resource_list; 1707 bool is_serial_bus_slave = false; 1708 static const struct acpi_device_id ignore_serial_bus_ids[] = { 1709 /* 1710 * These devices have multiple SerialBus resources and a client 1711 * device must be instantiated for each of them, each with 1712 * its own device id. 1713 * Normally we only instantiate one client device for the first 1714 * resource, using the ACPI HID as id. These special cases are handled 1715 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which 1716 * knows which client device id to use for each resource. 1717 */ 1718 {"BSG1160", }, 1719 {"BSG2150", }, 1720 {"CSC3551", }, 1721 {"CSC3556", }, 1722 {"INT33FE", }, 1723 {"INT3515", }, 1724 /* Non-conforming _HID for Cirrus Logic already released */ 1725 {"CLSA0100", }, 1726 {"CLSA0101", }, 1727 /* 1728 * Some ACPI devs contain SerialBus resources even though they are not 1729 * attached to a serial bus at all. 1730 */ 1731 {"MSHW0028", }, 1732 /* 1733 * HIDs of device with an UartSerialBusV2 resource for which userspace 1734 * expects a regular tty cdev to be created (instead of the in kernel 1735 * serdev) and which have a kernel driver which expects a platform_dev 1736 * such as the rfkill-gpio driver. 1737 */ 1738 {"BCM4752", }, 1739 {"LNV4752", }, 1740 {} 1741 }; 1742 1743 if (acpi_is_indirect_io_slave(device)) 1744 return true; 1745 1746 /* Macs use device properties in lieu of _CRS resources */ 1747 if (x86_apple_machine && 1748 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1749 fwnode_property_present(&device->fwnode, "i2cAddress") || 1750 fwnode_property_present(&device->fwnode, "baud"))) 1751 return true; 1752 1753 if (!acpi_match_device_ids(device, ignore_serial_bus_ids)) 1754 return false; 1755 1756 INIT_LIST_HEAD(&resource_list); 1757 acpi_dev_get_resources(device, &resource_list, 1758 acpi_check_serial_bus_slave, 1759 &is_serial_bus_slave); 1760 acpi_dev_free_resource_list(&resource_list); 1761 1762 return is_serial_bus_slave; 1763 } 1764 1765 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1766 int type, void (*release)(struct device *)) 1767 { 1768 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle); 1769 1770 INIT_LIST_HEAD(&device->pnp.ids); 1771 device->device_type = type; 1772 device->handle = handle; 1773 device->dev.parent = parent ? &parent->dev : NULL; 1774 device->dev.release = release; 1775 device->dev.bus = &acpi_bus_type; 1776 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1777 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1778 acpi_device_get_busid(device); 1779 acpi_set_pnp_ids(handle, &device->pnp, type); 1780 acpi_init_properties(device); 1781 acpi_bus_get_flags(device); 1782 device->flags.match_driver = false; 1783 device->flags.initialized = true; 1784 device->flags.enumeration_by_parent = 1785 acpi_device_enumeration_by_parent(device); 1786 acpi_device_clear_enumerated(device); 1787 device_initialize(&device->dev); 1788 dev_set_uevent_suppress(&device->dev, true); 1789 acpi_init_coherency(device); 1790 } 1791 1792 static void acpi_scan_dep_init(struct acpi_device *adev) 1793 { 1794 struct acpi_dep_data *dep; 1795 1796 list_for_each_entry(dep, &acpi_dep_list, node) { 1797 if (dep->consumer == adev->handle) { 1798 if (dep->honor_dep) 1799 adev->flags.honor_deps = 1; 1800 1801 if (!dep->met) 1802 adev->dep_unmet++; 1803 } 1804 } 1805 } 1806 1807 void acpi_device_add_finalize(struct acpi_device *device) 1808 { 1809 dev_set_uevent_suppress(&device->dev, false); 1810 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1811 } 1812 1813 static void acpi_scan_init_status(struct acpi_device *adev) 1814 { 1815 if (acpi_bus_get_status(adev)) 1816 acpi_set_device_status(adev, 0); 1817 } 1818 1819 static int acpi_add_single_object(struct acpi_device **child, 1820 acpi_handle handle, int type, bool dep_init) 1821 { 1822 struct acpi_device *device; 1823 bool release_dep_lock = false; 1824 int result; 1825 1826 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1827 if (!device) 1828 return -ENOMEM; 1829 1830 acpi_init_device_object(device, handle, type, acpi_device_release); 1831 /* 1832 * Getting the status is delayed till here so that we can call 1833 * acpi_bus_get_status() and use its quirk handling. Note that 1834 * this must be done before the get power-/wakeup_dev-flags calls. 