xref: /openbmc/linux/drivers/acpi/scan.c (revision c699ce1a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 #include <linux/dma-direct.h>
24 
25 #include "internal.h"
26 
27 extern struct acpi_device *acpi_root;
28 
29 #define ACPI_BUS_CLASS			"system_bus"
30 #define ACPI_BUS_HID			"LNXSYBUS"
31 #define ACPI_BUS_DEVICE_NAME		"System Bus"
32 
33 #define INVALID_ACPI_HANDLE	((acpi_handle)ZERO_PAGE(0))
34 
35 static const char *dummy_hid = "device";
36 
37 static LIST_HEAD(acpi_dep_list);
38 static DEFINE_MUTEX(acpi_dep_list_lock);
39 LIST_HEAD(acpi_bus_id_list);
40 static DEFINE_MUTEX(acpi_scan_lock);
41 static LIST_HEAD(acpi_scan_handlers_list);
42 DEFINE_MUTEX(acpi_device_lock);
43 LIST_HEAD(acpi_wakeup_device_list);
44 static DEFINE_MUTEX(acpi_hp_context_lock);
45 
46 /*
47  * The UART device described by the SPCR table is the only object which needs
48  * special-casing. Everything else is covered by ACPI namespace paths in STAO
49  * table.
50  */
51 static u64 spcr_uart_addr;
52 
53 void acpi_scan_lock_acquire(void)
54 {
55 	mutex_lock(&acpi_scan_lock);
56 }
57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
58 
59 void acpi_scan_lock_release(void)
60 {
61 	mutex_unlock(&acpi_scan_lock);
62 }
63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
64 
65 void acpi_lock_hp_context(void)
66 {
67 	mutex_lock(&acpi_hp_context_lock);
68 }
69 
70 void acpi_unlock_hp_context(void)
71 {
72 	mutex_unlock(&acpi_hp_context_lock);
73 }
74 
75 void acpi_initialize_hp_context(struct acpi_device *adev,
76 				struct acpi_hotplug_context *hp,
77 				int (*notify)(struct acpi_device *, u32),
78 				void (*uevent)(struct acpi_device *, u32))
79 {
80 	acpi_lock_hp_context();
81 	hp->notify = notify;
82 	hp->uevent = uevent;
83 	acpi_set_hp_context(adev, hp);
84 	acpi_unlock_hp_context();
85 }
86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
87 
88 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
89 {
90 	if (!handler)
91 		return -EINVAL;
92 
93 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
94 	return 0;
95 }
96 
97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
98 				       const char *hotplug_profile_name)
99 {
100 	int error;
101 
102 	error = acpi_scan_add_handler(handler);
103 	if (error)
104 		return error;
105 
106 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
107 	return 0;
108 }
109 
110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
111 {
112 	struct acpi_device_physical_node *pn;
113 	bool offline = true;
114 	char *envp[] = { "EVENT=offline", NULL };
115 
116 	/*
117 	 * acpi_container_offline() calls this for all of the container's
118 	 * children under the container's physical_node_lock lock.
119 	 */
120 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
121 
122 	list_for_each_entry(pn, &adev->physical_node_list, node)
123 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
124 			if (uevent)
125 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
126 
127 			offline = false;
128 			break;
129 		}
130 
131 	mutex_unlock(&adev->physical_node_lock);
132 	return offline;
133 }
134 
135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
136 				    void **ret_p)
137 {
138 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
139 	struct acpi_device_physical_node *pn;
140 	bool second_pass = (bool)data;
141 	acpi_status status = AE_OK;
142 
143 	if (!device)
144 		return AE_OK;
145 
146 	if (device->handler && !device->handler->hotplug.enabled) {
147 		*ret_p = &device->dev;
148 		return AE_SUPPORT;
149 	}
150 
151 	mutex_lock(&device->physical_node_lock);
152 
153 	list_for_each_entry(pn, &device->physical_node_list, node) {
154 		int ret;
155 
156 		if (second_pass) {
157 			/* Skip devices offlined by the first pass. */
158 			if (pn->put_online)
159 				continue;
160 		} else {
161 			pn->put_online = false;
162 		}
163 		ret = device_offline(pn->dev);
164 		if (ret >= 0) {
165 			pn->put_online = !ret;
166 		} else {
167 			*ret_p = pn->dev;
168 			if (second_pass) {
169 				status = AE_ERROR;
170 				break;
171 			}
172 		}
173 	}
174 
175 	mutex_unlock(&device->physical_node_lock);
176 
177 	return status;
178 }
179 
180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
181 				   void **ret_p)
182 {
183 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
184 	struct acpi_device_physical_node *pn;
185 
186 	if (!device)
187 		return AE_OK;
188 
189 	mutex_lock(&device->physical_node_lock);
190 
191 	list_for_each_entry(pn, &device->physical_node_list, node)
192 		if (pn->put_online) {
193 			device_online(pn->dev);
194 			pn->put_online = false;
195 		}
196 
197 	mutex_unlock(&device->physical_node_lock);
198 
199 	return AE_OK;
200 }
201 
202 static int acpi_scan_try_to_offline(struct acpi_device *device)
203 {
204 	acpi_handle handle = device->handle;
205 	struct device *errdev = NULL;
206 	acpi_status status;
207 
208 	/*
209 	 * Carry out two passes here and ignore errors in the first pass,
210 	 * because if the devices in question are memory blocks and
211 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
212 	 * that the other blocks depend on, but it is not known in advance which
213 	 * block holds them.
214 	 *
215 	 * If the first pass is successful, the second one isn't needed, though.
216 	 */
217 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
218 				     NULL, acpi_bus_offline, (void *)false,
219 				     (void **)&errdev);
220 	if (status == AE_SUPPORT) {
221 		dev_warn(errdev, "Offline disabled.\n");
222 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223 				    acpi_bus_online, NULL, NULL, NULL);
224 		return -EPERM;
225 	}
226 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
227 	if (errdev) {
228 		errdev = NULL;
229 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
230 				    NULL, acpi_bus_offline, (void *)true,
231 				    (void **)&errdev);
232 		if (!errdev)
233 			acpi_bus_offline(handle, 0, (void *)true,
234 					 (void **)&errdev);
235 
236 		if (errdev) {
237 			dev_warn(errdev, "Offline failed.\n");
238 			acpi_bus_online(handle, 0, NULL, NULL);
239 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
240 					    ACPI_UINT32_MAX, acpi_bus_online,
241 					    NULL, NULL, NULL);
242 			return -EBUSY;
243 		}
244 	}
245 	return 0;
246 }
247 
248 static int acpi_scan_hot_remove(struct acpi_device *device)
249 {
250 	acpi_handle handle = device->handle;
251 	unsigned long long sta;
252 	acpi_status status;
253 
254 	if (device->handler && device->handler->hotplug.demand_offline) {
255 		if (!acpi_scan_is_offline(device, true))
256 			return -EBUSY;
257 	} else {
258 		int error = acpi_scan_try_to_offline(device);
259 		if (error)
260 			return error;
261 	}
262 
263 	acpi_handle_debug(handle, "Ejecting\n");
264 
265 	acpi_bus_trim(device);
266 
267 	acpi_evaluate_lck(handle, 0);
268 	/*
269 	 * TBD: _EJD support.
270 	 */
271 	status = acpi_evaluate_ej0(handle);
272 	if (status == AE_NOT_FOUND)
273 		return -ENODEV;
274 	else if (ACPI_FAILURE(status))
275 		return -EIO;
276 
277 	/*
278 	 * Verify if eject was indeed successful.  If not, log an error
279 	 * message.  No need to call _OST since _EJ0 call was made OK.
280 	 */
281 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
282 	if (ACPI_FAILURE(status)) {
283 		acpi_handle_warn(handle,
284 			"Status check after eject failed (0x%x)\n", status);
285 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
286 		acpi_handle_warn(handle,
287 			"Eject incomplete - status 0x%llx\n", sta);
288 	}
289 
290 	return 0;
291 }
292 
293 static int acpi_scan_device_not_present(struct acpi_device *adev)
294 {
295 	if (!acpi_device_enumerated(adev)) {
296 		dev_warn(&adev->dev, "Still not present\n");
297 		return -EALREADY;
298 	}
299 	acpi_bus_trim(adev);
300 	return 0;
301 }
302 
303 static int acpi_scan_device_check(struct acpi_device *adev)
304 {
305 	int error;
306 
307 	acpi_bus_get_status(adev);
308 	if (adev->status.present || adev->status.functional) {
309 		/*
310 		 * This function is only called for device objects for which
311 		 * matching scan handlers exist.  The only situation in which
312 		 * the scan handler is not attached to this device object yet
313 		 * is when the device has just appeared (either it wasn't
314 		 * present at all before or it was removed and then added
315 		 * again).
316 		 */
317 		if (adev->handler) {
318 			dev_warn(&adev->dev, "Already enumerated\n");
319 			return -EALREADY;
320 		}
321 		error = acpi_bus_scan(adev->handle);
322 		if (error) {
323 			dev_warn(&adev->dev, "Namespace scan failure\n");
324 			return error;
325 		}
326 		if (!adev->handler) {
327 			dev_warn(&adev->dev, "Enumeration failure\n");
328 			error = -ENODEV;
329 		}
330 	} else {
331 		error = acpi_scan_device_not_present(adev);
332 	}
333 	return error;
334 }
335 
336 static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
337 {
338 	struct acpi_scan_handler *handler = adev->handler;
339 	int error;
340 
341 	acpi_bus_get_status(adev);
342 	if (!(adev->status.present || adev->status.functional)) {
343 		acpi_scan_device_not_present(adev);
344 		return 0;
345 	}
346 	if (handler && handler->hotplug.scan_dependent)
347 		return handler->hotplug.scan_dependent(adev);
348 
349 	error = acpi_bus_scan(adev->handle);
350 	if (error) {
351 		dev_warn(&adev->dev, "Namespace scan failure\n");
352 		return error;
353 	}
354 	return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
355 }
356 
357 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
358 {
359 	switch (type) {
360 	case ACPI_NOTIFY_BUS_CHECK:
361 		return acpi_scan_bus_check(adev, NULL);
362 	case ACPI_NOTIFY_DEVICE_CHECK:
363 		return acpi_scan_device_check(adev);
364 	case ACPI_NOTIFY_EJECT_REQUEST:
365 	case ACPI_OST_EC_OSPM_EJECT:
366 		if (adev->handler && !adev->handler->hotplug.enabled) {
367 			dev_info(&adev->dev, "Eject disabled\n");
368 			return -EPERM;
369 		}
370 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
371 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
372 		return acpi_scan_hot_remove(adev);
373 	}
374 	return -EINVAL;
375 }
376 
377 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
378 {
379 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
380 	int error = -ENODEV;
381 
382 	lock_device_hotplug();
383 	mutex_lock(&acpi_scan_lock);
384 
385 	/*
386 	 * The device object's ACPI handle cannot become invalid as long as we
387 	 * are holding acpi_scan_lock, but it might have become invalid before
388 	 * that lock was acquired.
