xref: /openbmc/linux/drivers/acpi/scan.c (revision c832da79)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 
24 #include "internal.h"
25 
26 extern struct acpi_device *acpi_root;
27 
28 #define ACPI_BUS_CLASS			"system_bus"
29 #define ACPI_BUS_HID			"LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME		"System Bus"
31 
32 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
33 
34 #define INVALID_ACPI_HANDLE	((acpi_handle)empty_zero_page)
35 
36 static const char *dummy_hid = "device";
37 
38 static LIST_HEAD(acpi_dep_list);
39 static DEFINE_MUTEX(acpi_dep_list_lock);
40 LIST_HEAD(acpi_bus_id_list);
41 static DEFINE_MUTEX(acpi_scan_lock);
42 static LIST_HEAD(acpi_scan_handlers_list);
43 DEFINE_MUTEX(acpi_device_lock);
44 LIST_HEAD(acpi_wakeup_device_list);
45 static DEFINE_MUTEX(acpi_hp_context_lock);
46 
47 /*
48  * The UART device described by the SPCR table is the only object which needs
49  * special-casing. Everything else is covered by ACPI namespace paths in STAO
50  * table.
51  */
52 static u64 spcr_uart_addr;
53 
54 void acpi_scan_lock_acquire(void)
55 {
56 	mutex_lock(&acpi_scan_lock);
57 }
58 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
59 
60 void acpi_scan_lock_release(void)
61 {
62 	mutex_unlock(&acpi_scan_lock);
63 }
64 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
65 
66 void acpi_lock_hp_context(void)
67 {
68 	mutex_lock(&acpi_hp_context_lock);
69 }
70 
71 void acpi_unlock_hp_context(void)
72 {
73 	mutex_unlock(&acpi_hp_context_lock);
74 }
75 
76 void acpi_initialize_hp_context(struct acpi_device *adev,
77 				struct acpi_hotplug_context *hp,
78 				int (*notify)(struct acpi_device *, u32),
79 				void (*uevent)(struct acpi_device *, u32))
80 {
81 	acpi_lock_hp_context();
82 	hp->notify = notify;
83 	hp->uevent = uevent;
84 	acpi_set_hp_context(adev, hp);
85 	acpi_unlock_hp_context();
86 }
87 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
88 
89 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
90 {
91 	if (!handler)
92 		return -EINVAL;
93 
94 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
95 	return 0;
96 }
97 
98 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
99 				       const char *hotplug_profile_name)
100 {
101 	int error;
102 
103 	error = acpi_scan_add_handler(handler);
104 	if (error)
105 		return error;
106 
107 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
108 	return 0;
109 }
110 
111 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
112 {
113 	struct acpi_device_physical_node *pn;
114 	bool offline = true;
115 	char *envp[] = { "EVENT=offline", NULL };
116 
117 	/*
118 	 * acpi_container_offline() calls this for all of the container's
119 	 * children under the container's physical_node_lock lock.
120 	 */
121 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
122 
123 	list_for_each_entry(pn, &adev->physical_node_list, node)
124 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
125 			if (uevent)
126 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
127 
128 			offline = false;
129 			break;
130 		}
131 
132 	mutex_unlock(&adev->physical_node_lock);
133 	return offline;
134 }
135 
136 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
137 				    void **ret_p)
138 {
139 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
140 	struct acpi_device_physical_node *pn;
141 	bool second_pass = (bool)data;
142 	acpi_status status = AE_OK;
143 
144 	if (!device)
145 		return AE_OK;
146 
147 	if (device->handler && !device->handler->hotplug.enabled) {
148 		*ret_p = &device->dev;
149 		return AE_SUPPORT;
150 	}
151 
152 	mutex_lock(&device->physical_node_lock);
153 
154 	list_for_each_entry(pn, &device->physical_node_list, node) {
155 		int ret;
156 
157 		if (second_pass) {
158 			/* Skip devices offlined by the first pass. */
159 			if (pn->put_online)
160 				continue;
161 		} else {
162 			pn->put_online = false;
163 		}
164 		ret = device_offline(pn->dev);
165 		if (ret >= 0) {
166 			pn->put_online = !ret;
167 		} else {
168 			*ret_p = pn->dev;
169 			if (second_pass) {
170 				status = AE_ERROR;
171 				break;
172 			}
173 		}
174 	}
175 
176 	mutex_unlock(&device->physical_node_lock);
177 
178 	return status;
179 }
180 
181 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
182 				   void **ret_p)
183 {
184 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
185 	struct acpi_device_physical_node *pn;
186 
187 	if (!device)
188 		return AE_OK;
189 
190 	mutex_lock(&device->physical_node_lock);
191 
192 	list_for_each_entry(pn, &device->physical_node_list, node)
193 		if (pn->put_online) {
194 			device_online(pn->dev);
195 			pn->put_online = false;
196 		}
197 
198 	mutex_unlock(&device->physical_node_lock);
199 
200 	return AE_OK;
201 }
202 
203 static int acpi_scan_try_to_offline(struct acpi_device *device)
204 {
205 	acpi_handle handle = device->handle;
206 	struct device *errdev = NULL;
207 	acpi_status status;
208 
209 	/*
210 	 * Carry out two passes here and ignore errors in the first pass,
211 	 * because if the devices in question are memory blocks and
212 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
213 	 * that the other blocks depend on, but it is not known in advance which
214 	 * block holds them.
215 	 *
216 	 * If the first pass is successful, the second one isn't needed, though.
217 	 */
218 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
219 				     NULL, acpi_bus_offline, (void *)false,
220 				     (void **)&errdev);
221 	if (status == AE_SUPPORT) {
222 		dev_warn(errdev, "Offline disabled.\n");
223 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
224 				    acpi_bus_online, NULL, NULL, NULL);
225 		return -EPERM;
226 	}
227 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
228 	if (errdev) {
229 		errdev = NULL;
230 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
231 				    NULL, acpi_bus_offline, (void *)true,
232 				    (void **)&errdev);
233 		if (!errdev)
234 			acpi_bus_offline(handle, 0, (void *)true,
235 					 (void **)&errdev);
236 
237 		if (errdev) {
238 			dev_warn(errdev, "Offline failed.\n");
239 			acpi_bus_online(handle, 0, NULL, NULL);
240 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
241 					    ACPI_UINT32_MAX, acpi_bus_online,
242 					    NULL, NULL, NULL);
243 			return -EBUSY;
244 		}
245 	}
246 	return 0;
247 }
248 
249 static int acpi_scan_hot_remove(struct acpi_device *device)
250 {
251 	acpi_handle handle = device->handle;
252 	unsigned long long sta;
253 	acpi_status status;
254 
255 	if (device->handler && device->handler->hotplug.demand_offline) {
256 		if (!acpi_scan_is_offline(device, true))
257 			return -EBUSY;
258 	} else {
259 		int error = acpi_scan_try_to_offline(device);
260 		if (error)
261 			return error;
262 	}
263 
264 	acpi_handle_debug(handle, "Ejecting\n");
265 
266 	acpi_bus_trim(device);
267 
268 	acpi_evaluate_lck(handle, 0);
269 	/*
270 	 * TBD: _EJD support.
271 	 */
272 	status = acpi_evaluate_ej0(handle);
273 	if (status == AE_NOT_FOUND)
274 		return -ENODEV;
275 	else if (ACPI_FAILURE(status))
276 		return -EIO;
277 
278 	/*
279 	 * Verify if eject was indeed successful.  If not, log an error
280 	 * message.  No need to call _OST since _EJ0 call was made OK.
281 	 */
282 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
283 	if (ACPI_FAILURE(status)) {
284 		acpi_handle_warn(handle,
285 			"Status check after eject failed (0x%x)\n", status);
286 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
287 		acpi_handle_warn(handle,
288 			"Eject incomplete - status 0x%llx\n", sta);
289 	}
290 
291 	return 0;
292 }
293 
294 static int acpi_scan_device_not_present(struct acpi_device *adev)
295 {
296 	if (!acpi_device_enumerated(adev)) {
297 		dev_warn(&adev->dev, "Still not present\n");
298 		return -EALREADY;
299 	}
300 	acpi_bus_trim(adev);
301 	return 0;
302 }
303 
304 static int acpi_scan_device_check(struct acpi_device *adev)
305 {
306 	int error;
307 
308 	acpi_bus_get_status(adev);
309 	if (adev->status.present || adev->status.functional) {
310 		/*
311 		 * This function is only called for device objects for which
312 		 * matching scan handlers exist.  The only situation in which
313 		 * the scan handler is not attached to this device object yet
314 		 * is when the device has just appeared (either it wasn't
315 		 * present at all before or it was removed and then added
316 		 * again).
317 		 */
318 		if (adev->handler) {
319 			dev_warn(&adev->dev, "Already enumerated\n");
320 			return -EALREADY;
321 		}
322 		error = acpi_bus_scan(adev->handle);
323 		if (error) {
324 			dev_warn(&adev->dev, "Namespace scan failure\n");
325 			return error;
326 		}
327 		if (!adev->handler) {
328 			dev_warn(&adev->dev, "Enumeration failure\n");
329 			error = -ENODEV;
330 		}
331 	} else {
332 		error = acpi_scan_device_not_present(adev);
333 	}
334 	return error;
335 }
336 
337 static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
338 {
339 	struct acpi_scan_handler *handler = adev->handler;
340 	int error;
341 
342 	acpi_bus_get_status(adev);
343 	if (!(adev->status.present || adev->status.functional)) {
344 		acpi_scan_device_not_present(adev);
345 		return 0;
346 	}
347 	if (handler && handler->hotplug.scan_dependent)
348 		return handler->hotplug.scan_dependent(adev);
349 
350 	error = acpi_bus_scan(adev->handle);
351 	if (error) {
352 		dev_warn(&adev->dev, "Namespace scan failure\n");
353 		return error;
354 	}
355 	return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
356 }
357 
358 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
359 {
360 	switch (type) {
361 	case ACPI_NOTIFY_BUS_CHECK:
362 		return acpi_scan_bus_check(adev, NULL);
363 	case ACPI_NOTIFY_DEVICE_CHECK:
364 		return acpi_scan_device_check(adev);
365 	case ACPI_NOTIFY_EJECT_REQUEST:
366 	case ACPI_OST_EC_OSPM_EJECT:
367 		if (adev->handler && !adev->handler->hotplug.enabled) {
368 			dev_info(&adev->dev, "Eject disabled\n");
369 			return -EPERM;
370 		}
371 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
372 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
373 		return acpi_scan_hot_remove(adev);
374 	}
375 	return -EINVAL;
376 }
377 
378 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
379 {
380 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
381 	int error = -ENODEV;
382 
383 	lock_device_hotplug();
384 	mutex_lock(&acpi_scan_lock);
385 
386 	/*
387 	 * The device object's ACPI handle cannot become invalid as long as we
388 	 * are holding acpi_scan_lock, but it might have become invalid before
389 	 * that lock was acquired.
