xref: /openbmc/linux/drivers/acpi/scan.c (revision 71501859)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/kernel.h>
10 #include <linux/acpi.h>
11 #include <linux/acpi_iort.h>
12 #include <linux/signal.h>
13 #include <linux/kthread.h>
14 #include <linux/dmi.h>
15 #include <linux/nls.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/platform_data/x86/apple.h>
18 #include <linux/pgtable.h>
19 
20 #include "internal.h"
21 
22 extern struct acpi_device *acpi_root;
23 
24 #define ACPI_BUS_CLASS			"system_bus"
25 #define ACPI_BUS_HID			"LNXSYBUS"
26 #define ACPI_BUS_DEVICE_NAME		"System Bus"
27 
28 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
29 
30 #define INVALID_ACPI_HANDLE	((acpi_handle)empty_zero_page)
31 
32 static const char *dummy_hid = "device";
33 
34 static LIST_HEAD(acpi_dep_list);
35 static DEFINE_MUTEX(acpi_dep_list_lock);
36 LIST_HEAD(acpi_bus_id_list);
37 static DEFINE_MUTEX(acpi_scan_lock);
38 static LIST_HEAD(acpi_scan_handlers_list);
39 DEFINE_MUTEX(acpi_device_lock);
40 LIST_HEAD(acpi_wakeup_device_list);
41 static DEFINE_MUTEX(acpi_hp_context_lock);
42 
43 /*
44  * The UART device described by the SPCR table is the only object which needs
45  * special-casing. Everything else is covered by ACPI namespace paths in STAO
46  * table.
47  */
48 static u64 spcr_uart_addr;
49 
50 struct acpi_dep_data {
51 	struct list_head node;
52 	acpi_handle supplier;
53 	acpi_handle consumer;
54 };
55 
56 void acpi_scan_lock_acquire(void)
57 {
58 	mutex_lock(&acpi_scan_lock);
59 }
60 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
61 
62 void acpi_scan_lock_release(void)
63 {
64 	mutex_unlock(&acpi_scan_lock);
65 }
66 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
67 
68 void acpi_lock_hp_context(void)
69 {
70 	mutex_lock(&acpi_hp_context_lock);
71 }
72 
73 void acpi_unlock_hp_context(void)
74 {
75 	mutex_unlock(&acpi_hp_context_lock);
76 }
77 
78 void acpi_initialize_hp_context(struct acpi_device *adev,
79 				struct acpi_hotplug_context *hp,
80 				int (*notify)(struct acpi_device *, u32),
81 				void (*uevent)(struct acpi_device *, u32))
82 {
83 	acpi_lock_hp_context();
84 	hp->notify = notify;
85 	hp->uevent = uevent;
86 	acpi_set_hp_context(adev, hp);
87 	acpi_unlock_hp_context();
88 }
89 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
90 
91 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
92 {
93 	if (!handler)
94 		return -EINVAL;
95 
96 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
97 	return 0;
98 }
99 
100 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
101 				       const char *hotplug_profile_name)
102 {
103 	int error;
104 
105 	error = acpi_scan_add_handler(handler);
106 	if (error)
107 		return error;
108 
109 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
110 	return 0;
111 }
112 
113 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
114 {
115 	struct acpi_device_physical_node *pn;
116 	bool offline = true;
117 	char *envp[] = { "EVENT=offline", NULL };
118 
119 	/*
120 	 * acpi_container_offline() calls this for all of the container's
121 	 * children under the container's physical_node_lock lock.
122 	 */
123 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
124 
125 	list_for_each_entry(pn, &adev->physical_node_list, node)
126 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
127 			if (uevent)
128 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
129 
130 			offline = false;
131 			break;
132 		}
133 
134 	mutex_unlock(&adev->physical_node_lock);
135 	return offline;
136 }
137 
138 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
139 				    void **ret_p)
140 {
141 	struct acpi_device *device = NULL;
142 	struct acpi_device_physical_node *pn;
143 	bool second_pass = (bool)data;
144 	acpi_status status = AE_OK;
145 
146 	if (acpi_bus_get_device(handle, &device))
147 		return AE_OK;
148 
149 	if (device->handler && !device->handler->hotplug.enabled) {
150 		*ret_p = &device->dev;
151 		return AE_SUPPORT;
152 	}
153 
154 	mutex_lock(&device->physical_node_lock);
155 
156 	list_for_each_entry(pn, &device->physical_node_list, node) {
157 		int ret;
158 
159 		if (second_pass) {
160 			/* Skip devices offlined by the first pass. */
161 			if (pn->put_online)
162 				continue;
163 		} else {
164 			pn->put_online = false;
165 		}
166 		ret = device_offline(pn->dev);
167 		if (ret >= 0) {
168 			pn->put_online = !ret;
169 		} else {
170 			*ret_p = pn->dev;
171 			if (second_pass) {
172 				status = AE_ERROR;
173 				break;
174 			}
175 		}
176 	}
177 
178 	mutex_unlock(&device->physical_node_lock);
179 
180 	return status;
181 }
182 
183 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
184 				   void **ret_p)
185 {
186 	struct acpi_device *device = NULL;
187 	struct acpi_device_physical_node *pn;
188 
189 	if (acpi_bus_get_device(handle, &device))
190 		return AE_OK;
191 
192 	mutex_lock(&device->physical_node_lock);
193 
194 	list_for_each_entry(pn, &device->physical_node_list, node)
195 		if (pn->put_online) {
196 			device_online(pn->dev);
197 			pn->put_online = false;
198 		}
199 
200 	mutex_unlock(&device->physical_node_lock);
201 
202 	return AE_OK;
203 }
204 
205 static int acpi_scan_try_to_offline(struct acpi_device *device)
206 {
207 	acpi_handle handle = device->handle;
208 	struct device *errdev = NULL;
209 	acpi_status status;
210 
211 	/*
212 	 * Carry out two passes here and ignore errors in the first pass,
213 	 * because if the devices in question are memory blocks and
214 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
215 	 * that the other blocks depend on, but it is not known in advance which
216 	 * block holds them.
217 	 *
218 	 * If the first pass is successful, the second one isn't needed, though.
219 	 */
220 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
221 				     NULL, acpi_bus_offline, (void *)false,
222 				     (void **)&errdev);
223 	if (status == AE_SUPPORT) {
224 		dev_warn(errdev, "Offline disabled.\n");
225 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
226 				    acpi_bus_online, NULL, NULL, NULL);
227 		return -EPERM;
228 	}
229 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
230 	if (errdev) {
231 		errdev = NULL;
232 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
233 				    NULL, acpi_bus_offline, (void *)true,
234 				    (void **)&errdev);
235 		if (!errdev)
236 			acpi_bus_offline(handle, 0, (void *)true,
237 					 (void **)&errdev);
238 
239 		if (errdev) {
240 			dev_warn(errdev, "Offline failed.\n");
241 			acpi_bus_online(handle, 0, NULL, NULL);
242 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
243 					    ACPI_UINT32_MAX, acpi_bus_online,
244 					    NULL, NULL, NULL);
245 			return -EBUSY;
246 		}
247 	}
248 	return 0;
249 }
250 
251 static int acpi_scan_hot_remove(struct acpi_device *device)
252 {
253 	acpi_handle handle = device->handle;
254 	unsigned long long sta;
255 	acpi_status status;
256 
257 	if (device->handler && device->handler->hotplug.demand_offline) {
258 		if (!acpi_scan_is_offline(device, true))
259 			return -EBUSY;
260 	} else {
261 		int error = acpi_scan_try_to_offline(device);
262 		if (error)
263 			return error;
264 	}
265 
266 	acpi_handle_debug(handle, "Ejecting\n");
267 
268 	acpi_bus_trim(device);
269 
270 	acpi_evaluate_lck(handle, 0);
271 	/*
272 	 * TBD: _EJD support.
273 	 */
274 	status = acpi_evaluate_ej0(handle);
275 	if (status == AE_NOT_FOUND)
276 		return -ENODEV;
277 	else if (ACPI_FAILURE(status))
278 		return -EIO;
279 
280 	/*
281 	 * Verify if eject was indeed successful.  If not, log an error
282 	 * message.  No need to call _OST since _EJ0 call was made OK.
283 	 */
284 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
285 	if (ACPI_FAILURE(status)) {
286 		acpi_handle_warn(handle,
287 			"Status check after eject failed (0x%x)\n", status);
288 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
289 		acpi_handle_warn(handle,
290 			"Eject incomplete - status 0x%llx\n", sta);
291 	}
292 
293 	return 0;
294 }
295 
296 static int acpi_scan_device_not_present(struct acpi_device *adev)
297 {
298 	if (!acpi_device_enumerated(adev)) {
299 		dev_warn(&adev->dev, "Still not present\n");
300 		return -EALREADY;
301 	}
302 	acpi_bus_trim(adev);
303 	return 0;
304 }
305 
306 static int acpi_scan_device_check(struct acpi_device *adev)
307 {
308 	int error;
309 
310 	acpi_bus_get_status(adev);
311 	if (adev->status.present || adev->status.functional) {
312 		/*
313 		 * This function is only called for device objects for which
314 		 * matching scan handlers exist.  The only situation in which
315 		 * the scan handler is not attached to this device object yet
316 		 * is when the device has just appeared (either it wasn't
317 		 * present at all before or it was removed and then added
318 		 * again).
