1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #define pr_fmt(fmt) "ACPI: " fmt 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/acpi_viot.h> 15 #include <linux/iommu.h> 16 #include <linux/signal.h> 17 #include <linux/kthread.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/platform_data/x86/apple.h> 21 #include <linux/pgtable.h> 22 #include <linux/crc32.h> 23 #include <linux/dma-direct.h> 24 25 #include "internal.h" 26 27 extern struct acpi_device *acpi_root; 28 29 #define ACPI_BUS_CLASS "system_bus" 30 #define ACPI_BUS_HID "LNXSYBUS" 31 #define ACPI_BUS_DEVICE_NAME "System Bus" 32 33 #define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0)) 34 35 static const char *dummy_hid = "device"; 36 37 static LIST_HEAD(acpi_dep_list); 38 static DEFINE_MUTEX(acpi_dep_list_lock); 39 LIST_HEAD(acpi_bus_id_list); 40 static DEFINE_MUTEX(acpi_scan_lock); 41 static LIST_HEAD(acpi_scan_handlers_list); 42 DEFINE_MUTEX(acpi_device_lock); 43 LIST_HEAD(acpi_wakeup_device_list); 44 static DEFINE_MUTEX(acpi_hp_context_lock); 45 46 /* 47 * The UART device described by the SPCR table is the only object which needs 48 * special-casing. Everything else is covered by ACPI namespace paths in STAO 49 * table. 50 */ 51 static u64 spcr_uart_addr; 52 53 void acpi_scan_lock_acquire(void) 54 { 55 mutex_lock(&acpi_scan_lock); 56 } 57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 58 59 void acpi_scan_lock_release(void) 60 { 61 mutex_unlock(&acpi_scan_lock); 62 } 63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 64 65 void acpi_lock_hp_context(void) 66 { 67 mutex_lock(&acpi_hp_context_lock); 68 } 69 70 void acpi_unlock_hp_context(void) 71 { 72 mutex_unlock(&acpi_hp_context_lock); 73 } 74 75 void acpi_initialize_hp_context(struct acpi_device *adev, 76 struct acpi_hotplug_context *hp, 77 int (*notify)(struct acpi_device *, u32), 78 void (*uevent)(struct acpi_device *, u32)) 79 { 80 acpi_lock_hp_context(); 81 hp->notify = notify; 82 hp->uevent = uevent; 83 acpi_set_hp_context(adev, hp); 84 acpi_unlock_hp_context(); 85 } 86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 87 88 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 89 { 90 if (!handler) 91 return -EINVAL; 92 93 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 94 return 0; 95 } 96 97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 98 const char *hotplug_profile_name) 99 { 100 int error; 101 102 error = acpi_scan_add_handler(handler); 103 if (error) 104 return error; 105 106 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 107 return 0; 108 } 109 110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 111 { 112 struct acpi_device_physical_node *pn; 113 bool offline = true; 114 char *envp[] = { "EVENT=offline", NULL }; 115 116 /* 117 * acpi_container_offline() calls this for all of the container's 118 * children under the container's physical_node_lock lock. 119 */ 120 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 121 122 list_for_each_entry(pn, &adev->physical_node_list, node) 123 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 124 if (uevent) 125 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 126 127 offline = false; 128 break; 129 } 130 131 mutex_unlock(&adev->physical_node_lock); 132 return offline; 133 } 134 135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 136 void **ret_p) 137 { 138 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 139 struct acpi_device_physical_node *pn; 140 bool second_pass = (bool)data; 141 acpi_status status = AE_OK; 142 143 if (!device) 144 return AE_OK; 145 146 if (device->handler && !device->handler->hotplug.enabled) { 147 *ret_p = &device->dev; 148 return AE_SUPPORT; 149 } 150 151 mutex_lock(&device->physical_node_lock); 152 153 list_for_each_entry(pn, &device->physical_node_list, node) { 154 int ret; 155 156 if (second_pass) { 157 /* Skip devices offlined by the first pass. */ 158 if (pn->put_online) 159 continue; 160 } else { 161 pn->put_online = false; 162 } 163 ret = device_offline(pn->dev); 164 if (ret >= 0) { 165 pn->put_online = !ret; 166 } else { 167 *ret_p = pn->dev; 168 if (second_pass) { 169 status = AE_ERROR; 170 break; 171 } 172 } 173 } 174 175 mutex_unlock(&device->physical_node_lock); 176 177 return status; 178 } 179 180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 181 void **ret_p) 182 { 183 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 184 struct acpi_device_physical_node *pn; 185 186 if (!device) 187 return AE_OK; 188 189 mutex_lock(&device->physical_node_lock); 190 191 list_for_each_entry(pn, &device->physical_node_list, node) 192 if (pn->put_online) { 193 device_online(pn->dev); 194 pn->put_online = false; 195 } 196 197 mutex_unlock(&device->physical_node_lock); 198 199 return AE_OK; 200 } 201 202 static int acpi_scan_try_to_offline(struct acpi_device *device) 203 { 204 acpi_handle handle = device->handle; 205 struct device *errdev = NULL; 206 acpi_status status; 207 208 /* 209 * Carry out two passes here and ignore errors in the first pass, 210 * because if the devices in question are memory blocks and 211 * CONFIG_MEMCG is set, one of the blocks may hold data structures 212 * that the other blocks depend on, but it is not known in advance which 213 * block holds them. 214 * 215 * If the first pass is successful, the second one isn't needed, though. 216 */ 217 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 218 NULL, acpi_bus_offline, (void *)false, 219 (void **)&errdev); 220 if (status == AE_SUPPORT) { 221 dev_warn(errdev, "Offline disabled.\n"); 222 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 223 acpi_bus_online, NULL, NULL, NULL); 224 return -EPERM; 225 } 226 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 227 if (errdev) { 228 errdev = NULL; 229 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 230 NULL, acpi_bus_offline, (void *)true, 231 (void **)&errdev); 232 if (!errdev) 233 acpi_bus_offline(handle, 0, (void *)true, 234 (void **)&errdev); 235 236 if (errdev) { 237 dev_warn(errdev, "Offline failed.\n"); 238 acpi_bus_online(handle, 0, NULL, NULL); 239 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 240 ACPI_UINT32_MAX, acpi_bus_online, 241 NULL, NULL, NULL); 242 return -EBUSY; 243 } 244 } 245 return 0; 246 } 247 248 static int acpi_scan_hot_remove(struct acpi_device *device) 249 { 250 acpi_handle handle = device->handle; 251 unsigned long long sta; 252 acpi_status status; 253 254 if (device->handler && device->handler->hotplug.demand_offline) { 255 if (!acpi_scan_is_offline(device, true)) 256 return -EBUSY; 257 } else { 258 int error = acpi_scan_try_to_offline(device); 259 if (error) 260 return error; 261 } 262 263 acpi_handle_debug(handle, "Ejecting\n"); 264 265 acpi_bus_trim(device); 266 267 acpi_evaluate_lck(handle, 0); 268 /* 269 * TBD: _EJD support. 270 */ 271 status = acpi_evaluate_ej0(handle); 272 if (status == AE_NOT_FOUND) 273 return -ENODEV; 274 else if (ACPI_FAILURE(status)) 275 return -EIO; 276 277 /* 278 * Verify if eject was indeed successful. If not, log an error 279 * message. No need to call _OST since _EJ0 call was made OK. 280 */ 281 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 282 if (ACPI_FAILURE(status)) { 283 acpi_handle_warn(handle, 284 "Status check after eject failed (0x%x)\n", status); 285 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 286 acpi_handle_warn(handle, 287 "Eject incomplete - status 0x%llx\n", sta); 288 } 289 290 return 0; 291 } 292 293 static int acpi_scan_device_not_present(struct acpi_device *adev) 294 { 295 if (!acpi_device_enumerated(adev)) { 296 dev_warn(&adev->dev, "Still not present\n"); 297 return -EALREADY; 298 } 299 acpi_bus_trim(adev); 300 return 0; 301 } 302 303 static int acpi_scan_device_check(struct acpi_device *adev) 304 { 305 int error; 306 307 acpi_bus_get_status(adev); 308 if (adev->status.present || adev->status.functional) { 309 /* 310 * This function is only called for device objects for which 311 * matching scan handlers exist. The only situation in which 312 * the scan handler is not attached to this device object yet 313 * is when the device has just appeared (either it wasn't 314 * present at all before or it was removed and then added 315 * again). 316 */ 317 if (adev->handler) { 318 dev_warn(&adev->dev, "Already enumerated\n"); 319 return -EALREADY; 320 } 321 error = acpi_bus_scan(adev->handle); 322 if (error) { 323 dev_warn(&adev->dev, "Namespace scan failure\n"); 324 return error; 325 } 326 if (!adev->handler) { 327 dev_warn(&adev->dev, "Enumeration failure\n"); 328 error = -ENODEV; 329 } 330 } else { 331 error = acpi_scan_device_not_present(adev); 332 } 333 return error; 334 } 335 336 static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used) 337 { 338 struct acpi_scan_handler *handler = adev->handler; 339 int error; 340 341 acpi_bus_get_status(adev); 342 if (!(adev->status.present || adev->status.functional)) { 343 acpi_scan_device_not_present(adev); 344 return 0; 345 } 346 if (handler && handler->hotplug.scan_dependent) 347 return handler->hotplug.scan_dependent(adev); 348 349 error = acpi_bus_scan(adev->handle); 350 if (error) { 351 dev_warn(&adev->dev, "Namespace scan failure\n"); 352 return error; 353 } 354 return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL); 355 } 356 357 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 358 { 359 switch (type) { 360 case ACPI_NOTIFY_BUS_CHECK: 361 return acpi_scan_bus_check(adev, NULL); 362 case ACPI_NOTIFY_DEVICE_CHECK: 363 return acpi_scan_device_check(adev); 364 case ACPI_NOTIFY_EJECT_REQUEST: 365 case ACPI_OST_EC_OSPM_EJECT: 366 if (adev->handler && !adev->handler->hotplug.enabled) { 367 dev_info(&adev->dev, "Eject disabled\n"); 368 return -EPERM; 369 } 370 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 371 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 372 return acpi_scan_hot_remove(adev); 373 } 374 return -EINVAL; 375 } 376 377 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 378 { 379 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 380 int error = -ENODEV; 381 382 lock_device_hotplug(); 383 mutex_lock(&acpi_scan_lock); 384 385 /* 386 * The device object's ACPI handle cannot become invalid as long as we 387 * are holding acpi_scan_lock, but it might have become invalid before 388 * that lock was acquired. 