390 	 */
391 	if (adev->handle == INVALID_ACPI_HANDLE)
392 		goto err_out;
393 
394 	if (adev->flags.is_dock_station) {
395 		error = dock_notify(adev, src);
396 	} else if (adev->flags.hotplug_notify) {
397 		error = acpi_generic_hotplug_event(adev, src);
398 	} else {
399 		int (*notify)(struct acpi_device *, u32);
400 
401 		acpi_lock_hp_context();
402 		notify = adev->hp ? adev->hp->notify : NULL;
403 		acpi_unlock_hp_context();
404 		/*
405 		 * There may be additional notify handlers for device objects
406 		 * without the .event() callback, so ignore them here.
407 		 */
408 		if (notify)
409 			error = notify(adev, src);
410 		else
411 			goto out;
412 	}
413 	switch (error) {
414 	case 0:
415 		ost_code = ACPI_OST_SC_SUCCESS;
416 		break;
417 	case -EPERM:
418 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
419 		break;
420 	case -EBUSY:
421 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
422 		break;
423 	default:
424 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
425 		break;
426 	}
427 
428  err_out:
429 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
430 
431  out:
432 	acpi_bus_put_acpi_device(adev);
433 	mutex_unlock(&acpi_scan_lock);
434 	unlock_device_hotplug();
435 }
436 
437 static void acpi_free_power_resources_lists(struct acpi_device *device)
438 {
439 	int i;
440 
441 	if (device->wakeup.flags.valid)
442 		acpi_power_resources_list_free(&device->wakeup.resources);
443 
444 	if (!device->power.flags.power_resources)
445 		return;
446 
447 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
448 		struct acpi_device_power_state *ps = &device->power.states[i];
449 		acpi_power_resources_list_free(&ps->resources);
450 	}
451 }
452 
453 static void acpi_device_release(struct device *dev)
454 {
455 	struct acpi_device *acpi_dev = to_acpi_device(dev);
456 
457 	acpi_free_properties(acpi_dev);
458 	acpi_free_pnp_ids(&acpi_dev->pnp);
459 	acpi_free_power_resources_lists(acpi_dev);
460 	kfree(acpi_dev);
461 }
462 
463 static void acpi_device_del(struct acpi_device *device)
464 {
465 	struct acpi_device_bus_id *acpi_device_bus_id;
466 
467 	mutex_lock(&acpi_device_lock);
468 
469 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
470 		if (!strcmp(acpi_device_bus_id->bus_id,
471 			    acpi_device_hid(device))) {
472 			ida_free(&acpi_device_bus_id->instance_ida,
473 				 device->pnp.instance_no);
474 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
475 				list_del(&acpi_device_bus_id->node);
476 				kfree_const(acpi_device_bus_id->bus_id);
477 				kfree(acpi_device_bus_id);
478 			}
479 			break;
480 		}
481 
482 	list_del(&device->wakeup_list);
483 
484 	mutex_unlock(&acpi_device_lock);
485 
486 	acpi_power_add_remove_device(device, false);
487 	acpi_device_remove_files(device);
488 	if (device->remove)
489 		device->remove(device);
490 
491 	device_del(&device->dev);
492 }
493 
494 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
495 
496 static LIST_HEAD(acpi_device_del_list);
497 static DEFINE_MUTEX(acpi_device_del_lock);
498 
499 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
500 {
501 	for (;;) {
502 		struct acpi_device *adev;
503 
504 		mutex_lock(&acpi_device_del_lock);
505 
506 		if (list_empty(&acpi_device_del_list)) {
507 			mutex_unlock(&acpi_device_del_lock);
508 			break;
509 		}
510 		adev = list_first_entry(&acpi_device_del_list,
511 					struct acpi_device, del_list);
512 		list_del(&adev->del_list);
513 
514 		mutex_unlock(&acpi_device_del_lock);
515 
516 		blocking_notifier_call_chain(&acpi_reconfig_chain,
517 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
518 
519 		acpi_device_del(adev);
520 		/*
521 		 * Drop references to all power resources that might have been
522 		 * used by the device.
523 		 */
524 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
525 		acpi_dev_put(adev);
526 	}
527 }
528 
529 /**
530  * acpi_scan_drop_device - Drop an ACPI device object.
531  * @handle: Handle of an ACPI namespace node, not used.
532  * @context: Address of the ACPI device object to drop.
533  *
534  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
535  * namespace node the device object pointed to by @context is attached to.
536  *
537  * The unregistration is carried out asynchronously to avoid running
538  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
539  * ensure the correct ordering (the device objects must be unregistered in the
540  * same order in which the corresponding namespace nodes are deleted).
541  */
542 static void acpi_scan_drop_device(acpi_handle handle, void *context)
543 {
544 	static DECLARE_WORK(work, acpi_device_del_work_fn);
545 	struct acpi_device *adev = context;
546 
547 	mutex_lock(&acpi_device_del_lock);
548 
549 	/*
550 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
551 	 * won't run after any hotplug work items submitted subsequently.  That
552 	 * prevents attempts to register device objects identical to those being
553 	 * deleted from happening concurrently (such attempts result from
554 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
555 	 * run after all of the work items submitted previously, which helps
556 	 * those work items to ensure that they are not accessing stale device
557 	 * objects.
558 	 */
559 	if (list_empty(&acpi_device_del_list))
560 		acpi_queue_hotplug_work(&work);
561 
562 	list_add_tail(&adev->del_list, &acpi_device_del_list);
563 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
564 	adev->handle = INVALID_ACPI_HANDLE;
565 
566 	mutex_unlock(&acpi_device_del_lock);
567 }
568 
569 static struct acpi_device *handle_to_device(acpi_handle handle,
570 					    void (*callback)(void *))
571 {
572 	struct acpi_device *adev = NULL;
573 	acpi_status status;
574 
575 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
576 				    (void **)&adev, callback);
577 	if (ACPI_FAILURE(status) || !adev) {
578 		acpi_handle_debug(handle, "No context!\n");
579 		return NULL;
580 	}
581 	return adev;
582 }
583 
584 /**
585  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
586  * @handle: ACPI handle associated with the requested ACPI device object.
587  *
588  * Return a pointer to the ACPI device object associated with @handle, if
589  * present, or NULL otherwise.
590  */
591 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
592 {
593 	return handle_to_device(handle, NULL);
594 }
595 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
596 
597 static void get_acpi_device(void *dev)
598 {
599 	acpi_dev_get(dev);
600 }
601 
602 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
603 {
604 	return handle_to_device(handle, get_acpi_device);
605 }
606 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device);
607 
608 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
609 {
610 	struct acpi_device_bus_id *acpi_device_bus_id;
611 
612 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
613 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
614 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
615 			return acpi_device_bus_id;
616 	}
617 	return NULL;
618 }
619 
620 static int acpi_device_set_name(struct acpi_device *device,
621 				struct acpi_device_bus_id *acpi_device_bus_id)
622 {
623 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
624 	int result;
625 
626 	result = ida_alloc(instance_ida, GFP_KERNEL);
627 	if (result < 0)
628 		return result;
629 
630 	device->pnp.instance_no = result;
631 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
632 	return 0;
633 }
634 
635 static int acpi_tie_acpi_dev(struct acpi_device *adev)
636 {
637 	acpi_handle handle = adev->handle;
638 	acpi_status status;
639 
640 	if (!handle)
641 		return 0;
642 
643 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
644 	if (ACPI_FAILURE(status)) {
645 		acpi_handle_err(handle, "Unable to attach device data\n");
646 		return -ENODEV;
647 	}
648 
649 	return 0;
650 }
651 
652 static void acpi_store_pld_crc(struct acpi_device *adev)
653 {
654 	struct acpi_pld_info *pld;
655 	acpi_status status;
656 
657 	status = acpi_get_physical_device_location(adev->handle, &pld);
658 	if (ACPI_FAILURE(status))
659 		return;
660 
661 	adev->pld_crc = crc32(~0, pld, sizeof(*pld));
662 	ACPI_FREE(pld);
663 }
664 
665 static int __acpi_device_add(struct acpi_device *device,
666 			     void (*release)(struct device *))
667 {
668 	struct acpi_device_bus_id *acpi_device_bus_id;
669 	int result;
670 
671 	/*
672 	 * Linkage
673 	 * -------
674 	 * Link this device to its parent and siblings.