389 	 */
390 	if (adev->handle == INVALID_ACPI_HANDLE)
391 		goto err_out;
392 
393 	if (adev->flags.is_dock_station) {
394 		error = dock_notify(adev, src);
395 	} else if (adev->flags.hotplug_notify) {
396 		error = acpi_generic_hotplug_event(adev, src);
397 	} else {
398 		int (*notify)(struct acpi_device *, u32);
399 
400 		acpi_lock_hp_context();
401 		notify = adev->hp ? adev->hp->notify : NULL;
402 		acpi_unlock_hp_context();
403 		/*
404 		 * There may be additional notify handlers for device objects
405 		 * without the .event() callback, so ignore them here.
406 		 */
407 		if (notify)
408 			error = notify(adev, src);
409 		else
410 			goto out;
411 	}
412 	switch (error) {
413 	case 0:
414 		ost_code = ACPI_OST_SC_SUCCESS;
415 		break;
416 	case -EPERM:
417 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
418 		break;
419 	case -EBUSY:
420 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
421 		break;
422 	default:
423 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
424 		break;
425 	}
426 
427  err_out:
428 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
429 
430  out:
431 	acpi_put_acpi_dev(adev);
432 	mutex_unlock(&acpi_scan_lock);
433 	unlock_device_hotplug();
434 }
435 
436 static void acpi_free_power_resources_lists(struct acpi_device *device)
437 {
438 	int i;
439 
440 	if (device->wakeup.flags.valid)
441 		acpi_power_resources_list_free(&device->wakeup.resources);
442 
443 	if (!device->power.flags.power_resources)
444 		return;
445 
446 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
447 		struct acpi_device_power_state *ps = &device->power.states[i];
448 		acpi_power_resources_list_free(&ps->resources);
449 	}
450 }
451 
452 static void acpi_device_release(struct device *dev)
453 {
454 	struct acpi_device *acpi_dev = to_acpi_device(dev);
455 
456 	acpi_free_properties(acpi_dev);
457 	acpi_free_pnp_ids(&acpi_dev->pnp);
458 	acpi_free_power_resources_lists(acpi_dev);
459 	kfree(acpi_dev);
460 }
461 
462 static void acpi_device_del(struct acpi_device *device)
463 {
464 	struct acpi_device_bus_id *acpi_device_bus_id;
465 
466 	mutex_lock(&acpi_device_lock);
467 
468 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
469 		if (!strcmp(acpi_device_bus_id->bus_id,
470 			    acpi_device_hid(device))) {
471 			ida_free(&acpi_device_bus_id->instance_ida,
472 				 device->pnp.instance_no);
473 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
474 				list_del(&acpi_device_bus_id->node);
475 				kfree_const(acpi_device_bus_id->bus_id);
476 				kfree(acpi_device_bus_id);
477 			}
478 			break;
479 		}
480 
481 	list_del(&device->wakeup_list);
482 
483 	mutex_unlock(&acpi_device_lock);
484 
485 	acpi_power_add_remove_device(device, false);
486 	acpi_device_remove_files(device);
487 	if (device->remove)
488 		device->remove(device);
489 
490 	device_del(&device->dev);
491 }
492 
493 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
494 
495 static LIST_HEAD(acpi_device_del_list);
496 static DEFINE_MUTEX(acpi_device_del_lock);
497 
498 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
499 {
500 	for (;;) {
501 		struct acpi_device *adev;
502 
503 		mutex_lock(&acpi_device_del_lock);
504 
505 		if (list_empty(&acpi_device_del_list)) {
506 			mutex_unlock(&acpi_device_del_lock);
507 			break;
508 		}
509 		adev = list_first_entry(&acpi_device_del_list,
510 					struct acpi_device, del_list);
511 		list_del(&adev->del_list);
512 
513 		mutex_unlock(&acpi_device_del_lock);
514 
515 		blocking_notifier_call_chain(&acpi_reconfig_chain,
516 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
517 
518 		acpi_device_del(adev);
519 		/*
520 		 * Drop references to all power resources that might have been
521 		 * used by the device.
522 		 */
523 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
524 		acpi_dev_put(adev);
525 	}
526 }
527 
528 /**
529  * acpi_scan_drop_device - Drop an ACPI device object.
530  * @handle: Handle of an ACPI namespace node, not used.
531  * @context: Address of the ACPI device object to drop.
532  *
533  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
534  * namespace node the device object pointed to by @context is attached to.
535  *
536  * The unregistration is carried out asynchronously to avoid running
537  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
538  * ensure the correct ordering (the device objects must be unregistered in the
539  * same order in which the corresponding namespace nodes are deleted).
540  */
541 static void acpi_scan_drop_device(acpi_handle handle, void *context)
542 {
543 	static DECLARE_WORK(work, acpi_device_del_work_fn);
544 	struct acpi_device *adev = context;
545 
546 	mutex_lock(&acpi_device_del_lock);
547 
548 	/*
549 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
550 	 * won't run after any hotplug work items submitted subsequently.  That
551 	 * prevents attempts to register device objects identical to those being
552 	 * deleted from happening concurrently (such attempts result from
553 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
554 	 * run after all of the work items submitted previously, which helps
555 	 * those work items to ensure that they are not accessing stale device
556 	 * objects.
557 	 */
558 	if (list_empty(&acpi_device_del_list))
559 		acpi_queue_hotplug_work(&work);
560 
561 	list_add_tail(&adev->del_list, &acpi_device_del_list);
562 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
563 	adev->handle = INVALID_ACPI_HANDLE;
564 
565 	mutex_unlock(&acpi_device_del_lock);
566 }
567 
568 static struct acpi_device *handle_to_device(acpi_handle handle,
569 					    void (*callback)(void *))
570 {
571 	struct acpi_device *adev = NULL;
572 	acpi_status status;
573 
574 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
575 				    (void **)&adev, callback);
576 	if (ACPI_FAILURE(status) || !adev) {
577 		acpi_handle_debug(handle, "No context!\n");
578 		return NULL;
579 	}
580 	return adev;
581 }
582 
583 /**
584  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
585  * @handle: ACPI handle associated with the requested ACPI device object.
586  *
587  * Return a pointer to the ACPI device object associated with @handle, if
588  * present, or NULL otherwise.
589  */
590 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
591 {
592 	return handle_to_device(handle, NULL);
593 }
594 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
595 
596 static void get_acpi_device(void *dev)
597 {
598 	acpi_dev_get(dev);
599 }
600 
601 /**
602  * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
603  * @handle: ACPI handle associated with the requested ACPI device object.
604  *
605  * Return a pointer to the ACPI device object associated with @handle and bump
606  * up that object's reference counter (under the ACPI Namespace lock), if
607  * present, or return NULL otherwise.
608  *
609  * The ACPI device object reference acquired by this function needs to be
610  * dropped via acpi_dev_put().
611  */
612 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
613 {
614 	return handle_to_device(handle, get_acpi_device);
615 }
616 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
617 
618 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
619 {
620 	struct acpi_device_bus_id *acpi_device_bus_id;
621 
622 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
623 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
624 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
625 			return acpi_device_bus_id;
626 	}
627 	return NULL;
628 }
629 
630 static int acpi_device_set_name(struct acpi_device *device,
631 				struct acpi_device_bus_id *acpi_device_bus_id)
632 {
633 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
634 	int result;
635 
636 	result = ida_alloc(instance_ida, GFP_KERNEL);
637 	if (result < 0)
638 		return result;
639 
640 	device->pnp.instance_no = result;
641 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
642 	return 0;
643 }
644 
645 int acpi_tie_acpi_dev(struct acpi_device *adev)
646 {
647 	acpi_handle handle = adev->handle;
648 	acpi_status status;
649 
650 	if (!handle)
651 		return 0;
652 
653 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
654 	if (ACPI_FAILURE(status)) {
655 		acpi_handle_err(handle, "Unable to attach device data\n");
656 		return -ENODEV;
657 	}
658 
659 	return 0;
660 }
661 
662 static void acpi_store_pld_crc(struct acpi_device *adev)
663 {
664 	struct acpi_pld_info *pld;
665 	acpi_status status;
666 
667 	status = acpi_get_physical_device_location(adev->handle, &pld);
668 	if (ACPI_FAILURE(status))
669 		return;
670 
671 	adev->pld_crc = crc32(~0, pld, sizeof(*pld));
672 	ACPI_FREE(pld);
673 }
674 
675 int acpi_device_add(struct acpi_device *device)
676 {
677 	struct acpi_device_bus_id *acpi_device_bus_id;
678 	int result;
679 
680 	/*
681 	 * Linkage
682 	 * -------
683 	 * Link this device to its parent and siblings.