389 */ 390 if (adev->handle == INVALID_ACPI_HANDLE) 391 goto err_out; 392 393 if (adev->flags.is_dock_station) { 394 error = dock_notify(adev, src); 395 } else if (adev->flags.hotplug_notify) { 396 error = acpi_generic_hotplug_event(adev, src); 397 } else { 398 int (*notify)(struct acpi_device *, u32); 399 400 acpi_lock_hp_context(); 401 notify = adev->hp ? adev->hp->notify : NULL; 402 acpi_unlock_hp_context(); 403 /* 404 * There may be additional notify handlers for device objects 405 * without the .event() callback, so ignore them here. 406 */ 407 if (notify) 408 error = notify(adev, src); 409 else 410 goto out; 411 } 412 switch (error) { 413 case 0: 414 ost_code = ACPI_OST_SC_SUCCESS; 415 break; 416 case -EPERM: 417 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 418 break; 419 case -EBUSY: 420 ost_code = ACPI_OST_SC_DEVICE_BUSY; 421 break; 422 default: 423 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 424 break; 425 } 426 427 err_out: 428 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 429 430 out: 431 acpi_put_acpi_dev(adev); 432 mutex_unlock(&acpi_scan_lock); 433 unlock_device_hotplug(); 434 } 435 436 static void acpi_free_power_resources_lists(struct acpi_device *device) 437 { 438 int i; 439 440 if (device->wakeup.flags.valid) 441 acpi_power_resources_list_free(&device->wakeup.resources); 442 443 if (!device->power.flags.power_resources) 444 return; 445 446 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 447 struct acpi_device_power_state *ps = &device->power.states[i]; 448 acpi_power_resources_list_free(&ps->resources); 449 } 450 } 451 452 static void acpi_device_release(struct device *dev) 453 { 454 struct acpi_device *acpi_dev = to_acpi_device(dev); 455 456 acpi_free_properties(acpi_dev); 457 acpi_free_pnp_ids(&acpi_dev->pnp); 458 acpi_free_power_resources_lists(acpi_dev); 459 kfree(acpi_dev); 460 } 461 462 static void acpi_device_del(struct acpi_device *device) 463 { 464 struct acpi_device_bus_id *acpi_device_bus_id; 465 466 mutex_lock(&acpi_device_lock); 467 468 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 469 if (!strcmp(acpi_device_bus_id->bus_id, 470 acpi_device_hid(device))) { 471 ida_free(&acpi_device_bus_id->instance_ida, 472 device->pnp.instance_no); 473 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 474 list_del(&acpi_device_bus_id->node); 475 kfree_const(acpi_device_bus_id->bus_id); 476 kfree(acpi_device_bus_id); 477 } 478 break; 479 } 480 481 list_del(&device->wakeup_list); 482 483 mutex_unlock(&acpi_device_lock); 484 485 acpi_power_add_remove_device(device, false); 486 acpi_device_remove_files(device); 487 if (device->remove) 488 device->remove(device); 489 490 device_del(&device->dev); 491 } 492 493 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 494 495 static LIST_HEAD(acpi_device_del_list); 496 static DEFINE_MUTEX(acpi_device_del_lock); 497 498 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 499 { 500 for (;;) { 501 struct acpi_device *adev; 502 503 mutex_lock(&acpi_device_del_lock); 504 505 if (list_empty(&acpi_device_del_list)) { 506 mutex_unlock(&acpi_device_del_lock); 507 break; 508 } 509 adev = list_first_entry(&acpi_device_del_list, 510 struct acpi_device, del_list); 511 list_del(&adev->del_list); 512 513 mutex_unlock(&acpi_device_del_lock); 514 515 blocking_notifier_call_chain(&acpi_reconfig_chain, 516 ACPI_RECONFIG_DEVICE_REMOVE, adev); 517 518 acpi_device_del(adev); 519 /* 520 * Drop references to all power resources that might have been 521 * used by the device. 522 */ 523 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 524 acpi_dev_put(adev); 525 } 526 } 527 528 /** 529 * acpi_scan_drop_device - Drop an ACPI device object. 530 * @handle: Handle of an ACPI namespace node, not used. 531 * @context: Address of the ACPI device object to drop. 532 * 533 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 534 * namespace node the device object pointed to by @context is attached to. 535 * 536 * The unregistration is carried out asynchronously to avoid running 537 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 538 * ensure the correct ordering (the device objects must be unregistered in the 539 * same order in which the corresponding namespace nodes are deleted). 540 */ 541 static void acpi_scan_drop_device(acpi_handle handle, void *context) 542 { 543 static DECLARE_WORK(work, acpi_device_del_work_fn); 544 struct acpi_device *adev = context; 545 546 mutex_lock(&acpi_device_del_lock); 547 548 /* 549 * Use the ACPI hotplug workqueue which is ordered, so this work item 550 * won't run after any hotplug work items submitted subsequently. That 551 * prevents attempts to register device objects identical to those being 552 * deleted from happening concurrently (such attempts result from 553 * hotplug events handled via the ACPI hotplug workqueue). It also will 554 * run after all of the work items submitted previously, which helps 555 * those work items to ensure that they are not accessing stale device 556 * objects. 557 */ 558 if (list_empty(&acpi_device_del_list)) 559 acpi_queue_hotplug_work(&work); 560 561 list_add_tail(&adev->del_list, &acpi_device_del_list); 562 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 563 adev->handle = INVALID_ACPI_HANDLE; 564 565 mutex_unlock(&acpi_device_del_lock); 566 } 567 568 static struct acpi_device *handle_to_device(acpi_handle handle, 569 void (*callback)(void *)) 570 { 571 struct acpi_device *adev = NULL; 572 acpi_status status; 573 574 status = acpi_get_data_full(handle, acpi_scan_drop_device, 575 (void **)&adev, callback); 576 if (ACPI_FAILURE(status) || !adev) { 577 acpi_handle_debug(handle, "No context!\n"); 578 return NULL; 579 } 580 return adev; 581 } 582 583 /** 584 * acpi_fetch_acpi_dev - Retrieve ACPI device object. 585 * @handle: ACPI handle associated with the requested ACPI device object. 586 * 587 * Return a pointer to the ACPI device object associated with @handle, if 588 * present, or NULL otherwise. 589 */ 590 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle) 591 { 592 return handle_to_device(handle, NULL); 593 } 594 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev); 595 596 static void get_acpi_device(void *dev) 597 { 598 acpi_dev_get(dev); 599 } 600 601 /** 602 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it. 603 * @handle: ACPI handle associated with the requested ACPI device object. 604 * 605 * Return a pointer to the ACPI device object associated with @handle and bump 606 * up that object's reference counter (under the ACPI Namespace lock), if 607 * present, or return NULL otherwise. 608 * 609 * The ACPI device object reference acquired by this function needs to be 610 * dropped via acpi_dev_put(). 611 */ 612 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle) 613 { 614 return handle_to_device(handle, get_acpi_device); 615 } 616 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev); 617 618 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 619 { 620 struct acpi_device_bus_id *acpi_device_bus_id; 621 622 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 623 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 624 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 625 return acpi_device_bus_id; 626 } 627 return NULL; 628 } 629 630 static int acpi_device_set_name(struct acpi_device *device, 631 struct acpi_device_bus_id *acpi_device_bus_id) 632 { 633 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 634 int result; 635 636 result = ida_alloc(instance_ida, GFP_KERNEL); 637 if (result < 0) 638 return result; 639 640 device->pnp.instance_no = result; 641 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 642 return 0; 643 } 644 645 int acpi_tie_acpi_dev(struct acpi_device *adev) 646 { 647 acpi_handle handle = adev->handle; 648 acpi_status status; 649 650 if (!handle) 651 return 0; 652 653 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 654 if (ACPI_FAILURE(status)) { 655 acpi_handle_err(handle, "Unable to attach device data\n"); 656 return -ENODEV; 657 } 658 659 return 0; 660 } 661 662 static void acpi_store_pld_crc(struct acpi_device *adev) 663 { 664 struct acpi_pld_info *pld; 665 acpi_status status; 666 667 status = acpi_get_physical_device_location(adev->handle, &pld); 668 if (ACPI_FAILURE(status)) 669 return; 670 671 adev->pld_crc = crc32(~0, pld, sizeof(*pld)); 672 ACPI_FREE(pld); 673 } 674 675 int acpi_device_add(struct acpi_device *device) 676 { 677 struct acpi_device_bus_id *acpi_device_bus_id; 678 int result; 679 680 /* 681 * Linkage 682 * ------- 683 * Link this device to its parent and siblings. 