675 	 */
676 	INIT_LIST_HEAD(&device->wakeup_list);
677 	INIT_LIST_HEAD(&device->physical_node_list);
678 	INIT_LIST_HEAD(&device->del_list);
679 	mutex_init(&device->physical_node_lock);
680 
681 	mutex_lock(&acpi_device_lock);
682 
683 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
684 	if (acpi_device_bus_id) {
685 		result = acpi_device_set_name(device, acpi_device_bus_id);
686 		if (result)
687 			goto err_unlock;
688 	} else {
689 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
690 					     GFP_KERNEL);
691 		if (!acpi_device_bus_id) {
692 			result = -ENOMEM;
693 			goto err_unlock;
694 		}
695 		acpi_device_bus_id->bus_id =
696 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
697 		if (!acpi_device_bus_id->bus_id) {
698 			kfree(acpi_device_bus_id);
699 			result = -ENOMEM;
700 			goto err_unlock;
701 		}
702 
703 		ida_init(&acpi_device_bus_id->instance_ida);
704 
705 		result = acpi_device_set_name(device, acpi_device_bus_id);
706 		if (result) {
707 			kfree_const(acpi_device_bus_id->bus_id);
708 			kfree(acpi_device_bus_id);
709 			goto err_unlock;
710 		}
711 
712 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
713 	}
714 
715 	if (device->wakeup.flags.valid)
716 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
717 
718 	acpi_store_pld_crc(device);
719 
720 	mutex_unlock(&acpi_device_lock);
721 
722 	if (device->parent)
723 		device->dev.parent = &device->parent->dev;
724 
725 	device->dev.bus = &acpi_bus_type;
726 	device->dev.release = release;
727 	result = device_add(&device->dev);
728 	if (result) {
729 		dev_err(&device->dev, "Error registering device\n");
730 		goto err;
731 	}
732 
733 	result = acpi_device_setup_files(device);
734 	if (result)
735 		pr_err("Error creating sysfs interface for device %s\n",
736 		       dev_name(&device->dev));
737 
738 	return 0;
739 
740 err:
741 	mutex_lock(&acpi_device_lock);
742 
743 	list_del(&device->wakeup_list);
744 
745 err_unlock:
746 	mutex_unlock(&acpi_device_lock);
747 
748 	acpi_detach_data(device->handle, acpi_scan_drop_device);
749 
750 	return result;
751 }
752 
753 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
754 {
755 	int ret;
756 
757 	ret = acpi_tie_acpi_dev(adev);
758 	if (ret)
759 		return ret;
760 
761 	return __acpi_device_add(adev, release);
762 }
763 
764 /* --------------------------------------------------------------------------
765                                  Device Enumeration
766    -------------------------------------------------------------------------- */
767 static bool acpi_info_matches_ids(struct acpi_device_info *info,
768 				  const char * const ids[])
769 {
770 	struct acpi_pnp_device_id_list *cid_list = NULL;
771 	int i, index;
772 
773 	if (!(info->valid & ACPI_VALID_HID))
774 		return false;
775 
776 	index = match_string(ids, -1, info->hardware_id.string);
777 	if (index >= 0)
778 		return true;
779 
780 	if (info->valid & ACPI_VALID_CID)
781 		cid_list = &info->compatible_id_list;
782 
783 	if (!cid_list)
784 		return false;
785 
786 	for (i = 0; i < cid_list->count; i++) {
787 		index = match_string(ids, -1, cid_list->ids[i].string);
788 		if (index >= 0)
789 			return true;
790 	}
791 
792 	return false;
793 }
794 
795 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
796 static const char * const acpi_ignore_dep_ids[] = {
797 	"PNP0D80", /* Windows-compatible System Power Management Controller */
798 	"INT33BD", /* Intel Baytrail Mailbox Device */
799 	NULL
800 };
801 
802 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
803 static const char * const acpi_honor_dep_ids[] = {
804 	"INT3472", /* Camera sensor PMIC / clk and regulator info */
805 	NULL
806 };
807 
808 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
809 {
810 	struct acpi_device *device;
811 	acpi_status status;
812 
813 	/*
814 	 * Fixed hardware devices do not appear in the namespace and do not
815 	 * have handles, but we fabricate acpi_devices for them, so we have
816 	 * to deal with them specially.
817 	 */
818 	if (!handle)
819 		return acpi_root;
820 
821 	do {
822 		status = acpi_get_parent(handle, &handle);
823 		if (ACPI_FAILURE(status))
824 			return status == AE_NULL_ENTRY ? NULL : acpi_root;
825 
826 		device = acpi_fetch_acpi_dev(handle);
827 	} while (!device);
828 	return device;
829 }
830 
831 acpi_status
832 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
833 {
834 	acpi_status status;
835 	acpi_handle tmp;
836 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
837 	union acpi_object *obj;
838 
839 	status = acpi_get_handle(handle, "_EJD", &tmp);
840 	if (ACPI_FAILURE(status))
841 		return status;
842 
843 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
844 	if (ACPI_SUCCESS(status)) {
845 		obj = buffer.pointer;
846 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
847 					 ejd);
848 		kfree(buffer.pointer);
849 	}
850 	return status;
851 }
852 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
853 
854 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
855 {
856 	acpi_handle handle = dev->handle;
857 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
858 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
859 	union acpi_object *package = NULL;
860 	union acpi_object *element = NULL;
861 	acpi_status status;
862 	int err = -ENODATA;
863 
864 	INIT_LIST_HEAD(&wakeup->resources);
865 
866 	/* _PRW */
867 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
868 	if (ACPI_FAILURE(status)) {
869 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
870 				 acpi_format_exception(status));
871 		return err;
872 	}
873 
874 	package = (union acpi_object *)buffer.pointer;
875 
876 	if (!package || package->package.count < 2)
877 		goto out;
878 
879 	element = &(package->package.elements[0]);
880 	if (!element)
881 		goto out;
882 
883 	if (element->type == ACPI_TYPE_PACKAGE) {
884 		if ((element->package.count < 2) ||
885 		    (element->package.elements[0].type !=
886 		     ACPI_TYPE_LOCAL_REFERENCE)
887 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
888 			goto out;
889 
890 		wakeup->gpe_device =
891 		    element->package.elements[0].reference.handle;
892 		wakeup->gpe_number =
893 		    (u32) element->package.elements[1].integer.value;
894 	} else if (element->type == ACPI_TYPE_INTEGER) {
895 		wakeup->gpe_device = NULL;
896 		wakeup->gpe_number = element->integer.value;
897 	} else {
898 		goto out;
899 	}
900 
901 	element = &(package->package.elements[1]);
902 	if (element->type != ACPI_TYPE_INTEGER)
903 		goto out;
904 
905 	wakeup->sleep_state = element->integer.value;
906 
907 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
908 	if (err)
909 		goto out;
910 
911 	if (!list_empty(&wakeup->resources)) {
912 		int sleep_state;
913 
914 		err = acpi_power_wakeup_list_init(&wakeup->resources,
915 						  &sleep_state);
916 		if (err) {
917 			acpi_handle_warn(handle, "Retrieving current states "
918 					 "of wakeup power resources failed\n");
919 			acpi_power_resources_list_free(&wakeup->resources);
920 			goto out;
921 		}
922 		if (sleep_state < wakeup->sleep_state) {
923 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
924 					 "(S%d) by S%d from power resources\n",
925 					 (int)wakeup->sleep_state, sleep_state);
926 			wakeup->sleep_state = sleep_state;
927 		}
928 	}
929 
930  out:
931 	kfree(buffer.pointer);
932 	return err;
933 }
934 
935 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
936 {
937 	static const struct acpi_device_id button_device_ids[] = {
938 		{"PNP0C0C", 0},		/* Power button */
939 		{"PNP0C0D", 0},		/* Lid */
940 		{"PNP0C0E", 0},		/* Sleep button */
941 		{"", 0},
942 	};
943 	struct acpi_device_wakeup *wakeup = &device->wakeup;
944 	acpi_status status;
945 
946 	wakeup->flags.notifier_present = 0;
947 
948 	/* Power button, Lid switch always enable wakeup */
949 	if (!acpi_match_device_ids(device, button_device_ids)) {
950 		if (!acpi_match_device_ids(device, &button_device_ids[1])) {
951 			/* Do not use Lid/sleep button for S5 wakeup */
952 			if (wakeup->sleep_state == ACPI_STATE_S5)
953 				wakeup->sleep_state = ACPI_STATE_S4;
954 		}
955 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
956 		device_set_wakeup_capable(&device->dev, true);
957 		return true;
958 	}
959 
960 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
961 					 wakeup->gpe_number);
962 	return ACPI_SUCCESS(status);
963 }
964 
965 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
966 {
967 	int err;
968 
969 	/* Presence of _PRW indicates wake capable */
970 	if (!acpi_has_method(device->handle, "_PRW"))
971 		return;
972 
973 	err = acpi_bus_extract_wakeup_device_power_package(device);
974 	if (err) {
975 		dev_err(&device->dev, "Unable to extract wakeup power resources");
976 		return;
977 	}
978 
979 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
980 	device->wakeup.prepare_count = 0;
981 	/*
982 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
983 	 * system for the ACPI device with the _PRW object.
984 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
985 	 * So it is necessary to call _DSW object first. Only when it is not
986 	 * present will the _PSW object used.