684 	 */
685 	INIT_LIST_HEAD(&device->wakeup_list);
686 	INIT_LIST_HEAD(&device->physical_node_list);
687 	INIT_LIST_HEAD(&device->del_list);
688 	mutex_init(&device->physical_node_lock);
689 
690 	mutex_lock(&acpi_device_lock);
691 
692 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
693 	if (acpi_device_bus_id) {
694 		result = acpi_device_set_name(device, acpi_device_bus_id);
695 		if (result)
696 			goto err_unlock;
697 	} else {
698 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
699 					     GFP_KERNEL);
700 		if (!acpi_device_bus_id) {
701 			result = -ENOMEM;
702 			goto err_unlock;
703 		}
704 		acpi_device_bus_id->bus_id =
705 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
706 		if (!acpi_device_bus_id->bus_id) {
707 			kfree(acpi_device_bus_id);
708 			result = -ENOMEM;
709 			goto err_unlock;
710 		}
711 
712 		ida_init(&acpi_device_bus_id->instance_ida);
713 
714 		result = acpi_device_set_name(device, acpi_device_bus_id);
715 		if (result) {
716 			kfree_const(acpi_device_bus_id->bus_id);
717 			kfree(acpi_device_bus_id);
718 			goto err_unlock;
719 		}
720 
721 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
722 	}
723 
724 	if (device->wakeup.flags.valid)
725 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
726 
727 	acpi_store_pld_crc(device);
728 
729 	mutex_unlock(&acpi_device_lock);
730 
731 	result = device_add(&device->dev);
732 	if (result) {
733 		dev_err(&device->dev, "Error registering device\n");
734 		goto err;
735 	}
736 
737 	result = acpi_device_setup_files(device);
738 	if (result)
739 		pr_err("Error creating sysfs interface for device %s\n",
740 		       dev_name(&device->dev));
741 
742 	return 0;
743 
744 err:
745 	mutex_lock(&acpi_device_lock);
746 
747 	list_del(&device->wakeup_list);
748 
749 err_unlock:
750 	mutex_unlock(&acpi_device_lock);
751 
752 	acpi_detach_data(device->handle, acpi_scan_drop_device);
753 
754 	return result;
755 }
756 
757 /* --------------------------------------------------------------------------
758                                  Device Enumeration
759    -------------------------------------------------------------------------- */
760 static bool acpi_info_matches_ids(struct acpi_device_info *info,
761 				  const char * const ids[])
762 {
763 	struct acpi_pnp_device_id_list *cid_list = NULL;
764 	int i, index;
765 
766 	if (!(info->valid & ACPI_VALID_HID))
767 		return false;
768 
769 	index = match_string(ids, -1, info->hardware_id.string);
770 	if (index >= 0)
771 		return true;
772 
773 	if (info->valid & ACPI_VALID_CID)
774 		cid_list = &info->compatible_id_list;
775 
776 	if (!cid_list)
777 		return false;
778 
779 	for (i = 0; i < cid_list->count; i++) {
780 		index = match_string(ids, -1, cid_list->ids[i].string);
781 		if (index >= 0)
782 			return true;
783 	}
784 
785 	return false;
786 }
787 
788 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
789 static const char * const acpi_ignore_dep_ids[] = {
790 	"PNP0D80", /* Windows-compatible System Power Management Controller */
791 	"INT33BD", /* Intel Baytrail Mailbox Device */
792 	"LATT2021", /* Lattice FW Update Client Driver */
793 	NULL
794 };
795 
796 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
797 static const char * const acpi_honor_dep_ids[] = {
798 	"INT3472", /* Camera sensor PMIC / clk and regulator info */
799 	NULL
800 };
801 
802 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
803 {
804 	struct acpi_device *adev;
805 
806 	/*
807 	 * Fixed hardware devices do not appear in the namespace and do not
808 	 * have handles, but we fabricate acpi_devices for them, so we have
809 	 * to deal with them specially.
810 	 */
811 	if (!handle)
812 		return acpi_root;
813 
814 	do {
815 		acpi_status status;
816 
817 		status = acpi_get_parent(handle, &handle);
818 		if (ACPI_FAILURE(status)) {
819 			if (status != AE_NULL_ENTRY)
820 				return acpi_root;
821 
822 			return NULL;
823 		}
824 		adev = acpi_fetch_acpi_dev(handle);
825 	} while (!adev);
826 	return adev;
827 }
828 
829 acpi_status
830 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
831 {
832 	acpi_status status;
833 	acpi_handle tmp;
834 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
835 	union acpi_object *obj;
836 
837 	status = acpi_get_handle(handle, "_EJD", &tmp);
838 	if (ACPI_FAILURE(status))
839 		return status;
840 
841 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
842 	if (ACPI_SUCCESS(status)) {
843 		obj = buffer.pointer;
844 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
845 					 ejd);
846 		kfree(buffer.pointer);
847 	}
848 	return status;
849 }
850 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
851 
852 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
853 {
854 	acpi_handle handle = dev->handle;
855 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
856 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
857 	union acpi_object *package = NULL;
858 	union acpi_object *element = NULL;
859 	acpi_status status;
860 	int err = -ENODATA;
861 
862 	INIT_LIST_HEAD(&wakeup->resources);
863 
864 	/* _PRW */
865 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
866 	if (ACPI_FAILURE(status)) {
867 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
868 				 acpi_format_exception(status));
869 		return err;
870 	}
871 
872 	package = (union acpi_object *)buffer.pointer;
873 
874 	if (!package || package->package.count < 2)
875 		goto out;
876 
877 	element = &(package->package.elements[0]);
878 	if (!element)
879 		goto out;
880 
881 	if (element->type == ACPI_TYPE_PACKAGE) {
882 		if ((element->package.count < 2) ||
883 		    (element->package.elements[0].type !=
884 		     ACPI_TYPE_LOCAL_REFERENCE)
885 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
886 			goto out;
887 
888 		wakeup->gpe_device =
889 		    element->package.elements[0].reference.handle;
890 		wakeup->gpe_number =
891 		    (u32) element->package.elements[1].integer.value;
892 	} else if (element->type == ACPI_TYPE_INTEGER) {
893 		wakeup->gpe_device = NULL;
894 		wakeup->gpe_number = element->integer.value;
895 	} else {
896 		goto out;
897 	}
898 
899 	element = &(package->package.elements[1]);
900 	if (element->type != ACPI_TYPE_INTEGER)
901 		goto out;
902 
903 	wakeup->sleep_state = element->integer.value;
904 
905 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
906 	if (err)
907 		goto out;
908 
909 	if (!list_empty(&wakeup->resources)) {
910 		int sleep_state;
911 
912 		err = acpi_power_wakeup_list_init(&wakeup->resources,
913 						  &sleep_state);
914 		if (err) {
915 			acpi_handle_warn(handle, "Retrieving current states "
916 					 "of wakeup power resources failed\n");
917 			acpi_power_resources_list_free(&wakeup->resources);
918 			goto out;
919 		}
920 		if (sleep_state < wakeup->sleep_state) {
921 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
922 					 "(S%d) by S%d from power resources\n",
923 					 (int)wakeup->sleep_state, sleep_state);
924 			wakeup->sleep_state = sleep_state;
925 		}
926 	}
927 
928  out:
929 	kfree(buffer.pointer);
930 	return err;
931 }
932 
933 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
934 {
935 	static const struct acpi_device_id button_device_ids[] = {
936 		{"PNP0C0C", 0},		/* Power button */
937 		{"PNP0C0D", 0},		/* Lid */
938 		{"PNP0C0E", 0},		/* Sleep button */
939 		{"", 0},
940 	};
941 	struct acpi_device_wakeup *wakeup = &device->wakeup;
942 	acpi_status status;
943 
944 	wakeup->flags.notifier_present = 0;
945 
946 	/* Power button, Lid switch always enable wakeup */
947 	if (!acpi_match_device_ids(device, button_device_ids)) {
948 		if (!acpi_match_device_ids(device, &button_device_ids[1])) {
949 			/* Do not use Lid/sleep button for S5 wakeup */
950 			if (wakeup->sleep_state == ACPI_STATE_S5)
951 				wakeup->sleep_state = ACPI_STATE_S4;
952 		}
953 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
954 		device_set_wakeup_capable(&device->dev, true);
955 		return true;
956 	}
957 
958 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
959 					 wakeup->gpe_number);
960 	return ACPI_SUCCESS(status);
961 }
962 
963 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
964 {
965 	int err;
966 
967 	/* Presence of _PRW indicates wake capable */
968 	if (!acpi_has_method(device->handle, "_PRW"))
969 		return;
970 
971 	err = acpi_bus_extract_wakeup_device_power_package(device);
972 	if (err) {
973 		dev_err(&device->dev, "Unable to extract wakeup power resources");
974 		return;
975 	}
976 
977 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
978 	device->wakeup.prepare_count = 0;
979 	/*
980 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
981 	 * system for the ACPI device with the _PRW object.
982 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
983 	 * So it is necessary to call _DSW object first. Only when it is not
984 	 * present will the _PSW object used.
