xref: /openbmc/linux/drivers/acpi/scan.c (revision a1117495)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 
23 #include "internal.h"
24 
25 extern struct acpi_device *acpi_root;
26 
27 #define ACPI_BUS_CLASS			"system_bus"
28 #define ACPI_BUS_HID			"LNXSYBUS"
29 #define ACPI_BUS_DEVICE_NAME		"System Bus"
30 
31 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
32 
33 #define INVALID_ACPI_HANDLE	((acpi_handle)empty_zero_page)
34 
35 static const char *dummy_hid = "device";
36 
37 static LIST_HEAD(acpi_dep_list);
38 static DEFINE_MUTEX(acpi_dep_list_lock);
39 LIST_HEAD(acpi_bus_id_list);
40 static DEFINE_MUTEX(acpi_scan_lock);
41 static LIST_HEAD(acpi_scan_handlers_list);
42 DEFINE_MUTEX(acpi_device_lock);
43 LIST_HEAD(acpi_wakeup_device_list);
44 static DEFINE_MUTEX(acpi_hp_context_lock);
45 
46 /*
47  * The UART device described by the SPCR table is the only object which needs
48  * special-casing. Everything else is covered by ACPI namespace paths in STAO
49  * table.
50  */
51 static u64 spcr_uart_addr;
52 
53 void acpi_scan_lock_acquire(void)
54 {
55 	mutex_lock(&acpi_scan_lock);
56 }
57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
58 
59 void acpi_scan_lock_release(void)
60 {
61 	mutex_unlock(&acpi_scan_lock);
62 }
63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
64 
65 void acpi_lock_hp_context(void)
66 {
67 	mutex_lock(&acpi_hp_context_lock);
68 }
69 
70 void acpi_unlock_hp_context(void)
71 {
72 	mutex_unlock(&acpi_hp_context_lock);
73 }
74 
75 void acpi_initialize_hp_context(struct acpi_device *adev,
76 				struct acpi_hotplug_context *hp,
77 				int (*notify)(struct acpi_device *, u32),
78 				void (*uevent)(struct acpi_device *, u32))
79 {
80 	acpi_lock_hp_context();
81 	hp->notify = notify;
82 	hp->uevent = uevent;
83 	acpi_set_hp_context(adev, hp);
84 	acpi_unlock_hp_context();
85 }
86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
87 
88 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
89 {
90 	if (!handler)
91 		return -EINVAL;
92 
93 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
94 	return 0;
95 }
96 
97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
98 				       const char *hotplug_profile_name)
99 {
100 	int error;
101 
102 	error = acpi_scan_add_handler(handler);
103 	if (error)
104 		return error;
105 
106 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
107 	return 0;
108 }
109 
110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
111 {
112 	struct acpi_device_physical_node *pn;
113 	bool offline = true;
114 	char *envp[] = { "EVENT=offline", NULL };
115 
116 	/*
117 	 * acpi_container_offline() calls this for all of the container's
118 	 * children under the container's physical_node_lock lock.
119 	 */
120 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
121 
122 	list_for_each_entry(pn, &adev->physical_node_list, node)
123 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
124 			if (uevent)
125 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
126 
127 			offline = false;
128 			break;
129 		}
130 
131 	mutex_unlock(&adev->physical_node_lock);
132 	return offline;
133 }
134 
135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
136 				    void **ret_p)
137 {
138 	struct acpi_device *device = NULL;
139 	struct acpi_device_physical_node *pn;
140 	bool second_pass = (bool)data;
141 	acpi_status status = AE_OK;
142 
143 	if (acpi_bus_get_device(handle, &device))
144 		return AE_OK;
145 
146 	if (device->handler && !device->handler->hotplug.enabled) {
147 		*ret_p = &device->dev;
148 		return AE_SUPPORT;
149 	}
150 
151 	mutex_lock(&device->physical_node_lock);
152 
153 	list_for_each_entry(pn, &device->physical_node_list, node) {
154 		int ret;
155 
156 		if (second_pass) {
157 			/* Skip devices offlined by the first pass. */
158 			if (pn->put_online)
159 				continue;
160 		} else {
161 			pn->put_online = false;
162 		}
163 		ret = device_offline(pn->dev);
164 		if (ret >= 0) {
165 			pn->put_online = !ret;
166 		} else {
167 			*ret_p = pn->dev;
168 			if (second_pass) {
169 				status = AE_ERROR;
170 				break;
171 			}
172 		}
173 	}
174 
175 	mutex_unlock(&device->physical_node_lock);
176 
177 	return status;
178 }
179 
180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
181 				   void **ret_p)
182 {
183 	struct acpi_device *device = NULL;
184 	struct acpi_device_physical_node *pn;
185 
186 	if (acpi_bus_get_device(handle, &device))
187 		return AE_OK;
188 
189 	mutex_lock(&device->physical_node_lock);
190 
191 	list_for_each_entry(pn, &device->physical_node_list, node)
192 		if (pn->put_online) {
193 			device_online(pn->dev);
194 			pn->put_online = false;
195 		}
196 
197 	mutex_unlock(&device->physical_node_lock);
198 
199 	return AE_OK;
200 }
201 
202 static int acpi_scan_try_to_offline(struct acpi_device *device)
203 {
204 	acpi_handle handle = device->handle;
205 	struct device *errdev = NULL;
206 	acpi_status status;
207 
208 	/*
209 	 * Carry out two passes here and ignore errors in the first pass,
210 	 * because if the devices in question are memory blocks and
211 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
212 	 * that the other blocks depend on, but it is not known in advance which
213 	 * block holds them.
214 	 *
215 	 * If the first pass is successful, the second one isn't needed, though.
216 	 */
217 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
218 				     NULL, acpi_bus_offline, (void *)false,
219 				     (void **)&errdev);
220 	if (status == AE_SUPPORT) {
221 		dev_warn(errdev, "Offline disabled.\n");
222 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223 				    acpi_bus_online, NULL, NULL, NULL);
224 		return -EPERM;
225 	}
226 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
227 	if (errdev) {
228 		errdev = NULL;
229 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
230 				    NULL, acpi_bus_offline, (void *)true,
231 				    (void **)&errdev);
232 		if (!errdev)
233 			acpi_bus_offline(handle, 0, (void *)true,
234 					 (void **)&errdev);
235 
236 		if (errdev) {
237 			dev_warn(errdev, "Offline failed.\n");
238 			acpi_bus_online(handle, 0, NULL, NULL);
239 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
240 					    ACPI_UINT32_MAX, acpi_bus_online,
241 					    NULL, NULL, NULL);
242 			return -EBUSY;
243 		}
244 	}
245 	return 0;
246 }
247 
248 static int acpi_scan_hot_remove(struct acpi_device *device)
249 {
250 	acpi_handle handle = device->handle;
251 	unsigned long long sta;
252 	acpi_status status;
253 
254 	if (device->handler && device->handler->hotplug.demand_offline) {
255 		if (!acpi_scan_is_offline(device, true))
256 			return -EBUSY;
257 	} else {
258 		int error = acpi_scan_try_to_offline(device);
259 		if (error)
260 			return error;
261 	}
262 
263 	acpi_handle_debug(handle, "Ejecting\n");
264 
265 	acpi_bus_trim(device);
266 
267 	acpi_evaluate_lck(handle, 0);
268 	/*
269 	 * TBD: _EJD support.
270 	 */
271 	status = acpi_evaluate_ej0(handle);
272 	if (status == AE_NOT_FOUND)
273 		return -ENODEV;
274 	else if (ACPI_FAILURE(status))
275 		return -EIO;
276 
277 	/*
278 	 * Verify if eject was indeed successful.  If not, log an error
279 	 * message.  No need to call _OST since _EJ0 call was made OK.
280 	 */
281 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
282 	if (ACPI_FAILURE(status)) {
283 		acpi_handle_warn(handle,
284 			"Status check after eject failed (0x%x)\n", status);
285 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
286 		acpi_handle_warn(handle,
287 			"Eject incomplete - status 0x%llx\n", sta);
288 	}
289 
290 	return 0;
291 }
292 
293 static int acpi_scan_device_not_present(struct acpi_device *adev)
294 {
295 	if (!acpi_device_enumerated(adev)) {
296 		dev_warn(&adev->dev, "Still not present\n");
297 		return -EALREADY;
298 	}
299 	acpi_bus_trim(adev);
300 	return 0;
301 }
302 
303 static int acpi_scan_device_check(struct acpi_device *adev)
304 {
305 	int error;
306 
307 	acpi_bus_get_status(adev);
308 	if (adev->status.present || adev->status.functional) {
309 		/*
310 		 * This function is only called for device objects for which
311 		 * matching scan handlers exist.  The only situation in which
312 		 * the scan handler is not attached to this device object yet
313 		 * is when the device has just appeared (either it wasn't
314 		 * present at all before or it was removed and then added
315 		 * again).
