1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #define pr_fmt(fmt) "ACPI: " fmt 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/acpi_viot.h> 15 #include <linux/iommu.h> 16 #include <linux/signal.h> 17 #include <linux/kthread.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/platform_data/x86/apple.h> 21 #include <linux/pgtable.h> 22 23 #include "internal.h" 24 25 extern struct acpi_device *acpi_root; 26 27 #define ACPI_BUS_CLASS "system_bus" 28 #define ACPI_BUS_HID "LNXSYBUS" 29 #define ACPI_BUS_DEVICE_NAME "System Bus" 30 31 #define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent) 32 33 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page) 34 35 static const char *dummy_hid = "device"; 36 37 static LIST_HEAD(acpi_dep_list); 38 static DEFINE_MUTEX(acpi_dep_list_lock); 39 LIST_HEAD(acpi_bus_id_list); 40 static DEFINE_MUTEX(acpi_scan_lock); 41 static LIST_HEAD(acpi_scan_handlers_list); 42 DEFINE_MUTEX(acpi_device_lock); 43 LIST_HEAD(acpi_wakeup_device_list); 44 static DEFINE_MUTEX(acpi_hp_context_lock); 45 46 /* 47 * The UART device described by the SPCR table is the only object which needs 48 * special-casing. Everything else is covered by ACPI namespace paths in STAO 49 * table. 50 */ 51 static u64 spcr_uart_addr; 52 53 void acpi_scan_lock_acquire(void) 54 { 55 mutex_lock(&acpi_scan_lock); 56 } 57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 58 59 void acpi_scan_lock_release(void) 60 { 61 mutex_unlock(&acpi_scan_lock); 62 } 63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 64 65 void acpi_lock_hp_context(void) 66 { 67 mutex_lock(&acpi_hp_context_lock); 68 } 69 70 void acpi_unlock_hp_context(void) 71 { 72 mutex_unlock(&acpi_hp_context_lock); 73 } 74 75 void acpi_initialize_hp_context(struct acpi_device *adev, 76 struct acpi_hotplug_context *hp, 77 int (*notify)(struct acpi_device *, u32), 78 void (*uevent)(struct acpi_device *, u32)) 79 { 80 acpi_lock_hp_context(); 81 hp->notify = notify; 82 hp->uevent = uevent; 83 acpi_set_hp_context(adev, hp); 84 acpi_unlock_hp_context(); 85 } 86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 87 88 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 89 { 90 if (!handler) 91 return -EINVAL; 92 93 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 94 return 0; 95 } 96 97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 98 const char *hotplug_profile_name) 99 { 100 int error; 101 102 error = acpi_scan_add_handler(handler); 103 if (error) 104 return error; 105 106 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 107 return 0; 108 } 109 110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 111 { 112 struct acpi_device_physical_node *pn; 113 bool offline = true; 114 char *envp[] = { "EVENT=offline", NULL }; 115 116 /* 117 * acpi_container_offline() calls this for all of the container's 118 * children under the container's physical_node_lock lock. 119 */ 120 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 121 122 list_for_each_entry(pn, &adev->physical_node_list, node) 123 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 124 if (uevent) 125 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 126 127 offline = false; 128 break; 129 } 130 131 mutex_unlock(&adev->physical_node_lock); 132 return offline; 133 } 134 135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 136 void **ret_p) 137 { 138 struct acpi_device *device = NULL; 139 struct acpi_device_physical_node *pn; 140 bool second_pass = (bool)data; 141 acpi_status status = AE_OK; 142 143 if (acpi_bus_get_device(handle, &device)) 144 return AE_OK; 145 146 if (device->handler && !device->handler->hotplug.enabled) { 147 *ret_p = &device->dev; 148 return AE_SUPPORT; 149 } 150 151 mutex_lock(&device->physical_node_lock); 152 153 list_for_each_entry(pn, &device->physical_node_list, node) { 154 int ret; 155 156 if (second_pass) { 157 /* Skip devices offlined by the first pass. */ 158 if (pn->put_online) 159 continue; 160 } else { 161 pn->put_online = false; 162 } 163 ret = device_offline(pn->dev); 164 if (ret >= 0) { 165 pn->put_online = !ret; 166 } else { 167 *ret_p = pn->dev; 168 if (second_pass) { 169 status = AE_ERROR; 170 break; 171 } 172 } 173 } 174 175 mutex_unlock(&device->physical_node_lock); 176 177 return status; 178 } 179 180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 181 void **ret_p) 182 { 183 struct acpi_device *device = NULL; 184 struct acpi_device_physical_node *pn; 185 186 if (acpi_bus_get_device(handle, &device)) 187 return AE_OK; 188 189 mutex_lock(&device->physical_node_lock); 190 191 list_for_each_entry(pn, &device->physical_node_list, node) 192 if (pn->put_online) { 193 device_online(pn->dev); 194 pn->put_online = false; 195 } 196 197 mutex_unlock(&device->physical_node_lock); 198 199 return AE_OK; 200 } 201 202 static int acpi_scan_try_to_offline(struct acpi_device *device) 203 { 204 acpi_handle handle = device->handle; 205 struct device *errdev = NULL; 206 acpi_status status; 207 208 /* 209 * Carry out two passes here and ignore errors in the first pass, 210 * because if the devices in question are memory blocks and 211 * CONFIG_MEMCG is set, one of the blocks may hold data structures 212 * that the other blocks depend on, but it is not known in advance which 213 * block holds them. 214 * 215 * If the first pass is successful, the second one isn't needed, though. 216 */ 217 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 218 NULL, acpi_bus_offline, (void *)false, 219 (void **)&errdev); 220 if (status == AE_SUPPORT) { 221 dev_warn(errdev, "Offline disabled.\n"); 222 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 223 acpi_bus_online, NULL, NULL, NULL); 224 return -EPERM; 225 } 226 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 227 if (errdev) { 228 errdev = NULL; 229 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 230 NULL, acpi_bus_offline, (void *)true, 231 (void **)&errdev); 232 if (!errdev) 233 acpi_bus_offline(handle, 0, (void *)true, 234 (void **)&errdev); 235 236 if (errdev) { 237 dev_warn(errdev, "Offline failed.\n"); 238 acpi_bus_online(handle, 0, NULL, NULL); 239 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 240 ACPI_UINT32_MAX, acpi_bus_online, 241 NULL, NULL, NULL); 242 return -EBUSY; 243 } 244 } 245 return 0; 246 } 247 248 static int acpi_scan_hot_remove(struct acpi_device *device) 249 { 250 acpi_handle handle = device->handle; 251 unsigned long long sta; 252 acpi_status status; 253 254 if (device->handler && device->handler->hotplug.demand_offline) { 255 if (!acpi_scan_is_offline(device, true)) 256 return -EBUSY; 257 } else { 258 int error = acpi_scan_try_to_offline(device); 259 if (error) 260 return error; 261 } 262 263 acpi_handle_debug(handle, "Ejecting\n"); 264 265 acpi_bus_trim(device); 266 267 acpi_evaluate_lck(handle, 0); 268 /* 269 * TBD: _EJD support. 270 */ 271 status = acpi_evaluate_ej0(handle); 272 if (status == AE_NOT_FOUND) 273 return -ENODEV; 274 else if (ACPI_FAILURE(status)) 275 return -EIO; 276 277 /* 278 * Verify if eject was indeed successful. If not, log an error 279 * message. No need to call _OST since _EJ0 call was made OK. 280 */ 281 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 282 if (ACPI_FAILURE(status)) { 283 acpi_handle_warn(handle, 284 "Status check after eject failed (0x%x)\n", status); 285 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 286 acpi_handle_warn(handle, 287 "Eject incomplete - status 0x%llx\n", sta); 288 } 289 290 return 0; 291 } 292 293 static int acpi_scan_device_not_present(struct acpi_device *adev) 294 { 295 if (!acpi_device_enumerated(adev)) { 296 dev_warn(&adev->dev, "Still not present\n"); 297 return -EALREADY; 298 } 299 acpi_bus_trim(adev); 300 return 0; 301 } 302 303 static int acpi_scan_device_check(struct acpi_device *adev) 304 { 305 int error; 306 307 acpi_bus_get_status(adev); 308 if (adev->status.present || adev->status.functional) { 309 /* 310 * This function is only called for device objects for which 311 * matching scan handlers exist. The only situation in which 312 * the scan handler is not attached to this device object yet 313 * is when the device has just appeared (either it wasn't 314 * present at all before or it was removed and then added 315 * again). 316 */ 317 if (adev->handler) { 318 dev_warn(&adev->dev, "Already enumerated\n"); 319 return -EALREADY; 320 } 321 error = acpi_bus_scan(adev->handle); 322 if (error) { 323 dev_warn(&adev->dev, "Namespace scan failure\n"); 324 return error; 325 } 326 if (!adev->handler) { 327 dev_warn(&adev->dev, "Enumeration failure\n"); 328 error = -ENODEV; 329 } 330 } else { 331 error = acpi_scan_device_not_present(adev); 332 } 333 return error; 334 } 335 336 static int acpi_scan_bus_check(struct acpi_device *adev) 337 { 338 struct acpi_scan_handler *handler = adev->handler; 339 struct acpi_device *child; 340 int error; 341 342 acpi_bus_get_status(adev); 343 if (!