1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #define pr_fmt(fmt) "ACPI: " fmt 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/acpi_viot.h> 15 #include <linux/iommu.h> 16 #include <linux/signal.h> 17 #include <linux/kthread.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/platform_data/x86/apple.h> 21 #include <linux/pgtable.h> 22 23 #include "internal.h" 24 25 extern struct acpi_device *acpi_root; 26 27 #define ACPI_BUS_CLASS "system_bus" 28 #define ACPI_BUS_HID "LNXSYBUS" 29 #define ACPI_BUS_DEVICE_NAME "System Bus" 30 31 #define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent) 32 33 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page) 34 35 static const char *dummy_hid = "device"; 36 37 static LIST_HEAD(acpi_dep_list); 38 static DEFINE_MUTEX(acpi_dep_list_lock); 39 LIST_HEAD(acpi_bus_id_list); 40 static DEFINE_MUTEX(acpi_scan_lock); 41 static LIST_HEAD(acpi_scan_handlers_list); 42 DEFINE_MUTEX(acpi_device_lock); 43 LIST_HEAD(acpi_wakeup_device_list); 44 static DEFINE_MUTEX(acpi_hp_context_lock); 45 46 /* 47 * The UART device described by the SPCR table is the only object which needs 48 * special-casing. Everything else is covered by ACPI namespace paths in STAO 49 * table. 50 */ 51 static u64 spcr_uart_addr; 52 53 void acpi_scan_lock_acquire(void) 54 { 55 mutex_lock(&acpi_scan_lock); 56 } 57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 58 59 void acpi_scan_lock_release(void) 60 { 61 mutex_unlock(&acpi_scan_lock); 62 } 63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 64 65 void acpi_lock_hp_context(void) 66 { 67 mutex_lock(&acpi_hp_context_lock); 68 } 69 70 void acpi_unlock_hp_context(void) 71 { 72 mutex_unlock(&acpi_hp_context_lock); 73 } 74 75 void acpi_initialize_hp_context(struct acpi_device *adev, 76 struct acpi_hotplug_context *hp, 77 int (*notify)(struct acpi_device *, u32), 78 void (*uevent)(struct acpi_device *, u32)) 79 { 80 acpi_lock_hp_context(); 81 hp->notify = notify; 82 hp->uevent = uevent; 83 acpi_set_hp_context(adev, hp); 84 acpi_unlock_hp_context(); 85 } 86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 87 88 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 89 { 90 if (!handler) 91 return -EINVAL; 92 93 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 94 return 0; 95 } 96 97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 98 const char *hotplug_profile_name) 99 { 100 int error; 101 102 error = acpi_scan_add_handler(handler); 103 if (error) 104 return error; 105 106 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 107 return 0; 108 } 109 110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 111 { 112 struct acpi_device_physical_node *pn; 113 bool offline = true; 114 char *envp[] = { "EVENT=offline", NULL }; 115 116 /* 117 * acpi_container_offline() calls this for all of the container's 118 * children under the container's physical_node_lock lock. 119 */ 120 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 121 122 list_for_each_entry(pn, &adev->physical_node_list, node) 123 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 124 if (uevent) 125 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 126 127 offline = false; 128 break; 129 } 130 131 mutex_unlock(&adev->physical_node_lock); 132 return offline; 133 } 134 135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 136 void **ret_p) 137 { 138 struct acpi_device *device = NULL; 139 struct acpi_device_physical_node *pn; 140 bool second_pass = (bool)data; 141 acpi_status status = AE_OK; 142 143 if (acpi_bus_get_device(handle, &device)) 144 return AE_OK; 145 146 if (device->handler && !device->handler->hotplug.enabled) { 147 *ret_p = &device->dev; 148 return AE_SUPPORT; 149 } 150 151 mutex_lock(&device->physical_node_lock); 152 153 list_for_each_entry(pn, &device->physical_node_list, node) { 154 int ret; 155 156 if (second_pass) { 157 /* Skip devices offlined by the first pass. */ 158 if (pn->put_online) 159 continue; 160 } else { 161 pn->put_online = false; 162 } 163 ret = device_offline(pn->dev); 164 if (ret >= 0) { 165 pn->put_online = !ret; 166 } else { 167 *ret_p = pn->dev; 168 if (second_pass) { 169 status = AE_ERROR; 170 break; 171 } 172 } 173 } 174 175 mutex_unlock(&device->physical_node_lock); 176 177 return status; 178 } 179 180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 181 void **ret_p) 182 { 183 struct acpi_device *device = NULL; 184 struct acpi_device_physical_node *pn; 185 186 if (acpi_bus_get_device(handle, &device)) 187 return AE_OK; 188 189 mutex_lock(&device->physical_node_lock); 190 191 list_for_each_entry(pn, &device->physical_node_list, node) 192 if (pn->put_online) { 193 device_online(pn->dev); 194 pn->put_online = false; 195 } 196 197 mutex_unlock(&device->physical_node_lock); 198 199 return AE_OK; 200 } 201 202 static int acpi_scan_try_to_offline(struct acpi_device *device) 203 { 204 acpi_handle handle = device->handle; 205 struct device *errdev = NULL; 206 acpi_status status; 207 208 /* 209 * Carry out two passes here and ignore errors in the first pass, 210 * because if the devices in question are memory blocks and 211 * CONFIG_MEMCG is set, one of the blocks may hold data structures 212 * that the other blocks depend on, but it is not known in advance which 213 * block holds them. 214 * 215 * If the first pass is successful, the second one isn't needed, though. 216 */ 217 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 218 NULL, acpi_bus_offline, (void *)false, 219 (void **)&errdev); 220 if (status == AE_SUPPORT) { 221 dev_warn(errdev, "Offline disabled.\n"); 222 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 223 acpi_bus_online, NULL, NULL, NULL); 224 return -EPERM; 225 } 226 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 227 if (errdev) { 228 errdev = NULL; 229 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 230 NULL, acpi_bus_offline, (void *)true, 231 (void **)&errdev); 232 if (!errdev) 233 acpi_bus_offline(handle, 0, (void *)true, 234 (void **)&errdev); 235 236 if (errdev) { 237 dev_warn(errdev, "Offline failed.\n"); 238 acpi_bus_online(handle, 0, NULL, NULL); 239 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 240 ACPI_UINT32_MAX, acpi_bus_online, 241 NULL, NULL, NULL); 242 return -EBUSY; 243 } 244 } 245 return 0; 246 } 247 248 static int acpi_scan_hot_remove(struct acpi_device *device) 249 { 250 acpi_handle handle = device->handle; 251 unsigned long long sta; 252 acpi_status status; 253 254 if (device->handler && device->handler->hotplug.demand_offline) { 255 if (!acpi_scan_is_offline(device, true)) 256 return -EBUSY; 257 } else { 258 int error = acpi_scan_try_to_offline(device); 259 if (error) 260 return error; 261 } 262 263 acpi_handle_debug(handle, "Ejecting\n"); 264 265 acpi_bus_trim(device); 266 267 acpi_evaluate_lck(handle, 0); 268 /* 269 * TBD: _EJD support. 270 */ 271 status = acpi_evaluate_ej0(handle); 272 if (status == AE_NOT_FOUND) 273 return -ENODEV; 274 else if (ACPI_FAILURE(status)) 275 return -EIO; 276 277 /* 278 * Verify if eject was indeed successful. If not, log an error 279 * message. No need to call _OST since _EJ0 call was made OK. 280 */ 281 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 282 if (ACPI_FAILURE(status)) { 283 acpi_handle_warn(handle, 284 "Status check after eject failed (0x%x)\n", status); 285 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 286 acpi_handle_warn(handle, 287 "Eject incomplete - status 0x%llx\n", sta); 288 } 289 290 return 0; 291 } 292 293 static int acpi_scan_device_not_present(struct acpi_device *adev) 294 { 295 if (!acpi_device_enumerated(adev)) { 296 dev_warn(&adev->dev, "Still not present\n"); 297 return -EALREADY; 298 } 299 acpi_bus_trim(adev); 300 return 0; 301 } 302 303 static int acpi_scan_device_check(struct acpi_device *adev) 304 { 305 int error; 306 307 acpi_bus_get_status(adev); 308 if (adev->status.present || adev->status.functional) { 309 /* 310 * This function is only called for device objects for which 311 * matching scan handlers exist. The only situation in which 312 * the scan handler is not attached to this device object yet 313 * is when the device has just appeared (either it wasn't 314 * present at all before or it was removed and then added 315 * again). 316 */ 317 if (adev->handler) { 318 dev_warn(&adev->dev, "Already enumerated\n"); 319 return -EALREADY; 320 } 321 error = acpi_bus_scan(adev->handle); 322 if (error) { 323 dev_warn(&adev->dev, "Namespace scan failure\n"); 324 return error; 325 } 326 if (!adev->handler) { 327 dev_warn(&adev->dev, "Enumeration failure\n"); 328 error = -ENODEV; 329 } 330 } else { 331 error = acpi_scan_device_not_present(adev); 332 } 333 return error; 334 } 335 336 static int acpi_scan_bus_check(struct acpi_device *adev) 337 { 338 struct acpi_scan_handler *handler = adev->handler; 339 struct acpi_device *child; 340 int error; 341 342 acpi_bus_get_status(adev); 343 if (!