319 		 */
320 		if (adev->handler) {
321 			dev_warn(&adev->dev, "Already enumerated\n");
322 			return -EALREADY;
323 		}
324 		error = acpi_bus_scan(adev->handle);
325 		if (error) {
326 			dev_warn(&adev->dev, "Namespace scan failure\n");
327 			return error;
328 		}
329 		if (!adev->handler) {
330 			dev_warn(&adev->dev, "Enumeration failure\n");
331 			error = -ENODEV;
332 		}
333 	} else {
334 		error = acpi_scan_device_not_present(adev);
335 	}
336 	return error;
337 }
338 
339 static int acpi_scan_bus_check(struct acpi_device *adev)
340 {
341 	struct acpi_scan_handler *handler = adev->handler;
342 	struct acpi_device *child;
343 	int error;
344 
345 	acpi_bus_get_status(adev);
346 	if (!(adev->status.present || adev->status.functional)) {
347 		acpi_scan_device_not_present(adev);
348 		return 0;
349 	}
350 	if (handler && handler->hotplug.scan_dependent)
351 		return handler->hotplug.scan_dependent(adev);
352 
353 	error = acpi_bus_scan(adev->handle);
354 	if (error) {
355 		dev_warn(&adev->dev, "Namespace scan failure\n");
356 		return error;
357 	}
358 	list_for_each_entry(child, &adev->children, node) {
359 		error = acpi_scan_bus_check(child);
360 		if (error)
361 			return error;
362 	}
363 	return 0;
364 }
365 
366 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
367 {
368 	switch (type) {
369 	case ACPI_NOTIFY_BUS_CHECK:
370 		return acpi_scan_bus_check(adev);
371 	case ACPI_NOTIFY_DEVICE_CHECK:
372 		return acpi_scan_device_check(adev);
373 	case ACPI_NOTIFY_EJECT_REQUEST:
374 	case ACPI_OST_EC_OSPM_EJECT:
375 		if (adev->handler && !adev->handler->hotplug.enabled) {
376 			dev_info(&adev->dev, "Eject disabled\n");
377 			return -EPERM;
378 		}
379 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
380 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
381 		return acpi_scan_hot_remove(adev);
382 	}
383 	return -EINVAL;
384 }
385 
386 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
387 {
388 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
389 	int error = -ENODEV;
390 
391 	lock_device_hotplug();
392 	mutex_lock(&acpi_scan_lock);
393 
394 	/*
395 	 * The device object's ACPI handle cannot become invalid as long as we
396 	 * are holding acpi_scan_lock, but it might have become invalid before
397 	 * that lock was acquired.
398 	 */
399 	if (adev->handle == INVALID_ACPI_HANDLE)
400 		goto err_out;
401 
402 	if (adev->flags.is_dock_station) {
403 		error = dock_notify(adev, src);
404 	} else if (adev->flags.hotplug_notify) {
405 		error = acpi_generic_hotplug_event(adev, src);
406 	} else {
407 		int (*notify)(struct acpi_device *, u32);
408 
409 		acpi_lock_hp_context();
410 		notify = adev->hp ? adev->hp->notify : NULL;
411 		acpi_unlock_hp_context();
412 		/*
413 		 * There may be additional notify handlers for device objects
414 		 * without the .event() callback, so ignore them here.
415 		 */
416 		if (notify)
417 			error = notify(adev, src);
418 		else
419 			goto out;
420 	}
421 	switch (error) {
422 	case 0:
423 		ost_code = ACPI_OST_SC_SUCCESS;
424 		break;
425 	case -EPERM:
426 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
427 		break;
428 	case -EBUSY:
429 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
430 		break;
431 	default:
432 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
433 		break;
434 	}
435 
436  err_out:
437 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
438 
439  out:
440 	acpi_bus_put_acpi_device(adev);
441 	mutex_unlock(&acpi_scan_lock);
442 	unlock_device_hotplug();
443 }
444 
445 static void acpi_free_power_resources_lists(struct acpi_device *device)
446 {
447 	int i;
448 
449 	if (device->wakeup.flags.valid)
450 		acpi_power_resources_list_free(&device->wakeup.resources);
451 
452 	if (!device->power.flags.power_resources)
453 		return;
454 
455 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
456 		struct acpi_device_power_state *ps = &device->power.states[i];
457 		acpi_power_resources_list_free(&ps->resources);
458 	}
459 }
460 
461 static void acpi_device_release(struct device *dev)
462 {
463 	struct acpi_device *acpi_dev = to_acpi_device(dev);
464 
465 	acpi_free_properties(acpi_dev);
466 	acpi_free_pnp_ids(&acpi_dev->pnp);
467 	acpi_free_power_resources_lists(acpi_dev);
468 	kfree(acpi_dev);
469 }
470 
471 static void acpi_device_del(struct acpi_device *device)
472 {
473 	struct acpi_device_bus_id *acpi_device_bus_id;
474 
475 	mutex_lock(&acpi_device_lock);
476 	if (device->parent)
477 		list_del(&device->node);
478 
479 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
480 		if (!strcmp(acpi_device_bus_id->bus_id,
481 			    acpi_device_hid(device))) {
482 			ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no);
483 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
484 				list_del(&acpi_device_bus_id->node);
485 				kfree_const(acpi_device_bus_id->bus_id);
486 				kfree(acpi_device_bus_id);
487 			}
488 			break;
489 		}
490 
491 	list_del(&device->wakeup_list);
492 	mutex_unlock(&acpi_device_lock);
493 
494 	acpi_power_add_remove_device(device, false);
495 	acpi_device_remove_files(device);
496 	if (device->remove)
497 		device->remove(device);
498 
499 	device_del(&device->dev);
500 }
501 
502 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
503 
504 static LIST_HEAD(acpi_device_del_list);
505 static DEFINE_MUTEX(acpi_device_del_lock);
506 
507 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
508 {
509 	for (;;) {
510 		struct acpi_device *adev;
511 
512 		mutex_lock(&acpi_device_del_lock);
513 
514 		if (list_empty(&acpi_device_del_list)) {
515 			mutex_unlock(&acpi_device_del_lock);
516 			break;
517 		}
518 		adev = list_first_entry(&acpi_device_del_list,
519 					struct acpi_device, del_list);
520 		list_del(&adev->del_list);
521 
522 		mutex_unlock(&acpi_device_del_lock);
523 
524 		blocking_notifier_call_chain(&acpi_reconfig_chain,
525 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
526 
527 		acpi_device_del(adev);
528 		/*
529 		 * Drop references to all power resources that might have been
530 		 * used by the device.
531 		 */
532 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
533 		acpi_dev_put(adev);
534 	}
535 }
536 
537 /**
538  * acpi_scan_drop_device - Drop an ACPI device object.
539  * @handle: Handle of an ACPI namespace node, not used.
540  * @context: Address of the ACPI device object to drop.
541  *
542  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
543  * namespace node the device object pointed to by @context is attached to.
544  *
545  * The unregistration is carried out asynchronously to avoid running
546  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
547  * ensure the correct ordering (the device objects must be unregistered in the
548  * same order in which the corresponding namespace nodes are deleted).
549  */
550 static void acpi_scan_drop_device(acpi_handle handle, void *context)
551 {
552 	static DECLARE_WORK(work, acpi_device_del_work_fn);
553 	struct acpi_device *adev = context;
554 
555 	mutex_lock(&acpi_device_del_lock);
556 
557 	/*
558 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
559 	 * won't run after any hotplug work items submitted subsequently.  That
560 	 * prevents attempts to register device objects identical to those being
561 	 * deleted from happening concurrently (such attempts result from
562 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
563 	 * run after all of the work items submitted previously, which helps
564 	 * those work items to ensure that they are not accessing stale device
565 	 * objects.
566 	 */
567 	if (list_empty(&acpi_device_del_list))
568 		acpi_queue_hotplug_work(&work);
569 
570 	list_add_tail(&adev->del_list, &acpi_device_del_list);
571 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
572 	adev->handle = INVALID_ACPI_HANDLE;
573 
574 	mutex_unlock(&acpi_device_del_lock);
575 }
576 
577 static struct acpi_device *handle_to_device(acpi_handle handle,
578 					    void (*callback)(void *))
579 {
580 	struct acpi_device *adev = NULL;
581 	acpi_status status;
582 
583 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
584 				    (void **)&adev, callback);
585 	if (ACPI_FAILURE(status) || !adev) {
586 		acpi_handle_debug(handle, "No context!\n");
587 		return NULL;
588 	}
589 	return adev;
590 }
591 
592 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
593 {
594 	if (!device)
595 		return -EINVAL;
596 
597 	*device = handle_to_device(handle, NULL);
598 	if (!*device)
599 		return -ENODEV;
600 
601 	return 0;
602 }
603 EXPORT_SYMBOL(acpi_bus_get_device);
604 
605 static void get_acpi_device(void *dev)
606 {
607 	acpi_dev_get(dev);
608 }
609 
610 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
611 {
612 	return handle_to_device(handle, get_acpi_device);
613 }
614 
615 void acpi_bus_put_acpi_device(struct acpi_device *adev)
616 {
617 	acpi_dev_put(adev);
618 }
619 
620 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
621 {
622 	struct acpi_device_bus_id *acpi_device_bus_id;
623 
624 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
625 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
626 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
627 			return acpi_device_bus_id;
628 	}
629 	return NULL;
630 }
631 
632 static int acpi_device_set_name(struct acpi_device *device,
633 				struct acpi_device_bus_id *acpi_device_bus_id)
634 {
635 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
636 	int result;
637 
638 	result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL);
639 	if (result < 0)
640 		return result;
641 
642 	device->pnp.instance_no = result;
643 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
644 	return 0;
645 }
646 
647 int acpi_device_add(struct acpi_device *device,
648 		    void (*release)(struct device *))
649 {
650 	struct acpi_device_bus_id *acpi_device_bus_id;
651 	int result;
652 
653 	if (device->handle) {
654 		acpi_status status;
655 
656 		status = acpi_attach_data(device->handle, acpi_scan_drop_device,
657 					  device);
658 		if (ACPI_FAILURE(status)) {
659 			acpi_handle_err(device->handle,
660 					"Unable to attach device data\n");
661 			return -ENODEV;
662 		}
663 	}
664 
665 	/*
666 	 * Linkage
667 	 * -------
668 	 * Link this device to its parent and siblings.