316 		 */
317 		if (adev->handler) {
318 			dev_warn(&adev->dev, "Already enumerated\n");
319 			return -EALREADY;
320 		}
321 		error = acpi_bus_scan(adev->handle);
322 		if (error) {
323 			dev_warn(&adev->dev, "Namespace scan failure\n");
324 			return error;
325 		}
326 		if (!adev->handler) {
327 			dev_warn(&adev->dev, "Enumeration failure\n");
328 			error = -ENODEV;
329 		}
330 	} else {
331 		error = acpi_scan_device_not_present(adev);
332 	}
333 	return error;
334 }
335 
336 static int acpi_scan_bus_check(struct acpi_device *adev)
337 {
338 	struct acpi_scan_handler *handler = adev->handler;
339 	struct acpi_device *child;
340 	int error;
341 
342 	acpi_bus_get_status(adev);
343 	if (!(adev->status.present || adev->status.functional)) {
344 		acpi_scan_device_not_present(adev);
345 		return 0;
346 	}
347 	if (handler && handler->hotplug.scan_dependent)
348 		return handler->hotplug.scan_dependent(adev);
349 
350 	error = acpi_bus_scan(adev->handle);
351 	if (error) {
352 		dev_warn(&adev->dev, "Namespace scan failure\n");
353 		return error;
354 	}
355 	list_for_each_entry(child, &adev->children, node) {
356 		error = acpi_scan_bus_check(child);
357 		if (error)
358 			return error;
359 	}
360 	return 0;
361 }
362 
363 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
364 {
365 	switch (type) {
366 	case ACPI_NOTIFY_BUS_CHECK:
367 		return acpi_scan_bus_check(adev);
368 	case ACPI_NOTIFY_DEVICE_CHECK:
369 		return acpi_scan_device_check(adev);
370 	case ACPI_NOTIFY_EJECT_REQUEST:
371 	case ACPI_OST_EC_OSPM_EJECT:
372 		if (adev->handler && !adev->handler->hotplug.enabled) {
373 			dev_info(&adev->dev, "Eject disabled\n");
374 			return -EPERM;
375 		}
376 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
377 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
378 		return acpi_scan_hot_remove(adev);
379 	}
380 	return -EINVAL;
381 }
382 
383 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
384 {
385 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
386 	int error = -ENODEV;
387 
388 	lock_device_hotplug();
389 	mutex_lock(&acpi_scan_lock);
390 
391 	/*
392 	 * The device object's ACPI handle cannot become invalid as long as we
393 	 * are holding acpi_scan_lock, but it might have become invalid before
394 	 * that lock was acquired.
395 	 */
396 	if (adev->handle == INVALID_ACPI_HANDLE)
397 		goto err_out;
398 
399 	if (adev->flags.is_dock_station) {
400 		error = dock_notify(adev, src);
401 	} else if (adev->flags.hotplug_notify) {
402 		error = acpi_generic_hotplug_event(adev, src);
403 	} else {
404 		int (*notify)(struct acpi_device *, u32);
405 
406 		acpi_lock_hp_context();
407 		notify = adev->hp ? adev->hp->notify : NULL;
408 		acpi_unlock_hp_context();
409 		/*
410 		 * There may be additional notify handlers for device objects
411 		 * without the .event() callback, so ignore them here.
412 		 */
413 		if (notify)
414 			error = notify(adev, src);
415 		else
416 			goto out;
417 	}
418 	switch (error) {
419 	case 0:
420 		ost_code = ACPI_OST_SC_SUCCESS;
421 		break;
422 	case -EPERM:
423 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
424 		break;
425 	case -EBUSY:
426 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
427 		break;
428 	default:
429 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
430 		break;
431 	}
432 
433  err_out:
434 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
435 
436  out:
437 	acpi_bus_put_acpi_device(adev);
438 	mutex_unlock(&acpi_scan_lock);
439 	unlock_device_hotplug();
440 }
441 
442 static void acpi_free_power_resources_lists(struct acpi_device *device)
443 {
444 	int i;
445 
446 	if (device->wakeup.flags.valid)
447 		acpi_power_resources_list_free(&device->wakeup.resources);
448 
449 	if (!device->power.flags.power_resources)
450 		return;
451 
452 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
453 		struct acpi_device_power_state *ps = &device->power.states[i];
454 		acpi_power_resources_list_free(&ps->resources);
455 	}
456 }
457 
458 static void acpi_device_release(struct device *dev)
459 {
460 	struct acpi_device *acpi_dev = to_acpi_device(dev);
461 
462 	acpi_free_properties(acpi_dev);
463 	acpi_free_pnp_ids(&acpi_dev->pnp);
464 	acpi_free_power_resources_lists(acpi_dev);
465 	kfree(acpi_dev);
466 }
467 
468 static void acpi_device_del(struct acpi_device *device)
469 {
470 	struct acpi_device_bus_id *acpi_device_bus_id;
471 
472 	mutex_lock(&acpi_device_lock);
473 	if (device->parent)
474 		list_del(&device->node);
475 
476 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
477 		if (!strcmp(acpi_device_bus_id->bus_id,
478 			    acpi_device_hid(device))) {
479 			ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no);
480 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
481 				list_del(&acpi_device_bus_id->node);
482 				kfree_const(acpi_device_bus_id->bus_id);
483 				kfree(acpi_device_bus_id);
484 			}
485 			break;
486 		}
487 
488 	list_del(&device->wakeup_list);
489 	mutex_unlock(&acpi_device_lock);
490 
491 	acpi_power_add_remove_device(device, false);
492 	acpi_device_remove_files(device);
493 	if (device->remove)
494 		device->remove(device);
495 
496 	device_del(&device->dev);
497 }
498 
499 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
500 
501 static LIST_HEAD(acpi_device_del_list);
502 static DEFINE_MUTEX(acpi_device_del_lock);
503 
504 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
505 {
506 	for (;;) {
507 		struct acpi_device *adev;
508 
509 		mutex_lock(&acpi_device_del_lock);
510 
511 		if (list_empty(&acpi_device_del_list)) {
512 			mutex_unlock(&acpi_device_del_lock);
513 			break;
514 		}
515 		adev = list_first_entry(&acpi_device_del_list,
516 					struct acpi_device, del_list);
517 		list_del(&adev->del_list);
518 
519 		mutex_unlock(&acpi_device_del_lock);
520 
521 		blocking_notifier_call_chain(&acpi_reconfig_chain,
522 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
523 
524 		acpi_device_del(adev);
525 		/*
526 		 * Drop references to all power resources that might have been
527 		 * used by the device.
528 		 */
529 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
530 		acpi_dev_put(adev);
531 	}
532 }
533 
534 /**
535  * acpi_scan_drop_device - Drop an ACPI device object.
536  * @handle: Handle of an ACPI namespace node, not used.
537  * @context: Address of the ACPI device object to drop.
538  *
539  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
540  * namespace node the device object pointed to by @context is attached to.
541  *
542  * The unregistration is carried out asynchronously to avoid running
543  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
544  * ensure the correct ordering (the device objects must be unregistered in the
545  * same order in which the corresponding namespace nodes are deleted).
546  */
547 static void acpi_scan_drop_device(acpi_handle handle, void *context)
548 {
549 	static DECLARE_WORK(work, acpi_device_del_work_fn);
550 	struct acpi_device *adev = context;
551 
552 	mutex_lock(&acpi_device_del_lock);
553 
554 	/*
555 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
556 	 * won't run after any hotplug work items submitted subsequently.  That
557 	 * prevents attempts to register device objects identical to those being
558 	 * deleted from happening concurrently (such attempts result from
559 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
560 	 * run after all of the work items submitted previously, which helps
561 	 * those work items to ensure that they are not accessing stale device
562 	 * objects.
563 	 */
564 	if (list_empty(&acpi_device_del_list))
565 		acpi_queue_hotplug_work(&work);
566 
567 	list_add_tail(&adev->del_list, &acpi_device_del_list);
568 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
569 	adev->handle = INVALID_ACPI_HANDLE;
570 
571 	mutex_unlock(&acpi_device_del_lock);
572 }
573 
574 static struct acpi_device *handle_to_device(acpi_handle handle,
575 					    void (*callback)(void *))
576 {
577 	struct acpi_device *adev = NULL;
578 	acpi_status status;
579 
580 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
581 				    (void **)&adev, callback);
582 	if (ACPI_FAILURE(status) || !adev) {
583 		acpi_handle_debug(handle, "No context!\n");
584 		return NULL;
585 	}
586 	return adev;
587 }
588 
589 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
590 {
591 	if (!device)
592 		return -EINVAL;
593 
594 	*device = handle_to_device(handle, NULL);
595 	if (!*device)
596 		return -ENODEV;
597 
598 	return 0;
599 }
600 EXPORT_SYMBOL(acpi_bus_get_device);
601 
602 static void get_acpi_device(void *dev)
603 {
604 	acpi_dev_get(dev);
605 }
606 
607 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
608 {
609 	return handle_to_device(handle, get_acpi_device);
610 }
611 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device);
612 
613 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
614 {
615 	struct acpi_device_bus_id *acpi_device_bus_id;
616 
617 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
618 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
619 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
620 			return acpi_device_bus_id;
621 	}
622 	return NULL;
623 }
624 
625 static int acpi_device_set_name(struct acpi_device *device,
626 				struct acpi_device_bus_id *acpi_device_bus_id)
627 {
628 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
629 	int result;
630 
631 	result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL);
632 	if (result < 0)
633 		return result;
634 
635 	device->pnp.instance_no = result;
636 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
637 	return 0;
638 }
639 
640 static int acpi_tie_acpi_dev(struct acpi_device *adev)
641 {
642 	acpi_handle handle = adev->handle;
643 	acpi_status status;
644 
645 	if (!handle)
646 		return 0;
647 
648 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
649 	if (ACPI_FAILURE(status)) {
650 		acpi_handle_err(handle, "Unable to attach device data\n");
651 		return -ENODEV;
652 	}
653 
654 	return 0;
655 }
656 
657 static int __acpi_device_add(struct acpi_device *device,
658 			     void (*release)(struct device *))
659 {
660 	struct acpi_device_bus_id *acpi_device_bus_id;
661 	int result;
662 
663 	/*
664 	 * Linkage
665 	 * -------
666 	 * Link this device to its parent and siblings.