985 	 */
986 	err = acpi_device_sleep_wake(device, 0, 0, 0);
987 	if (err)
988 		pr_debug("error in _DSW or _PSW evaluation\n");
989 }
990 
991 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
992 {
993 	struct acpi_device_power_state *ps = &device->power.states[state];
994 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
995 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
996 	acpi_status status;
997 
998 	INIT_LIST_HEAD(&ps->resources);
999 
1000 	/* Evaluate "_PRx" to get referenced power resources */
1001 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1002 	if (ACPI_SUCCESS(status)) {
1003 		union acpi_object *package = buffer.pointer;
1004 
1005 		if (buffer.length && package
1006 		    && package->type == ACPI_TYPE_PACKAGE
1007 		    && package->package.count)
1008 			acpi_extract_power_resources(package, 0, &ps->resources);
1009 
1010 		ACPI_FREE(buffer.pointer);
1011 	}
1012 
1013 	/* Evaluate "_PSx" to see if we can do explicit sets */
1014 	pathname[2] = 'S';
1015 	if (acpi_has_method(device->handle, pathname))
1016 		ps->flags.explicit_set = 1;
1017 
1018 	/* State is valid if there are means to put the device into it. */
1019 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1020 		ps->flags.valid = 1;
1021 
1022 	ps->power = -1;		/* Unknown - driver assigned */
1023 	ps->latency = -1;	/* Unknown - driver assigned */
1024 }
1025 
1026 static void acpi_bus_get_power_flags(struct acpi_device *device)
1027 {
1028 	unsigned long long dsc = ACPI_STATE_D0;
1029 	u32 i;
1030 
1031 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1032 	if (!acpi_has_method(device->handle, "_PS0") &&
1033 	    !acpi_has_method(device->handle, "_PR0"))
1034 		return;
1035 
1036 	device->flags.power_manageable = 1;
1037 
1038 	/*
1039 	 * Power Management Flags
1040 	 */
1041 	if (acpi_has_method(device->handle, "_PSC"))
1042 		device->power.flags.explicit_get = 1;
1043 
1044 	if (acpi_has_method(device->handle, "_IRC"))
1045 		device->power.flags.inrush_current = 1;
1046 
1047 	if (acpi_has_method(device->handle, "_DSW"))
1048 		device->power.flags.dsw_present = 1;
1049 
1050 	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1051 	device->power.state_for_enumeration = dsc;
1052 
1053 	/*
1054 	 * Enumerate supported power management states
1055 	 */
1056 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1057 		acpi_bus_init_power_state(device, i);
1058 
1059 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1060 
1061 	/* Set the defaults for D0 and D3hot (always supported). */
1062 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1063 	device->power.states[ACPI_STATE_D0].power = 100;
1064 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1065 
1066 	/*
1067 	 * Use power resources only if the D0 list of them is populated, because
1068 	 * some platforms may provide _PR3 only to indicate D3cold support and
1069 	 * in those cases the power resources list returned by it may be bogus.
1070 	 */
1071 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1072 		device->power.flags.power_resources = 1;
1073 		/*
1074 		 * D3cold is supported if the D3hot list of power resources is
1075 		 * not empty.
1076 		 */
1077 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1078 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1079 	}
1080 
1081 	if (acpi_bus_init_power(device))
1082 		device->flags.power_manageable = 0;
1083 }
1084 
1085 static void acpi_bus_get_flags(struct acpi_device *device)
1086 {
1087 	/* Presence of _STA indicates 'dynamic_status' */
1088 	if (acpi_has_method(device->handle, "_STA"))
1089 		device->flags.dynamic_status = 1;
1090 
1091 	/* Presence of _RMV indicates 'removable' */
1092 	if (acpi_has_method(device->handle, "_RMV"))
1093 		device->flags.removable = 1;
1094 
1095 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1096 	if (acpi_has_method(device->handle, "_EJD") ||
1097 	    acpi_has_method(device->handle, "_EJ0"))
1098 		device->flags.ejectable = 1;
1099 }
1100 
1101 static void acpi_device_get_busid(struct acpi_device *device)
1102 {
1103 	char bus_id[5] = { '?', 0 };
1104 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1105 	int i = 0;
1106 
1107 	/*
1108 	 * Bus ID
1109 	 * ------
1110 	 * The device's Bus ID is simply the object name.
1111 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1112 	 */
1113 	if (!acpi_dev_parent(device)) {
1114 		strcpy(device->pnp.bus_id, "ACPI");
1115 		return;
1116 	}
1117 
1118 	switch (device->device_type) {
1119 	case ACPI_BUS_TYPE_POWER_BUTTON:
1120 		strcpy(device->pnp.bus_id, "PWRF");
1121 		break;
1122 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1123 		strcpy(device->pnp.bus_id, "SLPF");
1124 		break;
1125 	case ACPI_BUS_TYPE_ECDT_EC:
1126 		strcpy(device->pnp.bus_id, "ECDT");
1127 		break;
1128 	default:
1129 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1130 		/* Clean up trailing underscores (if any) */
1131 		for (i = 3; i > 1; i--) {
1132 			if (bus_id[i] == '_')
1133 				bus_id[i] = '\0';
1134 			else
1135 				break;
1136 		}
1137 		strcpy(device->pnp.bus_id, bus_id);
1138 		break;
1139 	}
1140 }
1141 
1142 /*
1143  * acpi_ata_match - see if an acpi object is an ATA device
1144  *
1145  * If an acpi object has one of the ACPI ATA methods defined,
1146  * then we can safely call it an ATA device.
1147  */
1148 bool acpi_ata_match(acpi_handle handle)
1149 {
1150 	return acpi_has_method(handle, "_GTF") ||
1151 	       acpi_has_method(handle, "_GTM") ||
1152 	       acpi_has_method(handle, "_STM") ||
1153 	       acpi_has_method(handle, "_SDD");
1154 }
1155 
1156 /*
1157  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1158  *
1159  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1160  * then we can safely call it an ejectable drive bay
1161  */
1162 bool acpi_bay_match(acpi_handle handle)
1163 {
1164 	acpi_handle phandle;
1165 
1166 	if (!acpi_has_method(handle, "_EJ0"))
1167 		return false;
1168 	if (acpi_ata_match(handle))
1169 		return true;
1170 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1171 		return false;
1172 
1173 	return acpi_ata_match(phandle);
1174 }
1175 
1176 bool acpi_device_is_battery(struct acpi_device *adev)
1177 {
1178 	struct acpi_hardware_id *hwid;
1179 
1180 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1181 		if (!strcmp("PNP0C0A", hwid->id))
1182 			return true;
1183 
1184 	return false;
1185 }
1186 
1187 static bool is_ejectable_bay(struct acpi_device *adev)
1188 {
1189 	acpi_handle handle = adev->handle;
1190 
1191 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1192 		return true;
1193 
1194 	return acpi_bay_match(handle);
1195 }
1196 
1197 /*
1198  * acpi_dock_match - see if an acpi object has a _DCK method
1199  */
1200 bool acpi_dock_match(acpi_handle handle)
1201 {
1202 	return acpi_has_method(handle, "_DCK");
1203 }
1204 
1205 static acpi_status
1206 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1207 			  void **return_value)
1208 {
1209 	long *cap = context;
1210 
1211 	if (acpi_has_method(handle, "_BCM") &&
1212 	    acpi_has_method(handle, "_BCL")) {
1213 		acpi_handle_debug(handle, "Found generic backlight support\n");
1214 		*cap |= ACPI_VIDEO_BACKLIGHT;
1215 		/* We have backlight support, no need to scan further */
1216 		return AE_CTRL_TERMINATE;
1217 	}
1218 	return 0;
1219 }
1220 
1221 /* Returns true if the ACPI object is a video device which can be
1222  * handled by video.ko.
1223  * The device will get a Linux specific CID added in scan.c to
1224  * identify the device as an ACPI graphics device
1225  * Be aware that the graphics device may not be physically present
1226  * Use acpi_video_get_capabilities() to detect general ACPI video
1227  * capabilities of present cards
1228  */
1229 long acpi_is_video_device(acpi_handle handle)
1230 {
1231 	long video_caps = 0;
1232 
1233 	/* Is this device able to support video switching ? */
1234 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1235 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1236 
1237 	/* Is this device able to retrieve a video ROM ? */
1238 	if (acpi_has_method(handle, "_ROM"))
1239 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1240 
1241 	/* Is this device able to configure which video head to be POSTed ? */
1242 	if (acpi_has_method(handle, "_VPO") &&
1243 	    acpi_has_method(handle, "_GPD") &&
1244 	    acpi_has_method(handle, "_SPD"))
1245 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1246 
1247 	/* Only check for backlight functionality if one of the above hit. */
1248 	if (video_caps)
1249 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1250 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1251 				    &video_caps, NULL);
1252 
1253 	return video_caps;
1254 }
1255 EXPORT_SYMBOL(acpi_is_video_device);
1256 
1257 const char *acpi_device_hid(struct acpi_device *device)
1258 {
1259 	struct acpi_hardware_id *hid;
1260 
1261 	if (list_empty(&device->pnp.ids))
1262 		return dummy_hid;
1263 
1264 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1265 	return hid->id;
1266 }
1267 EXPORT_SYMBOL(acpi_device_hid);
1268 
1269 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1270 {
1271 	struct acpi_hardware_id *id;
1272 
1273 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1274 	if (!id)
1275 		return;
1276 
1277 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1278 	if (!id->id) {
1279 		kfree(id);
1280 		return;
1281 	}
1282 
1283 	list_add_tail(&id->list, &pnp->ids);
1284 	pnp->type.hardware_id = 1;
1285 }
1286 
1287 /*
1288  * Old IBM workstations have a DSDT bug wherein the SMBus object
1289  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1290  * prefix.  Work around this.
1291  */
1292 static bool acpi_ibm_smbus_match(acpi_handle handle)
1293 {
1294 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1295 	struct acpi_buffer path = { sizeof(node_name), node_name };
1296 
1297 	if (!dmi_name_in_vendors("IBM"))
1298 		return false;
1299 
1300 	/* Look for SMBS object */
1301 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1302 	    strcmp("SMBS", path.pointer))
1303 		return false;
1304 
1305 	/* Does it have the necessary (but misnamed) methods? */
1306 	if (acpi_has_method(handle, "SBI") &&
1307 	    acpi_has_method(handle, "SBR") &&
1308 	    acpi_has_method(handle, "SBW"))
1309 		return true;
1310 
1311 	return false;
1312 }
1313 
1314 static bool acpi_object_is_system_bus(acpi_handle handle)
1315 {
1316 	acpi_handle tmp;
1317 
1318 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1319 	    tmp == handle)
1320 		return true;
1321 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1322 	    tmp == handle)
1323 		return true;
1324 
1325 	return false;
1326 }
1327 
1328 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1329 			     int device_type)
1330 {
1331 	struct acpi_device_info *info = NULL;
1332 	struct acpi_pnp_device_id_list *cid_list;
1333 	int i;
1334 
1335 	switch (device_type) {
1336 	case ACPI_BUS_TYPE_DEVICE:
1337 		if (handle == ACPI_ROOT_OBJECT) {
1338 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1339 			break;
1340 		}
1341 
1342 		acpi_get_object_info(handle, &info);
1343 		if (!info) {
1344 			pr_err("%s: Error reading device info\n", __func__);
1345 			return;
1346 		}
1347 
1348 		if (info->valid & ACPI_VALID_HID) {
1349 			acpi_add_id(pnp, info->hardware_id.string);
1350 			pnp->type.platform_id = 1;
1351 		}
1352 		if (info->valid & ACPI_VALID_CID) {
1353 			cid_list = &info->compatible_id_list;
1354 			for (i = 0; i < cid_list->count; i++)
1355 				acpi_add_id(pnp, cid_list->ids[i].string);
1356 		}
1357 		if (info->valid & ACPI_VALID_ADR) {
1358 			pnp->bus_address = info->address;
1359 			pnp->type.bus_address = 1;
1360 		}
1361 		if (info->valid & ACPI_VALID_UID)
1362 			pnp->unique_id = kstrdup(info->unique_id.string,
1363 							GFP_KERNEL);
1364 		if (info->valid & ACPI_VALID_CLS)
1365 			acpi_add_id(pnp, info->class_code.string);
1366 
1367 		kfree(info);
1368 
1369 		/*
1370 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1371 		 * synthetic HIDs to make sure drivers can find them.
