1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #define pr_fmt(fmt) "ACPI: " fmt 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/acpi_viot.h> 15 #include <linux/iommu.h> 16 #include <linux/signal.h> 17 #include <linux/kthread.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/platform_data/x86/apple.h> 21 #include <linux/pgtable.h> 22 #include <linux/crc32.h> 23 24 #include "internal.h" 25 26 extern struct acpi_device *acpi_root; 27 28 #define ACPI_BUS_CLASS "system_bus" 29 #define ACPI_BUS_HID "LNXSYBUS" 30 #define ACPI_BUS_DEVICE_NAME "System Bus" 31 32 #define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent) 33 34 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page) 35 36 static const char *dummy_hid = "device"; 37 38 static LIST_HEAD(acpi_dep_list); 39 static DEFINE_MUTEX(acpi_dep_list_lock); 40 LIST_HEAD(acpi_bus_id_list); 41 static DEFINE_MUTEX(acpi_scan_lock); 42 static LIST_HEAD(acpi_scan_handlers_list); 43 DEFINE_MUTEX(acpi_device_lock); 44 LIST_HEAD(acpi_wakeup_device_list); 45 static DEFINE_MUTEX(acpi_hp_context_lock); 46 47 /* 48 * The UART device described by the SPCR table is the only object which needs 49 * special-casing. Everything else is covered by ACPI namespace paths in STAO 50 * table. 51 */ 52 static u64 spcr_uart_addr; 53 54 void acpi_scan_lock_acquire(void) 55 { 56 mutex_lock(&acpi_scan_lock); 57 } 58 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 59 60 void acpi_scan_lock_release(void) 61 { 62 mutex_unlock(&acpi_scan_lock); 63 } 64 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 65 66 void acpi_lock_hp_context(void) 67 { 68 mutex_lock(&acpi_hp_context_lock); 69 } 70 71 void acpi_unlock_hp_context(void) 72 { 73 mutex_unlock(&acpi_hp_context_lock); 74 } 75 76 void acpi_initialize_hp_context(struct acpi_device *adev, 77 struct acpi_hotplug_context *hp, 78 int (*notify)(struct acpi_device *, u32), 79 void (*uevent)(struct acpi_device *, u32)) 80 { 81 acpi_lock_hp_context(); 82 hp->notify = notify; 83 hp->uevent = uevent; 84 acpi_set_hp_context(adev, hp); 85 acpi_unlock_hp_context(); 86 } 87 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 88 89 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 90 { 91 if (!handler) 92 return -EINVAL; 93 94 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 95 return 0; 96 } 97 98 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 99 const char *hotplug_profile_name) 100 { 101 int error; 102 103 error = acpi_scan_add_handler(handler); 104 if (error) 105 return error; 106 107 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 108 return 0; 109 } 110 111 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 112 { 113 struct acpi_device_physical_node *pn; 114 bool offline = true; 115 char *envp[] = { "EVENT=offline", NULL }; 116 117 /* 118 * acpi_container_offline() calls this for all of the container's 119 * children under the container's physical_node_lock lock. 120 */ 121 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 122 123 list_for_each_entry(pn, &adev->physical_node_list, node) 124 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 125 if (uevent) 126 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 127 128 offline = false; 129 break; 130 } 131 132 mutex_unlock(&adev->physical_node_lock); 133 return offline; 134 } 135 136 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 137 void **ret_p) 138 { 139 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 140 struct acpi_device_physical_node *pn; 141 bool second_pass = (bool)data; 142 acpi_status status = AE_OK; 143 144 if (!device) 145 return AE_OK; 146 147 if (device->handler && !device->handler->hotplug.enabled) { 148 *ret_p = &device->dev; 149 return AE_SUPPORT; 150 } 151 152 mutex_lock(&device->physical_node_lock); 153 154 list_for_each_entry(pn, &device->physical_node_list, node) { 155 int ret; 156 157 if (second_pass) { 158 /* Skip devices offlined by the first pass. */ 159 if (pn->put_online) 160 continue; 161 } else { 162 pn->put_online = false; 163 } 164 ret = device_offline(pn->dev); 165 if (ret >= 0) { 166 pn->put_online = !ret; 167 } else { 168 *ret_p = pn->dev; 169 if (second_pass) { 170 status = AE_ERROR; 171 break; 172 } 173 } 174 } 175 176 mutex_unlock(&device->physical_node_lock); 177 178 return status; 179 } 180 181 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 182 void **ret_p) 183 { 184 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 185 struct acpi_device_physical_node *pn; 186 187 if (!device) 188 return AE_OK; 189 190 mutex_lock(&device->physical_node_lock); 191 192 list_for_each_entry(pn, &device->physical_node_list, node) 193 if (pn->put_online) { 194 device_online(pn->dev); 195 pn->put_online = false; 196 } 197 198 mutex_unlock(&device->physical_node_lock); 199 200 return AE_OK; 201 } 202 203 static int acpi_scan_try_to_offline(struct acpi_device *device) 204 { 205 acpi_handle handle = device->handle; 206 struct device *errdev = NULL; 207 acpi_status status; 208 209 /* 210 * Carry out two passes here and ignore errors in the first pass, 211 * because if the devices in question are memory blocks and 212 * CONFIG_MEMCG is set, one of the blocks may hold data structures 213 * that the other blocks depend on, but it is not known in advance which 214 * block holds them. 215 * 216 * If the first pass is successful, the second one isn't needed, though. 217 */ 218 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 219 NULL, acpi_bus_offline, (void *)false, 220 (void **)&errdev); 221 if (status == AE_SUPPORT) { 222 dev_warn(errdev, "Offline disabled.\n"); 223 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 224 acpi_bus_online, NULL, NULL, NULL); 225 return -EPERM; 226 } 227 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 228 if (errdev) { 229 errdev = NULL; 230 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 231 NULL, acpi_bus_offline, (void *)true, 232 (void **)&errdev); 233 if (!errdev) 234 acpi_bus_offline(handle, 0, (void *)true, 235 (void **)&errdev); 236 237 if (errdev) { 238 dev_warn(errdev, "Offline failed.\n"); 239 acpi_bus_online(handle, 0, NULL, NULL); 240 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 241 ACPI_UINT32_MAX, acpi_bus_online, 242 NULL, NULL, NULL); 243 return -EBUSY; 244 } 245 } 246 return 0; 247 } 248 249 static int acpi_scan_hot_remove(struct acpi_device *device) 250 { 251 acpi_handle handle = device->handle; 252 unsigned long long sta; 253 acpi_status status; 254 255 if (device->handler && device->handler->hotplug.demand_offline) { 256 if (!acpi_scan_is_offline(device, true)) 257 return -EBUSY; 258 } else { 259 int error = acpi_scan_try_to_offline(device); 260 if (error) 261 return error; 262 } 263 264 acpi_handle_debug(handle, "Ejecting\n"); 265 266 acpi_bus_trim(device); 267 268 acpi_evaluate_lck(handle, 0); 269 /* 270 * TBD: _EJD support. 271 */ 272 status = acpi_evaluate_ej0(handle); 273 if (status == AE_NOT_FOUND) 274 return -ENODEV; 275 else if (ACPI_FAILURE(status)) 276 return -EIO; 277 278 /* 279 * Verify if eject was indeed successful. If not, log an error 280 * message. No need to call _OST since _EJ0 call was made OK. 281 */ 282 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 283 if (ACPI_FAILURE(status)) { 284 acpi_handle_warn(handle, 285 "Status check after eject failed (0x%x)\n", status); 286 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 287 acpi_handle_warn(handle, 288 "Eject incomplete - status 0x%llx\n", sta); 289 } 290 291 return 0; 292 } 293 294 static int acpi_scan_device_not_present(struct acpi_device *adev) 295 { 296 if (!acpi_device_enumerated(adev)) { 297 dev_warn(&adev->dev, "Still not present\n"); 298 return -EALREADY; 299 } 300 acpi_bus_trim(adev); 301 return 0; 302 } 303 304 static int acpi_scan_device_check(struct acpi_device *adev) 305 { 306 int error; 307 308 acpi_bus_get_status(adev); 309 if (adev->status.present || adev->status.functional) { 310 /* 311 * This function is only called for device objects for which 312 * matching scan handlers exist. The only situation in which 313 * the scan handler is not attached to this device object yet 314 * is when the device has just appeared (either it wasn't 315 * present at all before or it was removed and then added 316 * again). 317 */ 318 if (adev->handler) { 319 dev_warn(&adev->dev, "Already enumerated\n"); 320 return -EALREADY; 321 } 322 error = acpi_bus_scan(adev->handle); 323 if (error) { 324 dev_warn(&adev->dev, "Namespace scan failure\n"); 325 return error; 326 } 327 if (!adev->handler) { 328 dev_warn(&adev->dev, "Enumeration failure\n"); 329 error = -ENODEV; 330 } 331 } else { 332 error = acpi_scan_device_not_present(adev); 333 } 334 return error; 335 } 336 337 static int acpi_scan_bus_check(struct acpi_device *adev) 338 { 339 struct acpi_scan_handler *handler = adev->handler; 340 struct acpi_device *child; 341 int error; 342 343 acpi_bus_get_status(adev); 344 if (!