667 	 */
668 	INIT_LIST_HEAD(&device->children);
669 	INIT_LIST_HEAD(&device->node);
670 	INIT_LIST_HEAD(&device->wakeup_list);
671 	INIT_LIST_HEAD(&device->physical_node_list);
672 	INIT_LIST_HEAD(&device->del_list);
673 	mutex_init(&device->physical_node_lock);
674 
675 	mutex_lock(&acpi_device_lock);
676 
677 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
678 	if (acpi_device_bus_id) {
679 		result = acpi_device_set_name(device, acpi_device_bus_id);
680 		if (result)
681 			goto err_unlock;
682 	} else {
683 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
684 					     GFP_KERNEL);
685 		if (!acpi_device_bus_id) {
686 			result = -ENOMEM;
687 			goto err_unlock;
688 		}
689 		acpi_device_bus_id->bus_id =
690 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
691 		if (!acpi_device_bus_id->bus_id) {
692 			kfree(acpi_device_bus_id);
693 			result = -ENOMEM;
694 			goto err_unlock;
695 		}
696 
697 		ida_init(&acpi_device_bus_id->instance_ida);
698 
699 		result = acpi_device_set_name(device, acpi_device_bus_id);
700 		if (result) {
701 			kfree_const(acpi_device_bus_id->bus_id);
702 			kfree(acpi_device_bus_id);
703 			goto err_unlock;
704 		}
705 
706 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
707 	}
708 
709 	if (device->parent)
710 		list_add_tail(&device->node, &device->parent->children);
711 
712 	if (device->wakeup.flags.valid)
713 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
714 
715 	mutex_unlock(&acpi_device_lock);
716 
717 	if (device->parent)
718 		device->dev.parent = &device->parent->dev;
719 
720 	device->dev.bus = &acpi_bus_type;
721 	device->dev.release = release;
722 	result = device_add(&device->dev);
723 	if (result) {
724 		dev_err(&device->dev, "Error registering device\n");
725 		goto err;
726 	}
727 
728 	result = acpi_device_setup_files(device);
729 	if (result)
730 		pr_err("Error creating sysfs interface for device %s\n",
731 		       dev_name(&device->dev));
732 
733 	return 0;
734 
735 err:
736 	mutex_lock(&acpi_device_lock);
737 
738 	if (device->parent)
739 		list_del(&device->node);
740 
741 	list_del(&device->wakeup_list);
742 
743 err_unlock:
744 	mutex_unlock(&acpi_device_lock);
745 
746 	acpi_detach_data(device->handle, acpi_scan_drop_device);
747 
748 	return result;
749 }
750 
751 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
752 {
753 	int ret;
754 
755 	ret = acpi_tie_acpi_dev(adev);
756 	if (ret)
757 		return ret;
758 
759 	return __acpi_device_add(adev, release);
760 }
761 
762 /* --------------------------------------------------------------------------
763                                  Device Enumeration
764    -------------------------------------------------------------------------- */
765 static bool acpi_info_matches_ids(struct acpi_device_info *info,
766 				  const char * const ids[])
767 {
768 	struct acpi_pnp_device_id_list *cid_list = NULL;
769 	int i, index;
770 
771 	if (!(info->valid & ACPI_VALID_HID))
772 		return false;
773 
774 	index = match_string(ids, -1, info->hardware_id.string);
775 	if (index >= 0)
776 		return true;
777 
778 	if (info->valid & ACPI_VALID_CID)
779 		cid_list = &info->compatible_id_list;
780 
781 	if (!cid_list)
782 		return false;
783 
784 	for (i = 0; i < cid_list->count; i++) {
785 		index = match_string(ids, -1, cid_list->ids[i].string);
786 		if (index >= 0)
787 			return true;
788 	}
789 
790 	return false;
791 }
792 
793 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
794 static const char * const acpi_ignore_dep_ids[] = {
795 	"PNP0D80", /* Windows-compatible System Power Management Controller */
796 	"INT33BD", /* Intel Baytrail Mailbox Device */
797 	NULL
798 };
799 
800 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
801 {
802 	struct acpi_device *device = NULL;
803 	acpi_status status;
804 
805 	/*
806 	 * Fixed hardware devices do not appear in the namespace and do not
807 	 * have handles, but we fabricate acpi_devices for them, so we have
808 	 * to deal with them specially.
809 	 */
810 	if (!handle)
811 		return acpi_root;
812 
813 	do {
814 		status = acpi_get_parent(handle, &handle);
815 		if (ACPI_FAILURE(status))
816 			return status == AE_NULL_ENTRY ? NULL : acpi_root;
817 	} while (acpi_bus_get_device(handle, &device));
818 	return device;
819 }
820 
821 acpi_status
822 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
823 {
824 	acpi_status status;
825 	acpi_handle tmp;
826 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
827 	union acpi_object *obj;
828 
829 	status = acpi_get_handle(handle, "_EJD", &tmp);
830 	if (ACPI_FAILURE(status))
831 		return status;
832 
833 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
834 	if (ACPI_SUCCESS(status)) {
835 		obj = buffer.pointer;
836 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
837 					 ejd);
838 		kfree(buffer.pointer);
839 	}
840 	return status;
841 }
842 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
843 
844 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
845 {
846 	acpi_handle handle = dev->handle;
847 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
848 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
849 	union acpi_object *package = NULL;
850 	union acpi_object *element = NULL;
851 	acpi_status status;
852 	int err = -ENODATA;
853 
854 	INIT_LIST_HEAD(&wakeup->resources);
855 
856 	/* _PRW */
857 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
858 	if (ACPI_FAILURE(status)) {
859 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
860 				 acpi_format_exception(status));
861 		return err;
862 	}
863 
864 	package = (union acpi_object *)buffer.pointer;
865 
866 	if (!package || package->package.count < 2)
867 		goto out;
868 
869 	element = &(package->package.elements[0]);
870 	if (!element)
871 		goto out;
872 
873 	if (element->type == ACPI_TYPE_PACKAGE) {
874 		if ((element->package.count < 2) ||
875 		    (element->package.elements[0].type !=
876 		     ACPI_TYPE_LOCAL_REFERENCE)
877 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
878 			goto out;
879 
880 		wakeup->gpe_device =
881 		    element->package.elements[0].reference.handle;
882 		wakeup->gpe_number =
883 		    (u32) element->package.elements[1].integer.value;
884 	} else if (element->type == ACPI_TYPE_INTEGER) {
885 		wakeup->gpe_device = NULL;
886 		wakeup->gpe_number = element->integer.value;
887 	} else {
888 		goto out;
889 	}
890 
891 	element = &(package->package.elements[1]);
892 	if (element->type != ACPI_TYPE_INTEGER)
893 		goto out;
894 
895 	wakeup->sleep_state = element->integer.value;
896 
897 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
898 	if (err)
899 		goto out;
900 
901 	if (!list_empty(&wakeup->resources)) {
902 		int sleep_state;
903 
904 		err = acpi_power_wakeup_list_init(&wakeup->resources,
905 						  &sleep_state);
906 		if (err) {
907 			acpi_handle_warn(handle, "Retrieving current states "
908 					 "of wakeup power resources failed\n");
909 			acpi_power_resources_list_free(&wakeup->resources);
910 			goto out;
911 		}
912 		if (sleep_state < wakeup->sleep_state) {
913 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
914 					 "(S%d) by S%d from power resources\n",
915 					 (int)wakeup->sleep_state, sleep_state);
916 			wakeup->sleep_state = sleep_state;
917 		}
918 	}
919 
920  out:
921 	kfree(buffer.pointer);
922 	return err;
923 }
924 
925 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
926 {
927 	static const struct acpi_device_id button_device_ids[] = {
928 		{"PNP0C0C", 0},		/* Power button */
929 		{"PNP0C0D", 0},		/* Lid */
930 		{"PNP0C0E", 0},		/* Sleep button */
931 		{"", 0},
932 	};
933 	struct acpi_device_wakeup *wakeup = &device->wakeup;
934 	acpi_status status;
935 
936 	wakeup->flags.notifier_present = 0;
937 
938 	/* Power button, Lid switch always enable wakeup */
939 	if (!acpi_match_device_ids(device, button_device_ids)) {
940 		if (!acpi_match_device_ids(device, &button_device_ids[1])) {
941 			/* Do not use Lid/sleep button for S5 wakeup */
942 			if (wakeup->sleep_state == ACPI_STATE_S5)
943 				wakeup->sleep_state = ACPI_STATE_S4;
944 		}
945 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
946 		device_set_wakeup_capable(&device->dev, true);
947 		return true;
948 	}
949 
950 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
951 					 wakeup->gpe_number);
952 	return ACPI_SUCCESS(status);
953 }
954 
955 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
956 {
957 	int err;
958 
959 	/* Presence of _PRW indicates wake capable */
960 	if (!acpi_has_method(device->handle, "_PRW"))
961 		return;
962 
963 	err = acpi_bus_extract_wakeup_device_power_package(device);
964 	if (err) {
965 		dev_err(&device->dev, "Unable to extract wakeup power resources");
966 		return;
967 	}
968 
969 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
970 	device->wakeup.prepare_count = 0;
971 	/*
972 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
973 	 * system for the ACPI device with the _PRW object.
974 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
975 	 * So it is necessary to call _DSW object first. Only when it is not
976 	 * present will the _PSW object used.