(adev->status.present || adev->status.functional)) { 344 acpi_scan_device_not_present(adev); 345 return 0; 346 } 347 if (handler && handler->hotplug.scan_dependent) 348 return handler->hotplug.scan_dependent(adev); 349 350 error = acpi_bus_scan(adev->handle); 351 if (error) { 352 dev_warn(&adev->dev, "Namespace scan failure\n"); 353 return error; 354 } 355 list_for_each_entry(child, &adev->children, node) { 356 error = acpi_scan_bus_check(child); 357 if (error) 358 return error; 359 } 360 return 0; 361 } 362 363 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 364 { 365 switch (type) { 366 case ACPI_NOTIFY_BUS_CHECK: 367 return acpi_scan_bus_check(adev); 368 case ACPI_NOTIFY_DEVICE_CHECK: 369 return acpi_scan_device_check(adev); 370 case ACPI_NOTIFY_EJECT_REQUEST: 371 case ACPI_OST_EC_OSPM_EJECT: 372 if (adev->handler && !adev->handler->hotplug.enabled) { 373 dev_info(&adev->dev, "Eject disabled\n"); 374 return -EPERM; 375 } 376 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 377 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 378 return acpi_scan_hot_remove(adev); 379 } 380 return -EINVAL; 381 } 382 383 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 384 { 385 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 386 int error = -ENODEV; 387 388 lock_device_hotplug(); 389 mutex_lock(&acpi_scan_lock); 390 391 /* 392 * The device object's ACPI handle cannot become invalid as long as we 393 * are holding acpi_scan_lock, but it might have become invalid before 394 * that lock was acquired. 395 */ 396 if (adev->handle == INVALID_ACPI_HANDLE) 397 goto err_out; 398 399 if (adev->flags.is_dock_station) { 400 error = dock_notify(adev, src); 401 } else if (adev->flags.hotplug_notify) { 402 error = acpi_generic_hotplug_event(adev, src); 403 } else { 404 int (*notify)(struct acpi_device *, u32); 405 406 acpi_lock_hp_context(); 407 notify = adev->hp ? adev->hp->notify : NULL; 408 acpi_unlock_hp_context(); 409 /* 410 * There may be additional notify handlers for device objects 411 * without the .event() callback, so ignore them here. 412 */ 413 if (notify) 414 error = notify(adev, src); 415 else 416 goto out; 417 } 418 switch (error) { 419 case 0: 420 ost_code = ACPI_OST_SC_SUCCESS; 421 break; 422 case -EPERM: 423 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 424 break; 425 case -EBUSY: 426 ost_code = ACPI_OST_SC_DEVICE_BUSY; 427 break; 428 default: 429 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 430 break; 431 } 432 433 err_out: 434 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 435 436 out: 437 acpi_bus_put_acpi_device(adev); 438 mutex_unlock(&acpi_scan_lock); 439 unlock_device_hotplug(); 440 } 441 442 static void acpi_free_power_resources_lists(struct acpi_device *device) 443 { 444 int i; 445 446 if (device->wakeup.flags.valid) 447 acpi_power_resources_list_free(&device->wakeup.resources); 448 449 if (!device->power.flags.power_resources) 450 return; 451 452 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 453 struct acpi_device_power_state *ps = &device->power.states[i]; 454 acpi_power_resources_list_free(&ps->resources); 455 } 456 } 457 458 static void acpi_device_release(struct device *dev) 459 { 460 struct acpi_device *acpi_dev = to_acpi_device(dev); 461 462 acpi_free_properties(acpi_dev); 463 acpi_free_pnp_ids(&acpi_dev->pnp); 464 acpi_free_power_resources_lists(acpi_dev); 465 kfree(acpi_dev); 466 } 467 468 static void acpi_device_del(struct acpi_device *device) 469 { 470 struct acpi_device_bus_id *acpi_device_bus_id; 471 472 mutex_lock(&acpi_device_lock); 473 if (device->parent) 474 list_del(&device->node); 475 476 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 477 if (!strcmp(acpi_device_bus_id->bus_id, 478 acpi_device_hid(device))) { 479 ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no); 480 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 481 list_del(&acpi_device_bus_id->node); 482 kfree_const(acpi_device_bus_id->bus_id); 483 kfree(acpi_device_bus_id); 484 } 485 break; 486 } 487 488 list_del(&device->wakeup_list); 489 mutex_unlock(&acpi_device_lock); 490 491 acpi_power_add_remove_device(device, false); 492 acpi_device_remove_files(device); 493 if (device->remove) 494 device->remove(device); 495 496 device_del(&device->dev); 497 } 498 499 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 500 501 static LIST_HEAD(acpi_device_del_list); 502 static DEFINE_MUTEX(acpi_device_del_lock); 503 504 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 505 { 506 for (;;) { 507 struct acpi_device *adev; 508 509 mutex_lock(&acpi_device_del_lock); 510 511 if (list_empty(&acpi_device_del_list)) { 512 mutex_unlock(&acpi_device_del_lock); 513 break; 514 } 515 adev = list_first_entry(&acpi_device_del_list, 516 struct acpi_device, del_list); 517 list_del(&adev->del_list); 518 519 mutex_unlock(&acpi_device_del_lock); 520 521 blocking_notifier_call_chain(&acpi_reconfig_chain, 522 ACPI_RECONFIG_DEVICE_REMOVE, adev); 523 524 acpi_device_del(adev); 525 /* 526 * Drop references to all power resources that might have been 527 * used by the device. 528 */ 529 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 530 acpi_dev_put(adev); 531 } 532 } 533 534 /** 535 * acpi_scan_drop_device - Drop an ACPI device object. 536 * @handle: Handle of an ACPI namespace node, not used. 537 * @context: Address of the ACPI device object to drop. 538 * 539 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 540 * namespace node the device object pointed to by @context is attached to. 541 * 542 * The unregistration is carried out asynchronously to avoid running 543 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 544 * ensure the correct ordering (the device objects must be unregistered in the 545 * same order in which the corresponding namespace nodes are deleted). 546 */ 547 static void acpi_scan_drop_device(acpi_handle handle, void *context) 548 { 549 static DECLARE_WORK(work, acpi_device_del_work_fn); 550 struct acpi_device *adev = context; 551 552 mutex_lock(&acpi_device_del_lock); 553 554 /* 555 * Use the ACPI hotplug workqueue which is ordered, so this work item 556 * won't run after any hotplug work items submitted subsequently. That 557 * prevents attempts to register device objects identical to those being 558 * deleted from happening concurrently (such attempts result from 559 * hotplug events handled via the ACPI hotplug workqueue). It also will 560 * run after all of the work items submitted previously, which helps 561 * those work items to ensure that they are not accessing stale device 562 * objects. 563 */ 564 if (list_empty(&acpi_device_del_list)) 565 acpi_queue_hotplug_work(&work); 566 567 list_add_tail(&adev->del_list, &acpi_device_del_list); 568 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 569 adev->handle = INVALID_ACPI_HANDLE; 570 571 mutex_unlock(&acpi_device_del_lock); 572 } 573 574 static struct acpi_device *handle_to_device(acpi_handle handle, 575 void (*callback)(void *)) 576 { 577 struct acpi_device *adev = NULL; 578 acpi_status status; 579 580 status = acpi_get_data_full(handle, acpi_scan_drop_device, 581 (void **)&adev, callback); 582 if (ACPI_FAILURE(status) || !adev) { 583 acpi_handle_debug(handle, "No context!\n"); 584 return NULL; 585 } 586 return adev; 587 } 588 589 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device) 590 { 591 if (!device) 592 return -EINVAL; 593 594 *device = handle_to_device(handle, NULL); 595 if (!*device) 596 return -ENODEV; 597 598 return 0; 599 } 600 EXPORT_SYMBOL(acpi_bus_get_device); 601 602 static void get_acpi_device(void *dev) 603 { 604 acpi_dev_get(dev); 605 } 606 607 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle) 608 { 609 return handle_to_device(handle, get_acpi_device); 610 } 611 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device); 612 613 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 614 { 615 struct acpi_device_bus_id *acpi_device_bus_id; 616 617 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 618 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 619 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 620 return acpi_device_bus_id; 621 } 622 return NULL; 623 } 624 625 static int acpi_device_set_name(struct acpi_device *device, 626 struct acpi_device_bus_id *acpi_device_bus_id) 627 { 628 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 629 int result; 630 631 result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL); 632 if (result < 0) 633 return result; 634 635 device->pnp.instance_no = result; 636 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 637 return 0; 638 } 639 640 static int acpi_tie_acpi_dev(struct acpi_device *adev) 641 { 642 acpi_handle handle = adev->handle; 643 acpi_status status; 644 645 if (!handle) 646 return 0; 647 648 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 649 if (ACPI_FAILURE(status)) { 650 acpi_handle_err(handle, "Unable to attach device data\n"); 651 return -ENODEV; 652 } 653 654 return 0; 655 } 656 657 static int __acpi_device_add(struct acpi_device *device, 658 void (*release)(struct device *)) 659 { 660 struct acpi_device_bus_id *acpi_device_bus_id; 661 int result; 662 663 /* 664 * Linkage 665 * ------- 666 * Link this device to its parent and siblings. 