(adev->status.present || adev->status.functional)) { 345 acpi_scan_device_not_present(adev); 346 return 0; 347 } 348 if (handler && handler->hotplug.scan_dependent) 349 return handler->hotplug.scan_dependent(adev); 350 351 error = acpi_bus_scan(adev->handle); 352 if (error) { 353 dev_warn(&adev->dev, "Namespace scan failure\n"); 354 return error; 355 } 356 list_for_each_entry(child, &adev->children, node) { 357 error = acpi_scan_bus_check(child); 358 if (error) 359 return error; 360 } 361 return 0; 362 } 363 364 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 365 { 366 switch (type) { 367 case ACPI_NOTIFY_BUS_CHECK: 368 return acpi_scan_bus_check(adev); 369 case ACPI_NOTIFY_DEVICE_CHECK: 370 return acpi_scan_device_check(adev); 371 case ACPI_NOTIFY_EJECT_REQUEST: 372 case ACPI_OST_EC_OSPM_EJECT: 373 if (adev->handler && !adev->handler->hotplug.enabled) { 374 dev_info(&adev->dev, "Eject disabled\n"); 375 return -EPERM; 376 } 377 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 378 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 379 return acpi_scan_hot_remove(adev); 380 } 381 return -EINVAL; 382 } 383 384 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 385 { 386 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 387 int error = -ENODEV; 388 389 lock_device_hotplug(); 390 mutex_lock(&acpi_scan_lock); 391 392 /* 393 * The device object's ACPI handle cannot become invalid as long as we 394 * are holding acpi_scan_lock, but it might have become invalid before 395 * that lock was acquired. 396 */ 397 if (adev->handle == INVALID_ACPI_HANDLE) 398 goto err_out; 399 400 if (adev->flags.is_dock_station) { 401 error = dock_notify(adev, src); 402 } else if (adev->flags.hotplug_notify) { 403 error = acpi_generic_hotplug_event(adev, src); 404 } else { 405 int (*notify)(struct acpi_device *, u32); 406 407 acpi_lock_hp_context(); 408 notify = adev->hp ? adev->hp->notify : NULL; 409 acpi_unlock_hp_context(); 410 /* 411 * There may be additional notify handlers for device objects 412 * without the .event() callback, so ignore them here. 413 */ 414 if (notify) 415 error = notify(adev, src); 416 else 417 goto out; 418 } 419 switch (error) { 420 case 0: 421 ost_code = ACPI_OST_SC_SUCCESS; 422 break; 423 case -EPERM: 424 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 425 break; 426 case -EBUSY: 427 ost_code = ACPI_OST_SC_DEVICE_BUSY; 428 break; 429 default: 430 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 431 break; 432 } 433 434 err_out: 435 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 436 437 out: 438 acpi_bus_put_acpi_device(adev); 439 mutex_unlock(&acpi_scan_lock); 440 unlock_device_hotplug(); 441 } 442 443 static void acpi_free_power_resources_lists(struct acpi_device *device) 444 { 445 int i; 446 447 if (device->wakeup.flags.valid) 448 acpi_power_resources_list_free(&device->wakeup.resources); 449 450 if (!device->power.flags.power_resources) 451 return; 452 453 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 454 struct acpi_device_power_state *ps = &device->power.states[i]; 455 acpi_power_resources_list_free(&ps->resources); 456 } 457 } 458 459 static void acpi_device_release(struct device *dev) 460 { 461 struct acpi_device *acpi_dev = to_acpi_device(dev); 462 463 acpi_free_properties(acpi_dev); 464 acpi_free_pnp_ids(&acpi_dev->pnp); 465 acpi_free_power_resources_lists(acpi_dev); 466 kfree(acpi_dev); 467 } 468 469 static void acpi_device_del(struct acpi_device *device) 470 { 471 struct acpi_device_bus_id *acpi_device_bus_id; 472 473 mutex_lock(&acpi_device_lock); 474 if (device->parent) 475 list_del(&device->node); 476 477 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 478 if (!strcmp(acpi_device_bus_id->bus_id, 479 acpi_device_hid(device))) { 480 ida_free(&acpi_device_bus_id->instance_ida, 481 device->pnp.instance_no); 482 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 483 list_del(&acpi_device_bus_id->node); 484 kfree_const(acpi_device_bus_id->bus_id); 485 kfree(acpi_device_bus_id); 486 } 487 break; 488 } 489 490 list_del(&device->wakeup_list); 491 mutex_unlock(&acpi_device_lock); 492 493 acpi_power_add_remove_device(device, false); 494 acpi_device_remove_files(device); 495 if (device->remove) 496 device->remove(device); 497 498 device_del(&device->dev); 499 } 500 501 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 502 503 static LIST_HEAD(acpi_device_del_list); 504 static DEFINE_MUTEX(acpi_device_del_lock); 505 506 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 507 { 508 for (;;) { 509 struct acpi_device *adev; 510 511 mutex_lock(&acpi_device_del_lock); 512 513 if (list_empty(&acpi_device_del_list)) { 514 mutex_unlock(&acpi_device_del_lock); 515 break; 516 } 517 adev = list_first_entry(&acpi_device_del_list, 518 struct acpi_device, del_list); 519 list_del(&adev->del_list); 520 521 mutex_unlock(&acpi_device_del_lock); 522 523 blocking_notifier_call_chain(&acpi_reconfig_chain, 524 ACPI_RECONFIG_DEVICE_REMOVE, adev); 525 526 acpi_device_del(adev); 527 /* 528 * Drop references to all power resources that might have been 529 * used by the device. 530 */ 531 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 532 acpi_dev_put(adev); 533 } 534 } 535 536 /** 537 * acpi_scan_drop_device - Drop an ACPI device object. 538 * @handle: Handle of an ACPI namespace node, not used. 539 * @context: Address of the ACPI device object to drop. 540 * 541 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 542 * namespace node the device object pointed to by @context is attached to. 543 * 544 * The unregistration is carried out asynchronously to avoid running 545 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 546 * ensure the correct ordering (the device objects must be unregistered in the 547 * same order in which the corresponding namespace nodes are deleted). 548 */ 549 static void acpi_scan_drop_device(acpi_handle handle, void *context) 550 { 551 static DECLARE_WORK(work, acpi_device_del_work_fn); 552 struct acpi_device *adev = context; 553 554 mutex_lock(&acpi_device_del_lock); 555 556 /* 557 * Use the ACPI hotplug workqueue which is ordered, so this work item 558 * won't run after any hotplug work items submitted subsequently. That 559 * prevents attempts to register device objects identical to those being 560 * deleted from happening concurrently (such attempts result from 561 * hotplug events handled via the ACPI hotplug workqueue). It also will 562 * run after all of the work items submitted previously, which helps 563 * those work items to ensure that they are not accessing stale device 564 * objects. 565 */ 566 if (list_empty(&acpi_device_del_list)) 567 acpi_queue_hotplug_work(&work); 568 569 list_add_tail(&adev->del_list, &acpi_device_del_list); 570 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 571 adev->handle = INVALID_ACPI_HANDLE; 572 573 mutex_unlock(&acpi_device_del_lock); 574 } 575 576 static struct acpi_device *handle_to_device(acpi_handle handle, 577 void (*callback)(void *)) 578 { 579 struct acpi_device *adev = NULL; 580 acpi_status status; 581 582 status = acpi_get_data_full(handle, acpi_scan_drop_device, 583 (void **)&adev, callback); 584 if (ACPI_FAILURE(status) || !adev) { 585 acpi_handle_debug(handle, "No context!\n"); 586 return NULL; 587 } 588 return adev; 589 } 590 591 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device) 592 { 593 if (!device) 594 return -EINVAL; 595 596 *device = handle_to_device(handle, NULL); 597 if (!*device) 598 return -ENODEV; 599 600 return 0; 601 } 602 EXPORT_SYMBOL(acpi_bus_get_device); 603 604 /** 605 * acpi_fetch_acpi_dev - Retrieve ACPI device object. 606 * @handle: ACPI handle associated with the requested ACPI device object. 607 * 608 * Return a pointer to the ACPI device object associated with @handle, if 609 * present, or NULL otherwise. 610 */ 611 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle) 612 { 613 return handle_to_device(handle, NULL); 614 } 615 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev); 616 617 static void get_acpi_device(void *dev) 618 { 619 acpi_dev_get(dev); 620 } 621 622 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle) 623 { 624 return handle_to_device(handle, get_acpi_device); 625 } 626 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device); 627 628 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 629 { 630 struct acpi_device_bus_id *acpi_device_bus_id; 631 632 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 633 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 634 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 635 return acpi_device_bus_id; 636 } 637 return NULL; 638 } 639 640 static int acpi_device_set_name(struct acpi_device *device, 641 struct acpi_device_bus_id *acpi_device_bus_id) 642 { 643 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 644 int result; 645 646 result = ida_alloc(instance_ida, GFP_KERNEL); 647 if (result < 0) 648 return result; 649 650 device->pnp.instance_no = result; 651 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 652 return 0; 653 } 654 655 static int acpi_tie_acpi_dev(struct acpi_device *adev) 656 { 657 acpi_handle handle = adev->handle; 658 acpi_status status; 659 660 if (!handle) 661 return 0; 662 663 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 664 if (ACPI_FAILURE(status)) { 665 acpi_handle_err(handle, "Unable to attach device data\n"); 666 return -ENODEV; 667 } 668 669 return 0; 670 } 671 672 static void acpi_store_pld_crc(struct acpi_device *adev) 673 { 674 struct acpi_pld_info *pld; 675 acpi_status status; 676 677 status = acpi_get_physical_device_location(adev->handle, &pld); 678 if (ACPI_FAILURE(status)) 679 return; 680 681 adev->pld_crc = crc32(~0, pld, sizeof(*pld)); 682 ACPI_FREE(pld); 683 } 684 685 static int __acpi_device_add(struct acpi_device *device, 686 void (*release)(struct device *)) 687 { 688 struct acpi_device_bus_id *acpi_device_bus_id; 689 int result; 690 691 /* 692 * Linkage 693 * ------- 694 * Link this device to its parent and siblings. 