1372 		 */
1373 		if (acpi_is_video_device(handle))
1374 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1375 		else if (acpi_bay_match(handle))
1376 			acpi_add_id(pnp, ACPI_BAY_HID);
1377 		else if (acpi_dock_match(handle))
1378 			acpi_add_id(pnp, ACPI_DOCK_HID);
1379 		else if (acpi_ibm_smbus_match(handle))
1380 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1381 		else if (list_empty(&pnp->ids) &&
1382 			 acpi_object_is_system_bus(handle)) {
1383 			/* \_SB, \_TZ, LNXSYBUS */
1384 			acpi_add_id(pnp, ACPI_BUS_HID);
1385 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1386 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1387 		}
1388 
1389 		break;
1390 	case ACPI_BUS_TYPE_POWER:
1391 		acpi_add_id(pnp, ACPI_POWER_HID);
1392 		break;
1393 	case ACPI_BUS_TYPE_PROCESSOR:
1394 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1395 		break;
1396 	case ACPI_BUS_TYPE_THERMAL:
1397 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1398 		break;
1399 	case ACPI_BUS_TYPE_POWER_BUTTON:
1400 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1401 		break;
1402 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1403 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1404 		break;
1405 	case ACPI_BUS_TYPE_ECDT_EC:
1406 		acpi_add_id(pnp, ACPI_ECDT_HID);
1407 		break;
1408 	}
1409 }
1410 
1411 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1412 {
1413 	struct acpi_hardware_id *id, *tmp;
1414 
1415 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1416 		kfree_const(id->id);
1417 		kfree(id);
1418 	}
1419 	kfree(pnp->unique_id);
1420 }
1421 
1422 /**
1423  * acpi_dma_supported - Check DMA support for the specified device.
1424  * @adev: The pointer to acpi device
1425  *
1426  * Return false if DMA is not supported. Otherwise, return true
1427  */
1428 bool acpi_dma_supported(const struct acpi_device *adev)
1429 {
1430 	if (!adev)
1431 		return false;
1432 
1433 	if (adev->flags.cca_seen)
1434 		return true;
1435 
1436 	/*
1437 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1438 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1439 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1440 	*/
1441 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1442 		return true;
1443 
1444 	return false;
1445 }
1446 
1447 /**
1448  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1449  * @adev: The pointer to acpi device
1450  *
1451  * Return enum dev_dma_attr.
1452  */
1453 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1454 {
1455 	if (!acpi_dma_supported(adev))
1456 		return DEV_DMA_NOT_SUPPORTED;
1457 
1458 	if (adev->flags.coherent_dma)
1459 		return DEV_DMA_COHERENT;
1460 	else
1461 		return DEV_DMA_NON_COHERENT;
1462 }
1463 
1464 /**
1465  * acpi_dma_get_range() - Get device DMA parameters.
1466  *
1467  * @dev: device to configure
1468  * @map: pointer to DMA ranges result
1469  *
1470  * Evaluate DMA regions and return pointer to DMA regions on
1471  * parsing success; it does not update the passed in values on failure.
1472  *
1473  * Return 0 on success, < 0 on failure.
1474  */
1475 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1476 {
1477 	struct acpi_device *adev;
1478 	LIST_HEAD(list);
1479 	struct resource_entry *rentry;
1480 	int ret;
1481 	struct device *dma_dev = dev;
1482 	struct bus_dma_region *r;
1483 
1484 	/*
1485 	 * Walk the device tree chasing an ACPI companion with a _DMA
1486 	 * object while we go. Stop if we find a device with an ACPI
1487 	 * companion containing a _DMA method.
1488 	 */
1489 	do {
1490 		adev = ACPI_COMPANION(dma_dev);
1491 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1492 			break;
1493 
1494 		dma_dev = dma_dev->parent;
1495 	} while (dma_dev);
1496 
1497 	if (!dma_dev)
1498 		return -ENODEV;
1499 
1500 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1501 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1502 		return -EINVAL;
1503 	}
1504 
1505 	ret = acpi_dev_get_dma_resources(adev, &list);
1506 	if (ret > 0) {
1507 		r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1508 		if (!r) {
1509 			ret = -ENOMEM;
1510 			goto out;
1511 		}
1512 
1513 		*map = r;
1514 
1515 		list_for_each_entry(rentry, &list, node) {
1516 			if (rentry->res->start >= rentry->res->end) {
1517 				kfree(*map);
1518 				*map = NULL;
1519 				ret = -EINVAL;
1520 				dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1521 				goto out;
1522 			}
1523 
1524 			r->cpu_start = rentry->res->start;
1525 			r->dma_start = rentry->res->start - rentry->offset;
1526 			r->size = resource_size(rentry->res);
1527 			r->offset = rentry->offset;
1528 			r++;
1529 		}
1530 	}
1531  out:
1532 	acpi_dev_free_resource_list(&list);
1533 
1534 	return ret >= 0 ? 0 : ret;
1535 }
1536 
1537 #ifdef CONFIG_IOMMU_API
1538 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1539 			   struct fwnode_handle *fwnode,
1540 			   const struct iommu_ops *ops)
1541 {
1542 	int ret = iommu_fwspec_init(dev, fwnode, ops);
1543 
1544 	if (!ret)
1545 		ret = iommu_fwspec_add_ids(dev, &id, 1);
1546 
1547 	return ret;
1548 }
1549 
1550 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1551 {
1552 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1553 
1554 	return fwspec ? fwspec->ops : NULL;
1555 }
1556 
1557 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1558 						       const u32 *id_in)
1559 {
1560 	int err;
1561 	const struct iommu_ops *ops;
1562 
1563 	/*
1564 	 * If we already translated the fwspec there is nothing left to do,
1565 	 * return the iommu_ops.
1566 	 */
1567 	ops = acpi_iommu_fwspec_ops(dev);
1568 	if (ops)
1569 		return ops;
1570 
1571 	err = iort_iommu_configure_id(dev, id_in);
1572 	if (err && err != -EPROBE_DEFER)
1573 		err = viot_iommu_configure(dev);
1574 
1575 	/*
1576 	 * If we have reason to believe the IOMMU driver missed the initial
1577 	 * iommu_probe_device() call for dev, replay it to get things in order.
1578 	 */
1579 	if (!err && dev->bus && !device_iommu_mapped(dev))
1580 		err = iommu_probe_device(dev);
1581 
1582 	/* Ignore all other errors apart from EPROBE_DEFER */
1583 	if (err == -EPROBE_DEFER) {
1584 		return ERR_PTR(err);
1585 	} else if (err) {
1586 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1587 		return NULL;
1588 	}
1589 	return acpi_iommu_fwspec_ops(dev);
1590 }
1591 
1592 #else /* !CONFIG_IOMMU_API */
1593 
1594 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1595 			   struct fwnode_handle *fwnode,
1596 			   const struct iommu_ops *ops)
1597 {
1598 	return -ENODEV;
1599 }
1600 
1601 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1602 						       const u32 *id_in)
1603 {
1604 	return NULL;
1605 }
1606 
1607 #endif /* !CONFIG_IOMMU_API */
1608 
1609 /**
1610  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1611  * @dev: The pointer to the device
1612  * @attr: device dma attributes
1613  * @input_id: input device id const value pointer
1614  */
1615 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1616 			  const u32 *input_id)
1617 {
1618 	const struct iommu_ops *iommu;
1619 
1620 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1621 		set_dma_ops(dev, &dma_dummy_ops);
1622 		return 0;
1623 	}
1624 
1625 	acpi_arch_dma_setup(dev);
1626 
1627 	iommu = acpi_iommu_configure_id(dev, input_id);
1628 	if (PTR_ERR(iommu) == -EPROBE_DEFER)
1629 		return -EPROBE_DEFER;
1630 
1631 	arch_setup_dma_ops(dev, 0, U64_MAX,
1632 				iommu, attr == DEV_DMA_COHERENT);
1633 
1634 	return 0;
1635 }
1636 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1637 
1638 static void acpi_init_coherency(struct acpi_device *adev)
1639 {
1640 	unsigned long long cca = 0;
1641 	acpi_status status;
1642 	struct acpi_device *parent = acpi_dev_parent(adev);
1643 
1644 	if (parent && parent->flags.cca_seen) {
1645 		/*
1646 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1647 		 * already saw one.
1648 		 */
1649 		adev->flags.cca_seen = 1;
1650 		cca = parent->flags.coherent_dma;
1651 	} else {
1652 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1653 					       NULL, &cca);
1654 		if (ACPI_SUCCESS(status))
1655 			adev->flags.cca_seen = 1;
1656 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1657 			/*
1658 			 * If architecture does not specify that _CCA is
1659 			 * required for DMA-able devices (e.g. x86),
1660 			 * we default to _CCA=1.