669 	 */
670 	INIT_LIST_HEAD(&device->children);
671 	INIT_LIST_HEAD(&device->node);
672 	INIT_LIST_HEAD(&device->wakeup_list);
673 	INIT_LIST_HEAD(&device->physical_node_list);
674 	INIT_LIST_HEAD(&device->del_list);
675 	mutex_init(&device->physical_node_lock);
676 
677 	mutex_lock(&acpi_device_lock);
678 
679 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
680 	if (acpi_device_bus_id) {
681 		result = acpi_device_set_name(device, acpi_device_bus_id);
682 		if (result)
683 			goto err_unlock;
684 	} else {
685 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
686 					     GFP_KERNEL);
687 		if (!acpi_device_bus_id) {
688 			result = -ENOMEM;
689 			goto err_unlock;
690 		}
691 		acpi_device_bus_id->bus_id =
692 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
693 		if (!acpi_device_bus_id->bus_id) {
694 			kfree(acpi_device_bus_id);
695 			result = -ENOMEM;
696 			goto err_unlock;
697 		}
698 
699 		ida_init(&acpi_device_bus_id->instance_ida);
700 
701 		result = acpi_device_set_name(device, acpi_device_bus_id);
702 		if (result) {
703 			kfree_const(acpi_device_bus_id->bus_id);
704 			kfree(acpi_device_bus_id);
705 			goto err_unlock;
706 		}
707 
708 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
709 	}
710 
711 	if (device->parent)
712 		list_add_tail(&device->node, &device->parent->children);
713 
714 	if (device->wakeup.flags.valid)
715 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
716 
717 	mutex_unlock(&acpi_device_lock);
718 
719 	if (device->parent)
720 		device->dev.parent = &device->parent->dev;
721 
722 	device->dev.bus = &acpi_bus_type;
723 	device->dev.release = release;
724 	result = device_add(&device->dev);
725 	if (result) {
726 		dev_err(&device->dev, "Error registering device\n");
727 		goto err;
728 	}
729 
730 	result = acpi_device_setup_files(device);
731 	if (result)
732 		printk(KERN_ERR PREFIX "Error creating sysfs interface for device %s\n",
733 		       dev_name(&device->dev));
734 
735 	return 0;
736 
737 err:
738 	mutex_lock(&acpi_device_lock);
739 
740 	if (device->parent)
741 		list_del(&device->node);
742 
743 	list_del(&device->wakeup_list);
744 
745 err_unlock:
746 	mutex_unlock(&acpi_device_lock);
747 
748 	acpi_detach_data(device->handle, acpi_scan_drop_device);
749 
750 	return result;
751 }
752 
753 /* --------------------------------------------------------------------------
754                                  Device Enumeration
755    -------------------------------------------------------------------------- */
756 static bool acpi_info_matches_ids(struct acpi_device_info *info,
757 				  const char * const ids[])
758 {
759 	struct acpi_pnp_device_id_list *cid_list = NULL;
760 	int i, index;
761 
762 	if (!(info->valid & ACPI_VALID_HID))
763 		return false;
764 
765 	index = match_string(ids, -1, info->hardware_id.string);
766 	if (index >= 0)
767 		return true;
768 
769 	if (info->valid & ACPI_VALID_CID)
770 		cid_list = &info->compatible_id_list;
771 
772 	if (!cid_list)
773 		return false;
774 
775 	for (i = 0; i < cid_list->count; i++) {
776 		index = match_string(ids, -1, cid_list->ids[i].string);
777 		if (index >= 0)
778 			return true;
779 	}
780 
781 	return false;
782 }
783 
784 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
785 static const char * const acpi_ignore_dep_ids[] = {
786 	"PNP0D80", /* Windows-compatible System Power Management Controller */
787 	"INT33BD", /* Intel Baytrail Mailbox Device */
788 	NULL
789 };
790 
791 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
792 {
793 	struct acpi_device *device = NULL;
794 	acpi_status status;
795 
796 	/*
797 	 * Fixed hardware devices do not appear in the namespace and do not
798 	 * have handles, but we fabricate acpi_devices for them, so we have
799 	 * to deal with them specially.
800 	 */
801 	if (!handle)
802 		return acpi_root;
803 
804 	do {
805 		status = acpi_get_parent(handle, &handle);
806 		if (ACPI_FAILURE(status))
807 			return status == AE_NULL_ENTRY ? NULL : acpi_root;
808 	} while (acpi_bus_get_device(handle, &device));
809 	return device;
810 }
811 
812 acpi_status
813 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
814 {
815 	acpi_status status;
816 	acpi_handle tmp;
817 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
818 	union acpi_object *obj;
819 
820 	status = acpi_get_handle(handle, "_EJD", &tmp);
821 	if (ACPI_FAILURE(status))
822 		return status;
823 
824 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
825 	if (ACPI_SUCCESS(status)) {
826 		obj = buffer.pointer;
827 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
828 					 ejd);
829 		kfree(buffer.pointer);
830 	}
831 	return status;
832 }
833 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
834 
835 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
836 {
837 	acpi_handle handle = dev->handle;
838 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
839 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
840 	union acpi_object *package = NULL;
841 	union acpi_object *element = NULL;
842 	acpi_status status;
843 	int err = -ENODATA;
844 
845 	INIT_LIST_HEAD(&wakeup->resources);
846 
847 	/* _PRW */
848 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
849 	if (ACPI_FAILURE(status)) {
850 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
851 				 acpi_format_exception(status));
852 		return err;
853 	}
854 
855 	package = (union acpi_object *)buffer.pointer;
856 
857 	if (!package || package->package.count < 2)
858 		goto out;
859 
860 	element = &(package->package.elements[0]);
861 	if (!element)
862 		goto out;
863 
864 	if (element->type == ACPI_TYPE_PACKAGE) {
865 		if ((element->package.count < 2) ||
866 		    (element->package.elements[0].type !=
867 		     ACPI_TYPE_LOCAL_REFERENCE)
868 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
869 			goto out;
870 
871 		wakeup->gpe_device =
872 		    element->package.elements[0].reference.handle;
873 		wakeup->gpe_number =
874 		    (u32) element->package.elements[1].integer.value;
875 	} else if (element->type == ACPI_TYPE_INTEGER) {
876 		wakeup->gpe_device = NULL;
877 		wakeup->gpe_number = element->integer.value;
878 	} else {
879 		goto out;
880 	}
881 
882 	element = &(package->package.elements[1]);
883 	if (element->type != ACPI_TYPE_INTEGER)
884 		goto out;
885 
886 	wakeup->sleep_state = element->integer.value;
887 
888 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
889 	if (err)
890 		goto out;
891 
892 	if (!list_empty(&wakeup->resources)) {
893 		int sleep_state;
894 
895 		err = acpi_power_wakeup_list_init(&wakeup->resources,
896 						  &sleep_state);
897 		if (err) {
898 			acpi_handle_warn(handle, "Retrieving current states "
899 					 "of wakeup power resources failed\n");
900 			acpi_power_resources_list_free(&wakeup->resources);
901 			goto out;
902 		}
903 		if (sleep_state < wakeup->sleep_state) {
904 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
905 					 "(S%d) by S%d from power resources\n",
906 					 (int)wakeup->sleep_state, sleep_state);
907 			wakeup->sleep_state = sleep_state;
908 		}
909 	}
910 
911  out:
912 	kfree(buffer.pointer);
913 	return err;
914 }
915 
916 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
917 {
918 	static const struct acpi_device_id button_device_ids[] = {
919 		{"PNP0C0C", 0},		/* Power button */
920 		{"PNP0C0D", 0},		/* Lid */
921 		{"PNP0C0E", 0},		/* Sleep button */
922 		{"", 0},
923 	};
924 	struct acpi_device_wakeup *wakeup = &device->wakeup;
925 	acpi_status status;
926 
927 	wakeup->flags.notifier_present = 0;
928 
929 	/* Power button, Lid switch always enable wakeup */
930 	if (!acpi_match_device_ids(device, button_device_ids)) {
931 		if (!acpi_match_device_ids(device, &button_device_ids[1])) {
932 			/* Do not use Lid/sleep button for S5 wakeup */
933 			if (wakeup->sleep_state == ACPI_STATE_S5)
934 				wakeup->sleep_state = ACPI_STATE_S4;
935 		}
936 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
937 		device_set_wakeup_capable(&device->dev, true);
938 		return true;
939 	}
940 
941 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
942 					 wakeup->gpe_number);
943 	return ACPI_SUCCESS(status);
944 }
945 
946 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
947 {
948 	int err;
949 
950 	/* Presence of _PRW indicates wake capable */
951 	if (!acpi_has_method(device->handle, "_PRW"))
952 		return;
953 
954 	err = acpi_bus_extract_wakeup_device_power_package(device);
955 	if (err) {
956 		dev_err(&device->dev, "Unable to extract wakeup power resources");
957 		return;
958 	}
959 
960 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
961 	device->wakeup.prepare_count = 0;
962 	/*
963 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
964 	 * system for the ACPI device with the _PRW object.