987 	 */
988 	err = acpi_device_sleep_wake(device, 0, 0, 0);
989 	if (err)
990 		pr_debug("error in _DSW or _PSW evaluation\n");
991 }
992 
993 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
994 {
995 	struct acpi_device_power_state *ps = &device->power.states[state];
996 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
997 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
998 	acpi_status status;
999 
1000 	INIT_LIST_HEAD(&ps->resources);
1001 
1002 	/* Evaluate "_PRx" to get referenced power resources */
1003 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1004 	if (ACPI_SUCCESS(status)) {
1005 		union acpi_object *package = buffer.pointer;
1006 
1007 		if (buffer.length && package
1008 		    && package->type == ACPI_TYPE_PACKAGE
1009 		    && package->package.count)
1010 			acpi_extract_power_resources(package, 0, &ps->resources);
1011 
1012 		ACPI_FREE(buffer.pointer);
1013 	}
1014 
1015 	/* Evaluate "_PSx" to see if we can do explicit sets */
1016 	pathname[2] = 'S';
1017 	if (acpi_has_method(device->handle, pathname))
1018 		ps->flags.explicit_set = 1;
1019 
1020 	/* State is valid if there are means to put the device into it. */
1021 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1022 		ps->flags.valid = 1;
1023 
1024 	ps->power = -1;		/* Unknown - driver assigned */
1025 	ps->latency = -1;	/* Unknown - driver assigned */
1026 }
1027 
1028 static void acpi_bus_get_power_flags(struct acpi_device *device)
1029 {
1030 	unsigned long long dsc = ACPI_STATE_D0;
1031 	u32 i;
1032 
1033 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1034 	if (!acpi_has_method(device->handle, "_PS0") &&
1035 	    !acpi_has_method(device->handle, "_PR0"))
1036 		return;
1037 
1038 	device->flags.power_manageable = 1;
1039 
1040 	/*
1041 	 * Power Management Flags
1042 	 */
1043 	if (acpi_has_method(device->handle, "_PSC"))
1044 		device->power.flags.explicit_get = 1;
1045 
1046 	if (acpi_has_method(device->handle, "_IRC"))
1047 		device->power.flags.inrush_current = 1;
1048 
1049 	if (acpi_has_method(device->handle, "_DSW"))
1050 		device->power.flags.dsw_present = 1;
1051 
1052 	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1053 	device->power.state_for_enumeration = dsc;
1054 
1055 	/*
1056 	 * Enumerate supported power management states
1057 	 */
1058 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1059 		acpi_bus_init_power_state(device, i);
1060 
1061 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1062 
1063 	/* Set the defaults for D0 and D3hot (always supported). */
1064 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1065 	device->power.states[ACPI_STATE_D0].power = 100;
1066 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1067 
1068 	/*
1069 	 * Use power resources only if the D0 list of them is populated, because
1070 	 * some platforms may provide _PR3 only to indicate D3cold support and
1071 	 * in those cases the power resources list returned by it may be bogus.
1072 	 */
1073 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1074 		device->power.flags.power_resources = 1;
1075 		/*
1076 		 * D3cold is supported if the D3hot list of power resources is
1077 		 * not empty.
1078 		 */
1079 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1080 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1081 	}
1082 
1083 	if (acpi_bus_init_power(device))
1084 		device->flags.power_manageable = 0;
1085 }
1086 
1087 static void acpi_bus_get_flags(struct acpi_device *device)
1088 {
1089 	/* Presence of _STA indicates 'dynamic_status' */
1090 	if (acpi_has_method(device->handle, "_STA"))
1091 		device->flags.dynamic_status = 1;
1092 
1093 	/* Presence of _RMV indicates 'removable' */
1094 	if (acpi_has_method(device->handle, "_RMV"))
1095 		device->flags.removable = 1;
1096 
1097 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1098 	if (acpi_has_method(device->handle, "_EJD") ||
1099 	    acpi_has_method(device->handle, "_EJ0"))
1100 		device->flags.ejectable = 1;
1101 }
1102 
1103 static void acpi_device_get_busid(struct acpi_device *device)
1104 {
1105 	char bus_id[5] = { '?', 0 };
1106 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1107 	int i = 0;
1108 
1109 	/*
1110 	 * Bus ID
1111 	 * ------
1112 	 * The device's Bus ID is simply the object name.
1113 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1114 	 */
1115 	if (ACPI_IS_ROOT_DEVICE(device)) {
1116 		strcpy(device->pnp.bus_id, "ACPI");
1117 		return;
1118 	}
1119 
1120 	switch (device->device_type) {
1121 	case ACPI_BUS_TYPE_POWER_BUTTON:
1122 		strcpy(device->pnp.bus_id, "PWRF");
1123 		break;
1124 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1125 		strcpy(device->pnp.bus_id, "SLPF");
1126 		break;
1127 	case ACPI_BUS_TYPE_ECDT_EC:
1128 		strcpy(device->pnp.bus_id, "ECDT");
1129 		break;
1130 	default:
1131 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1132 		/* Clean up trailing underscores (if any) */
1133 		for (i = 3; i > 1; i--) {
1134 			if (bus_id[i] == '_')
1135 				bus_id[i] = '\0';
1136 			else
1137 				break;
1138 		}
1139 		strcpy(device->pnp.bus_id, bus_id);
1140 		break;
1141 	}
1142 }
1143 
1144 /*
1145  * acpi_ata_match - see if an acpi object is an ATA device
1146  *
1147  * If an acpi object has one of the ACPI ATA methods defined,
1148  * then we can safely call it an ATA device.
1149  */
1150 bool acpi_ata_match(acpi_handle handle)
1151 {
1152 	return acpi_has_method(handle, "_GTF") ||
1153 	       acpi_has_method(handle, "_GTM") ||
1154 	       acpi_has_method(handle, "_STM") ||
1155 	       acpi_has_method(handle, "_SDD");
1156 }
1157 
1158 /*
1159  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1160  *
1161  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1162  * then we can safely call it an ejectable drive bay
1163  */
1164 bool acpi_bay_match(acpi_handle handle)
1165 {
1166 	acpi_handle phandle;
1167 
1168 	if (!acpi_has_method(handle, "_EJ0"))
1169 		return false;
1170 	if (acpi_ata_match(handle))
1171 		return true;
1172 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1173 		return false;
1174 
1175 	return acpi_ata_match(phandle);
1176 }
1177 
1178 bool acpi_device_is_battery(struct acpi_device *adev)
1179 {
1180 	struct acpi_hardware_id *hwid;
1181 
1182 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1183 		if (!strcmp("PNP0C0A", hwid->id))
1184 			return true;
1185 
1186 	return false;
1187 }
1188 
1189 static bool is_ejectable_bay(struct acpi_device *adev)
1190 {
1191 	acpi_handle handle = adev->handle;
1192 
1193 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1194 		return true;
1195 
1196 	return acpi_bay_match(handle);
1197 }
1198 
1199 /*
1200  * acpi_dock_match - see if an acpi object has a _DCK method
1201  */
1202 bool acpi_dock_match(acpi_handle handle)
1203 {
1204 	return acpi_has_method(handle, "_DCK");
1205 }
1206 
1207 static acpi_status
1208 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1209 			  void **return_value)
1210 {
1211 	long *cap = context;
1212 
1213 	if (acpi_has_method(handle, "_BCM") &&
1214 	    acpi_has_method(handle, "_BCL")) {
1215 		acpi_handle_debug(handle, "Found generic backlight support\n");
1216 		*cap |= ACPI_VIDEO_BACKLIGHT;
1217 		/* We have backlight support, no need to scan further */
1218 		return AE_CTRL_TERMINATE;
1219 	}
1220 	return 0;
1221 }
1222 
1223 /* Returns true if the ACPI object is a video device which can be
1224  * handled by video.ko.
1225  * The device will get a Linux specific CID added in scan.c to
1226  * identify the device as an ACPI graphics device
1227  * Be aware that the graphics device may not be physically present
1228  * Use acpi_video_get_capabilities() to detect general ACPI video
1229  * capabilities of present cards
1230  */
1231 long acpi_is_video_device(acpi_handle handle)
1232 {
1233 	long video_caps = 0;
1234 
1235 	/* Is this device able to support video switching ? */
1236 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1237 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1238 
1239 	/* Is this device able to retrieve a video ROM ? */
1240 	if (acpi_has_method(handle, "_ROM"))
1241 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1242 
1243 	/* Is this device able to configure which video head to be POSTed ? */
1244 	if (acpi_has_method(handle, "_VPO") &&
1245 	    acpi_has_method(handle, "_GPD") &&
1246 	    acpi_has_method(handle, "_SPD"))
1247 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1248 
1249 	/* Only check for backlight functionality if one of the above hit. */
1250 	if (video_caps)
1251 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1252 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1253 				    &video_caps, NULL);
1254 
1255 	return video_caps;
1256 }
1257 EXPORT_SYMBOL(acpi_is_video_device);
1258 
1259 const char *acpi_device_hid(struct acpi_device *device)
1260 {
1261 	struct acpi_hardware_id *hid;
1262 
1263 	if (list_empty(&device->pnp.ids))
1264 		return dummy_hid;
1265 
1266 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1267 	return hid->id;
1268 }
1269 EXPORT_SYMBOL(acpi_device_hid);
1270 
1271 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1272 {
1273 	struct acpi_hardware_id *id;
1274 
1275 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1276 	if (!id)
1277 		return;
1278 
1279 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1280 	if (!id->id) {
1281 		kfree(id);
1282 		return;
1283 	}
1284 
1285 	list_add_tail(&id->list, &pnp->ids);
1286 	pnp->type.hardware_id = 1;
1287 }
1288 
1289 /*
1290  * Old IBM workstations have a DSDT bug wherein the SMBus object
1291  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1292  * prefix.  Work around this.
1293  */
1294 static bool acpi_ibm_smbus_match(acpi_handle handle)
1295 {
1296 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1297 	struct acpi_buffer path = { sizeof(node_name), node_name };
1298 
1299 	if (!dmi_name_in_vendors("IBM"))
1300 		return false;
1301 
1302 	/* Look for SMBS object */
1303 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1304 	    strcmp("SMBS", path.pointer))
1305 		return false;
1306 
1307 	/* Does it have the necessary (but misnamed) methods? */
1308 	if (acpi_has_method(handle, "SBI") &&
1309 	    acpi_has_method(handle, "SBR") &&
1310 	    acpi_has_method(handle, "SBW"))
1311 		return true;
1312 
1313 	return false;
1314 }
1315 
1316 static bool acpi_object_is_system_bus(acpi_handle handle)
1317 {
1318 	acpi_handle tmp;
1319 
1320 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1321 	    tmp == handle)
1322 		return true;
1323 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1324 	    tmp == handle)
1325 		return true;
1326 
1327 	return false;
1328 }
1329 
1330 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1331 			     int device_type)
1332 {
1333 	struct acpi_device_info *info = NULL;
1334 	struct acpi_pnp_device_id_list *cid_list;
1335 	int i;
1336 
1337 	switch (device_type) {
1338 	case ACPI_BUS_TYPE_DEVICE:
1339 		if (handle == ACPI_ROOT_OBJECT) {
1340 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1341 			break;
1342 		}
1343 
1344 		acpi_get_object_info(handle, &info);
1345 		if (!info) {
1346 			pr_err("%s: Error reading device info\n", __func__);
1347 			return;
1348 		}
1349 
1350 		if (info->valid & ACPI_VALID_HID) {
1351 			acpi_add_id(pnp, info->hardware_id.string);
1352 			pnp->type.platform_id = 1;
1353 		}
1354 		if (info->valid & ACPI_VALID_CID) {
1355 			cid_list = &info->compatible_id_list;
1356 			for (i = 0; i < cid_list->count; i++)
1357 				acpi_add_id(pnp, cid_list->ids[i].string);
1358 		}
1359 		if (info->valid & ACPI_VALID_ADR) {
1360 			pnp->bus_address = info->address;
1361 			pnp->type.bus_address = 1;
1362 		}
1363 		if (info->valid & ACPI_VALID_UID)
1364 			pnp->unique_id = kstrdup(info->unique_id.string,
1365 							GFP_KERNEL);
1366 		if (info->valid & ACPI_VALID_CLS)
1367 			acpi_add_id(pnp, info->class_code.string);
1368 
1369 		kfree(info);
1370 
1371 		/*
1372 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1373 		 * synthetic HIDs to make sure drivers can find them.