667 */ 668 INIT_LIST_HEAD(&device->children); 669 INIT_LIST_HEAD(&device->node); 670 INIT_LIST_HEAD(&device->wakeup_list); 671 INIT_LIST_HEAD(&device->physical_node_list); 672 INIT_LIST_HEAD(&device->del_list); 673 mutex_init(&device->physical_node_lock); 674 675 mutex_lock(&acpi_device_lock); 676 677 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 678 if (acpi_device_bus_id) { 679 result = acpi_device_set_name(device, acpi_device_bus_id); 680 if (result) 681 goto err_unlock; 682 } else { 683 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 684 GFP_KERNEL); 685 if (!acpi_device_bus_id) { 686 result = -ENOMEM; 687 goto err_unlock; 688 } 689 acpi_device_bus_id->bus_id = 690 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 691 if (!acpi_device_bus_id->bus_id) { 692 kfree(acpi_device_bus_id); 693 result = -ENOMEM; 694 goto err_unlock; 695 } 696 697 ida_init(&acpi_device_bus_id->instance_ida); 698 699 result = acpi_device_set_name(device, acpi_device_bus_id); 700 if (result) { 701 kfree_const(acpi_device_bus_id->bus_id); 702 kfree(acpi_device_bus_id); 703 goto err_unlock; 704 } 705 706 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 707 } 708 709 if (device->parent) 710 list_add_tail(&device->node, &device->parent->children); 711 712 if (device->wakeup.flags.valid) 713 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 714 715 mutex_unlock(&acpi_device_lock); 716 717 if (device->parent) 718 device->dev.parent = &device->parent->dev; 719 720 device->dev.bus = &acpi_bus_type; 721 device->dev.release = release; 722 result = device_add(&device->dev); 723 if (result) { 724 dev_err(&device->dev, "Error registering device\n"); 725 goto err; 726 } 727 728 result = acpi_device_setup_files(device); 729 if (result) 730 pr_err("Error creating sysfs interface for device %s\n", 731 dev_name(&device->dev)); 732 733 return 0; 734 735 err: 736 mutex_lock(&acpi_device_lock); 737 738 if (device->parent) 739 list_del(&device->node); 740 741 list_del(&device->wakeup_list); 742 743 err_unlock: 744 mutex_unlock(&acpi_device_lock); 745 746 acpi_detach_data(device->handle, acpi_scan_drop_device); 747 748 return result; 749 } 750 751 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *)) 752 { 753 int ret; 754 755 ret = acpi_tie_acpi_dev(adev); 756 if (ret) 757 return ret; 758 759 return __acpi_device_add(adev, release); 760 } 761 762 /* -------------------------------------------------------------------------- 763 Device Enumeration 764 -------------------------------------------------------------------------- */ 765 static bool acpi_info_matches_ids(struct acpi_device_info *info, 766 const char * const ids[]) 767 { 768 struct acpi_pnp_device_id_list *cid_list = NULL; 769 int i, index; 770 771 if (!(info->valid & ACPI_VALID_HID)) 772 return false; 773 774 index = match_string(ids, -1, info->hardware_id.string); 775 if (index >= 0) 776 return true; 777 778 if (info->valid & ACPI_VALID_CID) 779 cid_list = &info->compatible_id_list; 780 781 if (!cid_list) 782 return false; 783 784 for (i = 0; i < cid_list->count; i++) { 785 index = match_string(ids, -1, cid_list->ids[i].string); 786 if (index >= 0) 787 return true; 788 } 789 790 return false; 791 } 792 793 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 794 static const char * const acpi_ignore_dep_ids[] = { 795 "PNP0D80", /* Windows-compatible System Power Management Controller */ 796 "INT33BD", /* Intel Baytrail Mailbox Device */ 797 NULL 798 }; 799 800 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle) 801 { 802 struct acpi_device *device = NULL; 803 acpi_status status; 804 805 /* 806 * Fixed hardware devices do not appear in the namespace and do not 807 * have handles, but we fabricate acpi_devices for them, so we have 808 * to deal with them specially. 809 */ 810 if (!handle) 811 return acpi_root; 812 813 do { 814 status = acpi_get_parent(handle, &handle); 815 if (ACPI_FAILURE(status)) 816 return status == AE_NULL_ENTRY ? NULL : acpi_root; 817 } while (acpi_bus_get_device(handle, &device)); 818 return device; 819 } 820 821 acpi_status 822 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 823 { 824 acpi_status status; 825 acpi_handle tmp; 826 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 827 union acpi_object *obj; 828 829 status = acpi_get_handle(handle, "_EJD", &tmp); 830 if (ACPI_FAILURE(status)) 831 return status; 832 833 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 834 if (ACPI_SUCCESS(status)) { 835 obj = buffer.pointer; 836 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 837 ejd); 838 kfree(buffer.pointer); 839 } 840 return status; 841 } 842 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 843 844 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 845 { 846 acpi_handle handle = dev->handle; 847 struct acpi_device_wakeup *wakeup = &dev->wakeup; 848 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 849 union acpi_object *package = NULL; 850 union acpi_object *element = NULL; 851 acpi_status status; 852 int err = -ENODATA; 853 854 INIT_LIST_HEAD(&wakeup->resources); 855 856 /* _PRW */ 857 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 858 if (ACPI_FAILURE(status)) { 859 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 860 acpi_format_exception(status)); 861 return err; 862 } 863 864 package = (union acpi_object *)buffer.pointer; 865 866 if (!package || package->package.count < 2) 867 goto out; 868 869 element = &(package->package.elements[0]); 870 if (!element) 871 goto out; 872 873 if (element->type == ACPI_TYPE_PACKAGE) { 874 if ((element->package.count < 2) || 875 (element->package.elements[0].type != 876 ACPI_TYPE_LOCAL_REFERENCE) 877 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 878 goto out; 879 880 wakeup->gpe_device = 881 element->package.elements[0].reference.handle; 882 wakeup->gpe_number = 883 (u32) element->package.elements[1].integer.value; 884 } else if (element->type == ACPI_TYPE_INTEGER) { 885 wakeup->gpe_device = NULL; 886 wakeup->gpe_number = element->integer.value; 887 } else { 888 goto out; 889 } 890 891 element = &(package->package.elements[1]); 892 if (element->type != ACPI_TYPE_INTEGER) 893 goto out; 894 895 wakeup->sleep_state = element->integer.value; 896 897 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 898 if (err) 899 goto out; 900 901 if (!list_empty(&wakeup->resources)) { 902 int sleep_state; 903 904 err = acpi_power_wakeup_list_init(&wakeup->resources, 905 &sleep_state); 906 if (err) { 907 acpi_handle_warn(handle, "Retrieving current states " 908 "of wakeup power resources failed\n"); 909 acpi_power_resources_list_free(&wakeup->resources); 910 goto out; 911 } 912 if (sleep_state < wakeup->sleep_state) { 913 acpi_handle_warn(handle, "Overriding _PRW sleep state " 914 "(S%d) by S%d from power resources\n", 915 (int)wakeup->sleep_state, sleep_state); 916 wakeup->sleep_state = sleep_state; 917 } 918 } 919 920 out: 921 kfree(buffer.pointer); 922 return err; 923 } 924 925 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 926 { 927 static const struct acpi_device_id button_device_ids[] = { 928 {"PNP0C0C", 0}, /* Power button */ 929 {"PNP0C0D", 0}, /* Lid */ 930 {"PNP0C0E", 0}, /* Sleep button */ 931 {"", 0}, 932 }; 933 struct acpi_device_wakeup *wakeup = &device->wakeup; 934 acpi_status status; 935 936 wakeup->flags.notifier_present = 0; 937 938 /* Power button, Lid switch always enable wakeup */ 939 if (!acpi_match_device_ids(device, button_device_ids)) { 940 if (!acpi_match_device_ids(device, &button_device_ids[1])) { 941 /* Do not use Lid/sleep button for S5 wakeup */ 942 if (wakeup->sleep_state == ACPI_STATE_S5) 943 wakeup->sleep_state = ACPI_STATE_S4; 944 } 945 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 946 device_set_wakeup_capable(&device->dev, true); 947 return true; 948 } 949 950 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 951 wakeup->gpe_number); 952 return ACPI_SUCCESS(status); 953 } 954 955 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 956 { 957 int err; 958 959 /* Presence of _PRW indicates wake capable */ 960 if (!acpi_has_method(device->handle, "_PRW")) 961 return; 962 963 err = acpi_bus_extract_wakeup_device_power_package(device); 964 if (err) { 965 dev_err(&device->dev, "Unable to extract wakeup power resources"); 966 return; 967 } 968 969 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 970 device->wakeup.prepare_count = 0; 971 /* 972 * Call _PSW/_DSW object to disable its ability to wake the sleeping 973 * system for the ACPI device with the _PRW object. 