977 	 */
978 	err = acpi_device_sleep_wake(device, 0, 0, 0);
979 	if (err)
980 		pr_debug("error in _DSW or _PSW evaluation\n");
981 }
982 
983 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
984 {
985 	struct acpi_device_power_state *ps = &device->power.states[state];
986 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
987 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
988 	acpi_status status;
989 
990 	INIT_LIST_HEAD(&ps->resources);
991 
992 	/* Evaluate "_PRx" to get referenced power resources */
993 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
994 	if (ACPI_SUCCESS(status)) {
995 		union acpi_object *package = buffer.pointer;
996 
997 		if (buffer.length && package
998 		    && package->type == ACPI_TYPE_PACKAGE
999 		    && package->package.count)
1000 			acpi_extract_power_resources(package, 0, &ps->resources);
1001 
1002 		ACPI_FREE(buffer.pointer);
1003 	}
1004 
1005 	/* Evaluate "_PSx" to see if we can do explicit sets */
1006 	pathname[2] = 'S';
1007 	if (acpi_has_method(device->handle, pathname))
1008 		ps->flags.explicit_set = 1;
1009 
1010 	/* State is valid if there are means to put the device into it. */
1011 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1012 		ps->flags.valid = 1;
1013 
1014 	ps->power = -1;		/* Unknown - driver assigned */
1015 	ps->latency = -1;	/* Unknown - driver assigned */
1016 }
1017 
1018 static void acpi_bus_get_power_flags(struct acpi_device *device)
1019 {
1020 	unsigned long long dsc = ACPI_STATE_D0;
1021 	u32 i;
1022 
1023 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1024 	if (!acpi_has_method(device->handle, "_PS0") &&
1025 	    !acpi_has_method(device->handle, "_PR0"))
1026 		return;
1027 
1028 	device->flags.power_manageable = 1;
1029 
1030 	/*
1031 	 * Power Management Flags
1032 	 */
1033 	if (acpi_has_method(device->handle, "_PSC"))
1034 		device->power.flags.explicit_get = 1;
1035 
1036 	if (acpi_has_method(device->handle, "_IRC"))
1037 		device->power.flags.inrush_current = 1;
1038 
1039 	if (acpi_has_method(device->handle, "_DSW"))
1040 		device->power.flags.dsw_present = 1;
1041 
1042 	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1043 	device->power.state_for_enumeration = dsc;
1044 
1045 	/*
1046 	 * Enumerate supported power management states
1047 	 */
1048 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1049 		acpi_bus_init_power_state(device, i);
1050 
1051 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1052 
1053 	/* Set the defaults for D0 and D3hot (always supported). */
1054 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1055 	device->power.states[ACPI_STATE_D0].power = 100;
1056 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1057 
1058 	/*
1059 	 * Use power resources only if the D0 list of them is populated, because
1060 	 * some platforms may provide _PR3 only to indicate D3cold support and
1061 	 * in those cases the power resources list returned by it may be bogus.
1062 	 */
1063 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1064 		device->power.flags.power_resources = 1;
1065 		/*
1066 		 * D3cold is supported if the D3hot list of power resources is
1067 		 * not empty.
1068 		 */
1069 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1070 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1071 	}
1072 
1073 	if (acpi_bus_init_power(device))
1074 		device->flags.power_manageable = 0;
1075 }
1076 
1077 static void acpi_bus_get_flags(struct acpi_device *device)
1078 {
1079 	/* Presence of _STA indicates 'dynamic_status' */
1080 	if (acpi_has_method(device->handle, "_STA"))
1081 		device->flags.dynamic_status = 1;
1082 
1083 	/* Presence of _RMV indicates 'removable' */
1084 	if (acpi_has_method(device->handle, "_RMV"))
1085 		device->flags.removable = 1;
1086 
1087 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1088 	if (acpi_has_method(device->handle, "_EJD") ||
1089 	    acpi_has_method(device->handle, "_EJ0"))
1090 		device->flags.ejectable = 1;
1091 }
1092 
1093 static void acpi_device_get_busid(struct acpi_device *device)
1094 {
1095 	char bus_id[5] = { '?', 0 };
1096 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1097 	int i = 0;
1098 
1099 	/*
1100 	 * Bus ID
1101 	 * ------
1102 	 * The device's Bus ID is simply the object name.
1103 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1104 	 */
1105 	if (ACPI_IS_ROOT_DEVICE(device)) {
1106 		strcpy(device->pnp.bus_id, "ACPI");
1107 		return;
1108 	}
1109 
1110 	switch (device->device_type) {
1111 	case ACPI_BUS_TYPE_POWER_BUTTON:
1112 		strcpy(device->pnp.bus_id, "PWRF");
1113 		break;
1114 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1115 		strcpy(device->pnp.bus_id, "SLPF");
1116 		break;
1117 	case ACPI_BUS_TYPE_ECDT_EC:
1118 		strcpy(device->pnp.bus_id, "ECDT");
1119 		break;
1120 	default:
1121 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1122 		/* Clean up trailing underscores (if any) */
1123 		for (i = 3; i > 1; i--) {
1124 			if (bus_id[i] == '_')
1125 				bus_id[i] = '\0';
1126 			else
1127 				break;
1128 		}
1129 		strcpy(device->pnp.bus_id, bus_id);
1130 		break;
1131 	}
1132 }
1133 
1134 /*
1135  * acpi_ata_match - see if an acpi object is an ATA device
1136  *
1137  * If an acpi object has one of the ACPI ATA methods defined,
1138  * then we can safely call it an ATA device.
1139  */
1140 bool acpi_ata_match(acpi_handle handle)
1141 {
1142 	return acpi_has_method(handle, "_GTF") ||
1143 	       acpi_has_method(handle, "_GTM") ||
1144 	       acpi_has_method(handle, "_STM") ||
1145 	       acpi_has_method(handle, "_SDD");
1146 }
1147 
1148 /*
1149  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1150  *
1151  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1152  * then we can safely call it an ejectable drive bay
1153  */
1154 bool acpi_bay_match(acpi_handle handle)
1155 {
1156 	acpi_handle phandle;
1157 
1158 	if (!acpi_has_method(handle, "_EJ0"))
1159 		return false;
1160 	if (acpi_ata_match(handle))
1161 		return true;
1162 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1163 		return false;
1164 
1165 	return acpi_ata_match(phandle);
1166 }
1167 
1168 bool acpi_device_is_battery(struct acpi_device *adev)
1169 {
1170 	struct acpi_hardware_id *hwid;
1171 
1172 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1173 		if (!strcmp("PNP0C0A", hwid->id))
1174 			return true;
1175 
1176 	return false;
1177 }
1178 
1179 static bool is_ejectable_bay(struct acpi_device *adev)
1180 {
1181 	acpi_handle handle = adev->handle;
1182 
1183 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1184 		return true;
1185 
1186 	return acpi_bay_match(handle);
1187 }
1188 
1189 /*
1190  * acpi_dock_match - see if an acpi object has a _DCK method
1191  */
1192 bool acpi_dock_match(acpi_handle handle)
1193 {
1194 	return acpi_has_method(handle, "_DCK");
1195 }
1196 
1197 static acpi_status
1198 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1199 			  void **return_value)
1200 {
1201 	long *cap = context;
1202 
1203 	if (acpi_has_method(handle, "_BCM") &&
1204 	    acpi_has_method(handle, "_BCL")) {
1205 		acpi_handle_debug(handle, "Found generic backlight support\n");
1206 		*cap |= ACPI_VIDEO_BACKLIGHT;
1207 		/* We have backlight support, no need to scan further */
1208 		return AE_CTRL_TERMINATE;
1209 	}
1210 	return 0;
1211 }
1212 
1213 /* Returns true if the ACPI object is a video device which can be
1214  * handled by video.ko.
1215  * The device will get a Linux specific CID added in scan.c to
1216  * identify the device as an ACPI graphics device
1217  * Be aware that the graphics device may not be physically present
1218  * Use acpi_video_get_capabilities() to detect general ACPI video
1219  * capabilities of present cards
1220  */
1221 long acpi_is_video_device(acpi_handle handle)
1222 {
1223 	long video_caps = 0;
1224 
1225 	/* Is this device able to support video switching ? */
1226 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1227 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1228 
1229 	/* Is this device able to retrieve a video ROM ? */
1230 	if (acpi_has_method(handle, "_ROM"))
1231 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1232 
1233 	/* Is this device able to configure which video head to be POSTed ? */
1234 	if (acpi_has_method(handle, "_VPO") &&
1235 	    acpi_has_method(handle, "_GPD") &&
1236 	    acpi_has_method(handle, "_SPD"))
1237 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1238 
1239 	/* Only check for backlight functionality if one of the above hit. */
1240 	if (video_caps)
1241 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1242 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1243 				    &video_caps, NULL);
1244 
1245 	return video_caps;
1246 }
1247 EXPORT_SYMBOL(acpi_is_video_device);
1248 
1249 const char *acpi_device_hid(struct acpi_device *device)
1250 {
1251 	struct acpi_hardware_id *hid;
1252 
1253 	if (list_empty(&device->pnp.ids))
1254 		return dummy_hid;
1255 
1256 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1257 	return hid->id;
1258 }
1259 EXPORT_SYMBOL(acpi_device_hid);
1260 
1261 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1262 {
1263 	struct acpi_hardware_id *id;
1264 
1265 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1266 	if (!id)
1267 		return;
1268 
1269 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1270 	if (!id->id) {
1271 		kfree(id);
1272 		return;
1273 	}
1274 
1275 	list_add_tail(&id->list, &pnp->ids);
1276 	pnp->type.hardware_id = 1;
1277 }
1278 
1279 /*
1280  * Old IBM workstations have a DSDT bug wherein the SMBus object
1281  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1282  * prefix.  Work around this.
