xref: /openbmc/linux/drivers/acpi/scan.c (revision 827beb77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 
23 #include "internal.h"
24 
25 extern struct acpi_device *acpi_root;
26 
27 #define ACPI_BUS_CLASS			"system_bus"
28 #define ACPI_BUS_HID			"LNXSYBUS"
29 #define ACPI_BUS_DEVICE_NAME		"System Bus"
30 
31 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
32 
33 #define INVALID_ACPI_HANDLE	((acpi_handle)empty_zero_page)
34 
35 static const char *dummy_hid = "device";
36 
37 static LIST_HEAD(acpi_dep_list);
38 static DEFINE_MUTEX(acpi_dep_list_lock);
39 LIST_HEAD(acpi_bus_id_list);
40 static DEFINE_MUTEX(acpi_scan_lock);
41 static LIST_HEAD(acpi_scan_handlers_list);
42 DEFINE_MUTEX(acpi_device_lock);
43 LIST_HEAD(acpi_wakeup_device_list);
44 static DEFINE_MUTEX(acpi_hp_context_lock);
45 
46 /*
47  * The UART device described by the SPCR table is the only object which needs
48  * special-casing. Everything else is covered by ACPI namespace paths in STAO
49  * table.
50  */
51 static u64 spcr_uart_addr;
52 
53 void acpi_scan_lock_acquire(void)
54 {
55 	mutex_lock(&acpi_scan_lock);
56 }
57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
58 
59 void acpi_scan_lock_release(void)
60 {
61 	mutex_unlock(&acpi_scan_lock);
62 }
63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
64 
65 void acpi_lock_hp_context(void)
66 {
67 	mutex_lock(&acpi_hp_context_lock);
68 }
69 
70 void acpi_unlock_hp_context(void)
71 {
72 	mutex_unlock(&acpi_hp_context_lock);
73 }
74 
75 void acpi_initialize_hp_context(struct acpi_device *adev,
76 				struct acpi_hotplug_context *hp,
77 				int (*notify)(struct acpi_device *, u32),
78 				void (*uevent)(struct acpi_device *, u32))
79 {
80 	acpi_lock_hp_context();
81 	hp->notify = notify;
82 	hp->uevent = uevent;
83 	acpi_set_hp_context(adev, hp);
84 	acpi_unlock_hp_context();
85 }
86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
87 
88 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
89 {
90 	if (!handler)
91 		return -EINVAL;
92 
93 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
94 	return 0;
95 }
96 
97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
98 				       const char *hotplug_profile_name)
99 {
100 	int error;
101 
102 	error = acpi_scan_add_handler(handler);
103 	if (error)
104 		return error;
105 
106 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
107 	return 0;
108 }
109 
110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
111 {
112 	struct acpi_device_physical_node *pn;
113 	bool offline = true;
114 	char *envp[] = { "EVENT=offline", NULL };
115 
116 	/*
117 	 * acpi_container_offline() calls this for all of the container's
118 	 * children under the container's physical_node_lock lock.
119 	 */
120 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
121 
122 	list_for_each_entry(pn, &adev->physical_node_list, node)
123 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
124 			if (uevent)
125 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
126 
127 			offline = false;
128 			break;
129 		}
130 
131 	mutex_unlock(&adev->physical_node_lock);
132 	return offline;
133 }
134 
135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
136 				    void **ret_p)
137 {
138 	struct acpi_device *device = NULL;
139 	struct acpi_device_physical_node *pn;
140 	bool second_pass = (bool)data;
141 	acpi_status status = AE_OK;
142 
143 	if (acpi_bus_get_device(handle, &device))
144 		return AE_OK;
145 
146 	if (device->handler && !device->handler->hotplug.enabled) {
147 		*ret_p = &device->dev;
148 		return AE_SUPPORT;
149 	}
150 
151 	mutex_lock(&device->physical_node_lock);
152 
153 	list_for_each_entry(pn, &device->physical_node_list, node) {
154 		int ret;
155 
156 		if (second_pass) {
157 			/* Skip devices offlined by the first pass. */
158 			if (pn->put_online)
159 				continue;
160 		} else {
161 			pn->put_online = false;
162 		}
163 		ret = device_offline(pn->dev);
164 		if (ret >= 0) {
165 			pn->put_online = !ret;
166 		} else {
167 			*ret_p = pn->dev;
168 			if (second_pass) {
169 				status = AE_ERROR;
170 				break;
171 			}
172 		}
173 	}
174 
175 	mutex_unlock(&device->physical_node_lock);
176 
177 	return status;
178 }
179 
180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
181 				   void **ret_p)
182 {
183 	struct acpi_device *device = NULL;
184 	struct acpi_device_physical_node *pn;
185 
186 	if (acpi_bus_get_device(handle, &device))
187 		return AE_OK;
188 
189 	mutex_lock(&device->physical_node_lock);
190 
191 	list_for_each_entry(pn, &device->physical_node_list, node)
192 		if (pn->put_online) {
193 			device_online(pn->dev);
194 			pn->put_online = false;
195 		}
196 
197 	mutex_unlock(&device->physical_node_lock);
198 
199 	return AE_OK;
200 }
201 
202 static int acpi_scan_try_to_offline(struct acpi_device *device)
203 {
204 	acpi_handle handle = device->handle;
205 	struct device *errdev = NULL;
206 	acpi_status status;
207 
208 	/*
209 	 * Carry out two passes here and ignore errors in the first pass,
210 	 * because if the devices in question are memory blocks and
211 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
212 	 * that the other blocks depend on, but it is not known in advance which
213 	 * block holds them.
214 	 *
215 	 * If the first pass is successful, the second one isn't needed, though.
216 	 */
217 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
218 				     NULL, acpi_bus_offline, (void *)false,
219 				     (void **)&errdev);
220 	if (status == AE_SUPPORT) {
221 		dev_warn(errdev, "Offline disabled.\n");
222 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223 				    acpi_bus_online, NULL, NULL, NULL);
224 		return -EPERM;
225 	}
226 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
227 	if (errdev) {
228 		errdev = NULL;
229 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
230 				    NULL, acpi_bus_offline, (void *)true,
231 				    (void **)&errdev);
232 		if (!errdev)
233 			acpi_bus_offline(handle, 0, (void *)true,
234 					 (void **)&errdev);
235 
236 		if (errdev) {
237 			dev_warn(errdev, "Offline failed.\n");
238 			acpi_bus_online(handle, 0, NULL, NULL);
239 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
240 					    ACPI_UINT32_MAX, acpi_bus_online,
241 					    NULL, NULL, NULL);
242 			return -EBUSY;
243 		}
244 	}
245 	return 0;
246 }
247 
248 static int acpi_scan_hot_remove(struct acpi_device *device)
249 {
250 	acpi_handle handle = device->handle;
251 	unsigned long long sta;
252 	acpi_status status;
253 
254 	if (device->handler && device->handler->hotplug.demand_offline) {
255 		if (!acpi_scan_is_offline(device, true))
256 			return -EBUSY;
257 	} else {
258 		int error = acpi_scan_try_to_offline(device);
259 		if (error)
260 			return error;
261 	}
262 
263 	acpi_handle_debug(handle, "Ejecting\n");
264 
265 	acpi_bus_trim(device);
266 
267 	acpi_evaluate_lck(handle, 0);
268 	/*
269 	 * TBD: _EJD support.
270 	 */
271 	status = acpi_evaluate_ej0(handle);
272 	if (status == AE_NOT_FOUND)
273 		return -ENODEV;
274 	else if (ACPI_FAILURE(status))
275 		return -EIO;
276 
277 	/*
278 	 * Verify if eject was indeed successful.  If not, log an error
279 	 * message.  No need to call _OST since _EJ0 call was made OK.
280 	 */
281 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
282 	if (ACPI_FAILURE(status)) {
283 		acpi_handle_warn(handle,
284 			"Status check after eject failed (0x%x)\n", status);
285 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
286 		acpi_handle_warn(handle,
287 			"Eject incomplete - status 0x%llx\n", sta);
288 	}
289 
290 	return 0;
291 }
292 
293 static int acpi_scan_device_not_present(struct acpi_device *adev)
294 {
295 	if (!acpi_device_enumerated(adev)) {
296 		dev_warn(&adev->dev, "Still not present\n");
297 		return -EALREADY;
298 	}
299 	acpi_bus_trim(adev);
300 	return 0;
301 }
302 
303 static int acpi_scan_device_check(struct acpi_device *adev)
304 {
305 	int error;
306 
307 	acpi_bus_get_status(adev);
308 	if (adev->status.present || adev->status.functional) {
309 		/*
310 		 * This function is only called for device objects for which
311 		 * matching scan handlers exist.  The only situation in which
312 		 * the scan handler is not attached to this device object yet
313 		 * is when the device has just appeared (either it wasn't
314 		 * present at all before or it was removed and then added
315 		 * again).
