xref: /openbmc/linux/drivers/acpi/scan.c (revision 7fc96d71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 
24 #include "internal.h"
25 
26 extern struct acpi_device *acpi_root;
27 
28 #define ACPI_BUS_CLASS			"system_bus"
29 #define ACPI_BUS_HID			"LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME		"System Bus"
31 
32 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
33 
34 #define INVALID_ACPI_HANDLE	((acpi_handle)empty_zero_page)
35 
36 static const char *dummy_hid = "device";
37 
38 static LIST_HEAD(acpi_dep_list);
39 static DEFINE_MUTEX(acpi_dep_list_lock);
40 LIST_HEAD(acpi_bus_id_list);
41 static DEFINE_MUTEX(acpi_scan_lock);
42 static LIST_HEAD(acpi_scan_handlers_list);
43 DEFINE_MUTEX(acpi_device_lock);
44 LIST_HEAD(acpi_wakeup_device_list);
45 static DEFINE_MUTEX(acpi_hp_context_lock);
46 
47 /*
48  * The UART device described by the SPCR table is the only object which needs
49  * special-casing. Everything else is covered by ACPI namespace paths in STAO
50  * table.
51  */
52 static u64 spcr_uart_addr;
53 
54 void acpi_scan_lock_acquire(void)
55 {
56 	mutex_lock(&acpi_scan_lock);
57 }
58 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
59 
60 void acpi_scan_lock_release(void)
61 {
62 	mutex_unlock(&acpi_scan_lock);
63 }
64 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
65 
66 void acpi_lock_hp_context(void)
67 {
68 	mutex_lock(&acpi_hp_context_lock);
69 }
70 
71 void acpi_unlock_hp_context(void)
72 {
73 	mutex_unlock(&acpi_hp_context_lock);
74 }
75 
76 void acpi_initialize_hp_context(struct acpi_device *adev,
77 				struct acpi_hotplug_context *hp,
78 				int (*notify)(struct acpi_device *, u32),
79 				void (*uevent)(struct acpi_device *, u32))
80 {
81 	acpi_lock_hp_context();
82 	hp->notify = notify;
83 	hp->uevent = uevent;
84 	acpi_set_hp_context(adev, hp);
85 	acpi_unlock_hp_context();
86 }
87 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
88 
89 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
90 {
91 	if (!handler)
92 		return -EINVAL;
93 
94 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
95 	return 0;
96 }
97 
98 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
99 				       const char *hotplug_profile_name)
100 {
101 	int error;
102 
103 	error = acpi_scan_add_handler(handler);
104 	if (error)
105 		return error;
106 
107 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
108 	return 0;
109 }
110 
111 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
112 {
113 	struct acpi_device_physical_node *pn;
114 	bool offline = true;
115 	char *envp[] = { "EVENT=offline", NULL };
116 
117 	/*
118 	 * acpi_container_offline() calls this for all of the container's
119 	 * children under the container's physical_node_lock lock.
120 	 */
121 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
122 
123 	list_for_each_entry(pn, &adev->physical_node_list, node)
124 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
125 			if (uevent)
126 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
127 
128 			offline = false;
129 			break;
130 		}
131 
132 	mutex_unlock(&adev->physical_node_lock);
133 	return offline;
134 }
135 
136 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
137 				    void **ret_p)
138 {
139 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
140 	struct acpi_device_physical_node *pn;
141 	bool second_pass = (bool)data;
142 	acpi_status status = AE_OK;
143 
144 	if (!device)
145 		return AE_OK;
146 
147 	if (device->handler && !device->handler->hotplug.enabled) {
148 		*ret_p = &device->dev;
149 		return AE_SUPPORT;
150 	}
151 
152 	mutex_lock(&device->physical_node_lock);
153 
154 	list_for_each_entry(pn, &device->physical_node_list, node) {
155 		int ret;
156 
157 		if (second_pass) {
158 			/* Skip devices offlined by the first pass. */
159 			if (pn->put_online)
160 				continue;
161 		} else {
162 			pn->put_online = false;
163 		}
164 		ret = device_offline(pn->dev);
165 		if (ret >= 0) {
166 			pn->put_online = !ret;
167 		} else {
168 			*ret_p = pn->dev;
169 			if (second_pass) {
170 				status = AE_ERROR;
171 				break;
172 			}
173 		}
174 	}
175 
176 	mutex_unlock(&device->physical_node_lock);
177 
178 	return status;
179 }
180 
181 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
182 				   void **ret_p)
183 {
184 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
185 	struct acpi_device_physical_node *pn;
186 
187 	if (!device)
188 		return AE_OK;
189 
190 	mutex_lock(&device->physical_node_lock);
191 
192 	list_for_each_entry(pn, &device->physical_node_list, node)
193 		if (pn->put_online) {
194 			device_online(pn->dev);
195 			pn->put_online = false;
196 		}
197 
198 	mutex_unlock(&device->physical_node_lock);
199 
200 	return AE_OK;
201 }
202 
203 static int acpi_scan_try_to_offline(struct acpi_device *device)
204 {
205 	acpi_handle handle = device->handle;
206 	struct device *errdev = NULL;
207 	acpi_status status;
208 
209 	/*
210 	 * Carry out two passes here and ignore errors in the first pass,
211 	 * because if the devices in question are memory blocks and
212 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
213 	 * that the other blocks depend on, but it is not known in advance which
214 	 * block holds them.
215 	 *
216 	 * If the first pass is successful, the second one isn't needed, though.
217 	 */
218 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
219 				     NULL, acpi_bus_offline, (void *)false,
220 				     (void **)&errdev);
221 	if (status == AE_SUPPORT) {
222 		dev_warn(errdev, "Offline disabled.\n");
223 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
224 				    acpi_bus_online, NULL, NULL, NULL);
225 		return -EPERM;
226 	}
227 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
228 	if (errdev) {
229 		errdev = NULL;
230 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
231 				    NULL, acpi_bus_offline, (void *)true,
232 				    (void **)&errdev);
233 		if (!errdev)
234 			acpi_bus_offline(handle, 0, (void *)true,
235 					 (void **)&errdev);
236 
237 		if (errdev) {
238 			dev_warn(errdev, "Offline failed.\n");
239 			acpi_bus_online(handle, 0, NULL, NULL);
240 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
241 					    ACPI_UINT32_MAX, acpi_bus_online,
242 					    NULL, NULL, NULL);
243 			return -EBUSY;
244 		}
245 	}
246 	return 0;
247 }
248 
249 static int acpi_scan_hot_remove(struct acpi_device *device)
250 {
251 	acpi_handle handle = device->handle;
252 	unsigned long long sta;
253 	acpi_status status;
254 
255 	if (device->handler && device->handler->hotplug.demand_offline) {
256 		if (!acpi_scan_is_offline(device, true))
257 			return -EBUSY;
258 	} else {
259 		int error = acpi_scan_try_to_offline(device);
260 		if (error)
261 			return error;
262 	}
263 
264 	acpi_handle_debug(handle, "Ejecting\n");
265 
266 	acpi_bus_trim(device);
267 
268 	acpi_evaluate_lck(handle, 0);
269 	/*
270 	 * TBD: _EJD support.
271 	 */
272 	status = acpi_evaluate_ej0(handle);
273 	if (status == AE_NOT_FOUND)
274 		return -ENODEV;
275 	else if (ACPI_FAILURE(status))
276 		return -EIO;
277 
278 	/*
279 	 * Verify if eject was indeed successful.  If not, log an error
280 	 * message.  No need to call _OST since _EJ0 call was made OK.
281 	 */
282 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
283 	if (ACPI_FAILURE(status)) {
284 		acpi_handle_warn(handle,
285 			"Status check after eject failed (0x%x)\n", status);
286 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
287 		acpi_handle_warn(handle,
288 			"Eject incomplete - status 0x%llx\n", sta);
289 	}
290 
291 	return 0;
292 }
293 
294 static int acpi_scan_device_not_present(struct acpi_device *adev)
295 {
296 	if (!acpi_device_enumerated(adev)) {
297 		dev_warn(&adev->dev, "Still not present\n");
298 		return -EALREADY;
299 	}
300 	acpi_bus_trim(adev);
301 	return 0;
302 }
303 
304 static int acpi_scan_device_check(struct acpi_device *adev)
305 {
306 	int error;
307 
308 	acpi_bus_get_status(adev);
309 	if (adev->status.present || adev->status.functional) {
310 		/*
311 		 * This function is only called for device objects for which
312 		 * matching scan handlers exist.  The only situation in which
313 		 * the scan handler is not attached to this device object yet
314 		 * is when the device has just appeared (either it wasn't
315 		 * present at all before or it was removed and then added
316 		 * again).
317 		 */
318 		if (adev->handler) {
319 			dev_warn(&adev->dev, "Already enumerated\n");
320 			return -EALREADY;
321 		}
322 		error = acpi_bus_scan(adev->handle);
323 		if (error) {
324 			dev_warn(&adev->dev, "Namespace scan failure\n");
325 			return error;
326 		}
327 		if (!adev->handler) {
328 			dev_warn(&adev->dev, "Enumeration failure\n");
329 			error = -ENODEV;
330 		}
331 	} else {
332 		error = acpi_scan_device_not_present(adev);
333 	}
334 	return error;
335 }
336 
337 static int acpi_scan_bus_check(struct acpi_device *adev)
338 {
339 	struct acpi_scan_handler *handler = adev->handler;
340 	struct acpi_device *child;
341 	int error;
342 
343 	acpi_bus_get_status(adev);
344 	if (!(adev->status.present || adev->status.functional)) {
345 		acpi_scan_device_not_present(adev);
346 		return 0;
347 	}
348 	if (handler && handler->hotplug.scan_dependent)
349 		return handler->hotplug.scan_dependent(adev);
350 
351 	error = acpi_bus_scan(adev->handle);
352 	if (error) {
353 		dev_warn(&adev->dev, "Namespace scan failure\n");
354 		return error;
355 	}
356 	list_for_each_entry(child, &adev->children, node) {
357 		error = acpi_scan_bus_check(child);
358 		if (error)
359 			return error;
360 	}
361 	return 0;
362 }
363 
364 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
365 {
366 	switch (type) {
367 	case ACPI_NOTIFY_BUS_CHECK:
368 		return acpi_scan_bus_check(adev);
369 	case ACPI_NOTIFY_DEVICE_CHECK:
370 		return acpi_scan_device_check(adev);
371 	case ACPI_NOTIFY_EJECT_REQUEST:
372 	case ACPI_OST_EC_OSPM_EJECT:
373 		if (adev->handler && !adev->handler->hotplug.enabled) {
374 			dev_info(&adev->dev, "Eject disabled\n");
375 			return -EPERM;
376 		}
377 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
378 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
379 		return acpi_scan_hot_remove(adev);
380 	}
381 	return -EINVAL;
382 }
383 
384 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
385 {
386 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
387 	int error = -ENODEV;
388 
389 	lock_device_hotplug();
390 	mutex_lock(&acpi_scan_lock);
391 
392 	/*
393 	 * The device object's ACPI handle cannot become invalid as long as we
394 	 * are holding acpi_scan_lock, but it might have become invalid before
395 	 * that lock was acquired.