1374 		 */
1375 		if (acpi_is_video_device(handle))
1376 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1377 		else if (acpi_bay_match(handle))
1378 			acpi_add_id(pnp, ACPI_BAY_HID);
1379 		else if (acpi_dock_match(handle))
1380 			acpi_add_id(pnp, ACPI_DOCK_HID);
1381 		else if (acpi_ibm_smbus_match(handle))
1382 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1383 		else if (list_empty(&pnp->ids) &&
1384 			 acpi_object_is_system_bus(handle)) {
1385 			/* \_SB, \_TZ, LNXSYBUS */
1386 			acpi_add_id(pnp, ACPI_BUS_HID);
1387 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1388 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1389 		}
1390 
1391 		break;
1392 	case ACPI_BUS_TYPE_POWER:
1393 		acpi_add_id(pnp, ACPI_POWER_HID);
1394 		break;
1395 	case ACPI_BUS_TYPE_PROCESSOR:
1396 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1397 		break;
1398 	case ACPI_BUS_TYPE_THERMAL:
1399 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1400 		break;
1401 	case ACPI_BUS_TYPE_POWER_BUTTON:
1402 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1403 		break;
1404 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1405 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1406 		break;
1407 	case ACPI_BUS_TYPE_ECDT_EC:
1408 		acpi_add_id(pnp, ACPI_ECDT_HID);
1409 		break;
1410 	}
1411 }
1412 
1413 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1414 {
1415 	struct acpi_hardware_id *id, *tmp;
1416 
1417 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1418 		kfree_const(id->id);
1419 		kfree(id);
1420 	}
1421 	kfree(pnp->unique_id);
1422 }
1423 
1424 /**
1425  * acpi_dma_supported - Check DMA support for the specified device.
1426  * @adev: The pointer to acpi device
1427  *
1428  * Return false if DMA is not supported. Otherwise, return true
1429  */
1430 bool acpi_dma_supported(const struct acpi_device *adev)
1431 {
1432 	if (!adev)
1433 		return false;
1434 
1435 	if (adev->flags.cca_seen)
1436 		return true;
1437 
1438 	/*
1439 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1440 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1441 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1442 	*/
1443 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1444 		return true;
1445 
1446 	return false;
1447 }
1448 
1449 /**
1450  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1451  * @adev: The pointer to acpi device
1452  *
1453  * Return enum dev_dma_attr.
1454  */
1455 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1456 {
1457 	if (!acpi_dma_supported(adev))
1458 		return DEV_DMA_NOT_SUPPORTED;
1459 
1460 	if (adev->flags.coherent_dma)
1461 		return DEV_DMA_COHERENT;
1462 	else
1463 		return DEV_DMA_NON_COHERENT;
1464 }
1465 
1466 /**
1467  * acpi_dma_get_range() - Get device DMA parameters.
1468  *
1469  * @dev: device to configure
1470  * @dma_addr: pointer device DMA address result
1471  * @offset: pointer to the DMA offset result
1472  * @size: pointer to DMA range size result
1473  *
1474  * Evaluate DMA regions and return respectively DMA region start, offset
1475  * and size in dma_addr, offset and size on parsing success; it does not
1476  * update the passed in values on failure.
1477  *
1478  * Return 0 on success, < 0 on failure.
1479  */
1480 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1481 		       u64 *size)
1482 {
1483 	struct acpi_device *adev;
1484 	LIST_HEAD(list);
1485 	struct resource_entry *rentry;
1486 	int ret;
1487 	struct device *dma_dev = dev;
1488 	u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1489 
1490 	/*
1491 	 * Walk the device tree chasing an ACPI companion with a _DMA
1492 	 * object while we go. Stop if we find a device with an ACPI
1493 	 * companion containing a _DMA method.
1494 	 */
1495 	do {
1496 		adev = ACPI_COMPANION(dma_dev);
1497 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1498 			break;
1499 
1500 		dma_dev = dma_dev->parent;
1501 	} while (dma_dev);
1502 
1503 	if (!dma_dev)
1504 		return -ENODEV;
1505 
1506 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1507 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1508 		return -EINVAL;
1509 	}
1510 
1511 	ret = acpi_dev_get_dma_resources(adev, &list);
1512 	if (ret > 0) {
1513 		list_for_each_entry(rentry, &list, node) {
1514 			if (dma_offset && rentry->offset != dma_offset) {
1515 				ret = -EINVAL;
1516 				dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1517 				goto out;
1518 			}
1519 			dma_offset = rentry->offset;
1520 
1521 			/* Take lower and upper limits */
1522 			if (rentry->res->start < dma_start)
1523 				dma_start = rentry->res->start;
1524 			if (rentry->res->end > dma_end)
1525 				dma_end = rentry->res->end;
1526 		}
1527 
1528 		if (dma_start >= dma_end) {
1529 			ret = -EINVAL;
1530 			dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1531 			goto out;
1532 		}
1533 
1534 		*dma_addr = dma_start - dma_offset;
1535 		len = dma_end - dma_start;
1536 		*size = max(len, len + 1);
1537 		*offset = dma_offset;
1538 	}
1539  out:
1540 	acpi_dev_free_resource_list(&list);
1541 
1542 	return ret >= 0 ? 0 : ret;
1543 }
1544 
1545 #ifdef CONFIG_IOMMU_API
1546 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1547 			   struct fwnode_handle *fwnode,
1548 			   const struct iommu_ops *ops)
1549 {
1550 	int ret = iommu_fwspec_init(dev, fwnode, ops);
1551 
1552 	if (!ret)
1553 		ret = iommu_fwspec_add_ids(dev, &id, 1);
1554 
1555 	return ret;
1556 }
1557 
1558 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1559 {
1560 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1561 
1562 	return fwspec ? fwspec->ops : NULL;
1563 }
1564 
1565 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1566 						       const u32 *id_in)
1567 {
1568 	int err;
1569 	const struct iommu_ops *ops;
1570 
1571 	/*
1572 	 * If we already translated the fwspec there is nothing left to do,
1573 	 * return the iommu_ops.
1574 	 */
1575 	ops = acpi_iommu_fwspec_ops(dev);
1576 	if (ops)
1577 		return ops;
1578 
1579 	err = iort_iommu_configure_id(dev, id_in);
1580 	if (err && err != -EPROBE_DEFER)
1581 		err = viot_iommu_configure(dev);
1582 
1583 	/*
1584 	 * If we have reason to believe the IOMMU driver missed the initial
1585 	 * iommu_probe_device() call for dev, replay it to get things in order.
1586 	 */
1587 	if (!err && dev->bus && !device_iommu_mapped(dev))
1588 		err = iommu_probe_device(dev);
1589 
1590 	/* Ignore all other errors apart from EPROBE_DEFER */
1591 	if (err == -EPROBE_DEFER) {
1592 		return ERR_PTR(err);
1593 	} else if (err) {
1594 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1595 		return NULL;
1596 	}
1597 	return acpi_iommu_fwspec_ops(dev);
1598 }
1599 
1600 #else /* !CONFIG_IOMMU_API */
1601 
1602 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1603 			   struct fwnode_handle *fwnode,
1604 			   const struct iommu_ops *ops)
1605 {
1606 	return -ENODEV;
1607 }
1608 
1609 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1610 						       const u32 *id_in)
1611 {
1612 	return NULL;
1613 }
1614 
1615 #endif /* !CONFIG_IOMMU_API */
1616 
1617 /**
1618  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1619  * @dev: The pointer to the device
1620  * @attr: device dma attributes
1621  * @input_id: input device id const value pointer
1622  */
1623 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1624 			  const u32 *input_id)
1625 {
1626 	const struct iommu_ops *iommu;
1627 	u64 dma_addr = 0, size = 0;
1628 
1629 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1630 		set_dma_ops(dev, &dma_dummy_ops);
1631 		return 0;
1632 	}
1633 
1634 	acpi_arch_dma_setup(dev, &dma_addr, &size);
1635 
1636 	iommu = acpi_iommu_configure_id(dev, input_id);
1637 	if (PTR_ERR(iommu) == -EPROBE_DEFER)
1638 		return -EPROBE_DEFER;
1639 
1640 	arch_setup_dma_ops(dev, dma_addr, size,
1641 				iommu, attr == DEV_DMA_COHERENT);
1642 
1643 	return 0;
1644 }
1645 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1646 
1647 static void acpi_init_coherency(struct acpi_device *adev)
1648 {
1649 	unsigned long long cca = 0;
1650 	acpi_status status;
1651 	struct acpi_device *parent = adev->parent;
1652 
1653 	if (parent && parent->flags.cca_seen) {
1654 		/*
1655 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1656 		 * already saw one.