695 */ 696 INIT_LIST_HEAD(&device->children); 697 INIT_LIST_HEAD(&device->node); 698 INIT_LIST_HEAD(&device->wakeup_list); 699 INIT_LIST_HEAD(&device->physical_node_list); 700 INIT_LIST_HEAD(&device->del_list); 701 mutex_init(&device->physical_node_lock); 702 703 mutex_lock(&acpi_device_lock); 704 705 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 706 if (acpi_device_bus_id) { 707 result = acpi_device_set_name(device, acpi_device_bus_id); 708 if (result) 709 goto err_unlock; 710 } else { 711 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 712 GFP_KERNEL); 713 if (!acpi_device_bus_id) { 714 result = -ENOMEM; 715 goto err_unlock; 716 } 717 acpi_device_bus_id->bus_id = 718 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 719 if (!acpi_device_bus_id->bus_id) { 720 kfree(acpi_device_bus_id); 721 result = -ENOMEM; 722 goto err_unlock; 723 } 724 725 ida_init(&acpi_device_bus_id->instance_ida); 726 727 result = acpi_device_set_name(device, acpi_device_bus_id); 728 if (result) { 729 kfree_const(acpi_device_bus_id->bus_id); 730 kfree(acpi_device_bus_id); 731 goto err_unlock; 732 } 733 734 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 735 } 736 737 if (device->parent) 738 list_add_tail(&device->node, &device->parent->children); 739 740 if (device->wakeup.flags.valid) 741 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 742 743 acpi_store_pld_crc(device); 744 745 mutex_unlock(&acpi_device_lock); 746 747 if (device->parent) 748 device->dev.parent = &device->parent->dev; 749 750 device->dev.bus = &acpi_bus_type; 751 device->dev.release = release; 752 result = device_add(&device->dev); 753 if (result) { 754 dev_err(&device->dev, "Error registering device\n"); 755 goto err; 756 } 757 758 result = acpi_device_setup_files(device); 759 if (result) 760 pr_err("Error creating sysfs interface for device %s\n", 761 dev_name(&device->dev)); 762 763 return 0; 764 765 err: 766 mutex_lock(&acpi_device_lock); 767 768 if (device->parent) 769 list_del(&device->node); 770 771 list_del(&device->wakeup_list); 772 773 err_unlock: 774 mutex_unlock(&acpi_device_lock); 775 776 acpi_detach_data(device->handle, acpi_scan_drop_device); 777 778 return result; 779 } 780 781 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *)) 782 { 783 int ret; 784 785 ret = acpi_tie_acpi_dev(adev); 786 if (ret) 787 return ret; 788 789 return __acpi_device_add(adev, release); 790 } 791 792 /* -------------------------------------------------------------------------- 793 Device Enumeration 794 -------------------------------------------------------------------------- */ 795 static bool acpi_info_matches_ids(struct acpi_device_info *info, 796 const char * const ids[]) 797 { 798 struct acpi_pnp_device_id_list *cid_list = NULL; 799 int i, index; 800 801 if (!(info->valid & ACPI_VALID_HID)) 802 return false; 803 804 index = match_string(ids, -1, info->hardware_id.string); 805 if (index >= 0) 806 return true; 807 808 if (info->valid & ACPI_VALID_CID) 809 cid_list = &info->compatible_id_list; 810 811 if (!cid_list) 812 return false; 813 814 for (i = 0; i < cid_list->count; i++) { 815 index = match_string(ids, -1, cid_list->ids[i].string); 816 if (index >= 0) 817 return true; 818 } 819 820 return false; 821 } 822 823 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 824 static const char * const acpi_ignore_dep_ids[] = { 825 "PNP0D80", /* Windows-compatible System Power Management Controller */ 826 "INT33BD", /* Intel Baytrail Mailbox Device */ 827 NULL 828 }; 829 830 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */ 831 static const char * const acpi_honor_dep_ids[] = { 832 "INT3472", /* Camera sensor PMIC / clk and regulator info */ 833 NULL 834 }; 835 836 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle) 837 { 838 struct acpi_device *device; 839 acpi_status status; 840 841 /* 842 * Fixed hardware devices do not appear in the namespace and do not 843 * have handles, but we fabricate acpi_devices for them, so we have 844 * to deal with them specially. 845 */ 846 if (!handle) 847 return acpi_root; 848 849 do { 850 status = acpi_get_parent(handle, &handle); 851 if (ACPI_FAILURE(status)) 852 return status == AE_NULL_ENTRY ? NULL : acpi_root; 853 854 device = acpi_fetch_acpi_dev(handle); 855 } while (!device); 856 return device; 857 } 858 859 acpi_status 860 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 861 { 862 acpi_status status; 863 acpi_handle tmp; 864 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 865 union acpi_object *obj; 866 867 status = acpi_get_handle(handle, "_EJD", &tmp); 868 if (ACPI_FAILURE(status)) 869 return status; 870 871 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 872 if (ACPI_SUCCESS(status)) { 873 obj = buffer.pointer; 874 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 875 ejd); 876 kfree(buffer.pointer); 877 } 878 return status; 879 } 880 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 881 882 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 883 { 884 acpi_handle handle = dev->handle; 885 struct acpi_device_wakeup *wakeup = &dev->wakeup; 886 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 887 union acpi_object *package = NULL; 888 union acpi_object *element = NULL; 889 acpi_status status; 890 int err = -ENODATA; 891 892 INIT_LIST_HEAD(&wakeup->resources); 893 894 /* _PRW */ 895 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 896 if (ACPI_FAILURE(status)) { 897 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 898 acpi_format_exception(status)); 899 return err; 900 } 901 902 package = (union acpi_object *)buffer.pointer; 903 904 if (!package || package->package.count < 2) 905 goto out; 906 907 element = &(package->package.elements[0]); 908 if (!element) 909 goto out; 910 911 if (element->type == ACPI_TYPE_PACKAGE) { 912 if ((element->package.count < 2) || 913 (element->package.elements[0].type != 914 ACPI_TYPE_LOCAL_REFERENCE) 915 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 916 goto out; 917 918 wakeup->gpe_device = 919 element->package.elements[0].reference.handle; 920 wakeup->gpe_number = 921 (u32) element->package.elements[1].integer.value; 922 } else if (element->type == ACPI_TYPE_INTEGER) { 923 wakeup->gpe_device = NULL; 924 wakeup->gpe_number = element->integer.value; 925 } else { 926 goto out; 927 } 928 929 element = &(package->package.elements[1]); 930 if (element->type != ACPI_TYPE_INTEGER) 931 goto out; 932 933 wakeup->sleep_state = element->integer.value; 934 935 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 936 if (err) 937 goto out; 938 939 if (!list_empty(&wakeup->resources)) { 940 int sleep_state; 941 942 err = acpi_power_wakeup_list_init(&wakeup->resources, 943 &sleep_state); 944 if (err) { 945 acpi_handle_warn(handle, "Retrieving current states " 946 "of wakeup power resources failed\n"); 947 acpi_power_resources_list_free(&wakeup->resources); 948 goto out; 949 } 950 if (sleep_state < wakeup->sleep_state) { 951 acpi_handle_warn(handle, "Overriding _PRW sleep state " 952 "(S%d) by S%d from power resources\n", 953 (int)wakeup->sleep_state, sleep_state); 954 wakeup->sleep_state = sleep_state; 955 } 956 } 957 958 out: 959 kfree(buffer.pointer); 960 return err; 961 } 962 963 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 964 { 965 static const struct acpi_device_id button_device_ids[] = { 966 {"PNP0C0C", 0}, /* Power button */ 967 {"PNP0C0D", 0}, /* Lid */ 968 {"PNP0C0E", 0}, /* Sleep button */ 969 {"", 0}, 970 }; 971 struct acpi_device_wakeup *wakeup = &device->wakeup; 972 acpi_status status; 973 974 wakeup->flags.notifier_present = 0; 975 976 /* Power button, Lid switch always enable wakeup */ 977 if (!acpi_match_device_ids(device, button_device_ids)) { 978 if (!acpi_match_device_ids(device, &button_device_ids[1])) { 979 /* Do not use Lid/sleep button for S5 wakeup */ 980 if (wakeup->sleep_state == ACPI_STATE_S5) 981 wakeup->sleep_state = ACPI_STATE_S4; 982 } 983 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 984 device_set_wakeup_capable(&device->dev, true); 985 return true; 986 } 987 988 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 989 wakeup->gpe_number); 990 return ACPI_SUCCESS(status); 991 } 992 993 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 994 { 995 int err; 996 997 /* Presence of _PRW indicates wake capable */ 998 if (!acpi_has_method(device->handle, "_PRW")) 999 return; 1000 1001 err = acpi_bus_extract_wakeup_device_power_package(device); 1002 if (err) { 1003 dev_err(&device->dev, "Unable to extract wakeup power resources"); 1004 return; 1005 } 1006 1007 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 1008 device->wakeup.prepare_count = 0; 1009 /* 1010 * Call _PSW/_DSW object to disable its ability to wake the sleeping 1011 * system for the ACPI device with the _PRW object. 