1835 */ 1836 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1837 if (dep_init) { 1838 mutex_lock(&acpi_dep_list_lock); 1839 /* 1840 * Hold the lock until the acpi_tie_acpi_dev() call 1841 * below to prevent concurrent acpi_scan_clear_dep() 1842 * from deleting a dependency list entry without 1843 * updating dep_unmet for the device. 1844 */ 1845 release_dep_lock = true; 1846 acpi_scan_dep_init(device); 1847 } 1848 acpi_scan_init_status(device); 1849 } 1850 1851 acpi_bus_get_power_flags(device); 1852 acpi_bus_get_wakeup_device_flags(device); 1853 1854 result = acpi_tie_acpi_dev(device); 1855 1856 if (release_dep_lock) 1857 mutex_unlock(&acpi_dep_list_lock); 1858 1859 if (!result) 1860 result = acpi_device_add(device); 1861 1862 if (result) { 1863 acpi_device_release(&device->dev); 1864 return result; 1865 } 1866 1867 acpi_power_add_remove_device(device, true); 1868 acpi_device_add_finalize(device); 1869 1870 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1871 dev_name(&device->dev), device->dev.parent ? 1872 dev_name(device->dev.parent) : "(null)"); 1873 1874 *child = device; 1875 return 0; 1876 } 1877 1878 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1879 void *context) 1880 { 1881 struct resource *res = context; 1882 1883 if (acpi_dev_resource_memory(ares, res)) 1884 return AE_CTRL_TERMINATE; 1885 1886 return AE_OK; 1887 } 1888 1889 static bool acpi_device_should_be_hidden(acpi_handle handle) 1890 { 1891 acpi_status status; 1892 struct resource res; 1893 1894 /* Check if it should ignore the UART device */ 1895 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1896 return false; 1897 1898 /* 1899 * The UART device described in SPCR table is assumed to have only one 1900 * memory resource present. So we only look for the first one here. 1901 */ 1902 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1903 acpi_get_resource_memory, &res); 1904 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1905 return false; 1906 1907 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1908 &res.start); 1909 1910 return true; 1911 } 1912 1913 bool acpi_device_is_present(const struct acpi_device *adev) 1914 { 1915 return adev->status.present || adev->status.functional; 1916 } 1917 1918 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1919 const char *idstr, 1920 const struct acpi_device_id **matchid) 1921 { 1922 const struct acpi_device_id *devid; 1923 1924 if (handler->match) 1925 return handler->match(idstr, matchid); 1926 1927 for (devid = handler->ids; devid->id[0]; devid++) 1928 if (!strcmp((char *)devid->id, idstr)) { 1929 if (matchid) 1930 *matchid = devid; 1931 1932 return true; 1933 } 1934 1935 return false; 1936 } 1937 1938 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1939 const struct acpi_device_id **matchid) 1940 { 1941 struct acpi_scan_handler *handler; 1942 1943 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1944 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1945 return handler; 1946 1947 return NULL; 1948 } 1949 1950 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 1951 { 1952 if (!!hotplug->enabled == !!val) 1953 return; 1954 1955 mutex_lock(&acpi_scan_lock); 1956 1957 hotplug->enabled = val; 1958 1959 mutex_unlock(&acpi_scan_lock); 1960 } 1961 1962 static void acpi_scan_init_hotplug(struct acpi_device *adev) 1963 { 1964 struct acpi_hardware_id *hwid; 1965 1966 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 1967 acpi_dock_add(adev); 1968 return; 1969 } 1970 list_for_each_entry(hwid, &adev->pnp.ids, list) { 1971 struct acpi_scan_handler *handler; 1972 1973 handler = acpi_scan_match_handler(hwid->id, NULL); 1974 if (handler) { 1975 adev->flags.hotplug_notify = true; 1976 break; 1977 } 1978 } 1979 } 1980 1981 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep) 1982 { 1983 struct acpi_handle_list dep_devices; 1984 acpi_status status; 1985 u32 count; 1986 int i; 1987 1988 /* 1989 * Check for _HID here to avoid deferring the enumeration of: 1990 * 1. PCI devices. 1991 * 2. ACPI nodes describing USB ports. 