1661 			 */
1662 			cca = 1;
1663 		else
1664 			acpi_handle_debug(adev->handle,
1665 					  "ACPI device is missing _CCA.\n");
1666 	}
1667 
1668 	adev->flags.coherent_dma = cca;
1669 }
1670 
1671 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1672 {
1673 	bool *is_serial_bus_slave_p = data;
1674 
1675 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1676 		return 1;
1677 
1678 	*is_serial_bus_slave_p = true;
1679 
1680 	 /* no need to do more checking */
1681 	return -1;
1682 }
1683 
1684 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1685 {
1686 	struct acpi_device *parent = acpi_dev_parent(device);
1687 	static const struct acpi_device_id indirect_io_hosts[] = {
1688 		{"HISI0191", 0},
1689 		{}
1690 	};
1691 
1692 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1693 }
1694 
1695 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1696 {
1697 	struct list_head resource_list;
1698 	bool is_serial_bus_slave = false;
1699 	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1700 	/*
1701 	 * These devices have multiple SerialBus resources and a client
1702 	 * device must be instantiated for each of them, each with
1703 	 * its own device id.
1704 	 * Normally we only instantiate one client device for the first
1705 	 * resource, using the ACPI HID as id. These special cases are handled
1706 	 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1707 	 * knows which client device id to use for each resource.
1708 	 */
1709 		{"BSG1160", },
1710 		{"BSG2150", },
1711 		{"CSC3551", },
1712 		{"INT33FE", },
1713 		{"INT3515", },
1714 		/* Non-conforming _HID for Cirrus Logic already released */
1715 		{"CLSA0100", },
1716 		{"CLSA0101", },
1717 	/*
1718 	 * Some ACPI devs contain SerialBus resources even though they are not
1719 	 * attached to a serial bus at all.
1720 	 */
1721 		{"MSHW0028", },
1722 	/*
1723 	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1724 	 * expects a regular tty cdev to be created (instead of the in kernel
1725 	 * serdev) and which have a kernel driver which expects a platform_dev
1726 	 * such as the rfkill-gpio driver.
1727 	 */
1728 		{"BCM4752", },
1729 		{"LNV4752", },
1730 		{}
1731 	};
1732 
1733 	if (acpi_is_indirect_io_slave(device))
1734 		return true;
1735 
1736 	/* Macs use device properties in lieu of _CRS resources */
1737 	if (x86_apple_machine &&
1738 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1739 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1740 	     fwnode_property_present(&device->fwnode, "baud")))
1741 		return true;
1742 
1743 	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1744 		return false;
1745 
1746 	INIT_LIST_HEAD(&resource_list);
1747 	acpi_dev_get_resources(device, &resource_list,
1748 			       acpi_check_serial_bus_slave,
1749 			       &is_serial_bus_slave);
1750 	acpi_dev_free_resource_list(&resource_list);
1751 
1752 	return is_serial_bus_slave;
1753 }
1754 
1755 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1756 			     int type, void (*release)(struct device *))
1757 {
1758 	struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1759 
1760 	INIT_LIST_HEAD(&device->pnp.ids);
1761 	device->device_type = type;
1762 	device->handle = handle;
1763 	device->dev.parent = parent ? &parent->dev : NULL;
1764 	device->dev.release = release;
1765 	device->dev.bus = &acpi_bus_type;
1766 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1767 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1768 	acpi_device_get_busid(device);
1769 	acpi_set_pnp_ids(handle, &device->pnp, type);
1770 	acpi_init_properties(device);
1771 	acpi_bus_get_flags(device);
1772 	device->flags.match_driver = false;
1773 	device->flags.initialized = true;
1774 	device->flags.enumeration_by_parent =
1775 		acpi_device_enumeration_by_parent(device);
1776 	acpi_device_clear_enumerated(device);
1777 	device_initialize(&device->dev);
1778 	dev_set_uevent_suppress(&device->dev, true);
1779 	acpi_init_coherency(device);
1780 }
1781 
1782 static void acpi_scan_dep_init(struct acpi_device *adev)
1783 {
1784 	struct acpi_dep_data *dep;
1785 
1786 	list_for_each_entry(dep, &acpi_dep_list, node) {
1787 		if (dep->consumer == adev->handle) {
1788 			if (dep->honor_dep)
1789 				adev->flags.honor_deps = 1;
1790 
1791 			adev->dep_unmet++;
1792 		}
1793 	}
1794 }
1795 
1796 void acpi_device_add_finalize(struct acpi_device *device)
1797 {
1798 	dev_set_uevent_suppress(&device->dev, false);
1799 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1800 }
1801 
1802 static void acpi_scan_init_status(struct acpi_device *adev)
1803 {
1804 	if (acpi_bus_get_status(adev))
1805 		acpi_set_device_status(adev, 0);
1806 }
1807 
1808 static int acpi_add_single_object(struct acpi_device **child,
1809 				  acpi_handle handle, int type, bool dep_init)
1810 {
1811 	struct acpi_device *device;
1812 	bool release_dep_lock = false;
1813 	int result;
1814 
1815 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1816 	if (!device)
1817 		return -ENOMEM;
1818 
1819 	acpi_init_device_object(device, handle, type, acpi_device_release);
1820 	/*
1821 	 * Getting the status is delayed till here so that we can call
1822 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1823 	 * this must be done before the get power-/wakeup_dev-flags calls.
1824 	 */
1825 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1826 		if (dep_init) {
1827 			mutex_lock(&acpi_dep_list_lock);
1828 			/*
1829 			 * Hold the lock until the acpi_tie_acpi_dev() call
1830 			 * below to prevent concurrent acpi_scan_clear_dep()
1831 			 * from deleting a dependency list entry without
1832 			 * updating dep_unmet for the device.
1833 			 */
1834 			release_dep_lock = true;
1835 			acpi_scan_dep_init(device);
1836 		}
1837 		acpi_scan_init_status(device);
1838 	}
1839 
1840 	acpi_bus_get_power_flags(device);
1841 	acpi_bus_get_wakeup_device_flags(device);
1842 
1843 	result = acpi_tie_acpi_dev(device);
1844 
1845 	if (release_dep_lock)
1846 		mutex_unlock(&acpi_dep_list_lock);
1847 
1848 	if (!result)
1849 		result = acpi_device_add(device);
1850 
1851 	if (result) {
1852 		acpi_device_release(&device->dev);
1853 		return result;
1854 	}
1855 
1856 	acpi_power_add_remove_device(device, true);
1857 	acpi_device_add_finalize(device);
1858 
1859 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1860 			  dev_name(&device->dev), device->dev.parent ?
1861 				dev_name(device->dev.parent) : "(null)");
1862 
1863 	*child = device;
1864 	return 0;
1865 }
1866 
1867 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1868 					    void *context)
1869 {
1870 	struct resource *res = context;
1871 
1872 	if (acpi_dev_resource_memory(ares, res))
1873 		return AE_CTRL_TERMINATE;
1874 
1875 	return AE_OK;
1876 }
1877 
1878 static bool acpi_device_should_be_hidden(acpi_handle handle)
1879 {
1880 	acpi_status status;
1881 	struct resource res;
1882 
1883 	/* Check if it should ignore the UART device */
1884 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1885 		return false;
1886 
1887 	/*
1888 	 * The UART device described in SPCR table is assumed to have only one
1889 	 * memory resource present. So we only look for the first one here.
1890 	 */
1891 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1892 				     acpi_get_resource_memory, &res);
1893 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1894 		return false;
1895 
1896 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1897 			 &res.start);
1898 
1899 	return true;
1900 }
1901 
1902 bool acpi_device_is_present(const struct acpi_device *adev)
1903 {
1904 	return adev->status.present || adev->status.functional;
1905 }
1906 
1907 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1908 				       const char *idstr,
1909 				       const struct acpi_device_id **matchid)
1910 {
1911 	const struct acpi_device_id *devid;
1912 
1913 	if (handler->match)
1914 		return handler->match(idstr, matchid);
1915 
1916 	for (devid = handler->ids; devid->id[0]; devid++)
1917 		if (!strcmp((char *)devid->id, idstr)) {
1918 			if (matchid)
1919 				*matchid = devid;
1920 
1921 			return true;
1922 		}
1923 
1924 	return false;
1925 }
1926 
1927 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1928 					const struct acpi_device_id **matchid)
1929 {
1930 	struct acpi_scan_handler *handler;
1931 
1932 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1933 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1934 			return handler;
1935 
1936 	return NULL;
1937 }
1938 
1939 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1940 {
1941 	if (!!hotplug->enabled == !!val)
1942 		return;
1943 
1944 	mutex_lock(&acpi_scan_lock);
1945 
1946 	hotplug->enabled = val;
1947 
1948 	mutex_unlock(&acpi_scan_lock);
1949 }
1950 
1951 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1952 {
1953 	struct acpi_hardware_id *hwid;
1954 
1955 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1956 		acpi_dock_add(adev);
1957 		return;
1958 	}
1959 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1960 		struct acpi_scan_handler *handler;
1961 
1962 		handler = acpi_scan_match_handler(hwid->id, NULL);
1963 		if (handler) {
1964 			adev->flags.hotplug_notify = true;
1965 			break;
1966 		}
1967 	}
1968 }
1969 
1970 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1971 {
1972 	struct acpi_handle_list dep_devices;
1973 	acpi_status status;
1974 	u32 count;
1975 	int i;
1976 
1977 	/*
1978 	 * Check for _HID here to avoid deferring the enumeration of:
1979 	 * 1. PCI devices.
1980 	 * 2. ACPI nodes describing USB ports.
1981 	 * Still, checking for _HID catches more then just these cases ...