1283  */
1284 static bool acpi_ibm_smbus_match(acpi_handle handle)
1285 {
1286 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1287 	struct acpi_buffer path = { sizeof(node_name), node_name };
1288 
1289 	if (!dmi_name_in_vendors("IBM"))
1290 		return false;
1291 
1292 	/* Look for SMBS object */
1293 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1294 	    strcmp("SMBS", path.pointer))
1295 		return false;
1296 
1297 	/* Does it have the necessary (but misnamed) methods? */
1298 	if (acpi_has_method(handle, "SBI") &&
1299 	    acpi_has_method(handle, "SBR") &&
1300 	    acpi_has_method(handle, "SBW"))
1301 		return true;
1302 
1303 	return false;
1304 }
1305 
1306 static bool acpi_object_is_system_bus(acpi_handle handle)
1307 {
1308 	acpi_handle tmp;
1309 
1310 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1311 	    tmp == handle)
1312 		return true;
1313 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1314 	    tmp == handle)
1315 		return true;
1316 
1317 	return false;
1318 }
1319 
1320 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1321 			     int device_type)
1322 {
1323 	struct acpi_device_info *info = NULL;
1324 	struct acpi_pnp_device_id_list *cid_list;
1325 	int i;
1326 
1327 	switch (device_type) {
1328 	case ACPI_BUS_TYPE_DEVICE:
1329 		if (handle == ACPI_ROOT_OBJECT) {
1330 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1331 			break;
1332 		}
1333 
1334 		acpi_get_object_info(handle, &info);
1335 		if (!info) {
1336 			pr_err("%s: Error reading device info\n", __func__);
1337 			return;
1338 		}
1339 
1340 		if (info->valid & ACPI_VALID_HID) {
1341 			acpi_add_id(pnp, info->hardware_id.string);
1342 			pnp->type.platform_id = 1;
1343 		}
1344 		if (info->valid & ACPI_VALID_CID) {
1345 			cid_list = &info->compatible_id_list;
1346 			for (i = 0; i < cid_list->count; i++)
1347 				acpi_add_id(pnp, cid_list->ids[i].string);
1348 		}
1349 		if (info->valid & ACPI_VALID_ADR) {
1350 			pnp->bus_address = info->address;
1351 			pnp->type.bus_address = 1;
1352 		}
1353 		if (info->valid & ACPI_VALID_UID)
1354 			pnp->unique_id = kstrdup(info->unique_id.string,
1355 							GFP_KERNEL);
1356 		if (info->valid & ACPI_VALID_CLS)
1357 			acpi_add_id(pnp, info->class_code.string);
1358 
1359 		kfree(info);
1360 
1361 		/*
1362 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1363 		 * synthetic HIDs to make sure drivers can find them.
1364 		 */
1365 		if (acpi_is_video_device(handle))
1366 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1367 		else if (acpi_bay_match(handle))
1368 			acpi_add_id(pnp, ACPI_BAY_HID);
1369 		else if (acpi_dock_match(handle))
1370 			acpi_add_id(pnp, ACPI_DOCK_HID);
1371 		else if (acpi_ibm_smbus_match(handle))
1372 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1373 		else if (list_empty(&pnp->ids) &&
1374 			 acpi_object_is_system_bus(handle)) {
1375 			/* \_SB, \_TZ, LNXSYBUS */
1376 			acpi_add_id(pnp, ACPI_BUS_HID);
1377 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1378 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1379 		}
1380 
1381 		break;
1382 	case ACPI_BUS_TYPE_POWER:
1383 		acpi_add_id(pnp, ACPI_POWER_HID);
1384 		break;
1385 	case ACPI_BUS_TYPE_PROCESSOR:
1386 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1387 		break;
1388 	case ACPI_BUS_TYPE_THERMAL:
1389 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1390 		break;
1391 	case ACPI_BUS_TYPE_POWER_BUTTON:
1392 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1393 		break;
1394 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1395 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1396 		break;
1397 	case ACPI_BUS_TYPE_ECDT_EC:
1398 		acpi_add_id(pnp, ACPI_ECDT_HID);
1399 		break;
1400 	}
1401 }
1402 
1403 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1404 {
1405 	struct acpi_hardware_id *id, *tmp;
1406 
1407 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1408 		kfree_const(id->id);
1409 		kfree(id);
1410 	}
1411 	kfree(pnp->unique_id);
1412 }
1413 
1414 /**
1415  * acpi_dma_supported - Check DMA support for the specified device.
1416  * @adev: The pointer to acpi device
1417  *
1418  * Return false if DMA is not supported. Otherwise, return true
1419  */
1420 bool acpi_dma_supported(const struct acpi_device *adev)
1421 {
1422 	if (!adev)
1423 		return false;
1424 
1425 	if (adev->flags.cca_seen)
1426 		return true;
1427 
1428 	/*
1429 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1430 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1431 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1432 	*/
1433 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1434 		return true;
1435 
1436 	return false;
1437 }
1438 
1439 /**
1440  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1441  * @adev: The pointer to acpi device
1442  *
1443  * Return enum dev_dma_attr.
1444  */
1445 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1446 {
1447 	if (!acpi_dma_supported(adev))
1448 		return DEV_DMA_NOT_SUPPORTED;
1449 
1450 	if (adev->flags.coherent_dma)
1451 		return DEV_DMA_COHERENT;
1452 	else
1453 		return DEV_DMA_NON_COHERENT;
1454 }
1455 
1456 /**
1457  * acpi_dma_get_range() - Get device DMA parameters.
1458  *
1459  * @dev: device to configure
1460  * @dma_addr: pointer device DMA address result
1461  * @offset: pointer to the DMA offset result
1462  * @size: pointer to DMA range size result
1463  *
1464  * Evaluate DMA regions and return respectively DMA region start, offset
1465  * and size in dma_addr, offset and size on parsing success; it does not
1466  * update the passed in values on failure.
1467  *
1468  * Return 0 on success, < 0 on failure.
1469  */
1470 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1471 		       u64 *size)
1472 {
1473 	struct acpi_device *adev;
1474 	LIST_HEAD(list);
1475 	struct resource_entry *rentry;
1476 	int ret;
1477 	struct device *dma_dev = dev;
1478 	u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1479 
1480 	/*
1481 	 * Walk the device tree chasing an ACPI companion with a _DMA
1482 	 * object while we go. Stop if we find a device with an ACPI
1483 	 * companion containing a _DMA method.
1484 	 */
1485 	do {
1486 		adev = ACPI_COMPANION(dma_dev);
1487 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1488 			break;
1489 
1490 		dma_dev = dma_dev->parent;
1491 	} while (dma_dev);
1492 
1493 	if (!dma_dev)
1494 		return -ENODEV;
1495 
1496 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1497 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1498 		return -EINVAL;
1499 	}
1500 
1501 	ret = acpi_dev_get_dma_resources(adev, &list);
1502 	if (ret > 0) {
1503 		list_for_each_entry(rentry, &list, node) {
1504 			if (dma_offset && rentry->offset != dma_offset) {
1505 				ret = -EINVAL;
1506 				dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1507 				goto out;
1508 			}
1509 			dma_offset = rentry->offset;
1510 
1511 			/* Take lower and upper limits */
1512 			if (rentry->res->start < dma_start)
1513 				dma_start = rentry->res->start;
1514 			if (rentry->res->end > dma_end)
1515 				dma_end = rentry->res->end;
1516 		}
1517 
1518 		if (dma_start >= dma_end) {
1519 			ret = -EINVAL;
1520 			dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1521 			goto out;
1522 		}
1523 
1524 		*dma_addr = dma_start - dma_offset;
1525 		len = dma_end - dma_start;
1526 		*size = max(len, len + 1);
1527 		*offset = dma_offset;
1528 	}
1529  out:
1530 	acpi_dev_free_resource_list(&list);
1531 
1532 	return ret >= 0 ? 0 : ret;
1533 }
1534 
1535 #ifdef CONFIG_IOMMU_API
1536 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1537 			   struct fwnode_handle *fwnode,
1538 			   const struct iommu_ops *ops)
1539 {
1540 	int ret = iommu_fwspec_init(dev, fwnode, ops);
1541 
1542 	if (!ret)
1543 		ret = iommu_fwspec_add_ids(dev, &id, 1);
1544 
1545 	return ret;
1546 }
1547 
1548 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1549 {
1550 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1551 
1552 	return fwspec ? fwspec->ops : NULL;
1553 }
1554 
1555 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1556 						       const u32 *id_in)
1557 {
1558 	int err;
1559 	const struct iommu_ops *ops;
1560 
1561 	/*
1562 	 * If we already translated the fwspec there is nothing left to do,
1563 	 * return the iommu_ops.
1564 	 */
1565 	ops = acpi_iommu_fwspec_ops(dev);
1566 	if (ops)
1567 		return ops;
1568 
1569 	err = iort_iommu_configure_id(dev, id_in);
1570 	if (err && err != -EPROBE_DEFER)
1571 		err = viot_iommu_configure(dev);
1572 
1573 	/*
1574 	 * If we have reason to believe the IOMMU driver missed the initial
1575 	 * iommu_probe_device() call for dev, replay it to get things in order.
1576 	 */
1577 	if (!err && dev->bus && !device_iommu_mapped(dev))
1578 		err = iommu_probe_device(dev);
1579 
1580 	/* Ignore all other errors apart from EPROBE_DEFER */
1581 	if (err == -EPROBE_DEFER) {
1582 		return ERR_PTR(err);
1583 	} else if (err) {
1584 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1585 		return NULL;
1586 	}
1587 	return acpi_iommu_fwspec_ops(dev);
1588 }
1589 
1590 #else /* !CONFIG_IOMMU_API */
1591 
1592 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1593 			   struct fwnode_handle *fwnode,
1594 			   const struct iommu_ops *ops)
1595 {
1596 	return -ENODEV;
1597 }
1598 
1599 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1600 						       const u32 *id_in)
1601 {
1602 	return NULL;
1603 }
1604 
1605 #endif /* !CONFIG_IOMMU_API */
1606 
1607 /**
1608  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1609  * @dev: The pointer to the device
1610  * @attr: device dma attributes
1611  * @input_id: input device id const value pointer
1612  */
1613 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1614 			  const u32 *input_id)
1615 {
1616 	const struct iommu_ops *iommu;
1617 	u64 dma_addr = 0, size = 0;
1618 
1619 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1620 		set_dma_ops(dev, &dma_dummy_ops);
1621 		return 0;
1622 	}
1623 
1624 	acpi_arch_dma_setup(dev, &dma_addr, &size);
1625 
1626 	iommu = acpi_iommu_configure_id(dev, input_id);
1627 	if (PTR_ERR(iommu) == -EPROBE_DEFER)
1628 		return -EPROBE_DEFER;
1629 
1630 	arch_setup_dma_ops(dev, dma_addr, size,
1631 				iommu, attr == DEV_DMA_COHERENT);
1632 
1633 	return 0;
1634 }
1635 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1636 
1637 static void acpi_init_coherency(struct acpi_device *adev)
1638 {
1639 	unsigned long long cca = 0;
1640 	acpi_status status;
1641 	struct acpi_device *parent = adev->parent;
1642 
1643 	if (parent && parent->flags.cca_seen) {
1644 		/*
1645 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1646 		 * already saw one.