974 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 975 * So it is necessary to call _DSW object first. Only when it is not 976 * present will the _PSW object used. 977 */ 978 err = acpi_device_sleep_wake(device, 0, 0, 0); 979 if (err) 980 pr_debug("error in _DSW or _PSW evaluation\n"); 981 } 982 983 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 984 { 985 struct acpi_device_power_state *ps = &device->power.states[state]; 986 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 987 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 988 acpi_status status; 989 990 INIT_LIST_HEAD(&ps->resources); 991 992 /* Evaluate "_PRx" to get referenced power resources */ 993 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 994 if (ACPI_SUCCESS(status)) { 995 union acpi_object *package = buffer.pointer; 996 997 if (buffer.length && package 998 && package->type == ACPI_TYPE_PACKAGE 999 && package->package.count) 1000 acpi_extract_power_resources(package, 0, &ps->resources); 1001 1002 ACPI_FREE(buffer.pointer); 1003 } 1004 1005 /* Evaluate "_PSx" to see if we can do explicit sets */ 1006 pathname[2] = 'S'; 1007 if (acpi_has_method(device->handle, pathname)) 1008 ps->flags.explicit_set = 1; 1009 1010 /* State is valid if there are means to put the device into it. */ 1011 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1012 ps->flags.valid = 1; 1013 1014 ps->power = -1; /* Unknown - driver assigned */ 1015 ps->latency = -1; /* Unknown - driver assigned */ 1016 } 1017 1018 static void acpi_bus_get_power_flags(struct acpi_device *device) 1019 { 1020 unsigned long long dsc = ACPI_STATE_D0; 1021 u32 i; 1022 1023 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1024 if (!acpi_has_method(device->handle, "_PS0") && 1025 !acpi_has_method(device->handle, "_PR0")) 1026 return; 1027 1028 device->flags.power_manageable = 1; 1029 1030 /* 1031 * Power Management Flags 1032 */ 1033 if (acpi_has_method(device->handle, "_PSC")) 1034 device->power.flags.explicit_get = 1; 1035 1036 if (acpi_has_method(device->handle, "_IRC")) 1037 device->power.flags.inrush_current = 1; 1038 1039 if (acpi_has_method(device->handle, "_DSW")) 1040 device->power.flags.dsw_present = 1; 1041 1042 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc); 1043 device->power.state_for_enumeration = dsc; 1044 1045 /* 1046 * Enumerate supported power management states 1047 */ 1048 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1049 acpi_bus_init_power_state(device, i); 1050 1051 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1052 1053 /* Set the defaults for D0 and D3hot (always supported). */ 1054 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1055 device->power.states[ACPI_STATE_D0].power = 100; 1056 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1057 1058 /* 1059 * Use power resources only if the D0 list of them is populated, because 1060 * some platforms may provide _PR3 only to indicate D3cold support and 1061 * in those cases the power resources list returned by it may be bogus. 1062 */ 1063 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1064 device->power.flags.power_resources = 1; 1065 /* 1066 * D3cold is supported if the D3hot list of power resources is 1067 * not empty. 1068 */ 1069 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1070 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1071 } 1072 1073 if (acpi_bus_init_power(device)) 1074 device->flags.power_manageable = 0; 1075 } 1076 1077 static void acpi_bus_get_flags(struct acpi_device *device) 1078 { 1079 /* Presence of _STA indicates 'dynamic_status' */ 1080 if (acpi_has_method(device->handle, "_STA")) 1081 device->flags.dynamic_status = 1; 1082 1083 /* Presence of _RMV indicates 'removable' */ 1084 if (acpi_has_method(device->handle, "_RMV")) 1085 device->flags.removable = 1; 1086 1087 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1088 if (acpi_has_method(device->handle, "_EJD") || 1089 acpi_has_method(device->handle, "_EJ0")) 1090 device->flags.ejectable = 1; 1091 } 1092 1093 static void acpi_device_get_busid(struct acpi_device *device) 1094 { 1095 char bus_id[5] = { '?', 0 }; 1096 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1097 int i = 0; 1098 1099 /* 1100 * Bus ID 1101 * ------ 1102 * The device's Bus ID is simply the object name. 1103 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1104 */ 1105 if (ACPI_IS_ROOT_DEVICE(device)) { 1106 strcpy(device->pnp.bus_id, "ACPI"); 1107 return; 1108 } 1109 1110 switch (device->device_type) { 1111 case ACPI_BUS_TYPE_POWER_BUTTON: 1112 strcpy(device->pnp.bus_id, "PWRF"); 1113 break; 1114 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1115 strcpy(device->pnp.bus_id, "SLPF"); 1116 break; 1117 case ACPI_BUS_TYPE_ECDT_EC: 1118 strcpy(device->pnp.bus_id, "ECDT"); 1119 break; 1120 default: 1121 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1122 /* Clean up trailing underscores (if any) */ 1123 for (i = 3; i > 1; i--) { 1124 if (bus_id[i] == '_') 1125 bus_id[i] = '\0'; 1126 else 1127 break; 1128 } 1129 strcpy(device->pnp.bus_id, bus_id); 1130 break; 1131 } 1132 } 1133 1134 /* 1135 * acpi_ata_match - see if an acpi object is an ATA device 1136 * 1137 * If an acpi object has one of the ACPI ATA methods defined, 1138 * then we can safely call it an ATA device. 1139 */ 1140 bool acpi_ata_match(acpi_handle handle) 1141 { 1142 return acpi_has_method(handle, "_GTF") || 1143 acpi_has_method(handle, "_GTM") || 1144 acpi_has_method(handle, "_STM") || 1145 acpi_has_method(handle, "_SDD"); 1146 } 1147 1148 /* 1149 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1150 * 1151 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1152 * then we can safely call it an ejectable drive bay 1153 */ 1154 bool acpi_bay_match(acpi_handle handle) 1155 { 1156 acpi_handle phandle; 1157 1158 if (!acpi_has_method(handle, "_EJ0")) 1159 return false; 1160 if (acpi_ata_match(handle)) 1161 return true; 1162 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1163 return false; 1164 1165 return acpi_ata_match(phandle); 1166 } 1167 1168 bool acpi_device_is_battery(struct acpi_device *adev) 1169 { 1170 struct acpi_hardware_id *hwid; 1171 1172 list_for_each_entry(hwid, &adev->pnp.ids, list) 1173 if (!strcmp("PNP0C0A", hwid->id)) 1174 return true; 1175 1176 return false; 1177 } 1178 1179 static bool is_ejectable_bay(struct acpi_device *adev) 1180 { 1181 acpi_handle handle = adev->handle; 1182 1183 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1184 return true; 1185 1186 return acpi_bay_match(handle); 1187 } 1188 1189 /* 1190 * acpi_dock_match - see if an acpi object has a _DCK method 1191 */ 1192 bool acpi_dock_match(acpi_handle handle) 1193 { 1194 return acpi_has_method(handle, "_DCK"); 1195 } 1196 1197 static acpi_status 1198 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1199 void **return_value) 1200 { 1201 long *cap = context; 1202 1203 if (acpi_has_method(handle, "_BCM") && 1204 acpi_has_method(handle, "_BCL")) { 1205 acpi_handle_debug(handle, "Found generic backlight support\n"); 1206 *cap |= ACPI_VIDEO_BACKLIGHT; 1207 /* We have backlight support, no need to scan further */ 1208 return AE_CTRL_TERMINATE; 1209 } 1210 return 0; 1211 } 1212 1213 /* Returns true if the ACPI object is a video device which can be 1214 * handled by video.ko. 1215 * The device will get a Linux specific CID added in scan.c to 1216 * identify the device as an ACPI graphics device 1217 * Be aware that the graphics device may not be physically present 1218 * Use acpi_video_get_capabilities() to detect general ACPI video 1219 * capabilities of present cards 1220 */ 1221 long acpi_is_video_device(acpi_handle handle) 1222 { 1223 long video_caps = 0; 1224 1225 /* Is this device able to support video switching ? */ 1226 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1227 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1228 1229 /* Is this device able to retrieve a video ROM ? */ 1230 if (acpi_has_method(handle, "_ROM")) 1231 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1232 1233 /* Is this device able to configure which video head to be POSTed ? */ 1234 if (acpi_has_method(handle, "_VPO") && 1235 acpi_has_method(handle, "_GPD") && 1236 acpi_has_method(handle, "_SPD")) 1237 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1238 1239 /* Only check for backlight functionality if one of the above hit. */ 1240 if (video_caps) 1241 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1242 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1243 &video_caps, NULL); 1244 1245 return video_caps; 1246 } 1247 EXPORT_SYMBOL(acpi_is_video_device); 1248 1249 const char *acpi_device_hid(struct acpi_device *device) 1250 { 1251 struct acpi_hardware_id *hid; 1252 1253 if (list_empty(&device->pnp.ids)) 1254 return dummy_hid; 1255 1256 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list); 1257 return hid->id; 1258 } 1259 EXPORT_SYMBOL(acpi_device_hid); 1260 1261 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1262 { 1263 struct acpi_hardware_id *id; 1264 1265 id = kmalloc(sizeof(*id), GFP_KERNEL); 1266 if (!id) 1267 return; 1268 1269 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1270 if (!id->id) { 1271 kfree(id); 1272 return; 1273 } 1274 1275 list_add_tail(&id->list, &pnp->ids); 1276 pnp->type.hardware_id = 1; 1277 } 1278 1279 /* 1280 * Old IBM workstations have a DSDT bug wherein the SMBus object 1281 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1282 * prefix. Work around this. 1283 */ 1284 static bool acpi_ibm_smbus_match(acpi_handle handle) 1285 { 1286 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1287 struct acpi_buffer path = { sizeof(node_name), node_name }; 1288 1289 if (!dmi_name_in_vendors("IBM")) 1290 return false; 1291 1292 /* Look for SMBS object */ 1293 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1294 strcmp("SMBS", path.pointer)) 1295 return false; 1296 1297 /* Does it have the necessary (but misnamed) methods? */ 1298 if (acpi_has_method(handle, "SBI") && 1299 acpi_has_method(handle, "SBR") && 1300 acpi_has_method(handle, "SBW")) 1301 return true; 1302 1303 return false; 1304 } 1305 1306 static bool acpi_object_is_system_bus(acpi_handle handle) 1307 { 1308 acpi_handle tmp; 1309 1310 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1311 tmp == handle) 1312 return true; 1313 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1314 