965 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
966 	 * So it is necessary to call _DSW object first. Only when it is not
967 	 * present will the _PSW object used.
968 	 */
969 	err = acpi_device_sleep_wake(device, 0, 0, 0);
970 	if (err)
971 		pr_debug("error in _DSW or _PSW evaluation\n");
972 }
973 
974 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
975 {
976 	struct acpi_device_power_state *ps = &device->power.states[state];
977 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
978 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
979 	acpi_status status;
980 
981 	INIT_LIST_HEAD(&ps->resources);
982 
983 	/* Evaluate "_PRx" to get referenced power resources */
984 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
985 	if (ACPI_SUCCESS(status)) {
986 		union acpi_object *package = buffer.pointer;
987 
988 		if (buffer.length && package
989 		    && package->type == ACPI_TYPE_PACKAGE
990 		    && package->package.count)
991 			acpi_extract_power_resources(package, 0, &ps->resources);
992 
993 		ACPI_FREE(buffer.pointer);
994 	}
995 
996 	/* Evaluate "_PSx" to see if we can do explicit sets */
997 	pathname[2] = 'S';
998 	if (acpi_has_method(device->handle, pathname))
999 		ps->flags.explicit_set = 1;
1000 
1001 	/* State is valid if there are means to put the device into it. */
1002 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1003 		ps->flags.valid = 1;
1004 
1005 	ps->power = -1;		/* Unknown - driver assigned */
1006 	ps->latency = -1;	/* Unknown - driver assigned */
1007 }
1008 
1009 static void acpi_bus_get_power_flags(struct acpi_device *device)
1010 {
1011 	u32 i;
1012 
1013 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1014 	if (!acpi_has_method(device->handle, "_PS0") &&
1015 	    !acpi_has_method(device->handle, "_PR0"))
1016 		return;
1017 
1018 	device->flags.power_manageable = 1;
1019 
1020 	/*
1021 	 * Power Management Flags
1022 	 */
1023 	if (acpi_has_method(device->handle, "_PSC"))
1024 		device->power.flags.explicit_get = 1;
1025 
1026 	if (acpi_has_method(device->handle, "_IRC"))
1027 		device->power.flags.inrush_current = 1;
1028 
1029 	if (acpi_has_method(device->handle, "_DSW"))
1030 		device->power.flags.dsw_present = 1;
1031 
1032 	/*
1033 	 * Enumerate supported power management states
1034 	 */
1035 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1036 		acpi_bus_init_power_state(device, i);
1037 
1038 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1039 
1040 	/* Set the defaults for D0 and D3hot (always supported). */
1041 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1042 	device->power.states[ACPI_STATE_D0].power = 100;
1043 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1044 
1045 	/*
1046 	 * Use power resources only if the D0 list of them is populated, because
1047 	 * some platforms may provide _PR3 only to indicate D3cold support and
1048 	 * in those cases the power resources list returned by it may be bogus.
1049 	 */
1050 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1051 		device->power.flags.power_resources = 1;
1052 		/*
1053 		 * D3cold is supported if the D3hot list of power resources is
1054 		 * not empty.
1055 		 */
1056 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1057 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1058 	}
1059 
1060 	if (acpi_bus_init_power(device))
1061 		device->flags.power_manageable = 0;
1062 }
1063 
1064 static void acpi_bus_get_flags(struct acpi_device *device)
1065 {
1066 	/* Presence of _STA indicates 'dynamic_status' */
1067 	if (acpi_has_method(device->handle, "_STA"))
1068 		device->flags.dynamic_status = 1;
1069 
1070 	/* Presence of _RMV indicates 'removable' */
1071 	if (acpi_has_method(device->handle, "_RMV"))
1072 		device->flags.removable = 1;
1073 
1074 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1075 	if (acpi_has_method(device->handle, "_EJD") ||
1076 	    acpi_has_method(device->handle, "_EJ0"))
1077 		device->flags.ejectable = 1;
1078 }
1079 
1080 static void acpi_device_get_busid(struct acpi_device *device)
1081 {
1082 	char bus_id[5] = { '?', 0 };
1083 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1084 	int i = 0;
1085 
1086 	/*
1087 	 * Bus ID
1088 	 * ------
1089 	 * The device's Bus ID is simply the object name.
1090 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1091 	 */
1092 	if (ACPI_IS_ROOT_DEVICE(device)) {
1093 		strcpy(device->pnp.bus_id, "ACPI");
1094 		return;
1095 	}
1096 
1097 	switch (device->device_type) {
1098 	case ACPI_BUS_TYPE_POWER_BUTTON:
1099 		strcpy(device->pnp.bus_id, "PWRF");
1100 		break;
1101 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1102 		strcpy(device->pnp.bus_id, "SLPF");
1103 		break;
1104 	case ACPI_BUS_TYPE_ECDT_EC:
1105 		strcpy(device->pnp.bus_id, "ECDT");
1106 		break;
1107 	default:
1108 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1109 		/* Clean up trailing underscores (if any) */
1110 		for (i = 3; i > 1; i--) {
1111 			if (bus_id[i] == '_')
1112 				bus_id[i] = '\0';
1113 			else
1114 				break;
1115 		}
1116 		strcpy(device->pnp.bus_id, bus_id);
1117 		break;
1118 	}
1119 }
1120 
1121 /*
1122  * acpi_ata_match - see if an acpi object is an ATA device
1123  *
1124  * If an acpi object has one of the ACPI ATA methods defined,
1125  * then we can safely call it an ATA device.
1126  */
1127 bool acpi_ata_match(acpi_handle handle)
1128 {
1129 	return acpi_has_method(handle, "_GTF") ||
1130 	       acpi_has_method(handle, "_GTM") ||
1131 	       acpi_has_method(handle, "_STM") ||
1132 	       acpi_has_method(handle, "_SDD");
1133 }
1134 
1135 /*
1136  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1137  *
1138  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1139  * then we can safely call it an ejectable drive bay
1140  */
1141 bool acpi_bay_match(acpi_handle handle)
1142 {
1143 	acpi_handle phandle;
1144 
1145 	if (!acpi_has_method(handle, "_EJ0"))
1146 		return false;
1147 	if (acpi_ata_match(handle))
1148 		return true;
1149 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1150 		return false;
1151 
1152 	return acpi_ata_match(phandle);
1153 }
1154 
1155 bool acpi_device_is_battery(struct acpi_device *adev)
1156 {
1157 	struct acpi_hardware_id *hwid;
1158 
1159 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1160 		if (!strcmp("PNP0C0A", hwid->id))
1161 			return true;
1162 
1163 	return false;
1164 }
1165 
1166 static bool is_ejectable_bay(struct acpi_device *adev)
1167 {
1168 	acpi_handle handle = adev->handle;
1169 
1170 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1171 		return true;
1172 
1173 	return acpi_bay_match(handle);
1174 }
1175 
1176 /*
1177  * acpi_dock_match - see if an acpi object has a _DCK method
1178  */
1179 bool acpi_dock_match(acpi_handle handle)
1180 {
1181 	return acpi_has_method(handle, "_DCK");
1182 }
1183 
1184 static acpi_status
1185 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1186 			  void **return_value)
1187 {
1188 	long *cap = context;
1189 
1190 	if (acpi_has_method(handle, "_BCM") &&
1191 	    acpi_has_method(handle, "_BCL")) {
1192 		acpi_handle_debug(handle, "Found generic backlight support\n");
1193 		*cap |= ACPI_VIDEO_BACKLIGHT;
1194 		/* We have backlight support, no need to scan further */
1195 		return AE_CTRL_TERMINATE;
1196 	}
1197 	return 0;
1198 }
1199 
1200 /* Returns true if the ACPI object is a video device which can be
1201  * handled by video.ko.