1647 		 */
1648 		adev->flags.cca_seen = 1;
1649 		cca = parent->flags.coherent_dma;
1650 	} else {
1651 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1652 					       NULL, &cca);
1653 		if (ACPI_SUCCESS(status))
1654 			adev->flags.cca_seen = 1;
1655 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1656 			/*
1657 			 * If architecture does not specify that _CCA is
1658 			 * required for DMA-able devices (e.g. x86),
1659 			 * we default to _CCA=1.
1660 			 */
1661 			cca = 1;
1662 		else
1663 			acpi_handle_debug(adev->handle,
1664 					  "ACPI device is missing _CCA.\n");
1665 	}
1666 
1667 	adev->flags.coherent_dma = cca;
1668 }
1669 
1670 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1671 {
1672 	bool *is_serial_bus_slave_p = data;
1673 
1674 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1675 		return 1;
1676 
1677 	*is_serial_bus_slave_p = true;
1678 
1679 	 /* no need to do more checking */
1680 	return -1;
1681 }
1682 
1683 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1684 {
1685 	struct acpi_device *parent = device->parent;
1686 	static const struct acpi_device_id indirect_io_hosts[] = {
1687 		{"HISI0191", 0},
1688 		{}
1689 	};
1690 
1691 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1692 }
1693 
1694 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1695 {
1696 	struct list_head resource_list;
1697 	bool is_serial_bus_slave = false;
1698 	/*
1699 	 * These devices have multiple I2cSerialBus resources and an i2c-client
1700 	 * must be instantiated for each, each with its own i2c_device_id.
1701 	 * Normally we only instantiate an i2c-client for the first resource,
1702 	 * using the ACPI HID as id. These special cases are handled by the
1703 	 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows
1704 	 * which i2c_device_id to use for each resource.
1705 	 */
1706 	static const struct acpi_device_id i2c_multi_instantiate_ids[] = {
1707 		{"BSG1160", },
1708 		{"BSG2150", },
1709 		{"INT33FE", },
1710 		{"INT3515", },
1711 		{}
1712 	};
1713 
1714 	if (acpi_is_indirect_io_slave(device))
1715 		return true;
1716 
1717 	/* Macs use device properties in lieu of _CRS resources */
1718 	if (x86_apple_machine &&
1719 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1720 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1721 	     fwnode_property_present(&device->fwnode, "baud")))
1722 		return true;
1723 
1724 	/* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */
1725 	if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids))
1726 		return false;
1727 
1728 	INIT_LIST_HEAD(&resource_list);
1729 	acpi_dev_get_resources(device, &resource_list,
1730 			       acpi_check_serial_bus_slave,
1731 			       &is_serial_bus_slave);
1732 	acpi_dev_free_resource_list(&resource_list);
1733 
1734 	return is_serial_bus_slave;
1735 }
1736 
1737 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1738 			     int type)
1739 {
1740 	INIT_LIST_HEAD(&device->pnp.ids);
1741 	device->device_type = type;
1742 	device->handle = handle;
1743 	device->parent = acpi_bus_get_parent(handle);
1744 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1745 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1746 	acpi_device_get_busid(device);
1747 	acpi_set_pnp_ids(handle, &device->pnp, type);
1748 	acpi_init_properties(device);
1749 	acpi_bus_get_flags(device);
1750 	device->flags.match_driver = false;
1751 	device->flags.initialized = true;
1752 	device->flags.enumeration_by_parent =
1753 		acpi_device_enumeration_by_parent(device);
1754 	acpi_device_clear_enumerated(device);
1755 	device_initialize(&device->dev);
1756 	dev_set_uevent_suppress(&device->dev, true);
1757 	acpi_init_coherency(device);
1758 }
1759 
1760 static void acpi_scan_dep_init(struct acpi_device *adev)
1761 {
1762 	struct acpi_dep_data *dep;
1763 
1764 	list_for_each_entry(dep, &acpi_dep_list, node) {
1765 		if (dep->consumer == adev->handle)
1766 			adev->dep_unmet++;
1767 	}
1768 }
1769 
1770 void acpi_device_add_finalize(struct acpi_device *device)
1771 {
1772 	dev_set_uevent_suppress(&device->dev, false);
1773 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1774 }
1775 
1776 static void acpi_scan_init_status(struct acpi_device *adev)
1777 {
1778 	if (acpi_bus_get_status(adev))
1779 		acpi_set_device_status(adev, 0);
1780 }
1781 
1782 static int acpi_add_single_object(struct acpi_device **child,
1783 				  acpi_handle handle, int type, bool dep_init)
1784 {
1785 	struct acpi_device *device;
1786 	bool release_dep_lock = false;
1787 	int result;
1788 
1789 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1790 	if (!device)
1791 		return -ENOMEM;
1792 
1793 	acpi_init_device_object(device, handle, type);
1794 	/*
1795 	 * Getting the status is delayed till here so that we can call
1796 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1797 	 * this must be done before the get power-/wakeup_dev-flags calls.
1798 	 */
1799 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1800 		if (dep_init) {
1801 			mutex_lock(&acpi_dep_list_lock);
1802 			/*
1803 			 * Hold the lock until the acpi_tie_acpi_dev() call
1804 			 * below to prevent concurrent acpi_scan_clear_dep()
1805 			 * from deleting a dependency list entry without
1806 			 * updating dep_unmet for the device.
1807 			 */
1808 			release_dep_lock = true;
1809 			acpi_scan_dep_init(device);
1810 		}
1811 		acpi_scan_init_status(device);
1812 	}
1813 
1814 	acpi_bus_get_power_flags(device);
1815 	acpi_bus_get_wakeup_device_flags(device);
1816 
1817 	result = acpi_tie_acpi_dev(device);
1818 
1819 	if (release_dep_lock)
1820 		mutex_unlock(&acpi_dep_list_lock);
1821 
1822 	if (!result)
1823 		result = __acpi_device_add(device, acpi_device_release);
1824 
1825 	if (result) {
1826 		acpi_device_release(&device->dev);
1827 		return result;
1828 	}
1829 
1830 	acpi_power_add_remove_device(device, true);
1831 	acpi_device_add_finalize(device);
1832 
1833 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1834 			  dev_name(&device->dev), device->parent ?
1835 				dev_name(&device->parent->dev) : "(null)");
1836 
1837 	*child = device;
1838 	return 0;
1839 }
1840 
1841 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1842 					    void *context)
1843 {
1844 	struct resource *res = context;
1845 
1846 	if (acpi_dev_resource_memory(ares, res))
1847 		return AE_CTRL_TERMINATE;
1848 
1849 	return AE_OK;
1850 }
1851 
1852 static bool acpi_device_should_be_hidden(acpi_handle handle)
1853 {
1854 	acpi_status status;
1855 	struct resource res;
1856 
1857 	/* Check if it should ignore the UART device */
1858 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1859 		return false;
1860 
1861 	/*
1862 	 * The UART device described in SPCR table is assumed to have only one
1863 	 * memory resource present. So we only look for the first one here.
1864 	 */
1865 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1866 				     acpi_get_resource_memory, &res);
1867 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1868 		return false;
1869 
1870 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1871 			 &res.start);
1872 
1873 	return true;
1874 }
1875 
1876 bool acpi_device_is_present(const struct acpi_device *adev)
1877 {
1878 	return adev->status.present || adev->status.functional;
1879 }
1880 
1881 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1882 				       const char *idstr,
1883 				       const struct acpi_device_id **matchid)
1884 {
1885 	const struct acpi_device_id *devid;
1886 
1887 	if (handler->match)
1888 		return handler->match(idstr, matchid);
1889 
1890 	for (devid = handler->ids; devid->id[0]; devid++)
1891 		if (!strcmp((char *)devid->id, idstr)) {
1892 			if (matchid)
1893 				*matchid = devid;
1894 
1895 			return true;
1896 		}
1897 
1898 	return false;
1899 }
1900 
1901 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1902 					const struct acpi_device_id **matchid)
1903 {
1904 	struct acpi_scan_handler *handler;
1905 
1906 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1907 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1908 			return handler;
1909 
1910 	return NULL;
1911 }
1912 
1913 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1914 {
1915 	if (!!hotplug->enabled == !!val)
1916 		return;
1917 
1918 	mutex_lock(&acpi_scan_lock);
1919 
1920 	hotplug->enabled = val;
1921 
1922 	mutex_unlock(&acpi_scan_lock);
1923 }
1924 
1925 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1926 {
1927 	struct acpi_hardware_id *hwid;
1928 
1929 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1930 		acpi_dock_add(adev);
1931 		return;
1932 	}
1933 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1934 		struct acpi_scan_handler *handler;
1935 
1936 		handler = acpi_scan_match_handler(hwid->id, NULL);
1937 		if (handler) {
1938 			adev->flags.hotplug_notify = true;
1939 			break;
1940 		}
1941 	}
1942 }
1943 
1944 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1945 {
1946 	struct acpi_handle_list dep_devices;
1947 	acpi_status status;
1948 	u32 count;
1949 	int i;
1950 
1951 	/*
1952 	 * Check for _HID here to avoid deferring the enumeration of:
1953 	 * 1. PCI devices.
1954 	 * 2. ACPI nodes describing USB ports.
1955 	 * Still, checking for _HID catches more then just these cases ...