396 	 */
397 	if (adev->handle == INVALID_ACPI_HANDLE)
398 		goto err_out;
399 
400 	if (adev->flags.is_dock_station) {
401 		error = dock_notify(adev, src);
402 	} else if (adev->flags.hotplug_notify) {
403 		error = acpi_generic_hotplug_event(adev, src);
404 	} else {
405 		int (*notify)(struct acpi_device *, u32);
406 
407 		acpi_lock_hp_context();
408 		notify = adev->hp ? adev->hp->notify : NULL;
409 		acpi_unlock_hp_context();
410 		/*
411 		 * There may be additional notify handlers for device objects
412 		 * without the .event() callback, so ignore them here.
413 		 */
414 		if (notify)
415 			error = notify(adev, src);
416 		else
417 			goto out;
418 	}
419 	switch (error) {
420 	case 0:
421 		ost_code = ACPI_OST_SC_SUCCESS;
422 		break;
423 	case -EPERM:
424 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
425 		break;
426 	case -EBUSY:
427 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
428 		break;
429 	default:
430 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
431 		break;
432 	}
433 
434  err_out:
435 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
436 
437  out:
438 	acpi_bus_put_acpi_device(adev);
439 	mutex_unlock(&acpi_scan_lock);
440 	unlock_device_hotplug();
441 }
442 
443 static void acpi_free_power_resources_lists(struct acpi_device *device)
444 {
445 	int i;
446 
447 	if (device->wakeup.flags.valid)
448 		acpi_power_resources_list_free(&device->wakeup.resources);
449 
450 	if (!device->power.flags.power_resources)
451 		return;
452 
453 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
454 		struct acpi_device_power_state *ps = &device->power.states[i];
455 		acpi_power_resources_list_free(&ps->resources);
456 	}
457 }
458 
459 static void acpi_device_release(struct device *dev)
460 {
461 	struct acpi_device *acpi_dev = to_acpi_device(dev);
462 
463 	acpi_free_properties(acpi_dev);
464 	acpi_free_pnp_ids(&acpi_dev->pnp);
465 	acpi_free_power_resources_lists(acpi_dev);
466 	kfree(acpi_dev);
467 }
468 
469 static void acpi_device_del(struct acpi_device *device)
470 {
471 	struct acpi_device_bus_id *acpi_device_bus_id;
472 
473 	mutex_lock(&acpi_device_lock);
474 	if (device->parent)
475 		list_del(&device->node);
476 
477 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
478 		if (!strcmp(acpi_device_bus_id->bus_id,
479 			    acpi_device_hid(device))) {
480 			ida_free(&acpi_device_bus_id->instance_ida,
481 				 device->pnp.instance_no);
482 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
483 				list_del(&acpi_device_bus_id->node);
484 				kfree_const(acpi_device_bus_id->bus_id);
485 				kfree(acpi_device_bus_id);
486 			}
487 			break;
488 		}
489 
490 	list_del(&device->wakeup_list);
491 	mutex_unlock(&acpi_device_lock);
492 
493 	acpi_power_add_remove_device(device, false);
494 	acpi_device_remove_files(device);
495 	if (device->remove)
496 		device->remove(device);
497 
498 	device_del(&device->dev);
499 }
500 
501 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
502 
503 static LIST_HEAD(acpi_device_del_list);
504 static DEFINE_MUTEX(acpi_device_del_lock);
505 
506 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
507 {
508 	for (;;) {
509 		struct acpi_device *adev;
510 
511 		mutex_lock(&acpi_device_del_lock);
512 
513 		if (list_empty(&acpi_device_del_list)) {
514 			mutex_unlock(&acpi_device_del_lock);
515 			break;
516 		}
517 		adev = list_first_entry(&acpi_device_del_list,
518 					struct acpi_device, del_list);
519 		list_del(&adev->del_list);
520 
521 		mutex_unlock(&acpi_device_del_lock);
522 
523 		blocking_notifier_call_chain(&acpi_reconfig_chain,
524 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
525 
526 		acpi_device_del(adev);
527 		/*
528 		 * Drop references to all power resources that might have been
529 		 * used by the device.
530 		 */
531 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
532 		acpi_dev_put(adev);
533 	}
534 }
535 
536 /**
537  * acpi_scan_drop_device - Drop an ACPI device object.
538  * @handle: Handle of an ACPI namespace node, not used.
539  * @context: Address of the ACPI device object to drop.
540  *
541  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
542  * namespace node the device object pointed to by @context is attached to.
543  *
544  * The unregistration is carried out asynchronously to avoid running
545  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
546  * ensure the correct ordering (the device objects must be unregistered in the
547  * same order in which the corresponding namespace nodes are deleted).
548  */
549 static void acpi_scan_drop_device(acpi_handle handle, void *context)
550 {
551 	static DECLARE_WORK(work, acpi_device_del_work_fn);
552 	struct acpi_device *adev = context;
553 
554 	mutex_lock(&acpi_device_del_lock);
555 
556 	/*
557 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
558 	 * won't run after any hotplug work items submitted subsequently.  That
559 	 * prevents attempts to register device objects identical to those being
560 	 * deleted from happening concurrently (such attempts result from
561 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
562 	 * run after all of the work items submitted previously, which helps
563 	 * those work items to ensure that they are not accessing stale device
564 	 * objects.
565 	 */
566 	if (list_empty(&acpi_device_del_list))
567 		acpi_queue_hotplug_work(&work);
568 
569 	list_add_tail(&adev->del_list, &acpi_device_del_list);
570 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
571 	adev->handle = INVALID_ACPI_HANDLE;
572 
573 	mutex_unlock(&acpi_device_del_lock);
574 }
575 
576 static struct acpi_device *handle_to_device(acpi_handle handle,
577 					    void (*callback)(void *))
578 {
579 	struct acpi_device *adev = NULL;
580 	acpi_status status;
581 
582 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
583 				    (void **)&adev, callback);
584 	if (ACPI_FAILURE(status) || !adev) {
585 		acpi_handle_debug(handle, "No context!\n");
586 		return NULL;
587 	}
588 	return adev;
589 }
590 
591 /**
592  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
593  * @handle: ACPI handle associated with the requested ACPI device object.
594  *
595  * Return a pointer to the ACPI device object associated with @handle, if
596  * present, or NULL otherwise.
597  */
598 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
599 {
600 	return handle_to_device(handle, NULL);
601 }
602 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
603 
604 static void get_acpi_device(void *dev)
605 {
606 	acpi_dev_get(dev);
607 }
608 
609 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
610 {
611 	return handle_to_device(handle, get_acpi_device);
612 }
613 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device);
614 
615 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
616 {
617 	struct acpi_device_bus_id *acpi_device_bus_id;
618 
619 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
620 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
621 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
622 			return acpi_device_bus_id;
623 	}
624 	return NULL;
625 }
626 
627 static int acpi_device_set_name(struct acpi_device *device,
628 				struct acpi_device_bus_id *acpi_device_bus_id)
629 {
630 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
631 	int result;
632 
633 	result = ida_alloc(instance_ida, GFP_KERNEL);
634 	if (result < 0)
635 		return result;
636 
637 	device->pnp.instance_no = result;
638 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
639 	return 0;
640 }
641 
642 static int acpi_tie_acpi_dev(struct acpi_device *adev)
643 {
644 	acpi_handle handle = adev->handle;
645 	acpi_status status;
646 
647 	if (!handle)
648 		return 0;
649 
650 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
651 	if (ACPI_FAILURE(status)) {
652 		acpi_handle_err(handle, "Unable to attach device data\n");
653 		return -ENODEV;
654 	}
655 
656 	return 0;
657 }
658 
659 static void acpi_store_pld_crc(struct acpi_device *adev)
660 {
661 	struct acpi_pld_info *pld;
662 	acpi_status status;
663 
664 	status = acpi_get_physical_device_location(adev->handle, &pld);
665 	if (ACPI_FAILURE(status))
666 		return;
667 
668 	adev->pld_crc = crc32(~0, pld, sizeof(*pld));
669 	ACPI_FREE(pld);
670 }
671 
672 static int __acpi_device_add(struct acpi_device *device,
673 			     void (*release)(struct device *))
674 {
675 	struct acpi_device_bus_id *acpi_device_bus_id;
676 	int result;
677 
678 	/*
679 	 * Linkage
680 	 * -------
681 	 * Link this device to its parent and siblings.