1202  * The device will get a Linux specific CID added in scan.c to
1203  * identify the device as an ACPI graphics device
1204  * Be aware that the graphics device may not be physically present
1205  * Use acpi_video_get_capabilities() to detect general ACPI video
1206  * capabilities of present cards
1207  */
1208 long acpi_is_video_device(acpi_handle handle)
1209 {
1210 	long video_caps = 0;
1211 
1212 	/* Is this device able to support video switching ? */
1213 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1214 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1215 
1216 	/* Is this device able to retrieve a video ROM ? */
1217 	if (acpi_has_method(handle, "_ROM"))
1218 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1219 
1220 	/* Is this device able to configure which video head to be POSTed ? */
1221 	if (acpi_has_method(handle, "_VPO") &&
1222 	    acpi_has_method(handle, "_GPD") &&
1223 	    acpi_has_method(handle, "_SPD"))
1224 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1225 
1226 	/* Only check for backlight functionality if one of the above hit. */
1227 	if (video_caps)
1228 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1229 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1230 				    &video_caps, NULL);
1231 
1232 	return video_caps;
1233 }
1234 EXPORT_SYMBOL(acpi_is_video_device);
1235 
1236 const char *acpi_device_hid(struct acpi_device *device)
1237 {
1238 	struct acpi_hardware_id *hid;
1239 
1240 	if (list_empty(&device->pnp.ids))
1241 		return dummy_hid;
1242 
1243 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1244 	return hid->id;
1245 }
1246 EXPORT_SYMBOL(acpi_device_hid);
1247 
1248 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1249 {
1250 	struct acpi_hardware_id *id;
1251 
1252 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1253 	if (!id)
1254 		return;
1255 
1256 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1257 	if (!id->id) {
1258 		kfree(id);
1259 		return;
1260 	}
1261 
1262 	list_add_tail(&id->list, &pnp->ids);
1263 	pnp->type.hardware_id = 1;
1264 }
1265 
1266 /*
1267  * Old IBM workstations have a DSDT bug wherein the SMBus object
1268  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1269  * prefix.  Work around this.
1270  */
1271 static bool acpi_ibm_smbus_match(acpi_handle handle)
1272 {
1273 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1274 	struct acpi_buffer path = { sizeof(node_name), node_name };
1275 
1276 	if (!dmi_name_in_vendors("IBM"))
1277 		return false;
1278 
1279 	/* Look for SMBS object */
1280 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1281 	    strcmp("SMBS", path.pointer))
1282 		return false;
1283 
1284 	/* Does it have the necessary (but misnamed) methods? */
1285 	if (acpi_has_method(handle, "SBI") &&
1286 	    acpi_has_method(handle, "SBR") &&
1287 	    acpi_has_method(handle, "SBW"))
1288 		return true;
1289 
1290 	return false;
1291 }
1292 
1293 static bool acpi_object_is_system_bus(acpi_handle handle)
1294 {
1295 	acpi_handle tmp;
1296 
1297 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1298 	    tmp == handle)
1299 		return true;
1300 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1301 	    tmp == handle)
1302 		return true;
1303 
1304 	return false;
1305 }
1306 
1307 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1308 			     int device_type)
1309 {
1310 	struct acpi_device_info *info = NULL;
1311 	struct acpi_pnp_device_id_list *cid_list;
1312 	int i;
1313 
1314 	switch (device_type) {
1315 	case ACPI_BUS_TYPE_DEVICE:
1316 		if (handle == ACPI_ROOT_OBJECT) {
1317 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1318 			break;
1319 		}
1320 
1321 		acpi_get_object_info(handle, &info);
1322 		if (!info) {
1323 			pr_err(PREFIX "%s: Error reading device info\n",
1324 					__func__);
1325 			return;
1326 		}
1327 
1328 		if (info->valid & ACPI_VALID_HID) {
1329 			acpi_add_id(pnp, info->hardware_id.string);
1330 			pnp->type.platform_id = 1;
1331 		}
1332 		if (info->valid & ACPI_VALID_CID) {
1333 			cid_list = &info->compatible_id_list;
1334 			for (i = 0; i < cid_list->count; i++)
1335 				acpi_add_id(pnp, cid_list->ids[i].string);
1336 		}
1337 		if (info->valid & ACPI_VALID_ADR) {
1338 			pnp->bus_address = info->address;
1339 			pnp->type.bus_address = 1;
1340 		}
1341 		if (info->valid & ACPI_VALID_UID)
1342 			pnp->unique_id = kstrdup(info->unique_id.string,
1343 							GFP_KERNEL);
1344 		if (info->valid & ACPI_VALID_CLS)
1345 			acpi_add_id(pnp, info->class_code.string);
1346 
1347 		kfree(info);
1348 
1349 		/*
1350 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1351 		 * synthetic HIDs to make sure drivers can find them.
1352 		 */
1353 		if (acpi_is_video_device(handle))
1354 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1355 		else if (acpi_bay_match(handle))
1356 			acpi_add_id(pnp, ACPI_BAY_HID);
1357 		else if (acpi_dock_match(handle))
1358 			acpi_add_id(pnp, ACPI_DOCK_HID);
1359 		else if (acpi_ibm_smbus_match(handle))
1360 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1361 		else if (list_empty(&pnp->ids) &&
1362 			 acpi_object_is_system_bus(handle)) {
1363 			/* \_SB, \_TZ, LNXSYBUS */
1364 			acpi_add_id(pnp, ACPI_BUS_HID);
1365 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1366 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1367 		}
1368 
1369 		break;
1370 	case ACPI_BUS_TYPE_POWER:
1371 		acpi_add_id(pnp, ACPI_POWER_HID);
1372 		break;
1373 	case ACPI_BUS_TYPE_PROCESSOR:
1374 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1375 		break;
1376 	case ACPI_BUS_TYPE_THERMAL:
1377 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1378 		break;
1379 	case ACPI_BUS_TYPE_POWER_BUTTON:
1380 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1381 		break;
1382 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1383 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1384 		break;
1385 	case ACPI_BUS_TYPE_ECDT_EC:
1386 		acpi_add_id(pnp, ACPI_ECDT_HID);
1387 		break;
1388 	}
1389 }
1390 
1391 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1392 {
1393 	struct acpi_hardware_id *id, *tmp;
1394 
1395 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1396 		kfree_const(id->id);
1397 		kfree(id);
1398 	}
1399 	kfree(pnp->unique_id);
1400 }
1401 
1402 /**
1403  * acpi_dma_supported - Check DMA support for the specified device.
1404  * @adev: The pointer to acpi device
1405  *
1406  * Return false if DMA is not supported. Otherwise, return true
1407  */
1408 bool acpi_dma_supported(struct acpi_device *adev)
1409 {
1410 	if (!adev)
1411 		return false;
1412 
1413 	if (adev->flags.cca_seen)
1414 		return true;
1415 
1416 	/*
1417 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1418 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1419 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1420 	*/
1421 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1422 		return true;
1423 
1424 	return false;
1425 }
1426 
1427 /**
1428  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1429  * @adev: The pointer to acpi device
1430  *
1431  * Return enum dev_dma_attr.
1432  */
1433 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1434 {
1435 	if (!acpi_dma_supported(adev))
1436 		return DEV_DMA_NOT_SUPPORTED;
1437 
1438 	if (adev->flags.coherent_dma)
1439 		return DEV_DMA_COHERENT;
1440 	else
1441 		return DEV_DMA_NON_COHERENT;
1442 }
1443 
1444 /**
1445  * acpi_dma_get_range() - Get device DMA parameters.
1446  *
1447  * @dev: device to configure
1448  * @dma_addr: pointer device DMA address result
1449  * @offset: pointer to the DMA offset result
1450  * @size: pointer to DMA range size result
1451  *
1452  * Evaluate DMA regions and return respectively DMA region start, offset
1453  * and size in dma_addr, offset and size on parsing success; it does not
1454  * update the passed in values on failure.
1455  *
1456  * Return 0 on success, < 0 on failure.
1457  */
1458 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1459 		       u64 *size)
1460 {
1461 	struct acpi_device *adev;
1462 	LIST_HEAD(list);
1463 	struct resource_entry *rentry;
1464 	int ret;
1465 	struct device *dma_dev = dev;
1466 	u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1467 
1468 	/*
1469 	 * Walk the device tree chasing an ACPI companion with a _DMA
1470 	 * object while we go. Stop if we find a device with an ACPI
1471 	 * companion containing a _DMA method.
1472 	 */
1473 	do {
1474 		adev = ACPI_COMPANION(dma_dev);
1475 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1476 			break;
1477 
1478 		dma_dev = dma_dev->parent;
1479 	} while (dma_dev);
1480 
1481 	if (!dma_dev)
1482 		return -ENODEV;
1483 
1484 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1485 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1486 		return -EINVAL;
1487 	}
1488 
1489 	ret = acpi_dev_get_dma_resources(adev, &list);
1490 	if (ret > 0) {
1491 		list_for_each_entry(rentry, &list, node) {
1492 			if (dma_offset && rentry->offset != dma_offset) {
1493 				ret = -EINVAL;
1494 				dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1495 				goto out;
1496 			}
1497 			dma_offset = rentry->offset;
1498 
1499 			/* Take lower and upper limits */
1500 			if (rentry->res->start < dma_start)
1501 				dma_start = rentry->res->start;
1502 			if (rentry->res->end > dma_end)
1503 				dma_end = rentry->res->end;
1504 		}
1505 
1506 		if (dma_start >= dma_end) {
1507 			ret = -EINVAL;
1508 			dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1509 			goto out;
1510 		}
1511 
1512 		*dma_addr = dma_start - dma_offset;
1513 		len = dma_end - dma_start;
1514 		*size = max(len, len + 1);
1515 		*offset = dma_offset;
1516 	}
1517  out:
1518 	acpi_dev_free_resource_list(&list);
1519 
1520 	return ret >= 0 ? 0 : ret;
1521 }
1522 
1523 /**
1524  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1525  * @dev: The pointer to the device
1526  * @attr: device dma attributes
1527  * @input_id: input device id const value pointer
1528  */
1529 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1530 			  const u32 *input_id)
1531 {
1532 	const struct iommu_ops *iommu;
1533 	u64 dma_addr = 0, size = 0;
1534 
1535 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1536 		set_dma_ops(dev, &dma_dummy_ops);
1537 		return 0;
1538 	}
1539 
1540 	iort_dma_setup(dev, &dma_addr, &size);
1541 
1542 	iommu = iort_iommu_configure_id(dev, input_id);
1543 	if (PTR_ERR(iommu) == -EPROBE_DEFER)
1544 		return -EPROBE_DEFER;
1545 
1546 	arch_setup_dma_ops(dev, dma_addr, size,
1547 				iommu, attr == DEV_DMA_COHERENT);
1548 
1549 	return 0;
1550 }
1551 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1552 
1553 static void acpi_init_coherency(struct acpi_device *adev)
1554 {
1555 	unsigned long long cca = 0;
1556 	acpi_status status;
1557 	struct acpi_device *parent = adev->parent;
1558 
1559 	if (parent && parent->flags.cca_seen) {
1560 		/*
1561 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1562 		 * already saw one.