316 		 */
317 		if (adev->handler) {
318 			dev_warn(&adev->dev, "Already enumerated\n");
319 			return -EALREADY;
320 		}
321 		error = acpi_bus_scan(adev->handle);
322 		if (error) {
323 			dev_warn(&adev->dev, "Namespace scan failure\n");
324 			return error;
325 		}
326 		if (!adev->handler) {
327 			dev_warn(&adev->dev, "Enumeration failure\n");
328 			error = -ENODEV;
329 		}
330 	} else {
331 		error = acpi_scan_device_not_present(adev);
332 	}
333 	return error;
334 }
335 
336 static int acpi_scan_bus_check(struct acpi_device *adev)
337 {
338 	struct acpi_scan_handler *handler = adev->handler;
339 	struct acpi_device *child;
340 	int error;
341 
342 	acpi_bus_get_status(adev);
343 	if (!(adev->status.present || adev->status.functional)) {
344 		acpi_scan_device_not_present(adev);
345 		return 0;
346 	}
347 	if (handler && handler->hotplug.scan_dependent)
348 		return handler->hotplug.scan_dependent(adev);
349 
350 	error = acpi_bus_scan(adev->handle);
351 	if (error) {
352 		dev_warn(&adev->dev, "Namespace scan failure\n");
353 		return error;
354 	}
355 	list_for_each_entry(child, &adev->children, node) {
356 		error = acpi_scan_bus_check(child);
357 		if (error)
358 			return error;
359 	}
360 	return 0;
361 }
362 
363 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
364 {
365 	switch (type) {
366 	case ACPI_NOTIFY_BUS_CHECK:
367 		return acpi_scan_bus_check(adev);
368 	case ACPI_NOTIFY_DEVICE_CHECK:
369 		return acpi_scan_device_check(adev);
370 	case ACPI_NOTIFY_EJECT_REQUEST:
371 	case ACPI_OST_EC_OSPM_EJECT:
372 		if (adev->handler && !adev->handler->hotplug.enabled) {
373 			dev_info(&adev->dev, "Eject disabled\n");
374 			return -EPERM;
375 		}
376 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
377 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
378 		return acpi_scan_hot_remove(adev);
379 	}
380 	return -EINVAL;
381 }
382 
383 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
384 {
385 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
386 	int error = -ENODEV;
387 
388 	lock_device_hotplug();
389 	mutex_lock(&acpi_scan_lock);
390 
391 	/*
392 	 * The device object's ACPI handle cannot become invalid as long as we
393 	 * are holding acpi_scan_lock, but it might have become invalid before
394 	 * that lock was acquired.
395 	 */
396 	if (adev->handle == INVALID_ACPI_HANDLE)
397 		goto err_out;
398 
399 	if (adev->flags.is_dock_station) {
400 		error = dock_notify(adev, src);
401 	} else if (adev->flags.hotplug_notify) {
402 		error = acpi_generic_hotplug_event(adev, src);
403 	} else {
404 		int (*notify)(struct acpi_device *, u32);
405 
406 		acpi_lock_hp_context();
407 		notify = adev->hp ? adev->hp->notify : NULL;
408 		acpi_unlock_hp_context();
409 		/*
410 		 * There may be additional notify handlers for device objects
411 		 * without the .event() callback, so ignore them here.
412 		 */
413 		if (notify)
414 			error = notify(adev, src);
415 		else
416 			goto out;
417 	}
418 	switch (error) {
419 	case 0:
420 		ost_code = ACPI_OST_SC_SUCCESS;
421 		break;
422 	case -EPERM:
423 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
424 		break;
425 	case -EBUSY:
426 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
427 		break;
428 	default:
429 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
430 		break;
431 	}
432 
433  err_out:
434 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
435 
436  out:
437 	acpi_bus_put_acpi_device(adev);
438 	mutex_unlock(&acpi_scan_lock);
439 	unlock_device_hotplug();
440 }
441 
442 static void acpi_free_power_resources_lists(struct acpi_device *device)
443 {
444 	int i;
445 
446 	if (device->wakeup.flags.valid)
447 		acpi_power_resources_list_free(&device->wakeup.resources);
448 
449 	if (!device->power.flags.power_resources)
450 		return;
451 
452 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
453 		struct acpi_device_power_state *ps = &device->power.states[i];
454 		acpi_power_resources_list_free(&ps->resources);
455 	}
456 }
457 
458 static void acpi_device_release(struct device *dev)
459 {
460 	struct acpi_device *acpi_dev = to_acpi_device(dev);
461 
462 	acpi_free_properties(acpi_dev);
463 	acpi_free_pnp_ids(&acpi_dev->pnp);
464 	acpi_free_power_resources_lists(acpi_dev);
465 	kfree(acpi_dev);
466 }
467 
468 static void acpi_device_del(struct acpi_device *device)
469 {
470 	struct acpi_device_bus_id *acpi_device_bus_id;
471 
472 	mutex_lock(&acpi_device_lock);
473 	if (device->parent)
474 		list_del(&device->node);
475 
476 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
477 		if (!strcmp(acpi_device_bus_id->bus_id,
478 			    acpi_device_hid(device))) {
479 			ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no);
480 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
481 				list_del(&acpi_device_bus_id->node);
482 				kfree_const(acpi_device_bus_id->bus_id);
483 				kfree(acpi_device_bus_id);
484 			}
485 			break;
486 		}
487 
488 	list_del(&device->wakeup_list);
489 	mutex_unlock(&acpi_device_lock);
490 
491 	acpi_power_add_remove_device(device, false);
492 	acpi_device_remove_files(device);
493 	if (device->remove)
494 		device->remove(device);
495 
496 	device_del(&device->dev);
497 }
498 
499 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
500 
501 static LIST_HEAD(acpi_device_del_list);
502 static DEFINE_MUTEX(acpi_device_del_lock);
503 
504 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
505 {
506 	for (;;) {
507 		struct acpi_device *adev;
508 
509 		mutex_lock(&acpi_device_del_lock);
510 
511 		if (list_empty(&acpi_device_del_list)) {
512 			mutex_unlock(&acpi_device_del_lock);
513 			break;
514 		}
515 		adev = list_first_entry(&acpi_device_del_list,
516 					struct acpi_device, del_list);
517 		list_del(&adev->del_list);
518 
519 		mutex_unlock(&acpi_device_del_lock);
520 
521 		blocking_notifier_call_chain(&acpi_reconfig_chain,
522 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
523 
524 		acpi_device_del(adev);
525 		/*
526 		 * Drop references to all power resources that might have been
527 		 * used by the device.
528 		 */
529 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
530 		acpi_dev_put(adev);
531 	}
532 }
533 
534 /**
535  * acpi_scan_drop_device - Drop an ACPI device object.
536  * @handle: Handle of an ACPI namespace node, not used.
537  * @context: Address of the ACPI device object to drop.
538  *
539  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
540  * namespace node the device object pointed to by @context is attached to.
541  *
542  * The unregistration is carried out asynchronously to avoid running
543  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
544  * ensure the correct ordering (the device objects must be unregistered in the
545  * same order in which the corresponding namespace nodes are deleted).
546  */
547 static void acpi_scan_drop_device(acpi_handle handle, void *context)
548 {
549 	static DECLARE_WORK(work, acpi_device_del_work_fn);
550 	struct acpi_device *adev = context;
551 
552 	mutex_lock(&acpi_device_del_lock);
553 
554 	/*
555 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
556 	 * won't run after any hotplug work items submitted subsequently.  That
557 	 * prevents attempts to register device objects identical to those being
558 	 * deleted from happening concurrently (such attempts result from
559 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
560 	 * run after all of the work items submitted previously, which helps
561 	 * those work items to ensure that they are not accessing stale device
562 	 * objects.
563 	 */
564 	if (list_empty(&acpi_device_del_list))
565 		acpi_queue_hotplug_work(&work);
566 
567 	list_add_tail(&adev->del_list, &acpi_device_del_list);
568 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
569 	adev->handle = INVALID_ACPI_HANDLE;
570 
571 	mutex_unlock(&acpi_device_del_lock);
572 }
573 
574 static struct acpi_device *handle_to_device(acpi_handle handle,
575 					    void (*callback)(void *))
576 {
577 	struct acpi_device *adev = NULL;
578 	acpi_status status;
579 
580 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
581 				    (void **)&adev, callback);
582 	if (ACPI_FAILURE(status) || !adev) {
583 		acpi_handle_debug(handle, "No context!\n");
584 		return NULL;
585 	}
586 	return adev;
587 }
588 
589 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
590 {
591 	if (!device)
592 		return -EINVAL;
593 
594 	*device = handle_to_device(handle, NULL);
595 	if (!*device)
596 		return -ENODEV;
597 
598 	return 0;
599 }
600 EXPORT_SYMBOL(acpi_bus_get_device);
601 
602 static void get_acpi_device(void *dev)
603 {
604 	acpi_dev_get(dev);
605 }
606 
607 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
608 {
609 	return handle_to_device(handle, get_acpi_device);
610 }
611 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device);
612 
613 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
614 {
615 	struct acpi_device_bus_id *acpi_device_bus_id;
616 
617 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
618 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
619 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
620 			return acpi_device_bus_id;
621 	}
622 	return NULL;
623 }
624 
625 static int acpi_device_set_name(struct acpi_device *device,
626 				struct acpi_device_bus_id *acpi_device_bus_id)
627 {
628 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
629 	int result;
630 
631 	result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL);
632 	if (result < 0)
633 		return result;
634 
635 	device->pnp.instance_no = result;
636 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
637 	return 0;
638 }
639 
640 static int acpi_tie_acpi_dev(struct acpi_device *adev)
641 {
642 	acpi_handle handle = adev->handle;
643 	acpi_status status;
644 
645 	if (!handle)
646 		return 0;
647 
648 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
649 	if (ACPI_FAILURE(status)) {
650 		acpi_handle_err(handle, "Unable to attach device data\n");
651 		return -ENODEV;
652 	}
653 
654 	return 0;
655 }
656 
657 static int __acpi_device_add(struct acpi_device *device,
658 			     void (*release)(struct device *))
659 {
660 	struct acpi_device_bus_id *acpi_device_bus_id;
661 	int result;
662 
663 	/*
664 	 * Linkage
665 	 * -------
666 	 * Link this device to its parent and siblings.