682 	 */
683 	INIT_LIST_HEAD(&device->children);
684 	INIT_LIST_HEAD(&device->node);
685 	INIT_LIST_HEAD(&device->wakeup_list);
686 	INIT_LIST_HEAD(&device->physical_node_list);
687 	INIT_LIST_HEAD(&device->del_list);
688 	mutex_init(&device->physical_node_lock);
689 
690 	mutex_lock(&acpi_device_lock);
691 
692 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
693 	if (acpi_device_bus_id) {
694 		result = acpi_device_set_name(device, acpi_device_bus_id);
695 		if (result)
696 			goto err_unlock;
697 	} else {
698 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
699 					     GFP_KERNEL);
700 		if (!acpi_device_bus_id) {
701 			result = -ENOMEM;
702 			goto err_unlock;
703 		}
704 		acpi_device_bus_id->bus_id =
705 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
706 		if (!acpi_device_bus_id->bus_id) {
707 			kfree(acpi_device_bus_id);
708 			result = -ENOMEM;
709 			goto err_unlock;
710 		}
711 
712 		ida_init(&acpi_device_bus_id->instance_ida);
713 
714 		result = acpi_device_set_name(device, acpi_device_bus_id);
715 		if (result) {
716 			kfree_const(acpi_device_bus_id->bus_id);
717 			kfree(acpi_device_bus_id);
718 			goto err_unlock;
719 		}
720 
721 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
722 	}
723 
724 	if (device->parent)
725 		list_add_tail(&device->node, &device->parent->children);
726 
727 	if (device->wakeup.flags.valid)
728 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
729 
730 	acpi_store_pld_crc(device);
731 
732 	mutex_unlock(&acpi_device_lock);
733 
734 	if (device->parent)
735 		device->dev.parent = &device->parent->dev;
736 
737 	device->dev.bus = &acpi_bus_type;
738 	device->dev.release = release;
739 	result = device_add(&device->dev);
740 	if (result) {
741 		dev_err(&device->dev, "Error registering device\n");
742 		goto err;
743 	}
744 
745 	result = acpi_device_setup_files(device);
746 	if (result)
747 		pr_err("Error creating sysfs interface for device %s\n",
748 		       dev_name(&device->dev));
749 
750 	return 0;
751 
752 err:
753 	mutex_lock(&acpi_device_lock);
754 
755 	if (device->parent)
756 		list_del(&device->node);
757 
758 	list_del(&device->wakeup_list);
759 
760 err_unlock:
761 	mutex_unlock(&acpi_device_lock);
762 
763 	acpi_detach_data(device->handle, acpi_scan_drop_device);
764 
765 	return result;
766 }
767 
768 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
769 {
770 	int ret;
771 
772 	ret = acpi_tie_acpi_dev(adev);
773 	if (ret)
774 		return ret;
775 
776 	return __acpi_device_add(adev, release);
777 }
778 
779 /* --------------------------------------------------------------------------
780                                  Device Enumeration
781    -------------------------------------------------------------------------- */
782 static bool acpi_info_matches_ids(struct acpi_device_info *info,
783 				  const char * const ids[])
784 {
785 	struct acpi_pnp_device_id_list *cid_list = NULL;
786 	int i, index;
787 
788 	if (!(info->valid & ACPI_VALID_HID))
789 		return false;
790 
791 	index = match_string(ids, -1, info->hardware_id.string);
792 	if (index >= 0)
793 		return true;
794 
795 	if (info->valid & ACPI_VALID_CID)
796 		cid_list = &info->compatible_id_list;
797 
798 	if (!cid_list)
799 		return false;
800 
801 	for (i = 0; i < cid_list->count; i++) {
802 		index = match_string(ids, -1, cid_list->ids[i].string);
803 		if (index >= 0)
804 			return true;
805 	}
806 
807 	return false;
808 }
809 
810 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
811 static const char * const acpi_ignore_dep_ids[] = {
812 	"PNP0D80", /* Windows-compatible System Power Management Controller */
813 	"INT33BD", /* Intel Baytrail Mailbox Device */
814 	NULL
815 };
816 
817 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
818 static const char * const acpi_honor_dep_ids[] = {
819 	"INT3472", /* Camera sensor PMIC / clk and regulator info */
820 	NULL
821 };
822 
823 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
824 {
825 	struct acpi_device *device;
826 	acpi_status status;
827 
828 	/*
829 	 * Fixed hardware devices do not appear in the namespace and do not
830 	 * have handles, but we fabricate acpi_devices for them, so we have
831 	 * to deal with them specially.
832 	 */
833 	if (!handle)
834 		return acpi_root;
835 
836 	do {
837 		status = acpi_get_parent(handle, &handle);
838 		if (ACPI_FAILURE(status))
839 			return status == AE_NULL_ENTRY ? NULL : acpi_root;
840 
841 		device = acpi_fetch_acpi_dev(handle);
842 	} while (!device);
843 	return device;
844 }
845 
846 acpi_status
847 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
848 {
849 	acpi_status status;
850 	acpi_handle tmp;
851 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
852 	union acpi_object *obj;
853 
854 	status = acpi_get_handle(handle, "_EJD", &tmp);
855 	if (ACPI_FAILURE(status))
856 		return status;
857 
858 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
859 	if (ACPI_SUCCESS(status)) {
860 		obj = buffer.pointer;
861 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
862 					 ejd);
863 		kfree(buffer.pointer);
864 	}
865 	return status;
866 }
867 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
868 
869 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
870 {
871 	acpi_handle handle = dev->handle;
872 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
873 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
874 	union acpi_object *package = NULL;
875 	union acpi_object *element = NULL;
876 	acpi_status status;
877 	int err = -ENODATA;
878 
879 	INIT_LIST_HEAD(&wakeup->resources);
880 
881 	/* _PRW */
882 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
883 	if (ACPI_FAILURE(status)) {
884 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
885 				 acpi_format_exception(status));
886 		return err;
887 	}
888 
889 	package = (union acpi_object *)buffer.pointer;
890 
891 	if (!package || package->package.count < 2)
892 		goto out;
893 
894 	element = &(package->package.elements[0]);
895 	if (!element)
896 		goto out;
897 
898 	if (element->type == ACPI_TYPE_PACKAGE) {
899 		if ((element->package.count < 2) ||
900 		    (element->package.elements[0].type !=
901 		     ACPI_TYPE_LOCAL_REFERENCE)
902 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
903 			goto out;
904 
905 		wakeup->gpe_device =
906 		    element->package.elements[0].reference.handle;
907 		wakeup->gpe_number =
908 		    (u32) element->package.elements[1].integer.value;
909 	} else if (element->type == ACPI_TYPE_INTEGER) {
910 		wakeup->gpe_device = NULL;
911 		wakeup->gpe_number = element->integer.value;
912 	} else {
913 		goto out;
914 	}
915 
916 	element = &(package->package.elements[1]);
917 	if (element->type != ACPI_TYPE_INTEGER)
918 		goto out;
919 
920 	wakeup->sleep_state = element->integer.value;
921 
922 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
923 	if (err)
924 		goto out;
925 
926 	if (!list_empty(&wakeup->resources)) {
927 		int sleep_state;
928 
929 		err = acpi_power_wakeup_list_init(&wakeup->resources,
930 						  &sleep_state);
931 		if (err) {
932 			acpi_handle_warn(handle, "Retrieving current states "
933 					 "of wakeup power resources failed\n");
934 			acpi_power_resources_list_free(&wakeup->resources);
935 			goto out;
936 		}
937 		if (sleep_state < wakeup->sleep_state) {
938 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
939 					 "(S%d) by S%d from power resources\n",
940 					 (int)wakeup->sleep_state, sleep_state);
941 			wakeup->sleep_state = sleep_state;
942 		}
943 	}
944 
945  out:
946 	kfree(buffer.pointer);
947 	return err;
948 }
949 
950 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
951 {
952 	static const struct acpi_device_id button_device_ids[] = {
953 		{"PNP0C0C", 0},		/* Power button */
954 		{"PNP0C0D", 0},		/* Lid */
955 		{"PNP0C0E", 0},		/* Sleep button */
956 		{"", 0},
957 	};
958 	struct acpi_device_wakeup *wakeup = &device->wakeup;
959 	acpi_status status;
960 
961 	wakeup->flags.notifier_present = 0;
962 
963 	/* Power button, Lid switch always enable wakeup */
964 	if (!acpi_match_device_ids(device, button_device_ids)) {
965 		if (!acpi_match_device_ids(device, &button_device_ids[1])) {
966 			/* Do not use Lid/sleep button for S5 wakeup */
967 			if (wakeup->sleep_state == ACPI_STATE_S5)
968 				wakeup->sleep_state = ACPI_STATE_S4;
969 		}
970 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
971 		device_set_wakeup_capable(&device->dev, true);
972 		return true;
973 	}
974 
975 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
976 					 wakeup->gpe_number);
977 	return ACPI_SUCCESS(status);
978 }
979 
980 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
981 {
982 	int err;
983 
984 	/* Presence of _PRW indicates wake capable */
985 	if (!acpi_has_method(device->handle, "_PRW"))
986 		return;
987 
988 	err = acpi_bus_extract_wakeup_device_power_package(device);
989 	if (err) {
990 		dev_err(&device->dev, "Unable to extract wakeup power resources");
991 		return;
992 	}
993 
994 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
995 	device->wakeup.prepare_count = 0;
996 	/*
997 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
998 	 * system for the ACPI device with the _PRW object.
999 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
1000 	 * So it is necessary to call _DSW object first. Only when it is not
1001 	 * present will the _PSW object used.