(adev->status.present || adev->status.functional)) { 344 acpi_scan_device_not_present(adev); 345 return 0; 346 } 347 if (handler && handler->hotplug.scan_dependent) 348 return handler->hotplug.scan_dependent(adev); 349 350 error = acpi_bus_scan(adev->handle); 351 if (error) { 352 dev_warn(&adev->dev, "Namespace scan failure\n"); 353 return error; 354 } 355 list_for_each_entry(child, &adev->children, node) { 356 error = acpi_scan_bus_check(child); 357 if (error) 358 return error; 359 } 360 return 0; 361 } 362 363 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 364 { 365 switch (type) { 366 case ACPI_NOTIFY_BUS_CHECK: 367 return acpi_scan_bus_check(adev); 368 case ACPI_NOTIFY_DEVICE_CHECK: 369 return acpi_scan_device_check(adev); 370 case ACPI_NOTIFY_EJECT_REQUEST: 371 case ACPI_OST_EC_OSPM_EJECT: 372 if (adev->handler && !adev->handler->hotplug.enabled) { 373 dev_info(&adev->dev, "Eject disabled\n"); 374 return -EPERM; 375 } 376 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 377 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 378 return acpi_scan_hot_remove(adev); 379 } 380 return -EINVAL; 381 } 382 383 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 384 { 385 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 386 int error = -ENODEV; 387 388 lock_device_hotplug(); 389 mutex_lock(&acpi_scan_lock); 390 391 /* 392 * The device object's ACPI handle cannot become invalid as long as we 393 * are holding acpi_scan_lock, but it might have become invalid before 394 * that lock was acquired. 395 */ 396 if (adev->handle == INVALID_ACPI_HANDLE) 397 goto err_out; 398 399 if (adev->flags.is_dock_station) { 400 error = dock_notify(adev, src); 401 } else if (adev->flags.hotplug_notify) { 402 error = acpi_generic_hotplug_event(adev, src); 403 } else { 404 int (*notify)(struct acpi_device *, u32); 405 406 acpi_lock_hp_context(); 407 notify = adev->hp ? adev->hp->notify : NULL; 408 acpi_unlock_hp_context(); 409 /* 410 * There may be additional notify handlers for device objects 411 * without the .event() callback, so ignore them here. 412 */ 413 if (notify) 414 error = notify(adev, src); 415 else 416 goto out; 417 } 418 switch (error) { 419 case 0: 420 ost_code = ACPI_OST_SC_SUCCESS; 421 break; 422 case -EPERM: 423 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 424 break; 425 case -EBUSY: 426 ost_code = ACPI_OST_SC_DEVICE_BUSY; 427 break; 428 default: 429 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 430 break; 431 } 432 433 err_out: 434 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 435 436 out: 437 acpi_bus_put_acpi_device(adev); 438 mutex_unlock(&acpi_scan_lock); 439 unlock_device_hotplug(); 440 } 441 442 static void acpi_free_power_resources_lists(struct acpi_device *device) 443 { 444 int i; 445 446 if (device->wakeup.flags.valid) 447 acpi_power_resources_list_free(&device->wakeup.resources); 448 449 if (!device->power.flags.power_resources) 450 return; 451 452 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 453 struct acpi_device_power_state *ps = &device->power.states[i]; 454 acpi_power_resources_list_free(&ps->resources); 455 } 456 } 457 458 static void acpi_device_release(struct device *dev) 459 { 460 struct acpi_device *acpi_dev = to_acpi_device(dev); 461 462 acpi_free_properties(acpi_dev); 463 acpi_free_pnp_ids(&acpi_dev->pnp); 464 acpi_free_power_resources_lists(acpi_dev); 465 kfree(acpi_dev); 466 } 467 468 static void acpi_device_del(struct acpi_device *device) 469 { 470 struct acpi_device_bus_id *acpi_device_bus_id; 471 472 mutex_lock(&acpi_device_lock); 473 if (device->parent) 474 list_del(&device->node); 475 476 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 477 if (!strcmp(acpi_device_bus_id->bus_id, 478 acpi_device_hid(device))) { 479 ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no); 480 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 481 list_del(&acpi_device_bus_id->node); 482 kfree_const(acpi_device_bus_id->bus_id); 483 kfree(acpi_device_bus_id); 484 } 485 break; 486 } 487 488 list_del(&device->wakeup_list); 489 mutex_unlock(&acpi_device_lock); 490 491 acpi_power_add_remove_device(device, false); 492 acpi_device_remove_files(device); 493 if (device->remove) 494 device->remove(device); 495 496 device_del(&device->dev); 497 } 498 499 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 500 501 static LIST_HEAD(acpi_device_del_list); 502 static DEFINE_MUTEX(acpi_device_del_lock); 503 504 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 505 { 506 for (;;) { 507 struct acpi_device *adev; 508 509 mutex_lock(&acpi_device_del_lock); 510 511 if (list_empty(&acpi_device_del_list)) { 512 mutex_unlock(&acpi_device_del_lock); 513 break; 514 } 515 adev = list_first_entry(&acpi_device_del_list, 516 struct acpi_device, del_list); 517 list_del(&adev->del_list); 518 519 mutex_unlock(&acpi_device_del_lock); 520 521 blocking_notifier_call_chain(&acpi_reconfig_chain, 522 ACPI_RECONFIG_DEVICE_REMOVE, adev); 523 524 acpi_device_del(adev); 525 /* 526 * Drop references to all power resources that might have been 527 * used by the device. 528 */ 529 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 530 acpi_dev_put(adev); 531 } 532 } 533 534 /** 535 * acpi_scan_drop_device - Drop an ACPI device object. 536 * @handle: Handle of an ACPI namespace node, not used. 537 * @context: Address of the ACPI device object to drop. 538 * 539 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 540 * namespace node the device object pointed to by @context is attached to. 541 * 542 * The unregistration is carried out asynchronously to avoid running 543 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 544 * ensure the correct ordering (the device objects must be unregistered in the 545 * same order in which the corresponding namespace nodes are deleted). 546 */ 547 static void acpi_scan_drop_device(acpi_handle handle, void *context) 548 { 549 static DECLARE_WORK(work, acpi_device_del_work_fn); 550 struct acpi_device *adev = context; 551 552 mutex_lock(&acpi_device_del_lock); 553 554 /* 555 * Use the ACPI hotplug workqueue which is ordered, so this work item 556 * won't run after any hotplug work items submitted subsequently. That 557 * prevents attempts to register device objects identical to those being 558 * deleted from happening concurrently (such attempts result from 559 * hotplug events handled via the ACPI hotplug workqueue). It also will 560 * run after all of the work items submitted previously, which helps 561 * those work items to ensure that they are not accessing stale device 562 * objects. 563 */ 564 if (list_empty(&acpi_device_del_list)) 565 acpi_queue_hotplug_work(&work); 566 567 list_add_tail(&adev->del_list, &acpi_device_del_list); 568 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 569 adev->handle = INVALID_ACPI_HANDLE; 570 571 mutex_unlock(&acpi_device_del_lock); 572 } 573 574 static struct acpi_device *handle_to_device(acpi_handle handle, 575 void (*callback)(void *)) 576 { 577 struct acpi_device *adev = NULL; 578 acpi_status status; 579 580 status = acpi_get_data_full(handle, acpi_scan_drop_device, 581 (void **)&adev, callback); 582 if (ACPI_FAILURE(status) || !adev) { 583 acpi_handle_debug(handle, "No context!\n"); 584 return NULL; 585 } 586 return adev; 587 } 588 589 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device) 590 { 591 if (!device) 592 return -EINVAL; 593 594 *device = handle_to_device(handle, NULL); 595 if (!*device) 596 return -ENODEV; 597 598 return 0; 599 } 600 EXPORT_SYMBOL(acpi_bus_get_device); 601 602 static void get_acpi_device(void *dev) 603 { 604 acpi_dev_get(dev); 605 } 606 607 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle) 608 { 609 return handle_to_device(handle, get_acpi_device); 610 } 611 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device); 612 613 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 614 { 615 struct acpi_device_bus_id *acpi_device_bus_id; 616 617 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 618 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 619 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 620 return acpi_device_bus_id; 621 } 622 return NULL; 623 } 624 625 static int acpi_device_set_name(struct acpi_device *device, 626 struct acpi_device_bus_id *acpi_device_bus_id) 627 { 628 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 629 int result; 630 631 result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL); 632 if (result < 0) 633 return result; 634 635 device->pnp.instance_no = result; 636 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 637 return 0; 638 } 639 640 static int acpi_tie_acpi_dev(struct acpi_device *adev) 641 { 642 acpi_handle handle = adev->handle; 643 acpi_status status; 644 645 if (!handle) 646 return 0; 647 648 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 649 if (ACPI_FAILURE(status)) { 650 acpi_handle_err(handle, "Unable to attach device data\n"); 651 return -ENODEV; 652 } 653 654 return 0; 655 } 656 657 static int __acpi_device_add(struct acpi_device *device, 658 void (*release)(struct device *)) 659 { 660 struct acpi_device_bus_id *acpi_device_bus_id; 661 int result; 662 663 /* 664 * Linkage 665 * ------- 666 * Link this device to its parent and siblings. 