667 	 */
668 	INIT_LIST_HEAD(&device->children);
669 	INIT_LIST_HEAD(&device->node);
670 	INIT_LIST_HEAD(&device->wakeup_list);
671 	INIT_LIST_HEAD(&device->physical_node_list);
672 	INIT_LIST_HEAD(&device->del_list);
673 	mutex_init(&device->physical_node_lock);
674 
675 	mutex_lock(&acpi_device_lock);
676 
677 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
678 	if (acpi_device_bus_id) {
679 		result = acpi_device_set_name(device, acpi_device_bus_id);
680 		if (result)
681 			goto err_unlock;
682 	} else {
683 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
684 					     GFP_KERNEL);
685 		if (!acpi_device_bus_id) {
686 			result = -ENOMEM;
687 			goto err_unlock;
688 		}
689 		acpi_device_bus_id->bus_id =
690 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
691 		if (!acpi_device_bus_id->bus_id) {
692 			kfree(acpi_device_bus_id);
693 			result = -ENOMEM;
694 			goto err_unlock;
695 		}
696 
697 		ida_init(&acpi_device_bus_id->instance_ida);
698 
699 		result = acpi_device_set_name(device, acpi_device_bus_id);
700 		if (result) {
701 			kfree_const(acpi_device_bus_id->bus_id);
702 			kfree(acpi_device_bus_id);
703 			goto err_unlock;
704 		}
705 
706 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
707 	}
708 
709 	if (device->parent)
710 		list_add_tail(&device->node, &device->parent->children);
711 
712 	if (device->wakeup.flags.valid)
713 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
714 
715 	mutex_unlock(&acpi_device_lock);
716 
717 	if (device->parent)
718 		device->dev.parent = &device->parent->dev;
719 
720 	device->dev.bus = &acpi_bus_type;
721 	device->dev.release = release;
722 	result = device_add(&device->dev);
723 	if (result) {
724 		dev_err(&device->dev, "Error registering device\n");
725 		goto err;
726 	}
727 
728 	result = acpi_device_setup_files(device);
729 	if (result)
730 		pr_err("Error creating sysfs interface for device %s\n",
731 		       dev_name(&device->dev));
732 
733 	return 0;
734 
735 err:
736 	mutex_lock(&acpi_device_lock);
737 
738 	if (device->parent)
739 		list_del(&device->node);
740 
741 	list_del(&device->wakeup_list);
742 
743 err_unlock:
744 	mutex_unlock(&acpi_device_lock);
745 
746 	acpi_detach_data(device->handle, acpi_scan_drop_device);
747 
748 	return result;
749 }
750 
751 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
752 {
753 	int ret;
754 
755 	ret = acpi_tie_acpi_dev(adev);
756 	if (ret)
757 		return ret;
758 
759 	return __acpi_device_add(adev, release);
760 }
761 
762 /* --------------------------------------------------------------------------
763                                  Device Enumeration
764    -------------------------------------------------------------------------- */
765 static bool acpi_info_matches_ids(struct acpi_device_info *info,
766 				  const char * const ids[])
767 {
768 	struct acpi_pnp_device_id_list *cid_list = NULL;
769 	int i, index;
770 
771 	if (!(info->valid & ACPI_VALID_HID))
772 		return false;
773 
774 	index = match_string(ids, -1, info->hardware_id.string);
775 	if (index >= 0)
776 		return true;
777 
778 	if (info->valid & ACPI_VALID_CID)
779 		cid_list = &info->compatible_id_list;
780 
781 	if (!cid_list)
782 		return false;
783 
784 	for (i = 0; i < cid_list->count; i++) {
785 		index = match_string(ids, -1, cid_list->ids[i].string);
786 		if (index >= 0)
787 			return true;
788 	}
789 
790 	return false;
791 }
792 
793 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
794 static const char * const acpi_ignore_dep_ids[] = {
795 	"PNP0D80", /* Windows-compatible System Power Management Controller */
796 	"INT33BD", /* Intel Baytrail Mailbox Device */
797 	NULL
798 };
799 
800 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
801 {
802 	struct acpi_device *device = NULL;
803 	acpi_status status;
804 
805 	/*
806 	 * Fixed hardware devices do not appear in the namespace and do not
807 	 * have handles, but we fabricate acpi_devices for them, so we have
808 	 * to deal with them specially.
809 	 */
810 	if (!handle)
811 		return acpi_root;
812 
813 	do {
814 		status = acpi_get_parent(handle, &handle);
815 		if (ACPI_FAILURE(status))
816 			return status == AE_NULL_ENTRY ? NULL : acpi_root;
817 	} while (acpi_bus_get_device(handle, &device));
818 	return device;
819 }
820 
821 acpi_status
822 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
823 {
824 	acpi_status status;
825 	acpi_handle tmp;
826 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
827 	union acpi_object *obj;
828 
829 	status = acpi_get_handle(handle, "_EJD", &tmp);
830 	if (ACPI_FAILURE(status))
831 		return status;
832 
833 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
834 	if (ACPI_SUCCESS(status)) {
835 		obj = buffer.pointer;
836 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
837 					 ejd);
838 		kfree(buffer.pointer);
839 	}
840 	return status;
841 }
842 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
843 
844 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
845 {
846 	acpi_handle handle = dev->handle;
847 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
848 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
849 	union acpi_object *package = NULL;
850 	union acpi_object *element = NULL;
851 	acpi_status status;
852 	int err = -ENODATA;
853 
854 	INIT_LIST_HEAD(&wakeup->resources);
855 
856 	/* _PRW */
857 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
858 	if (ACPI_FAILURE(status)) {
859 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
860 				 acpi_format_exception(status));
861 		return err;
862 	}
863 
864 	package = (union acpi_object *)buffer.pointer;
865 
866 	if (!package || package->package.count < 2)
867 		goto out;
868 
869 	element = &(package->package.elements[0]);
870 	if (!element)
871 		goto out;
872 
873 	if (element->type == ACPI_TYPE_PACKAGE) {
874 		if ((element->package.count < 2) ||
875 		    (element->package.elements[0].type !=
876 		     ACPI_TYPE_LOCAL_REFERENCE)
877 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
878 			goto out;
879 
880 		wakeup->gpe_device =
881 		    element->package.elements[0].reference.handle;
882 		wakeup->gpe_number =
883 		    (u32) element->package.elements[1].integer.value;
884 	} else if (element->type == ACPI_TYPE_INTEGER) {
885 		wakeup->gpe_device = NULL;
886 		wakeup->gpe_number = element->integer.value;
887 	} else {
888 		goto out;
889 	}
890 
891 	element = &(package->package.elements[1]);
892 	if (element->type != ACPI_TYPE_INTEGER)
893 		goto out;
894 
895 	wakeup->sleep_state = element->integer.value;
896 
897 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
898 	if (err)
899 		goto out;
900 
901 	if (!list_empty(&wakeup->resources)) {
902 		int sleep_state;
903 
904 		err = acpi_power_wakeup_list_init(&wakeup->resources,
905 						  &sleep_state);
906 		if (err) {
907 			acpi_handle_warn(handle, "Retrieving current states "
908 					 "of wakeup power resources failed\n");
909 			acpi_power_resources_list_free(&wakeup->resources);
910 			goto out;
911 		}
912 		if (sleep_state < wakeup->sleep_state) {
913 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
914 					 "(S%d) by S%d from power resources\n",
915 					 (int)wakeup->sleep_state, sleep_state);
916 			wakeup->sleep_state = sleep_state;
917 		}
918 	}
919 
920  out:
921 	kfree(buffer.pointer);
922 	return err;
923 }
924 
925 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
926 {
927 	static const struct acpi_device_id button_device_ids[] = {
928 		{"PNP0C0C", 0},		/* Power button */
929 		{"PNP0C0D", 0},		/* Lid */
930 		{"PNP0C0E", 0},		/* Sleep button */
931 		{"", 0},
932 	};
933 	struct acpi_device_wakeup *wakeup = &device->wakeup;
934 	acpi_status status;
935 
936 	wakeup->flags.notifier_present = 0;
937 
938 	/* Power button, Lid switch always enable wakeup */
939 	if (!acpi_match_device_ids(device, button_device_ids)) {
940 		if (!acpi_match_device_ids(device, &button_device_ids[1])) {
941 			/* Do not use Lid/sleep button for S5 wakeup */
942 			if (wakeup->sleep_state == ACPI_STATE_S5)
943 				wakeup->sleep_state = ACPI_STATE_S4;
944 		}
945 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
946 		device_set_wakeup_capable(&device->dev, true);
947 		return true;
948 	}
949 
950 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
951 					 wakeup->gpe_number);
952 	return ACPI_SUCCESS(status);
953 }
954 
955 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
956 {
957 	int err;
958 
959 	/* Presence of _PRW indicates wake capable */
960 	if (!acpi_has_method(device->handle, "_PRW"))
961 		return;
962 
963 	err = acpi_bus_extract_wakeup_device_power_package(device);
964 	if (err) {
965 		dev_err(&device->dev, "Unable to extract wakeup power resources");
966 		return;
967 	}
968 
969 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
970 	device->wakeup.prepare_count = 0;
971 	/*
972 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
973 	 * system for the ACPI device with the _PRW object.
974 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
975 	 * So it is necessary to call _DSW object first. Only when it is not
976 	 * present will the _PSW object used.