1563 		 */
1564 		adev->flags.cca_seen = 1;
1565 		cca = parent->flags.coherent_dma;
1566 	} else {
1567 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1568 					       NULL, &cca);
1569 		if (ACPI_SUCCESS(status))
1570 			adev->flags.cca_seen = 1;
1571 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1572 			/*
1573 			 * If architecture does not specify that _CCA is
1574 			 * required for DMA-able devices (e.g. x86),
1575 			 * we default to _CCA=1.
1576 			 */
1577 			cca = 1;
1578 		else
1579 			acpi_handle_debug(adev->handle,
1580 					  "ACPI device is missing _CCA.\n");
1581 	}
1582 
1583 	adev->flags.coherent_dma = cca;
1584 }
1585 
1586 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1587 {
1588 	bool *is_serial_bus_slave_p = data;
1589 
1590 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1591 		return 1;
1592 
1593 	*is_serial_bus_slave_p = true;
1594 
1595 	 /* no need to do more checking */
1596 	return -1;
1597 }
1598 
1599 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1600 {
1601 	struct acpi_device *parent = device->parent;
1602 	static const struct acpi_device_id indirect_io_hosts[] = {
1603 		{"HISI0191", 0},
1604 		{}
1605 	};
1606 
1607 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1608 }
1609 
1610 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1611 {
1612 	struct list_head resource_list;
1613 	bool is_serial_bus_slave = false;
1614 	/*
1615 	 * These devices have multiple I2cSerialBus resources and an i2c-client
1616 	 * must be instantiated for each, each with its own i2c_device_id.
1617 	 * Normally we only instantiate an i2c-client for the first resource,
1618 	 * using the ACPI HID as id. These special cases are handled by the
1619 	 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows
1620 	 * which i2c_device_id to use for each resource.
1621 	 */
1622 	static const struct acpi_device_id i2c_multi_instantiate_ids[] = {
1623 		{"BSG1160", },
1624 		{"BSG2150", },
1625 		{"INT33FE", },
1626 		{"INT3515", },
1627 		{}
1628 	};
1629 
1630 	if (acpi_is_indirect_io_slave(device))
1631 		return true;
1632 
1633 	/* Macs use device properties in lieu of _CRS resources */
1634 	if (x86_apple_machine &&
1635 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1636 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1637 	     fwnode_property_present(&device->fwnode, "baud")))
1638 		return true;
1639 
1640 	/* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */
1641 	if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids))
1642 		return false;
1643 
1644 	INIT_LIST_HEAD(&resource_list);
1645 	acpi_dev_get_resources(device, &resource_list,
1646 			       acpi_check_serial_bus_slave,
1647 			       &is_serial_bus_slave);
1648 	acpi_dev_free_resource_list(&resource_list);
1649 
1650 	return is_serial_bus_slave;
1651 }
1652 
1653 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1654 			     int type)
1655 {
1656 	INIT_LIST_HEAD(&device->pnp.ids);
1657 	device->device_type = type;
1658 	device->handle = handle;
1659 	device->parent = acpi_bus_get_parent(handle);
1660 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1661 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1662 	acpi_device_get_busid(device);
1663 	acpi_set_pnp_ids(handle, &device->pnp, type);
1664 	acpi_init_properties(device);
1665 	acpi_bus_get_flags(device);
1666 	device->flags.match_driver = false;
1667 	device->flags.initialized = true;
1668 	device->flags.enumeration_by_parent =
1669 		acpi_device_enumeration_by_parent(device);
1670 	acpi_device_clear_enumerated(device);
1671 	device_initialize(&device->dev);
1672 	dev_set_uevent_suppress(&device->dev, true);
1673 	acpi_init_coherency(device);
1674 	/* Assume there are unmet deps to start with. */
1675 	device->dep_unmet = 1;
1676 }
1677 
1678 void acpi_device_add_finalize(struct acpi_device *device)
1679 {
1680 	dev_set_uevent_suppress(&device->dev, false);
1681 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1682 }
1683 
1684 static void acpi_scan_init_status(struct acpi_device *adev)
1685 {
1686 	if (acpi_bus_get_status(adev))
1687 		acpi_set_device_status(adev, 0);
1688 }
1689 
1690 static int acpi_add_single_object(struct acpi_device **child,
1691 				  acpi_handle handle, int type)
1692 {
1693 	struct acpi_device *device;
1694 	int result;
1695 
1696 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1697 	if (!device)
1698 		return -ENOMEM;
1699 
1700 	acpi_init_device_object(device, handle, type);
1701 	/*
1702 	 * Getting the status is delayed till here so that we can call
1703 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1704 	 * this must be done before the get power-/wakeup_dev-flags calls.
1705 	 */
1706 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR)
1707 		acpi_scan_init_status(device);
1708 
1709 	acpi_bus_get_power_flags(device);
1710 	acpi_bus_get_wakeup_device_flags(device);
1711 
1712 	result = acpi_device_add(device, acpi_device_release);
1713 	if (result) {
1714 		acpi_device_release(&device->dev);
1715 		return result;
1716 	}
1717 
1718 	acpi_power_add_remove_device(device, true);
1719 	acpi_device_add_finalize(device);
1720 
1721 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1722 			  dev_name(&device->dev), device->parent ?
1723 				dev_name(&device->parent->dev) : "(null)");
1724 
1725 	*child = device;
1726 	return 0;
1727 }
1728 
1729 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1730 					    void *context)
1731 {
1732 	struct resource *res = context;
1733 
1734 	if (acpi_dev_resource_memory(ares, res))
1735 		return AE_CTRL_TERMINATE;
1736 
1737 	return AE_OK;
1738 }
1739 
1740 static bool acpi_device_should_be_hidden(acpi_handle handle)
1741 {
1742 	acpi_status status;
1743 	struct resource res;
1744 
1745 	/* Check if it should ignore the UART device */
1746 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1747 		return false;
1748 
1749 	/*
1750 	 * The UART device described in SPCR table is assumed to have only one
1751 	 * memory resource present. So we only look for the first one here.
1752 	 */
1753 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1754 				     acpi_get_resource_memory, &res);
1755 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1756 		return false;
1757 
1758 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1759 			 &res.start);
1760 
1761 	return true;
1762 }
1763 
1764 bool acpi_device_is_present(const struct acpi_device *adev)
1765 {
1766 	return adev->status.present || adev->status.functional;
1767 }
1768 
1769 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1770 				       const char *idstr,
1771 				       const struct acpi_device_id **matchid)
1772 {
1773 	const struct acpi_device_id *devid;
1774 
1775 	if (handler->match)
1776 		return handler->match(idstr, matchid);
1777 
1778 	for (devid = handler->ids; devid->id[0]; devid++)
1779 		if (!strcmp((char *)devid->id, idstr)) {
1780 			if (matchid)
1781 				*matchid = devid;
1782 
1783 			return true;
1784 		}
1785 
1786 	return false;
1787 }
1788 
1789 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1790 					const struct acpi_device_id **matchid)
1791 {
1792 	struct acpi_scan_handler *handler;
1793 
1794 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1795 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1796 			return handler;
1797 
1798 	return NULL;
1799 }
1800 
1801 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1802 {
1803 	if (!!hotplug->enabled == !!val)
1804 		return;
1805 
1806 	mutex_lock(&acpi_scan_lock);
1807 
1808 	hotplug->enabled = val;
1809 
1810 	mutex_unlock(&acpi_scan_lock);
1811 }
1812 
1813 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1814 {
1815 	struct acpi_hardware_id *hwid;
1816 
1817 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1818 		acpi_dock_add(adev);
1819 		return;
1820 	}
1821 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1822 		struct acpi_scan_handler *handler;
1823 
1824 		handler = acpi_scan_match_handler(hwid->id, NULL);
1825 		if (handler) {
1826 			adev->flags.hotplug_notify = true;
1827 			break;
1828 		}
1829 	}
1830 }
1831 
1832 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1833 {
1834 	struct acpi_handle_list dep_devices;
1835 	acpi_status status;
1836 	u32 count;
1837 	int i;
1838 
1839 	/*
1840 	 * Check for _HID here to avoid deferring the enumeration of:
1841 	 * 1. PCI devices.
1842 	 * 2. ACPI nodes describing USB ports.