1657 		 */
1658 		adev->flags.cca_seen = 1;
1659 		cca = parent->flags.coherent_dma;
1660 	} else {
1661 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1662 					       NULL, &cca);
1663 		if (ACPI_SUCCESS(status))
1664 			adev->flags.cca_seen = 1;
1665 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1666 			/*
1667 			 * If architecture does not specify that _CCA is
1668 			 * required for DMA-able devices (e.g. x86),
1669 			 * we default to _CCA=1.
1670 			 */
1671 			cca = 1;
1672 		else
1673 			acpi_handle_debug(adev->handle,
1674 					  "ACPI device is missing _CCA.\n");
1675 	}
1676 
1677 	adev->flags.coherent_dma = cca;
1678 }
1679 
1680 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1681 {
1682 	bool *is_serial_bus_slave_p = data;
1683 
1684 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1685 		return 1;
1686 
1687 	*is_serial_bus_slave_p = true;
1688 
1689 	 /* no need to do more checking */
1690 	return -1;
1691 }
1692 
1693 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1694 {
1695 	struct acpi_device *parent = device->parent;
1696 	static const struct acpi_device_id indirect_io_hosts[] = {
1697 		{"HISI0191", 0},
1698 		{}
1699 	};
1700 
1701 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1702 }
1703 
1704 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1705 {
1706 	struct list_head resource_list;
1707 	bool is_serial_bus_slave = false;
1708 	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1709 	/*
1710 	 * These devices have multiple SerialBus resources and a client
1711 	 * device must be instantiated for each of them, each with
1712 	 * its own device id.
1713 	 * Normally we only instantiate one client device for the first
1714 	 * resource, using the ACPI HID as id. These special cases are handled
1715 	 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1716 	 * knows which client device id to use for each resource.
1717 	 */
1718 		{"BSG1160", },
1719 		{"BSG2150", },
1720 		{"CSC3551", },
1721 		{"INT33FE", },
1722 		{"INT3515", },
1723 		/* Non-conforming _HID for Cirrus Logic already released */
1724 		{"CLSA0100", },
1725 		{"CLSA0101", },
1726 	/*
1727 	 * Some ACPI devs contain SerialBus resources even though they are not
1728 	 * attached to a serial bus at all.
1729 	 */
1730 		{"MSHW0028", },
1731 	/*
1732 	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1733 	 * expects a regular tty cdev to be created (instead of the in kernel
1734 	 * serdev) and which have a kernel driver which expects a platform_dev
1735 	 * such as the rfkill-gpio driver.
1736 	 */
1737 		{"BCM4752", },
1738 		{"LNV4752", },
1739 		{}
1740 	};
1741 
1742 	if (acpi_is_indirect_io_slave(device))
1743 		return true;
1744 
1745 	/* Macs use device properties in lieu of _CRS resources */
1746 	if (x86_apple_machine &&
1747 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1748 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1749 	     fwnode_property_present(&device->fwnode, "baud")))
1750 		return true;
1751 
1752 	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1753 		return false;
1754 
1755 	INIT_LIST_HEAD(&resource_list);
1756 	acpi_dev_get_resources(device, &resource_list,
1757 			       acpi_check_serial_bus_slave,
1758 			       &is_serial_bus_slave);
1759 	acpi_dev_free_resource_list(&resource_list);
1760 
1761 	return is_serial_bus_slave;
1762 }
1763 
1764 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1765 			     int type)
1766 {
1767 	INIT_LIST_HEAD(&device->pnp.ids);
1768 	device->device_type = type;
1769 	device->handle = handle;
1770 	device->parent = acpi_bus_get_parent(handle);
1771 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1772 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1773 	acpi_device_get_busid(device);
1774 	acpi_set_pnp_ids(handle, &device->pnp, type);
1775 	acpi_init_properties(device);
1776 	acpi_bus_get_flags(device);
1777 	device->flags.match_driver = false;
1778 	device->flags.initialized = true;
1779 	device->flags.enumeration_by_parent =
1780 		acpi_device_enumeration_by_parent(device);
1781 	acpi_device_clear_enumerated(device);
1782 	device_initialize(&device->dev);
1783 	dev_set_uevent_suppress(&device->dev, true);
1784 	acpi_init_coherency(device);
1785 }
1786 
1787 static void acpi_scan_dep_init(struct acpi_device *adev)
1788 {
1789 	struct acpi_dep_data *dep;
1790 
1791 	list_for_each_entry(dep, &acpi_dep_list, node) {
1792 		if (dep->consumer == adev->handle) {
1793 			if (dep->honor_dep)
1794 				adev->flags.honor_deps = 1;
1795 
1796 			adev->dep_unmet++;
1797 		}
1798 	}
1799 }
1800 
1801 void acpi_device_add_finalize(struct acpi_device *device)
1802 {
1803 	dev_set_uevent_suppress(&device->dev, false);
1804 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1805 }
1806 
1807 static void acpi_scan_init_status(struct acpi_device *adev)
1808 {
1809 	if (acpi_bus_get_status(adev))
1810 		acpi_set_device_status(adev, 0);
1811 }
1812 
1813 static int acpi_add_single_object(struct acpi_device **child,
1814 				  acpi_handle handle, int type, bool dep_init)
1815 {
1816 	struct acpi_device *device;
1817 	bool release_dep_lock = false;
1818 	int result;
1819 
1820 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1821 	if (!device)
1822 		return -ENOMEM;
1823 
1824 	acpi_init_device_object(device, handle, type);
1825 	/*
1826 	 * Getting the status is delayed till here so that we can call
1827 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1828 	 * this must be done before the get power-/wakeup_dev-flags calls.
1829 	 */
1830 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1831 		if (dep_init) {
1832 			mutex_lock(&acpi_dep_list_lock);
1833 			/*
1834 			 * Hold the lock until the acpi_tie_acpi_dev() call
1835 			 * below to prevent concurrent acpi_scan_clear_dep()
1836 			 * from deleting a dependency list entry without
1837 			 * updating dep_unmet for the device.
1838 			 */
1839 			release_dep_lock = true;
1840 			acpi_scan_dep_init(device);
1841 		}
1842 		acpi_scan_init_status(device);
1843 	}
1844 
1845 	acpi_bus_get_power_flags(device);
1846 	acpi_bus_get_wakeup_device_flags(device);
1847 
1848 	result = acpi_tie_acpi_dev(device);
1849 
1850 	if (release_dep_lock)
1851 		mutex_unlock(&acpi_dep_list_lock);
1852 
1853 	if (!result)
1854 		result = __acpi_device_add(device, acpi_device_release);
1855 
1856 	if (result) {
1857 		acpi_device_release(&device->dev);
1858 		return result;
1859 	}
1860 
1861 	acpi_power_add_remove_device(device, true);
1862 	acpi_device_add_finalize(device);
1863 
1864 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1865 			  dev_name(&device->dev), device->parent ?
1866 				dev_name(&device->parent->dev) : "(null)");
1867 
1868 	*child = device;
1869 	return 0;
1870 }
1871 
1872 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1873 					    void *context)
1874 {
1875 	struct resource *res = context;
1876 
1877 	if (acpi_dev_resource_memory(ares, res))
1878 		return AE_CTRL_TERMINATE;
1879 
1880 	return AE_OK;
1881 }
1882 
1883 static bool acpi_device_should_be_hidden(acpi_handle handle)
1884 {
1885 	acpi_status status;
1886 	struct resource res;
1887 
1888 	/* Check if it should ignore the UART device */
1889 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1890 		return false;
1891 
1892 	/*
1893 	 * The UART device described in SPCR table is assumed to have only one
1894 	 * memory resource present. So we only look for the first one here.
1895 	 */
1896 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1897 				     acpi_get_resource_memory, &res);
1898 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1899 		return false;
1900 
1901 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1902 			 &res.start);
1903 
1904 	return true;
1905 }
1906 
1907 bool acpi_device_is_present(const struct acpi_device *adev)
1908 {
1909 	return adev->status.present || adev->status.functional;
1910 }
1911 
1912 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1913 				       const char *idstr,
1914 				       const struct acpi_device_id **matchid)
1915 {
1916 	const struct acpi_device_id *devid;
1917 
1918 	if (handler->match)
1919 		return handler->match(idstr, matchid);
1920 
1921 	for (devid = handler->ids; devid->id[0]; devid++)
1922 		if (!strcmp((char *)devid->id, idstr)) {
1923 			if (matchid)
1924 				*matchid = devid;
1925 
1926 			return true;
1927 		}
1928 
1929 	return false;
1930 }
1931 
1932 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1933 					const struct acpi_device_id **matchid)
1934 {
1935 	struct acpi_scan_handler *handler;
1936 
1937 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1938 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1939 			return handler;
1940 
1941 	return NULL;
1942 }
1943 
1944 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1945 {
1946 	if (!!hotplug->enabled == !!val)
1947 		return;
1948 
1949 	mutex_lock(&acpi_scan_lock);
1950 
1951 	hotplug->enabled = val;
1952 
1953 	mutex_unlock(&acpi_scan_lock);
1954 }
1955 
1956 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1957 {
1958 	struct acpi_hardware_id *hwid;
1959 
1960 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1961 		acpi_dock_add(adev);
1962 		return;
1963 	}
1964 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1965 		struct acpi_scan_handler *handler;
1966 
1967 		handler = acpi_scan_match_handler(hwid->id, NULL);
1968 		if (handler) {
1969 			adev->flags.hotplug_notify = true;
1970 			break;
1971 		}
1972 	}
1973 }
1974 
1975 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1976 {
1977 	struct acpi_handle_list dep_devices;
1978 	acpi_status status;
1979 	u32 count;
1980 	int i;
1981 
1982 	/*
1983 	 * Check for _HID here to avoid deferring the enumeration of:
1984 	 * 1. PCI devices.
1985 	 * 2. ACPI nodes describing USB ports.
1986 	 * Still, checking for _HID catches more then just these cases ...