1012 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 1013 * So it is necessary to call _DSW object first. Only when it is not 1014 * present will the _PSW object used. 1015 */ 1016 err = acpi_device_sleep_wake(device, 0, 0, 0); 1017 if (err) 1018 pr_debug("error in _DSW or _PSW evaluation\n"); 1019 } 1020 1021 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 1022 { 1023 struct acpi_device_power_state *ps = &device->power.states[state]; 1024 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 1025 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1026 acpi_status status; 1027 1028 INIT_LIST_HEAD(&ps->resources); 1029 1030 /* Evaluate "_PRx" to get referenced power resources */ 1031 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 1032 if (ACPI_SUCCESS(status)) { 1033 union acpi_object *package = buffer.pointer; 1034 1035 if (buffer.length && package 1036 && package->type == ACPI_TYPE_PACKAGE 1037 && package->package.count) 1038 acpi_extract_power_resources(package, 0, &ps->resources); 1039 1040 ACPI_FREE(buffer.pointer); 1041 } 1042 1043 /* Evaluate "_PSx" to see if we can do explicit sets */ 1044 pathname[2] = 'S'; 1045 if (acpi_has_method(device->handle, pathname)) 1046 ps->flags.explicit_set = 1; 1047 1048 /* State is valid if there are means to put the device into it. */ 1049 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1050 ps->flags.valid = 1; 1051 1052 ps->power = -1; /* Unknown - driver assigned */ 1053 ps->latency = -1; /* Unknown - driver assigned */ 1054 } 1055 1056 static void acpi_bus_get_power_flags(struct acpi_device *device) 1057 { 1058 unsigned long long dsc = ACPI_STATE_D0; 1059 u32 i; 1060 1061 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1062 if (!acpi_has_method(device->handle, "_PS0") && 1063 !acpi_has_method(device->handle, "_PR0")) 1064 return; 1065 1066 device->flags.power_manageable = 1; 1067 1068 /* 1069 * Power Management Flags 1070 */ 1071 if (acpi_has_method(device->handle, "_PSC")) 1072 device->power.flags.explicit_get = 1; 1073 1074 if (acpi_has_method(device->handle, "_IRC")) 1075 device->power.flags.inrush_current = 1; 1076 1077 if (acpi_has_method(device->handle, "_DSW")) 1078 device->power.flags.dsw_present = 1; 1079 1080 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc); 1081 device->power.state_for_enumeration = dsc; 1082 1083 /* 1084 * Enumerate supported power management states 1085 */ 1086 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1087 acpi_bus_init_power_state(device, i); 1088 1089 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1090 1091 /* Set the defaults for D0 and D3hot (always supported). */ 1092 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1093 device->power.states[ACPI_STATE_D0].power = 100; 1094 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1095 1096 /* 1097 * Use power resources only if the D0 list of them is populated, because 1098 * some platforms may provide _PR3 only to indicate D3cold support and 1099 * in those cases the power resources list returned by it may be bogus. 1100 */ 1101 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1102 device->power.flags.power_resources = 1; 1103 /* 1104 * D3cold is supported if the D3hot list of power resources is 1105 * not empty. 1106 */ 1107 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1108 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1109 } 1110 1111 if (acpi_bus_init_power(device)) 1112 device->flags.power_manageable = 0; 1113 } 1114 1115 static void acpi_bus_get_flags(struct acpi_device *device) 1116 { 1117 /* Presence of _STA indicates 'dynamic_status' */ 1118 if (acpi_has_method(device->handle, "_STA")) 1119 device->flags.dynamic_status = 1; 1120 1121 /* Presence of _RMV indicates 'removable' */ 1122 if (acpi_has_method(device->handle, "_RMV")) 1123 device->flags.removable = 1; 1124 1125 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1126 if (acpi_has_method(device->handle, "_EJD") || 1127 acpi_has_method(device->handle, "_EJ0")) 1128 device->flags.ejectable = 1; 1129 } 1130 1131 static void acpi_device_get_busid(struct acpi_device *device) 1132 { 1133 char bus_id[5] = { '?', 0 }; 1134 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1135 int i = 0; 1136 1137 /* 1138 * Bus ID 1139 * ------ 1140 * The device's Bus ID is simply the object name. 1141 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1142 */ 1143 if (ACPI_IS_ROOT_DEVICE(device)) { 1144 strcpy(device->pnp.bus_id, "ACPI"); 1145 return; 1146 } 1147 1148 switch (device->device_type) { 1149 case ACPI_BUS_TYPE_POWER_BUTTON: 1150 strcpy(device->pnp.bus_id, "PWRF"); 1151 break; 1152 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1153 strcpy(device->pnp.bus_id, "SLPF"); 1154 break; 1155 case ACPI_BUS_TYPE_ECDT_EC: 1156 strcpy(device->pnp.bus_id, "ECDT"); 1157 break; 1158 default: 1159 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1160 /* Clean up trailing underscores (if any) */ 1161 for (i = 3; i > 1; i--) { 1162 if (bus_id[i] == '_') 1163 bus_id[i] = '\0'; 1164 else 1165 break; 1166 } 1167 strcpy(device->pnp.bus_id, bus_id); 1168 break; 1169 } 1170 } 1171 1172 /* 1173 * acpi_ata_match - see if an acpi object is an ATA device 1174 * 1175 * If an acpi object has one of the ACPI ATA methods defined, 1176 * then we can safely call it an ATA device. 1177 */ 1178 bool acpi_ata_match(acpi_handle handle) 1179 { 1180 return acpi_has_method(handle, "_GTF") || 1181 acpi_has_method(handle, "_GTM") || 1182 acpi_has_method(handle, "_STM") || 1183 acpi_has_method(handle, "_SDD"); 1184 } 1185 1186 /* 1187 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1188 * 1189 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1190 * then we can safely call it an ejectable drive bay 1191 */ 1192 bool acpi_bay_match(acpi_handle handle) 1193 { 1194 acpi_handle phandle; 1195 1196 if (!acpi_has_method(handle, "_EJ0")) 1197 return false; 1198 if (acpi_ata_match(handle)) 1199 return true; 1200 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1201 return false; 1202 1203 return acpi_ata_match(phandle); 1204 } 1205 1206 bool acpi_device_is_battery(struct acpi_device *adev) 1207 { 1208 struct acpi_hardware_id *hwid; 1209 1210 list_for_each_entry(hwid, &adev->pnp.ids, list) 1211 if (!strcmp("PNP0C0A", hwid->id)) 1212 return true; 1213 1214 return false; 1215 } 1216 1217 static bool is_ejectable_bay(struct acpi_device *adev) 1218 { 1219 acpi_handle handle = adev->handle; 1220 1221 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1222 return true; 1223 1224 return acpi_bay_match(handle); 1225 } 1226 1227 /* 1228 * acpi_dock_match - see if an acpi object has a _DCK method 1229 */ 1230 bool acpi_dock_match(acpi_handle handle) 1231 { 1232 return acpi_has_method(handle, "_DCK"); 1233 } 1234 1235 static acpi_status 1236 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1237 void **return_value) 1238 { 1239 long *cap = context; 1240 1241 if (acpi_has_method(handle, "_BCM") && 1242 acpi_has_method(handle, "_BCL")) { 1243 acpi_handle_debug(handle, "Found generic backlight support\n"); 1244 *cap |= ACPI_VIDEO_BACKLIGHT; 1245 /* We have backlight support, no need to scan further */ 1246 return AE_CTRL_TERMINATE; 1247 } 1248 return 0; 1249 } 1250 1251 /* Returns true if the ACPI object is a video device which can be 1252 * handled by video.ko. 1253 * The device will get a Linux specific CID added in scan.c to 1254 * identify the device as an ACPI graphics device 1255 * Be aware that the graphics device may not be physically present 1256 * Use acpi_video_get_capabilities() to detect general ACPI video 1257 * capabilities of present cards 1258 */ 1259 long acpi_is_video_device(acpi_handle handle) 1260 { 1261 long video_caps = 0; 1262 1263 /* Is this device able to support video switching ? */ 1264 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1265 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1266 1267 /* Is this device able to retrieve a video ROM ? */ 1268 if (acpi_has_method(handle, "_ROM")) 1269 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1270 1271 /* Is this device able to configure which video head to be POSTed ? */ 1272 if (acpi_has_method(handle, "_VPO") && 1273 acpi_has_method(handle, "_GPD") && 1274 acpi_has_method(handle, "_SPD")) 1275 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1276 1277 /* Only check for backlight functionality if one of the above hit. */ 1278 if (video_caps) 1279 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1280 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1281 &video_caps, NULL); 1282 1283 return video_caps; 1284 } 1285 EXPORT_SYMBOL(acpi_is_video_device); 1286 1287 const char *acpi_device_hid(struct acpi_device *device) 1288 { 1289 struct acpi_hardware_id *hid; 1290 1291 if (list_empty(&device->pnp.ids)) 1292 return dummy_hid; 1293 1294 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list); 1295 return hid->id; 1296 } 1297 EXPORT_SYMBOL(acpi_device_hid); 1298 1299 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1300 { 1301 struct acpi_hardware_id *id; 1302 1303 id = kmalloc(sizeof(*id), GFP_KERNEL); 1304 if (!id) 1305 return; 1306 1307 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1308 if (!id->id) { 1309 kfree(id); 1310 return; 1311 } 1312 1313 list_add_tail(&id->list, &pnp->ids); 1314 pnp->type.hardware_id = 1; 1315 } 1316 1317 /* 1318 * Old IBM workstations have a DSDT bug wherein the SMBus object 1319 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1320 * prefix. Work around this. 1321 */ 1322 static bool acpi_ibm_smbus_match(acpi_handle handle) 1323 { 1324 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1325 struct acpi_buffer path = { sizeof(node_name), node_name }; 1326 1327 if (!dmi_name_in_vendors("IBM")) 1328 return false; 1329 1330 /* Look for SMBS object */ 1331 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1332 strcmp("SMBS", path.pointer)) 1333 return false; 1334 1335 /* Does it have the necessary (but misnamed) methods? */ 1336 if (acpi_has_method(handle, "SBI") && 1337 acpi_has_method(handle, "SBR") && 1338 acpi_has_method(handle, "SBW")) 1339 return true; 1340 1341 return false; 1342 } 1343 1344 static bool acpi_object_is_system_bus(acpi_handle