1002 	 */
1003 	err = acpi_device_sleep_wake(device, 0, 0, 0);
1004 	if (err)
1005 		pr_debug("error in _DSW or _PSW evaluation\n");
1006 }
1007 
1008 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
1009 {
1010 	struct acpi_device_power_state *ps = &device->power.states[state];
1011 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1012 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1013 	acpi_status status;
1014 
1015 	INIT_LIST_HEAD(&ps->resources);
1016 
1017 	/* Evaluate "_PRx" to get referenced power resources */
1018 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1019 	if (ACPI_SUCCESS(status)) {
1020 		union acpi_object *package = buffer.pointer;
1021 
1022 		if (buffer.length && package
1023 		    && package->type == ACPI_TYPE_PACKAGE
1024 		    && package->package.count)
1025 			acpi_extract_power_resources(package, 0, &ps->resources);
1026 
1027 		ACPI_FREE(buffer.pointer);
1028 	}
1029 
1030 	/* Evaluate "_PSx" to see if we can do explicit sets */
1031 	pathname[2] = 'S';
1032 	if (acpi_has_method(device->handle, pathname))
1033 		ps->flags.explicit_set = 1;
1034 
1035 	/* State is valid if there are means to put the device into it. */
1036 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1037 		ps->flags.valid = 1;
1038 
1039 	ps->power = -1;		/* Unknown - driver assigned */
1040 	ps->latency = -1;	/* Unknown - driver assigned */
1041 }
1042 
1043 static void acpi_bus_get_power_flags(struct acpi_device *device)
1044 {
1045 	unsigned long long dsc = ACPI_STATE_D0;
1046 	u32 i;
1047 
1048 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1049 	if (!acpi_has_method(device->handle, "_PS0") &&
1050 	    !acpi_has_method(device->handle, "_PR0"))
1051 		return;
1052 
1053 	device->flags.power_manageable = 1;
1054 
1055 	/*
1056 	 * Power Management Flags
1057 	 */
1058 	if (acpi_has_method(device->handle, "_PSC"))
1059 		device->power.flags.explicit_get = 1;
1060 
1061 	if (acpi_has_method(device->handle, "_IRC"))
1062 		device->power.flags.inrush_current = 1;
1063 
1064 	if (acpi_has_method(device->handle, "_DSW"))
1065 		device->power.flags.dsw_present = 1;
1066 
1067 	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1068 	device->power.state_for_enumeration = dsc;
1069 
1070 	/*
1071 	 * Enumerate supported power management states
1072 	 */
1073 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1074 		acpi_bus_init_power_state(device, i);
1075 
1076 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1077 
1078 	/* Set the defaults for D0 and D3hot (always supported). */
1079 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1080 	device->power.states[ACPI_STATE_D0].power = 100;
1081 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1082 
1083 	/*
1084 	 * Use power resources only if the D0 list of them is populated, because
1085 	 * some platforms may provide _PR3 only to indicate D3cold support and
1086 	 * in those cases the power resources list returned by it may be bogus.
1087 	 */
1088 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1089 		device->power.flags.power_resources = 1;
1090 		/*
1091 		 * D3cold is supported if the D3hot list of power resources is
1092 		 * not empty.
1093 		 */
1094 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1095 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1096 	}
1097 
1098 	if (acpi_bus_init_power(device))
1099 		device->flags.power_manageable = 0;
1100 }
1101 
1102 static void acpi_bus_get_flags(struct acpi_device *device)
1103 {
1104 	/* Presence of _STA indicates 'dynamic_status' */
1105 	if (acpi_has_method(device->handle, "_STA"))
1106 		device->flags.dynamic_status = 1;
1107 
1108 	/* Presence of _RMV indicates 'removable' */
1109 	if (acpi_has_method(device->handle, "_RMV"))
1110 		device->flags.removable = 1;
1111 
1112 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1113 	if (acpi_has_method(device->handle, "_EJD") ||
1114 	    acpi_has_method(device->handle, "_EJ0"))
1115 		device->flags.ejectable = 1;
1116 }
1117 
1118 static void acpi_device_get_busid(struct acpi_device *device)
1119 {
1120 	char bus_id[5] = { '?', 0 };
1121 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1122 	int i = 0;
1123 
1124 	/*
1125 	 * Bus ID
1126 	 * ------
1127 	 * The device's Bus ID is simply the object name.
1128 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1129 	 */
1130 	if (ACPI_IS_ROOT_DEVICE(device)) {
1131 		strcpy(device->pnp.bus_id, "ACPI");
1132 		return;
1133 	}
1134 
1135 	switch (device->device_type) {
1136 	case ACPI_BUS_TYPE_POWER_BUTTON:
1137 		strcpy(device->pnp.bus_id, "PWRF");
1138 		break;
1139 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1140 		strcpy(device->pnp.bus_id, "SLPF");
1141 		break;
1142 	case ACPI_BUS_TYPE_ECDT_EC:
1143 		strcpy(device->pnp.bus_id, "ECDT");
1144 		break;
1145 	default:
1146 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1147 		/* Clean up trailing underscores (if any) */
1148 		for (i = 3; i > 1; i--) {
1149 			if (bus_id[i] == '_')
1150 				bus_id[i] = '\0';
1151 			else
1152 				break;
1153 		}
1154 		strcpy(device->pnp.bus_id, bus_id);
1155 		break;
1156 	}
1157 }
1158 
1159 /*
1160  * acpi_ata_match - see if an acpi object is an ATA device
1161  *
1162  * If an acpi object has one of the ACPI ATA methods defined,
1163  * then we can safely call it an ATA device.
1164  */
1165 bool acpi_ata_match(acpi_handle handle)
1166 {
1167 	return acpi_has_method(handle, "_GTF") ||
1168 	       acpi_has_method(handle, "_GTM") ||
1169 	       acpi_has_method(handle, "_STM") ||
1170 	       acpi_has_method(handle, "_SDD");
1171 }
1172 
1173 /*
1174  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1175  *
1176  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1177  * then we can safely call it an ejectable drive bay
1178  */
1179 bool acpi_bay_match(acpi_handle handle)
1180 {
1181 	acpi_handle phandle;
1182 
1183 	if (!acpi_has_method(handle, "_EJ0"))
1184 		return false;
1185 	if (acpi_ata_match(handle))
1186 		return true;
1187 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1188 		return false;
1189 
1190 	return acpi_ata_match(phandle);
1191 }
1192 
1193 bool acpi_device_is_battery(struct acpi_device *adev)
1194 {
1195 	struct acpi_hardware_id *hwid;
1196 
1197 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1198 		if (!strcmp("PNP0C0A", hwid->id))
1199 			return true;
1200 
1201 	return false;
1202 }
1203 
1204 static bool is_ejectable_bay(struct acpi_device *adev)
1205 {
1206 	acpi_handle handle = adev->handle;
1207 
1208 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1209 		return true;
1210 
1211 	return acpi_bay_match(handle);
1212 }
1213 
1214 /*
1215  * acpi_dock_match - see if an acpi object has a _DCK method
1216  */
1217 bool acpi_dock_match(acpi_handle handle)
1218 {
1219 	return acpi_has_method(handle, "_DCK");
1220 }
1221 
1222 static acpi_status
1223 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1224 			  void **return_value)
1225 {
1226 	long *cap = context;
1227 
1228 	if (acpi_has_method(handle, "_BCM") &&
1229 	    acpi_has_method(handle, "_BCL")) {
1230 		acpi_handle_debug(handle, "Found generic backlight support\n");
1231 		*cap |= ACPI_VIDEO_BACKLIGHT;
1232 		/* We have backlight support, no need to scan further */
1233 		return AE_CTRL_TERMINATE;
1234 	}
1235 	return 0;
1236 }
1237 
1238 /* Returns true if the ACPI object is a video device which can be
1239  * handled by video.ko.
1240  * The device will get a Linux specific CID added in scan.c to
1241  * identify the device as an ACPI graphics device
1242  * Be aware that the graphics device may not be physically present
1243  * Use acpi_video_get_capabilities() to detect general ACPI video
1244  * capabilities of present cards
1245  */
1246 long acpi_is_video_device(acpi_handle handle)
1247 {
1248 	long video_caps = 0;
1249 
1250 	/* Is this device able to support video switching ? */
1251 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1252 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1253 
1254 	/* Is this device able to retrieve a video ROM ? */
1255 	if (acpi_has_method(handle, "_ROM"))
1256 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1257 
1258 	/* Is this device able to configure which video head to be POSTed ? */
1259 	if (acpi_has_method(handle, "_VPO") &&
1260 	    acpi_has_method(handle, "_GPD") &&
1261 	    acpi_has_method(handle, "_SPD"))
1262 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1263 
1264 	/* Only check for backlight functionality if one of the above hit. */
1265 	if (video_caps)
1266 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1267 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1268 				    &video_caps, NULL);
1269 
1270 	return video_caps;
1271 }
1272 EXPORT_SYMBOL(acpi_is_video_device);
1273 
1274 const char *acpi_device_hid(struct acpi_device *device)
1275 {
1276 	struct acpi_hardware_id *hid;
1277 
1278 	if (list_empty(&device->pnp.ids))
1279 		return dummy_hid;
1280 
1281 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1282 	return hid->id;
1283 }
1284 EXPORT_SYMBOL(acpi_device_hid);
1285 
1286 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1287 {
1288 	struct acpi_hardware_id *id;
1289 
1290 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1291 	if (!id)
1292 		return;
1293 
1294 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1295 	if (!id->id) {
1296 		kfree(id);
1297 		return;
1298 	}
1299 
1300 	list_add_tail(&id->list, &pnp->ids);
1301 	pnp->type.hardware_id = 1;
1302 }
1303 
1304 /*
1305  * Old IBM workstations have a DSDT bug wherein the SMBus object
1306  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1307  * prefix.  Work around this.