684 */ 685 INIT_LIST_HEAD(&device->wakeup_list); 686 INIT_LIST_HEAD(&device->physical_node_list); 687 INIT_LIST_HEAD(&device->del_list); 688 mutex_init(&device->physical_node_lock); 689 690 mutex_lock(&acpi_device_lock); 691 692 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 693 if (acpi_device_bus_id) { 694 result = acpi_device_set_name(device, acpi_device_bus_id); 695 if (result) 696 goto err_unlock; 697 } else { 698 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 699 GFP_KERNEL); 700 if (!acpi_device_bus_id) { 701 result = -ENOMEM; 702 goto err_unlock; 703 } 704 acpi_device_bus_id->bus_id = 705 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 706 if (!acpi_device_bus_id->bus_id) { 707 kfree(acpi_device_bus_id); 708 result = -ENOMEM; 709 goto err_unlock; 710 } 711 712 ida_init(&acpi_device_bus_id->instance_ida); 713 714 result = acpi_device_set_name(device, acpi_device_bus_id); 715 if (result) { 716 kfree_const(acpi_device_bus_id->bus_id); 717 kfree(acpi_device_bus_id); 718 goto err_unlock; 719 } 720 721 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 722 } 723 724 if (device->wakeup.flags.valid) 725 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 726 727 acpi_store_pld_crc(device); 728 729 mutex_unlock(&acpi_device_lock); 730 731 result = device_add(&device->dev); 732 if (result) { 733 dev_err(&device->dev, "Error registering device\n"); 734 goto err; 735 } 736 737 result = acpi_device_setup_files(device); 738 if (result) 739 pr_err("Error creating sysfs interface for device %s\n", 740 dev_name(&device->dev)); 741 742 return 0; 743 744 err: 745 mutex_lock(&acpi_device_lock); 746 747 list_del(&device->wakeup_list); 748 749 err_unlock: 750 mutex_unlock(&acpi_device_lock); 751 752 acpi_detach_data(device->handle, acpi_scan_drop_device); 753 754 return result; 755 } 756 757 /* -------------------------------------------------------------------------- 758 Device Enumeration 759 -------------------------------------------------------------------------- */ 760 static bool acpi_info_matches_ids(struct acpi_device_info *info, 761 const char * const ids[]) 762 { 763 struct acpi_pnp_device_id_list *cid_list = NULL; 764 int i, index; 765 766 if (!(info->valid & ACPI_VALID_HID)) 767 return false; 768 769 index = match_string(ids, -1, info->hardware_id.string); 770 if (index >= 0) 771 return true; 772 773 if (info->valid & ACPI_VALID_CID) 774 cid_list = &info->compatible_id_list; 775 776 if (!cid_list) 777 return false; 778 779 for (i = 0; i < cid_list->count; i++) { 780 index = match_string(ids, -1, cid_list->ids[i].string); 781 if (index >= 0) 782 return true; 783 } 784 785 return false; 786 } 787 788 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 789 static const char * const acpi_ignore_dep_ids[] = { 790 "PNP0D80", /* Windows-compatible System Power Management Controller */ 791 "INT33BD", /* Intel Baytrail Mailbox Device */ 792 "LATT2021", /* Lattice FW Update Client Driver */ 793 NULL 794 }; 795 796 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */ 797 static const char * const acpi_honor_dep_ids[] = { 798 "INT3472", /* Camera sensor PMIC / clk and regulator info */ 799 NULL 800 }; 801 802 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle) 803 { 804 struct acpi_device *adev; 805 806 /* 807 * Fixed hardware devices do not appear in the namespace and do not 808 * have handles, but we fabricate acpi_devices for them, so we have 809 * to deal with them specially. 810 */ 811 if (!handle) 812 return acpi_root; 813 814 do { 815 acpi_status status; 816 817 status = acpi_get_parent(handle, &handle); 818 if (ACPI_FAILURE(status)) { 819 if (status != AE_NULL_ENTRY) 820 return acpi_root; 821 822 return NULL; 823 } 824 adev = acpi_fetch_acpi_dev(handle); 825 } while (!adev); 826 return adev; 827 } 828 829 acpi_status 830 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 831 { 832 acpi_status status; 833 acpi_handle tmp; 834 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 835 union acpi_object *obj; 836 837 status = acpi_get_handle(handle, "_EJD", &tmp); 838 if (ACPI_FAILURE(status)) 839 return status; 840 841 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 842 if (ACPI_SUCCESS(status)) { 843 obj = buffer.pointer; 844 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 845 ejd); 846 kfree(buffer.pointer); 847 } 848 return status; 849 } 850 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 851 852 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 853 { 854 acpi_handle handle = dev->handle; 855 struct acpi_device_wakeup *wakeup = &dev->wakeup; 856 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 857 union acpi_object *package = NULL; 858 union acpi_object *element = NULL; 859 acpi_status status; 860 int err = -ENODATA; 861 862 INIT_LIST_HEAD(&wakeup->resources); 863 864 /* _PRW */ 865 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 866 if (ACPI_FAILURE(status)) { 867 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 868 acpi_format_exception(status)); 869 return err; 870 } 871 872 package = (union acpi_object *)buffer.pointer; 873 874 if (!package || package->package.count < 2) 875 goto out; 876 877 element = &(package->package.elements[0]); 878 if (!element) 879 goto out; 880 881 if (element->type == ACPI_TYPE_PACKAGE) { 882 if ((element->package.count < 2) || 883 (element->package.elements[0].type != 884 ACPI_TYPE_LOCAL_REFERENCE) 885 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 886 goto out; 887 888 wakeup->gpe_device = 889 element->package.elements[0].reference.handle; 890 wakeup->gpe_number = 891 (u32) element->package.elements[1].integer.value; 892 } else if (element->type == ACPI_TYPE_INTEGER) { 893 wakeup->gpe_device = NULL; 894 wakeup->gpe_number = element->integer.value; 895 } else { 896 goto out; 897 } 898 899 element = &(package->package.elements[1]); 900 if (element->type != ACPI_TYPE_INTEGER) 901 goto out; 902 903 wakeup->sleep_state = element->integer.value; 904 905 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 906 if (err) 907 goto out; 908 909 if (!list_empty(&wakeup->resources)) { 910 int sleep_state; 911 912 err = acpi_power_wakeup_list_init(&wakeup->resources, 913 &sleep_state); 914 if (err) { 915 acpi_handle_warn(handle, "Retrieving current states " 916 "of wakeup power resources failed\n"); 917 acpi_power_resources_list_free(&wakeup->resources); 918 goto out; 919 } 920 if (sleep_state < wakeup->sleep_state) { 921 acpi_handle_warn(handle, "Overriding _PRW sleep state " 922 "(S%d) by S%d from power resources\n", 923 (int)wakeup->sleep_state, sleep_state); 924 wakeup->sleep_state = sleep_state; 925 } 926 } 927 928 out: 929 kfree(buffer.pointer); 930 return err; 931 } 932 933 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 934 { 935 static const struct acpi_device_id button_device_ids[] = { 936 {"PNP0C0C", 0}, /* Power button */ 937 {"PNP0C0D", 0}, /* Lid */ 938 {"PNP0C0E", 0}, /* Sleep button */ 939 {"", 0}, 940 }; 941 struct acpi_device_wakeup *wakeup = &device->wakeup; 942 acpi_status status; 943 944 wakeup->flags.notifier_present = 0; 945 946 /* Power button, Lid switch always enable wakeup */ 947 if (!acpi_match_device_ids(device, button_device_ids)) { 948 if (!acpi_match_device_ids(device, &button_device_ids[1])) { 949 /* Do not use Lid/sleep button for S5 wakeup */ 950 if (wakeup->sleep_state == ACPI_STATE_S5) 951 wakeup->sleep_state = ACPI_STATE_S4; 952 } 953 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 954 device_set_wakeup_capable(&device->dev, true); 955 return true; 956 } 957 958 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 959 wakeup->gpe_number); 960 return ACPI_SUCCESS(status); 961 } 962 963 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 964 { 965 int err; 966 967 /* Presence of _PRW indicates wake capable */ 968 if (!acpi_has_method(device->handle, "_PRW")) 969 return; 970 971 err = acpi_bus_extract_wakeup_device_power_package(device); 972 if (err) { 973 dev_err(&device->dev, "Unable to extract wakeup power resources"); 974 return; 975 } 976 977 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 978 device->wakeup.prepare_count = 0; 979 /* 980 * Call _PSW/_DSW object to disable its ability to wake the sleeping 981 * system for the ACPI device with the _PRW object. 982 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 983 * So it is necessary to call _DSW object first. Only when it is not 984 * present will the _PSW object used. 985 */ 986 err = acpi_device_sleep_wake(device, 0, 0, 0); 987 if (err) 988 pr_debug("error in _DSW or _PSW evaluation\n"); 989 } 990 991 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 992 { 993 struct acpi_device_power_state *ps = &device->power.states[state]; 994 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 995 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 996 acpi_status status; 997 998 INIT_LIST_HEAD(&ps->resources); 999 1000 /* Evaluate "_PRx" to get referenced power resources */ 1001 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 1002 if (ACPI_SUCCESS(status)) { 1003 union acpi_object *package = buffer.pointer; 1004 1005 if (buffer.length && package 1006 && package->type == ACPI_TYPE_PACKAGE 1007 && package->package.count) 1008 acpi_extract_power_resources(package, 0, &ps->resources); 1009 1010 ACPI_FREE(buffer.pointer); 1011 } 1012 1013 /* Evaluate "_PSx" to see if we can do explicit sets */ 1014 pathname[2] = 'S'; 1015 if (acpi_has_method(device->handle, pathname)) 1016 ps->flags.explicit_set = 1; 1017 1018 /* State is valid if there are means to put the device into it. */ 1019 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1020 ps->flags.valid = 1; 1021 1022 ps->power = -1; /* Unknown - driver assigned */ 1023 ps->latency = -1; /* Unknown - driver assigned */ 1024 } 1025 1026 static void acpi_bus_get_power_flags(struct acpi_device *device) 1027 { 1028 unsigned long long dsc = ACPI_STATE_D0; 1029 u32 i; 1030 1031 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1032 if (!acpi_has_method(device->handle, "_PS0") && 1033 !acpi_has_method(device->handle, "_PR0")) 1034 return; 1035 1036 device->flags.power_manageable = 1; 1037 1038 /* 1039 * Power Management Flags 1040 */ 1041 if (acpi_has_method(device->handle, "_PSC")) 1042 device->power.flags.explicit_get = 1; 1043 1044 if (acpi_has_method(device->handle, "_IRC")) 1045 device->power.flags.inrush_current = 1; 1046 1047 if (acpi_has_method(device->handle, "_DSW")) 1048 device->power.flags.dsw_present = 1; 1049 1050 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc); 1051 device->power.state_for_enumeration = dsc; 1052 1053 /* 1054 * Enumerate supported power management states 1055 */ 1056 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1057 acpi_bus_init_power_state(device, i); 1058 1059 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1060 1061 /* Set the defaults for D0 and D3hot (always supported). */ 1062 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1063 device->power.states[ACPI_STATE_D0].power = 100; 1064 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1065 1066 /* 1067 * Use power resources only if the D0 list of them is populated, because 1068 * some platforms may provide _PR3 only to indicate D3cold support and 1069 * in those cases the power resources list returned by it may be bogus. 