1956 	 */
1957 	if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1958 	    !acpi_has_method(handle, "_HID"))
1959 		return 0;
1960 
1961 	status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1962 	if (ACPI_FAILURE(status)) {
1963 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1964 		return 0;
1965 	}
1966 
1967 	for (count = 0, i = 0; i < dep_devices.count; i++) {
1968 		struct acpi_device_info *info;
1969 		struct acpi_dep_data *dep;
1970 		bool skip;
1971 
1972 		status = acpi_get_object_info(dep_devices.handles[i], &info);
1973 		if (ACPI_FAILURE(status)) {
1974 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
1975 			continue;
1976 		}
1977 
1978 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
1979 		kfree(info);
1980 
1981 		if (skip)
1982 			continue;
1983 
1984 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
1985 		if (!dep)
1986 			continue;
1987 
1988 		count++;
1989 
1990 		dep->supplier = dep_devices.handles[i];
1991 		dep->consumer = handle;
1992 
1993 		mutex_lock(&acpi_dep_list_lock);
1994 		list_add_tail(&dep->node , &acpi_dep_list);
1995 		mutex_unlock(&acpi_dep_list_lock);
1996 	}
1997 
1998 	return count;
1999 }
2000 
2001 static bool acpi_bus_scan_second_pass;
2002 
2003 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2004 				      struct acpi_device **adev_p)
2005 {
2006 	struct acpi_device *device = NULL;
2007 	acpi_object_type acpi_type;
2008 	int type;
2009 
2010 	acpi_bus_get_device(handle, &device);
2011 	if (device)
2012 		goto out;
2013 
2014 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2015 		return AE_OK;
2016 
2017 	switch (acpi_type) {
2018 	case ACPI_TYPE_DEVICE:
2019 		if (acpi_device_should_be_hidden(handle))
2020 			return AE_OK;
2021 
2022 		/* Bail out if there are dependencies. */
2023 		if (acpi_scan_check_dep(handle, check_dep) > 0) {
2024 			acpi_bus_scan_second_pass = true;
2025 			return AE_CTRL_DEPTH;
2026 		}
2027 
2028 		fallthrough;
2029 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2030 		type = ACPI_BUS_TYPE_DEVICE;
2031 		break;
2032 
2033 	case ACPI_TYPE_PROCESSOR:
2034 		type = ACPI_BUS_TYPE_PROCESSOR;
2035 		break;
2036 
2037 	case ACPI_TYPE_THERMAL:
2038 		type = ACPI_BUS_TYPE_THERMAL;
2039 		break;
2040 
2041 	case ACPI_TYPE_POWER:
2042 		acpi_add_power_resource(handle);
2043 		fallthrough;
2044 	default:
2045 		return AE_OK;
2046 	}
2047 
2048 	/*
2049 	 * If check_dep is true at this point, the device has no dependencies,
2050 	 * or the creation of the device object would have been postponed above.
2051 	 */
2052 	acpi_add_single_object(&device, handle, type, !check_dep);
2053 	if (!device)
2054 		return AE_CTRL_DEPTH;
2055 
2056 	acpi_scan_init_hotplug(device);
2057 
2058 out:
2059 	if (!*adev_p)
2060 		*adev_p = device;
2061 
2062 	return AE_OK;
2063 }
2064 
2065 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2066 					void *not_used, void **ret_p)
2067 {
2068 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2069 }
2070 
2071 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2072 					void *not_used, void **ret_p)
2073 {
2074 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2075 }
2076 
2077 static void acpi_default_enumeration(struct acpi_device *device)
2078 {
2079 	/*
2080 	 * Do not enumerate devices with enumeration_by_parent flag set as
2081 	 * they will be enumerated by their respective parents.
2082 	 */
2083 	if (!device->flags.enumeration_by_parent) {
2084 		acpi_create_platform_device(device, NULL);
2085 		acpi_device_set_enumerated(device);
2086 	} else {
2087 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2088 					     ACPI_RECONFIG_DEVICE_ADD, device);
2089 	}
2090 }
2091 
2092 static const struct acpi_device_id generic_device_ids[] = {
2093 	{ACPI_DT_NAMESPACE_HID, },
2094 	{"", },
2095 };
2096 
2097 static int acpi_generic_device_attach(struct acpi_device *adev,
2098 				      const struct acpi_device_id *not_used)
2099 {
2100 	/*
2101 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2102 	 * below can be unconditional.
2103 	 */
2104 	if (adev->data.of_compatible)
2105 		acpi_default_enumeration(adev);
2106 
2107 	return 1;
2108 }
2109 
2110 static struct acpi_scan_handler generic_device_handler = {
2111 	.ids = generic_device_ids,
2112 	.attach = acpi_generic_device_attach,
2113 };
2114 
2115 static int acpi_scan_attach_handler(struct acpi_device *device)
2116 {
2117 	struct acpi_hardware_id *hwid;
2118 	int ret = 0;
2119 
2120 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2121 		const struct acpi_device_id *devid;
2122 		struct acpi_scan_handler *handler;
2123 
2124 		handler = acpi_scan_match_handler(hwid->id, &devid);
2125 		if (handler) {
2126 			if (!handler->attach) {
2127 				device->pnp.type.platform_id = 0;
2128 				continue;
2129 			}
2130 			device->handler = handler;
2131 			ret = handler->attach(device, devid);
2132 			if (ret > 0)
2133 				break;
2134 
2135 			device->handler = NULL;
2136 			if (ret < 0)
2137 				break;
2138 		}
2139 	}
2140 
2141 	return ret;
2142 }
2143 
2144 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2145 {
2146 	struct acpi_device *child;
2147 	bool skip = !first_pass && device->flags.visited;
2148 	acpi_handle ejd;
2149 	int ret;
2150 
2151 	if (skip)
2152 		goto ok;
2153 
2154 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2155 		register_dock_dependent_device(device, ejd);
2156 
2157 	acpi_bus_get_status(device);
2158 	/* Skip devices that are not present. */
2159 	if (!acpi_device_is_present(device)) {
2160 		device->flags.initialized = false;
2161 		acpi_device_clear_enumerated(device);
2162 		device->flags.power_manageable = 0;
2163 		return;
2164 	}
2165 	if (device->handler)
2166 		goto ok;
2167 
2168 	if (!device->flags.initialized) {
2169 		device->flags.power_manageable =
2170 			device->power.states[ACPI_STATE_D0].flags.valid;
2171 		if (acpi_bus_init_power(device))
2172 			device->flags.power_manageable = 0;
2173 
2174 		device->flags.initialized = true;
2175 	} else if (device->flags.visited) {
2176 		goto ok;
2177 	}
2178 
2179 	ret = acpi_scan_attach_handler(device);
2180 	if (ret < 0)
2181 		return;
2182 
2183 	device->flags.match_driver = true;
2184 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2185 		acpi_device_set_enumerated(device);
2186 		goto ok;
2187 	}
2188 
2189 	ret = device_attach(&device->dev);
2190 	if (ret < 0)
2191 		return;
2192 
2193 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2194 		acpi_default_enumeration(device);
2195 	else
2196 		acpi_device_set_enumerated(device);
2197 
2198  ok:
2199 	list_for_each_entry(child, &device->children, node)
2200 		acpi_bus_attach(child, first_pass);
2201 
2202 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2203 		device->handler->hotplug.notify_online(device);
2204 }
2205 
2206 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2207 {
2208 	struct acpi_device *adev;
2209 
2210 	adev = acpi_bus_get_acpi_device(dep->consumer);
2211 	if (adev) {
2212 		*(struct acpi_device **)data = adev;
2213 		return 1;
2214 	}
2215 	/* Continue parsing if the device object is not present. */
2216 	return 0;
2217 }
2218 
2219 struct acpi_scan_clear_dep_work {
2220 	struct work_struct work;
2221 	struct acpi_device *adev;
2222 };
2223 
2224 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2225 {
2226 	struct acpi_scan_clear_dep_work *cdw;
2227 
2228 	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2229 
2230 	acpi_scan_lock_acquire();
2231 	acpi_bus_attach(cdw->adev, true);
2232 	acpi_scan_lock_release();
2233 
2234 	acpi_dev_put(cdw->adev);
2235 	kfree(cdw);
2236 }
2237 
2238 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2239 {
2240 	struct acpi_scan_clear_dep_work *cdw;
2241 
2242 	if (adev->dep_unmet)
2243 		return false;
2244 
2245 	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2246 	if (!cdw)
2247 		return false;
2248 
2249 	cdw->adev = adev;
2250 	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2251 	/*
2252 	 * Since the work function may block on the lock until the entire
2253 	 * initial enumeration of devices is complete, put it into the unbound
2254 	 * workqueue.
2255 	 */
2256 	queue_work(system_unbound_wq, &cdw->work);
2257 
2258 	return true;
2259 }
2260 
2261 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2262 {
2263 	struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2264 
2265 	if (adev) {
2266 		adev->dep_unmet--;
2267 		if (!acpi_scan_clear_dep_queue(adev))
2268 			acpi_dev_put(adev);
2269 	}
2270 
2271 	list_del(&dep->node);
2272 	kfree(dep);
2273 
2274 	return 0;
2275 }
2276 
2277 /**
2278  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2279  * @handle:	The ACPI handle of the supplier device
2280  * @callback:	Pointer to the callback function to apply
2281  * @data:	Pointer to some data to pass to the callback
2282  *
2283  * The return value of the callback determines this function's behaviour. If 0
2284  * is returned we continue to iterate over acpi_dep_list. If a positive value
2285  * is returned then the loop is broken but this function returns 0. If a
2286  * negative value is returned by the callback then the loop is broken and that
2287  * value is returned as the final error.
2288  */
2289 static int acpi_walk_dep_device_list(acpi_handle handle,
2290 				int (*callback)(struct acpi_dep_data *, void *),
2291 				void *data)
2292 {
2293 	struct acpi_dep_data *dep, *tmp;
2294 	int ret = 0;
2295 
2296 	mutex_lock(&acpi_dep_list_lock);
2297 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2298 		if (dep->supplier == handle) {
2299 			ret = callback(dep, data);
2300 			if (ret)
2301 				break;
2302 		}
2303 	}
2304 	mutex_unlock(&acpi_dep_list_lock);
2305 
2306 	return ret > 0 ? 0 : ret;
2307 }
2308 
2309 /**
2310  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2311  * @supplier: Pointer to the supplier &struct acpi_device
2312  *
2313  * Clear dependencies on the given device.