1308  */
1309 static bool acpi_ibm_smbus_match(acpi_handle handle)
1310 {
1311 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1312 	struct acpi_buffer path = { sizeof(node_name), node_name };
1313 
1314 	if (!dmi_name_in_vendors("IBM"))
1315 		return false;
1316 
1317 	/* Look for SMBS object */
1318 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1319 	    strcmp("SMBS", path.pointer))
1320 		return false;
1321 
1322 	/* Does it have the necessary (but misnamed) methods? */
1323 	if (acpi_has_method(handle, "SBI") &&
1324 	    acpi_has_method(handle, "SBR") &&
1325 	    acpi_has_method(handle, "SBW"))
1326 		return true;
1327 
1328 	return false;
1329 }
1330 
1331 static bool acpi_object_is_system_bus(acpi_handle handle)
1332 {
1333 	acpi_handle tmp;
1334 
1335 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1336 	    tmp == handle)
1337 		return true;
1338 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1339 	    tmp == handle)
1340 		return true;
1341 
1342 	return false;
1343 }
1344 
1345 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1346 			     int device_type)
1347 {
1348 	struct acpi_device_info *info = NULL;
1349 	struct acpi_pnp_device_id_list *cid_list;
1350 	int i;
1351 
1352 	switch (device_type) {
1353 	case ACPI_BUS_TYPE_DEVICE:
1354 		if (handle == ACPI_ROOT_OBJECT) {
1355 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1356 			break;
1357 		}
1358 
1359 		acpi_get_object_info(handle, &info);
1360 		if (!info) {
1361 			pr_err("%s: Error reading device info\n", __func__);
1362 			return;
1363 		}
1364 
1365 		if (info->valid & ACPI_VALID_HID) {
1366 			acpi_add_id(pnp, info->hardware_id.string);
1367 			pnp->type.platform_id = 1;
1368 		}
1369 		if (info->valid & ACPI_VALID_CID) {
1370 			cid_list = &info->compatible_id_list;
1371 			for (i = 0; i < cid_list->count; i++)
1372 				acpi_add_id(pnp, cid_list->ids[i].string);
1373 		}
1374 		if (info->valid & ACPI_VALID_ADR) {
1375 			pnp->bus_address = info->address;
1376 			pnp->type.bus_address = 1;
1377 		}
1378 		if (info->valid & ACPI_VALID_UID)
1379 			pnp->unique_id = kstrdup(info->unique_id.string,
1380 							GFP_KERNEL);
1381 		if (info->valid & ACPI_VALID_CLS)
1382 			acpi_add_id(pnp, info->class_code.string);
1383 
1384 		kfree(info);
1385 
1386 		/*
1387 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1388 		 * synthetic HIDs to make sure drivers can find them.
1389 		 */
1390 		if (acpi_is_video_device(handle))
1391 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1392 		else if (acpi_bay_match(handle))
1393 			acpi_add_id(pnp, ACPI_BAY_HID);
1394 		else if (acpi_dock_match(handle))
1395 			acpi_add_id(pnp, ACPI_DOCK_HID);
1396 		else if (acpi_ibm_smbus_match(handle))
1397 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1398 		else if (list_empty(&pnp->ids) &&
1399 			 acpi_object_is_system_bus(handle)) {
1400 			/* \_SB, \_TZ, LNXSYBUS */
1401 			acpi_add_id(pnp, ACPI_BUS_HID);
1402 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1403 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1404 		}
1405 
1406 		break;
1407 	case ACPI_BUS_TYPE_POWER:
1408 		acpi_add_id(pnp, ACPI_POWER_HID);
1409 		break;
1410 	case ACPI_BUS_TYPE_PROCESSOR:
1411 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1412 		break;
1413 	case ACPI_BUS_TYPE_THERMAL:
1414 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1415 		break;
1416 	case ACPI_BUS_TYPE_POWER_BUTTON:
1417 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1418 		break;
1419 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1420 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1421 		break;
1422 	case ACPI_BUS_TYPE_ECDT_EC:
1423 		acpi_add_id(pnp, ACPI_ECDT_HID);
1424 		break;
1425 	}
1426 }
1427 
1428 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1429 {
1430 	struct acpi_hardware_id *id, *tmp;
1431 
1432 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1433 		kfree_const(id->id);
1434 		kfree(id);
1435 	}
1436 	kfree(pnp->unique_id);
1437 }
1438 
1439 /**
1440  * acpi_dma_supported - Check DMA support for the specified device.
1441  * @adev: The pointer to acpi device
1442  *
1443  * Return false if DMA is not supported. Otherwise, return true
1444  */
1445 bool acpi_dma_supported(const struct acpi_device *adev)
1446 {
1447 	if (!adev)
1448 		return false;
1449 
1450 	if (adev->flags.cca_seen)
1451 		return true;
1452 
1453 	/*
1454 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1455 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1456 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1457 	*/
1458 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1459 		return true;
1460 
1461 	return false;
1462 }
1463 
1464 /**
1465  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1466  * @adev: The pointer to acpi device
1467  *
1468  * Return enum dev_dma_attr.
1469  */
1470 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1471 {
1472 	if (!acpi_dma_supported(adev))
1473 		return DEV_DMA_NOT_SUPPORTED;
1474 
1475 	if (adev->flags.coherent_dma)
1476 		return DEV_DMA_COHERENT;
1477 	else
1478 		return DEV_DMA_NON_COHERENT;
1479 }
1480 
1481 /**
1482  * acpi_dma_get_range() - Get device DMA parameters.
1483  *
1484  * @dev: device to configure
1485  * @dma_addr: pointer device DMA address result
1486  * @offset: pointer to the DMA offset result
1487  * @size: pointer to DMA range size result
1488  *
1489  * Evaluate DMA regions and return respectively DMA region start, offset
1490  * and size in dma_addr, offset and size on parsing success; it does not
1491  * update the passed in values on failure.
1492  *
1493  * Return 0 on success, < 0 on failure.
1494  */
1495 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1496 		       u64 *size)
1497 {
1498 	struct acpi_device *adev;
1499 	LIST_HEAD(list);
1500 	struct resource_entry *rentry;
1501 	int ret;
1502 	struct device *dma_dev = dev;
1503 	u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1504 
1505 	/*
1506 	 * Walk the device tree chasing an ACPI companion with a _DMA
1507 	 * object while we go. Stop if we find a device with an ACPI
1508 	 * companion containing a _DMA method.
1509 	 */
1510 	do {
1511 		adev = ACPI_COMPANION(dma_dev);
1512 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1513 			break;
1514 
1515 		dma_dev = dma_dev->parent;
1516 	} while (dma_dev);
1517 
1518 	if (!dma_dev)
1519 		return -ENODEV;
1520 
1521 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1522 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1523 		return -EINVAL;
1524 	}
1525 
1526 	ret = acpi_dev_get_dma_resources(adev, &list);
1527 	if (ret > 0) {
1528 		list_for_each_entry(rentry, &list, node) {
1529 			if (dma_offset && rentry->offset != dma_offset) {
1530 				ret = -EINVAL;
1531 				dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1532 				goto out;
1533 			}
1534 			dma_offset = rentry->offset;
1535 
1536 			/* Take lower and upper limits */
1537 			if (rentry->res->start < dma_start)
1538 				dma_start = rentry->res->start;
1539 			if (rentry->res->end > dma_end)
1540 				dma_end = rentry->res->end;
1541 		}
1542 
1543 		if (dma_start >= dma_end) {
1544 			ret = -EINVAL;
1545 			dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1546 			goto out;
1547 		}
1548 
1549 		*dma_addr = dma_start - dma_offset;
1550 		len = dma_end - dma_start;
1551 		*size = max(len, len + 1);
1552 		*offset = dma_offset;
1553 	}
1554  out:
1555 	acpi_dev_free_resource_list(&list);
1556 
1557 	return ret >= 0 ? 0 : ret;
1558 }
1559 
1560 #ifdef CONFIG_IOMMU_API
1561 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1562 			   struct fwnode_handle *fwnode,
1563 			   const struct iommu_ops *ops)
1564 {
1565 	int ret = iommu_fwspec_init(dev, fwnode, ops);
1566 
1567 	if (!ret)
1568 		ret = iommu_fwspec_add_ids(dev, &id, 1);
1569 
1570 	return ret;
1571 }
1572 
1573 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1574 {
1575 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1576 
1577 	return fwspec ? fwspec->ops : NULL;
1578 }
1579 
1580 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1581 						       const u32 *id_in)
1582 {
1583 	int err;
1584 	const struct iommu_ops *ops;
1585 
1586 	/*
1587 	 * If we already translated the fwspec there is nothing left to do,
1588 	 * return the iommu_ops.
1589 	 */
1590 	ops = acpi_iommu_fwspec_ops(dev);
1591 	if (ops)
1592 		return ops;
1593 
1594 	err = iort_iommu_configure_id(dev, id_in);
1595 	if (err && err != -EPROBE_DEFER)
1596 		err = viot_iommu_configure(dev);
1597 
1598 	/*
1599 	 * If we have reason to believe the IOMMU driver missed the initial
1600 	 * iommu_probe_device() call for dev, replay it to get things in order.
1601 	 */
1602 	if (!err && dev->bus && !device_iommu_mapped(dev))
1603 		err = iommu_probe_device(dev);
1604 
1605 	/* Ignore all other errors apart from EPROBE_DEFER */
1606 	if (err == -EPROBE_DEFER) {
1607 		return ERR_PTR(err);
1608 	} else if (err) {
1609 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1610 		return NULL;
1611 	}
1612 	return acpi_iommu_fwspec_ops(dev);
1613 }
1614 
1615 #else /* !CONFIG_IOMMU_API */
1616 
1617 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1618 			   struct fwnode_handle *fwnode,
1619 			   const struct iommu_ops *ops)
1620 {
1621 	return -ENODEV;
1622 }
1623 
1624 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1625 						       const u32 *id_in)
1626 {
1627 	return NULL;
1628 }
1629 
1630 #endif /* !CONFIG_IOMMU_API */
1631 
1632 /**
1633  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1634  * @dev: The pointer to the device
1635  * @attr: device dma attributes
1636  * @input_id: input device id const value pointer
1637  */
1638 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1639 			  const u32 *input_id)
1640 {
1641 	const struct iommu_ops *iommu;
1642 	u64 dma_addr = 0, size = 0;
1643 
1644 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1645 		set_dma_ops(dev, &dma_dummy_ops);
1646 		return 0;
1647 	}
1648 
1649 	acpi_arch_dma_setup(dev, &dma_addr, &size);
1650 
1651 	iommu = acpi_iommu_configure_id(dev, input_id);
1652 	if (PTR_ERR(iommu) == -EPROBE_DEFER)
1653 		return -EPROBE_DEFER;
1654 
1655 	arch_setup_dma_ops(dev, dma_addr, size,
1656 				iommu, attr == DEV_DMA_COHERENT);
1657 
1658 	return 0;
1659 }
1660 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1661 
1662 static void acpi_init_coherency(struct acpi_device *adev)
1663 {
1664 	unsigned long long cca = 0;
1665 	acpi_status status;
1666 	struct acpi_device *parent = adev->parent;
1667 
1668 	if (parent && parent->flags.cca_seen) {
1669 		/*
1670 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1671 		 * already saw one.