1070 */ 1071 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1072 device->power.flags.power_resources = 1; 1073 /* 1074 * D3cold is supported if the D3hot list of power resources is 1075 * not empty. 1076 */ 1077 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1078 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1079 } 1080 1081 if (acpi_bus_init_power(device)) 1082 device->flags.power_manageable = 0; 1083 } 1084 1085 static void acpi_bus_get_flags(struct acpi_device *device) 1086 { 1087 /* Presence of _STA indicates 'dynamic_status' */ 1088 if (acpi_has_method(device->handle, "_STA")) 1089 device->flags.dynamic_status = 1; 1090 1091 /* Presence of _RMV indicates 'removable' */ 1092 if (acpi_has_method(device->handle, "_RMV")) 1093 device->flags.removable = 1; 1094 1095 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1096 if (acpi_has_method(device->handle, "_EJD") || 1097 acpi_has_method(device->handle, "_EJ0")) 1098 device->flags.ejectable = 1; 1099 } 1100 1101 static void acpi_device_get_busid(struct acpi_device *device) 1102 { 1103 char bus_id[5] = { '?', 0 }; 1104 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1105 int i = 0; 1106 1107 /* 1108 * Bus ID 1109 * ------ 1110 * The device's Bus ID is simply the object name. 1111 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1112 */ 1113 if (!acpi_dev_parent(device)) { 1114 strcpy(device->pnp.bus_id, "ACPI"); 1115 return; 1116 } 1117 1118 switch (device->device_type) { 1119 case ACPI_BUS_TYPE_POWER_BUTTON: 1120 strcpy(device->pnp.bus_id, "PWRF"); 1121 break; 1122 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1123 strcpy(device->pnp.bus_id, "SLPF"); 1124 break; 1125 case ACPI_BUS_TYPE_ECDT_EC: 1126 strcpy(device->pnp.bus_id, "ECDT"); 1127 break; 1128 default: 1129 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1130 /* Clean up trailing underscores (if any) */ 1131 for (i = 3; i > 1; i--) { 1132 if (bus_id[i] == '_') 1133 bus_id[i] = '\0'; 1134 else 1135 break; 1136 } 1137 strcpy(device->pnp.bus_id, bus_id); 1138 break; 1139 } 1140 } 1141 1142 /* 1143 * acpi_ata_match - see if an acpi object is an ATA device 1144 * 1145 * If an acpi object has one of the ACPI ATA methods defined, 1146 * then we can safely call it an ATA device. 1147 */ 1148 bool acpi_ata_match(acpi_handle handle) 1149 { 1150 return acpi_has_method(handle, "_GTF") || 1151 acpi_has_method(handle, "_GTM") || 1152 acpi_has_method(handle, "_STM") || 1153 acpi_has_method(handle, "_SDD"); 1154 } 1155 1156 /* 1157 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1158 * 1159 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1160 * then we can safely call it an ejectable drive bay 1161 */ 1162 bool acpi_bay_match(acpi_handle handle) 1163 { 1164 acpi_handle phandle; 1165 1166 if (!acpi_has_method(handle, "_EJ0")) 1167 return false; 1168 if (acpi_ata_match(handle)) 1169 return true; 1170 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1171 return false; 1172 1173 return acpi_ata_match(phandle); 1174 } 1175 1176 bool acpi_device_is_battery(struct acpi_device *adev) 1177 { 1178 struct acpi_hardware_id *hwid; 1179 1180 list_for_each_entry(hwid, &adev->pnp.ids, list) 1181 if (!strcmp("PNP0C0A", hwid->id)) 1182 return true; 1183 1184 return false; 1185 } 1186 1187 static bool is_ejectable_bay(struct acpi_device *adev) 1188 { 1189 acpi_handle handle = adev->handle; 1190 1191 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1192 return true; 1193 1194 return acpi_bay_match(handle); 1195 } 1196 1197 /* 1198 * acpi_dock_match - see if an acpi object has a _DCK method 1199 */ 1200 bool acpi_dock_match(acpi_handle handle) 1201 { 1202 return acpi_has_method(handle, "_DCK"); 1203 } 1204 1205 static acpi_status 1206 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1207 void **return_value) 1208 { 1209 long *cap = context; 1210 1211 if (acpi_has_method(handle, "_BCM") && 1212 acpi_has_method(handle, "_BCL")) { 1213 acpi_handle_debug(handle, "Found generic backlight support\n"); 1214 *cap |= ACPI_VIDEO_BACKLIGHT; 1215 /* We have backlight support, no need to scan further */ 1216 return AE_CTRL_TERMINATE; 1217 } 1218 return 0; 1219 } 1220 1221 /* Returns true if the ACPI object is a video device which can be 1222 * handled by video.ko. 1223 * The device will get a Linux specific CID added in scan.c to 1224 * identify the device as an ACPI graphics device 1225 * Be aware that the graphics device may not be physically present 1226 * Use acpi_video_get_capabilities() to detect general ACPI video 1227 * capabilities of present cards 1228 */ 1229 long acpi_is_video_device(acpi_handle handle) 1230 { 1231 long video_caps = 0; 1232 1233 /* Is this device able to support video switching ? */ 1234 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1235 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1236 1237 /* Is this device able to retrieve a video ROM ? */ 1238 if (acpi_has_method(handle, "_ROM")) 1239 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1240 1241 /* Is this device able to configure which video head to be POSTed ? */ 1242 if (acpi_has_method(handle, "_VPO") && 1243 acpi_has_method(handle, "_GPD") && 1244 acpi_has_method(handle, "_SPD")) 1245 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1246 1247 /* Only check for backlight functionality if one of the above hit. */ 1248 if (video_caps) 1249 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1250 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1251 &video_caps, NULL); 1252 1253 return video_caps; 1254 } 1255 EXPORT_SYMBOL(acpi_is_video_device); 1256 1257 const char *acpi_device_hid(struct acpi_device *device) 1258 { 1259 struct acpi_hardware_id *hid; 1260 1261 if (list_empty(&device->pnp.ids)) 1262 return dummy_hid; 1263 1264 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list); 1265 return hid->id; 1266 } 1267 EXPORT_SYMBOL(acpi_device_hid); 1268 1269 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1270 { 1271 struct acpi_hardware_id *id; 1272 1273 id = kmalloc(sizeof(*id), GFP_KERNEL); 1274 if (!id) 1275 return; 1276 1277 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1278 if (!id->id) { 1279 kfree(id); 1280 return; 1281 } 1282 1283 list_add_tail(&id->list, &pnp->ids); 1284 pnp->type.hardware_id = 1; 1285 } 1286 1287 /* 1288 * Old IBM workstations have a DSDT bug wherein the SMBus object 1289 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1290 * prefix. Work around this. 1291 */ 1292 static bool acpi_ibm_smbus_match(acpi_handle handle) 1293 { 1294 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1295 struct acpi_buffer path = { sizeof(node_name), node_name }; 1296 1297 if (!dmi_name_in_vendors("IBM")) 1298 return false; 1299 1300 /* Look for SMBS object */ 1301 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1302 strcmp("SMBS", path.pointer)) 1303 return false; 1304 1305 /* Does it have the necessary (but misnamed) methods? */ 1306 if (acpi_has_method(handle, "SBI") && 1307 acpi_has_method(handle, "SBR") && 1308 acpi_has_method(handle, "SBW")) 1309 return true; 1310 1311 return false; 1312 } 1313 1314 static bool acpi_object_is_system_bus(acpi_handle handle) 1315 { 1316 acpi_handle tmp; 1317 1318 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1319 tmp == handle) 1320 return true; 1321 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1322 tmp == handle) 1323 return true; 1324 1325 return false; 1326 } 1327 1328 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1329 int device_type) 1330 { 1331 struct acpi_device_info *info = NULL; 1332 struct acpi_pnp_device_id_list *cid_list; 1333 int i; 1334 1335 switch (device_type) { 1336 case ACPI_BUS_TYPE_DEVICE: 1337 if (handle == ACPI_ROOT_OBJECT) { 1338 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1339 break; 1340 } 1341 1342 acpi_get_object_info(handle, &info); 1343 if (!info) { 1344 pr_err("%s: Error reading device info\n", __func__); 1345 return; 1346 } 1347 1348 if (info->valid & ACPI_VALID_HID) { 1349 acpi_add_id(pnp, info->hardware_id.string); 1350 pnp->type.platform_id = 1; 1351 } 1352 if (info->valid & ACPI_VALID_CID) { 1353 cid_list = &info->compatible_id_list; 1354 for (i = 0; i < cid_list->count; i++) 1355 acpi_add_id(pnp, cid_list->ids[i].string); 1356 } 