1843 	 * Still, checking for _HID catches more then just these cases ...
1844 	 */
1845 	if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1846 	    !acpi_has_method(handle, "_HID"))
1847 		return 0;
1848 
1849 	status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1850 	if (ACPI_FAILURE(status)) {
1851 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1852 		return 0;
1853 	}
1854 
1855 	for (count = 0, i = 0; i < dep_devices.count; i++) {
1856 		struct acpi_device_info *info;
1857 		struct acpi_dep_data *dep;
1858 		bool skip;
1859 
1860 		status = acpi_get_object_info(dep_devices.handles[i], &info);
1861 		if (ACPI_FAILURE(status)) {
1862 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
1863 			continue;
1864 		}
1865 
1866 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
1867 		kfree(info);
1868 
1869 		if (skip)
1870 			continue;
1871 
1872 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
1873 		if (!dep)
1874 			continue;
1875 
1876 		count++;
1877 
1878 		dep->supplier = dep_devices.handles[i];
1879 		dep->consumer = handle;
1880 
1881 		mutex_lock(&acpi_dep_list_lock);
1882 		list_add_tail(&dep->node , &acpi_dep_list);
1883 		mutex_unlock(&acpi_dep_list_lock);
1884 	}
1885 
1886 	return count;
1887 }
1888 
1889 static void acpi_scan_dep_init(struct acpi_device *adev)
1890 {
1891 	struct acpi_dep_data *dep;
1892 
1893 	adev->dep_unmet = 0;
1894 
1895 	mutex_lock(&acpi_dep_list_lock);
1896 
1897 	list_for_each_entry(dep, &acpi_dep_list, node) {
1898 		if (dep->consumer == adev->handle)
1899 			adev->dep_unmet++;
1900 	}
1901 
1902 	mutex_unlock(&acpi_dep_list_lock);
1903 }
1904 
1905 static bool acpi_bus_scan_second_pass;
1906 
1907 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
1908 				      struct acpi_device **adev_p)
1909 {
1910 	struct acpi_device *device = NULL;
1911 	acpi_object_type acpi_type;
1912 	int type;
1913 
1914 	acpi_bus_get_device(handle, &device);
1915 	if (device)
1916 		goto out;
1917 
1918 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
1919 		return AE_OK;
1920 
1921 	switch (acpi_type) {
1922 	case ACPI_TYPE_DEVICE:
1923 		if (acpi_device_should_be_hidden(handle))
1924 			return AE_OK;
1925 
1926 		/* Bail out if there are dependencies. */
1927 		if (acpi_scan_check_dep(handle, check_dep) > 0) {
1928 			acpi_bus_scan_second_pass = true;
1929 			return AE_CTRL_DEPTH;
1930 		}
1931 
1932 		fallthrough;
1933 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
1934 		type = ACPI_BUS_TYPE_DEVICE;
1935 		break;
1936 
1937 	case ACPI_TYPE_PROCESSOR:
1938 		type = ACPI_BUS_TYPE_PROCESSOR;
1939 		break;
1940 
1941 	case ACPI_TYPE_THERMAL:
1942 		type = ACPI_BUS_TYPE_THERMAL;
1943 		break;
1944 
1945 	case ACPI_TYPE_POWER:
1946 		acpi_add_power_resource(handle);
1947 		fallthrough;
1948 	default:
1949 		return AE_OK;
1950 	}
1951 
1952 	acpi_add_single_object(&device, handle, type);
1953 	if (!device)
1954 		return AE_CTRL_DEPTH;
1955 
1956 	acpi_scan_init_hotplug(device);
1957 	/*
1958 	 * If check_dep is true at this point, the device has no dependencies,
1959 	 * or the creation of the device object would have been postponed above.
1960 	 */
1961 	if (check_dep)
1962 		device->dep_unmet = 0;
1963 	else
1964 		acpi_scan_dep_init(device);
1965 
1966 out:
1967 	if (!*adev_p)
1968 		*adev_p = device;
1969 
1970 	return AE_OK;
1971 }
1972 
1973 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
1974 					void *not_used, void **ret_p)
1975 {
1976 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
1977 }
1978 
1979 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
1980 					void *not_used, void **ret_p)
1981 {
1982 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
1983 }
1984 
1985 static void acpi_default_enumeration(struct acpi_device *device)
1986 {
1987 	/*
1988 	 * Do not enumerate devices with enumeration_by_parent flag set as
1989 	 * they will be enumerated by their respective parents.
1990 	 */
1991 	if (!device->flags.enumeration_by_parent) {
1992 		acpi_create_platform_device(device, NULL);
1993 		acpi_device_set_enumerated(device);
1994 	} else {
1995 		blocking_notifier_call_chain(&acpi_reconfig_chain,
1996 					     ACPI_RECONFIG_DEVICE_ADD, device);
1997 	}
1998 }
1999 
2000 static const struct acpi_device_id generic_device_ids[] = {
2001 	{ACPI_DT_NAMESPACE_HID, },
2002 	{"", },
2003 };
2004 
2005 static int acpi_generic_device_attach(struct acpi_device *adev,
2006 				      const struct acpi_device_id *not_used)
2007 {
2008 	/*
2009 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2010 	 * below can be unconditional.
2011 	 */
2012 	if (adev->data.of_compatible)
2013 		acpi_default_enumeration(adev);
2014 
2015 	return 1;
2016 }
2017 
2018 static struct acpi_scan_handler generic_device_handler = {
2019 	.ids = generic_device_ids,
2020 	.attach = acpi_generic_device_attach,
2021 };
2022 
2023 static int acpi_scan_attach_handler(struct acpi_device *device)
2024 {
2025 	struct acpi_hardware_id *hwid;
2026 	int ret = 0;
2027 
2028 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2029 		const struct acpi_device_id *devid;
2030 		struct acpi_scan_handler *handler;
2031 
2032 		handler = acpi_scan_match_handler(hwid->id, &devid);
2033 		if (handler) {
2034 			if (!handler->attach) {
2035 				device->pnp.type.platform_id = 0;
2036 				continue;
2037 			}
2038 			device->handler = handler;
2039 			ret = handler->attach(device, devid);
2040 			if (ret > 0)
2041 				break;
2042 
2043 			device->handler = NULL;
2044 			if (ret < 0)
2045 				break;
2046 		}
2047 	}
2048 
2049 	return ret;
2050 }
2051 
2052 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2053 {
2054 	struct acpi_device *child;
2055 	bool skip = !first_pass && device->flags.visited;
2056 	acpi_handle ejd;
2057 	int ret;
2058 
2059 	if (skip)
2060 		goto ok;
2061 
2062 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2063 		register_dock_dependent_device(device, ejd);
2064 
2065 	acpi_bus_get_status(device);
2066 	/* Skip devices that are not present. */
2067 	if (!acpi_device_is_present(device)) {
2068 		device->flags.initialized = false;
2069 		acpi_device_clear_enumerated(device);
2070 		device->flags.power_manageable = 0;
2071 		return;
2072 	}
2073 	if (device->handler)
2074 		goto ok;
2075 
2076 	if (!device->flags.initialized) {
2077 		device->flags.power_manageable =
2078 			device->power.states[ACPI_STATE_D0].flags.valid;
2079 		if (acpi_bus_init_power(device))
2080 			device->flags.power_manageable = 0;
2081 
2082 		device->flags.initialized = true;
2083 	} else if (device->flags.visited) {
2084 		goto ok;
2085 	}
2086 
2087 	ret = acpi_scan_attach_handler(device);
2088 	if (ret < 0)
2089 		return;
2090 
2091 	device->flags.match_driver = true;
2092 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2093 		acpi_device_set_enumerated(device);
2094 		goto ok;
2095 	}
2096 
2097 	ret = device_attach(&device->dev);
2098 	if (ret < 0)
2099 		return;
2100 
2101 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2102 		acpi_default_enumeration(device);
2103 	else
2104 		acpi_device_set_enumerated(device);
2105 
2106  ok:
2107 	list_for_each_entry(child, &device->children, node)
2108 		acpi_bus_attach(child, first_pass);
2109 
2110 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2111 		device->handler->hotplug.notify_online(device);
2112 }
2113 
2114 void acpi_walk_dep_device_list(acpi_handle handle)
2115 {
2116 	struct acpi_dep_data *dep, *tmp;
2117 	struct acpi_device *adev;
2118 
2119 	mutex_lock(&acpi_dep_list_lock);
2120 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2121 		if (dep->supplier == handle) {
2122 			acpi_bus_get_device(dep->consumer, &adev);
2123 
2124 			if (adev) {
2125 				adev->dep_unmet--;
2126 				if (!adev->dep_unmet)
2127 					acpi_bus_attach(adev, true);
2128 			}
2129 
2130 			list_del(&dep->node);
2131 			kfree(dep);
2132 		}
2133 	}
2134 	mutex_unlock(&acpi_dep_list_lock);
2135 }
2136 EXPORT_SYMBOL_GPL(acpi_walk_dep_device_list);
2137 
2138 /**
2139  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2140  * @handle: Root of the namespace scope to scan.
2141  *
2142  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2143  * found devices.
2144  *
2145  * If no devices were found, -ENODEV is returned, but it does not mean that
2146  * there has been a real error.  There just have been no suitable ACPI objects
2147  * in the table trunk from which the kernel could create a device and add an
2148  * appropriate driver.