1672 		 */
1673 		adev->flags.cca_seen = 1;
1674 		cca = parent->flags.coherent_dma;
1675 	} else {
1676 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1677 					       NULL, &cca);
1678 		if (ACPI_SUCCESS(status))
1679 			adev->flags.cca_seen = 1;
1680 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1681 			/*
1682 			 * If architecture does not specify that _CCA is
1683 			 * required for DMA-able devices (e.g. x86),
1684 			 * we default to _CCA=1.
1685 			 */
1686 			cca = 1;
1687 		else
1688 			acpi_handle_debug(adev->handle,
1689 					  "ACPI device is missing _CCA.\n");
1690 	}
1691 
1692 	adev->flags.coherent_dma = cca;
1693 }
1694 
1695 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1696 {
1697 	bool *is_serial_bus_slave_p = data;
1698 
1699 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1700 		return 1;
1701 
1702 	*is_serial_bus_slave_p = true;
1703 
1704 	 /* no need to do more checking */
1705 	return -1;
1706 }
1707 
1708 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1709 {
1710 	struct acpi_device *parent = device->parent;
1711 	static const struct acpi_device_id indirect_io_hosts[] = {
1712 		{"HISI0191", 0},
1713 		{}
1714 	};
1715 
1716 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1717 }
1718 
1719 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1720 {
1721 	struct list_head resource_list;
1722 	bool is_serial_bus_slave = false;
1723 	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1724 	/*
1725 	 * These devices have multiple SerialBus resources and a client
1726 	 * device must be instantiated for each of them, each with
1727 	 * its own device id.
1728 	 * Normally we only instantiate one client device for the first
1729 	 * resource, using the ACPI HID as id. These special cases are handled
1730 	 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1731 	 * knows which client device id to use for each resource.
1732 	 */
1733 		{"BSG1160", },
1734 		{"BSG2150", },
1735 		{"CSC3551", },
1736 		{"INT33FE", },
1737 		{"INT3515", },
1738 		/* Non-conforming _HID for Cirrus Logic already released */
1739 		{"CLSA0100", },
1740 	/*
1741 	 * Some ACPI devs contain SerialBus resources even though they are not
1742 	 * attached to a serial bus at all.
1743 	 */
1744 		{"MSHW0028", },
1745 	/*
1746 	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1747 	 * expects a regular tty cdev to be created (instead of the in kernel
1748 	 * serdev) and which have a kernel driver which expects a platform_dev
1749 	 * such as the rfkill-gpio driver.
1750 	 */
1751 		{"BCM4752", },
1752 		{"LNV4752", },
1753 		{}
1754 	};
1755 
1756 	if (acpi_is_indirect_io_slave(device))
1757 		return true;
1758 
1759 	/* Macs use device properties in lieu of _CRS resources */
1760 	if (x86_apple_machine &&
1761 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1762 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1763 	     fwnode_property_present(&device->fwnode, "baud")))
1764 		return true;
1765 
1766 	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1767 		return false;
1768 
1769 	INIT_LIST_HEAD(&resource_list);
1770 	acpi_dev_get_resources(device, &resource_list,
1771 			       acpi_check_serial_bus_slave,
1772 			       &is_serial_bus_slave);
1773 	acpi_dev_free_resource_list(&resource_list);
1774 
1775 	return is_serial_bus_slave;
1776 }
1777 
1778 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1779 			     int type)
1780 {
1781 	INIT_LIST_HEAD(&device->pnp.ids);
1782 	device->device_type = type;
1783 	device->handle = handle;
1784 	device->parent = acpi_bus_get_parent(handle);
1785 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1786 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1787 	acpi_device_get_busid(device);
1788 	acpi_set_pnp_ids(handle, &device->pnp, type);
1789 	acpi_init_properties(device);
1790 	acpi_bus_get_flags(device);
1791 	device->flags.match_driver = false;
1792 	device->flags.initialized = true;
1793 	device->flags.enumeration_by_parent =
1794 		acpi_device_enumeration_by_parent(device);
1795 	acpi_device_clear_enumerated(device);
1796 	device_initialize(&device->dev);
1797 	dev_set_uevent_suppress(&device->dev, true);
1798 	acpi_init_coherency(device);
1799 }
1800 
1801 static void acpi_scan_dep_init(struct acpi_device *adev)
1802 {
1803 	struct acpi_dep_data *dep;
1804 
1805 	list_for_each_entry(dep, &acpi_dep_list, node) {
1806 		if (dep->consumer == adev->handle) {
1807 			if (dep->honor_dep)
1808 				adev->flags.honor_deps = 1;
1809 
1810 			adev->dep_unmet++;
1811 		}
1812 	}
1813 }
1814 
1815 void acpi_device_add_finalize(struct acpi_device *device)
1816 {
1817 	dev_set_uevent_suppress(&device->dev, false);
1818 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1819 }
1820 
1821 static void acpi_scan_init_status(struct acpi_device *adev)
1822 {
1823 	if (acpi_bus_get_status(adev))
1824 		acpi_set_device_status(adev, 0);
1825 }
1826 
1827 static int acpi_add_single_object(struct acpi_device **child,
1828 				  acpi_handle handle, int type, bool dep_init)
1829 {
1830 	struct acpi_device *device;
1831 	bool release_dep_lock = false;
1832 	int result;
1833 
1834 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1835 	if (!device)
1836 		return -ENOMEM;
1837 
1838 	acpi_init_device_object(device, handle, type);
1839 	/*
1840 	 * Getting the status is delayed till here so that we can call
1841 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1842 	 * this must be done before the get power-/wakeup_dev-flags calls.
1843 	 */
1844 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1845 		if (dep_init) {
1846 			mutex_lock(&acpi_dep_list_lock);
1847 			/*
1848 			 * Hold the lock until the acpi_tie_acpi_dev() call
1849 			 * below to prevent concurrent acpi_scan_clear_dep()
1850 			 * from deleting a dependency list entry without
1851 			 * updating dep_unmet for the device.
1852 			 */
1853 			release_dep_lock = true;
1854 			acpi_scan_dep_init(device);
1855 		}
1856 		acpi_scan_init_status(device);
1857 	}
1858 
1859 	acpi_bus_get_power_flags(device);
1860 	acpi_bus_get_wakeup_device_flags(device);
1861 
1862 	result = acpi_tie_acpi_dev(device);
1863 
1864 	if (release_dep_lock)
1865 		mutex_unlock(&acpi_dep_list_lock);
1866 
1867 	if (!result)
1868 		result = __acpi_device_add(device, acpi_device_release);
1869 
1870 	if (result) {
1871 		acpi_device_release(&device->dev);
1872 		return result;
1873 	}
1874 
1875 	acpi_power_add_remove_device(device, true);
1876 	acpi_device_add_finalize(device);
1877 
1878 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1879 			  dev_name(&device->dev), device->parent ?
1880 				dev_name(&device->parent->dev) : "(null)");
1881 
1882 	*child = device;
1883 	return 0;
1884 }
1885 
1886 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1887 					    void *context)
1888 {
1889 	struct resource *res = context;
1890 
1891 	if (acpi_dev_resource_memory(ares, res))
1892 		return AE_CTRL_TERMINATE;
1893 
1894 	return AE_OK;
1895 }
1896 
1897 static bool acpi_device_should_be_hidden(acpi_handle handle)
1898 {
1899 	acpi_status status;
1900 	struct resource res;
1901 
1902 	/* Check if it should ignore the UART device */
1903 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1904 		return false;
1905 
1906 	/*
1907 	 * The UART device described in SPCR table is assumed to have only one
1908 	 * memory resource present. So we only look for the first one here.
1909 	 */
1910 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1911 				     acpi_get_resource_memory, &res);
1912 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1913 		return false;
1914 
1915 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1916 			 &res.start);
1917 
1918 	return true;
1919 }
1920 
1921 bool acpi_device_is_present(const struct acpi_device *adev)
1922 {
1923 	return adev->status.present || adev->status.functional;
1924 }
1925 
1926 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1927 				       const char *idstr,
1928 				       const struct acpi_device_id **matchid)
1929 {
1930 	const struct acpi_device_id *devid;
1931 
1932 	if (handler->match)
1933 		return handler->match(idstr, matchid);
1934 
1935 	for (devid = handler->ids; devid->id[0]; devid++)
1936 		if (!strcmp((char *)devid->id, idstr)) {
1937 			if (matchid)
1938 				*matchid = devid;
1939 
1940 			return true;
1941 		}
1942 
1943 	return false;
1944 }
1945 
1946 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1947 					const struct acpi_device_id **matchid)
1948 {
1949 	struct acpi_scan_handler *handler;
1950 
1951 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1952 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1953 			return handler;
1954 
1955 	return NULL;
1956 }
1957 
1958 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1959 {
1960 	if (!!hotplug->enabled == !!val)
1961 		return;
1962 
1963 	mutex_lock(&acpi_scan_lock);
1964 
1965 	hotplug->enabled = val;
1966 
1967 	mutex_unlock(&acpi_scan_lock);
1968 }
1969 
1970 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1971 {
1972 	struct acpi_hardware_id *hwid;
1973 
1974 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1975 		acpi_dock_add(adev);
1976 		return;
1977 	}
1978 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1979 		struct acpi_scan_handler *handler;
1980 
1981 		handler = acpi_scan_match_handler(hwid->id, NULL);
1982 		if (handler) {
1983 			adev->flags.hotplug_notify = true;
1984 			break;
1985 		}
1986 	}
1987 }
1988 
1989 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1990 {
1991 	struct acpi_handle_list dep_devices;
1992 	acpi_status status;
1993 	u32 count;
1994 	int i;
1995 
1996 	/*
1997 	 * Check for _HID here to avoid deferring the enumeration of:
1998 	 * 1. PCI devices.
1999 	 * 2. ACPI nodes describing USB ports.
2000 	 * Still, checking for _HID catches more then just these cases ...