handle) 1345 { 1346 acpi_handle tmp; 1347 1348 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1349 tmp == handle) 1350 return true; 1351 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1352 tmp == handle) 1353 return true; 1354 1355 return false; 1356 } 1357 1358 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1359 int device_type) 1360 { 1361 struct acpi_device_info *info = NULL; 1362 struct acpi_pnp_device_id_list *cid_list; 1363 int i; 1364 1365 switch (device_type) { 1366 case ACPI_BUS_TYPE_DEVICE: 1367 if (handle == ACPI_ROOT_OBJECT) { 1368 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1369 break; 1370 } 1371 1372 acpi_get_object_info(handle, &info); 1373 if (!info) { 1374 pr_err("%s: Error reading device info\n", __func__); 1375 return; 1376 } 1377 1378 if (info->valid & ACPI_VALID_HID) { 1379 acpi_add_id(pnp, info->hardware_id.string); 1380 pnp->type.platform_id = 1; 1381 } 1382 if (info->valid & ACPI_VALID_CID) { 1383 cid_list = &info->compatible_id_list; 1384 for (i = 0; i < cid_list->count; i++) 1385 acpi_add_id(pnp, cid_list->ids[i].string); 1386 } 1387 if (info->valid & ACPI_VALID_ADR) { 1388 pnp->bus_address = info->address; 1389 pnp->type.bus_address = 1; 1390 } 1391 if (info->valid & ACPI_VALID_UID) 1392 pnp->unique_id = kstrdup(info->unique_id.string, 1393 GFP_KERNEL); 1394 if (info->valid & ACPI_VALID_CLS) 1395 acpi_add_id(pnp, info->class_code.string); 1396 1397 kfree(info); 1398 1399 /* 1400 * Some devices don't reliably have _HIDs & _CIDs, so add 1401 * synthetic HIDs to make sure drivers can find them. 1402 */ 1403 if (acpi_is_video_device(handle)) 1404 acpi_add_id(pnp, ACPI_VIDEO_HID); 1405 else if (acpi_bay_match(handle)) 1406 acpi_add_id(pnp, ACPI_BAY_HID); 1407 else if (acpi_dock_match(handle)) 1408 acpi_add_id(pnp, ACPI_DOCK_HID); 1409 else if (acpi_ibm_smbus_match(handle)) 1410 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1411 else if (list_empty(&pnp->ids) && 1412 acpi_object_is_system_bus(handle)) { 1413 /* \_SB, \_TZ, LNXSYBUS */ 1414 acpi_add_id(pnp, ACPI_BUS_HID); 1415 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1416 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1417 } 1418 1419 break; 1420 case ACPI_BUS_TYPE_POWER: 1421 acpi_add_id(pnp, ACPI_POWER_HID); 1422 break; 1423 case ACPI_BUS_TYPE_PROCESSOR: 1424 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1425 break; 1426 case ACPI_BUS_TYPE_THERMAL: 1427 acpi_add_id(pnp, ACPI_THERMAL_HID); 1428 break; 1429 case ACPI_BUS_TYPE_POWER_BUTTON: 1430 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1431 break; 1432 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1433 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1434 break; 1435 case ACPI_BUS_TYPE_ECDT_EC: 1436 acpi_add_id(pnp, ACPI_ECDT_HID); 1437 break; 1438 } 1439 } 1440 1441 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1442 { 1443 struct acpi_hardware_id *id, *tmp; 1444 1445 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1446 kfree_const(id->id); 1447 kfree(id); 1448 } 1449 kfree(pnp->unique_id); 1450 } 1451 1452 /** 1453 * acpi_dma_supported - Check DMA support for the specified device. 1454 * @adev: The pointer to acpi device 1455 * 1456 * Return false if DMA is not supported. Otherwise, return true 1457 */ 1458 bool acpi_dma_supported(const struct acpi_device *adev) 1459 { 1460 if (!adev) 1461 return false; 1462 1463 if (adev->flags.cca_seen) 1464 return true; 1465 1466 /* 1467 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1468 * DMA on "Intel platforms". Presumably that includes all x86 and 1469 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1470 */ 1471 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1472 return true; 1473 1474 return false; 1475 } 1476 1477 /** 1478 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1479 * @adev: The pointer to acpi device 1480 * 1481 * Return enum dev_dma_attr. 1482 */ 1483 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1484 { 1485 if (!acpi_dma_supported(adev)) 1486 return DEV_DMA_NOT_SUPPORTED; 1487 1488 if (adev->flags.coherent_dma) 1489 return DEV_DMA_COHERENT; 1490 else 1491 return DEV_DMA_NON_COHERENT; 1492 } 1493 1494 /** 1495 * acpi_dma_get_range() - Get device DMA parameters. 1496 * 1497 * @dev: device to configure 1498 * @dma_addr: pointer device DMA address result 1499 * @offset: pointer to the DMA offset result 1500 * @size: pointer to DMA range size result 1501 * 1502 * Evaluate DMA regions and return respectively DMA region start, offset 1503 * and size in dma_addr, offset and size on parsing success; it does not 1504 * update the passed in values on failure. 1505 * 1506 * Return 0 on success, < 0 on failure. 1507 */ 1508 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, 1509 u64 *size) 1510 { 1511 struct acpi_device *adev; 1512 LIST_HEAD(list); 1513 struct resource_entry *rentry; 1514 int ret; 1515 struct device *dma_dev = dev; 1516 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0; 1517 1518 /* 1519 * Walk the device tree chasing an ACPI companion with a _DMA 1520 * object while we go. Stop if we find a device with an ACPI 1521 * companion containing a _DMA method. 1522 */ 1523 do { 1524 adev = ACPI_COMPANION(dma_dev); 1525 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1526 break; 1527 1528 dma_dev = dma_dev->parent; 1529 } while (dma_dev); 1530 1531 if (!dma_dev) 1532 return -ENODEV; 1533 1534 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1535 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1536 return -EINVAL; 1537 } 1538 1539 ret = acpi_dev_get_dma_resources(adev, &list); 1540 if (ret > 0) { 1541 list_for_each_entry(rentry, &list, node) { 1542 if (dma_offset && rentry->offset != dma_offset) { 1543 ret = -EINVAL; 1544 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n"); 1545 goto out; 1546 } 1547 dma_offset = rentry->offset; 1548 1549 /* Take lower and upper limits */ 1550 if (rentry->res->start < dma_start) 1551 dma_start = rentry->res->start; 1552 if (rentry->res->end > dma_end) 1553 dma_end = rentry->res->end; 1554 } 1555 1556 if (dma_start >= dma_end) { 1557 ret = -EINVAL; 1558 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1559 goto out; 1560 } 1561 1562 *dma_addr = dma_start - dma_offset; 1563 len = dma_end - dma_start; 1564 *size = max(len, len + 1); 1565 *offset = dma_offset; 1566 } 1567 out: 1568 acpi_dev_free_resource_list(&list); 1569 1570 return ret >= 0 ? 0 : ret; 1571 } 1572 1573 #ifdef CONFIG_IOMMU_API 1574 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1575 struct fwnode_handle *fwnode, 1576 const struct iommu_ops *ops) 1577 { 1578 int ret = iommu_fwspec_init(dev, fwnode, ops); 1579 1580 if (!ret) 1581 ret = iommu_fwspec_add_ids(dev, &id, 1); 1582 1583 return ret; 1584 } 1585 1586 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev) 1587 { 1588 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1589 1590 return fwspec ? fwspec->ops : NULL; 1591 } 1592 1593 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1594 const u32 *id_in) 1595 { 1596 int err; 1597 const struct iommu_ops *ops; 1598 1599 /* 1600 * If we already translated the fwspec there is nothing left to do, 1601 * return the iommu_ops. 1602 */ 1603 ops = acpi_iommu_fwspec_ops(dev); 1604 if (ops) 1605 return ops; 1606 1607 err = iort_iommu_configure_id(dev, id_in); 1608 if (err && err != -EPROBE_DEFER) 1609 err = viot_iommu_configure(dev); 1610 1611 /* 1612 * If we have reason to believe the IOMMU driver missed the initial 1613 * iommu_probe_device() call for dev, replay it to get things in order. 1614 */ 1615 if (!err && dev->bus && !device_iommu_mapped(dev)) 1616 err = iommu_probe_device(dev); 1617 1618 /* Ignore all other errors apart from EPROBE_DEFER */ 1619 if (err == -EPROBE_DEFER) { 1620 return ERR_PTR(err); 1621 } else if (err) { 1622 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err); 1623 return NULL; 1624 } 1625 return acpi_iommu_fwspec_ops(dev); 1626 } 1627 1628 #else /* !CONFIG_IOMMU_API */ 1629 1630 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1631 struct fwnode_handle *fwnode, 1632 const struct iommu_ops *ops) 1633 { 1634 return -ENODEV; 1635 } 1636 1637 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1638 const u32 *id_in) 1639 { 1640 return NULL; 1641 } 1642 1643 #endif /* !CONFIG_IOMMU_API */ 1644 1645 /** 1646 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1647 * @dev: The pointer to the device 1648 * @attr: device dma attributes 1649 * @input_id: input device id const value pointer 1650 */ 1651 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1652 const u32 *input_id) 1653 { 1654 const struct iommu_ops *iommu; 1655 u64 dma_addr = 0, size = 0; 1656 1657 if (attr == DEV_DMA_NOT_SUPPORTED) { 1658 set_dma_ops(dev, &dma_dummy_ops); 1659 return 0; 1660 } 1661 1662 acpi_arch_dma_setup(dev, &dma_addr, &size); 1663 1664 iommu = acpi_iommu_configure_id(dev, input_id); 1665 if (PTR_ERR(iommu) == -EPROBE_DEFER) 1666 return -EPROBE_DEFER; 1667 1668 arch_setup_dma_ops(dev, dma_addr, size, 1669 iommu, attr == DEV_DMA_COHERENT); 1670 1671 return 0; 1672 } 1673 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1674 1675 static void acpi_init_coherency(struct acpi_device *adev) 1676 { 1677 unsigned long long cca = 0; 1678 acpi_status status; 1679 struct acpi_device *parent = adev->parent; 1680 1681 if (parent && parent->flags.cca_seen) { 1682 /* 1683 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1684 * already saw one. 1685 */ 1686 adev->flags.cca_seen = 1; 1687 cca = parent->flags.coherent_dma; 1688 } else { 1689 status = acpi_evaluate_integer(adev->handle, "_CCA", 1690 NULL, &cca); 1691 if (ACPI_SUCCESS(status)) 1692 adev->flags.cca_seen = 1; 1693 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1694 /* 1695 * If architecture does not specify that _CCA is 1696 * required for DMA-able devices (e.g. x86), 1697 * we default to _CCA=1. 