tmp == handle) 1315 return true; 1316 1317 return false; 1318 } 1319 1320 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1321 int device_type) 1322 { 1323 struct acpi_device_info *info = NULL; 1324 struct acpi_pnp_device_id_list *cid_list; 1325 int i; 1326 1327 switch (device_type) { 1328 case ACPI_BUS_TYPE_DEVICE: 1329 if (handle == ACPI_ROOT_OBJECT) { 1330 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1331 break; 1332 } 1333 1334 acpi_get_object_info(handle, &info); 1335 if (!info) { 1336 pr_err("%s: Error reading device info\n", __func__); 1337 return; 1338 } 1339 1340 if (info->valid & ACPI_VALID_HID) { 1341 acpi_add_id(pnp, info->hardware_id.string); 1342 pnp->type.platform_id = 1; 1343 } 1344 if (info->valid & ACPI_VALID_CID) { 1345 cid_list = &info->compatible_id_list; 1346 for (i = 0; i < cid_list->count; i++) 1347 acpi_add_id(pnp, cid_list->ids[i].string); 1348 } 1349 if (info->valid & ACPI_VALID_ADR) { 1350 pnp->bus_address = info->address; 1351 pnp->type.bus_address = 1; 1352 } 1353 if (info->valid & ACPI_VALID_UID) 1354 pnp->unique_id = kstrdup(info->unique_id.string, 1355 GFP_KERNEL); 1356 if (info->valid & ACPI_VALID_CLS) 1357 acpi_add_id(pnp, info->class_code.string); 1358 1359 kfree(info); 1360 1361 /* 1362 * Some devices don't reliably have _HIDs & _CIDs, so add 1363 * synthetic HIDs to make sure drivers can find them. 1364 */ 1365 if (acpi_is_video_device(handle)) 1366 acpi_add_id(pnp, ACPI_VIDEO_HID); 1367 else if (acpi_bay_match(handle)) 1368 acpi_add_id(pnp, ACPI_BAY_HID); 1369 else if (acpi_dock_match(handle)) 1370 acpi_add_id(pnp, ACPI_DOCK_HID); 1371 else if (acpi_ibm_smbus_match(handle)) 1372 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1373 else if (list_empty(&pnp->ids) && 1374 acpi_object_is_system_bus(handle)) { 1375 /* \_SB, \_TZ, LNXSYBUS */ 1376 acpi_add_id(pnp, ACPI_BUS_HID); 1377 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1378 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1379 } 1380 1381 break; 1382 case ACPI_BUS_TYPE_POWER: 1383 acpi_add_id(pnp, ACPI_POWER_HID); 1384 break; 1385 case ACPI_BUS_TYPE_PROCESSOR: 1386 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1387 break; 1388 case ACPI_BUS_TYPE_THERMAL: 1389 acpi_add_id(pnp, ACPI_THERMAL_HID); 1390 break; 1391 case ACPI_BUS_TYPE_POWER_BUTTON: 1392 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1393 break; 1394 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1395 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1396 break; 1397 case ACPI_BUS_TYPE_ECDT_EC: 1398 acpi_add_id(pnp, ACPI_ECDT_HID); 1399 break; 1400 } 1401 } 1402 1403 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1404 { 1405 struct acpi_hardware_id *id, *tmp; 1406 1407 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1408 kfree_const(id->id); 1409 kfree(id); 1410 } 1411 kfree(pnp->unique_id); 1412 } 1413 1414 /** 1415 * acpi_dma_supported - Check DMA support for the specified device. 1416 * @adev: The pointer to acpi device 1417 * 1418 * Return false if DMA is not supported. Otherwise, return true 1419 */ 1420 bool acpi_dma_supported(const struct acpi_device *adev) 1421 { 1422 if (!adev) 1423 return false; 1424 1425 if (adev->flags.cca_seen) 1426 return true; 1427 1428 /* 1429 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1430 * DMA on "Intel platforms". Presumably that includes all x86 and 1431 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1432 */ 1433 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1434 return true; 1435 1436 return false; 1437 } 1438 1439 /** 1440 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1441 * @adev: The pointer to acpi device 1442 * 1443 * Return enum dev_dma_attr. 1444 */ 1445 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1446 { 1447 if (!acpi_dma_supported(adev)) 1448 return DEV_DMA_NOT_SUPPORTED; 1449 1450 if (adev->flags.coherent_dma) 1451 return DEV_DMA_COHERENT; 1452 else 1453 return DEV_DMA_NON_COHERENT; 1454 } 1455 1456 /** 1457 * acpi_dma_get_range() - Get device DMA parameters. 1458 * 1459 * @dev: device to configure 1460 * @dma_addr: pointer device DMA address result 1461 * @offset: pointer to the DMA offset result 1462 * @size: pointer to DMA range size result 1463 * 1464 * Evaluate DMA regions and return respectively DMA region start, offset 1465 * and size in dma_addr, offset and size on parsing success; it does not 1466 * update the passed in values on failure. 1467 * 1468 * Return 0 on success, < 0 on failure. 1469 */ 1470 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, 1471 u64 *size) 1472 { 1473 struct acpi_device *adev; 1474 LIST_HEAD(list); 1475 struct resource_entry *rentry; 1476 int ret; 1477 struct device *dma_dev = dev; 1478 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0; 1479 1480 /* 1481 * Walk the device tree chasing an ACPI companion with a _DMA 1482 * object while we go. Stop if we find a device with an ACPI 1483 * companion containing a _DMA method. 1484 */ 1485 do { 1486 adev = ACPI_COMPANION(dma_dev); 1487 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1488 break; 1489 1490 dma_dev = dma_dev->parent; 1491 } while (dma_dev); 1492 1493 if (!dma_dev) 1494 return -ENODEV; 1495 1496 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1497 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1498 return -EINVAL; 1499 } 1500 1501 ret = acpi_dev_get_dma_resources(adev, &list); 1502 if (ret > 0) { 1503 list_for_each_entry(rentry, &list, node) { 1504 if (dma_offset && rentry->offset != dma_offset) { 1505 ret = -EINVAL; 1506 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n"); 1507 goto out; 1508 } 1509 dma_offset = rentry->offset; 1510 1511 /* Take lower and upper limits */ 1512 if (rentry->res->start < dma_start) 1513 dma_start = rentry->res->start; 1514 if (rentry->res->end > dma_end) 1515 dma_end = rentry->res->end; 1516 } 1517 1518 if (dma_start >= dma_end) { 1519 ret = -EINVAL; 1520 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1521 goto out; 1522 } 1523 1524 *dma_addr = dma_start - dma_offset; 1525 len = dma_end - dma_start; 1526 *size = max(len, len + 1); 1527 *offset = dma_offset; 1528 } 1529 out: 1530 acpi_dev_free_resource_list(&list); 1531 1532 return ret >= 0 ? 0 : ret; 1533 } 1534 1535 #ifdef CONFIG_IOMMU_API 1536 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1537 struct fwnode_handle *fwnode, 1538 const struct iommu_ops *ops) 1539 { 1540 int ret = iommu_fwspec_init(dev, fwnode, ops); 1541 1542 if (!ret) 1543 ret = iommu_fwspec_add_ids(dev, &id, 1); 1544 1545 return ret; 1546 } 1547 1548 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev) 1549 { 1550 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1551 1552 return fwspec ? fwspec->ops : NULL; 1553 } 1554 1555 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1556 const u32 *id_in) 1557 { 1558 int err; 1559 const struct iommu_ops *ops; 1560 1561 /* 1562 * If we already translated the fwspec there is nothing left to do, 1563 * return the iommu_ops. 1564 */ 1565 ops = acpi_iommu_fwspec_ops(dev); 1566 if (ops) 1567 return ops; 1568 1569 err = iort_iommu_configure_id(dev, id_in); 1570 if (err && err != -EPROBE_DEFER) 1571 err = viot_iommu_configure(dev); 1572 1573 /* 1574 * If we have reason to believe the IOMMU driver missed the initial 1575 * iommu_probe_device() call for dev, replay it to get things in order. 1576 */ 1577 if (!err && dev->bus && !device_iommu_mapped(dev)) 1578 err = iommu_probe_device(dev); 1579 1580 /* Ignore all other errors apart from EPROBE_DEFER */ 1581 if (err == -EPROBE_DEFER) { 1582 return ERR_PTR(err); 1583 } else if (err) { 1584 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err); 1585 return NULL; 1586 } 1587 return acpi_iommu_fwspec_ops(dev); 1588 } 1589 1590 #else /* !CONFIG_IOMMU_API */ 1591 1592 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1593 struct fwnode_handle *fwnode, 1594 const struct iommu_ops *ops) 1595 { 1596 return -ENODEV; 1597 } 1598 1599 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1600 const u32 *id_in) 1601 { 1602 return NULL; 1603 } 1604 1605 #endif /* !CONFIG_IOMMU_API */ 1606 1607 /** 1608 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1609 * @dev: The pointer to the device 1610 * @attr: device dma attributes 1611 * @input_id: input device id const value pointer 1612 */ 1613 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1614 const u32 *input_id) 1615 { 1616 const struct iommu_ops *iommu; 1617 u64 dma_addr = 0, size = 0; 1618 1619 if (attr == DEV_DMA_NOT_SUPPORTED) { 1620 set_dma_ops(dev, &dma_dummy_ops); 1621 return 0; 1622 } 1623 1624 acpi_arch_dma_setup(dev, &dma_addr, &size); 1625 1626 iommu = acpi_iommu_configure_id(dev, input_id); 1627 if (PTR_ERR(iommu) == -EPROBE_DEFER) 1628 return -EPROBE_DEFER; 1629 1630 arch_setup_dma_ops(dev, dma_addr, size, 1631 iommu, attr == DEV_DMA_COHERENT); 1632 1633 return 0; 1634 } 1635 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1636 1637 static void acpi_init_coherency(struct acpi_device *adev) 1638 { 1639 unsigned long long cca = 0; 1640 acpi_status status; 1641 struct acpi_device *parent = adev->parent; 1642 1643 if (parent && parent->flags.cca_seen) { 1644 /* 1645 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1646 * already saw one. 1647 */ 1648 adev->flags.cca_seen = 1; 1649 cca = parent->flags.coherent_dma; 1650 } else { 1651 status = acpi_evaluate_integer(adev->handle, "_CCA", 1652 NULL, &cca); 1653 if (ACPI_SUCCESS(status)) 1654 adev->flags.cca_seen = 1; 1655 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1656 /* 1657 * If architecture does not specify that _CCA is 1658 * required for DMA-able devices (e.g. x86), 1659 * we default to _CCA=1. 