2001 	 */
2002 	if (!check_dep || !acpi_has_method(handle, "_DEP") ||
2003 	    !acpi_has_method(handle, "_HID"))
2004 		return 0;
2005 
2006 	status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
2007 	if (ACPI_FAILURE(status)) {
2008 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2009 		return 0;
2010 	}
2011 
2012 	for (count = 0, i = 0; i < dep_devices.count; i++) {
2013 		struct acpi_device_info *info;
2014 		struct acpi_dep_data *dep;
2015 		bool skip, honor_dep;
2016 
2017 		status = acpi_get_object_info(dep_devices.handles[i], &info);
2018 		if (ACPI_FAILURE(status)) {
2019 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
2020 			continue;
2021 		}
2022 
2023 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2024 		honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2025 		kfree(info);
2026 
2027 		if (skip)
2028 			continue;
2029 
2030 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2031 		if (!dep)
2032 			continue;
2033 
2034 		count++;
2035 
2036 		dep->supplier = dep_devices.handles[i];
2037 		dep->consumer = handle;
2038 		dep->honor_dep = honor_dep;
2039 
2040 		mutex_lock(&acpi_dep_list_lock);
2041 		list_add_tail(&dep->node , &acpi_dep_list);
2042 		mutex_unlock(&acpi_dep_list_lock);
2043 	}
2044 
2045 	return count;
2046 }
2047 
2048 static bool acpi_bus_scan_second_pass;
2049 
2050 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2051 				      struct acpi_device **adev_p)
2052 {
2053 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2054 	acpi_object_type acpi_type;
2055 	int type;
2056 
2057 	if (device)
2058 		goto out;
2059 
2060 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2061 		return AE_OK;
2062 
2063 	switch (acpi_type) {
2064 	case ACPI_TYPE_DEVICE:
2065 		if (acpi_device_should_be_hidden(handle))
2066 			return AE_OK;
2067 
2068 		/* Bail out if there are dependencies. */
2069 		if (acpi_scan_check_dep(handle, check_dep) > 0) {
2070 			acpi_bus_scan_second_pass = true;
2071 			return AE_CTRL_DEPTH;
2072 		}
2073 
2074 		fallthrough;
2075 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2076 		type = ACPI_BUS_TYPE_DEVICE;
2077 		break;
2078 
2079 	case ACPI_TYPE_PROCESSOR:
2080 		type = ACPI_BUS_TYPE_PROCESSOR;
2081 		break;
2082 
2083 	case ACPI_TYPE_THERMAL:
2084 		type = ACPI_BUS_TYPE_THERMAL;
2085 		break;
2086 
2087 	case ACPI_TYPE_POWER:
2088 		acpi_add_power_resource(handle);
2089 		fallthrough;
2090 	default:
2091 		return AE_OK;
2092 	}
2093 
2094 	/*
2095 	 * If check_dep is true at this point, the device has no dependencies,
2096 	 * or the creation of the device object would have been postponed above.
2097 	 */
2098 	acpi_add_single_object(&device, handle, type, !check_dep);
2099 	if (!device)
2100 		return AE_CTRL_DEPTH;
2101 
2102 	acpi_scan_init_hotplug(device);
2103 
2104 out:
2105 	if (!*adev_p)
2106 		*adev_p = device;
2107 
2108 	return AE_OK;
2109 }
2110 
2111 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2112 					void *not_used, void **ret_p)
2113 {
2114 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2115 }
2116 
2117 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2118 					void *not_used, void **ret_p)
2119 {
2120 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2121 }
2122 
2123 static void acpi_default_enumeration(struct acpi_device *device)
2124 {
2125 	/*
2126 	 * Do not enumerate devices with enumeration_by_parent flag set as
2127 	 * they will be enumerated by their respective parents.
2128 	 */
2129 	if (!device->flags.enumeration_by_parent) {
2130 		acpi_create_platform_device(device, NULL);
2131 		acpi_device_set_enumerated(device);
2132 	} else {
2133 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2134 					     ACPI_RECONFIG_DEVICE_ADD, device);
2135 	}
2136 }
2137 
2138 static const struct acpi_device_id generic_device_ids[] = {
2139 	{ACPI_DT_NAMESPACE_HID, },
2140 	{"", },
2141 };
2142 
2143 static int acpi_generic_device_attach(struct acpi_device *adev,
2144 				      const struct acpi_device_id *not_used)
2145 {
2146 	/*
2147 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2148 	 * below can be unconditional.
2149 	 */
2150 	if (adev->data.of_compatible)
2151 		acpi_default_enumeration(adev);
2152 
2153 	return 1;
2154 }
2155 
2156 static struct acpi_scan_handler generic_device_handler = {
2157 	.ids = generic_device_ids,
2158 	.attach = acpi_generic_device_attach,
2159 };
2160 
2161 static int acpi_scan_attach_handler(struct acpi_device *device)
2162 {
2163 	struct acpi_hardware_id *hwid;
2164 	int ret = 0;
2165 
2166 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2167 		const struct acpi_device_id *devid;
2168 		struct acpi_scan_handler *handler;
2169 
2170 		handler = acpi_scan_match_handler(hwid->id, &devid);
2171 		if (handler) {
2172 			if (!handler->attach) {
2173 				device->pnp.type.platform_id = 0;
2174 				continue;
2175 			}
2176 			device->handler = handler;
2177 			ret = handler->attach(device, devid);
2178 			if (ret > 0)
2179 				break;
2180 
2181 			device->handler = NULL;
2182 			if (ret < 0)
2183 				break;
2184 		}
2185 	}
2186 
2187 	return ret;
2188 }
2189 
2190 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2191 {
2192 	struct acpi_device *child;
2193 	bool skip = !first_pass && device->flags.visited;
2194 	acpi_handle ejd;
2195 	int ret;
2196 
2197 	if (skip)
2198 		goto ok;
2199 
2200 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2201 		register_dock_dependent_device(device, ejd);
2202 
2203 	acpi_bus_get_status(device);
2204 	/* Skip devices that are not ready for enumeration (e.g. not present) */
2205 	if (!acpi_dev_ready_for_enumeration(device)) {
2206 		device->flags.initialized = false;
2207 		acpi_device_clear_enumerated(device);
2208 		device->flags.power_manageable = 0;
2209 		return;
2210 	}
2211 	if (device->handler)
2212 		goto ok;
2213 
2214 	if (!device->flags.initialized) {
2215 		device->flags.power_manageable =
2216 			device->power.states[ACPI_STATE_D0].flags.valid;
2217 		if (acpi_bus_init_power(device))
2218 			device->flags.power_manageable = 0;
2219 
2220 		device->flags.initialized = true;
2221 	} else if (device->flags.visited) {
2222 		goto ok;
2223 	}
2224 
2225 	ret = acpi_scan_attach_handler(device);
2226 	if (ret < 0)
2227 		return;
2228 
2229 	device->flags.match_driver = true;
2230 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2231 		acpi_device_set_enumerated(device);
2232 		goto ok;
2233 	}
2234 
2235 	ret = device_attach(&device->dev);
2236 	if (ret < 0)
2237 		return;
2238 
2239 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2240 		acpi_default_enumeration(device);
2241 	else
2242 		acpi_device_set_enumerated(device);
2243 
2244  ok:
2245 	list_for_each_entry(child, &device->children, node)
2246 		acpi_bus_attach(child, first_pass);
2247 
2248 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2249 		device->handler->hotplug.notify_online(device);
2250 }
2251 
2252 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2253 {
2254 	struct acpi_device *adev;
2255 
2256 	adev = acpi_bus_get_acpi_device(dep->consumer);
2257 	if (adev) {
2258 		*(struct acpi_device **)data = adev;
2259 		return 1;
2260 	}
2261 	/* Continue parsing if the device object is not present. */
2262 	return 0;
2263 }
2264 
2265 struct acpi_scan_clear_dep_work {
2266 	struct work_struct work;
2267 	struct acpi_device *adev;
2268 };
2269 
2270 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2271 {
2272 	struct acpi_scan_clear_dep_work *cdw;
2273 
2274 	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2275 
2276 	acpi_scan_lock_acquire();
2277 	acpi_bus_attach(cdw->adev, true);
2278 	acpi_scan_lock_release();
2279 
2280 	acpi_dev_put(cdw->adev);
2281 	kfree(cdw);
2282 }
2283 
2284 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2285 {
2286 	struct acpi_scan_clear_dep_work *cdw;
2287 
2288 	if (adev->dep_unmet)
2289 		return false;
2290 
2291 	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2292 	if (!cdw)
2293 		return false;
2294 
2295 	cdw->adev = adev;
2296 	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2297 	/*
2298 	 * Since the work function may block on the lock until the entire
2299 	 * initial enumeration of devices is complete, put it into the unbound
2300 	 * workqueue.
2301 	 */
2302 	queue_work(system_unbound_wq, &cdw->work);
2303 
2304 	return true;
2305 }
2306 
2307 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2308 {
2309 	struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2310 
2311 	if (adev) {
2312 		adev->dep_unmet--;
2313 		if (!acpi_scan_clear_dep_queue(adev))
2314 			acpi_dev_put(adev);
2315 	}
2316 
2317 	list_del(&dep->node);
2318 	kfree(dep);
2319 
2320 	return 0;
2321 }
2322 
2323 /**
2324  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2325  * @handle:	The ACPI handle of the supplier device
2326  * @callback:	Pointer to the callback function to apply
2327  * @data:	Pointer to some data to pass to the callback
2328  *
2329  * The return value of the callback determines this function's behaviour. If 0
2330  * is returned we continue to iterate over acpi_dep_list. If a positive value
2331  * is returned then the loop is broken but this function returns 0. If a
2332  * negative value is returned by the callback then the loop is broken and that
2333  * value is returned as the final error.