1982 	 */
1983 	if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1984 	    !acpi_has_method(handle, "_HID"))
1985 		return 0;
1986 
1987 	status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1988 	if (ACPI_FAILURE(status)) {
1989 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1990 		return 0;
1991 	}
1992 
1993 	for (count = 0, i = 0; i < dep_devices.count; i++) {
1994 		struct acpi_device_info *info;
1995 		struct acpi_dep_data *dep;
1996 		bool skip, honor_dep;
1997 
1998 		status = acpi_get_object_info(dep_devices.handles[i], &info);
1999 		if (ACPI_FAILURE(status)) {
2000 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
2001 			continue;
2002 		}
2003 
2004 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2005 		honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2006 		kfree(info);
2007 
2008 		if (skip)
2009 			continue;
2010 
2011 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2012 		if (!dep)
2013 			continue;
2014 
2015 		count++;
2016 
2017 		dep->supplier = dep_devices.handles[i];
2018 		dep->consumer = handle;
2019 		dep->honor_dep = honor_dep;
2020 
2021 		mutex_lock(&acpi_dep_list_lock);
2022 		list_add_tail(&dep->node , &acpi_dep_list);
2023 		mutex_unlock(&acpi_dep_list_lock);
2024 	}
2025 
2026 	return count;
2027 }
2028 
2029 static bool acpi_bus_scan_second_pass;
2030 
2031 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2032 				      struct acpi_device **adev_p)
2033 {
2034 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2035 	acpi_object_type acpi_type;
2036 	int type;
2037 
2038 	if (device)
2039 		goto out;
2040 
2041 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2042 		return AE_OK;
2043 
2044 	switch (acpi_type) {
2045 	case ACPI_TYPE_DEVICE:
2046 		if (acpi_device_should_be_hidden(handle))
2047 			return AE_OK;
2048 
2049 		/* Bail out if there are dependencies. */
2050 		if (acpi_scan_check_dep(handle, check_dep) > 0) {
2051 			acpi_bus_scan_second_pass = true;
2052 			return AE_CTRL_DEPTH;
2053 		}
2054 
2055 		fallthrough;
2056 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2057 		type = ACPI_BUS_TYPE_DEVICE;
2058 		break;
2059 
2060 	case ACPI_TYPE_PROCESSOR:
2061 		type = ACPI_BUS_TYPE_PROCESSOR;
2062 		break;
2063 
2064 	case ACPI_TYPE_THERMAL:
2065 		type = ACPI_BUS_TYPE_THERMAL;
2066 		break;
2067 
2068 	case ACPI_TYPE_POWER:
2069 		acpi_add_power_resource(handle);
2070 		fallthrough;
2071 	default:
2072 		return AE_OK;
2073 	}
2074 
2075 	/*
2076 	 * If check_dep is true at this point, the device has no dependencies,
2077 	 * or the creation of the device object would have been postponed above.
2078 	 */
2079 	acpi_add_single_object(&device, handle, type, !check_dep);
2080 	if (!device)
2081 		return AE_CTRL_DEPTH;
2082 
2083 	acpi_scan_init_hotplug(device);
2084 
2085 out:
2086 	if (!*adev_p)
2087 		*adev_p = device;
2088 
2089 	return AE_OK;
2090 }
2091 
2092 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2093 					void *not_used, void **ret_p)
2094 {
2095 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2096 }
2097 
2098 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2099 					void *not_used, void **ret_p)
2100 {
2101 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2102 }
2103 
2104 static void acpi_default_enumeration(struct acpi_device *device)
2105 {
2106 	/*
2107 	 * Do not enumerate devices with enumeration_by_parent flag set as
2108 	 * they will be enumerated by their respective parents.
2109 	 */
2110 	if (!device->flags.enumeration_by_parent) {
2111 		acpi_create_platform_device(device, NULL);
2112 		acpi_device_set_enumerated(device);
2113 	} else {
2114 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2115 					     ACPI_RECONFIG_DEVICE_ADD, device);
2116 	}
2117 }
2118 
2119 static const struct acpi_device_id generic_device_ids[] = {
2120 	{ACPI_DT_NAMESPACE_HID, },
2121 	{"", },
2122 };
2123 
2124 static int acpi_generic_device_attach(struct acpi_device *adev,
2125 				      const struct acpi_device_id *not_used)
2126 {
2127 	/*
2128 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2129 	 * below can be unconditional.
2130 	 */
2131 	if (adev->data.of_compatible)
2132 		acpi_default_enumeration(adev);
2133 
2134 	return 1;
2135 }
2136 
2137 static struct acpi_scan_handler generic_device_handler = {
2138 	.ids = generic_device_ids,
2139 	.attach = acpi_generic_device_attach,
2140 };
2141 
2142 static int acpi_scan_attach_handler(struct acpi_device *device)
2143 {
2144 	struct acpi_hardware_id *hwid;
2145 	int ret = 0;
2146 
2147 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2148 		const struct acpi_device_id *devid;
2149 		struct acpi_scan_handler *handler;
2150 
2151 		handler = acpi_scan_match_handler(hwid->id, &devid);
2152 		if (handler) {
2153 			if (!handler->attach) {
2154 				device->pnp.type.platform_id = 0;
2155 				continue;
2156 			}
2157 			device->handler = handler;
2158 			ret = handler->attach(device, devid);
2159 			if (ret > 0)
2160 				break;
2161 
2162 			device->handler = NULL;
2163 			if (ret < 0)
2164 				break;
2165 		}
2166 	}
2167 
2168 	return ret;
2169 }
2170 
2171 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2172 {
2173 	bool skip = !first_pass && device->flags.visited;
2174 	acpi_handle ejd;
2175 	int ret;
2176 
2177 	if (skip)
2178 		goto ok;
2179 
2180 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2181 		register_dock_dependent_device(device, ejd);
2182 
2183 	acpi_bus_get_status(device);
2184 	/* Skip devices that are not ready for enumeration (e.g. not present) */
2185 	if (!acpi_dev_ready_for_enumeration(device)) {
2186 		device->flags.initialized = false;
2187 		acpi_device_clear_enumerated(device);
2188 		device->flags.power_manageable = 0;
2189 		return 0;
2190 	}
2191 	if (device->handler)
2192 		goto ok;
2193 
2194 	if (!device->flags.initialized) {
2195 		device->flags.power_manageable =
2196 			device->power.states[ACPI_STATE_D0].flags.valid;
2197 		if (acpi_bus_init_power(device))
2198 			device->flags.power_manageable = 0;
2199 
2200 		device->flags.initialized = true;
2201 	} else if (device->flags.visited) {
2202 		goto ok;
2203 	}
2204 
2205 	ret = acpi_scan_attach_handler(device);
2206 	if (ret < 0)
2207 		return 0;
2208 
2209 	device->flags.match_driver = true;
2210 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2211 		acpi_device_set_enumerated(device);
2212 		goto ok;
2213 	}
2214 
2215 	ret = device_attach(&device->dev);
2216 	if (ret < 0)
2217 		return 0;
2218 
2219 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2220 		acpi_default_enumeration(device);
2221 	else
2222 		acpi_device_set_enumerated(device);
2223 
2224 ok:
2225 	acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2226 
2227 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2228 		device->handler->hotplug.notify_online(device);
2229 
2230 	return 0;
2231 }
2232 
2233 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2234 {
2235 	struct acpi_device **adev_p = data;
2236 	struct acpi_device *adev = *adev_p;
2237 
2238 	/*
2239 	 * If we're passed a 'previous' consumer device then we need to skip
2240 	 * any consumers until we meet the previous one, and then NULL @data
2241 	 * so the next one can be returned.
2242 	 */
2243 	if (adev) {
2244 		if (dep->consumer == adev->handle)
2245 			*adev_p = NULL;
2246 
2247 		return 0;
2248 	}
2249 
2250 	adev = acpi_get_acpi_dev(dep->consumer);
2251 	if (adev) {
2252 		*(struct acpi_device **)data = adev;
2253 		return 1;
2254 	}
2255 	/* Continue parsing if the device object is not present. */
2256 	return 0;
2257 }
2258 
2259 struct acpi_scan_clear_dep_work {
2260 	struct work_struct work;
2261 	struct acpi_device *adev;
2262 };
2263 
2264 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2265 {
2266 	struct acpi_scan_clear_dep_work *cdw;
2267 
2268 	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2269 
2270 	acpi_scan_lock_acquire();
2271 	acpi_bus_attach(cdw->adev, (void *)true);
2272 	acpi_scan_lock_release();
2273 
2274 	acpi_dev_put(cdw->adev);
2275 	kfree(cdw);
2276 }
2277 
2278 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2279 {
2280 	struct acpi_scan_clear_dep_work *cdw;
2281 
2282 	if (adev->dep_unmet)
2283 		return false;
2284 
2285 	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2286 	if (!cdw)
2287 		return false;
2288 
2289 	cdw->adev = adev;
2290 	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2291 	/*
2292 	 * Since the work function may block on the lock until the entire
2293 	 * initial enumeration of devices is complete, put it into the unbound
2294 	 * workqueue.
2295 	 */
2296 	queue_work(system_unbound_wq, &cdw->work);
2297 
2298 	return true;
2299 }
2300 
2301 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2302 {
2303 	struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2304 
2305 	if (adev) {
2306 		adev->dep_unmet--;
2307 		if (!acpi_scan_clear_dep_queue(adev))
2308 			acpi_dev_put(adev);
2309 	}
2310 
2311 	list_del(&dep->node);
2312 	kfree(dep);
2313 
2314 	return 0;
2315 }
2316 
2317 /**
2318  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2319  * @handle:	The ACPI handle of the supplier device
2320  * @callback:	Pointer to the callback function to apply
2321  * @data:	Pointer to some data to pass to the callback
2322  *
2323  * The return value of the callback determines this function's behaviour. If 0
2324  * is returned we continue to iterate over acpi_dep_list. If a positive value
2325  * is returned then the loop is broken but this function returns 0. If a
2326  * negative value is returned by the callback then the loop is broken and that
2327  * value is returned as the final error.
2328  */
2329 static int acpi_walk_dep_device_list(acpi_handle handle,
2330 				int (*callback)(struct acpi_dep_data *, void *),
2331 				void *data)
2332 {
2333 	struct acpi_dep_data *dep, *tmp;
2334 	int ret = 0;
2335 
2336 	mutex_lock(&acpi_dep_list_lock);
2337 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2338 		if (dep->supplier == handle) {
2339 			ret = callback(dep, data);
2340 			if (ret)
2341 				break;
2342 		}
2343 	}
2344 	mutex_unlock(&acpi_dep_list_lock);
2345 
2346 	return ret > 0 ? 0 : ret;
2347 }
2348 
2349 /**
2350  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2351  * @supplier: Pointer to the supplier &struct acpi_device
2352  *
2353  * Clear dependencies on the given device.