977 	 */
978 	err = acpi_device_sleep_wake(device, 0, 0, 0);
979 	if (err)
980 		pr_debug("error in _DSW or _PSW evaluation\n");
981 }
982 
983 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
984 {
985 	struct acpi_device_power_state *ps = &device->power.states[state];
986 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
987 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
988 	acpi_status status;
989 
990 	INIT_LIST_HEAD(&ps->resources);
991 
992 	/* Evaluate "_PRx" to get referenced power resources */
993 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
994 	if (ACPI_SUCCESS(status)) {
995 		union acpi_object *package = buffer.pointer;
996 
997 		if (buffer.length && package
998 		    && package->type == ACPI_TYPE_PACKAGE
999 		    && package->package.count)
1000 			acpi_extract_power_resources(package, 0, &ps->resources);
1001 
1002 		ACPI_FREE(buffer.pointer);
1003 	}
1004 
1005 	/* Evaluate "_PSx" to see if we can do explicit sets */
1006 	pathname[2] = 'S';
1007 	if (acpi_has_method(device->handle, pathname))
1008 		ps->flags.explicit_set = 1;
1009 
1010 	/* State is valid if there are means to put the device into it. */
1011 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1012 		ps->flags.valid = 1;
1013 
1014 	ps->power = -1;		/* Unknown - driver assigned */
1015 	ps->latency = -1;	/* Unknown - driver assigned */
1016 }
1017 
1018 static void acpi_bus_get_power_flags(struct acpi_device *device)
1019 {
1020 	u32 i;
1021 
1022 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1023 	if (!acpi_has_method(device->handle, "_PS0") &&
1024 	    !acpi_has_method(device->handle, "_PR0"))
1025 		return;
1026 
1027 	device->flags.power_manageable = 1;
1028 
1029 	/*
1030 	 * Power Management Flags
1031 	 */
1032 	if (acpi_has_method(device->handle, "_PSC"))
1033 		device->power.flags.explicit_get = 1;
1034 
1035 	if (acpi_has_method(device->handle, "_IRC"))
1036 		device->power.flags.inrush_current = 1;
1037 
1038 	if (acpi_has_method(device->handle, "_DSW"))
1039 		device->power.flags.dsw_present = 1;
1040 
1041 	/*
1042 	 * Enumerate supported power management states
1043 	 */
1044 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1045 		acpi_bus_init_power_state(device, i);
1046 
1047 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1048 
1049 	/* Set the defaults for D0 and D3hot (always supported). */
1050 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1051 	device->power.states[ACPI_STATE_D0].power = 100;
1052 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1053 
1054 	/*
1055 	 * Use power resources only if the D0 list of them is populated, because
1056 	 * some platforms may provide _PR3 only to indicate D3cold support and
1057 	 * in those cases the power resources list returned by it may be bogus.
1058 	 */
1059 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1060 		device->power.flags.power_resources = 1;
1061 		/*
1062 		 * D3cold is supported if the D3hot list of power resources is
1063 		 * not empty.
1064 		 */
1065 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1066 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1067 	}
1068 
1069 	if (acpi_bus_init_power(device))
1070 		device->flags.power_manageable = 0;
1071 }
1072 
1073 static void acpi_bus_get_flags(struct acpi_device *device)
1074 {
1075 	/* Presence of _STA indicates 'dynamic_status' */
1076 	if (acpi_has_method(device->handle, "_STA"))
1077 		device->flags.dynamic_status = 1;
1078 
1079 	/* Presence of _RMV indicates 'removable' */
1080 	if (acpi_has_method(device->handle, "_RMV"))
1081 		device->flags.removable = 1;
1082 
1083 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1084 	if (acpi_has_method(device->handle, "_EJD") ||
1085 	    acpi_has_method(device->handle, "_EJ0"))
1086 		device->flags.ejectable = 1;
1087 }
1088 
1089 static void acpi_device_get_busid(struct acpi_device *device)
1090 {
1091 	char bus_id[5] = { '?', 0 };
1092 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1093 	int i = 0;
1094 
1095 	/*
1096 	 * Bus ID
1097 	 * ------
1098 	 * The device's Bus ID is simply the object name.
1099 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1100 	 */
1101 	if (ACPI_IS_ROOT_DEVICE(device)) {
1102 		strcpy(device->pnp.bus_id, "ACPI");
1103 		return;
1104 	}
1105 
1106 	switch (device->device_type) {
1107 	case ACPI_BUS_TYPE_POWER_BUTTON:
1108 		strcpy(device->pnp.bus_id, "PWRF");
1109 		break;
1110 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1111 		strcpy(device->pnp.bus_id, "SLPF");
1112 		break;
1113 	case ACPI_BUS_TYPE_ECDT_EC:
1114 		strcpy(device->pnp.bus_id, "ECDT");
1115 		break;
1116 	default:
1117 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1118 		/* Clean up trailing underscores (if any) */
1119 		for (i = 3; i > 1; i--) {
1120 			if (bus_id[i] == '_')
1121 				bus_id[i] = '\0';
1122 			else
1123 				break;
1124 		}
1125 		strcpy(device->pnp.bus_id, bus_id);
1126 		break;
1127 	}
1128 }
1129 
1130 /*
1131  * acpi_ata_match - see if an acpi object is an ATA device
1132  *
1133  * If an acpi object has one of the ACPI ATA methods defined,
1134  * then we can safely call it an ATA device.
1135  */
1136 bool acpi_ata_match(acpi_handle handle)
1137 {
1138 	return acpi_has_method(handle, "_GTF") ||
1139 	       acpi_has_method(handle, "_GTM") ||
1140 	       acpi_has_method(handle, "_STM") ||
1141 	       acpi_has_method(handle, "_SDD");
1142 }
1143 
1144 /*
1145  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1146  *
1147  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1148  * then we can safely call it an ejectable drive bay
1149  */
1150 bool acpi_bay_match(acpi_handle handle)
1151 {
1152 	acpi_handle phandle;
1153 
1154 	if (!acpi_has_method(handle, "_EJ0"))
1155 		return false;
1156 	if (acpi_ata_match(handle))
1157 		return true;
1158 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1159 		return false;
1160 
1161 	return acpi_ata_match(phandle);
1162 }
1163 
1164 bool acpi_device_is_battery(struct acpi_device *adev)
1165 {
1166 	struct acpi_hardware_id *hwid;
1167 
1168 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1169 		if (!strcmp("PNP0C0A", hwid->id))
1170 			return true;
1171 
1172 	return false;
1173 }
1174 
1175 static bool is_ejectable_bay(struct acpi_device *adev)
1176 {
1177 	acpi_handle handle = adev->handle;
1178 
1179 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1180 		return true;
1181 
1182 	return acpi_bay_match(handle);
1183 }
1184 
1185 /*
1186  * acpi_dock_match - see if an acpi object has a _DCK method
1187  */
1188 bool acpi_dock_match(acpi_handle handle)
1189 {
1190 	return acpi_has_method(handle, "_DCK");
1191 }
1192 
1193 static acpi_status
1194 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1195 			  void **return_value)
1196 {
1197 	long *cap = context;
1198 
1199 	if (acpi_has_method(handle, "_BCM") &&
1200 	    acpi_has_method(handle, "_BCL")) {
1201 		acpi_handle_debug(handle, "Found generic backlight support\n");
1202 		*cap |= ACPI_VIDEO_BACKLIGHT;
1203 		/* We have backlight support, no need to scan further */
1204 		return AE_CTRL_TERMINATE;
1205 	}
1206 	return 0;
1207 }
1208 
1209 /* Returns true if the ACPI object is a video device which can be
1210  * handled by video.ko.
1211  * The device will get a Linux specific CID added in scan.c to
1212  * identify the device as an ACPI graphics device
1213  * Be aware that the graphics device may not be physically present
1214  * Use acpi_video_get_capabilities() to detect general ACPI video
1215  * capabilities of present cards
1216  */
1217 long acpi_is_video_device(acpi_handle handle)
1218 {
1219 	long video_caps = 0;
1220 
1221 	/* Is this device able to support video switching ? */
1222 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1223 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1224 
1225 	/* Is this device able to retrieve a video ROM ? */
1226 	if (acpi_has_method(handle, "_ROM"))
1227 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1228 
1229 	/* Is this device able to configure which video head to be POSTed ? */
1230 	if (acpi_has_method(handle, "_VPO") &&
1231 	    acpi_has_method(handle, "_GPD") &&
1232 	    acpi_has_method(handle, "_SPD"))
1233 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1234 
1235 	/* Only check for backlight functionality if one of the above hit. */
1236 	if (video_caps)
1237 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1238 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1239 				    &video_caps, NULL);
1240 
1241 	return video_caps;
1242 }
1243 EXPORT_SYMBOL(acpi_is_video_device);
1244 
1245 const char *acpi_device_hid(struct acpi_device *device)
1246 {
1247 	struct acpi_hardware_id *hid;
1248 
1249 	if (list_empty(&device->pnp.ids))
1250 		return dummy_hid;
1251 
1252 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1253 	return hid->id;
1254 }
1255 EXPORT_SYMBOL(acpi_device_hid);
1256 
1257 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1258 {
1259 	struct acpi_hardware_id *id;
1260 
1261 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1262 	if (!id)
1263 		return;
1264 
1265 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1266 	if (!id->id) {
1267 		kfree(id);
1268 		return;
1269 	}
1270 
1271 	list_add_tail(&id->list, &pnp->ids);
1272 	pnp->type.hardware_id = 1;
1273 }
1274 
1275 /*
1276  * Old IBM workstations have a DSDT bug wherein the SMBus object
1277  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1278  * prefix.  Work around this.