1987 	 */
1988 	if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1989 	    !acpi_has_method(handle, "_HID"))
1990 		return 0;
1991 
1992 	status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1993 	if (ACPI_FAILURE(status)) {
1994 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1995 		return 0;
1996 	}
1997 
1998 	for (count = 0, i = 0; i < dep_devices.count; i++) {
1999 		struct acpi_device_info *info;
2000 		struct acpi_dep_data *dep;
2001 		bool skip, honor_dep;
2002 
2003 		status = acpi_get_object_info(dep_devices.handles[i], &info);
2004 		if (ACPI_FAILURE(status)) {
2005 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
2006 			continue;
2007 		}
2008 
2009 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2010 		honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2011 		kfree(info);
2012 
2013 		if (skip)
2014 			continue;
2015 
2016 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2017 		if (!dep)
2018 			continue;
2019 
2020 		count++;
2021 
2022 		dep->supplier = dep_devices.handles[i];
2023 		dep->consumer = handle;
2024 		dep->honor_dep = honor_dep;
2025 
2026 		mutex_lock(&acpi_dep_list_lock);
2027 		list_add_tail(&dep->node , &acpi_dep_list);
2028 		mutex_unlock(&acpi_dep_list_lock);
2029 	}
2030 
2031 	return count;
2032 }
2033 
2034 static bool acpi_bus_scan_second_pass;
2035 
2036 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2037 				      struct acpi_device **adev_p)
2038 {
2039 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2040 	acpi_object_type acpi_type;
2041 	int type;
2042 
2043 	if (device)
2044 		goto out;
2045 
2046 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2047 		return AE_OK;
2048 
2049 	switch (acpi_type) {
2050 	case ACPI_TYPE_DEVICE:
2051 		if (acpi_device_should_be_hidden(handle))
2052 			return AE_OK;
2053 
2054 		/* Bail out if there are dependencies. */
2055 		if (acpi_scan_check_dep(handle, check_dep) > 0) {
2056 			acpi_bus_scan_second_pass = true;
2057 			return AE_CTRL_DEPTH;
2058 		}
2059 
2060 		fallthrough;
2061 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2062 		type = ACPI_BUS_TYPE_DEVICE;
2063 		break;
2064 
2065 	case ACPI_TYPE_PROCESSOR:
2066 		type = ACPI_BUS_TYPE_PROCESSOR;
2067 		break;
2068 
2069 	case ACPI_TYPE_THERMAL:
2070 		type = ACPI_BUS_TYPE_THERMAL;
2071 		break;
2072 
2073 	case ACPI_TYPE_POWER:
2074 		acpi_add_power_resource(handle);
2075 		fallthrough;
2076 	default:
2077 		return AE_OK;
2078 	}
2079 
2080 	/*
2081 	 * If check_dep is true at this point, the device has no dependencies,
2082 	 * or the creation of the device object would have been postponed above.
2083 	 */
2084 	acpi_add_single_object(&device, handle, type, !check_dep);
2085 	if (!device)
2086 		return AE_CTRL_DEPTH;
2087 
2088 	acpi_scan_init_hotplug(device);
2089 
2090 out:
2091 	if (!*adev_p)
2092 		*adev_p = device;
2093 
2094 	return AE_OK;
2095 }
2096 
2097 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2098 					void *not_used, void **ret_p)
2099 {
2100 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2101 }
2102 
2103 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2104 					void *not_used, void **ret_p)
2105 {
2106 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2107 }
2108 
2109 static void acpi_default_enumeration(struct acpi_device *device)
2110 {
2111 	/*
2112 	 * Do not enumerate devices with enumeration_by_parent flag set as
2113 	 * they will be enumerated by their respective parents.
2114 	 */
2115 	if (!device->flags.enumeration_by_parent) {
2116 		acpi_create_platform_device(device, NULL);
2117 		acpi_device_set_enumerated(device);
2118 	} else {
2119 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2120 					     ACPI_RECONFIG_DEVICE_ADD, device);
2121 	}
2122 }
2123 
2124 static const struct acpi_device_id generic_device_ids[] = {
2125 	{ACPI_DT_NAMESPACE_HID, },
2126 	{"", },
2127 };
2128 
2129 static int acpi_generic_device_attach(struct acpi_device *adev,
2130 				      const struct acpi_device_id *not_used)
2131 {
2132 	/*
2133 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2134 	 * below can be unconditional.
2135 	 */
2136 	if (adev->data.of_compatible)
2137 		acpi_default_enumeration(adev);
2138 
2139 	return 1;
2140 }
2141 
2142 static struct acpi_scan_handler generic_device_handler = {
2143 	.ids = generic_device_ids,
2144 	.attach = acpi_generic_device_attach,
2145 };
2146 
2147 static int acpi_scan_attach_handler(struct acpi_device *device)
2148 {
2149 	struct acpi_hardware_id *hwid;
2150 	int ret = 0;
2151 
2152 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2153 		const struct acpi_device_id *devid;
2154 		struct acpi_scan_handler *handler;
2155 
2156 		handler = acpi_scan_match_handler(hwid->id, &devid);
2157 		if (handler) {
2158 			if (!handler->attach) {
2159 				device->pnp.type.platform_id = 0;
2160 				continue;
2161 			}
2162 			device->handler = handler;
2163 			ret = handler->attach(device, devid);
2164 			if (ret > 0)
2165 				break;
2166 
2167 			device->handler = NULL;
2168 			if (ret < 0)
2169 				break;
2170 		}
2171 	}
2172 
2173 	return ret;
2174 }
2175 
2176 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2177 {
2178 	bool skip = !first_pass && device->flags.visited;
2179 	acpi_handle ejd;
2180 	int ret;
2181 
2182 	if (skip)
2183 		goto ok;
2184 
2185 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2186 		register_dock_dependent_device(device, ejd);
2187 
2188 	acpi_bus_get_status(device);
2189 	/* Skip devices that are not ready for enumeration (e.g. not present) */
2190 	if (!acpi_dev_ready_for_enumeration(device)) {
2191 		device->flags.initialized = false;
2192 		acpi_device_clear_enumerated(device);
2193 		device->flags.power_manageable = 0;
2194 		return 0;
2195 	}
2196 	if (device->handler)
2197 		goto ok;
2198 
2199 	if (!device->flags.initialized) {
2200 		device->flags.power_manageable =
2201 			device->power.states[ACPI_STATE_D0].flags.valid;
2202 		if (acpi_bus_init_power(device))
2203 			device->flags.power_manageable = 0;
2204 
2205 		device->flags.initialized = true;
2206 	} else if (device->flags.visited) {
2207 		goto ok;
2208 	}
2209 
2210 	ret = acpi_scan_attach_handler(device);
2211 	if (ret < 0)
2212 		return 0;
2213 
2214 	device->flags.match_driver = true;
2215 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2216 		acpi_device_set_enumerated(device);
2217 		goto ok;
2218 	}
2219 
2220 	ret = device_attach(&device->dev);
2221 	if (ret < 0)
2222 		return 0;
2223 
2224 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2225 		acpi_default_enumeration(device);
2226 	else
2227 		acpi_device_set_enumerated(device);
2228 
2229 ok:
2230 	acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2231 
2232 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2233 		device->handler->hotplug.notify_online(device);
2234 
2235 	return 0;
2236 }
2237 
2238 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2239 {
2240 	struct acpi_device *adev;
2241 
2242 	adev = acpi_bus_get_acpi_device(dep->consumer);
2243 	if (adev) {
2244 		*(struct acpi_device **)data = adev;
2245 		return 1;
2246 	}
2247 	/* Continue parsing if the device object is not present. */
2248 	return 0;
2249 }
2250 
2251 struct acpi_scan_clear_dep_work {
2252 	struct work_struct work;
2253 	struct acpi_device *adev;
2254 };
2255 
2256 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2257 {
2258 	struct acpi_scan_clear_dep_work *cdw;
2259 
2260 	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2261 
2262 	acpi_scan_lock_acquire();
2263 	acpi_bus_attach(cdw->adev, (void *)true);
2264 	acpi_scan_lock_release();
2265 
2266 	acpi_dev_put(cdw->adev);
2267 	kfree(cdw);
2268 }
2269 
2270 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2271 {
2272 	struct acpi_scan_clear_dep_work *cdw;
2273 
2274 	if (adev->dep_unmet)
2275 		return false;
2276 
2277 	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2278 	if (!cdw)
2279 		return false;
2280 
2281 	cdw->adev = adev;
2282 	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2283 	/*
2284 	 * Since the work function may block on the lock until the entire
2285 	 * initial enumeration of devices is complete, put it into the unbound
2286 	 * workqueue.
2287 	 */
2288 	queue_work(system_unbound_wq, &cdw->work);
2289 
2290 	return true;
2291 }
2292 
2293 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2294 {
2295 	struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2296 
2297 	if (adev) {
2298 		adev->dep_unmet--;
2299 		if (!acpi_scan_clear_dep_queue(adev))
2300 			acpi_dev_put(adev);
2301 	}
2302 
2303 	list_del(&dep->node);
2304 	kfree(dep);
2305 
2306 	return 0;
2307 }
2308 
2309 /**
2310  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2311  * @handle:	The ACPI handle of the supplier device
2312  * @callback:	Pointer to the callback function to apply
2313  * @data:	Pointer to some data to pass to the callback
2314  *
2315  * The return value of the callback determines this function's behaviour. If 0
2316  * is returned we continue to iterate over acpi_dep_list. If a positive value
2317  * is returned then the loop is broken but this function returns 0. If a
2318  * negative value is returned by the callback then the loop is broken and that
2319  * value is returned as the final error.