667 */ 668 INIT_LIST_HEAD(&device->children); 669 INIT_LIST_HEAD(&device->node); 670 INIT_LIST_HEAD(&device->wakeup_list); 671 INIT_LIST_HEAD(&device->physical_node_list); 672 INIT_LIST_HEAD(&device->del_list); 673 mutex_init(&device->physical_node_lock); 674 675 mutex_lock(&acpi_device_lock); 676 677 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 678 if (acpi_device_bus_id) { 679 result = acpi_device_set_name(device, acpi_device_bus_id); 680 if (result) 681 goto err_unlock; 682 } else { 683 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 684 GFP_KERNEL); 685 if (!acpi_device_bus_id) { 686 result = -ENOMEM; 687 goto err_unlock; 688 } 689 acpi_device_bus_id->bus_id = 690 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 691 if (!acpi_device_bus_id->bus_id) { 692 kfree(acpi_device_bus_id); 693 result = -ENOMEM; 694 goto err_unlock; 695 } 696 697 ida_init(&acpi_device_bus_id->instance_ida); 698 699 result = acpi_device_set_name(device, acpi_device_bus_id); 700 if (result) { 701 kfree_const(acpi_device_bus_id->bus_id); 702 kfree(acpi_device_bus_id); 703 goto err_unlock; 704 } 705 706 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 707 } 708 709 if (device->parent) 710 list_add_tail(&device->node, &device->parent->children); 711 712 if (device->wakeup.flags.valid) 713 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 714 715 mutex_unlock(&acpi_device_lock); 716 717 if (device->parent) 718 device->dev.parent = &device->parent->dev; 719 720 device->dev.bus = &acpi_bus_type; 721 device->dev.release = release; 722 result = device_add(&device->dev); 723 if (result) { 724 dev_err(&device->dev, "Error registering device\n"); 725 goto err; 726 } 727 728 result = acpi_device_setup_files(device); 729 if (result) 730 pr_err("Error creating sysfs interface for device %s\n", 731 dev_name(&device->dev)); 732 733 return 0; 734 735 err: 736 mutex_lock(&acpi_device_lock); 737 738 if (device->parent) 739 list_del(&device->node); 740 741 list_del(&device->wakeup_list); 742 743 err_unlock: 744 mutex_unlock(&acpi_device_lock); 745 746 acpi_detach_data(device->handle, acpi_scan_drop_device); 747 748 return result; 749 } 750 751 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *)) 752 { 753 int ret; 754 755 ret = acpi_tie_acpi_dev(adev); 756 if (ret) 757 return ret; 758 759 return __acpi_device_add(adev, release); 760 } 761 762 /* -------------------------------------------------------------------------- 763 Device Enumeration 764 -------------------------------------------------------------------------- */ 765 static bool acpi_info_matches_ids(struct acpi_device_info *info, 766 const char * const ids[]) 767 { 768 struct acpi_pnp_device_id_list *cid_list = NULL; 769 int i, index; 770 771 if (!(info->valid & ACPI_VALID_HID)) 772 return false; 773 774 index = match_string(ids, -1, info->hardware_id.string); 775 if (index >= 0) 776 return true; 777 778 if (info->valid & ACPI_VALID_CID) 779 cid_list = &info->compatible_id_list; 780 781 if (!cid_list) 782 return false; 783 784 for (i = 0; i < cid_list->count; i++) { 785 index = match_string(ids, -1, cid_list->ids[i].string); 786 if (index >= 0) 787 return true; 788 } 789 790 return false; 791 } 792 793 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 794 static const char * const acpi_ignore_dep_ids[] = { 795 "PNP0D80", /* Windows-compatible System Power Management Controller */ 796 "INT33BD", /* Intel Baytrail Mailbox Device */ 797 NULL 798 }; 799 800 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */ 801 static const char * const acpi_honor_dep_ids[] = { 802 "INT3472", /* Camera sensor PMIC / clk and regulator info */ 803 NULL 804 }; 805 806 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle) 807 { 808 struct acpi_device *device = NULL; 809 acpi_status status; 810 811 /* 812 * Fixed hardware devices do not appear in the namespace and do not 813 * have handles, but we fabricate acpi_devices for them, so we have 814 * to deal with them specially. 815 */ 816 if (!handle) 817 return acpi_root; 818 819 do { 820 status = acpi_get_parent(handle, &handle); 821 if (ACPI_FAILURE(status)) 822 return status == AE_NULL_ENTRY ? NULL : acpi_root; 823 } while (acpi_bus_get_device(handle, &device)); 824 return device; 825 } 826 827 acpi_status 828 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 829 { 830 acpi_status status; 831 acpi_handle tmp; 832 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 833 union acpi_object *obj; 834 835 status = acpi_get_handle(handle, "_EJD", &tmp); 836 if (ACPI_FAILURE(status)) 837 return status; 838 839 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 840 if (ACPI_SUCCESS(status)) { 841 obj = buffer.pointer; 842 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 843 ejd); 844 kfree(buffer.pointer); 845 } 846 return status; 847 } 848 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 849 850 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 851 { 852 acpi_handle handle = dev->handle; 853 struct acpi_device_wakeup *wakeup = &dev->wakeup; 854 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 855 union acpi_object *package = NULL; 856 union acpi_object *element = NULL; 857 acpi_status status; 858 int err = -ENODATA; 859 860 INIT_LIST_HEAD(&wakeup->resources); 861 862 /* _PRW */ 863 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 864 if (ACPI_FAILURE(status)) { 865 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 866 acpi_format_exception(status)); 867 return err; 868 } 869 870 package = (union acpi_object *)buffer.pointer; 871 872 if (!package || package->package.count < 2) 873 goto out; 874 875 element = &(package->package.elements[0]); 876 if (!element) 877 goto out; 878 879 if (element->type == ACPI_TYPE_PACKAGE) { 880 if ((element->package.count < 2) || 881 (element->package.elements[0].type != 882 ACPI_TYPE_LOCAL_REFERENCE) 883 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 884 goto out; 885 886 wakeup->gpe_device = 887 element->package.elements[0].reference.handle; 888 wakeup->gpe_number = 889 (u32) element->package.elements[1].integer.value; 890 } else if (element->type == ACPI_TYPE_INTEGER) { 891 wakeup->gpe_device = NULL; 892 wakeup->gpe_number = element->integer.value; 893 } else { 894 goto out; 895 } 896 897 element = &(package->package.elements[1]); 898 if (element->type != ACPI_TYPE_INTEGER) 899 goto out; 900 901 wakeup->sleep_state = element->integer.value; 902 903 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 904 if (err) 905 goto out; 906 907 if (!list_empty(&wakeup->resources)) { 908 int sleep_state; 909 910 err = acpi_power_wakeup_list_init(&wakeup->resources, 911 &sleep_state); 912 if (err) { 913 acpi_handle_warn(handle, "Retrieving current states " 914 "of wakeup power resources failed\n"); 915 acpi_power_resources_list_free(&wakeup->resources); 916 goto out; 917 } 918 if (sleep_state < wakeup->sleep_state) { 919 acpi_handle_warn(handle, "Overriding _PRW sleep state " 920 "(S%d) by S%d from power resources\n", 921 (int)wakeup->sleep_state, sleep_state); 922 wakeup->sleep_state = sleep_state; 923 } 924 } 925 926 out: 927 kfree(buffer.pointer); 928 return err; 929 } 930 931 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 932 { 933 static const struct acpi_device_id button_device_ids[] = { 934 {"PNP0C0C", 0}, /* Power button */ 935 {"PNP0C0D", 0}, /* Lid */ 936 {"PNP0C0E", 0}, /* Sleep button */ 937 {"", 0}, 938 }; 939 struct acpi_device_wakeup *wakeup = &device->wakeup; 940 acpi_status status; 941 942 wakeup->flags.notifier_present = 0; 943 944 /* Power button, Lid switch always enable wakeup */ 945 if (!acpi_match_device_ids(device, button_device_ids)) { 946 if (!acpi_match_device_ids(device, &button_device_ids[1])) { 947 /* Do not use Lid/sleep button for S5 wakeup */ 948 if (wakeup->sleep_state == ACPI_STATE_S5) 949 wakeup->sleep_state = ACPI_STATE_S4; 950 } 951 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 952 device_set_wakeup_capable(&device->dev, true); 953 return true; 954 } 955 956 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 957 wakeup->gpe_number); 958 return ACPI_SUCCESS(status); 959 } 960 961 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 962 { 963 int err; 964 965 /* Presence of _PRW indicates wake capable */ 966 if (!acpi_has_method(device->handle, "_PRW")) 967 return; 968 969 err = acpi_bus_extract_wakeup_device_power_package(device); 970 if (err) { 971 dev_err(&device->dev, "Unable to extract wakeup power resources"); 972 return; 973 } 974 975 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 976 device->wakeup.prepare_count = 0; 977 /* 978 * Call _PSW/_DSW object to disable its ability to wake the sleeping 979 * system for the ACPI device with the _PRW object. 