1279  */
1280 static bool acpi_ibm_smbus_match(acpi_handle handle)
1281 {
1282 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1283 	struct acpi_buffer path = { sizeof(node_name), node_name };
1284 
1285 	if (!dmi_name_in_vendors("IBM"))
1286 		return false;
1287 
1288 	/* Look for SMBS object */
1289 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1290 	    strcmp("SMBS", path.pointer))
1291 		return false;
1292 
1293 	/* Does it have the necessary (but misnamed) methods? */
1294 	if (acpi_has_method(handle, "SBI") &&
1295 	    acpi_has_method(handle, "SBR") &&
1296 	    acpi_has_method(handle, "SBW"))
1297 		return true;
1298 
1299 	return false;
1300 }
1301 
1302 static bool acpi_object_is_system_bus(acpi_handle handle)
1303 {
1304 	acpi_handle tmp;
1305 
1306 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1307 	    tmp == handle)
1308 		return true;
1309 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1310 	    tmp == handle)
1311 		return true;
1312 
1313 	return false;
1314 }
1315 
1316 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1317 			     int device_type)
1318 {
1319 	struct acpi_device_info *info = NULL;
1320 	struct acpi_pnp_device_id_list *cid_list;
1321 	int i;
1322 
1323 	switch (device_type) {
1324 	case ACPI_BUS_TYPE_DEVICE:
1325 		if (handle == ACPI_ROOT_OBJECT) {
1326 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1327 			break;
1328 		}
1329 
1330 		acpi_get_object_info(handle, &info);
1331 		if (!info) {
1332 			pr_err("%s: Error reading device info\n", __func__);
1333 			return;
1334 		}
1335 
1336 		if (info->valid & ACPI_VALID_HID) {
1337 			acpi_add_id(pnp, info->hardware_id.string);
1338 			pnp->type.platform_id = 1;
1339 		}
1340 		if (info->valid & ACPI_VALID_CID) {
1341 			cid_list = &info->compatible_id_list;
1342 			for (i = 0; i < cid_list->count; i++)
1343 				acpi_add_id(pnp, cid_list->ids[i].string);
1344 		}
1345 		if (info->valid & ACPI_VALID_ADR) {
1346 			pnp->bus_address = info->address;
1347 			pnp->type.bus_address = 1;
1348 		}
1349 		if (info->valid & ACPI_VALID_UID)
1350 			pnp->unique_id = kstrdup(info->unique_id.string,
1351 							GFP_KERNEL);
1352 		if (info->valid & ACPI_VALID_CLS)
1353 			acpi_add_id(pnp, info->class_code.string);
1354 
1355 		kfree(info);
1356 
1357 		/*
1358 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1359 		 * synthetic HIDs to make sure drivers can find them.
1360 		 */
1361 		if (acpi_is_video_device(handle))
1362 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1363 		else if (acpi_bay_match(handle))
1364 			acpi_add_id(pnp, ACPI_BAY_HID);
1365 		else if (acpi_dock_match(handle))
1366 			acpi_add_id(pnp, ACPI_DOCK_HID);
1367 		else if (acpi_ibm_smbus_match(handle))
1368 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1369 		else if (list_empty(&pnp->ids) &&
1370 			 acpi_object_is_system_bus(handle)) {
1371 			/* \_SB, \_TZ, LNXSYBUS */
1372 			acpi_add_id(pnp, ACPI_BUS_HID);
1373 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1374 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1375 		}
1376 
1377 		break;
1378 	case ACPI_BUS_TYPE_POWER:
1379 		acpi_add_id(pnp, ACPI_POWER_HID);
1380 		break;
1381 	case ACPI_BUS_TYPE_PROCESSOR:
1382 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1383 		break;
1384 	case ACPI_BUS_TYPE_THERMAL:
1385 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1386 		break;
1387 	case ACPI_BUS_TYPE_POWER_BUTTON:
1388 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1389 		break;
1390 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1391 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1392 		break;
1393 	case ACPI_BUS_TYPE_ECDT_EC:
1394 		acpi_add_id(pnp, ACPI_ECDT_HID);
1395 		break;
1396 	}
1397 }
1398 
1399 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1400 {
1401 	struct acpi_hardware_id *id, *tmp;
1402 
1403 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1404 		kfree_const(id->id);
1405 		kfree(id);
1406 	}
1407 	kfree(pnp->unique_id);
1408 }
1409 
1410 /**
1411  * acpi_dma_supported - Check DMA support for the specified device.
1412  * @adev: The pointer to acpi device
1413  *
1414  * Return false if DMA is not supported. Otherwise, return true
1415  */
1416 bool acpi_dma_supported(const struct acpi_device *adev)
1417 {
1418 	if (!adev)
1419 		return false;
1420 
1421 	if (adev->flags.cca_seen)
1422 		return true;
1423 
1424 	/*
1425 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1426 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1427 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1428 	*/
1429 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1430 		return true;
1431 
1432 	return false;
1433 }
1434 
1435 /**
1436  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1437  * @adev: The pointer to acpi device
1438  *
1439  * Return enum dev_dma_attr.
1440  */
1441 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1442 {
1443 	if (!acpi_dma_supported(adev))
1444 		return DEV_DMA_NOT_SUPPORTED;
1445 
1446 	if (adev->flags.coherent_dma)
1447 		return DEV_DMA_COHERENT;
1448 	else
1449 		return DEV_DMA_NON_COHERENT;
1450 }
1451 
1452 /**
1453  * acpi_dma_get_range() - Get device DMA parameters.
1454  *
1455  * @dev: device to configure
1456  * @dma_addr: pointer device DMA address result
1457  * @offset: pointer to the DMA offset result
1458  * @size: pointer to DMA range size result
1459  *
1460  * Evaluate DMA regions and return respectively DMA region start, offset
1461  * and size in dma_addr, offset and size on parsing success; it does not
1462  * update the passed in values on failure.
1463  *
1464  * Return 0 on success, < 0 on failure.
1465  */
1466 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1467 		       u64 *size)
1468 {
1469 	struct acpi_device *adev;
1470 	LIST_HEAD(list);
1471 	struct resource_entry *rentry;
1472 	int ret;
1473 	struct device *dma_dev = dev;
1474 	u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1475 
1476 	/*
1477 	 * Walk the device tree chasing an ACPI companion with a _DMA
1478 	 * object while we go. Stop if we find a device with an ACPI
1479 	 * companion containing a _DMA method.
1480 	 */
1481 	do {
1482 		adev = ACPI_COMPANION(dma_dev);
1483 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1484 			break;
1485 
1486 		dma_dev = dma_dev->parent;
1487 	} while (dma_dev);
1488 
1489 	if (!dma_dev)
1490 		return -ENODEV;
1491 
1492 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1493 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1494 		return -EINVAL;
1495 	}
1496 
1497 	ret = acpi_dev_get_dma_resources(adev, &list);
1498 	if (ret > 0) {
1499 		list_for_each_entry(rentry, &list, node) {
1500 			if (dma_offset && rentry->offset != dma_offset) {
1501 				ret = -EINVAL;
1502 				dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1503 				goto out;
1504 			}
1505 			dma_offset = rentry->offset;
1506 
1507 			/* Take lower and upper limits */
1508 			if (rentry->res->start < dma_start)
1509 				dma_start = rentry->res->start;
1510 			if (rentry->res->end > dma_end)
1511 				dma_end = rentry->res->end;
1512 		}
1513 
1514 		if (dma_start >= dma_end) {
1515 			ret = -EINVAL;
1516 			dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1517 			goto out;
1518 		}
1519 
1520 		*dma_addr = dma_start - dma_offset;
1521 		len = dma_end - dma_start;
1522 		*size = max(len, len + 1);
1523 		*offset = dma_offset;
1524 	}
1525  out:
1526 	acpi_dev_free_resource_list(&list);
1527 
1528 	return ret >= 0 ? 0 : ret;
1529 }
1530 
1531 #ifdef CONFIG_IOMMU_API
1532 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1533 			   struct fwnode_handle *fwnode,
1534 			   const struct iommu_ops *ops)
1535 {
1536 	int ret = iommu_fwspec_init(dev, fwnode, ops);
1537 
1538 	if (!ret)
1539 		ret = iommu_fwspec_add_ids(dev, &id, 1);
1540 
1541 	return ret;
1542 }
1543 
1544 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1545 {
1546 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1547 
1548 	return fwspec ? fwspec->ops : NULL;
1549 }
1550 
1551 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1552 						       const u32 *id_in)
1553 {
1554 	int err;
1555 	const struct iommu_ops *ops;
1556 
1557 	/*
1558 	 * If we already translated the fwspec there is nothing left to do,
1559 	 * return the iommu_ops.
1560 	 */
1561 	ops = acpi_iommu_fwspec_ops(dev);
1562 	if (ops)
1563 		return ops;
1564 
1565 	err = iort_iommu_configure_id(dev, id_in);
1566 	if (err && err != -EPROBE_DEFER)
1567 		err = viot_iommu_configure(dev);
1568 
1569 	/*
1570 	 * If we have reason to believe the IOMMU driver missed the initial
1571 	 * iommu_probe_device() call for dev, replay it to get things in order.
1572 	 */
1573 	if (!err && dev->bus && !device_iommu_mapped(dev))
1574 		err = iommu_probe_device(dev);
1575 
1576 	/* Ignore all other errors apart from EPROBE_DEFER */
1577 	if (err == -EPROBE_DEFER) {
1578 		return ERR_PTR(err);
1579 	} else if (err) {
1580 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1581 		return NULL;
1582 	}
1583 	return acpi_iommu_fwspec_ops(dev);
1584 }
1585 
1586 #else /* !CONFIG_IOMMU_API */
1587 
1588 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1589 			   struct fwnode_handle *fwnode,
1590 			   const struct iommu_ops *ops)
1591 {
1592 	return -ENODEV;
1593 }
1594 
1595 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1596 						       const u32 *id_in)
1597 {
1598 	return NULL;
1599 }
1600 
1601 #endif /* !CONFIG_IOMMU_API */
1602 
1603 /**
1604  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1605  * @dev: The pointer to the device
1606  * @attr: device dma attributes
1607  * @input_id: input device id const value pointer
1608  */
1609 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1610 			  const u32 *input_id)
1611 {
1612 	const struct iommu_ops *iommu;
1613 	u64 dma_addr = 0, size = 0;
1614 
1615 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1616 		set_dma_ops(dev, &dma_dummy_ops);
1617 		return 0;
1618 	}
1619 
1620 	acpi_arch_dma_setup(dev, &dma_addr, &size);
1621 
1622 	iommu = acpi_iommu_configure_id(dev, input_id);
1623 	if (PTR_ERR(iommu) == -EPROBE_DEFER)
1624 		return -EPROBE_DEFER;
1625 
1626 	arch_setup_dma_ops(dev, dma_addr, size,
1627 				iommu, attr == DEV_DMA_COHERENT);
1628 
1629 	return 0;
1630 }
1631 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1632 
1633 static void acpi_init_coherency(struct acpi_device *adev)
1634 {
1635 	unsigned long long cca = 0;
1636 	acpi_status status;
1637 	struct acpi_device *parent = adev->parent;
1638 
1639 	if (parent && parent->flags.cca_seen) {
1640 		/*
1641 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1642 		 * already saw one.