1698 */ 1699 cca = 1; 1700 else 1701 acpi_handle_debug(adev->handle, 1702 "ACPI device is missing _CCA.\n"); 1703 } 1704 1705 adev->flags.coherent_dma = cca; 1706 } 1707 1708 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1709 { 1710 bool *is_serial_bus_slave_p = data; 1711 1712 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1713 return 1; 1714 1715 *is_serial_bus_slave_p = true; 1716 1717 /* no need to do more checking */ 1718 return -1; 1719 } 1720 1721 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1722 { 1723 struct acpi_device *parent = device->parent; 1724 static const struct acpi_device_id indirect_io_hosts[] = { 1725 {"HISI0191", 0}, 1726 {} 1727 }; 1728 1729 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1730 } 1731 1732 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1733 { 1734 struct list_head resource_list; 1735 bool is_serial_bus_slave = false; 1736 static const struct acpi_device_id ignore_serial_bus_ids[] = { 1737 /* 1738 * These devices have multiple SerialBus resources and a client 1739 * device must be instantiated for each of them, each with 1740 * its own device id. 1741 * Normally we only instantiate one client device for the first 1742 * resource, using the ACPI HID as id. These special cases are handled 1743 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which 1744 * knows which client device id to use for each resource. 1745 */ 1746 {"BSG1160", }, 1747 {"BSG2150", }, 1748 {"CSC3551", }, 1749 {"INT33FE", }, 1750 {"INT3515", }, 1751 /* Non-conforming _HID for Cirrus Logic already released */ 1752 {"CLSA0100", }, 1753 /* 1754 * Some ACPI devs contain SerialBus resources even though they are not 1755 * attached to a serial bus at all. 1756 */ 1757 {"MSHW0028", }, 1758 /* 1759 * HIDs of device with an UartSerialBusV2 resource for which userspace 1760 * expects a regular tty cdev to be created (instead of the in kernel 1761 * serdev) and which have a kernel driver which expects a platform_dev 1762 * such as the rfkill-gpio driver. 1763 */ 1764 {"BCM4752", }, 1765 {"LNV4752", }, 1766 {} 1767 }; 1768 1769 if (acpi_is_indirect_io_slave(device)) 1770 return true; 1771 1772 /* Macs use device properties in lieu of _CRS resources */ 1773 if (x86_apple_machine && 1774 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1775 fwnode_property_present(&device->fwnode, "i2cAddress") || 1776 fwnode_property_present(&device->fwnode, "baud"))) 1777 return true; 1778 1779 if (!acpi_match_device_ids(device, ignore_serial_bus_ids)) 1780 return false; 1781 1782 INIT_LIST_HEAD(&resource_list); 1783 acpi_dev_get_resources(device, &resource_list, 1784 acpi_check_serial_bus_slave, 1785 &is_serial_bus_slave); 1786 acpi_dev_free_resource_list(&resource_list); 1787 1788 return is_serial_bus_slave; 1789 } 1790 1791 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1792 int type) 1793 { 1794 INIT_LIST_HEAD(&device->pnp.ids); 1795 device->device_type = type; 1796 device->handle = handle; 1797 device->parent = acpi_bus_get_parent(handle); 1798 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1799 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1800 acpi_device_get_busid(device); 1801 acpi_set_pnp_ids(handle, &device->pnp, type); 1802 acpi_init_properties(device); 1803 acpi_bus_get_flags(device); 1804 device->flags.match_driver = false; 1805 device->flags.initialized = true; 1806 device->flags.enumeration_by_parent = 1807 acpi_device_enumeration_by_parent(device); 1808 acpi_device_clear_enumerated(device); 1809 device_initialize(&device->dev); 1810 dev_set_uevent_suppress(&device->dev, true); 1811 acpi_init_coherency(device); 1812 } 1813 1814 static void acpi_scan_dep_init(struct acpi_device *adev) 1815 { 1816 struct acpi_dep_data *dep; 1817 1818 list_for_each_entry(dep, &acpi_dep_list, node) { 1819 if (dep->consumer == adev->handle) { 1820 if (dep->honor_dep) 1821 adev->flags.honor_deps = 1; 1822 1823 adev->dep_unmet++; 1824 } 1825 } 1826 } 1827 1828 void acpi_device_add_finalize(struct acpi_device *device) 1829 { 1830 dev_set_uevent_suppress(&device->dev, false); 1831 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1832 } 1833 1834 static void acpi_scan_init_status(struct acpi_device *adev) 1835 { 1836 if (acpi_bus_get_status(adev)) 1837 acpi_set_device_status(adev, 0); 1838 } 1839 1840 static int acpi_add_single_object(struct acpi_device **child, 1841 acpi_handle handle, int type, bool dep_init) 1842 { 1843 struct acpi_device *device; 1844 bool release_dep_lock = false; 1845 int result; 1846 1847 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1848 if (!device) 1849 return -ENOMEM; 1850 1851 acpi_init_device_object(device, handle, type); 1852 /* 1853 * Getting the status is delayed till here so that we can call 1854 * acpi_bus_get_status() and use its quirk handling. Note that 1855 * this must be done before the get power-/wakeup_dev-flags calls. 1856 */ 1857 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1858 if (dep_init) { 1859 mutex_lock(&acpi_dep_list_lock); 1860 /* 1861 * Hold the lock until the acpi_tie_acpi_dev() call 1862 * below to prevent concurrent acpi_scan_clear_dep() 1863 * from deleting a dependency list entry without 1864 * updating dep_unmet for the device. 1865 */ 1866 release_dep_lock = true; 1867 acpi_scan_dep_init(device); 1868 } 1869 acpi_scan_init_status(device); 1870 } 1871 1872 acpi_bus_get_power_flags(device); 1873 acpi_bus_get_wakeup_device_flags(device); 1874 1875 result = acpi_tie_acpi_dev(device); 1876 1877 if (release_dep_lock) 1878 mutex_unlock(&acpi_dep_list_lock); 1879 1880 if (!result) 1881 result = __acpi_device_add(device, acpi_device_release); 1882 1883 if (result) { 1884 acpi_device_release(&device->dev); 1885 return result; 1886 } 1887 1888 acpi_power_add_remove_device(device, true); 1889 acpi_device_add_finalize(device); 1890 1891 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1892 dev_name(&device->dev), device->parent ? 1893 dev_name(&device->parent->dev) : "(null)"); 1894 1895 *child = device; 1896 return 0; 1897 } 1898 1899 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1900 void *context) 1901 { 1902 struct resource *res = context; 1903 1904 if (acpi_dev_resource_memory(ares, res)) 1905 return AE_CTRL_TERMINATE; 1906 1907 return AE_OK; 1908 } 1909 1910 static bool acpi_device_should_be_hidden(acpi_handle handle) 1911 { 1912 acpi_status status; 1913 struct resource res; 1914 1915 /* Check if it should ignore the UART device */ 1916 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1917 return false; 1918 1919 /* 1920 * The UART device described in SPCR table is assumed to have only one 1921 * memory resource present. So we only look for the first one here. 1922 */ 1923 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1924 acpi_get_resource_memory, &res); 1925 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1926 return false; 1927 1928 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1929 &res.start); 1930 1931 return true; 1932 } 1933 1934 bool acpi_device_is_present(const struct acpi_device *adev) 1935 { 1936 return adev->status.present || adev->status.functional; 1937 } 1938 1939 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1940 const char *idstr, 1941 const struct acpi_device_id **matchid) 1942 { 1943 const struct acpi_device_id *devid; 1944 1945 if (handler->match) 1946 return handler->match(idstr, matchid); 1947 1948 for (devid = handler->ids; devid->id[0]; devid++) 1949 if (!strcmp((char *)devid->id, idstr)) { 1950 if (matchid) 1951 *matchid = devid; 1952 1953 return true; 1954 } 1955 1956 return false; 1957 } 1958 1959 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1960 const struct acpi_device_id **matchid) 1961 { 1962 struct acpi_scan_handler *handler; 1963 1964 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1965 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1966 return handler; 1967 1968 return NULL; 1969 } 1970 1971 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 1972 { 1973 if (!!hotplug->enabled == !!val) 1974 return; 1975 1976 mutex_lock(&acpi_scan_lock); 1977 1978 hotplug->enabled = val; 1979 1980 mutex_unlock(&acpi_scan_lock); 1981 } 1982 1983 static void acpi_scan_init_hotplug(struct acpi_device *adev) 1984 { 1985 struct acpi_hardware_id *hwid; 1986 1987 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 1988 acpi_dock_add(adev); 1989 return; 1990 } 1991 list_for_each_entry(hwid, &adev->pnp.ids, list) { 1992 struct acpi_scan_handler *handler; 1993 1994 handler = acpi_scan_match_handler(hwid->id, NULL); 1995 if (handler) { 1996 adev->flags.hotplug_notify = true; 1997 break; 1998 } 1999 } 2000 } 2001 2002 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep) 2003 { 2004 struct acpi_handle_list dep_devices; 2005 acpi_status status; 2006 u32 count; 2007 int i; 2008 2009 /* 2010 * Check for _HID here to avoid deferring the enumeration of: 2011 * 1. PCI devices. 2012 * 2. ACPI nodes describing USB ports. 2013 * Still, checking for _HID catches more then just these cases ... 