2334  */
2335 static int acpi_walk_dep_device_list(acpi_handle handle,
2336 				int (*callback)(struct acpi_dep_data *, void *),
2337 				void *data)
2338 {
2339 	struct acpi_dep_data *dep, *tmp;
2340 	int ret = 0;
2341 
2342 	mutex_lock(&acpi_dep_list_lock);
2343 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2344 		if (dep->supplier == handle) {
2345 			ret = callback(dep, data);
2346 			if (ret)
2347 				break;
2348 		}
2349 	}
2350 	mutex_unlock(&acpi_dep_list_lock);
2351 
2352 	return ret > 0 ? 0 : ret;
2353 }
2354 
2355 /**
2356  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2357  * @supplier: Pointer to the supplier &struct acpi_device
2358  *
2359  * Clear dependencies on the given device.
2360  */
2361 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2362 {
2363 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2364 }
2365 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2366 
2367 /**
2368  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2369  * @device: Pointer to the &struct acpi_device to check
2370  *
2371  * Check if the device is present and has no unmet dependencies.
2372  *
2373  * Return true if the device is ready for enumeratino. Otherwise, return false.
2374  */
2375 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2376 {
2377 	if (device->flags.honor_deps && device->dep_unmet)
2378 		return false;
2379 
2380 	return acpi_device_is_present(device);
2381 }
2382 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2383 
2384 /**
2385  * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2386  * @supplier: Pointer to the dependee device
2387  *
2388  * Returns the first &struct acpi_device which declares itself dependent on
2389  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2390  *
2391  * The caller is responsible for putting the reference to adev when it is no
2392  * longer needed.
2393  */
2394 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2395 {
2396 	struct acpi_device *adev = NULL;
2397 
2398 	acpi_walk_dep_device_list(supplier->handle,
2399 				  acpi_dev_get_first_consumer_dev_cb, &adev);
2400 
2401 	return adev;
2402 }
2403 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2404 
2405 /**
2406  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2407  * @handle: Root of the namespace scope to scan.
2408  *
2409  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2410  * found devices.
2411  *
2412  * If no devices were found, -ENODEV is returned, but it does not mean that
2413  * there has been a real error.  There just have been no suitable ACPI objects
2414  * in the table trunk from which the kernel could create a device and add an
2415  * appropriate driver.
2416  *
2417  * Must be called under acpi_scan_lock.
2418  */
2419 int acpi_bus_scan(acpi_handle handle)
2420 {
2421 	struct acpi_device *device = NULL;
2422 
2423 	acpi_bus_scan_second_pass = false;
2424 
2425 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2426 
2427 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2428 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2429 				    acpi_bus_check_add_1, NULL, NULL,
2430 				    (void **)&device);
2431 
2432 	if (!device)
2433 		return -ENODEV;
2434 
2435 	acpi_bus_attach(device, true);
2436 
2437 	if (!acpi_bus_scan_second_pass)
2438 		return 0;
2439 
2440 	/* Pass 2: Enumerate all of the remaining devices. */
2441 
2442 	device = NULL;
2443 
2444 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2445 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2446 				    acpi_bus_check_add_2, NULL, NULL,
2447 				    (void **)&device);
2448 
2449 	acpi_bus_attach(device, false);
2450 
2451 	return 0;
2452 }
2453 EXPORT_SYMBOL(acpi_bus_scan);
2454 
2455 /**
2456  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2457  * @adev: Root of the ACPI namespace scope to walk.
2458  *
2459  * Must be called under acpi_scan_lock.
2460  */
2461 void acpi_bus_trim(struct acpi_device *adev)
2462 {
2463 	struct acpi_scan_handler *handler = adev->handler;
2464 	struct acpi_device *child;
2465 
2466 	list_for_each_entry_reverse(child, &adev->children, node)
2467 		acpi_bus_trim(child);
2468 
2469 	adev->flags.match_driver = false;
2470 	if (handler) {
2471 		if (handler->detach)
2472 			handler->detach(adev);
2473 
2474 		adev->handler = NULL;
2475 	} else {
2476 		device_release_driver(&adev->dev);
2477 	}
2478 	/*
2479 	 * Most likely, the device is going away, so put it into D3cold before
2480 	 * that.
2481 	 */
2482 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2483 	adev->flags.initialized = false;
2484 	acpi_device_clear_enumerated(adev);
2485 }
2486 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2487 
2488 int acpi_bus_register_early_device(int type)
2489 {
2490 	struct acpi_device *device = NULL;
2491 	int result;
2492 
2493 	result = acpi_add_single_object(&device, NULL, type, false);
2494 	if (result)
2495 		return result;
2496 
2497 	device->flags.match_driver = true;
2498 	return device_attach(&device->dev);
2499 }
2500 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2501 
2502 static void acpi_bus_scan_fixed(void)
2503 {
2504 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2505 		struct acpi_device *adev = NULL;
2506 
2507 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2508 				       false);
2509 		if (adev) {
2510 			adev->flags.match_driver = true;
2511 			if (device_attach(&adev->dev) >= 0)
2512 				device_init_wakeup(&adev->dev, true);
2513 			else
2514 				dev_dbg(&adev->dev, "No driver\n");
2515 		}
2516 	}
2517 
2518 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2519 		struct acpi_device *adev = NULL;
2520 
2521 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2522 				       false);
2523 		if (adev) {
2524 			adev->flags.match_driver = true;
2525 			if (device_attach(&adev->dev) < 0)
2526 				dev_dbg(&adev->dev, "No driver\n");
2527 		}
2528 	}
2529 }
2530 
2531 static void __init acpi_get_spcr_uart_addr(void)
2532 {
2533 	acpi_status status;
2534 	struct acpi_table_spcr *spcr_ptr;
2535 
2536 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2537 				(struct acpi_table_header **)&spcr_ptr);
2538 	if (ACPI_FAILURE(status)) {
2539 		pr_warn("STAO table present, but SPCR is missing\n");
2540 		return;
2541 	}
2542 
2543 	spcr_uart_addr = spcr_ptr->serial_port.address;
2544 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2545 }
2546 
2547 static bool acpi_scan_initialized;
2548 
2549 void __init acpi_scan_init(void)
2550 {
2551 	acpi_status status;
2552 	struct acpi_table_stao *stao_ptr;
2553 
2554 	acpi_pci_root_init();
2555 	acpi_pci_link_init();
2556 	acpi_processor_init();
2557 	acpi_platform_init();
2558 	acpi_lpss_init();
2559 	acpi_apd_init();
2560 	acpi_cmos_rtc_init();
2561 	acpi_container_init();
2562 	acpi_memory_hotplug_init();
2563 	acpi_watchdog_init();
2564 	acpi_pnp_init();
2565 	acpi_int340x_thermal_init();
2566 	acpi_amba_init();
2567 	acpi_init_lpit();
2568 
2569 	acpi_scan_add_handler(&generic_device_handler);
2570 
2571 	/*
2572 	 * If there is STAO table, check whether it needs to ignore the UART
2573 	 * device in SPCR table.
2574 	 */
2575 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2576 				(struct acpi_table_header **)&stao_ptr);
2577 	if (ACPI_SUCCESS(status)) {
2578 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2579 			pr_info("STAO Name List not yet supported.\n");
2580 
2581 		if (stao_ptr->ignore_uart)
2582 			acpi_get_spcr_uart_addr();
2583 
2584 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2585 	}
2586 
2587 	acpi_gpe_apply_masked_gpes();
2588 	acpi_update_all_gpes();
2589 
2590 	/*
2591 	 * Although we call __add_memory() that is documented to require the
2592 	 * device_hotplug_lock, it is not necessary here because this is an
2593 	 * early code when userspace or any other code path cannot trigger
2594 	 * hotplug/hotunplug operations.
2595 	 */
2596 	mutex_lock(&acpi_scan_lock);
2597 	/*
2598 	 * Enumerate devices in the ACPI namespace.
2599 	 */
2600 	if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2601 		goto unlock;
2602 
2603 	acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2604 	if (!acpi_root)
2605 		goto unlock;
2606 
2607 	/* Fixed feature devices do not exist on HW-reduced platform */
2608 	if (!acpi_gbl_reduced_hardware)
2609 		acpi_bus_scan_fixed();
2610 
2611 	acpi_turn_off_unused_power_resources();
2612 
2613 	acpi_scan_initialized = true;
2614 
2615 unlock:
2616 	mutex_unlock(&acpi_scan_lock);
2617 }
2618 
2619 static struct acpi_probe_entry *ape;
2620 static int acpi_probe_count;
2621 static DEFINE_MUTEX(acpi_probe_mutex);
2622 
2623 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2624 				  const unsigned long end)
2625 {
2626 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2627 		if (!ape->probe_subtbl(header, end))
2628 			acpi_probe_count++;
2629 
2630 	return 0;
2631 }
2632 
2633 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2634 {
2635 	int count = 0;
2636 
2637 	if (acpi_disabled)
2638 		return 0;
2639 
2640 	mutex_lock(&acpi_probe_mutex);
2641 	for (ape = ap_head; nr; ape++, nr--) {
2642 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2643 			acpi_probe_count = 0;
2644 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2645 			count += acpi_probe_count;
2646 		} else {
2647 			int res;
2648 			res = acpi_table_parse(ape->id, ape->probe_table);
2649 			if (!res)
2650 				count++;
2651 		}
2652 	}
2653 	mutex_unlock(&acpi_probe_mutex);
2654 
2655 	return count;
2656 }
2657 
2658 static void acpi_table_events_fn(struct work_struct *work)
2659 {
2660 	acpi_scan_lock_acquire();
2661 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2662 	acpi_scan_lock_release();
2663 
2664 	kfree(work);
2665 }
2666 
2667 void acpi_scan_table_notify(void)
2668 {
2669 	struct work_struct *work;
2670 
2671 	if (!acpi_scan_initialized)
2672 		return;
2673 
2674 	work = kmalloc(sizeof(*work), GFP_KERNEL);
2675 	if (!work)
2676 		return;
2677 
2678 	INIT_WORK(work, acpi_table_events_fn);
2679 	schedule_work(work);
2680 }
2681 
2682 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2683 {
2684 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2685 }
2686 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2687 
2688 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2689 {
2690 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2691 }
2692 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2693