1357 if (info->valid & ACPI_VALID_ADR) { 1358 pnp->bus_address = info->address; 1359 pnp->type.bus_address = 1; 1360 } 1361 if (info->valid & ACPI_VALID_UID) 1362 pnp->unique_id = kstrdup(info->unique_id.string, 1363 GFP_KERNEL); 1364 if (info->valid & ACPI_VALID_CLS) 1365 acpi_add_id(pnp, info->class_code.string); 1366 1367 kfree(info); 1368 1369 /* 1370 * Some devices don't reliably have _HIDs & _CIDs, so add 1371 * synthetic HIDs to make sure drivers can find them. 1372 */ 1373 if (acpi_is_video_device(handle)) { 1374 acpi_add_id(pnp, ACPI_VIDEO_HID); 1375 pnp->type.backlight = 1; 1376 break; 1377 } 1378 if (acpi_bay_match(handle)) 1379 acpi_add_id(pnp, ACPI_BAY_HID); 1380 else if (acpi_dock_match(handle)) 1381 acpi_add_id(pnp, ACPI_DOCK_HID); 1382 else if (acpi_ibm_smbus_match(handle)) 1383 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1384 else if (list_empty(&pnp->ids) && 1385 acpi_object_is_system_bus(handle)) { 1386 /* \_SB, \_TZ, LNXSYBUS */ 1387 acpi_add_id(pnp, ACPI_BUS_HID); 1388 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1389 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1390 } 1391 1392 break; 1393 case ACPI_BUS_TYPE_POWER: 1394 acpi_add_id(pnp, ACPI_POWER_HID); 1395 break; 1396 case ACPI_BUS_TYPE_PROCESSOR: 1397 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1398 break; 1399 case ACPI_BUS_TYPE_THERMAL: 1400 acpi_add_id(pnp, ACPI_THERMAL_HID); 1401 break; 1402 case ACPI_BUS_TYPE_POWER_BUTTON: 1403 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1404 break; 1405 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1406 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1407 break; 1408 case ACPI_BUS_TYPE_ECDT_EC: 1409 acpi_add_id(pnp, ACPI_ECDT_HID); 1410 break; 1411 } 1412 } 1413 1414 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1415 { 1416 struct acpi_hardware_id *id, *tmp; 1417 1418 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1419 kfree_const(id->id); 1420 kfree(id); 1421 } 1422 kfree(pnp->unique_id); 1423 } 1424 1425 /** 1426 * acpi_dma_supported - Check DMA support for the specified device. 1427 * @adev: The pointer to acpi device 1428 * 1429 * Return false if DMA is not supported. Otherwise, return true 1430 */ 1431 bool acpi_dma_supported(const struct acpi_device *adev) 1432 { 1433 if (!adev) 1434 return false; 1435 1436 if (adev->flags.cca_seen) 1437 return true; 1438 1439 /* 1440 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1441 * DMA on "Intel platforms". Presumably that includes all x86 and 1442 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1443 */ 1444 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1445 return true; 1446 1447 return false; 1448 } 1449 1450 /** 1451 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1452 * @adev: The pointer to acpi device 1453 * 1454 * Return enum dev_dma_attr. 1455 */ 1456 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1457 { 1458 if (!acpi_dma_supported(adev)) 1459 return DEV_DMA_NOT_SUPPORTED; 1460 1461 if (adev->flags.coherent_dma) 1462 return DEV_DMA_COHERENT; 1463 else 1464 return DEV_DMA_NON_COHERENT; 1465 } 1466 1467 /** 1468 * acpi_dma_get_range() - Get device DMA parameters. 1469 * 1470 * @dev: device to configure 1471 * @map: pointer to DMA ranges result 1472 * 1473 * Evaluate DMA regions and return pointer to DMA regions on 1474 * parsing success; it does not update the passed in values on failure. 1475 * 1476 * Return 0 on success, < 0 on failure. 1477 */ 1478 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map) 1479 { 1480 struct acpi_device *adev; 1481 LIST_HEAD(list); 1482 struct resource_entry *rentry; 1483 int ret; 1484 struct device *dma_dev = dev; 1485 struct bus_dma_region *r; 1486 1487 /* 1488 * Walk the device tree chasing an ACPI companion with a _DMA 1489 * object while we go. Stop if we find a device with an ACPI 1490 * companion containing a _DMA method. 1491 */ 1492 do { 1493 adev = ACPI_COMPANION(dma_dev); 1494 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1495 break; 1496 1497 dma_dev = dma_dev->parent; 1498 } while (dma_dev); 1499 1500 if (!dma_dev) 1501 return -ENODEV; 1502 1503 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1504 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1505 return -EINVAL; 1506 } 1507 1508 ret = acpi_dev_get_dma_resources(adev, &list); 1509 if (ret > 0) { 1510 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL); 1511 if (!r) { 1512 ret = -ENOMEM; 1513 goto out; 1514 } 1515 1516 *map = r; 1517 1518 list_for_each_entry(rentry, &list, node) { 1519 if (rentry->res->start >= rentry->res->end) { 1520 kfree(*map); 1521 *map = NULL; 1522 ret = -EINVAL; 1523 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1524 goto out; 1525 } 1526 1527 r->cpu_start = rentry->res->start; 1528 r->dma_start = rentry->res->start - rentry->offset; 1529 r->size = resource_size(rentry->res); 1530 r->offset = rentry->offset; 1531 r++; 1532 } 1533 } 1534 out: 1535 acpi_dev_free_resource_list(&list); 1536 1537 return ret >= 0 ? 0 : ret; 1538 } 1539 1540 #ifdef CONFIG_IOMMU_API 1541 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1542 struct fwnode_handle *fwnode, 1543 const struct iommu_ops *ops) 1544 { 1545 int ret = iommu_fwspec_init(dev, fwnode, ops); 1546 1547 if (!ret) 1548 ret = iommu_fwspec_add_ids(dev, &id, 1); 1549 1550 return ret; 1551 } 1552 1553 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev) 1554 { 1555 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1556 1557 return fwspec ? fwspec->ops : NULL; 1558 } 1559 1560 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1561 const u32 *id_in) 1562 { 1563 int err; 1564 const struct iommu_ops *ops; 1565 1566 /* 1567 * If we already translated the fwspec there is nothing left to do, 1568 * return the iommu_ops. 1569 */ 1570 ops = acpi_iommu_fwspec_ops(dev); 1571 if (ops) 1572 return ops; 1573 1574 err = iort_iommu_configure_id(dev, id_in); 1575 if (err && err != -EPROBE_DEFER) 1576 err = viot_iommu_configure(dev); 1577 1578 /* 1579 * If we have reason to believe the IOMMU driver missed the initial 1580 * iommu_probe_device() call for dev, replay it to get things in order. 1581 */ 1582 if (!err && dev->bus && !device_iommu_mapped(dev)) 1583 err = iommu_probe_device(dev); 1584 1585 /* Ignore all other errors apart from EPROBE_DEFER */ 1586 if (err == -EPROBE_DEFER) { 1587 return ERR_PTR(err); 1588 } else if (err) { 1589 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err); 1590 return NULL; 1591 } 1592 return acpi_iommu_fwspec_ops(dev); 1593 } 1594 1595 #else /* !CONFIG_IOMMU_API */ 1596 1597 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1598 struct fwnode_handle *fwnode, 1599 const struct iommu_ops *ops) 1600 { 1601 return -ENODEV; 1602 } 1603 1604 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1605 const u32 *id_in) 1606 { 1607 return NULL; 1608 } 1609 1610 #endif /* !CONFIG_IOMMU_API */ 1611 1612 /** 1613 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1614 * @dev: The pointer to the device 1615 * @attr: device dma attributes 1616 * @input_id: input device id const value pointer 1617 */ 1618 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1619 const u32 *input_id) 1620 { 1621 const struct iommu_ops *iommu; 1622 1623 if (attr == DEV_DMA_NOT_SUPPORTED) { 1624 set_dma_ops(dev, &dma_dummy_ops); 1625 return 0; 1626 } 1627 1628 acpi_arch_dma_setup(dev); 1629 1630 iommu = acpi_iommu_configure_id(dev, input_id); 1631 if (PTR_ERR(iommu) == -EPROBE_DEFER) 1632 return -EPROBE_DEFER; 1633 1634 arch_setup_dma_ops(dev, 0, U64_MAX, 1635 iommu, attr == DEV_DMA_COHERENT); 1636 1637 return 0; 1638 } 1639 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1640 1641 static void acpi_init_coherency(struct acpi_device *adev) 1642 { 1643 unsigned long long cca = 0; 1644 acpi_status status; 1645 struct acpi_device *parent = acpi_dev_parent(adev); 1646 1647 if (parent && parent->flags.cca_seen) { 1648 /* 1649 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1650 * already saw one. 1651 */ 1652 adev->flags.cca_seen = 1; 1653 cca = parent->flags.coherent_dma; 1654 } else { 1655 status = acpi_evaluate_integer(adev->handle, "_CCA", 1656 NULL, &cca); 1657 if (ACPI_SUCCESS(status)) 1658 adev->flags.cca_seen = 1; 1659 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1660 /* 1661 * If architecture does not specify that _CCA is 1662 * required for DMA-able devices (e.g. x86), 1663 * we default to _CCA=1. 1664 */ 1665 cca = 1; 1666 else 1667 acpi_handle_debug(adev->handle, 1668 "ACPI device is missing _CCA.\n"); 1669 } 1670 1671 adev->flags.coherent_dma = cca; 1672 } 1673 1674 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1675 { 1676 bool *is_serial_bus_slave_p = data; 1677 1678 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1679 return 1; 1680 1681 *is_serial_bus_slave_p = true; 1682 1683 /* no need to do more checking */ 1684 return -1; 1685 } 1686 1687 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1688 { 1689 struct acpi_device *parent = acpi_dev_parent(device); 1690 static const struct acpi_device_id indirect_io_hosts[] = { 1691 {"HISI0191", 0}, 1692 {} 1693 }; 1694 1695 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1696 } 1697 1698 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1699 { 1700 struct list_head resource_list; 1701 bool is_serial_bus_slave = false; 1702 static const struct acpi_device_id ignore_serial_bus_ids[] = { 1703 /* 1704 * These devices have multiple SerialBus resources and a client 1705 * device must be instantiated for each of them, each with 1706 * its own device id. 1707 * Normally we only instantiate one client device for the first 1708 * resource, using the ACPI HID as id. These special cases are handled 1709 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which 1710 * knows which client device id to use for each resource. 