980 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 981 * So it is necessary to call _DSW object first. Only when it is not 982 * present will the _PSW object used. 983 */ 984 err = acpi_device_sleep_wake(device, 0, 0, 0); 985 if (err) 986 pr_debug("error in _DSW or _PSW evaluation\n"); 987 } 988 989 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 990 { 991 struct acpi_device_power_state *ps = &device->power.states[state]; 992 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 993 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 994 acpi_status status; 995 996 INIT_LIST_HEAD(&ps->resources); 997 998 /* Evaluate "_PRx" to get referenced power resources */ 999 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 1000 if (ACPI_SUCCESS(status)) { 1001 union acpi_object *package = buffer.pointer; 1002 1003 if (buffer.length && package 1004 && package->type == ACPI_TYPE_PACKAGE 1005 && package->package.count) 1006 acpi_extract_power_resources(package, 0, &ps->resources); 1007 1008 ACPI_FREE(buffer.pointer); 1009 } 1010 1011 /* Evaluate "_PSx" to see if we can do explicit sets */ 1012 pathname[2] = 'S'; 1013 if (acpi_has_method(device->handle, pathname)) 1014 ps->flags.explicit_set = 1; 1015 1016 /* State is valid if there are means to put the device into it. */ 1017 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1018 ps->flags.valid = 1; 1019 1020 ps->power = -1; /* Unknown - driver assigned */ 1021 ps->latency = -1; /* Unknown - driver assigned */ 1022 } 1023 1024 static void acpi_bus_get_power_flags(struct acpi_device *device) 1025 { 1026 unsigned long long dsc = ACPI_STATE_D0; 1027 u32 i; 1028 1029 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1030 if (!acpi_has_method(device->handle, "_PS0") && 1031 !acpi_has_method(device->handle, "_PR0")) 1032 return; 1033 1034 device->flags.power_manageable = 1; 1035 1036 /* 1037 * Power Management Flags 1038 */ 1039 if (acpi_has_method(device->handle, "_PSC")) 1040 device->power.flags.explicit_get = 1; 1041 1042 if (acpi_has_method(device->handle, "_IRC")) 1043 device->power.flags.inrush_current = 1; 1044 1045 if (acpi_has_method(device->handle, "_DSW")) 1046 device->power.flags.dsw_present = 1; 1047 1048 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc); 1049 device->power.state_for_enumeration = dsc; 1050 1051 /* 1052 * Enumerate supported power management states 1053 */ 1054 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1055 acpi_bus_init_power_state(device, i); 1056 1057 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1058 1059 /* Set the defaults for D0 and D3hot (always supported). */ 1060 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1061 device->power.states[ACPI_STATE_D0].power = 100; 1062 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1063 1064 /* 1065 * Use power resources only if the D0 list of them is populated, because 1066 * some platforms may provide _PR3 only to indicate D3cold support and 1067 * in those cases the power resources list returned by it may be bogus. 1068 */ 1069 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1070 device->power.flags.power_resources = 1; 1071 /* 1072 * D3cold is supported if the D3hot list of power resources is 1073 * not empty. 1074 */ 1075 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1076 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1077 } 1078 1079 if (acpi_bus_init_power(device)) 1080 device->flags.power_manageable = 0; 1081 } 1082 1083 static void acpi_bus_get_flags(struct acpi_device *device) 1084 { 1085 /* Presence of _STA indicates 'dynamic_status' */ 1086 if (acpi_has_method(device->handle, "_STA")) 1087 device->flags.dynamic_status = 1; 1088 1089 /* Presence of _RMV indicates 'removable' */ 1090 if (acpi_has_method(device->handle, "_RMV")) 1091 device->flags.removable = 1; 1092 1093 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1094 if (acpi_has_method(device->handle, "_EJD") || 1095 acpi_has_method(device->handle, "_EJ0")) 1096 device->flags.ejectable = 1; 1097 } 1098 1099 static void acpi_device_get_busid(struct acpi_device *device) 1100 { 1101 char bus_id[5] = { '?', 0 }; 1102 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1103 int i = 0; 1104 1105 /* 1106 * Bus ID 1107 * ------ 1108 * The device's Bus ID is simply the object name. 1109 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1110 */ 1111 if (ACPI_IS_ROOT_DEVICE(device)) { 1112 strcpy(device->pnp.bus_id, "ACPI"); 1113 return; 1114 } 1115 1116 switch (device->device_type) { 1117 case ACPI_BUS_TYPE_POWER_BUTTON: 1118 strcpy(device->pnp.bus_id, "PWRF"); 1119 break; 1120 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1121 strcpy(device->pnp.bus_id, "SLPF"); 1122 break; 1123 case ACPI_BUS_TYPE_ECDT_EC: 1124 strcpy(device->pnp.bus_id, "ECDT"); 1125 break; 1126 default: 1127 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1128 /* Clean up trailing underscores (if any) */ 1129 for (i = 3; i > 1; i--) { 1130 if (bus_id[i] == '_') 1131 bus_id[i] = '\0'; 1132 else 1133 break; 1134 } 1135 strcpy(device->pnp.bus_id, bus_id); 1136 break; 1137 } 1138 } 1139 1140 /* 1141 * acpi_ata_match - see if an acpi object is an ATA device 1142 * 1143 * If an acpi object has one of the ACPI ATA methods defined, 1144 * then we can safely call it an ATA device. 1145 */ 1146 bool acpi_ata_match(acpi_handle handle) 1147 { 1148 return acpi_has_method(handle, "_GTF") || 1149 acpi_has_method(handle, "_GTM") || 1150 acpi_has_method(handle, "_STM") || 1151 acpi_has_method(handle, "_SDD"); 1152 } 1153 1154 /* 1155 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1156 * 1157 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1158 * then we can safely call it an ejectable drive bay 1159 */ 1160 bool acpi_bay_match(acpi_handle handle) 1161 { 1162 acpi_handle phandle; 1163 1164 if (!acpi_has_method(handle, "_EJ0")) 1165 return false; 1166 if (acpi_ata_match(handle)) 1167 return true; 1168 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1169 return false; 1170 1171 return acpi_ata_match(phandle); 1172 } 1173 1174 bool acpi_device_is_battery(struct acpi_device *adev) 1175 { 1176 struct acpi_hardware_id *hwid; 1177 1178 list_for_each_entry(hwid, &adev->pnp.ids, list) 1179 if (!strcmp("PNP0C0A", hwid->id)) 1180 return true; 1181 1182 return false; 1183 } 1184 1185 static bool is_ejectable_bay(struct acpi_device *adev) 1186 { 1187 acpi_handle handle = adev->handle; 1188 1189 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1190 return true; 1191 1192 return acpi_bay_match(handle); 1193 } 1194 1195 /* 1196 * acpi_dock_match - see if an acpi object has a _DCK method 1197 */ 1198 bool acpi_dock_match(acpi_handle handle) 1199 { 1200 return acpi_has_method(handle, "_DCK"); 1201 } 1202 1203 static acpi_status 1204 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1205 void **return_value) 1206 { 1207 long *cap = context; 1208 1209 if (acpi_has_method(handle, "_BCM") && 1210 acpi_has_method(handle, "_BCL")) { 1211 acpi_handle_debug(handle, "Found generic backlight support\n"); 1212 *cap |= ACPI_VIDEO_BACKLIGHT; 1213 /* We have backlight support, no need to scan further */ 1214 return AE_CTRL_TERMINATE; 1215 } 1216 return 0; 1217 } 1218 1219 /* Returns true if the ACPI object is a video device which can be 1220 * handled by video.ko. 1221 * The device will get a Linux specific CID added in scan.c to 1222 * identify the device as an ACPI graphics device 1223 * Be aware that the graphics device may not be physically present 1224 * Use acpi_video_get_capabilities() to detect general ACPI video 1225 * capabilities of present cards 1226 */ 1227 long acpi_is_video_device(acpi_handle handle) 1228 { 1229 long video_caps = 0; 1230 1231 /* Is this device able to support video switching ? */ 1232 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1233 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1234 1235 /* Is this device able to retrieve a video ROM ? */ 1236 if (acpi_has_method(handle, "_ROM")) 1237 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1238 1239 /* Is this device able to configure which video head to be POSTed ? */ 1240 if (acpi_has_method(handle, "_VPO") && 1241 acpi_has_method(handle, "_GPD") && 1242 acpi_has_method(handle, "_SPD")) 1243 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1244 1245 /* Only check for backlight functionality if one of the above hit. */ 1246 if (video_caps) 1247 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1248 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1249 &video_caps, NULL); 1250 1251 return video_caps; 1252 } 1253 EXPORT_SYMBOL(acpi_is_video_device); 1254 1255 const char *acpi_device_hid(struct acpi_device *device) 1256 { 1257 struct acpi_hardware_id *hid; 1258 1259 if (list_empty(&device->pnp.ids)) 1260 return dummy_hid; 1261 1262 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list); 1263 return hid->id; 1264 } 1265 EXPORT_SYMBOL(acpi_device_hid); 1266 1267 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1268 { 1269 struct acpi_hardware_id *id; 1270 1271 id = kmalloc(sizeof(*id), GFP_KERNEL); 1272 if (!id) 1273 return; 1274 1275 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1276 if (!id->id) { 1277 kfree(id); 1278 return; 1279 } 1280 1281 list_add_tail(&id->list, &pnp->ids); 1282 pnp->type.hardware_id = 1; 1283 } 1284 1285 /* 1286 * Old IBM workstations have a DSDT bug wherein the SMBus object 1287 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1288 * prefix. Work around this. 1289 */ 1290 static bool acpi_ibm_smbus_match(acpi_handle handle) 1291 { 1292 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1293 struct acpi_buffer path = { sizeof(node_name), node_name }; 1294 1295 if (!dmi_name_in_vendors("IBM")) 1296 return false; 1297 1298 /* Look for SMBS object */ 1299 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1300 strcmp("SMBS", path.pointer)) 1301 return false; 1302 1303 /* Does it have the necessary (but misnamed) methods? */ 1304 if (acpi_has_method(handle, "SBI") && 1305 acpi_has_method(handle, "SBR") && 1306 acpi_has_method(handle, "SBW")) 1307 return true; 1308 1309 return false; 1310 } 1311 1312 static bool acpi_object_is_system_bus(acpi_handle handle) 1313 { 1314 acpi_handle tmp; 1315 1316 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1317 tmp == handle) 1318 return true; 1319 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1320 tmp == handle) 1321 return true; 1322 1323 return false; 1324 } 1325 1326 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1327 int device_type) 1328 { 1329 struct acpi_device_info *info = NULL; 1330 struct acpi_pnp_device_id_list *cid_list; 1331 int i; 1332 1333 switch (device_type) { 1334 case ACPI_BUS_TYPE_DEVICE: 1335 if (handle == ACPI_ROOT_OBJECT) { 1336 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1337 break; 1338 } 1339 1340 acpi_get_object_info(handle, &info); 1341 if (!info) { 1342 pr_err("%s: Error reading device info\n", __func__); 1343 return; 1344 } 1345 1346 if (info->valid & ACPI_VALID_HID) { 1347 acpi_add_id(pnp, info->hardware_id.string); 1348 pnp->type.platform_id = 1; 1349 } 1350 if (info->valid & ACPI_VALID_CID) { 1351 cid_list = &info->compatible_id_list; 1352 for (i = 0; i < cid_list->count; i++) 1353 acpi_add_id(pnp, cid_list->ids[i].string); 1354 } 1355 if (info->valid & ACPI_VALID_ADR) { 1356 pnp->bus_address = info->address; 1357 pnp->type.bus_address = 1; 1358 } 1359 if (info->valid & ACPI_VALID_UID) 1360 pnp->unique_id = kstrdup(info->unique_id.string, 1361 GFP_KERNEL); 1362 if (info->valid & ACPI_VALID_CLS) 1363 acpi_add_id(pnp, info->class_code.string); 1364 1365 kfree(info); 1366 1367 /* 1368 * Some devices don't reliably have _HIDs & _CIDs, so add 1369 * synthetic HIDs to make sure drivers can find them. 1370 */ 1371 if (acpi_is_video_device(handle)) 1372 acpi_add_id(pnp, ACPI_VIDEO_HID); 1373 else if (acpi_bay_match(handle)) 1374 acpi_add_id(pnp, ACPI_BAY_HID); 1375 else if (acpi_dock_match(handle)) 1376 acpi_add_id(pnp, ACPI_DOCK_HID); 1377 else if (acpi_ibm_smbus_match(handle)) 1378 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1379 else if (list_empty(&pnp->ids) && 1380 acpi_object_is_system_bus(handle)) { 1381 /* \_SB, \_TZ, LNXSYBUS */ 1382 acpi_add_id(pnp, ACPI_BUS_HID); 1383 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1384 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1385 } 1386 1387 break; 1388 case ACPI_BUS_TYPE_POWER: 1389 acpi_add_id(pnp, ACPI_POWER_HID); 1390 break; 1391 case ACPI_BUS_TYPE_PROCESSOR: 1392 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1393 break; 1394 case ACPI_BUS_TYPE_THERMAL: 1395 acpi_add_id(pnp, ACPI_THERMAL_HID); 1396 break; 1397 case ACPI_BUS_TYPE_POWER_BUTTON: 1398 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1399 break; 1400 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1401 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1402 break; 1403 case ACPI_BUS_TYPE_ECDT_EC: 1404 acpi_add_id(pnp, ACPI_ECDT_HID); 1405 break; 1406 } 1407 } 1408 1409 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1410 { 1411 struct acpi_hardware_id *id, *tmp; 1412 1413 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1414 kfree_const(id->id); 1415 kfree(id); 1416 } 1417 kfree(pnp->unique_id); 1418 } 1419 1420 /** 1421 * acpi_dma_supported - Check DMA support for the specified device. 1422 * @adev: The pointer to acpi device 1423 * 1424 * Return false if DMA is not supported. Otherwise, return true 1425 */ 1426 bool acpi_dma_supported(const struct acpi_device *adev) 1427 { 1428 if (!adev) 1429 return false; 1430 1431 if (adev->flags.cca_seen) 1432 return true; 1433 1434 /* 1435 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1436 * DMA on "Intel platforms". Presumably that includes all x86 and 1437 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1438 */ 1439 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1440 return true; 1441 1442 return false; 1443 } 1444 1445 /** 1446 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1447 * @adev: The pointer to acpi device 1448 * 1449 * Return enum dev_dma_attr. 1450 */ 1451 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1452 { 1453 if (!acpi_dma_supported(adev)) 1454 return DEV_DMA_NOT_SUPPORTED; 1455 1456 if (adev->flags.coherent_dma) 1457 return DEV_DMA_COHERENT; 1458 else 1459 return DEV_DMA_NON_COHERENT; 1460 } 1461 1462 /** 1463 * acpi_dma_get_range() - Get device DMA parameters. 1464 * 1465 * @dev: device to configure 1466 * @dma_addr: pointer device DMA address result 1467 * @offset: pointer to the DMA offset result 1468 * @size: pointer to DMA range size result 1469 * 1470 * Evaluate DMA regions and return respectively DMA region start, offset 1471 * and size in dma_addr, offset and size on parsing success; it does not 1472 * update the passed in values on failure. 1473 * 1474 * Return 0 on success, < 0 on failure. 1475 */ 1476 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, 1477 u64 *size) 1478 { 1479 struct acpi_device *adev; 1480 LIST_HEAD(list); 1481 struct resource_entry *rentry; 1482 int ret; 1483 struct device *dma_dev = dev; 1484 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0; 1485 1486 /* 1487 * Walk the device tree chasing an ACPI companion with a _DMA 1488 * object while we go. Stop if we find a device with an ACPI 1489 * companion containing a _DMA method. 1490 */ 1491 do { 1492 adev = ACPI_COMPANION(dma_dev); 1493 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1494 break; 1495 1496 dma_dev = dma_dev->parent; 1497 } while (dma_dev); 1498 1499 if (!dma_dev) 1500 return -ENODEV; 1501 1502 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1503 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1504 return -EINVAL; 1505 } 1506 1507 ret = acpi_dev_get_dma_resources(adev, &list); 1508 if (ret > 0) { 1509 list_for_each_entry(rentry, &list, node) { 1510 if (dma_offset && rentry->offset != dma_offset) { 1511 ret = -EINVAL; 1512 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n"); 1513 goto out; 1514 } 1515 dma_offset = rentry->offset; 1516 1517 /* Take lower and upper limits */ 1518 if (rentry->res->start < dma_start) 1519 dma_start = rentry->res->start; 1520 if (rentry->res->end > dma_end) 1521 dma_end = rentry->res->end; 1522 } 1523 1524 if (dma_start >= dma_end) { 1525 ret = -EINVAL; 1526 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1527 goto out; 1528 } 1529 1530 *dma_addr = dma_start - dma_offset; 1531 len = dma_end - dma_start; 1532 *size = max(len, len + 1); 1533 *offset = dma_offset; 1534 } 1535 out: 1536 acpi_dev_free_resource_list(&list); 1537 1538 return ret >= 0 ? 0 : ret; 1539 } 1540 1541 #ifdef CONFIG_IOMMU_API 1542 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1543 struct fwnode_handle *fwnode, 1544 const struct iommu_ops *ops) 1545 { 1546 int ret = iommu_fwspec_init(dev, fwnode, ops); 1547 1548 if (!ret) 1549 ret = iommu_fwspec_add_ids(dev, &id, 1); 1550 1551 return ret; 1552 } 1553 1554 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev) 1555 { 1556 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1557 1558 return fwspec ? fwspec->ops : NULL; 1559 } 1560 1561 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1562 const u32 *id_in) 1563 { 1564 int err; 1565 const struct iommu_ops *ops; 1566 1567 /* 1568 * If we already translated the fwspec there is nothing left to do, 1569 * return the iommu_ops. 1570 */ 1571 ops = acpi_iommu_fwspec_ops(dev); 1572 if (ops) 1573 return ops; 1574 1575 err = iort_iommu_configure_id(dev, id_in); 1576 if (err && err != -EPROBE_DEFER) 1577 err = viot_iommu_configure(dev); 1578 1579 /* 1580 * If we have reason to believe the IOMMU driver missed the initial 1581 * iommu_probe_device() call for dev, replay it to get things in order. 1582 */ 1583 if (!err && dev->bus && !device_iommu_mapped(dev)) 1584 err = iommu_probe_device(dev); 1585 1586 /* Ignore all other errors apart from EPROBE_DEFER */ 1587 if (err == -EPROBE_DEFER) { 1588 return ERR_PTR(err); 1589 } else if (err) { 1590 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err); 1591 return NULL; 1592 } 1593 return acpi_iommu_fwspec_ops(dev); 1594 } 1595 1596 #else /* !CONFIG_IOMMU_API */ 1597 1598 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1599 struct fwnode_handle *fwnode, 1600 const struct iommu_ops *ops) 1601 { 1602 return -ENODEV; 1603 } 1604 1605 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1606 const u32 *id_in) 1607 { 1608 return NULL; 1609 } 1610 1611 #endif /* !CONFIG_IOMMU_API */ 1612 1613 /** 1614 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1615 * @dev: The pointer to the device 1616 * @attr: device dma attributes 1617 * @input_id: input device id const value pointer 1618 */ 1619 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1620 const u32 *input_id) 1621 { 1622 const struct iommu_ops *iommu; 1623 u64 dma_addr = 0, size = 0; 1624 1625 if (attr == DEV_DMA_NOT_SUPPORTED) { 1626 set_dma_ops(dev, &dma_dummy_ops); 1627 return 0; 1628 } 1629 1630 acpi_arch_dma_setup(dev, &dma_addr, &size); 1631 1632 iommu = acpi_iommu_configure_id(dev, input_id); 1633 if (PTR_ERR(iommu) == -EPROBE_DEFER) 1634 return -EPROBE_DEFER; 1635 1636 arch_setup_dma_ops(dev, dma_addr, size, 1637 iommu, attr == DEV_DMA_COHERENT); 1638 1639 return 0; 1640 } 1641 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1642 1643 static void acpi_init_coherency(struct acpi_device *adev) 1644 { 1645 unsigned long long cca = 0; 1646 acpi_status status; 1647 struct acpi_device *parent = adev->parent; 1648 1649 if (parent && parent->flags.cca_seen) { 1650 /* 1651 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1652 * already saw one. 1653 */ 1654 adev->flags.cca_seen = 1; 1655 cca = parent->flags.coherent_dma; 1656 } else { 1657 status = acpi_evaluate_integer(adev->handle, "_CCA", 1658 NULL, &cca); 1659 if (ACPI_SUCCESS(status)) 1660 adev->flags.cca_seen = 1; 1661 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1662 /* 1663 * If architecture does not specify that _CCA is 1664 * required for DMA-able devices (e.g. x86), 1665 * we default to _CCA=1. 