1992 * Still, checking for _HID catches more then just these cases ... 1993 */ 1994 if (!check_dep || !acpi_has_method(handle, "_DEP") || 1995 !acpi_has_method(handle, "_HID")) 1996 return 0; 1997 1998 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices); 1999 if (ACPI_FAILURE(status)) { 2000 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 2001 return 0; 2002 } 2003 2004 for (count = 0, i = 0; i < dep_devices.count; i++) { 2005 struct acpi_device_info *info; 2006 struct acpi_dep_data *dep; 2007 bool skip, honor_dep; 2008 2009 status = acpi_get_object_info(dep_devices.handles[i], &info); 2010 if (ACPI_FAILURE(status)) { 2011 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 2012 continue; 2013 } 2014 2015 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 2016 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids); 2017 kfree(info); 2018 2019 if (skip) 2020 continue; 2021 2022 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 2023 if (!dep) 2024 continue; 2025 2026 count++; 2027 2028 dep->supplier = dep_devices.handles[i]; 2029 dep->consumer = handle; 2030 dep->honor_dep = honor_dep; 2031 2032 mutex_lock(&acpi_dep_list_lock); 2033 list_add_tail(&dep->node , &acpi_dep_list); 2034 mutex_unlock(&acpi_dep_list_lock); 2035 } 2036 2037 return count; 2038 } 2039 2040 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep, 2041 struct acpi_device **adev_p) 2042 { 2043 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 2044 acpi_object_type acpi_type; 2045 int type; 2046 2047 if (device) 2048 goto out; 2049 2050 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2051 return AE_OK; 2052 2053 switch (acpi_type) { 2054 case ACPI_TYPE_DEVICE: 2055 if (acpi_device_should_be_hidden(handle)) 2056 return AE_OK; 2057 2058 /* Bail out if there are dependencies. */ 2059 if (acpi_scan_check_dep(handle, check_dep) > 0) 2060 return AE_CTRL_DEPTH; 2061 2062 fallthrough; 2063 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2064 type = ACPI_BUS_TYPE_DEVICE; 2065 break; 2066 2067 case ACPI_TYPE_PROCESSOR: 2068 type = ACPI_BUS_TYPE_PROCESSOR; 2069 break; 2070 2071 case ACPI_TYPE_THERMAL: 2072 type = ACPI_BUS_TYPE_THERMAL; 2073 break; 2074 2075 case ACPI_TYPE_POWER: 2076 acpi_add_power_resource(handle); 2077 fallthrough; 2078 default: 2079 return AE_OK; 2080 } 2081 2082 /* 2083 * If check_dep is true at this point, the device has no dependencies, 2084 * or the creation of the device object would have been postponed above. 2085 */ 2086 acpi_add_single_object(&device, handle, type, !check_dep); 2087 if (!device) 2088 return AE_CTRL_DEPTH; 2089 2090 acpi_scan_init_hotplug(device); 2091 2092 out: 2093 if (!*adev_p) 2094 *adev_p = device; 2095 2096 return AE_OK; 2097 } 2098 2099 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2100 void *not_used, void **ret_p) 2101 { 2102 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2103 } 2104 2105 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2106 void *not_used, void **ret_p) 2107 { 2108 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2109 } 2110 2111 static void acpi_default_enumeration(struct acpi_device *device) 2112 { 2113 /* 2114 * Do not enumerate devices with enumeration_by_parent flag set as 2115 * they will be enumerated by their respective parents. 2116 */ 2117 if (!device->flags.enumeration_by_parent) { 2118 acpi_create_platform_device(device, NULL); 2119 acpi_device_set_enumerated(device); 2120 } else { 2121 blocking_notifier_call_chain(&acpi_reconfig_chain, 2122 ACPI_RECONFIG_DEVICE_ADD, device); 2123 } 2124 } 2125 2126 static const struct acpi_device_id generic_device_ids[] = { 2127 {ACPI_DT_NAMESPACE_HID, }, 2128 {"", }, 2129 }; 2130 2131 static int acpi_generic_device_attach(struct acpi_device *adev, 2132 const struct acpi_device_id *not_used) 2133 { 2134 /* 2135 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2136 * below can be unconditional. 