1660 */ 1661 cca = 1; 1662 else 1663 acpi_handle_debug(adev->handle, 1664 "ACPI device is missing _CCA.\n"); 1665 } 1666 1667 adev->flags.coherent_dma = cca; 1668 } 1669 1670 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1671 { 1672 bool *is_serial_bus_slave_p = data; 1673 1674 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1675 return 1; 1676 1677 *is_serial_bus_slave_p = true; 1678 1679 /* no need to do more checking */ 1680 return -1; 1681 } 1682 1683 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1684 { 1685 struct acpi_device *parent = device->parent; 1686 static const struct acpi_device_id indirect_io_hosts[] = { 1687 {"HISI0191", 0}, 1688 {} 1689 }; 1690 1691 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1692 } 1693 1694 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1695 { 1696 struct list_head resource_list; 1697 bool is_serial_bus_slave = false; 1698 /* 1699 * These devices have multiple I2cSerialBus resources and an i2c-client 1700 * must be instantiated for each, each with its own i2c_device_id. 1701 * Normally we only instantiate an i2c-client for the first resource, 1702 * using the ACPI HID as id. These special cases are handled by the 1703 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows 1704 * which i2c_device_id to use for each resource. 1705 */ 1706 static const struct acpi_device_id i2c_multi_instantiate_ids[] = { 1707 {"BSG1160", }, 1708 {"BSG2150", }, 1709 {"INT33FE", }, 1710 {"INT3515", }, 1711 {} 1712 }; 1713 1714 if (acpi_is_indirect_io_slave(device)) 1715 return true; 1716 1717 /* Macs use device properties in lieu of _CRS resources */ 1718 if (x86_apple_machine && 1719 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1720 fwnode_property_present(&device->fwnode, "i2cAddress") || 1721 fwnode_property_present(&device->fwnode, "baud"))) 1722 return true; 1723 1724 /* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */ 1725 if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids)) 1726 return false; 1727 1728 INIT_LIST_HEAD(&resource_list); 1729 acpi_dev_get_resources(device, &resource_list, 1730 acpi_check_serial_bus_slave, 1731 &is_serial_bus_slave); 1732 acpi_dev_free_resource_list(&resource_list); 1733 1734 return is_serial_bus_slave; 1735 } 1736 1737 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1738 int type) 1739 { 1740 INIT_LIST_HEAD(&device->pnp.ids); 1741 device->device_type = type; 1742 device->handle = handle; 1743 device->parent = acpi_bus_get_parent(handle); 1744 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1745 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1746 acpi_device_get_busid(device); 1747 acpi_set_pnp_ids(handle, &device->pnp, type); 1748 acpi_init_properties(device); 1749 acpi_bus_get_flags(device); 1750 device->flags.match_driver = false; 1751 device->flags.initialized = true; 1752 device->flags.enumeration_by_parent = 1753 acpi_device_enumeration_by_parent(device); 1754 acpi_device_clear_enumerated(device); 1755 device_initialize(&device->dev); 1756 dev_set_uevent_suppress(&device->dev, true); 1757 acpi_init_coherency(device); 1758 } 1759 1760 static void acpi_scan_dep_init(struct acpi_device *adev) 1761 { 1762 struct acpi_dep_data *dep; 1763 1764 list_for_each_entry(dep, &acpi_dep_list, node) { 1765 if (dep->consumer == adev->handle) 1766 adev->dep_unmet++; 1767 } 1768 } 1769 1770 void acpi_device_add_finalize(struct acpi_device *device) 1771 { 1772 dev_set_uevent_suppress(&device->dev, false); 1773 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1774 } 1775 1776 static void acpi_scan_init_status(struct acpi_device *adev) 1777 { 1778 if (acpi_bus_get_status(adev)) 1779 acpi_set_device_status(adev, 0); 1780 } 1781 1782 static int acpi_add_single_object(struct acpi_device **child, 1783 acpi_handle handle, int type, bool dep_init) 1784 { 1785 struct acpi_device *device; 1786 bool release_dep_lock = false; 1787 int result; 1788 1789 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1790 if (!device) 1791 return -ENOMEM; 1792 1793 acpi_init_device_object(device, handle, type); 1794 /* 1795 * Getting the status is delayed till here so that we can call 1796 * acpi_bus_get_status() and use its quirk handling. Note that 1797 * this must be done before the get power-/wakeup_dev-flags calls. 1798 */ 1799 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1800 if (dep_init) { 1801 mutex_lock(&acpi_dep_list_lock); 1802 /* 1803 * Hold the lock until the acpi_tie_acpi_dev() call 1804 * below to prevent concurrent acpi_scan_clear_dep() 1805 * from deleting a dependency list entry without 1806 * updating dep_unmet for the device. 1807 */ 1808 release_dep_lock = true; 1809 acpi_scan_dep_init(device); 1810 } 1811 acpi_scan_init_status(device); 1812 } 1813 1814 acpi_bus_get_power_flags(device); 1815 acpi_bus_get_wakeup_device_flags(device); 1816 1817 result = acpi_tie_acpi_dev(device); 1818 1819 if (release_dep_lock) 1820 mutex_unlock(&acpi_dep_list_lock); 1821 1822 if (!result) 1823 result = __acpi_device_add(device, acpi_device_release); 1824 1825 if (result) { 1826 acpi_device_release(&device->dev); 1827 return result; 1828 } 1829 1830 acpi_power_add_remove_device(device, true); 1831 acpi_device_add_finalize(device); 1832 1833 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1834 dev_name(&device->dev), device->parent ? 1835 dev_name(&device->parent->dev) : "(null)"); 1836 1837 *child = device; 1838 return 0; 1839 } 1840 1841 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1842 void *context) 1843 { 1844 struct resource *res = context; 1845 1846 if (acpi_dev_resource_memory(ares, res)) 1847 return AE_CTRL_TERMINATE; 1848 1849 return AE_OK; 1850 } 1851 1852 static bool acpi_device_should_be_hidden(acpi_handle handle) 1853 { 1854 acpi_status status; 1855 struct resource res; 1856 1857 /* Check if it should ignore the UART device */ 1858 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1859 return false; 1860 1861 /* 1862 * The UART device described in SPCR table is assumed to have only one 1863 * memory resource present. So we only look for the first one here. 1864 */ 1865 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1866 acpi_get_resource_memory, &res); 1867 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1868 return false; 1869 1870 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1871 &res.start); 1872 1873 return true; 1874 } 1875 1876 bool acpi_device_is_present(const struct acpi_device *adev) 1877 { 1878 return adev->status.present || adev->status.functional; 1879 } 1880 1881 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1882 const char *idstr, 1883 const struct acpi_device_id **matchid) 1884 { 1885 const struct acpi_device_id *devid; 1886 1887 if (handler->match) 1888 return handler->match(idstr, matchid); 1889 1890 for (devid = handler->ids; devid->id[0]; devid++) 1891 if (!strcmp((char *)devid->id, idstr)) { 1892 if (matchid) 1893 *matchid = devid; 1894 1895 return true; 1896 } 1897 1898 return false; 1899 } 1900 1901 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1902 const struct acpi_device_id **matchid) 1903 { 1904 struct acpi_scan_handler *handler; 1905 1906 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1907 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1908 return handler; 1909 1910 return NULL; 1911 } 1912 1913 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 1914 { 1915 if (!!hotplug->enabled == !!val) 1916 return; 1917 1918 mutex_lock(&acpi_scan_lock); 1919 1920 hotplug->enabled = val; 1921 1922 mutex_unlock(&acpi_scan_lock); 1923 } 1924 1925 static void acpi_scan_init_hotplug(struct acpi_device *adev) 1926 { 1927 struct acpi_hardware_id *hwid; 1928 1929 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 1930 acpi_dock_add(adev); 1931 return; 1932 } 1933 list_for_each_entry(hwid, &adev->pnp.ids, list) { 1934 struct acpi_scan_handler *handler; 1935 1936 handler = acpi_scan_match_handler(hwid->id, NULL); 1937 if (handler) { 1938 adev->flags.hotplug_notify = true; 1939 break; 1940 } 1941 } 1942 } 1943 1944 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep) 1945 { 1946 struct acpi_handle_list dep_devices; 1947 acpi_status status; 1948 u32 count; 1949 int i; 1950 1951 /* 1952 * Check for _HID here to avoid deferring the enumeration of: 1953 * 1. PCI devices. 1954 * 2. ACPI nodes describing USB ports. 1955 * Still, checking for _HID catches more then just these cases ... 