1666 */ 1667 cca = 1; 1668 else 1669 acpi_handle_debug(adev->handle, 1670 "ACPI device is missing _CCA.\n"); 1671 } 1672 1673 adev->flags.coherent_dma = cca; 1674 } 1675 1676 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1677 { 1678 bool *is_serial_bus_slave_p = data; 1679 1680 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1681 return 1; 1682 1683 *is_serial_bus_slave_p = true; 1684 1685 /* no need to do more checking */ 1686 return -1; 1687 } 1688 1689 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1690 { 1691 struct acpi_device *parent = device->parent; 1692 static const struct acpi_device_id indirect_io_hosts[] = { 1693 {"HISI0191", 0}, 1694 {} 1695 }; 1696 1697 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1698 } 1699 1700 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1701 { 1702 struct list_head resource_list; 1703 bool is_serial_bus_slave = false; 1704 /* 1705 * These devices have multiple I2cSerialBus resources and an i2c-client 1706 * must be instantiated for each, each with its own i2c_device_id. 1707 * Normally we only instantiate an i2c-client for the first resource, 1708 * using the ACPI HID as id. These special cases are handled by the 1709 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows 1710 * which i2c_device_id to use for each resource. 1711 */ 1712 static const struct acpi_device_id i2c_multi_instantiate_ids[] = { 1713 {"BSG1160", }, 1714 {"BSG2150", }, 1715 {"INT33FE", }, 1716 {"INT3515", }, 1717 {} 1718 }; 1719 1720 if (acpi_is_indirect_io_slave(device)) 1721 return true; 1722 1723 /* Macs use device properties in lieu of _CRS resources */ 1724 if (x86_apple_machine && 1725 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1726 fwnode_property_present(&device->fwnode, "i2cAddress") || 1727 fwnode_property_present(&device->fwnode, "baud"))) 1728 return true; 1729 1730 /* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */ 1731 if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids)) 1732 return false; 1733 1734 INIT_LIST_HEAD(&resource_list); 1735 acpi_dev_get_resources(device, &resource_list, 1736 acpi_check_serial_bus_slave, 1737 &is_serial_bus_slave); 1738 acpi_dev_free_resource_list(&resource_list); 1739 1740 return is_serial_bus_slave; 1741 } 1742 1743 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1744 int type) 1745 { 1746 INIT_LIST_HEAD(&device->pnp.ids); 1747 device->device_type = type; 1748 device->handle = handle; 1749 device->parent = acpi_bus_get_parent(handle); 1750 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1751 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1752 acpi_device_get_busid(device); 1753 acpi_set_pnp_ids(handle, &device->pnp, type); 1754 acpi_init_properties(device); 1755 acpi_bus_get_flags(device); 1756 device->flags.match_driver = false; 1757 device->flags.initialized = true; 1758 device->flags.enumeration_by_parent = 1759 acpi_device_enumeration_by_parent(device); 1760 acpi_device_clear_enumerated(device); 1761 device_initialize(&device->dev); 1762 dev_set_uevent_suppress(&device->dev, true); 1763 acpi_init_coherency(device); 1764 } 1765 1766 static void acpi_scan_dep_init(struct acpi_device *adev) 1767 { 1768 struct acpi_dep_data *dep; 1769 1770 list_for_each_entry(dep, &acpi_dep_list, node) { 1771 if (dep->consumer == adev->handle) { 1772 if (dep->honor_dep) 1773 adev->flags.honor_deps = 1; 1774 1775 adev->dep_unmet++; 1776 } 1777 } 1778 } 1779 1780 void acpi_device_add_finalize(struct acpi_device *device) 1781 { 1782 dev_set_uevent_suppress(&device->dev, false); 1783 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1784 } 1785 1786 static void acpi_scan_init_status(struct acpi_device *adev) 1787 { 1788 if (acpi_bus_get_status(adev)) 1789 acpi_set_device_status(adev, 0); 1790 } 1791 1792 static int acpi_add_single_object(struct acpi_device **child, 1793 acpi_handle handle, int type, bool dep_init) 1794 { 1795 struct acpi_device *device; 1796 bool release_dep_lock = false; 1797 int result; 1798 1799 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1800 if (!device) 1801 return -ENOMEM; 1802 1803 acpi_init_device_object(device, handle, type); 1804 /* 1805 * Getting the status is delayed till here so that we can call 1806 * acpi_bus_get_status() and use its quirk handling. Note that 1807 * this must be done before the get power-/wakeup_dev-flags calls. 1808 */ 1809 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1810 if (dep_init) { 1811 mutex_lock(&acpi_dep_list_lock); 1812 /* 1813 * Hold the lock until the acpi_tie_acpi_dev() call 1814 * below to prevent concurrent acpi_scan_clear_dep() 1815 * from deleting a dependency list entry without 1816 * updating dep_unmet for the device. 1817 */ 1818 release_dep_lock = true; 1819 acpi_scan_dep_init(device); 1820 } 1821 acpi_scan_init_status(device); 1822 } 1823 1824 acpi_bus_get_power_flags(device); 1825 acpi_bus_get_wakeup_device_flags(device); 1826 1827 result = acpi_tie_acpi_dev(device); 1828 1829 if (release_dep_lock) 1830 mutex_unlock(&acpi_dep_list_lock); 1831 1832 if (!result) 1833 result = __acpi_device_add(device, acpi_device_release); 1834 1835 if (result) { 1836 acpi_device_release(&device->dev); 1837 return result; 1838 } 1839 1840 acpi_power_add_remove_device(device, true); 1841 acpi_device_add_finalize(device); 1842 1843 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1844 dev_name(&device->dev), device->parent ? 1845 dev_name(&device->parent->dev) : "(null)"); 1846 1847 *child = device; 1848 return 0; 1849 } 1850 1851 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1852 void *context) 1853 { 1854 struct resource *res = context; 1855 1856 if (acpi_dev_resource_memory(ares, res)) 1857 return AE_CTRL_TERMINATE; 1858 1859 return AE_OK; 1860 } 1861 1862 static bool acpi_device_should_be_hidden(acpi_handle handle) 1863 { 1864 acpi_status status; 1865 struct resource res; 1866 1867 /* Check if it should ignore the UART device */ 1868 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1869 return false; 1870 1871 /* 1872 * The UART device described in SPCR table is assumed to have only one 1873 * memory resource present. So we only look for the first one here. 1874 */ 1875 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1876 acpi_get_resource_memory, &res); 1877 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1878 return false; 1879 1880 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1881 &res.start); 1882 1883 return true; 1884 } 1885 1886 bool acpi_device_is_present(const struct acpi_device *adev) 1887 { 1888 return adev->status.present || adev->status.functional; 1889 } 1890 1891 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1892 const char *idstr, 1893 const struct acpi_device_id **matchid) 1894 { 1895 const struct acpi_device_id *devid; 1896 1897 if (handler->match) 1898 return handler->match(idstr, matchid); 1899 1900 for (devid = handler->ids; devid->id[0]; devid++) 1901 if (!strcmp((char *)devid->id, idstr)) { 1902 if (matchid) 1903 *matchid = devid; 1904 1905 return true; 1906 } 1907 1908 return false; 1909 } 1910 1911 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1912 const struct acpi_device_id **matchid) 1913 { 1914 struct acpi_scan_handler *handler; 1915 1916 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1917 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1918 return handler; 1919 1920 return NULL; 1921 } 1922 1923 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 1924 { 1925 if (!!hotplug->enabled == !!val) 1926 return; 1927 1928 mutex_lock(&acpi_scan_lock); 1929 1930 hotplug->enabled = val; 1931 1932 mutex_unlock(&acpi_scan_lock); 1933 } 1934 1935 static void acpi_scan_init_hotplug(struct acpi_device *adev) 1936 { 1937 struct acpi_hardware_id *hwid; 1938 1939 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 1940 acpi_dock_add(adev); 1941 return; 1942 } 1943 list_for_each_entry(hwid, &adev->pnp.ids, list) { 1944 struct acpi_scan_handler *handler; 1945 1946 handler = acpi_scan_match_handler(hwid->id, NULL); 1947 if (handler) { 1948 adev->flags.hotplug_notify = true; 1949 break; 1950 } 1951 } 1952 } 1953 1954 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep) 1955 { 1956 struct acpi_handle_list dep_devices; 1957 acpi_status status; 1958 u32 count; 1959 int i; 1960 1961 /* 1962 * Check for _HID here to avoid deferring the enumeration of: 1963 * 1. PCI devices. 1964 * 2. ACPI nodes describing USB ports. 1965 * Still, checking for _HID catches more then just these cases ... 