2137 */ 2138 if (adev->data.of_compatible) 2139 acpi_default_enumeration(adev); 2140 2141 return 1; 2142 } 2143 2144 static struct acpi_scan_handler generic_device_handler = { 2145 .ids = generic_device_ids, 2146 .attach = acpi_generic_device_attach, 2147 }; 2148 2149 static int acpi_scan_attach_handler(struct acpi_device *device) 2150 { 2151 struct acpi_hardware_id *hwid; 2152 int ret = 0; 2153 2154 list_for_each_entry(hwid, &device->pnp.ids, list) { 2155 const struct acpi_device_id *devid; 2156 struct acpi_scan_handler *handler; 2157 2158 handler = acpi_scan_match_handler(hwid->id, &devid); 2159 if (handler) { 2160 if (!handler->attach) { 2161 device->pnp.type.platform_id = 0; 2162 continue; 2163 } 2164 device->handler = handler; 2165 ret = handler->attach(device, devid); 2166 if (ret > 0) 2167 break; 2168 2169 device->handler = NULL; 2170 if (ret < 0) 2171 break; 2172 } 2173 } 2174 2175 return ret; 2176 } 2177 2178 static int acpi_bus_attach(struct acpi_device *device, void *first_pass) 2179 { 2180 bool skip = !first_pass && device->flags.visited; 2181 acpi_handle ejd; 2182 int ret; 2183 2184 if (skip) 2185 goto ok; 2186 2187 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2188 register_dock_dependent_device(device, ejd); 2189 2190 acpi_bus_get_status(device); 2191 /* Skip devices that are not ready for enumeration (e.g. not present) */ 2192 if (!acpi_dev_ready_for_enumeration(device)) { 2193 device->flags.initialized = false; 2194 acpi_device_clear_enumerated(device); 2195 device->flags.power_manageable = 0; 2196 return 0; 2197 } 2198 if (device->handler) 2199 goto ok; 2200 2201 if (!device->flags.initialized) { 2202 device->flags.power_manageable = 2203 device->power.states[ACPI_STATE_D0].flags.valid; 2204 if (acpi_bus_init_power(device)) 2205 device->flags.power_manageable = 0; 2206 2207 device->flags.initialized = true; 2208 } else if (device->flags.visited) { 2209 goto ok; 2210 } 2211 2212 ret = acpi_scan_attach_handler(device); 2213 if (ret < 0) 2214 return 0; 2215 2216 device->flags.match_driver = true; 2217 if (ret > 0 && !device->flags.enumeration_by_parent) { 2218 acpi_device_set_enumerated(device); 2219 goto ok; 2220 } 2221 2222 ret = device_attach(&device->dev); 2223 if (ret < 0) 2224 return 0; 2225 2226 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2227 acpi_default_enumeration(device); 2228 else 2229 acpi_device_set_enumerated(device); 2230 2231 ok: 2232 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass); 2233 2234 if (!skip && device->handler && device->handler->hotplug.notify_online) 2235 device->handler->hotplug.notify_online(device); 2236 2237 return 0; 2238 } 2239 2240 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2241 { 2242 struct acpi_device **adev_p = data; 2243 struct acpi_device *adev = *adev_p; 2244 2245 /* 2246 * If we're passed a 'previous' consumer device then we need to skip 2247 * any consumers until we meet the previous one, and then NULL @data 2248 * so the next one can be returned. 2249 */ 2250 if (adev) { 2251 if (dep->consumer == adev->handle) 2252 *adev_p = NULL; 2253 2254 return 0; 2255 } 2256 2257 adev = acpi_get_acpi_dev(dep->consumer); 2258 if (adev) { 2259 *(struct acpi_device **)data = adev; 2260 return 1; 2261 } 2262 /* Continue parsing if the device object is not present. */ 2263 return 0; 2264 } 2265 2266 struct acpi_scan_clear_dep_work { 2267 struct work_struct work; 2268 struct acpi_device *adev; 2269 }; 2270 2271 static void acpi_scan_clear_dep_fn(struct work_struct *work) 2272 { 2273 struct acpi_scan_clear_dep_work *cdw; 2274 2275 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2276 2277 acpi_scan_lock_acquire(); 2278 acpi_bus_attach(cdw->adev, (void *)true); 2279 acpi_scan_lock_release(); 2280 2281 acpi_dev_put(cdw->adev); 2282 kfree(cdw); 2283 } 2284 2285 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2286 { 2287 struct acpi_scan_clear_dep_work *cdw; 2288 2289 if (adev->dep_unmet) 2290 return false; 2291 2292 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2293 if (!cdw) 2294 return false; 2295 2296 cdw->adev = adev; 2297 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2298 /* 2299 * Since the work function may block on the lock until the entire 2300 * initial enumeration of devices is complete, put it into the unbound 2301 * workqueue. 