1711 */ 1712 {"BSG1160", }, 1713 {"BSG2150", }, 1714 {"CSC3551", }, 1715 {"INT33FE", }, 1716 {"INT3515", }, 1717 /* Non-conforming _HID for Cirrus Logic already released */ 1718 {"CLSA0100", }, 1719 {"CLSA0101", }, 1720 /* 1721 * Some ACPI devs contain SerialBus resources even though they are not 1722 * attached to a serial bus at all. 1723 */ 1724 {"MSHW0028", }, 1725 /* 1726 * HIDs of device with an UartSerialBusV2 resource for which userspace 1727 * expects a regular tty cdev to be created (instead of the in kernel 1728 * serdev) and which have a kernel driver which expects a platform_dev 1729 * such as the rfkill-gpio driver. 1730 */ 1731 {"BCM4752", }, 1732 {"LNV4752", }, 1733 {} 1734 }; 1735 1736 if (acpi_is_indirect_io_slave(device)) 1737 return true; 1738 1739 /* Macs use device properties in lieu of _CRS resources */ 1740 if (x86_apple_machine && 1741 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1742 fwnode_property_present(&device->fwnode, "i2cAddress") || 1743 fwnode_property_present(&device->fwnode, "baud"))) 1744 return true; 1745 1746 if (!acpi_match_device_ids(device, ignore_serial_bus_ids)) 1747 return false; 1748 1749 INIT_LIST_HEAD(&resource_list); 1750 acpi_dev_get_resources(device, &resource_list, 1751 acpi_check_serial_bus_slave, 1752 &is_serial_bus_slave); 1753 acpi_dev_free_resource_list(&resource_list); 1754 1755 return is_serial_bus_slave; 1756 } 1757 1758 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1759 int type, void (*release)(struct device *)) 1760 { 1761 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle); 1762 1763 INIT_LIST_HEAD(&device->pnp.ids); 1764 device->device_type = type; 1765 device->handle = handle; 1766 device->dev.parent = parent ? &parent->dev : NULL; 1767 device->dev.release = release; 1768 device->dev.bus = &acpi_bus_type; 1769 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1770 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1771 acpi_device_get_busid(device); 1772 acpi_set_pnp_ids(handle, &device->pnp, type); 1773 acpi_init_properties(device); 1774 acpi_bus_get_flags(device); 1775 device->flags.match_driver = false; 1776 device->flags.initialized = true; 1777 device->flags.enumeration_by_parent = 1778 acpi_device_enumeration_by_parent(device); 1779 acpi_device_clear_enumerated(device); 1780 device_initialize(&device->dev); 1781 dev_set_uevent_suppress(&device->dev, true); 1782 acpi_init_coherency(device); 1783 } 1784 1785 static void acpi_scan_dep_init(struct acpi_device *adev) 1786 { 1787 struct acpi_dep_data *dep; 1788 1789 list_for_each_entry(dep, &acpi_dep_list, node) { 1790 if (dep->consumer == adev->handle) { 1791 if (dep->honor_dep) 1792 adev->flags.honor_deps = 1; 1793 1794 adev->dep_unmet++; 1795 } 1796 } 1797 } 1798 1799 void acpi_device_add_finalize(struct acpi_device *device) 1800 { 1801 dev_set_uevent_suppress(&device->dev, false); 1802 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1803 } 1804 1805 static void acpi_scan_init_status(struct acpi_device *adev) 1806 { 1807 if (acpi_bus_get_status(adev)) 1808 acpi_set_device_status(adev, 0); 1809 } 1810 1811 static int acpi_add_single_object(struct acpi_device **child, 1812 acpi_handle handle, int type, bool dep_init) 1813 { 1814 struct acpi_device *device; 1815 bool release_dep_lock = false; 1816 int result; 1817 1818 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1819 if (!device) 1820 return -ENOMEM; 1821 1822 acpi_init_device_object(device, handle, type, acpi_device_release); 1823 /* 1824 * Getting the status is delayed till here so that we can call 1825 * acpi_bus_get_status() and use its quirk handling. Note that 1826 * this must be done before the get power-/wakeup_dev-flags calls. 1827 */ 1828 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1829 if (dep_init) { 1830 mutex_lock(&acpi_dep_list_lock); 1831 /* 1832 * Hold the lock until the acpi_tie_acpi_dev() call 1833 * below to prevent concurrent acpi_scan_clear_dep() 1834 * from deleting a dependency list entry without 1835 * updating dep_unmet for the device. 1836 */ 1837 release_dep_lock = true; 1838 acpi_scan_dep_init(device); 1839 } 1840 acpi_scan_init_status(device); 1841 } 1842 1843 acpi_bus_get_power_flags(device); 1844 acpi_bus_get_wakeup_device_flags(device); 1845 1846 result = acpi_tie_acpi_dev(device); 1847 1848 if (release_dep_lock) 1849 mutex_unlock(&acpi_dep_list_lock); 1850 1851 if (!result) 1852 result = acpi_device_add(device); 1853 1854 if (result) { 1855 acpi_device_release(&device->dev); 1856 return result; 1857 } 1858 1859 acpi_power_add_remove_device(device, true); 1860 acpi_device_add_finalize(device); 1861 1862 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1863 dev_name(&device->dev), device->dev.parent ? 1864 dev_name(device->dev.parent) : "(null)"); 1865 1866 *child = device; 1867 return 0; 1868 } 1869 1870 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1871 void *context) 1872 { 1873 struct resource *res = context; 1874 1875 if (acpi_dev_resource_memory(ares, res)) 1876 return AE_CTRL_TERMINATE; 1877 1878 return AE_OK; 1879 } 1880 1881 static bool acpi_device_should_be_hidden(acpi_handle handle) 1882 { 1883 acpi_status status; 1884 struct resource res; 1885 1886 /* Check if it should ignore the UART device */ 1887 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1888 return false; 1889 1890 /* 1891 * The UART device described in SPCR table is assumed to have only one 1892 * memory resource present. So we only look for the first one here. 1893 */ 1894 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1895 acpi_get_resource_memory, &res); 1896 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1897 return false; 1898 1899 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1900 &res.start); 1901 1902 return true; 1903 } 1904 1905 bool acpi_device_is_present(const struct acpi_device *adev) 1906 { 1907 return adev->status.present || adev->status.functional; 1908 } 1909 1910 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1911 const char *idstr, 1912 const struct acpi_device_id **matchid) 1913 { 1914 const struct acpi_device_id *devid; 1915 1916 if (handler->match) 1917 return handler->match(idstr, matchid); 1918 1919 for (devid = handler->ids; devid->id[0]; devid++) 1920 if (!strcmp((char *)devid->id, idstr)) { 1921 if (matchid) 1922 *matchid = devid; 1923 1924 return true; 1925 } 1926 1927 return false; 1928 } 1929 1930 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1931 const struct acpi_device_id **matchid) 1932 { 1933 struct acpi_scan_handler *handler; 1934 1935 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1936 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1937 return handler; 1938 1939 return NULL; 1940 } 1941 1942 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 1943 { 1944 if (!!hotplug->enabled == !!val) 1945 return; 1946 1947 mutex_lock(&acpi_scan_lock); 1948 1949 hotplug->enabled = val; 1950 1951 mutex_unlock(&acpi_scan_lock); 1952 } 1953 1954 static void acpi_scan_init_hotplug(struct acpi_device *adev) 1955 { 1956 struct acpi_hardware_id *hwid; 1957 1958 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 1959 acpi_dock_add(adev); 1960 return; 1961 } 1962 list_for_each_entry(hwid, &adev->pnp.ids, list) { 1963 struct acpi_scan_handler *handler; 1964 1965 handler = acpi_scan_match_handler(hwid->id, NULL); 1966 if (handler) { 1967 adev->flags.hotplug_notify = true; 1968 break; 1969 } 1970 } 1971 } 1972 1973 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep) 1974 { 1975 struct acpi_handle_list dep_devices; 1976 acpi_status status; 1977 u32 count; 1978 int i; 1979 1980 /* 1981 * Check for _HID here to avoid deferring the enumeration of: 1982 * 1. PCI devices. 1983 * 2. ACPI nodes describing USB ports. 1984 * Still, checking for _HID catches more then just these cases ... 1985 */ 1986 if (!check_dep || !acpi_has_method(handle, "_DEP") || 1987 !acpi_has_method(handle, "_HID")) 1988 return 0; 1989 1990 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices); 1991 if (ACPI_FAILURE(status)) { 1992 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 1993 return 0; 1994 } 1995 1996 for (count = 0, i = 0; i < dep_devices.count; i++) { 1997 struct acpi_device_info *info; 1998 struct acpi_dep_data *dep; 1999 bool skip, honor_dep; 2000 2001 status = acpi_get_object_info(dep_devices.handles[i], &info); 2002 if (ACPI_FAILURE(status)) { 2003 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 2004 continue; 2005 } 2006 2007 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 2008 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids); 2009 kfree(info); 2010 2011 if (skip) 2012 continue; 2013 2014 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 2015 if (!dep) 2016 continue; 2017 2018 count++; 2019 2020 dep->supplier = dep_devices.handles[i]; 2021 dep->consumer = handle; 2022 dep->honor_dep = honor_dep; 2023 2024 mutex_lock(&acpi_dep_list_lock); 2025 list_add_tail(&dep->node , &acpi_dep_list); 2026 mutex_unlock(&acpi_dep_list_lock); 2027 } 2028 2029 return count; 2030 } 2031 2032 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep, 2033 struct acpi_device **adev_p) 2034 { 2035 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 2036 acpi_object_type acpi_type; 2037 int type; 2038 2039 if (device) 2040 goto out; 2041 2042 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2043 return AE_OK; 2044 2045 switch (acpi_type) { 2046 case ACPI_TYPE_DEVICE: 2047 if (acpi_device_should_be_hidden(handle)) 2048 return AE_OK; 2049 2050 /* Bail out if there are dependencies. */ 2051 if (acpi_scan_check_dep(handle, check_dep) > 0) 2052 return AE_CTRL_DEPTH; 2053 2054 fallthrough; 2055 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2056 type = ACPI_BUS_TYPE_DEVICE; 2057 break; 2058 2059 case ACPI_TYPE_PROCESSOR: 2060 type = ACPI_BUS_TYPE_PROCESSOR; 2061 break; 2062 2063 case ACPI_TYPE_THERMAL: 2064 type = ACPI_BUS_TYPE_THERMAL; 2065 break; 2066 2067 case ACPI_TYPE_POWER: 2068 acpi_add_power_resource(handle); 2069 fallthrough; 2070 default: 2071 return AE_OK; 2072 } 2073 2074 /* 2075 * If check_dep is true at this point, the device has no dependencies, 2076 * or the creation of the device object would have been postponed above. 