1966 */ 1967 if (!check_dep || !acpi_has_method(handle, "_DEP") || 1968 !acpi_has_method(handle, "_HID")) 1969 return 0; 1970 1971 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices); 1972 if (ACPI_FAILURE(status)) { 1973 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 1974 return 0; 1975 } 1976 1977 for (count = 0, i = 0; i < dep_devices.count; i++) { 1978 struct acpi_device_info *info; 1979 struct acpi_dep_data *dep; 1980 bool skip, honor_dep; 1981 1982 status = acpi_get_object_info(dep_devices.handles[i], &info); 1983 if (ACPI_FAILURE(status)) { 1984 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 1985 continue; 1986 } 1987 1988 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 1989 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids); 1990 kfree(info); 1991 1992 if (skip) 1993 continue; 1994 1995 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 1996 if (!dep) 1997 continue; 1998 1999 count++; 2000 2001 dep->supplier = dep_devices.handles[i]; 2002 dep->consumer = handle; 2003 dep->honor_dep = honor_dep; 2004 2005 mutex_lock(&acpi_dep_list_lock); 2006 list_add_tail(&dep->node , &acpi_dep_list); 2007 mutex_unlock(&acpi_dep_list_lock); 2008 } 2009 2010 return count; 2011 } 2012 2013 static bool acpi_bus_scan_second_pass; 2014 2015 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep, 2016 struct acpi_device **adev_p) 2017 { 2018 struct acpi_device *device = NULL; 2019 acpi_object_type acpi_type; 2020 int type; 2021 2022 acpi_bus_get_device(handle, &device); 2023 if (device) 2024 goto out; 2025 2026 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2027 return AE_OK; 2028 2029 switch (acpi_type) { 2030 case ACPI_TYPE_DEVICE: 2031 if (acpi_device_should_be_hidden(handle)) 2032 return AE_OK; 2033 2034 /* Bail out if there are dependencies. */ 2035 if (acpi_scan_check_dep(handle, check_dep) > 0) { 2036 acpi_bus_scan_second_pass = true; 2037 return AE_CTRL_DEPTH; 2038 } 2039 2040 fallthrough; 2041 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2042 type = ACPI_BUS_TYPE_DEVICE; 2043 break; 2044 2045 case ACPI_TYPE_PROCESSOR: 2046 type = ACPI_BUS_TYPE_PROCESSOR; 2047 break; 2048 2049 case ACPI_TYPE_THERMAL: 2050 type = ACPI_BUS_TYPE_THERMAL; 2051 break; 2052 2053 case ACPI_TYPE_POWER: 2054 acpi_add_power_resource(handle); 2055 fallthrough; 2056 default: 2057 return AE_OK; 2058 } 2059 2060 /* 2061 * If check_dep is true at this point, the device has no dependencies, 2062 * or the creation of the device object would have been postponed above. 2063 */ 2064 acpi_add_single_object(&device, handle, type, !check_dep); 2065 if (!device) 2066 return AE_CTRL_DEPTH; 2067 2068 acpi_scan_init_hotplug(device); 2069 2070 out: 2071 if (!*adev_p) 2072 *adev_p = device; 2073 2074 return AE_OK; 2075 } 2076 2077 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2078 void *not_used, void **ret_p) 2079 { 2080 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2081 } 2082 2083 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2084 void *not_used, void **ret_p) 2085 { 2086 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2087 } 2088 2089 static void acpi_default_enumeration(struct acpi_device *device) 2090 { 2091 /* 2092 * Do not enumerate devices with enumeration_by_parent flag set as 2093 * they will be enumerated by their respective parents. 2094 */ 2095 if (!device->flags.enumeration_by_parent) { 2096 acpi_create_platform_device(device, NULL); 2097 acpi_device_set_enumerated(device); 2098 } else { 2099 blocking_notifier_call_chain(&acpi_reconfig_chain, 2100 ACPI_RECONFIG_DEVICE_ADD, device); 2101 } 2102 } 2103 2104 static const struct acpi_device_id generic_device_ids[] = { 2105 {ACPI_DT_NAMESPACE_HID, }, 2106 {"", }, 2107 }; 2108 2109 static int acpi_generic_device_attach(struct acpi_device *adev, 2110 const struct acpi_device_id *not_used) 2111 { 2112 /* 2113 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2114 * below can be unconditional. 2115 */ 2116 if (adev->data.of_compatible) 2117 acpi_default_enumeration(adev); 2118 2119 return 1; 2120 } 2121 2122 static struct acpi_scan_handler generic_device_handler = { 2123 .ids = generic_device_ids, 2124 .attach = acpi_generic_device_attach, 2125 }; 2126 2127 static int acpi_scan_attach_handler(struct acpi_device *device) 2128 { 2129 struct acpi_hardware_id *hwid; 2130 int ret = 0; 2131 2132 list_for_each_entry(hwid, &device->pnp.ids, list) { 2133 const struct acpi_device_id *devid; 2134 struct acpi_scan_handler *handler; 2135 2136 handler = acpi_scan_match_handler(hwid->id, &devid); 2137 if (handler) { 2138 if (!handler->attach) { 2139 device->pnp.type.platform_id = 0; 2140 continue; 2141 } 2142 device->handler = handler; 2143 ret = handler->attach(device, devid); 2144 if (ret > 0) 2145 break; 2146 2147 device->handler = NULL; 2148 if (ret < 0) 2149 break; 2150 } 2151 } 2152 2153 return ret; 2154 } 2155 2156 static void acpi_bus_attach(struct acpi_device *device, bool first_pass) 2157 { 2158 struct acpi_device *child; 2159 bool skip = !first_pass && device->flags.visited; 2160 acpi_handle ejd; 2161 int ret; 2162 2163 if (skip) 2164 goto ok; 2165 2166 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2167 register_dock_dependent_device(device, ejd); 2168 2169 acpi_bus_get_status(device); 2170 /* Skip devices that are not ready for enumeration (e.g. not present) */ 2171 if (!acpi_dev_ready_for_enumeration(device)) { 2172 device->flags.initialized = false; 2173 acpi_device_clear_enumerated(device); 2174 device->flags.power_manageable = 0; 2175 return; 2176 } 2177 if (device->handler) 2178 goto ok; 2179 2180 if (!device->flags.initialized) { 2181 device->flags.power_manageable = 2182 device->power.states[ACPI_STATE_D0].flags.valid; 2183 if (acpi_bus_init_power(device)) 2184 device->flags.power_manageable = 0; 2185 2186 device->flags.initialized = true; 2187 } else if (device->flags.visited) { 2188 goto ok; 2189 } 2190 2191 ret = acpi_scan_attach_handler(device); 2192 if (ret < 0) 2193 return; 2194 2195 device->flags.match_driver = true; 2196 if (ret > 0 && !device->flags.enumeration_by_parent) { 2197 acpi_device_set_enumerated(device); 2198 goto ok; 2199 } 2200 2201 ret = device_attach(&device->dev); 2202 if (ret < 0) 2203 return; 2204 2205 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2206 acpi_default_enumeration(device); 2207 else 2208 acpi_device_set_enumerated(device); 2209 2210 ok: 2211 list_for_each_entry(child, &device->children, node) 2212 acpi_bus_attach(child, first_pass); 2213 2214 if (!skip && device->handler && device->handler->hotplug.notify_online) 2215 device->handler->hotplug.notify_online(device); 2216 } 2217 2218 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2219 { 2220 struct acpi_device *adev; 2221 2222 adev = acpi_bus_get_acpi_device(dep->consumer); 2223 if (adev) { 2224 *(struct acpi_device **)data = adev; 2225 return 1; 2226 } 2227 /* Continue parsing if the device object is not present. */ 2228 return 0; 2229 } 2230 2231 struct acpi_scan_clear_dep_work { 2232 struct work_struct work; 2233 struct acpi_device *adev; 2234 }; 2235 2236 static void acpi_scan_clear_dep_fn(struct work_struct *work) 2237 { 2238 struct acpi_scan_clear_dep_work *cdw; 2239 2240 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2241 2242 acpi_scan_lock_acquire(); 2243 acpi_bus_attach(cdw->adev, true); 2244 acpi_scan_lock_release(); 2245 2246 acpi_dev_put(cdw->adev); 2247 kfree(cdw); 2248 } 2249 2250 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2251 { 2252 struct acpi_scan_clear_dep_work *cdw; 2253 2254 if (adev->dep_unmet) 2255 return false; 2256 2257 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2258 if (!cdw) 2259 return false; 2260 2261 cdw->adev = adev; 2262 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2263 /* 2264 * Since the work function may block on the lock until the entire 2265 * initial enumeration of devices is complete, put it into the unbound 2266 * workqueue. 2267 */ 2268 queue_work(system_unbound_wq, &cdw->work); 2269 2270 return true; 2271 } 2272 2273 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2274 { 2275 struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer); 2276 2277 if (adev) { 2278 adev->dep_unmet--; 2279 if (!acpi_scan_clear_dep_queue(adev)) 2280 acpi_dev_put(adev); 2281 } 2282 2283 list_del(&dep->node); 2284 kfree(dep); 2285 2286 return 0; 2287 } 2288 2289 /** 2290 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2291 * @handle: The ACPI handle of the supplier device 2292 * @callback: Pointer to the callback function to apply 2293 * @data: Pointer to some data to pass to the callback 2294 * 2295 * The return value of the callback determines this function's behaviour. If 0 2296 * is returned we continue to iterate over acpi_dep_list. If a positive value 2297 * is returned then the loop is broken but this function returns 0. If a 2298 * negative value is returned by the callback then the loop is broken and that 2299 * value is returned as the final error. 2300 */ 2301 static int acpi_walk_dep_device_list(acpi_handle handle, 2302 int (*callback)(struct acpi_dep_data *, void *), 2303 void *data) 2304 { 2305 struct acpi_dep_data *dep, *tmp; 2306 int ret = 0; 2307 2308 mutex_lock(&acpi_dep_list_lock); 2309 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2310 if (dep->supplier == handle) { 2311 ret = callback(dep, data); 2312 if (ret) 2313 break; 2314 } 2315 } 2316 mutex_unlock(&acpi_dep_list_lock); 2317 2318 return ret > 0 ? 0 : ret; 2319 } 2320 2321 /** 2322 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2323 * @supplier: Pointer to the supplier &struct acpi_device 2324 * 2325 * Clear dependencies on the given device. 2326 */ 2327 void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2328 { 2329 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2330 } 2331 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2332 2333 /** 2334 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration 2335 * @device: Pointer to the &struct acpi_device to check 2336 * 2337 * Check if the device is present and has no unmet dependencies. 