2302 */ 2303 queue_work(system_unbound_wq, &cdw->work); 2304 2305 return true; 2306 } 2307 2308 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep) 2309 { 2310 list_del(&dep->node); 2311 kfree(dep); 2312 } 2313 2314 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2315 { 2316 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer); 2317 2318 if (adev) { 2319 adev->dep_unmet--; 2320 if (!acpi_scan_clear_dep_queue(adev)) 2321 acpi_dev_put(adev); 2322 } 2323 2324 if (dep->free_when_met) 2325 acpi_scan_delete_dep_data(dep); 2326 else 2327 dep->met = true; 2328 2329 return 0; 2330 } 2331 2332 /** 2333 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2334 * @handle: The ACPI handle of the supplier device 2335 * @callback: Pointer to the callback function to apply 2336 * @data: Pointer to some data to pass to the callback 2337 * 2338 * The return value of the callback determines this function's behaviour. If 0 2339 * is returned we continue to iterate over acpi_dep_list. If a positive value 2340 * is returned then the loop is broken but this function returns 0. If a 2341 * negative value is returned by the callback then the loop is broken and that 2342 * value is returned as the final error. 2343 */ 2344 static int acpi_walk_dep_device_list(acpi_handle handle, 2345 int (*callback)(struct acpi_dep_data *, void *), 2346 void *data) 2347 { 2348 struct acpi_dep_data *dep, *tmp; 2349 int ret = 0; 2350 2351 mutex_lock(&acpi_dep_list_lock); 2352 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2353 if (dep->supplier == handle) { 2354 ret = callback(dep, data); 2355 if (ret) 2356 break; 2357 } 2358 } 2359 mutex_unlock(&acpi_dep_list_lock); 2360 2361 return ret > 0 ? 0 : ret; 2362 } 2363 2364 /** 2365 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2366 * @supplier: Pointer to the supplier &struct acpi_device 2367 * 2368 * Clear dependencies on the given device. 2369 */ 2370 void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2371 { 2372 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2373 } 2374 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2375 2376 /** 2377 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration 2378 * @device: Pointer to the &struct acpi_device to check 2379 * 2380 * Check if the device is present and has no unmet dependencies. 2381 * 2382 * Return true if the device is ready for enumeratino. Otherwise, return false. 2383 */ 2384 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device) 2385 { 2386 if (device->flags.honor_deps && device->dep_unmet) 2387 return false; 2388 2389 return acpi_device_is_present(device); 2390 } 2391 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration); 2392 2393 /** 2394 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier 2395 * @supplier: Pointer to the dependee device 2396 * @start: Pointer to the current dependent device 2397 * 2398 * Returns the next &struct acpi_device which declares itself dependent on 2399 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2400 * 2401 * If the returned adev is not passed as @start to this function, the caller is 2402 * responsible for putting the reference to adev when it is no longer needed. 2403 */ 2404 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier, 2405 struct acpi_device *start) 2406 { 2407 struct acpi_device *adev = start; 2408 2409 acpi_walk_dep_device_list(supplier->handle, 2410 acpi_dev_get_next_consumer_dev_cb, &adev); 2411 2412 acpi_dev_put(start); 2413 2414 if (adev == start) 2415 return NULL; 2416 2417 return adev; 2418 } 2419 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev); 2420 2421 static void acpi_scan_postponed_branch(acpi_handle handle) 2422 { 2423 struct acpi_device *adev = NULL; 2424 2425 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev))) 2426 return; 2427 2428 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2429 acpi_bus_check_add_2, NULL, NULL, (void **)&adev); 2430 acpi_bus_attach(adev, NULL); 2431 } 2432 2433 static void acpi_scan_postponed(void) 2434 { 2435 struct acpi_dep_data *dep, *tmp; 2436 2437 mutex_lock(&acpi_dep_list_lock); 2438 2439 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2440 acpi_handle handle = dep->consumer; 2441 2442 /* 2443 * In case there are multiple acpi_dep_list entries with the 2444 * same consumer, skip the current entry if the consumer device 2445 * object corresponding to it is present already. 