2149  *
2150  * Must be called under acpi_scan_lock.
2151  */
2152 int acpi_bus_scan(acpi_handle handle)
2153 {
2154 	struct acpi_device *device = NULL;
2155 
2156 	acpi_bus_scan_second_pass = false;
2157 
2158 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2159 
2160 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2161 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2162 				    acpi_bus_check_add_1, NULL, NULL,
2163 				    (void **)&device);
2164 
2165 	if (!device)
2166 		return -ENODEV;
2167 
2168 	acpi_bus_attach(device, true);
2169 
2170 	if (!acpi_bus_scan_second_pass)
2171 		return 0;
2172 
2173 	/* Pass 2: Enumerate all of the remaining devices. */
2174 
2175 	device = NULL;
2176 
2177 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2178 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2179 				    acpi_bus_check_add_2, NULL, NULL,
2180 				    (void **)&device);
2181 
2182 	acpi_bus_attach(device, false);
2183 
2184 	return 0;
2185 }
2186 EXPORT_SYMBOL(acpi_bus_scan);
2187 
2188 /**
2189  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2190  * @adev: Root of the ACPI namespace scope to walk.
2191  *
2192  * Must be called under acpi_scan_lock.
2193  */
2194 void acpi_bus_trim(struct acpi_device *adev)
2195 {
2196 	struct acpi_scan_handler *handler = adev->handler;
2197 	struct acpi_device *child;
2198 
2199 	list_for_each_entry_reverse(child, &adev->children, node)
2200 		acpi_bus_trim(child);
2201 
2202 	adev->flags.match_driver = false;
2203 	if (handler) {
2204 		if (handler->detach)
2205 			handler->detach(adev);
2206 
2207 		adev->handler = NULL;
2208 	} else {
2209 		device_release_driver(&adev->dev);
2210 	}
2211 	/*
2212 	 * Most likely, the device is going away, so put it into D3cold before
2213 	 * that.
2214 	 */
2215 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2216 	adev->flags.initialized = false;
2217 	acpi_device_clear_enumerated(adev);
2218 }
2219 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2220 
2221 int acpi_bus_register_early_device(int type)
2222 {
2223 	struct acpi_device *device = NULL;
2224 	int result;
2225 
2226 	result = acpi_add_single_object(&device, NULL, type);
2227 	if (result)
2228 		return result;
2229 
2230 	device->flags.match_driver = true;
2231 	return device_attach(&device->dev);
2232 }
2233 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2234 
2235 static int acpi_bus_scan_fixed(void)
2236 {
2237 	int result = 0;
2238 
2239 	/*
2240 	 * Enumerate all fixed-feature devices.
2241 	 */
2242 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2243 		struct acpi_device *device = NULL;
2244 
2245 		result = acpi_add_single_object(&device, NULL,
2246 						ACPI_BUS_TYPE_POWER_BUTTON);
2247 		if (result)
2248 			return result;
2249 
2250 		device->flags.match_driver = true;
2251 		result = device_attach(&device->dev);
2252 		if (result < 0)
2253 			return result;
2254 
2255 		device_init_wakeup(&device->dev, true);
2256 	}
2257 
2258 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2259 		struct acpi_device *device = NULL;
2260 
2261 		result = acpi_add_single_object(&device, NULL,
2262 						ACPI_BUS_TYPE_SLEEP_BUTTON);
2263 		if (result)
2264 			return result;
2265 
2266 		device->flags.match_driver = true;
2267 		result = device_attach(&device->dev);
2268 	}
2269 
2270 	return result < 0 ? result : 0;
2271 }
2272 
2273 static void __init acpi_get_spcr_uart_addr(void)
2274 {
2275 	acpi_status status;
2276 	struct acpi_table_spcr *spcr_ptr;
2277 
2278 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2279 				(struct acpi_table_header **)&spcr_ptr);
2280 	if (ACPI_FAILURE(status)) {
2281 		pr_warn(PREFIX "STAO table present, but SPCR is missing\n");
2282 		return;
2283 	}
2284 
2285 	spcr_uart_addr = spcr_ptr->serial_port.address;
2286 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2287 }
2288 
2289 static bool acpi_scan_initialized;
2290 
2291 int __init acpi_scan_init(void)
2292 {
2293 	int result;
2294 	acpi_status status;
2295 	struct acpi_table_stao *stao_ptr;
2296 
2297 	acpi_pci_root_init();
2298 	acpi_pci_link_init();
2299 	acpi_processor_init();
2300 	acpi_platform_init();
2301 	acpi_lpss_init();
2302 	acpi_apd_init();
2303 	acpi_cmos_rtc_init();
2304 	acpi_container_init();
2305 	acpi_memory_hotplug_init();
2306 	acpi_watchdog_init();
2307 	acpi_pnp_init();
2308 	acpi_int340x_thermal_init();
2309 	acpi_amba_init();
2310 	acpi_init_lpit();
2311 
2312 	acpi_scan_add_handler(&generic_device_handler);
2313 
2314 	/*
2315 	 * If there is STAO table, check whether it needs to ignore the UART
2316 	 * device in SPCR table.
2317 	 */
2318 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2319 				(struct acpi_table_header **)&stao_ptr);
2320 	if (ACPI_SUCCESS(status)) {
2321 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2322 			pr_info(PREFIX "STAO Name List not yet supported.\n");
2323 
2324 		if (stao_ptr->ignore_uart)
2325 			acpi_get_spcr_uart_addr();
2326 
2327 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2328 	}
2329 
2330 	acpi_gpe_apply_masked_gpes();
2331 	acpi_update_all_gpes();
2332 
2333 	/*
2334 	 * Although we call __add_memory() that is documented to require the
2335 	 * device_hotplug_lock, it is not necessary here because this is an
2336 	 * early code when userspace or any other code path cannot trigger
2337 	 * hotplug/hotunplug operations.
2338 	 */
2339 	mutex_lock(&acpi_scan_lock);
2340 	/*
2341 	 * Enumerate devices in the ACPI namespace.
2342 	 */
2343 	result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2344 	if (result)
2345 		goto out;
2346 
2347 	result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2348 	if (result)
2349 		goto out;
2350 
2351 	/* Fixed feature devices do not exist on HW-reduced platform */
2352 	if (!acpi_gbl_reduced_hardware) {
2353 		result = acpi_bus_scan_fixed();
2354 		if (result) {
2355 			acpi_detach_data(acpi_root->handle,
2356 					 acpi_scan_drop_device);
2357 			acpi_device_del(acpi_root);
2358 			acpi_bus_put_acpi_device(acpi_root);
2359 			goto out;
2360 		}
2361 	}
2362 
2363 	acpi_turn_off_unused_power_resources();
2364 
2365 	acpi_scan_initialized = true;
2366 
2367  out:
2368 	mutex_unlock(&acpi_scan_lock);
2369 	return result;
2370 }
2371 
2372 static struct acpi_probe_entry *ape;
2373 static int acpi_probe_count;
2374 static DEFINE_MUTEX(acpi_probe_mutex);
2375 
2376 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2377 				  const unsigned long end)
2378 {
2379 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2380 		if (!ape->probe_subtbl(header, end))
2381 			acpi_probe_count++;
2382 
2383 	return 0;
2384 }
2385 
2386 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2387 {
2388 	int count = 0;
2389 
2390 	if (acpi_disabled)
2391 		return 0;
2392 
2393 	mutex_lock(&acpi_probe_mutex);
2394 	for (ape = ap_head; nr; ape++, nr--) {
2395 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2396 			acpi_probe_count = 0;
2397 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2398 			count += acpi_probe_count;
2399 		} else {
2400 			int res;
2401 			res = acpi_table_parse(ape->id, ape->probe_table);
2402 			if (!res)
2403 				count++;
2404 		}
2405 	}
2406 	mutex_unlock(&acpi_probe_mutex);
2407 
2408 	return count;
2409 }
2410 
2411 struct acpi_table_events_work {
2412 	struct work_struct work;
2413 	void *table;
2414 	u32 event;
2415 };
2416 
2417 static void acpi_table_events_fn(struct work_struct *work)
2418 {
2419 	struct acpi_table_events_work *tew;
2420 
2421 	tew = container_of(work, struct acpi_table_events_work, work);
2422 
2423 	if (tew->event == ACPI_TABLE_EVENT_LOAD) {
2424 		acpi_scan_lock_acquire();
2425 		acpi_bus_scan(ACPI_ROOT_OBJECT);
2426 		acpi_scan_lock_release();
2427 	}
2428 
2429 	kfree(tew);
2430 }
2431 
2432 void acpi_scan_table_handler(u32 event, void *table, void *context)
2433 {
2434 	struct acpi_table_events_work *tew;
2435 
2436 	if (!acpi_scan_initialized)
2437 		return;
2438 
2439 	if (event != ACPI_TABLE_EVENT_LOAD)
2440 		return;
2441 
2442 	tew = kmalloc(sizeof(*tew), GFP_KERNEL);
2443 	if (!tew)
2444 		return;
2445 
2446 	INIT_WORK(&tew->work, acpi_table_events_fn);
2447 	tew->table = table;
2448 	tew->event = event;
2449 
2450 	schedule_work(&tew->work);
2451 }
2452 
2453 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2454 {
2455 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2456 }
2457 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2458 
2459 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2460 {
2461 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2462 }
2463 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2464