2338 * 2339 * Return true if the device is ready for enumeratino. Otherwise, return false. 2340 */ 2341 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device) 2342 { 2343 if (device->flags.honor_deps && device->dep_unmet) 2344 return false; 2345 2346 return acpi_device_is_present(device); 2347 } 2348 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration); 2349 2350 /** 2351 * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier 2352 * @supplier: Pointer to the dependee device 2353 * 2354 * Returns the first &struct acpi_device which declares itself dependent on 2355 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2356 * 2357 * The caller is responsible for putting the reference to adev when it is no 2358 * longer needed. 2359 */ 2360 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier) 2361 { 2362 struct acpi_device *adev = NULL; 2363 2364 acpi_walk_dep_device_list(supplier->handle, 2365 acpi_dev_get_first_consumer_dev_cb, &adev); 2366 2367 return adev; 2368 } 2369 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev); 2370 2371 /** 2372 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2373 * @handle: Root of the namespace scope to scan. 2374 * 2375 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2376 * found devices. 2377 * 2378 * If no devices were found, -ENODEV is returned, but it does not mean that 2379 * there has been a real error. There just have been no suitable ACPI objects 2380 * in the table trunk from which the kernel could create a device and add an 2381 * appropriate driver. 2382 * 2383 * Must be called under acpi_scan_lock. 2384 */ 2385 int acpi_bus_scan(acpi_handle handle) 2386 { 2387 struct acpi_device *device = NULL; 2388 2389 acpi_bus_scan_second_pass = false; 2390 2391 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2392 2393 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2394 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2395 acpi_bus_check_add_1, NULL, NULL, 2396 (void **)&device); 2397 2398 if (!device) 2399 return -ENODEV; 2400 2401 acpi_bus_attach(device, true); 2402 2403 if (!acpi_bus_scan_second_pass) 2404 return 0; 2405 2406 /* Pass 2: Enumerate all of the remaining devices. */ 2407 2408 device = NULL; 2409 2410 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device))) 2411 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2412 acpi_bus_check_add_2, NULL, NULL, 2413 (void **)&device); 2414 2415 acpi_bus_attach(device, false); 2416 2417 return 0; 2418 } 2419 EXPORT_SYMBOL(acpi_bus_scan); 2420 2421 /** 2422 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2423 * @adev: Root of the ACPI namespace scope to walk. 2424 * 2425 * Must be called under acpi_scan_lock. 2426 */ 2427 void acpi_bus_trim(struct acpi_device *adev) 2428 { 2429 struct acpi_scan_handler *handler = adev->handler; 2430 struct acpi_device *child; 2431 2432 list_for_each_entry_reverse(child, &adev->children, node) 2433 acpi_bus_trim(child); 2434 2435 adev->flags.match_driver = false; 2436 if (handler) { 2437 if (handler->detach) 2438 handler->detach(adev); 2439 2440 adev->handler = NULL; 2441 } else { 2442 device_release_driver(&adev->dev); 2443 } 2444 /* 2445 * Most likely, the device is going away, so put it into D3cold before 2446 * that. 2447 */ 2448 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 2449 adev->flags.initialized = false; 2450 acpi_device_clear_enumerated(adev); 2451 } 2452 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2453 2454 int acpi_bus_register_early_device(int type) 2455 { 2456 struct acpi_device *device = NULL; 2457 int result; 2458 2459 result = acpi_add_single_object(&device, NULL, type, false); 2460 if (result) 2461 return result; 2462 2463 device->flags.match_driver = true; 2464 return device_attach(&device->dev); 2465 } 2466 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2467 2468 static int acpi_bus_scan_fixed(void) 2469 { 2470 int result = 0; 2471 2472 /* 2473 * Enumerate all fixed-feature devices. 2474 */ 2475 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2476 struct acpi_device *device = NULL; 2477 2478 result = acpi_add_single_object(&device, NULL, 2479 ACPI_BUS_TYPE_POWER_BUTTON, false); 2480 if (result) 2481 return result; 2482 2483 device->flags.match_driver = true; 2484 result = device_attach(&device->dev); 2485 if (result < 0) 2486 return result; 2487 2488 device_init_wakeup(&device->dev, true); 2489 } 2490 2491 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2492 struct acpi_device *device = NULL; 2493 2494 result = acpi_add_single_object(&device, NULL, 2495 ACPI_BUS_TYPE_SLEEP_BUTTON, false); 2496 if (result) 2497 return result; 2498 2499 device->flags.match_driver = true; 2500 result = device_attach(&device->dev); 2501 } 2502 2503 return result < 0 ? result : 0; 2504 } 2505 2506 static void __init acpi_get_spcr_uart_addr(void) 2507 { 2508 acpi_status status; 2509 struct acpi_table_spcr *spcr_ptr; 2510 2511 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2512 (struct acpi_table_header **)&spcr_ptr); 2513 if (ACPI_FAILURE(status)) { 2514 pr_warn("STAO table present, but SPCR is missing\n"); 2515 return; 2516 } 2517 2518 spcr_uart_addr = spcr_ptr->serial_port.address; 2519 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2520 } 2521 2522 static bool acpi_scan_initialized; 2523 2524 int __init acpi_scan_init(void) 2525 { 2526 int result; 2527 acpi_status status; 2528 struct acpi_table_stao *stao_ptr; 2529 2530 acpi_pci_root_init(); 2531 acpi_pci_link_init(); 2532 acpi_processor_init(); 2533 acpi_platform_init(); 2534 acpi_lpss_init(); 2535 acpi_apd_init(); 2536 acpi_cmos_rtc_init(); 2537 acpi_container_init(); 2538 acpi_memory_hotplug_init(); 2539 acpi_watchdog_init(); 2540 acpi_pnp_init(); 2541 acpi_int340x_thermal_init(); 2542 acpi_amba_init(); 2543 acpi_init_lpit(); 2544 2545 acpi_scan_add_handler(&generic_device_handler); 2546 2547 /* 2548 * If there is STAO table, check whether it needs to ignore the UART 2549 * device in SPCR table. 2550 */ 2551 status = acpi_get_table(ACPI_SIG_STAO, 0, 2552 (struct acpi_table_header **)&stao_ptr); 2553 if (ACPI_SUCCESS(status)) { 2554 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2555 pr_info("STAO Name List not yet supported.\n"); 2556 2557 if (stao_ptr->ignore_uart) 2558 acpi_get_spcr_uart_addr(); 2559 2560 acpi_put_table((struct acpi_table_header *)stao_ptr); 2561 } 2562 2563 acpi_gpe_apply_masked_gpes(); 2564 acpi_update_all_gpes(); 2565 2566 /* 2567 * Although we call __add_memory() that is documented to require the 2568 * device_hotplug_lock, it is not necessary here because this is an 2569 * early code when userspace or any other code path cannot trigger 2570 * hotplug/hotunplug operations. 2571 */ 2572 mutex_lock(&acpi_scan_lock); 2573 /* 2574 * Enumerate devices in the ACPI namespace. 2575 */ 2576 result = acpi_bus_scan(ACPI_ROOT_OBJECT); 2577 if (result) 2578 goto out; 2579 2580 result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root); 2581 if (result) 2582 goto out; 2583 2584 /* Fixed feature devices do not exist on HW-reduced platform */ 2585 if (!acpi_gbl_reduced_hardware) { 2586 result = acpi_bus_scan_fixed(); 2587 if (result) { 2588 acpi_detach_data(acpi_root->handle, 2589 acpi_scan_drop_device); 2590 acpi_device_del(acpi_root); 2591 acpi_bus_put_acpi_device(acpi_root); 2592 goto out; 2593 } 2594 } 2595 2596 acpi_turn_off_unused_power_resources(); 2597 2598 acpi_scan_initialized = true; 2599 2600 out: 2601 mutex_unlock(&acpi_scan_lock); 2602 return result; 2603 } 2604 2605 static struct acpi_probe_entry *ape; 2606 static int acpi_probe_count; 2607 static DEFINE_MUTEX(acpi_probe_mutex); 2608 2609 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2610 const unsigned long end) 2611 { 2612 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2613 if (!ape->probe_subtbl(header, end)) 2614 acpi_probe_count++; 2615 2616 return 0; 2617 } 2618 2619 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2620 { 2621 int count = 0; 2622 2623 if (acpi_disabled) 2624 return 0; 2625 2626 mutex_lock(&acpi_probe_mutex); 2627 for (ape = ap_head; nr; ape++, nr--) { 2628 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2629 acpi_probe_count = 0; 2630 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2631 count += acpi_probe_count; 2632 } else { 2633 int res; 2634 res = acpi_table_parse(ape->id, ape->probe_table); 2635 if (!res) 2636 count++; 2637 } 2638 } 2639 mutex_unlock(&acpi_probe_mutex); 2640 2641 return count; 2642 } 2643 2644 static void acpi_table_events_fn(struct work_struct *work) 2645 { 2646 acpi_scan_lock_acquire(); 2647 acpi_bus_scan(ACPI_ROOT_OBJECT); 2648 acpi_scan_lock_release(); 2649 2650 kfree(work); 2651 } 2652 2653 void acpi_scan_table_notify(void) 2654 { 2655 struct work_struct *work; 2656 2657 if (!acpi_scan_initialized) 2658 return; 2659 2660 work = kmalloc(sizeof(*work), GFP_KERNEL); 2661 if (!work) 2662 return; 2663 2664 INIT_WORK(work, acpi_table_events_fn); 2665 schedule_work(work); 2666 } 2667 2668 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2669 { 2670 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2671 } 2672 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2673 2674 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2675 { 2676 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2677 } 2678 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2679