2446 */ 2447 if (!acpi_fetch_acpi_dev(handle)) { 2448 /* 2449 * Even though the lock is released here, tmp is 2450 * guaranteed to be valid, because none of the list 2451 * entries following dep is marked as "free when met" 2452 * and so they cannot be deleted. 2453 */ 2454 mutex_unlock(&acpi_dep_list_lock); 2455 2456 acpi_scan_postponed_branch(handle); 2457 2458 mutex_lock(&acpi_dep_list_lock); 2459 } 2460 2461 if (dep->met) 2462 acpi_scan_delete_dep_data(dep); 2463 else 2464 dep->free_when_met = true; 2465 } 2466 2467 mutex_unlock(&acpi_dep_list_lock); 2468 } 2469 2470 /** 2471 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2472 * @handle: Root of the namespace scope to scan. 2473 * 2474 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2475 * found devices. 2476 * 2477 * If no devices were found, -ENODEV is returned, but it does not mean that 2478 * there has been a real error. There just have been no suitable ACPI objects 2479 * in the table trunk from which the kernel could create a device and add an 2480 * appropriate driver. 2481 * 2482 * Must be called under acpi_scan_lock. 2483 */ 2484 int acpi_bus_scan(acpi_handle handle) 2485 { 2486 struct acpi_device *device = NULL; 2487 2488 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2489 2490 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2491 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2492 acpi_bus_check_add_1, NULL, NULL, 2493 (void **)&device); 2494 2495 if (!device) 2496 return -ENODEV; 2497 2498 acpi_bus_attach(device, (void *)true); 2499 2500 /* Pass 2: Enumerate all of the remaining devices. */ 2501 2502 acpi_scan_postponed(); 2503 2504 return 0; 2505 } 2506 EXPORT_SYMBOL(acpi_bus_scan); 2507 2508 static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used) 2509 { 2510 struct acpi_scan_handler *handler = adev->handler; 2511 2512 acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL); 2513 2514 adev->flags.match_driver = false; 2515 if (handler) { 2516 if (handler->detach) 2517 handler->detach(adev); 2518 2519 adev->handler = NULL; 2520 } else { 2521 device_release_driver(&adev->dev); 2522 } 2523 /* 2524 * Most likely, the device is going away, so put it into D3cold before 2525 * that. 2526 */ 2527 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 2528 adev->flags.initialized = false; 2529 acpi_device_clear_enumerated(adev); 2530 2531 return 0; 2532 } 2533 2534 /** 2535 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2536 * @adev: Root of the ACPI namespace scope to walk. 2537 * 2538 * Must be called under acpi_scan_lock. 2539 */ 2540 void acpi_bus_trim(struct acpi_device *adev) 2541 { 2542 acpi_bus_trim_one(adev, NULL); 2543 } 2544 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2545 2546 int acpi_bus_register_early_device(int type) 2547 { 2548 struct acpi_device *device = NULL; 2549 int result; 2550 2551 result = acpi_add_single_object(&device, NULL, type, false); 2552 if (result) 2553 return result; 2554 2555 device->flags.match_driver = true; 2556 return device_attach(&device->dev); 2557 } 2558 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2559 2560 static void acpi_bus_scan_fixed(void) 2561 { 2562 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2563 struct acpi_device *adev = NULL; 2564 2565 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON, 2566 false); 2567 if (adev) { 2568 adev->flags.match_driver = true; 2569 if (device_attach(&adev->dev) >= 0) 2570 device_init_wakeup(&adev->dev, true); 2571 else 2572 dev_dbg(&adev->dev, "No driver\n"); 2573 } 2574 } 2575 2576 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2577 struct acpi_device *adev = NULL; 2578 2579 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON, 2580 false); 2581 if (adev) { 2582 adev->flags.match_driver = true; 2583 if (device_attach(&adev->dev) < 0) 2584 dev_dbg(&adev->dev, "No driver\n"); 2585 } 2586 } 2587 } 2588 2589 static void __init acpi_get_spcr_uart_addr(void) 2590 { 2591 acpi_status status; 2592 struct acpi_table_spcr *spcr_ptr; 2593 