1643 		 */
1644 		adev->flags.cca_seen = 1;
1645 		cca = parent->flags.coherent_dma;
1646 	} else {
1647 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1648 					       NULL, &cca);
1649 		if (ACPI_SUCCESS(status))
1650 			adev->flags.cca_seen = 1;
1651 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1652 			/*
1653 			 * If architecture does not specify that _CCA is
1654 			 * required for DMA-able devices (e.g. x86),
1655 			 * we default to _CCA=1.
1656 			 */
1657 			cca = 1;
1658 		else
1659 			acpi_handle_debug(adev->handle,
1660 					  "ACPI device is missing _CCA.\n");
1661 	}
1662 
1663 	adev->flags.coherent_dma = cca;
1664 }
1665 
1666 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1667 {
1668 	bool *is_serial_bus_slave_p = data;
1669 
1670 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1671 		return 1;
1672 
1673 	*is_serial_bus_slave_p = true;
1674 
1675 	 /* no need to do more checking */
1676 	return -1;
1677 }
1678 
1679 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1680 {
1681 	struct acpi_device *parent = device->parent;
1682 	static const struct acpi_device_id indirect_io_hosts[] = {
1683 		{"HISI0191", 0},
1684 		{}
1685 	};
1686 
1687 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1688 }
1689 
1690 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1691 {
1692 	struct list_head resource_list;
1693 	bool is_serial_bus_slave = false;
1694 	/*
1695 	 * These devices have multiple I2cSerialBus resources and an i2c-client
1696 	 * must be instantiated for each, each with its own i2c_device_id.
1697 	 * Normally we only instantiate an i2c-client for the first resource,
1698 	 * using the ACPI HID as id. These special cases are handled by the
1699 	 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows
1700 	 * which i2c_device_id to use for each resource.
1701 	 */
1702 	static const struct acpi_device_id i2c_multi_instantiate_ids[] = {
1703 		{"BSG1160", },
1704 		{"BSG2150", },
1705 		{"INT33FE", },
1706 		{"INT3515", },
1707 		{}
1708 	};
1709 
1710 	if (acpi_is_indirect_io_slave(device))
1711 		return true;
1712 
1713 	/* Macs use device properties in lieu of _CRS resources */
1714 	if (x86_apple_machine &&
1715 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1716 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1717 	     fwnode_property_present(&device->fwnode, "baud")))
1718 		return true;
1719 
1720 	/* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */
1721 	if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids))
1722 		return false;
1723 
1724 	INIT_LIST_HEAD(&resource_list);
1725 	acpi_dev_get_resources(device, &resource_list,
1726 			       acpi_check_serial_bus_slave,
1727 			       &is_serial_bus_slave);
1728 	acpi_dev_free_resource_list(&resource_list);
1729 
1730 	return is_serial_bus_slave;
1731 }
1732 
1733 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1734 			     int type)
1735 {
1736 	INIT_LIST_HEAD(&device->pnp.ids);
1737 	device->device_type = type;
1738 	device->handle = handle;
1739 	device->parent = acpi_bus_get_parent(handle);
1740 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1741 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1742 	acpi_device_get_busid(device);
1743 	acpi_set_pnp_ids(handle, &device->pnp, type);
1744 	acpi_init_properties(device);
1745 	acpi_bus_get_flags(device);
1746 	device->flags.match_driver = false;
1747 	device->flags.initialized = true;
1748 	device->flags.enumeration_by_parent =
1749 		acpi_device_enumeration_by_parent(device);
1750 	acpi_device_clear_enumerated(device);
1751 	device_initialize(&device->dev);
1752 	dev_set_uevent_suppress(&device->dev, true);
1753 	acpi_init_coherency(device);
1754 }
1755 
1756 static void acpi_scan_dep_init(struct acpi_device *adev)
1757 {
1758 	struct acpi_dep_data *dep;
1759 
1760 	list_for_each_entry(dep, &acpi_dep_list, node) {
1761 		if (dep->consumer == adev->handle)
1762 			adev->dep_unmet++;
1763 	}
1764 }
1765 
1766 void acpi_device_add_finalize(struct acpi_device *device)
1767 {
1768 	dev_set_uevent_suppress(&device->dev, false);
1769 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1770 }
1771 
1772 static void acpi_scan_init_status(struct acpi_device *adev)
1773 {
1774 	if (acpi_bus_get_status(adev))
1775 		acpi_set_device_status(adev, 0);
1776 }
1777 
1778 static int acpi_add_single_object(struct acpi_device **child,
1779 				  acpi_handle handle, int type, bool dep_init)
1780 {
1781 	struct acpi_device *device;
1782 	bool release_dep_lock = false;
1783 	int result;
1784 
1785 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1786 	if (!device)
1787 		return -ENOMEM;
1788 
1789 	acpi_init_device_object(device, handle, type);
1790 	/*
1791 	 * Getting the status is delayed till here so that we can call
1792 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1793 	 * this must be done before the get power-/wakeup_dev-flags calls.
1794 	 */
1795 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1796 		if (dep_init) {
1797 			mutex_lock(&acpi_dep_list_lock);
1798 			/*
1799 			 * Hold the lock until the acpi_tie_acpi_dev() call
1800 			 * below to prevent concurrent acpi_scan_clear_dep()
1801 			 * from deleting a dependency list entry without
1802 			 * updating dep_unmet for the device.
1803 			 */
1804 			release_dep_lock = true;
1805 			acpi_scan_dep_init(device);
1806 		}
1807 		acpi_scan_init_status(device);
1808 	}
1809 
1810 	acpi_bus_get_power_flags(device);
1811 	acpi_bus_get_wakeup_device_flags(device);
1812 
1813 	result = acpi_tie_acpi_dev(device);
1814 
1815 	if (release_dep_lock)
1816 		mutex_unlock(&acpi_dep_list_lock);
1817 
1818 	if (!result)
1819 		result = __acpi_device_add(device, acpi_device_release);
1820 
1821 	if (result) {
1822 		acpi_device_release(&device->dev);
1823 		return result;
1824 	}
1825 
1826 	acpi_power_add_remove_device(device, true);
1827 	acpi_device_add_finalize(device);
1828 
1829 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1830 			  dev_name(&device->dev), device->parent ?
1831 				dev_name(&device->parent->dev) : "(null)");
1832 
1833 	*child = device;
1834 	return 0;
1835 }
1836 
1837 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1838 					    void *context)
1839 {
1840 	struct resource *res = context;
1841 
1842 	if (acpi_dev_resource_memory(ares, res))
1843 		return AE_CTRL_TERMINATE;
1844 
1845 	return AE_OK;
1846 }
1847 
1848 static bool acpi_device_should_be_hidden(acpi_handle handle)
1849 {
1850 	acpi_status status;
1851 	struct resource res;
1852 
1853 	/* Check if it should ignore the UART device */
1854 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1855 		return false;
1856 
1857 	/*
1858 	 * The UART device described in SPCR table is assumed to have only one
1859 	 * memory resource present. So we only look for the first one here.
1860 	 */
1861 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1862 				     acpi_get_resource_memory, &res);
1863 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1864 		return false;
1865 
1866 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1867 			 &res.start);
1868 
1869 	return true;
1870 }
1871 
1872 bool acpi_device_is_present(const struct acpi_device *adev)
1873 {
1874 	return adev->status.present || adev->status.functional;
1875 }
1876 
1877 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1878 				       const char *idstr,
1879 				       const struct acpi_device_id **matchid)
1880 {
1881 	const struct acpi_device_id *devid;
1882 
1883 	if (handler->match)
1884 		return handler->match(idstr, matchid);
1885 
1886 	for (devid = handler->ids; devid->id[0]; devid++)
1887 		if (!strcmp((char *)devid->id, idstr)) {
1888 			if (matchid)
1889 				*matchid = devid;
1890 
1891 			return true;
1892 		}
1893 
1894 	return false;
1895 }
1896 
1897 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1898 					const struct acpi_device_id **matchid)
1899 {
1900 	struct acpi_scan_handler *handler;
1901 
1902 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1903 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1904 			return handler;
1905 
1906 	return NULL;
1907 }
1908 
1909 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1910 {
1911 	if (!!hotplug->enabled == !!val)
1912 		return;
1913 
1914 	mutex_lock(&acpi_scan_lock);
1915 
1916 	hotplug->enabled = val;
1917 
1918 	mutex_unlock(&acpi_scan_lock);
1919 }
1920 
1921 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1922 {
1923 	struct acpi_hardware_id *hwid;
1924 
1925 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1926 		acpi_dock_add(adev);
1927 		return;
1928 	}
1929 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1930 		struct acpi_scan_handler *handler;
1931 
1932 		handler = acpi_scan_match_handler(hwid->id, NULL);
1933 		if (handler) {
1934 			adev->flags.hotplug_notify = true;
1935 			break;
1936 		}
1937 	}
1938 }
1939 
1940 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1941 {
1942 	struct acpi_handle_list dep_devices;
1943 	acpi_status status;
1944 	u32 count;
1945 	int i;
1946 
1947 	/*
1948 	 * Check for _HID here to avoid deferring the enumeration of:
1949 	 * 1. PCI devices.
1950 	 * 2. ACPI nodes describing USB ports.
1951 	 * Still, checking for _HID catches more then just these cases ...