2077 */ 2078 acpi_add_single_object(&device, handle, type, !check_dep); 2079 if (!device) 2080 return AE_CTRL_DEPTH; 2081 2082 acpi_scan_init_hotplug(device); 2083 2084 out: 2085 if (!*adev_p) 2086 *adev_p = device; 2087 2088 return AE_OK; 2089 } 2090 2091 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2092 void *not_used, void **ret_p) 2093 { 2094 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2095 } 2096 2097 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2098 void *not_used, void **ret_p) 2099 { 2100 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2101 } 2102 2103 static void acpi_default_enumeration(struct acpi_device *device) 2104 { 2105 /* 2106 * Do not enumerate devices with enumeration_by_parent flag set as 2107 * they will be enumerated by their respective parents. 2108 */ 2109 if (!device->flags.enumeration_by_parent) { 2110 acpi_create_platform_device(device, NULL); 2111 acpi_device_set_enumerated(device); 2112 } else { 2113 blocking_notifier_call_chain(&acpi_reconfig_chain, 2114 ACPI_RECONFIG_DEVICE_ADD, device); 2115 } 2116 } 2117 2118 static const struct acpi_device_id generic_device_ids[] = { 2119 {ACPI_DT_NAMESPACE_HID, }, 2120 {"", }, 2121 }; 2122 2123 static int acpi_generic_device_attach(struct acpi_device *adev, 2124 const struct acpi_device_id *not_used) 2125 { 2126 /* 2127 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2128 * below can be unconditional. 2129 */ 2130 if (adev->data.of_compatible) 2131 acpi_default_enumeration(adev); 2132 2133 return 1; 2134 } 2135 2136 static struct acpi_scan_handler generic_device_handler = { 2137 .ids = generic_device_ids, 2138 .attach = acpi_generic_device_attach, 2139 }; 2140 2141 static int acpi_scan_attach_handler(struct acpi_device *device) 2142 { 2143 struct acpi_hardware_id *hwid; 2144 int ret = 0; 2145 2146 list_for_each_entry(hwid, &device->pnp.ids, list) { 2147 const struct acpi_device_id *devid; 2148 struct acpi_scan_handler *handler; 2149 2150 handler = acpi_scan_match_handler(hwid->id, &devid); 2151 if (handler) { 2152 if (!handler->attach) { 2153 device->pnp.type.platform_id = 0; 2154 continue; 2155 } 2156 device->handler = handler; 2157 ret = handler->attach(device, devid); 2158 if (ret > 0) 2159 break; 2160 2161 device->handler = NULL; 2162 if (ret < 0) 2163 break; 2164 } 2165 } 2166 2167 return ret; 2168 } 2169 2170 static int acpi_bus_attach(struct acpi_device *device, void *first_pass) 2171 { 2172 bool skip = !first_pass && device->flags.visited; 2173 acpi_handle ejd; 2174 int ret; 2175 2176 if (skip) 2177 goto ok; 2178 2179 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2180 register_dock_dependent_device(device, ejd); 2181 2182 acpi_bus_get_status(device); 2183 /* Skip devices that are not ready for enumeration (e.g. not present) */ 2184 if (!acpi_dev_ready_for_enumeration(device)) { 2185 device->flags.initialized = false; 2186 acpi_device_clear_enumerated(device); 2187 device->flags.power_manageable = 0; 2188 return 0; 2189 } 2190 if (device->handler) 2191 goto ok; 2192 2193 if (!device->flags.initialized) { 2194 device->flags.power_manageable = 2195 device->power.states[ACPI_STATE_D0].flags.valid; 2196 if (acpi_bus_init_power(device)) 2197 device->flags.power_manageable = 0; 2198 2199 device->flags.initialized = true; 2200 } else if (device->flags.visited) { 2201 goto ok; 2202 } 2203 2204 ret = acpi_scan_attach_handler(device); 2205 if (ret < 0) 2206 return 0; 2207 2208 device->flags.match_driver = true; 2209 if (ret > 0 && !device->flags.enumeration_by_parent) { 2210 acpi_device_set_enumerated(device); 2211 goto ok; 2212 } 2213 2214 ret = device_attach(&device->dev); 2215 if (ret < 0) 2216 return 0; 2217 2218 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2219 acpi_default_enumeration(device); 2220 else 2221 acpi_device_set_enumerated(device); 2222 2223 ok: 2224 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass); 2225 2226 if (!skip && device->handler && device->handler->hotplug.notify_online) 2227 device->handler->hotplug.notify_online(device); 2228 2229 return 0; 2230 } 2231 2232 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2233 { 2234 struct acpi_device **adev_p = data; 2235 struct acpi_device *adev = *adev_p; 2236 2237 /* 2238 * If we're passed a 'previous' consumer device then we need to skip 2239 * any consumers until we meet the previous one, and then NULL @data 2240 * so the next one can be returned. 2241 */ 2242 if (adev) { 2243 if (dep->consumer == adev->handle) 2244 *adev_p = NULL; 2245 2246 return 0; 2247 } 2248 2249 adev = acpi_get_acpi_dev(dep->consumer); 2250 if (adev) { 2251 *(struct acpi_device **)data = adev; 2252 return 1; 2253 } 2254 /* Continue parsing if the device object is not present. */ 2255 return 0; 2256 } 2257 2258 struct acpi_scan_clear_dep_work { 2259 struct work_struct work; 2260 struct acpi_device *adev; 2261 }; 2262 2263 static void acpi_scan_clear_dep_fn(struct work_struct *work) 2264 { 2265 struct acpi_scan_clear_dep_work *cdw; 2266 2267 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2268 2269 acpi_scan_lock_acquire(); 2270 acpi_bus_attach(cdw->adev, (void *)true); 2271 acpi_scan_lock_release(); 2272 2273 acpi_dev_put(cdw->adev); 2274 kfree(cdw); 2275 } 2276 2277 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2278 { 2279 struct acpi_scan_clear_dep_work *cdw; 2280 2281 if (adev->dep_unmet) 2282 return false; 2283 2284 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2285 if (!cdw) 2286 return false; 2287 2288 cdw->adev = adev; 2289 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2290 /* 2291 * Since the work function may block on the lock until the entire 2292 * initial enumeration of devices is complete, put it into the unbound 2293 * workqueue. 2294 */ 2295 queue_work(system_unbound_wq, &cdw->work); 2296 2297 return true; 2298 } 2299 2300 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep) 2301 { 2302 list_del(&dep->node); 2303 kfree(dep); 2304 } 2305 2306 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2307 { 2308 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer); 2309 2310 if (adev) { 2311 adev->dep_unmet--; 2312 if (!acpi_scan_clear_dep_queue(adev)) 2313 acpi_dev_put(adev); 2314 } 2315 2316 if (dep->free_when_met) 2317 acpi_scan_delete_dep_data(dep); 2318 else 2319 dep->met = true; 2320 2321 return 0; 2322 } 2323 2324 /** 2325 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2326 * @handle: The ACPI handle of the supplier device 2327 * @callback: Pointer to the callback function to apply 2328 * @data: Pointer to some data to pass to the callback 2329 * 2330 * The return value of the callback determines this function's behaviour. If 0 2331 * is returned we continue to iterate over acpi_dep_list. If a positive value 2332 * is returned then the loop is broken but this function returns 0. If a 2333 * negative value is returned by the callback then the loop is broken and that 2334 * value is returned as the final error. 2335 */ 2336 static int acpi_walk_dep_device_list(acpi_handle handle, 2337 int (*callback)(struct acpi_dep_data *, void *), 2338 void *data) 2339 { 2340 struct acpi_dep_data *dep, *tmp; 2341 int ret = 0; 2342 2343 mutex_lock(&acpi_dep_list_lock); 2344 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2345 if (dep->supplier == handle) { 2346 ret = callback(dep, data); 2347 if (ret) 2348 break; 2349 } 2350 } 2351 mutex_unlock(&acpi_dep_list_lock); 2352 2353 return ret > 0 ? 0 : ret; 2354 } 2355 2356 /** 2357 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2358 * @supplier: Pointer to the supplier &struct acpi_device 2359 * 2360 * Clear dependencies on the given device. 2361 */ 2362 void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2363 { 2364 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2365 } 2366 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2367 2368 /** 2369 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration 2370 * @device: Pointer to the &struct acpi_device to check 2371 * 2372 * Check if the device is present and has no unmet dependencies. 2373 * 2374 * Return true if the device is ready for enumeratino. Otherwise, return false. 2375 */ 2376 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device) 2377 { 2378 if (device->flags.honor_deps && device->dep_unmet) 2379 return false; 2380 2381 return acpi_device_is_present(device); 2382 } 2383 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration); 2384 2385 /** 2386 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier 2387 * @supplier: Pointer to the dependee device 2388 * @start: Pointer to the current dependent device 2389 * 2390 * Returns the next &struct acpi_device which declares itself dependent on 2391 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2392 * 2393 * If the returned adev is not passed as @start to this function, the caller is 2394 * responsible for putting the reference to adev when it is no longer needed. 