2594 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2595 (struct acpi_table_header **)&spcr_ptr); 2596 if (ACPI_FAILURE(status)) { 2597 pr_warn("STAO table present, but SPCR is missing\n"); 2598 return; 2599 } 2600 2601 spcr_uart_addr = spcr_ptr->serial_port.address; 2602 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2603 } 2604 2605 static bool acpi_scan_initialized; 2606 2607 void __init acpi_scan_init(void) 2608 { 2609 acpi_status status; 2610 struct acpi_table_stao *stao_ptr; 2611 2612 acpi_pci_root_init(); 2613 acpi_pci_link_init(); 2614 acpi_processor_init(); 2615 acpi_platform_init(); 2616 acpi_lpss_init(); 2617 acpi_apd_init(); 2618 acpi_cmos_rtc_init(); 2619 acpi_container_init(); 2620 acpi_memory_hotplug_init(); 2621 acpi_watchdog_init(); 2622 acpi_pnp_init(); 2623 acpi_int340x_thermal_init(); 2624 acpi_init_lpit(); 2625 2626 acpi_scan_add_handler(&generic_device_handler); 2627 2628 /* 2629 * If there is STAO table, check whether it needs to ignore the UART 2630 * device in SPCR table. 2631 */ 2632 status = acpi_get_table(ACPI_SIG_STAO, 0, 2633 (struct acpi_table_header **)&stao_ptr); 2634 if (ACPI_SUCCESS(status)) { 2635 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2636 pr_info("STAO Name List not yet supported.\n"); 2637 2638 if (stao_ptr->ignore_uart) 2639 acpi_get_spcr_uart_addr(); 2640 2641 acpi_put_table((struct acpi_table_header *)stao_ptr); 2642 } 2643 2644 acpi_gpe_apply_masked_gpes(); 2645 acpi_update_all_gpes(); 2646 2647 /* 2648 * Although we call __add_memory() that is documented to require the 2649 * device_hotplug_lock, it is not necessary here because this is an 2650 * early code when userspace or any other code path cannot trigger 2651 * hotplug/hotunplug operations. 2652 */ 2653 mutex_lock(&acpi_scan_lock); 2654 /* 2655 * Enumerate devices in the ACPI namespace. 2656 */ 2657 if (acpi_bus_scan(ACPI_ROOT_OBJECT)) 2658 goto unlock; 2659 2660 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT); 2661 if (!acpi_root) 2662 goto unlock; 2663 2664 /* Fixed feature devices do not exist on HW-reduced platform */ 2665 if (!acpi_gbl_reduced_hardware) 2666 acpi_bus_scan_fixed(); 2667 2668 acpi_turn_off_unused_power_resources(); 2669 2670 acpi_scan_initialized = true; 2671 2672 unlock: 2673 mutex_unlock(&acpi_scan_lock); 2674 } 2675 2676 static struct acpi_probe_entry *ape; 2677 static int acpi_probe_count; 2678 static DEFINE_MUTEX(acpi_probe_mutex); 2679 2680 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2681 const unsigned long end) 2682 { 2683 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2684 if (!ape->probe_subtbl(header, end)) 2685 acpi_probe_count++; 2686 2687 return 0; 2688 } 2689 2690 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2691 { 2692 int count = 0; 2693 2694 if (acpi_disabled) 2695 return 0; 2696 2697 mutex_lock(&acpi_probe_mutex); 2698 for (ape = ap_head; nr; ape++, nr--) { 2699 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2700 acpi_probe_count = 0; 2701 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2702 count += acpi_probe_count; 2703 } else { 2704 int res; 2705 res = acpi_table_parse(ape->id, ape->probe_table); 2706 if (!res) 2707 count++; 2708 } 2709 } 2710 mutex_unlock(&acpi_probe_mutex); 2711 2712 return count; 2713 } 2714 2715 static void acpi_table_events_fn(struct work_struct *work) 2716 { 2717 acpi_scan_lock_acquire(); 2718 acpi_bus_scan(ACPI_ROOT_OBJECT); 2719 acpi_scan_lock_release(); 2720 2721 kfree(work); 2722 } 2723 2724 void acpi_scan_table_notify(void) 2725 { 2726 struct work_struct *work; 2727 2728 if (!acpi_scan_initialized) 2729 return; 2730 2731 work = kmalloc(sizeof(*work), GFP_KERNEL); 2732 if (!work) 2733 return; 2734 2735 INIT_WORK(work, acpi_table_events_fn); 2736 schedule_work(work); 2737 } 2738 2739 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2740 { 2741 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2742 } 2743 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2744 2745 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2746 { 2747 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2748 } 2749 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2750