2014 */ 2015 if (!check_dep || !acpi_has_method(handle, "_DEP") || 2016 !acpi_has_method(handle, "_HID")) 2017 return 0; 2018 2019 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices); 2020 if (ACPI_FAILURE(status)) { 2021 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 2022 return 0; 2023 } 2024 2025 for (count = 0, i = 0; i < dep_devices.count; i++) { 2026 struct acpi_device_info *info; 2027 struct acpi_dep_data *dep; 2028 bool skip, honor_dep; 2029 2030 status = acpi_get_object_info(dep_devices.handles[i], &info); 2031 if (ACPI_FAILURE(status)) { 2032 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 2033 continue; 2034 } 2035 2036 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 2037 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids); 2038 kfree(info); 2039 2040 if (skip) 2041 continue; 2042 2043 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 2044 if (!dep) 2045 continue; 2046 2047 count++; 2048 2049 dep->supplier = dep_devices.handles[i]; 2050 dep->consumer = handle; 2051 dep->honor_dep = honor_dep; 2052 2053 mutex_lock(&acpi_dep_list_lock); 2054 list_add_tail(&dep->node , &acpi_dep_list); 2055 mutex_unlock(&acpi_dep_list_lock); 2056 } 2057 2058 return count; 2059 } 2060 2061 static bool acpi_bus_scan_second_pass; 2062 2063 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep, 2064 struct acpi_device **adev_p) 2065 { 2066 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 2067 acpi_object_type acpi_type; 2068 int type; 2069 2070 if (device) 2071 goto out; 2072 2073 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2074 return AE_OK; 2075 2076 switch (acpi_type) { 2077 case ACPI_TYPE_DEVICE: 2078 if (acpi_device_should_be_hidden(handle)) 2079 return AE_OK; 2080 2081 /* Bail out if there are dependencies. */ 2082 if (acpi_scan_check_dep(handle, check_dep) > 0) { 2083 acpi_bus_scan_second_pass = true; 2084 return AE_CTRL_DEPTH; 2085 } 2086 2087 fallthrough; 2088 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2089 type = ACPI_BUS_TYPE_DEVICE; 2090 break; 2091 2092 case ACPI_TYPE_PROCESSOR: 2093 type = ACPI_BUS_TYPE_PROCESSOR; 2094 break; 2095 2096 case ACPI_TYPE_THERMAL: 2097 type = ACPI_BUS_TYPE_THERMAL; 2098 break; 2099 2100 case ACPI_TYPE_POWER: 2101 acpi_add_power_resource(handle); 2102 fallthrough; 2103 default: 2104 return AE_OK; 2105 } 2106 2107 /* 2108 * If check_dep is true at this point, the device has no dependencies, 2109 * or the creation of the device object would have been postponed above. 2110 */ 2111 acpi_add_single_object(&device, handle, type, !check_dep); 2112 if (!device) 2113 return AE_CTRL_DEPTH; 2114 2115 acpi_scan_init_hotplug(device); 2116 2117 out: 2118 if (!*adev_p) 2119 *adev_p = device; 2120 2121 return AE_OK; 2122 } 2123 2124 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2125 void *not_used, void **ret_p) 2126 { 2127 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2128 } 2129 2130 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2131 void *not_used, void **ret_p) 2132 { 2133 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2134 } 2135 2136 static void acpi_default_enumeration(struct acpi_device *device) 2137 { 2138 /* 2139 * Do not enumerate devices with enumeration_by_parent flag set as 2140 * they will be enumerated by their respective parents. 2141 */ 2142 if (!device->flags.enumeration_by_parent) { 2143 acpi_create_platform_device(device, NULL); 2144 acpi_device_set_enumerated(device); 2145 } else { 2146 blocking_notifier_call_chain(&acpi_reconfig_chain, 2147 ACPI_RECONFIG_DEVICE_ADD, device); 2148 } 2149 } 2150 2151 static const struct acpi_device_id generic_device_ids[] = { 2152 {ACPI_DT_NAMESPACE_HID, }, 2153 {"", }, 2154 }; 2155 2156 static int acpi_generic_device_attach(struct acpi_device *adev, 2157 const struct acpi_device_id *not_used) 2158 { 2159 /* 2160 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2161 * below can be unconditional. 2162 */ 2163 if (adev->data.of_compatible) 2164 acpi_default_enumeration(adev); 2165 2166 return 1; 2167 } 2168 2169 static struct acpi_scan_handler generic_device_handler = { 2170 .ids = generic_device_ids, 2171 .attach = acpi_generic_device_attach, 2172 }; 2173 2174 static int acpi_scan_attach_handler(struct acpi_device *device) 2175 { 2176 struct acpi_hardware_id *hwid; 2177 int ret = 0; 2178 2179 list_for_each_entry(hwid, &device->pnp.ids, list) { 2180 const struct acpi_device_id *devid; 2181 struct acpi_scan_handler *handler; 2182 2183 handler = acpi_scan_match_handler(hwid->id, &devid); 2184 if (handler) { 2185 if (!handler->attach) { 2186 device->pnp.type.platform_id = 0; 2187 continue; 2188 } 2189 device->handler = handler; 2190 ret = handler->attach(device, devid); 2191 if (ret > 0) 2192 break; 2193 2194 device->handler = NULL; 2195 if (ret < 0) 2196 break; 2197 } 2198 } 2199 2200 return ret; 2201 } 2202 2203 static void acpi_bus_attach(struct acpi_device *device, bool first_pass) 2204 { 2205 struct acpi_device *child; 2206 bool skip = !first_pass && device->flags.visited; 2207 acpi_handle ejd; 2208 int ret; 2209 2210 if (skip) 2211 goto ok; 2212 2213 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2214 register_dock_dependent_device(device, ejd); 2215 2216 acpi_bus_get_status(device); 2217 /* Skip devices that are not ready for enumeration (e.g. not present) */ 2218 if (!acpi_dev_ready_for_enumeration(device)) { 2219 device->flags.initialized = false; 2220 acpi_device_clear_enumerated(device); 2221 device->flags.power_manageable = 0; 2222 return; 2223 } 2224 if (device->handler) 2225 goto ok; 2226 2227 if (!device->flags.initialized) { 2228 device->flags.power_manageable = 2229 device->power.states[ACPI_STATE_D0].flags.valid; 2230 if (acpi_bus_init_power(device)) 2231 device->flags.power_manageable = 0; 2232 2233 device->flags.initialized = true; 2234 } else if (device->flags.visited) { 2235 goto ok; 2236 } 2237 2238 ret = acpi_scan_attach_handler(device); 2239 if (ret < 0) 2240 return; 2241 2242 device->flags.match_driver = true; 2243 if (ret > 0 && !device->flags.enumeration_by_parent) { 2244 acpi_device_set_enumerated(device); 2245 goto ok; 2246 } 2247 2248 ret = device_attach(&device->dev); 2249 if (ret < 0) 2250 return; 2251 2252 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2253 acpi_default_enumeration(device); 2254 else 2255 acpi_device_set_enumerated(device); 2256 2257 ok: 2258 list_for_each_entry(child, &device->children, node) 2259 acpi_bus_attach(child, first_pass); 2260 2261 if (!skip && device->handler && device->handler->hotplug.notify_online) 2262 device->handler->hotplug.notify_online(device); 2263 } 2264 2265 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2266 { 2267 struct acpi_device *adev; 2268 2269 adev = acpi_bus_get_acpi_device(dep->consumer); 2270 if (adev) { 2271 *(struct acpi_device **)data = adev; 2272 return 1; 2273 } 2274 /* Continue parsing if the device object is not present. */ 2275 return 0; 2276 } 2277 2278 struct acpi_scan_clear_dep_work { 2279 struct work_struct work; 2280 struct acpi_device *adev; 2281 }; 2282 2283 static void acpi_scan_clear_dep_fn(struct work_struct *work) 2284 { 2285 struct acpi_scan_clear_dep_work *cdw; 2286 2287 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2288 2289 acpi_scan_lock_acquire(); 2290 acpi_bus_attach(cdw->adev, true); 2291 acpi_scan_lock_release(); 2292 2293 acpi_dev_put(cdw->adev); 2294 kfree(cdw); 2295 } 2296 2297 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2298 { 2299 struct acpi_scan_clear_dep_work *cdw; 2300 2301 if (adev->dep_unmet) 2302 return false; 2303 2304 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2305 if (!cdw) 2306 return false; 2307 2308 cdw->adev = adev; 2309 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2310 /* 2311 * Since the work function may block on the lock until the entire 2312 * initial enumeration of devices is complete, put it into the unbound 2313 * workqueue. 2314 */ 2315 queue_work(system_unbound_wq, &cdw->work); 2316 2317 return true; 2318 } 2319 2320 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2321 { 2322 struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer); 2323 2324 if (adev) { 2325 adev->dep_unmet--; 2326 if (!acpi_scan_clear_dep_queue(adev)) 2327 acpi_dev_put(adev); 2328 } 2329 2330 list_del(&dep->node); 2331 kfree(dep); 2332 2333 return 0; 2334 } 2335 2336 /** 2337 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2338 * @handle: The ACPI handle of the supplier device 2339 * @callback: Pointer to the callback function to apply 2340 * @data: Pointer to some data to pass to the callback 2341 * 2342 * The return value of the callback determines this function's behaviour. If 0 2343 * is returned we continue to iterate over acpi_dep_list. If a positive value 2344 * is returned then the loop is broken but this function returns 0. If a 2345 * negative value is returned by the callback then the loop is broken and that 2346 * value is returned as the final error. 2347 */ 2348 static int acpi_walk_dep_device_list(acpi_handle handle, 2349 int (*callback)(struct acpi_dep_data *, void *), 2350 void *data) 2351 { 2352 struct acpi_dep_data *dep, *tmp; 2353 int ret = 0; 2354 2355 mutex_lock(&acpi_dep_list_lock); 2356 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2357 if (dep->supplier == handle) { 2358 ret = callback(dep, data); 2359 if (ret) 2360 break; 2361 } 2362 } 2363 mutex_unlock(&acpi_dep_list_lock); 2364 2365 return ret > 0 ? 