1956 */ 1957 if (!check_dep || !acpi_has_method(handle, "_DEP") || 1958 !acpi_has_method(handle, "_HID")) 1959 return 0; 1960 1961 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices); 1962 if (ACPI_FAILURE(status)) { 1963 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 1964 return 0; 1965 } 1966 1967 for (count = 0, i = 0; i < dep_devices.count; i++) { 1968 struct acpi_device_info *info; 1969 struct acpi_dep_data *dep; 1970 bool skip; 1971 1972 status = acpi_get_object_info(dep_devices.handles[i], &info); 1973 if (ACPI_FAILURE(status)) { 1974 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 1975 continue; 1976 } 1977 1978 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 1979 kfree(info); 1980 1981 if (skip) 1982 continue; 1983 1984 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 1985 if (!dep) 1986 continue; 1987 1988 count++; 1989 1990 dep->supplier = dep_devices.handles[i]; 1991 dep->consumer = handle; 1992 1993 mutex_lock(&acpi_dep_list_lock); 1994 list_add_tail(&dep->node , &acpi_dep_list); 1995 mutex_unlock(&acpi_dep_list_lock); 1996 } 1997 1998 return count; 1999 } 2000 2001 static bool acpi_bus_scan_second_pass; 2002 2003 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep, 2004 struct acpi_device **adev_p) 2005 { 2006 struct acpi_device *device = NULL; 2007 acpi_object_type acpi_type; 2008 int type; 2009 2010 acpi_bus_get_device(handle, &device); 2011 if (device) 2012 goto out; 2013 2014 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2015 return AE_OK; 2016 2017 switch (acpi_type) { 2018 case ACPI_TYPE_DEVICE: 2019 if (acpi_device_should_be_hidden(handle)) 2020 return AE_OK; 2021 2022 /* Bail out if there are dependencies. */ 2023 if (acpi_scan_check_dep(handle, check_dep) > 0) { 2024 acpi_bus_scan_second_pass = true; 2025 return AE_CTRL_DEPTH; 2026 } 2027 2028 fallthrough; 2029 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2030 type = ACPI_BUS_TYPE_DEVICE; 2031 break; 2032 2033 case ACPI_TYPE_PROCESSOR: 2034 type = ACPI_BUS_TYPE_PROCESSOR; 2035 break; 2036 2037 case ACPI_TYPE_THERMAL: 2038 type = ACPI_BUS_TYPE_THERMAL; 2039 break; 2040 2041 case ACPI_TYPE_POWER: 2042 acpi_add_power_resource(handle); 2043 fallthrough; 2044 default: 2045 return AE_OK; 2046 } 2047 2048 /* 2049 * If check_dep is true at this point, the device has no dependencies, 2050 * or the creation of the device object would have been postponed above. 2051 */ 2052 acpi_add_single_object(&device, handle, type, !check_dep); 2053 if (!device) 2054 return AE_CTRL_DEPTH; 2055 2056 acpi_scan_init_hotplug(device); 2057 2058 out: 2059 if (!*adev_p) 2060 *adev_p = device; 2061 2062 return AE_OK; 2063 } 2064 2065 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2066 void *not_used, void **ret_p) 2067 { 2068 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2069 } 2070 2071 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2072 void *not_used, void **ret_p) 2073 { 2074 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2075 } 2076 2077 static void acpi_default_enumeration(struct acpi_device *device) 2078 { 2079 /* 2080 * Do not enumerate devices with enumeration_by_parent flag set as 2081 * they will be enumerated by their respective parents. 2082 */ 2083 if (!device->flags.enumeration_by_parent) { 2084 acpi_create_platform_device(device, NULL); 2085 acpi_device_set_enumerated(device); 2086 } else { 2087 blocking_notifier_call_chain(&acpi_reconfig_chain, 2088 ACPI_RECONFIG_DEVICE_ADD, device); 2089 } 2090 } 2091 2092 static const struct acpi_device_id generic_device_ids[] = { 2093 {ACPI_DT_NAMESPACE_HID, }, 2094 {"", }, 2095 }; 2096 2097 static int acpi_generic_device_attach(struct acpi_device *adev, 2098 const struct acpi_device_id *not_used) 2099 { 2100 /* 2101 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2102 * below can be unconditional. 2103 */ 2104 if (adev->data.of_compatible) 2105 acpi_default_enumeration(adev); 2106 2107 return 1; 2108 } 2109 2110 static struct acpi_scan_handler generic_device_handler = { 2111 .ids = generic_device_ids, 2112 .attach = acpi_generic_device_attach, 2113 }; 2114 2115 static int acpi_scan_attach_handler(struct acpi_device *device) 2116 { 2117 struct acpi_hardware_id *hwid; 2118 int ret = 0; 2119 2120 list_for_each_entry(hwid, &device->pnp.ids, list) { 2121 const struct acpi_device_id *devid; 2122 struct acpi_scan_handler *handler; 2123 2124 handler = acpi_scan_match_handler(hwid->id, &devid); 2125 if (handler) { 2126 if (!handler->attach) { 2127 device->pnp.type.platform_id = 0; 2128 continue; 2129 } 2130 device->handler = handler; 2131 ret = handler->attach(device, devid); 2132 if (ret > 0) 2133 break; 2134 2135 device->handler = NULL; 2136 if (ret < 0) 2137 break; 2138 } 2139 } 2140 2141 return ret; 2142 } 2143 2144 static void acpi_bus_attach(struct acpi_device *device, bool first_pass) 2145 { 2146 struct acpi_device *child; 2147 bool skip = !first_pass && device->flags.visited; 2148 acpi_handle ejd; 2149 int ret; 2150 2151 if (skip) 2152 goto ok; 2153 2154 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2155 register_dock_dependent_device(device, ejd); 2156 2157 acpi_bus_get_status(device); 2158 /* Skip devices that are not present. */ 2159 if (!acpi_device_is_present(device)) { 2160 device->flags.initialized = false; 2161 acpi_device_clear_enumerated(device); 2162 device->flags.power_manageable = 0; 2163 return; 2164 } 2165 if (device->handler) 2166 goto ok; 2167 2168 if (!device->flags.initialized) { 2169 device->flags.power_manageable = 2170 device->power.states[ACPI_STATE_D0].flags.valid; 2171 if (acpi_bus_init_power(device)) 2172 device->flags.power_manageable = 0; 2173 2174 device->flags.initialized = true; 2175 } else if (device->flags.visited) { 2176 goto ok; 2177 } 2178 2179 ret = acpi_scan_attach_handler(device); 2180 if (ret < 0) 2181 return; 2182 2183 device->flags.match_driver = true; 2184 if (ret > 0 && !device->flags.enumeration_by_parent) { 2185 acpi_device_set_enumerated(device); 2186 goto ok; 2187 } 2188 2189 ret = device_attach(&device->dev); 2190 if (ret < 0) 2191 return; 2192 2193 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2194 acpi_default_enumeration(device); 2195 else 2196 acpi_device_set_enumerated(device); 2197 2198 ok: 2199 list_for_each_entry(child, &device->children, node) 2200 acpi_bus_attach(child, first_pass); 2201 2202 if (!skip && device->handler && device->handler->hotplug.notify_online) 2203 device->handler->hotplug.notify_online(device); 2204 } 2205 2206 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2207 { 2208 struct acpi_device *adev; 2209 2210 adev = acpi_bus_get_acpi_device(dep->consumer); 2211 if (adev) { 2212 *(struct acpi_device **)data = adev; 2213 return 1; 2214 } 2215 /* Continue parsing if the device object is not present. */ 2216 return 0; 2217 } 2218 2219 struct acpi_scan_clear_dep_work { 2220 struct work_struct work; 2221 struct acpi_device *adev; 2222 }; 2223 2224 static void acpi_scan_clear_dep_fn(struct work_struct *work) 2225 { 2226 struct acpi_scan_clear_dep_work *cdw; 2227 2228 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2229 2230 acpi_scan_lock_acquire(); 2231 acpi_bus_attach(cdw->adev, true); 2232 acpi_scan_lock_release(); 2233 2234 acpi_dev_put(cdw->adev); 2235 kfree(cdw); 2236 } 2237 2238 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2239 { 2240 struct acpi_scan_clear_dep_work *cdw; 2241 2242 if (adev->dep_unmet) 2243 return false; 2244 2245 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2246 if (!cdw) 2247 return false; 2248 2249 cdw->adev = adev; 2250 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2251 /* 2252 * Since the work function may block on the lock until the entire 2253 * initial enumeration of devices is complete, put it into the unbound 2254 * workqueue. 2255 */ 2256 queue_work(system_unbound_wq, &cdw->work); 2257 2258 return true; 2259 } 2260 2261 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2262 { 2263 struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer); 2264 2265 if (adev) { 2266 adev->dep_unmet--; 2267 if (!acpi_scan_clear_dep_queue(adev)) 2268 acpi_dev_put(adev); 2269 } 2270 2271 list_del(&dep->node); 2272 kfree(dep); 2273 2274 return 0; 2275 } 2276 2277 /** 2278 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2279 * @handle: The ACPI handle of the supplier device 2280 * @callback: Pointer to the callback function to apply 2281 * @data: Pointer to some data to pass to the callback 2282 * 2283 * The return value of the callback determines this function's behaviour. If 0 2284 * is returned we continue to iterate over acpi_dep_list. If a positive value 2285 * is returned then the loop is broken but this function returns 0. If a 2286 * negative value is returned by the callback then the loop is broken and that 2287 * value is returned as the final error. 2288 */ 2289 static int acpi_walk_dep_device_list(acpi_handle handle, 2290 int (*callback)(struct acpi_dep_data *, void *), 2291 void *data) 2292 { 2293 struct acpi_dep_data *dep, *tmp; 2294 int ret = 0; 2295 2296 mutex_lock(&acpi_dep_list_lock); 2297 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2298 if (dep->supplier == handle) { 2299 ret = callback(dep, data); 2300 if (ret) 2301 break; 2302 } 2303 } 2304 mutex_unlock(&acpi_dep_list_lock); 2305 2306 return ret > 0 ? 0 : ret; 2307 } 2308 2309 /** 2310 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2311 * @supplier: Pointer to the supplier &struct acpi_device 2312 * 2313 * Clear dependencies on the given device. 