1952 	 */
1953 	if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1954 	    !acpi_has_method(handle, "_HID"))
1955 		return 0;
1956 
1957 	status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1958 	if (ACPI_FAILURE(status)) {
1959 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1960 		return 0;
1961 	}
1962 
1963 	for (count = 0, i = 0; i < dep_devices.count; i++) {
1964 		struct acpi_device_info *info;
1965 		struct acpi_dep_data *dep;
1966 		bool skip;
1967 
1968 		status = acpi_get_object_info(dep_devices.handles[i], &info);
1969 		if (ACPI_FAILURE(status)) {
1970 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
1971 			continue;
1972 		}
1973 
1974 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
1975 		kfree(info);
1976 
1977 		if (skip)
1978 			continue;
1979 
1980 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
1981 		if (!dep)
1982 			continue;
1983 
1984 		count++;
1985 
1986 		dep->supplier = dep_devices.handles[i];
1987 		dep->consumer = handle;
1988 
1989 		mutex_lock(&acpi_dep_list_lock);
1990 		list_add_tail(&dep->node , &acpi_dep_list);
1991 		mutex_unlock(&acpi_dep_list_lock);
1992 	}
1993 
1994 	return count;
1995 }
1996 
1997 static bool acpi_bus_scan_second_pass;
1998 
1999 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2000 				      struct acpi_device **adev_p)
2001 {
2002 	struct acpi_device *device = NULL;
2003 	acpi_object_type acpi_type;
2004 	int type;
2005 
2006 	acpi_bus_get_device(handle, &device);
2007 	if (device)
2008 		goto out;
2009 
2010 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2011 		return AE_OK;
2012 
2013 	switch (acpi_type) {
2014 	case ACPI_TYPE_DEVICE:
2015 		if (acpi_device_should_be_hidden(handle))
2016 			return AE_OK;
2017 
2018 		/* Bail out if there are dependencies. */
2019 		if (acpi_scan_check_dep(handle, check_dep) > 0) {
2020 			acpi_bus_scan_second_pass = true;
2021 			return AE_CTRL_DEPTH;
2022 		}
2023 
2024 		fallthrough;
2025 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2026 		type = ACPI_BUS_TYPE_DEVICE;
2027 		break;
2028 
2029 	case ACPI_TYPE_PROCESSOR:
2030 		type = ACPI_BUS_TYPE_PROCESSOR;
2031 		break;
2032 
2033 	case ACPI_TYPE_THERMAL:
2034 		type = ACPI_BUS_TYPE_THERMAL;
2035 		break;
2036 
2037 	case ACPI_TYPE_POWER:
2038 		acpi_add_power_resource(handle);
2039 		fallthrough;
2040 	default:
2041 		return AE_OK;
2042 	}
2043 
2044 	/*
2045 	 * If check_dep is true at this point, the device has no dependencies,
2046 	 * or the creation of the device object would have been postponed above.
2047 	 */
2048 	acpi_add_single_object(&device, handle, type, !check_dep);
2049 	if (!device)
2050 		return AE_CTRL_DEPTH;
2051 
2052 	acpi_scan_init_hotplug(device);
2053 
2054 out:
2055 	if (!*adev_p)
2056 		*adev_p = device;
2057 
2058 	return AE_OK;
2059 }
2060 
2061 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2062 					void *not_used, void **ret_p)
2063 {
2064 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2065 }
2066 
2067 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2068 					void *not_used, void **ret_p)
2069 {
2070 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2071 }
2072 
2073 static void acpi_default_enumeration(struct acpi_device *device)
2074 {
2075 	/*
2076 	 * Do not enumerate devices with enumeration_by_parent flag set as
2077 	 * they will be enumerated by their respective parents.
2078 	 */
2079 	if (!device->flags.enumeration_by_parent) {
2080 		acpi_create_platform_device(device, NULL);
2081 		acpi_device_set_enumerated(device);
2082 	} else {
2083 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2084 					     ACPI_RECONFIG_DEVICE_ADD, device);
2085 	}
2086 }
2087 
2088 static const struct acpi_device_id generic_device_ids[] = {
2089 	{ACPI_DT_NAMESPACE_HID, },
2090 	{"", },
2091 };
2092 
2093 static int acpi_generic_device_attach(struct acpi_device *adev,
2094 				      const struct acpi_device_id *not_used)
2095 {
2096 	/*
2097 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2098 	 * below can be unconditional.
2099 	 */
2100 	if (adev->data.of_compatible)
2101 		acpi_default_enumeration(adev);
2102 
2103 	return 1;
2104 }
2105 
2106 static struct acpi_scan_handler generic_device_handler = {
2107 	.ids = generic_device_ids,
2108 	.attach = acpi_generic_device_attach,
2109 };
2110 
2111 static int acpi_scan_attach_handler(struct acpi_device *device)
2112 {
2113 	struct acpi_hardware_id *hwid;
2114 	int ret = 0;
2115 
2116 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2117 		const struct acpi_device_id *devid;
2118 		struct acpi_scan_handler *handler;
2119 
2120 		handler = acpi_scan_match_handler(hwid->id, &devid);
2121 		if (handler) {
2122 			if (!handler->attach) {
2123 				device->pnp.type.platform_id = 0;
2124 				continue;
2125 			}
2126 			device->handler = handler;
2127 			ret = handler->attach(device, devid);
2128 			if (ret > 0)
2129 				break;
2130 
2131 			device->handler = NULL;
2132 			if (ret < 0)
2133 				break;
2134 		}
2135 	}
2136 
2137 	return ret;
2138 }
2139 
2140 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2141 {
2142 	struct acpi_device *child;
2143 	bool skip = !first_pass && device->flags.visited;
2144 	acpi_handle ejd;
2145 	int ret;
2146 
2147 	if (skip)
2148 		goto ok;
2149 
2150 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2151 		register_dock_dependent_device(device, ejd);
2152 
2153 	acpi_bus_get_status(device);
2154 	/* Skip devices that are not present. */
2155 	if (!acpi_device_is_present(device)) {
2156 		device->flags.initialized = false;
2157 		acpi_device_clear_enumerated(device);
2158 		device->flags.power_manageable = 0;
2159 		return;
2160 	}
2161 	if (device->handler)
2162 		goto ok;
2163 
2164 	if (!device->flags.initialized) {
2165 		device->flags.power_manageable =
2166 			device->power.states[ACPI_STATE_D0].flags.valid;
2167 		if (acpi_bus_init_power(device))
2168 			device->flags.power_manageable = 0;
2169 
2170 		device->flags.initialized = true;
2171 	} else if (device->flags.visited) {
2172 		goto ok;
2173 	}
2174 
2175 	ret = acpi_scan_attach_handler(device);
2176 	if (ret < 0)
2177 		return;
2178 
2179 	device->flags.match_driver = true;
2180 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2181 		acpi_device_set_enumerated(device);
2182 		goto ok;
2183 	}
2184 
2185 	ret = device_attach(&device->dev);
2186 	if (ret < 0)
2187 		return;
2188 
2189 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2190 		acpi_default_enumeration(device);
2191 	else
2192 		acpi_device_set_enumerated(device);
2193 
2194  ok:
2195 	list_for_each_entry(child, &device->children, node)
2196 		acpi_bus_attach(child, first_pass);
2197 
2198 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2199 		device->handler->hotplug.notify_online(device);
2200 }
2201 
2202 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2203 {
2204 	struct acpi_device *adev;
2205 
2206 	adev = acpi_bus_get_acpi_device(dep->consumer);
2207 	if (adev) {
2208 		*(struct acpi_device **)data = adev;
2209 		return 1;
2210 	}
2211 	/* Continue parsing if the device object is not present. */
2212 	return 0;
2213 }
2214 
2215 struct acpi_scan_clear_dep_work {
2216 	struct work_struct work;
2217 	struct acpi_device *adev;
2218 };
2219 
2220 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2221 {
2222 	struct acpi_scan_clear_dep_work *cdw;
2223 
2224 	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2225 
2226 	acpi_scan_lock_acquire();
2227 	acpi_bus_attach(cdw->adev, true);
2228 	acpi_scan_lock_release();
2229 
2230 	acpi_dev_put(cdw->adev);
2231 	kfree(cdw);
2232 }
2233 
2234 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2235 {
2236 	struct acpi_scan_clear_dep_work *cdw;
2237 
2238 	if (adev->dep_unmet)
2239 		return false;
2240 
2241 	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2242 	if (!cdw)
2243 		return false;
2244 
2245 	cdw->adev = adev;
2246 	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2247 	/*
2248 	 * Since the work function may block on the lock until the entire
2249 	 * initial enumeration of devices is complete, put it into the unbound
2250 	 * workqueue.
2251 	 */
2252 	queue_work(system_unbound_wq, &cdw->work);
2253 
2254 	return true;
2255 }
2256 
2257 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2258 {
2259 	struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2260 
2261 	if (adev) {
2262 		adev->dep_unmet--;
2263 		if (!acpi_scan_clear_dep_queue(adev))
2264 			acpi_dev_put(adev);
2265 	}
2266 
2267 	list_del(&dep->node);
2268 	kfree(dep);
2269 
2270 	return 0;
2271 }
2272 
2273 /**
2274  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2275  * @handle:	The ACPI handle of the supplier device
2276  * @callback:	Pointer to the callback function to apply
2277  * @data:	Pointer to some data to pass to the callback
2278  *
2279  * The return value of the callback determines this function's behaviour. If 0
2280  * is returned we continue to iterate over acpi_dep_list. If a positive value
2281  * is returned then the loop is broken but this function returns 0. If a
2282  * negative value is returned by the callback then the loop is broken and that
2283  * value is returned as the final error.
2284  */
2285 static int acpi_walk_dep_device_list(acpi_handle handle,
2286 				int (*callback)(struct acpi_dep_data *, void *),
2287 				void *data)
2288 {
2289 	struct acpi_dep_data *dep, *tmp;
2290 	int ret = 0;
2291 
2292 	mutex_lock(&acpi_dep_list_lock);
2293 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2294 		if (dep->supplier == handle) {
2295 			ret = callback(dep, data);
2296 			if (ret)
2297 				break;
2298 		}
2299 	}
2300 	mutex_unlock(&acpi_dep_list_lock);
2301 
2302 	return ret > 0 ? 0 : ret;
2303 }
2304 
2305 /**
2306  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2307  * @supplier: Pointer to the supplier &struct acpi_device
2308  *
2309  * Clear dependencies on the given device.