2320  */
2321 static int acpi_walk_dep_device_list(acpi_handle handle,
2322 				int (*callback)(struct acpi_dep_data *, void *),
2323 				void *data)
2324 {
2325 	struct acpi_dep_data *dep, *tmp;
2326 	int ret = 0;
2327 
2328 	mutex_lock(&acpi_dep_list_lock);
2329 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2330 		if (dep->supplier == handle) {
2331 			ret = callback(dep, data);
2332 			if (ret)
2333 				break;
2334 		}
2335 	}
2336 	mutex_unlock(&acpi_dep_list_lock);
2337 
2338 	return ret > 0 ? 0 : ret;
2339 }
2340 
2341 /**
2342  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2343  * @supplier: Pointer to the supplier &struct acpi_device
2344  *
2345  * Clear dependencies on the given device.
2346  */
2347 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2348 {
2349 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2350 }
2351 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2352 
2353 /**
2354  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2355  * @device: Pointer to the &struct acpi_device to check
2356  *
2357  * Check if the device is present and has no unmet dependencies.
2358  *
2359  * Return true if the device is ready for enumeratino. Otherwise, return false.
2360  */
2361 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2362 {
2363 	if (device->flags.honor_deps && device->dep_unmet)
2364 		return false;
2365 
2366 	return acpi_device_is_present(device);
2367 }
2368 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2369 
2370 /**
2371  * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2372  * @supplier: Pointer to the dependee device
2373  *
2374  * Returns the first &struct acpi_device which declares itself dependent on
2375  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2376  *
2377  * The caller is responsible for putting the reference to adev when it is no
2378  * longer needed.
2379  */
2380 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2381 {
2382 	struct acpi_device *adev = NULL;
2383 
2384 	acpi_walk_dep_device_list(supplier->handle,
2385 				  acpi_dev_get_first_consumer_dev_cb, &adev);
2386 
2387 	return adev;
2388 }
2389 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2390 
2391 /**
2392  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2393  * @handle: Root of the namespace scope to scan.
2394  *
2395  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2396  * found devices.
2397  *
2398  * If no devices were found, -ENODEV is returned, but it does not mean that
2399  * there has been a real error.  There just have been no suitable ACPI objects
2400  * in the table trunk from which the kernel could create a device and add an
2401  * appropriate driver.
2402  *
2403  * Must be called under acpi_scan_lock.
2404  */
2405 int acpi_bus_scan(acpi_handle handle)
2406 {
2407 	struct acpi_device *device = NULL;
2408 
2409 	acpi_bus_scan_second_pass = false;
2410 
2411 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2412 
2413 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2414 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2415 				    acpi_bus_check_add_1, NULL, NULL,
2416 				    (void **)&device);
2417 
2418 	if (!device)
2419 		return -ENODEV;
2420 
2421 	acpi_bus_attach(device, (void *)true);
2422 
2423 	if (!acpi_bus_scan_second_pass)
2424 		return 0;
2425 
2426 	/* Pass 2: Enumerate all of the remaining devices. */
2427 
2428 	device = NULL;
2429 
2430 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2431 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2432 				    acpi_bus_check_add_2, NULL, NULL,
2433 				    (void **)&device);
2434 
2435 	acpi_bus_attach(device, NULL);
2436 
2437 	return 0;
2438 }
2439 EXPORT_SYMBOL(acpi_bus_scan);
2440 
2441 static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2442 {
2443 	struct acpi_scan_handler *handler = adev->handler;
2444 
2445 	acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2446 
2447 	adev->flags.match_driver = false;
2448 	if (handler) {
2449 		if (handler->detach)
2450 			handler->detach(adev);
2451 
2452 		adev->handler = NULL;
2453 	} else {
2454 		device_release_driver(&adev->dev);
2455 	}
2456 	/*
2457 	 * Most likely, the device is going away, so put it into D3cold before
2458 	 * that.
2459 	 */
2460 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2461 	adev->flags.initialized = false;
2462 	acpi_device_clear_enumerated(adev);
2463 
2464 	return 0;
2465 }
2466 
2467 /**
2468  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2469  * @adev: Root of the ACPI namespace scope to walk.
2470  *
2471  * Must be called under acpi_scan_lock.
2472  */
2473 void acpi_bus_trim(struct acpi_device *adev)
2474 {
2475 	acpi_bus_trim_one(adev, NULL);
2476 }
2477 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2478 
2479 int acpi_bus_register_early_device(int type)
2480 {
2481 	struct acpi_device *device = NULL;
2482 	int result;
2483 
2484 	result = acpi_add_single_object(&device, NULL, type, false);
2485 	if (result)
2486 		return result;
2487 
2488 	device->flags.match_driver = true;
2489 	return device_attach(&device->dev);
2490 }
2491 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2492 
2493 static void acpi_bus_scan_fixed(void)
2494 {
2495 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2496 		struct acpi_device *adev = NULL;
2497 
2498 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2499 				       false);
2500 		if (adev) {
2501 			adev->flags.match_driver = true;
2502 			if (device_attach(&adev->dev) >= 0)
2503 				device_init_wakeup(&adev->dev, true);
2504 			else
2505 				dev_dbg(&adev->dev, "No driver\n");
2506 		}
2507 	}
2508 
2509 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2510 		struct acpi_device *adev = NULL;
2511 
2512 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2513 				       false);
2514 		if (adev) {
2515 			adev->flags.match_driver = true;
2516 			if (device_attach(&adev->dev) < 0)
2517 				dev_dbg(&adev->dev, "No driver\n");
2518 		}
2519 	}
2520 }
2521 
2522 static void __init acpi_get_spcr_uart_addr(void)
2523 {
2524 	acpi_status status;
2525 	struct acpi_table_spcr *spcr_ptr;
2526 
2527 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2528 				(struct acpi_table_header **)&spcr_ptr);
2529 	if (ACPI_FAILURE(status)) {
2530 		pr_warn("STAO table present, but SPCR is missing\n");
2531 		return;
2532 	}
2533 
2534 	spcr_uart_addr = spcr_ptr->serial_port.address;
2535 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2536 }
2537 
2538 static bool acpi_scan_initialized;
2539 
2540 void __init acpi_scan_init(void)
2541 {
2542 	acpi_status status;
2543 	struct acpi_table_stao *stao_ptr;
2544 
2545 	acpi_pci_root_init();
2546 	acpi_pci_link_init();
2547 	acpi_processor_init();
2548 	acpi_platform_init();
2549 	acpi_lpss_init();
2550 	acpi_apd_init();
2551 	acpi_cmos_rtc_init();
2552 	acpi_container_init();
2553 	acpi_memory_hotplug_init();
2554 	acpi_watchdog_init();
2555 	acpi_pnp_init();
2556 	acpi_int340x_thermal_init();
2557 	acpi_amba_init();
2558 	acpi_init_lpit();
2559 
2560 	acpi_scan_add_handler(&generic_device_handler);
2561 
2562 	/*
2563 	 * If there is STAO table, check whether it needs to ignore the UART
2564 	 * device in SPCR table.
2565 	 */
2566 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2567 				(struct acpi_table_header **)&stao_ptr);
2568 	if (ACPI_SUCCESS(status)) {
2569 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2570 			pr_info("STAO Name List not yet supported.\n");
2571 
2572 		if (stao_ptr->ignore_uart)
2573 			acpi_get_spcr_uart_addr();
2574 
2575 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2576 	}
2577 
2578 	acpi_gpe_apply_masked_gpes();
2579 	acpi_update_all_gpes();
2580 
2581 	/*
2582 	 * Although we call __add_memory() that is documented to require the
2583 	 * device_hotplug_lock, it is not necessary here because this is an
2584 	 * early code when userspace or any other code path cannot trigger
2585 	 * hotplug/hotunplug operations.
2586 	 */
2587 	mutex_lock(&acpi_scan_lock);
2588 	/*
2589 	 * Enumerate devices in the ACPI namespace.
2590 	 */
2591 	if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2592 		goto unlock;
2593 
2594 	acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2595 	if (!acpi_root)
2596 		goto unlock;
2597 
2598 	/* Fixed feature devices do not exist on HW-reduced platform */
2599 	if (!acpi_gbl_reduced_hardware)
2600 		acpi_bus_scan_fixed();
2601 
2602 	acpi_turn_off_unused_power_resources();
2603 
2604 	acpi_scan_initialized = true;
2605 
2606 unlock:
2607 	mutex_unlock(&acpi_scan_lock);
2608 }
2609 
2610 static struct acpi_probe_entry *ape;
2611 static int acpi_probe_count;
2612 static DEFINE_MUTEX(acpi_probe_mutex);
2613 
2614 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2615 				  const unsigned long end)
2616 {
2617 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2618 		if (!ape->probe_subtbl(header, end))
2619 			acpi_probe_count++;
2620 
2621 	return 0;
2622 }
2623 
2624 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2625 {
2626 	int count = 0;
2627 
2628 	if (acpi_disabled)
2629 		return 0;
2630 
2631 	mutex_lock(&acpi_probe_mutex);
2632 	for (ape = ap_head; nr; ape++, nr--) {
2633 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2634 			acpi_probe_count = 0;
2635 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2636 			count += acpi_probe_count;
2637 		} else {
2638 			int res;
2639 			res = acpi_table_parse(ape->id, ape->probe_table);
2640 			if (!res)
2641 				count++;
2642 		}
2643 	}
2644 	mutex_unlock(&acpi_probe_mutex);
2645 
2646 	return count;
2647 }
2648 
2649 static void acpi_table_events_fn(struct work_struct *work)
2650 {
2651 	acpi_scan_lock_acquire();
2652 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2653 	acpi_scan_lock_release();
2654 
2655 	kfree(work);
2656 }
2657 
2658 void acpi_scan_table_notify(void)
2659 {
2660 	struct work_struct *work;
2661 
2662 	if (!acpi_scan_initialized)
2663 		return;
2664 
2665 	work = kmalloc(sizeof(*work), GFP_KERNEL);
2666 	if (!work)
2667 		return;
2668 
2669 	INIT_WORK(work, acpi_table_events_fn);
2670 	schedule_work(work);
2671 }
2672 
2673 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2674 {
2675 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2676 }
2677 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2678 
2679 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2680 {
2681 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2682 }
2683 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2684