0 : ret; 2366 } 2367 2368 /** 2369 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2370 * @supplier: Pointer to the supplier &struct acpi_device 2371 * 2372 * Clear dependencies on the given device. 2373 */ 2374 void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2375 { 2376 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2377 } 2378 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2379 2380 /** 2381 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration 2382 * @device: Pointer to the &struct acpi_device to check 2383 * 2384 * Check if the device is present and has no unmet dependencies. 2385 * 2386 * Return true if the device is ready for enumeratino. Otherwise, return false. 2387 */ 2388 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device) 2389 { 2390 if (device->flags.honor_deps && device->dep_unmet) 2391 return false; 2392 2393 return acpi_device_is_present(device); 2394 } 2395 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration); 2396 2397 /** 2398 * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier 2399 * @supplier: Pointer to the dependee device 2400 * 2401 * Returns the first &struct acpi_device which declares itself dependent on 2402 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2403 * 2404 * The caller is responsible for putting the reference to adev when it is no 2405 * longer needed. 2406 */ 2407 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier) 2408 { 2409 struct acpi_device *adev = NULL; 2410 2411 acpi_walk_dep_device_list(supplier->handle, 2412 acpi_dev_get_first_consumer_dev_cb, &adev); 2413 2414 return adev; 2415 } 2416 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev); 2417 2418 /** 2419 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2420 * @handle: Root of the namespace scope to scan. 2421 * 2422 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2423 * found devices. 2424 * 2425 * If no devices were found, -ENODEV is returned, but it does not mean that 2426 * there has been a real error. There just have been no suitable ACPI objects 2427 * in the table trunk from which the kernel could create a device and add an 2428 * appropriate driver. 2429 * 2430 * Must be called under acpi_scan_lock. 2431 */ 2432 int acpi_bus_scan(acpi_handle handle) 2433 { 2434 struct acpi_device *device = NULL; 2435 2436 acpi_bus_scan_second_pass = false; 2437 2438 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2439 2440 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2441 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2442 acpi_bus_check_add_1, NULL, NULL, 2443 (void **)&device); 2444 2445 if (!device) 2446 return -ENODEV; 2447 2448 acpi_bus_attach(device, true); 2449 2450 if (!acpi_bus_scan_second_pass) 2451 return 0; 2452 2453 /* Pass 2: Enumerate all of the remaining devices. */ 2454 2455 device = NULL; 2456 2457 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device))) 2458 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2459 acpi_bus_check_add_2, NULL, NULL, 2460 (void **)&device); 2461 2462 acpi_bus_attach(device, false); 2463 2464 return 0; 2465 } 2466 EXPORT_SYMBOL(acpi_bus_scan); 2467 2468 /** 2469 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2470 * @adev: Root of the ACPI namespace scope to walk. 2471 * 2472 * Must be called under acpi_scan_lock. 2473 */ 2474 void acpi_bus_trim(struct acpi_device *adev) 2475 { 2476 struct acpi_scan_handler *handler = adev->handler; 2477 struct acpi_device *child; 2478 2479 list_for_each_entry_reverse(child, &adev->children, node) 2480 acpi_bus_trim(child); 2481 2482 adev->flags.match_driver = false; 2483 if (handler) { 2484 if (handler->detach) 2485 handler->detach(adev); 2486 2487 adev->handler = NULL; 2488 } else { 2489 device_release_driver(&adev->dev); 2490 } 2491 /* 2492 * Most likely, the device is going away, so put it into D3cold before 2493 * that. 2494 */ 2495 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 2496 adev->flags.initialized = false; 2497 acpi_device_clear_enumerated(adev); 2498 } 2499 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2500 2501 int acpi_bus_register_early_device(int type) 2502 { 2503 struct acpi_device *device = NULL; 2504 int result; 2505 2506 result = acpi_add_single_object(&device, NULL, type, false); 2507 if (result) 2508 return result; 2509 2510 device->flags.match_driver = true; 2511 return device_attach(&device->dev); 2512 } 2513 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2514 2515 static void acpi_bus_scan_fixed(void) 2516 { 2517 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2518 struct acpi_device *adev = NULL; 2519 2520 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON, 2521 false); 2522 if (adev) { 2523 adev->flags.match_driver = true; 2524 if (device_attach(&adev->dev) >= 0) 2525 device_init_wakeup(&adev->dev, true); 2526 else 2527 dev_dbg(&adev->dev, "No driver\n"); 2528 } 2529 } 2530 2531 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2532 struct acpi_device *adev = NULL; 2533 2534 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON, 2535 false); 2536 if (adev) { 2537 adev->flags.match_driver = true; 2538 if (device_attach(&adev->dev) < 0) 2539 dev_dbg(&adev->dev, "No driver\n"); 2540 } 2541 } 2542 } 2543 2544 static void __init acpi_get_spcr_uart_addr(void) 2545 { 2546 acpi_status status; 2547 struct acpi_table_spcr *spcr_ptr; 2548 2549 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2550 (struct acpi_table_header **)&spcr_ptr); 2551 if (ACPI_FAILURE(status)) { 2552 pr_warn("STAO table present, but SPCR is missing\n"); 2553 return; 2554 } 2555 2556 spcr_uart_addr = spcr_ptr->serial_port.address; 2557 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2558 } 2559 2560 static bool acpi_scan_initialized; 2561 2562 void __init acpi_scan_init(void) 2563 { 2564 acpi_status status; 2565 struct acpi_table_stao *stao_ptr; 2566 2567 acpi_pci_root_init(); 2568 acpi_pci_link_init(); 2569 acpi_processor_init(); 2570 acpi_platform_init(); 2571 acpi_lpss_init(); 2572 acpi_apd_init(); 2573 acpi_cmos_rtc_init(); 2574 acpi_container_init(); 2575 acpi_memory_hotplug_init(); 2576 acpi_watchdog_init(); 2577 acpi_pnp_init(); 2578 acpi_int340x_thermal_init(); 2579 acpi_amba_init(); 2580 acpi_init_lpit(); 2581 2582 acpi_scan_add_handler(&generic_device_handler); 2583 2584 /* 2585 * If there is STAO table, check whether it needs to ignore the UART 2586 * device in SPCR table. 2587 */ 2588 status = acpi_get_table(ACPI_SIG_STAO, 0, 2589 (struct acpi_table_header **)&stao_ptr); 2590 if (ACPI_SUCCESS(status)) { 2591 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2592 pr_info("STAO Name List not yet supported.\n"); 2593 2594 if (stao_ptr->ignore_uart) 2595 acpi_get_spcr_uart_addr(); 2596 2597 acpi_put_table((struct acpi_table_header *)stao_ptr); 2598 } 2599 2600 acpi_gpe_apply_masked_gpes(); 2601 acpi_update_all_gpes(); 2602 2603 /* 2604 * Although we call __add_memory() that is documented to require the 2605 * device_hotplug_lock, it is not necessary here because this is an 2606 * early code when userspace or any other code path cannot trigger 2607 * hotplug/hotunplug operations. 2608 */ 2609 mutex_lock(&acpi_scan_lock); 2610 /* 2611 * Enumerate devices in the ACPI namespace. 2612 */ 2613 if (acpi_bus_scan(ACPI_ROOT_OBJECT)) 2614 goto unlock; 2615 2616 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT); 2617 if (!acpi_root) 2618 goto unlock; 2619 2620 /* Fixed feature devices do not exist on HW-reduced platform */ 2621 if (!acpi_gbl_reduced_hardware) 2622 acpi_bus_scan_fixed(); 2623 2624 acpi_turn_off_unused_power_resources(); 2625 2626 acpi_scan_initialized = true; 2627 2628 unlock: 2629 mutex_unlock(&acpi_scan_lock); 2630 } 2631 2632 static struct acpi_probe_entry *ape; 2633 static int acpi_probe_count; 2634 static DEFINE_MUTEX(acpi_probe_mutex); 2635 2636 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2637 const unsigned long end) 2638 { 2639 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2640 if (!ape->probe_subtbl(header, end)) 2641 acpi_probe_count++; 2642 2643 return 0; 2644 } 2645 2646 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2647 { 2648 int count = 0; 2649 2650 if (acpi_disabled) 2651 return 0; 2652 2653 mutex_lock(&acpi_probe_mutex); 2654 for (ape = ap_head; nr; ape++, nr--) { 2655 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2656 acpi_probe_count = 0; 2657 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2658 count += acpi_probe_count; 2659 } else { 2660 int res; 2661 res = acpi_table_parse(ape->id, ape->probe_table); 2662 if (!res) 2663 count++; 2664 } 2665 } 2666 mutex_unlock(&acpi_probe_mutex); 2667 2668 return count; 2669 } 2670 2671 static void acpi_table_events_fn(struct work_struct *work) 2672 { 2673 acpi_scan_lock_acquire(); 2674 acpi_bus_scan(ACPI_ROOT_OBJECT); 2675 acpi_scan_lock_release(); 2676 2677 kfree(work); 2678 } 2679 2680 void acpi_scan_table_notify(void) 2681 { 2682 struct work_struct *work; 2683 2684 if (!acpi_scan_initialized) 2685 return; 2686 2687 work = kmalloc(sizeof(*work), GFP_KERNEL); 2688 if (!work) 2689 return; 2690 2691 INIT_WORK(work, acpi_table_events_fn); 2692 schedule_work(work); 2693 } 2694 2695 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2696 { 2697 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2698 } 2699 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2700 2701 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2702 { 2703 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2704 } 2705 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2706