2310  */
2311 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2312 {
2313 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2314 }
2315 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2316 
2317 /**
2318  * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2319  * @supplier: Pointer to the dependee device
2320  *
2321  * Returns the first &struct acpi_device which declares itself dependent on
2322  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2323  *
2324  * The caller is responsible for putting the reference to adev when it is no
2325  * longer needed.
2326  */
2327 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2328 {
2329 	struct acpi_device *adev = NULL;
2330 
2331 	acpi_walk_dep_device_list(supplier->handle,
2332 				  acpi_dev_get_first_consumer_dev_cb, &adev);
2333 
2334 	return adev;
2335 }
2336 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2337 
2338 /**
2339  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2340  * @handle: Root of the namespace scope to scan.
2341  *
2342  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2343  * found devices.
2344  *
2345  * If no devices were found, -ENODEV is returned, but it does not mean that
2346  * there has been a real error.  There just have been no suitable ACPI objects
2347  * in the table trunk from which the kernel could create a device and add an
2348  * appropriate driver.
2349  *
2350  * Must be called under acpi_scan_lock.
2351  */
2352 int acpi_bus_scan(acpi_handle handle)
2353 {
2354 	struct acpi_device *device = NULL;
2355 
2356 	acpi_bus_scan_second_pass = false;
2357 
2358 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2359 
2360 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2361 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2362 				    acpi_bus_check_add_1, NULL, NULL,
2363 				    (void **)&device);
2364 
2365 	if (!device)
2366 		return -ENODEV;
2367 
2368 	acpi_bus_attach(device, true);
2369 
2370 	if (!acpi_bus_scan_second_pass)
2371 		return 0;
2372 
2373 	/* Pass 2: Enumerate all of the remaining devices. */
2374 
2375 	device = NULL;
2376 
2377 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2378 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2379 				    acpi_bus_check_add_2, NULL, NULL,
2380 				    (void **)&device);
2381 
2382 	acpi_bus_attach(device, false);
2383 
2384 	return 0;
2385 }
2386 EXPORT_SYMBOL(acpi_bus_scan);
2387 
2388 /**
2389  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2390  * @adev: Root of the ACPI namespace scope to walk.
2391  *
2392  * Must be called under acpi_scan_lock.
2393  */
2394 void acpi_bus_trim(struct acpi_device *adev)
2395 {
2396 	struct acpi_scan_handler *handler = adev->handler;
2397 	struct acpi_device *child;
2398 
2399 	list_for_each_entry_reverse(child, &adev->children, node)
2400 		acpi_bus_trim(child);
2401 
2402 	adev->flags.match_driver = false;
2403 	if (handler) {
2404 		if (handler->detach)
2405 			handler->detach(adev);
2406 
2407 		adev->handler = NULL;
2408 	} else {
2409 		device_release_driver(&adev->dev);
2410 	}
2411 	/*
2412 	 * Most likely, the device is going away, so put it into D3cold before
2413 	 * that.
2414 	 */
2415 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2416 	adev->flags.initialized = false;
2417 	acpi_device_clear_enumerated(adev);
2418 }
2419 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2420 
2421 int acpi_bus_register_early_device(int type)
2422 {
2423 	struct acpi_device *device = NULL;
2424 	int result;
2425 
2426 	result = acpi_add_single_object(&device, NULL, type, false);
2427 	if (result)
2428 		return result;
2429 
2430 	device->flags.match_driver = true;
2431 	return device_attach(&device->dev);
2432 }
2433 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2434 
2435 static int acpi_bus_scan_fixed(void)
2436 {
2437 	int result = 0;
2438 
2439 	/*
2440 	 * Enumerate all fixed-feature devices.
2441 	 */
2442 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2443 		struct acpi_device *device = NULL;
2444 
2445 		result = acpi_add_single_object(&device, NULL,
2446 						ACPI_BUS_TYPE_POWER_BUTTON, false);
2447 		if (result)
2448 			return result;
2449 
2450 		device->flags.match_driver = true;
2451 		result = device_attach(&device->dev);
2452 		if (result < 0)
2453 			return result;
2454 
2455 		device_init_wakeup(&device->dev, true);
2456 	}
2457 
2458 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2459 		struct acpi_device *device = NULL;
2460 
2461 		result = acpi_add_single_object(&device, NULL,
2462 						ACPI_BUS_TYPE_SLEEP_BUTTON, false);
2463 		if (result)
2464 			return result;
2465 
2466 		device->flags.match_driver = true;
2467 		result = device_attach(&device->dev);
2468 	}
2469 
2470 	return result < 0 ? result : 0;
2471 }
2472 
2473 static void __init acpi_get_spcr_uart_addr(void)
2474 {
2475 	acpi_status status;
2476 	struct acpi_table_spcr *spcr_ptr;
2477 
2478 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2479 				(struct acpi_table_header **)&spcr_ptr);
2480 	if (ACPI_FAILURE(status)) {
2481 		pr_warn("STAO table present, but SPCR is missing\n");
2482 		return;
2483 	}
2484 
2485 	spcr_uart_addr = spcr_ptr->serial_port.address;
2486 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2487 }
2488 
2489 static bool acpi_scan_initialized;
2490 
2491 int __init acpi_scan_init(void)
2492 {
2493 	int result;
2494 	acpi_status status;
2495 	struct acpi_table_stao *stao_ptr;
2496 
2497 	acpi_pci_root_init();
2498 	acpi_pci_link_init();
2499 	acpi_processor_init();
2500 	acpi_platform_init();
2501 	acpi_lpss_init();
2502 	acpi_apd_init();
2503 	acpi_cmos_rtc_init();
2504 	acpi_container_init();
2505 	acpi_memory_hotplug_init();
2506 	acpi_watchdog_init();
2507 	acpi_pnp_init();
2508 	acpi_int340x_thermal_init();
2509 	acpi_amba_init();
2510 	acpi_init_lpit();
2511 
2512 	acpi_scan_add_handler(&generic_device_handler);
2513 
2514 	/*
2515 	 * If there is STAO table, check whether it needs to ignore the UART
2516 	 * device in SPCR table.
2517 	 */
2518 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2519 				(struct acpi_table_header **)&stao_ptr);
2520 	if (ACPI_SUCCESS(status)) {
2521 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2522 			pr_info("STAO Name List not yet supported.\n");
2523 
2524 		if (stao_ptr->ignore_uart)
2525 			acpi_get_spcr_uart_addr();
2526 
2527 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2528 	}
2529 
2530 	acpi_gpe_apply_masked_gpes();
2531 	acpi_update_all_gpes();
2532 
2533 	/*
2534 	 * Although we call __add_memory() that is documented to require the
2535 	 * device_hotplug_lock, it is not necessary here because this is an
2536 	 * early code when userspace or any other code path cannot trigger
2537 	 * hotplug/hotunplug operations.
2538 	 */
2539 	mutex_lock(&acpi_scan_lock);
2540 	/*
2541 	 * Enumerate devices in the ACPI namespace.
2542 	 */
2543 	result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2544 	if (result)
2545 		goto out;
2546 
2547 	result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2548 	if (result)
2549 		goto out;
2550 
2551 	/* Fixed feature devices do not exist on HW-reduced platform */
2552 	if (!acpi_gbl_reduced_hardware) {
2553 		result = acpi_bus_scan_fixed();
2554 		if (result) {
2555 			acpi_detach_data(acpi_root->handle,
2556 					 acpi_scan_drop_device);
2557 			acpi_device_del(acpi_root);
2558 			acpi_bus_put_acpi_device(acpi_root);
2559 			goto out;
2560 		}
2561 	}
2562 
2563 	acpi_turn_off_unused_power_resources();
2564 
2565 	acpi_scan_initialized = true;
2566 
2567  out:
2568 	mutex_unlock(&acpi_scan_lock);
2569 	return result;
2570 }
2571 
2572 static struct acpi_probe_entry *ape;
2573 static int acpi_probe_count;
2574 static DEFINE_MUTEX(acpi_probe_mutex);
2575 
2576 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2577 				  const unsigned long end)
2578 {
2579 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2580 		if (!ape->probe_subtbl(header, end))
2581 			acpi_probe_count++;
2582 
2583 	return 0;
2584 }
2585 
2586 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2587 {
2588 	int count = 0;
2589 
2590 	if (acpi_disabled)
2591 		return 0;
2592 
2593 	mutex_lock(&acpi_probe_mutex);
2594 	for (ape = ap_head; nr; ape++, nr--) {
2595 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2596 			acpi_probe_count = 0;
2597 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2598 			count += acpi_probe_count;
2599 		} else {
2600 			int res;
2601 			res = acpi_table_parse(ape->id, ape->probe_table);
2602 			if (!res)
2603 				count++;
2604 		}
2605 	}
2606 	mutex_unlock(&acpi_probe_mutex);
2607 
2608 	return count;
2609 }
2610 
2611 static void acpi_table_events_fn(struct work_struct *work)
2612 {
2613 	acpi_scan_lock_acquire();
2614 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2615 	acpi_scan_lock_release();
2616 
2617 	kfree(work);
2618 }
2619 
2620 void acpi_scan_table_notify(void)
2621 {
2622 	struct work_struct *work;
2623 
2624 	if (!acpi_scan_initialized)
2625 		return;
2626 
2627 	work = kmalloc(sizeof(*work), GFP_KERNEL);
2628 	if (!work)
2629 		return;
2630 
2631 	INIT_WORK(work, acpi_table_events_fn);
2632 	schedule_work(work);
2633 }
2634 
2635 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2636 {
2637 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2638 }
2639 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2640 
2641 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2642 {
2643 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2644 }
2645 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2646