2354  */
2355 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2356 {
2357 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2358 }
2359 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2360 
2361 /**
2362  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2363  * @device: Pointer to the &struct acpi_device to check
2364  *
2365  * Check if the device is present and has no unmet dependencies.
2366  *
2367  * Return true if the device is ready for enumeratino. Otherwise, return false.
2368  */
2369 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2370 {
2371 	if (device->flags.honor_deps && device->dep_unmet)
2372 		return false;
2373 
2374 	return acpi_device_is_present(device);
2375 }
2376 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2377 
2378 /**
2379  * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2380  * @supplier: Pointer to the dependee device
2381  * @start: Pointer to the current dependent device
2382  *
2383  * Returns the next &struct acpi_device which declares itself dependent on
2384  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2385  *
2386  * If the returned adev is not passed as @start to this function, the caller is
2387  * responsible for putting the reference to adev when it is no longer needed.
2388  */
2389 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2390 						   struct acpi_device *start)
2391 {
2392 	struct acpi_device *adev = start;
2393 
2394 	acpi_walk_dep_device_list(supplier->handle,
2395 				  acpi_dev_get_next_consumer_dev_cb, &adev);
2396 
2397 	acpi_dev_put(start);
2398 
2399 	if (adev == start)
2400 		return NULL;
2401 
2402 	return adev;
2403 }
2404 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2405 
2406 /**
2407  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2408  * @handle: Root of the namespace scope to scan.
2409  *
2410  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2411  * found devices.
2412  *
2413  * If no devices were found, -ENODEV is returned, but it does not mean that
2414  * there has been a real error.  There just have been no suitable ACPI objects
2415  * in the table trunk from which the kernel could create a device and add an
2416  * appropriate driver.
2417  *
2418  * Must be called under acpi_scan_lock.
2419  */
2420 int acpi_bus_scan(acpi_handle handle)
2421 {
2422 	struct acpi_device *device = NULL;
2423 
2424 	acpi_bus_scan_second_pass = false;
2425 
2426 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2427 
2428 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2429 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2430 				    acpi_bus_check_add_1, NULL, NULL,
2431 				    (void **)&device);
2432 
2433 	if (!device)
2434 		return -ENODEV;
2435 
2436 	acpi_bus_attach(device, (void *)true);
2437 
2438 	if (!acpi_bus_scan_second_pass)
2439 		return 0;
2440 
2441 	/* Pass 2: Enumerate all of the remaining devices. */
2442 
2443 	device = NULL;
2444 
2445 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2446 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2447 				    acpi_bus_check_add_2, NULL, NULL,
2448 				    (void **)&device);
2449 
2450 	acpi_bus_attach(device, NULL);
2451 
2452 	return 0;
2453 }
2454 EXPORT_SYMBOL(acpi_bus_scan);
2455 
2456 static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2457 {
2458 	struct acpi_scan_handler *handler = adev->handler;
2459 
2460 	acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2461 
2462 	adev->flags.match_driver = false;
2463 	if (handler) {
2464 		if (handler->detach)
2465 			handler->detach(adev);
2466 
2467 		adev->handler = NULL;
2468 	} else {
2469 		device_release_driver(&adev->dev);
2470 	}
2471 	/*
2472 	 * Most likely, the device is going away, so put it into D3cold before
2473 	 * that.
2474 	 */
2475 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2476 	adev->flags.initialized = false;
2477 	acpi_device_clear_enumerated(adev);
2478 
2479 	return 0;
2480 }
2481 
2482 /**
2483  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2484  * @adev: Root of the ACPI namespace scope to walk.
2485  *
2486  * Must be called under acpi_scan_lock.
2487  */
2488 void acpi_bus_trim(struct acpi_device *adev)
2489 {
2490 	acpi_bus_trim_one(adev, NULL);
2491 }
2492 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2493 
2494 int acpi_bus_register_early_device(int type)
2495 {
2496 	struct acpi_device *device = NULL;
2497 	int result;
2498 
2499 	result = acpi_add_single_object(&device, NULL, type, false);
2500 	if (result)
2501 		return result;
2502 
2503 	device->flags.match_driver = true;
2504 	return device_attach(&device->dev);
2505 }
2506 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2507 
2508 static void acpi_bus_scan_fixed(void)
2509 {
2510 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2511 		struct acpi_device *adev = NULL;
2512 
2513 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2514 				       false);
2515 		if (adev) {
2516 			adev->flags.match_driver = true;
2517 			if (device_attach(&adev->dev) >= 0)
2518 				device_init_wakeup(&adev->dev, true);
2519 			else
2520 				dev_dbg(&adev->dev, "No driver\n");
2521 		}
2522 	}
2523 
2524 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2525 		struct acpi_device *adev = NULL;
2526 
2527 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2528 				       false);
2529 		if (adev) {
2530 			adev->flags.match_driver = true;
2531 			if (device_attach(&adev->dev) < 0)
2532 				dev_dbg(&adev->dev, "No driver\n");
2533 		}
2534 	}
2535 }
2536 
2537 static void __init acpi_get_spcr_uart_addr(void)
2538 {
2539 	acpi_status status;
2540 	struct acpi_table_spcr *spcr_ptr;
2541 
2542 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2543 				(struct acpi_table_header **)&spcr_ptr);
2544 	if (ACPI_FAILURE(status)) {
2545 		pr_warn("STAO table present, but SPCR is missing\n");
2546 		return;
2547 	}
2548 
2549 	spcr_uart_addr = spcr_ptr->serial_port.address;
2550 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2551 }
2552 
2553 static bool acpi_scan_initialized;
2554 
2555 void __init acpi_scan_init(void)
2556 {
2557 	acpi_status status;
2558 	struct acpi_table_stao *stao_ptr;
2559 
2560 	acpi_pci_root_init();
2561 	acpi_pci_link_init();
2562 	acpi_processor_init();
2563 	acpi_platform_init();
2564 	acpi_lpss_init();
2565 	acpi_apd_init();
2566 	acpi_cmos_rtc_init();
2567 	acpi_container_init();
2568 	acpi_memory_hotplug_init();
2569 	acpi_watchdog_init();
2570 	acpi_pnp_init();
2571 	acpi_int340x_thermal_init();
2572 	acpi_amba_init();
2573 	acpi_init_lpit();
2574 
2575 	acpi_scan_add_handler(&generic_device_handler);
2576 
2577 	/*
2578 	 * If there is STAO table, check whether it needs to ignore the UART
2579 	 * device in SPCR table.
2580 	 */
2581 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2582 				(struct acpi_table_header **)&stao_ptr);
2583 	if (ACPI_SUCCESS(status)) {
2584 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2585 			pr_info("STAO Name List not yet supported.\n");
2586 
2587 		if (stao_ptr->ignore_uart)
2588 			acpi_get_spcr_uart_addr();
2589 
2590 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2591 	}
2592 
2593 	acpi_gpe_apply_masked_gpes();
2594 	acpi_update_all_gpes();
2595 
2596 	/*
2597 	 * Although we call __add_memory() that is documented to require the
2598 	 * device_hotplug_lock, it is not necessary here because this is an
2599 	 * early code when userspace or any other code path cannot trigger
2600 	 * hotplug/hotunplug operations.
2601 	 */
2602 	mutex_lock(&acpi_scan_lock);
2603 	/*
2604 	 * Enumerate devices in the ACPI namespace.
2605 	 */
2606 	if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2607 		goto unlock;
2608 
2609 	acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2610 	if (!acpi_root)
2611 		goto unlock;
2612 
2613 	/* Fixed feature devices do not exist on HW-reduced platform */
2614 	if (!acpi_gbl_reduced_hardware)
2615 		acpi_bus_scan_fixed();
2616 
2617 	acpi_turn_off_unused_power_resources();
2618 
2619 	acpi_scan_initialized = true;
2620 
2621 unlock:
2622 	mutex_unlock(&acpi_scan_lock);
2623 }
2624 
2625 static struct acpi_probe_entry *ape;
2626 static int acpi_probe_count;
2627 static DEFINE_MUTEX(acpi_probe_mutex);
2628 
2629 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2630 				  const unsigned long end)
2631 {
2632 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2633 		if (!ape->probe_subtbl(header, end))
2634 			acpi_probe_count++;
2635 
2636 	return 0;
2637 }
2638 
2639 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2640 {
2641 	int count = 0;
2642 
2643 	if (acpi_disabled)
2644 		return 0;
2645 
2646 	mutex_lock(&acpi_probe_mutex);
2647 	for (ape = ap_head; nr; ape++, nr--) {
2648 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2649 			acpi_probe_count = 0;
2650 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2651 			count += acpi_probe_count;
2652 		} else {
2653 			int res;
2654 			res = acpi_table_parse(ape->id, ape->probe_table);
2655 			if (!res)
2656 				count++;
2657 		}
2658 	}
2659 	mutex_unlock(&acpi_probe_mutex);
2660 
2661 	return count;
2662 }
2663 
2664 static void acpi_table_events_fn(struct work_struct *work)
2665 {
2666 	acpi_scan_lock_acquire();
2667 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2668 	acpi_scan_lock_release();
2669 
2670 	kfree(work);
2671 }
2672 
2673 void acpi_scan_table_notify(void)
2674 {
2675 	struct work_struct *work;
2676 
2677 	if (!acpi_scan_initialized)
2678 		return;
2679 
2680 	work = kmalloc(sizeof(*work), GFP_KERNEL);
2681 	if (!work)
2682 		return;
2683 
2684 	INIT_WORK(work, acpi_table_events_fn);
2685 	schedule_work(work);
2686 }
2687 
2688 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2689 {
2690 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2691 }
2692 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2693 
2694 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2695 {
2696 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2697 }
2698 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2699