2314 */ 2315 void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2316 { 2317 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2318 } 2319 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2320 2321 /** 2322 * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier 2323 * @supplier: Pointer to the dependee device 2324 * 2325 * Returns the first &struct acpi_device which declares itself dependent on 2326 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2327 * 2328 * The caller is responsible for putting the reference to adev when it is no 2329 * longer needed. 2330 */ 2331 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier) 2332 { 2333 struct acpi_device *adev = NULL; 2334 2335 acpi_walk_dep_device_list(supplier->handle, 2336 acpi_dev_get_first_consumer_dev_cb, &adev); 2337 2338 return adev; 2339 } 2340 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev); 2341 2342 /** 2343 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2344 * @handle: Root of the namespace scope to scan. 2345 * 2346 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2347 * found devices. 2348 * 2349 * If no devices were found, -ENODEV is returned, but it does not mean that 2350 * there has been a real error. There just have been no suitable ACPI objects 2351 * in the table trunk from which the kernel could create a device and add an 2352 * appropriate driver. 2353 * 2354 * Must be called under acpi_scan_lock. 2355 */ 2356 int acpi_bus_scan(acpi_handle handle) 2357 { 2358 struct acpi_device *device = NULL; 2359 2360 acpi_bus_scan_second_pass = false; 2361 2362 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2363 2364 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2365 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2366 acpi_bus_check_add_1, NULL, NULL, 2367 (void **)&device); 2368 2369 if (!device) 2370 return -ENODEV; 2371 2372 acpi_bus_attach(device, true); 2373 2374 if (!acpi_bus_scan_second_pass) 2375 return 0; 2376 2377 /* Pass 2: Enumerate all of the remaining devices. */ 2378 2379 device = NULL; 2380 2381 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device))) 2382 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2383 acpi_bus_check_add_2, NULL, NULL, 2384 (void **)&device); 2385 2386 acpi_bus_attach(device, false); 2387 2388 return 0; 2389 } 2390 EXPORT_SYMBOL(acpi_bus_scan); 2391 2392 /** 2393 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2394 * @adev: Root of the ACPI namespace scope to walk. 2395 * 2396 * Must be called under acpi_scan_lock. 2397 */ 2398 void acpi_bus_trim(struct acpi_device *adev) 2399 { 2400 struct acpi_scan_handler *handler = adev->handler; 2401 struct acpi_device *child; 2402 2403 list_for_each_entry_reverse(child, &adev->children, node) 2404 acpi_bus_trim(child); 2405 2406 adev->flags.match_driver = false; 2407 if (handler) { 2408 if (handler->detach) 2409 handler->detach(adev); 2410 2411 adev->handler = NULL; 2412 } else { 2413 device_release_driver(&adev->dev); 2414 } 2415 /* 2416 * Most likely, the device is going away, so put it into D3cold before 2417 * that. 2418 */ 2419 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 2420 adev->flags.initialized = false; 2421 acpi_device_clear_enumerated(adev); 2422 } 2423 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2424 2425 int acpi_bus_register_early_device(int type) 2426 { 2427 struct acpi_device *device = NULL; 2428 int result; 2429 2430 result = acpi_add_single_object(&device, NULL, type, false); 2431 if (result) 2432 return result; 2433 2434 device->flags.match_driver = true; 2435 return device_attach(&device->dev); 2436 } 2437 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2438 2439 static int acpi_bus_scan_fixed(void) 2440 { 2441 int result = 0; 2442 2443 /* 2444 * Enumerate all fixed-feature devices. 2445 */ 2446 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2447 struct acpi_device *device = NULL; 2448 2449 result = acpi_add_single_object(&device, NULL, 2450 ACPI_BUS_TYPE_POWER_BUTTON, false); 2451 if (result) 2452 return result; 2453 2454 device->flags.match_driver = true; 2455 result = device_attach(&device->dev); 2456 if (result < 0) 2457 return result; 2458 2459 device_init_wakeup(&device->dev, true); 2460 } 2461 2462 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2463 struct acpi_device *device = NULL; 2464 2465 result = acpi_add_single_object(&device, NULL, 2466 ACPI_BUS_TYPE_SLEEP_BUTTON, false); 2467 if (result) 2468 return result; 2469 2470 device->flags.match_driver = true; 2471 result = device_attach(&device->dev); 2472 } 2473 2474 return result < 0 ? result : 0; 2475 } 2476 2477 static void __init acpi_get_spcr_uart_addr(void) 2478 { 2479 acpi_status status; 2480 struct acpi_table_spcr *spcr_ptr; 2481 2482 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2483 (struct acpi_table_header **)&spcr_ptr); 2484 if (ACPI_FAILURE(status)) { 2485 pr_warn("STAO table present, but SPCR is missing\n"); 2486 return; 2487 } 2488 2489 spcr_uart_addr = spcr_ptr->serial_port.address; 2490 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2491 } 2492 2493 static bool acpi_scan_initialized; 2494 2495 int __init acpi_scan_init(void) 2496 { 2497 int result; 2498 acpi_status status; 2499 struct acpi_table_stao *stao_ptr; 2500 2501 acpi_pci_root_init(); 2502 acpi_pci_link_init(); 2503 acpi_processor_init(); 2504 acpi_platform_init(); 2505 acpi_lpss_init(); 2506 acpi_apd_init(); 2507 acpi_cmos_rtc_init(); 2508 acpi_container_init(); 2509 acpi_memory_hotplug_init(); 2510 acpi_watchdog_init(); 2511 acpi_pnp_init(); 2512 acpi_int340x_thermal_init(); 2513 acpi_amba_init(); 2514 acpi_init_lpit(); 2515 2516 acpi_scan_add_handler(&generic_device_handler); 2517 2518 /* 2519 * If there is STAO table, check whether it needs to ignore the UART 2520 * device in SPCR table. 2521 */ 2522 status = acpi_get_table(ACPI_SIG_STAO, 0, 2523 (struct acpi_table_header **)&stao_ptr); 2524 if (ACPI_SUCCESS(status)) { 2525 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2526 pr_info("STAO Name List not yet supported.\n"); 2527 2528 if (stao_ptr->ignore_uart) 2529 acpi_get_spcr_uart_addr(); 2530 2531 acpi_put_table((struct acpi_table_header *)stao_ptr); 2532 } 2533 2534 acpi_gpe_apply_masked_gpes(); 2535 acpi_update_all_gpes(); 2536 2537 /* 2538 * Although we call __add_memory() that is documented to require the 2539 * device_hotplug_lock, it is not necessary here because this is an 2540 * early code when userspace or any other code path cannot trigger 2541 * hotplug/hotunplug operations. 2542 */ 2543 mutex_lock(&acpi_scan_lock); 2544 /* 2545 * Enumerate devices in the ACPI namespace. 2546 */ 2547 result = acpi_bus_scan(ACPI_ROOT_OBJECT); 2548 if (result) 2549 goto out; 2550 2551 result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root); 2552 if (result) 2553 goto out; 2554 2555 /* Fixed feature devices do not exist on HW-reduced platform */ 2556 if (!acpi_gbl_reduced_hardware) { 2557 result = acpi_bus_scan_fixed(); 2558 if (result) { 2559 acpi_detach_data(acpi_root->handle, 2560 acpi_scan_drop_device); 2561 acpi_device_del(acpi_root); 2562 acpi_bus_put_acpi_device(acpi_root); 2563 goto out; 2564 } 2565 } 2566 2567 /* 2568 * Make sure that power management resources are not blocked by ACPI 2569 * device objects with no users. 2570 */ 2571 bus_for_each_dev(&acpi_bus_type, NULL, NULL, acpi_dev_turn_off_if_unused); 2572 2573 acpi_turn_off_unused_power_resources(); 2574 2575 acpi_scan_initialized = true; 2576 2577 out: 2578 mutex_unlock(&acpi_scan_lock); 2579 return result; 2580 } 2581 2582 static struct acpi_probe_entry *ape; 2583 static int acpi_probe_count; 2584 static DEFINE_MUTEX(acpi_probe_mutex); 2585 2586 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2587 const unsigned long end) 2588 { 2589 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2590 if (!ape->probe_subtbl(header, end)) 2591 acpi_probe_count++; 2592 2593 return 0; 2594 } 2595 2596 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2597 { 2598 int count = 0; 2599 2600 if (acpi_disabled) 2601 return 0; 2602 2603 mutex_lock(&acpi_probe_mutex); 2604 for (ape = ap_head; nr; ape++, nr--) { 2605 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2606 acpi_probe_count = 0; 2607 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2608 count += acpi_probe_count; 2609 } else { 2610 int res; 2611 res = acpi_table_parse(ape->id, ape->probe_table); 2612 if (!res) 2613 count++; 2614 } 2615 } 2616 mutex_unlock(&acpi_probe_mutex); 2617 2618 return count; 2619 } 2620 2621 static void acpi_table_events_fn(struct work_struct *work) 2622 { 2623 acpi_scan_lock_acquire(); 2624 acpi_bus_scan(ACPI_ROOT_OBJECT); 2625 acpi_scan_lock_release(); 2626 2627 kfree(work); 2628 } 2629 2630 void acpi_scan_table_notify(void) 2631 { 2632 struct work_struct *work; 2633 2634 if (!acpi_scan_initialized) 2635 return; 2636 2637 work = kmalloc(sizeof(*work), GFP_KERNEL); 2638 if (!work) 2639 return; 2640 2641 INIT_WORK(work, acpi_table_events_fn); 2642 schedule_work(work); 2643 } 2644 2645 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2646 { 2647 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2648 } 2649 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2650 2651 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2652 { 2653 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2654 } 2655 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2656