2395 */ 2396 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier, 2397 struct acpi_device *start) 2398 { 2399 struct acpi_device *adev = start; 2400 2401 acpi_walk_dep_device_list(supplier->handle, 2402 acpi_dev_get_next_consumer_dev_cb, &adev); 2403 2404 acpi_dev_put(start); 2405 2406 if (adev == start) 2407 return NULL; 2408 2409 return adev; 2410 } 2411 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev); 2412 2413 static void acpi_scan_postponed_branch(acpi_handle handle) 2414 { 2415 struct acpi_device *adev = NULL; 2416 2417 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev))) 2418 return; 2419 2420 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2421 acpi_bus_check_add_2, NULL, NULL, (void **)&adev); 2422 acpi_bus_attach(adev, NULL); 2423 } 2424 2425 static void acpi_scan_postponed(void) 2426 { 2427 struct acpi_dep_data *dep, *tmp; 2428 2429 mutex_lock(&acpi_dep_list_lock); 2430 2431 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2432 acpi_handle handle = dep->consumer; 2433 2434 /* 2435 * In case there are multiple acpi_dep_list entries with the 2436 * same consumer, skip the current entry if the consumer device 2437 * object corresponding to it is present already. 2438 */ 2439 if (!acpi_fetch_acpi_dev(handle)) { 2440 /* 2441 * Even though the lock is released here, tmp is 2442 * guaranteed to be valid, because none of the list 2443 * entries following dep is marked as "free when met" 2444 * and so they cannot be deleted. 2445 */ 2446 mutex_unlock(&acpi_dep_list_lock); 2447 2448 acpi_scan_postponed_branch(handle); 2449 2450 mutex_lock(&acpi_dep_list_lock); 2451 } 2452 2453 if (dep->met) 2454 acpi_scan_delete_dep_data(dep); 2455 else 2456 dep->free_when_met = true; 2457 } 2458 2459 mutex_unlock(&acpi_dep_list_lock); 2460 } 2461 2462 /** 2463 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2464 * @handle: Root of the namespace scope to scan. 2465 * 2466 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2467 * found devices. 2468 * 2469 * If no devices were found, -ENODEV is returned, but it does not mean that 2470 * there has been a real error. There just have been no suitable ACPI objects 2471 * in the table trunk from which the kernel could create a device and add an 2472 * appropriate driver. 2473 * 2474 * Must be called under acpi_scan_lock. 2475 */ 2476 int acpi_bus_scan(acpi_handle handle) 2477 { 2478 struct acpi_device *device = NULL; 2479 2480 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2481 2482 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2483 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2484 acpi_bus_check_add_1, NULL, NULL, 2485 (void **)&device); 2486 2487 if (!device) 2488 return -ENODEV; 2489 2490 acpi_bus_attach(device, (void *)true); 2491 2492 /* Pass 2: Enumerate all of the remaining devices. */ 2493 2494 acpi_scan_postponed(); 2495 2496 return 0; 2497 } 2498 EXPORT_SYMBOL(acpi_bus_scan); 2499 2500 static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used) 2501 { 2502 struct acpi_scan_handler *handler = adev->handler; 2503 2504 acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL); 2505 2506 adev->flags.match_driver = false; 2507 if (handler) { 2508 if (handler->detach) 2509 handler->detach(adev); 2510 2511 adev->handler = NULL; 2512 } else { 2513 device_release_driver(&adev->dev); 2514 } 2515 /* 2516 * Most likely, the device is going away, so put it into D3cold before 2517 * that. 2518 */ 2519 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 2520 adev->flags.initialized = false; 2521 acpi_device_clear_enumerated(adev); 2522 2523 return 0; 2524 } 2525 2526 /** 2527 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2528 * @adev: Root of the ACPI namespace scope to walk. 2529 * 2530 * Must be called under acpi_scan_lock. 2531 */ 2532 void acpi_bus_trim(struct acpi_device *adev) 2533 { 2534 acpi_bus_trim_one(adev, NULL); 2535 } 2536 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2537 2538 int acpi_bus_register_early_device(int type) 2539 { 2540 struct acpi_device *device = NULL; 2541 int result; 2542 2543 result = acpi_add_single_object(&device, NULL, type, false); 2544 if (result) 2545 return result; 2546 2547 device->flags.match_driver = true; 2548 return device_attach(&device->dev); 2549 } 2550 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2551 2552 static void acpi_bus_scan_fixed(void) 2553 { 2554 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2555 struct acpi_device *adev = NULL; 2556 2557 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON, 2558 false); 2559 if (adev) { 2560 adev->flags.match_driver = true; 2561 if (device_attach(&adev->dev) >= 0) 2562 device_init_wakeup(&adev->dev, true); 2563 else 2564 dev_dbg(&adev->dev, "No driver\n"); 2565 } 2566 } 2567 2568 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2569 struct acpi_device *adev = NULL; 2570 2571 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON, 2572 false); 2573 if (adev) { 2574 adev->flags.match_driver = true; 2575 if (device_attach(&adev->dev) < 0) 2576 dev_dbg(&adev->dev, "No driver\n"); 2577 } 2578 } 2579 } 2580 2581 static void __init acpi_get_spcr_uart_addr(void) 2582 { 2583 acpi_status status; 2584 struct acpi_table_spcr *spcr_ptr; 2585 2586 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2587 (struct acpi_table_header **)&spcr_ptr); 2588 if (ACPI_FAILURE(status)) { 2589 pr_warn("STAO table present, but SPCR is missing\n"); 2590 return; 2591 } 2592 2593 spcr_uart_addr = spcr_ptr->serial_port.address; 2594 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2595 } 2596 2597 static bool acpi_scan_initialized; 2598 2599 void __init acpi_scan_init(void) 2600 { 2601 acpi_status status; 2602 struct acpi_table_stao *stao_ptr; 2603 2604 acpi_pci_root_init(); 2605 acpi_pci_link_init(); 2606 acpi_processor_init(); 2607 acpi_platform_init(); 2608 acpi_lpss_init(); 2609 acpi_apd_init(); 2610 acpi_cmos_rtc_init(); 2611 acpi_container_init(); 2612 acpi_memory_hotplug_init(); 2613 acpi_watchdog_init(); 2614 acpi_pnp_init(); 2615 acpi_int340x_thermal_init(); 2616 acpi_amba_init(); 2617 acpi_init_lpit(); 2618 2619 acpi_scan_add_handler(&generic_device_handler); 2620 2621 /* 2622 * If there is STAO table, check whether it needs to ignore the UART 2623 * device in SPCR table. 2624 */ 2625 status = acpi_get_table(ACPI_SIG_STAO, 0, 2626 (struct acpi_table_header **)&stao_ptr); 2627 if (ACPI_SUCCESS(status)) { 2628 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2629 pr_info("STAO Name List not yet supported.\n"); 2630 2631 if (stao_ptr->ignore_uart) 2632 acpi_get_spcr_uart_addr(); 2633 2634 acpi_put_table((struct acpi_table_header *)stao_ptr); 2635 } 2636 2637 acpi_gpe_apply_masked_gpes(); 2638 acpi_update_all_gpes(); 2639 2640 /* 2641 * Although we call __add_memory() that is documented to require the 2642 * device_hotplug_lock, it is not necessary here because this is an 2643 * early code when userspace or any other code path cannot trigger 2644 * hotplug/hotunplug operations. 2645 */ 2646 mutex_lock(&acpi_scan_lock); 2647 /* 2648 * Enumerate devices in the ACPI namespace. 2649 */ 2650 if (acpi_bus_scan(ACPI_ROOT_OBJECT)) 2651 goto unlock; 2652 2653 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT); 2654 if (!acpi_root) 2655 goto unlock; 2656 2657 /* Fixed feature devices do not exist on HW-reduced platform */ 2658 if (!acpi_gbl_reduced_hardware) 2659 acpi_bus_scan_fixed(); 2660 2661 acpi_turn_off_unused_power_resources(); 2662 2663 acpi_scan_initialized = true; 2664 2665 unlock: 2666 mutex_unlock(&acpi_scan_lock); 2667 } 2668 2669 static struct acpi_probe_entry *ape; 2670 static int acpi_probe_count; 2671 static DEFINE_MUTEX(acpi_probe_mutex); 2672 2673 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2674 const unsigned long end) 2675 { 2676 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2677 if (!ape->probe_subtbl(header, end)) 2678 acpi_probe_count++; 2679 2680 return 0; 2681 } 2682 2683 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2684 { 2685 int count = 0; 2686 2687 if (acpi_disabled) 2688 return 0; 2689 2690 mutex_lock(&acpi_probe_mutex); 2691 for (ape = ap_head; nr; ape++, nr--) { 2692 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2693 acpi_probe_count = 0; 2694 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2695 count += acpi_probe_count; 2696 } else { 2697 int res; 2698 res = acpi_table_parse(ape->id, ape->probe_table); 2699 if (!res) 2700 count++; 2701 } 2702 } 2703 mutex_unlock(&acpi_probe_mutex); 2704 2705 return count; 2706 } 2707 2708 static void acpi_table_events_fn(struct work_struct *work) 2709 { 2710 acpi_scan_lock_acquire(); 2711 acpi_bus_scan(ACPI_ROOT_OBJECT); 2712 acpi_scan_lock_release(); 2713 2714 kfree(work); 2715 } 2716 2717 void acpi_scan_table_notify(void) 2718 { 2719 struct work_struct *work; 2720 2721 if (!acpi_scan_initialized) 2722 return; 2723 2724 work = kmalloc(sizeof(*work), GFP_KERNEL); 2725 if (!work) 2726 return; 2727 2728 INIT_WORK(work, acpi_table_events_fn); 2729 schedule_work(work); 2730 } 2731 2732 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2733 { 2734 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2735 } 2736 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2737 2738 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2739 { 2740 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2741 } 2742 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2743