2314  */
2315 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2316 {
2317 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2318 }
2319 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2320 
2321 /**
2322  * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2323  * @supplier: Pointer to the dependee device
2324  *
2325  * Returns the first &struct acpi_device which declares itself dependent on
2326  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2327  *
2328  * The caller is responsible for putting the reference to adev when it is no
2329  * longer needed.
2330  */
2331 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2332 {
2333 	struct acpi_device *adev = NULL;
2334 
2335 	acpi_walk_dep_device_list(supplier->handle,
2336 				  acpi_dev_get_first_consumer_dev_cb, &adev);
2337 
2338 	return adev;
2339 }
2340 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2341 
2342 /**
2343  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2344  * @handle: Root of the namespace scope to scan.
2345  *
2346  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2347  * found devices.
2348  *
2349  * If no devices were found, -ENODEV is returned, but it does not mean that
2350  * there has been a real error.  There just have been no suitable ACPI objects
2351  * in the table trunk from which the kernel could create a device and add an
2352  * appropriate driver.
2353  *
2354  * Must be called under acpi_scan_lock.
2355  */
2356 int acpi_bus_scan(acpi_handle handle)
2357 {
2358 	struct acpi_device *device = NULL;
2359 
2360 	acpi_bus_scan_second_pass = false;
2361 
2362 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2363 
2364 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2365 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2366 				    acpi_bus_check_add_1, NULL, NULL,
2367 				    (void **)&device);
2368 
2369 	if (!device)
2370 		return -ENODEV;
2371 
2372 	acpi_bus_attach(device, true);
2373 
2374 	if (!acpi_bus_scan_second_pass)
2375 		return 0;
2376 
2377 	/* Pass 2: Enumerate all of the remaining devices. */
2378 
2379 	device = NULL;
2380 
2381 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2382 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2383 				    acpi_bus_check_add_2, NULL, NULL,
2384 				    (void **)&device);
2385 
2386 	acpi_bus_attach(device, false);
2387 
2388 	return 0;
2389 }
2390 EXPORT_SYMBOL(acpi_bus_scan);
2391 
2392 /**
2393  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2394  * @adev: Root of the ACPI namespace scope to walk.
2395  *
2396  * Must be called under acpi_scan_lock.
2397  */
2398 void acpi_bus_trim(struct acpi_device *adev)
2399 {
2400 	struct acpi_scan_handler *handler = adev->handler;
2401 	struct acpi_device *child;
2402 
2403 	list_for_each_entry_reverse(child, &adev->children, node)
2404 		acpi_bus_trim(child);
2405 
2406 	adev->flags.match_driver = false;
2407 	if (handler) {
2408 		if (handler->detach)
2409 			handler->detach(adev);
2410 
2411 		adev->handler = NULL;
2412 	} else {
2413 		device_release_driver(&adev->dev);
2414 	}
2415 	/*
2416 	 * Most likely, the device is going away, so put it into D3cold before
2417 	 * that.
2418 	 */
2419 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2420 	adev->flags.initialized = false;
2421 	acpi_device_clear_enumerated(adev);
2422 }
2423 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2424 
2425 int acpi_bus_register_early_device(int type)
2426 {
2427 	struct acpi_device *device = NULL;
2428 	int result;
2429 
2430 	result = acpi_add_single_object(&device, NULL, type, false);
2431 	if (result)
2432 		return result;
2433 
2434 	device->flags.match_driver = true;
2435 	return device_attach(&device->dev);
2436 }
2437 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2438 
2439 static int acpi_bus_scan_fixed(void)
2440 {
2441 	int result = 0;
2442 
2443 	/*
2444 	 * Enumerate all fixed-feature devices.
2445 	 */
2446 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2447 		struct acpi_device *device = NULL;
2448 
2449 		result = acpi_add_single_object(&device, NULL,
2450 						ACPI_BUS_TYPE_POWER_BUTTON, false);
2451 		if (result)
2452 			return result;
2453 
2454 		device->flags.match_driver = true;
2455 		result = device_attach(&device->dev);
2456 		if (result < 0)
2457 			return result;
2458 
2459 		device_init_wakeup(&device->dev, true);
2460 	}
2461 
2462 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2463 		struct acpi_device *device = NULL;
2464 
2465 		result = acpi_add_single_object(&device, NULL,
2466 						ACPI_BUS_TYPE_SLEEP_BUTTON, false);
2467 		if (result)
2468 			return result;
2469 
2470 		device->flags.match_driver = true;
2471 		result = device_attach(&device->dev);
2472 	}
2473 
2474 	return result < 0 ? result : 0;
2475 }
2476 
2477 static void __init acpi_get_spcr_uart_addr(void)
2478 {
2479 	acpi_status status;
2480 	struct acpi_table_spcr *spcr_ptr;
2481 
2482 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2483 				(struct acpi_table_header **)&spcr_ptr);
2484 	if (ACPI_FAILURE(status)) {
2485 		pr_warn("STAO table present, but SPCR is missing\n");
2486 		return;
2487 	}
2488 
2489 	spcr_uart_addr = spcr_ptr->serial_port.address;
2490 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2491 }
2492 
2493 static bool acpi_scan_initialized;
2494 
2495 int __init acpi_scan_init(void)
2496 {
2497 	int result;
2498 	acpi_status status;
2499 	struct acpi_table_stao *stao_ptr;
2500 
2501 	acpi_pci_root_init();
2502 	acpi_pci_link_init();
2503 	acpi_processor_init();
2504 	acpi_platform_init();
2505 	acpi_lpss_init();
2506 	acpi_apd_init();
2507 	acpi_cmos_rtc_init();
2508 	acpi_container_init();
2509 	acpi_memory_hotplug_init();
2510 	acpi_watchdog_init();
2511 	acpi_pnp_init();
2512 	acpi_int340x_thermal_init();
2513 	acpi_amba_init();
2514 	acpi_init_lpit();
2515 
2516 	acpi_scan_add_handler(&generic_device_handler);
2517 
2518 	/*
2519 	 * If there is STAO table, check whether it needs to ignore the UART
2520 	 * device in SPCR table.
2521 	 */
2522 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2523 				(struct acpi_table_header **)&stao_ptr);
2524 	if (ACPI_SUCCESS(status)) {
2525 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2526 			pr_info("STAO Name List not yet supported.\n");
2527 
2528 		if (stao_ptr->ignore_uart)
2529 			acpi_get_spcr_uart_addr();
2530 
2531 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2532 	}
2533 
2534 	acpi_gpe_apply_masked_gpes();
2535 	acpi_update_all_gpes();
2536 
2537 	/*
2538 	 * Although we call __add_memory() that is documented to require the
2539 	 * device_hotplug_lock, it is not necessary here because this is an
2540 	 * early code when userspace or any other code path cannot trigger
2541 	 * hotplug/hotunplug operations.
2542 	 */
2543 	mutex_lock(&acpi_scan_lock);
2544 	/*
2545 	 * Enumerate devices in the ACPI namespace.
2546 	 */
2547 	result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2548 	if (result)
2549 		goto out;
2550 
2551 	result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2552 	if (result)
2553 		goto out;
2554 
2555 	/* Fixed feature devices do not exist on HW-reduced platform */
2556 	if (!acpi_gbl_reduced_hardware) {
2557 		result = acpi_bus_scan_fixed();
2558 		if (result) {
2559 			acpi_detach_data(acpi_root->handle,
2560 					 acpi_scan_drop_device);
2561 			acpi_device_del(acpi_root);
2562 			acpi_bus_put_acpi_device(acpi_root);
2563 			goto out;
2564 		}
2565 	}
2566 
2567 	acpi_turn_off_unused_power_resources();
2568 
2569 	acpi_scan_initialized = true;
2570 
2571  out:
2572 	mutex_unlock(&acpi_scan_lock);
2573 	return result;
2574 }
2575 
2576 static struct acpi_probe_entry *ape;
2577 static int acpi_probe_count;
2578 static DEFINE_MUTEX(acpi_probe_mutex);
2579 
2580 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2581 				  const unsigned long end)
2582 {
2583 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2584 		if (!ape->probe_subtbl(header, end))
2585 			acpi_probe_count++;
2586 
2587 	return 0;
2588 }
2589 
2590 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2591 {
2592 	int count = 0;
2593 
2594 	if (acpi_disabled)
2595 		return 0;
2596 
2597 	mutex_lock(&acpi_probe_mutex);
2598 	for (ape = ap_head; nr; ape++, nr--) {
2599 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2600 			acpi_probe_count = 0;
2601 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2602 			count += acpi_probe_count;
2603 		} else {
2604 			int res;
2605 			res = acpi_table_parse(ape->id, ape->probe_table);
2606 			if (!res)
2607 				count++;
2608 		}
2609 	}
2610 	mutex_unlock(&acpi_probe_mutex);
2611 
2612 	return count;
2613 }
2614 
2615 static void acpi_table_events_fn(struct work_struct *work)
2616 {
2617 	acpi_scan_lock_acquire();
2618 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2619 	acpi_scan_lock_release();
2620 
2621 	kfree(work);
2622 }
2623 
2624 void acpi_scan_table_notify(void)
2625 {
2626 	struct work_struct *work;
2627 
2628 	if (!acpi_scan_initialized)
2629 		return;
2630 
2631 	work = kmalloc(sizeof(*work), GFP_KERNEL);
2632 	if (!work)
2633 		return;
2634 
2635 	INIT_WORK(work, acpi_table_events_fn);
2636 	schedule_work(work);
2637 }
2638 
2639 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2640 {
2641 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2642 }
2643 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2644 
2645 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2646 {
2647 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2648 }
2649 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2650