xref: /openbmc/linux/drivers/acpi/scan.c (revision 6aa7de05)
1 /*
2  * scan.c - support for transforming the ACPI namespace into individual objects
3  */
4 
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/acpi.h>
10 #include <linux/acpi_iort.h>
11 #include <linux/signal.h>
12 #include <linux/kthread.h>
13 #include <linux/dmi.h>
14 #include <linux/nls.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/platform_data/x86/apple.h>
17 
18 #include <asm/pgtable.h>
19 
20 #include "internal.h"
21 
22 #define _COMPONENT		ACPI_BUS_COMPONENT
23 ACPI_MODULE_NAME("scan");
24 extern struct acpi_device *acpi_root;
25 
26 #define ACPI_BUS_CLASS			"system_bus"
27 #define ACPI_BUS_HID			"LNXSYBUS"
28 #define ACPI_BUS_DEVICE_NAME		"System Bus"
29 
30 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
31 
32 #define INVALID_ACPI_HANDLE	((acpi_handle)empty_zero_page)
33 
34 static const char *dummy_hid = "device";
35 
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44 
45 /*
46  * The UART device described by the SPCR table is the only object which needs
47  * special-casing. Everything else is covered by ACPI namespace paths in STAO
48  * table.
49  */
50 static u64 spcr_uart_addr;
51 
52 struct acpi_dep_data {
53 	struct list_head node;
54 	acpi_handle master;
55 	acpi_handle slave;
56 };
57 
58 void acpi_scan_lock_acquire(void)
59 {
60 	mutex_lock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
63 
64 void acpi_scan_lock_release(void)
65 {
66 	mutex_unlock(&acpi_scan_lock);
67 }
68 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
69 
70 void acpi_lock_hp_context(void)
71 {
72 	mutex_lock(&acpi_hp_context_lock);
73 }
74 
75 void acpi_unlock_hp_context(void)
76 {
77 	mutex_unlock(&acpi_hp_context_lock);
78 }
79 
80 void acpi_initialize_hp_context(struct acpi_device *adev,
81 				struct acpi_hotplug_context *hp,
82 				int (*notify)(struct acpi_device *, u32),
83 				void (*uevent)(struct acpi_device *, u32))
84 {
85 	acpi_lock_hp_context();
86 	hp->notify = notify;
87 	hp->uevent = uevent;
88 	acpi_set_hp_context(adev, hp);
89 	acpi_unlock_hp_context();
90 }
91 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
92 
93 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
94 {
95 	if (!handler)
96 		return -EINVAL;
97 
98 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
99 	return 0;
100 }
101 
102 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
103 				       const char *hotplug_profile_name)
104 {
105 	int error;
106 
107 	error = acpi_scan_add_handler(handler);
108 	if (error)
109 		return error;
110 
111 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
112 	return 0;
113 }
114 
115 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
116 {
117 	struct acpi_device_physical_node *pn;
118 	bool offline = true;
119 
120 	/*
121 	 * acpi_container_offline() calls this for all of the container's
122 	 * children under the container's physical_node_lock lock.
123 	 */
124 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
125 
126 	list_for_each_entry(pn, &adev->physical_node_list, node)
127 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
128 			if (uevent)
129 				kobject_uevent(&pn->dev->kobj, KOBJ_CHANGE);
130 
131 			offline = false;
132 			break;
133 		}
134 
135 	mutex_unlock(&adev->physical_node_lock);
136 	return offline;
137 }
138 
139 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
140 				    void **ret_p)
141 {
142 	struct acpi_device *device = NULL;
143 	struct acpi_device_physical_node *pn;
144 	bool second_pass = (bool)data;
145 	acpi_status status = AE_OK;
146 
147 	if (acpi_bus_get_device(handle, &device))
148 		return AE_OK;
149 
150 	if (device->handler && !device->handler->hotplug.enabled) {
151 		*ret_p = &device->dev;
152 		return AE_SUPPORT;
153 	}
154 
155 	mutex_lock(&device->physical_node_lock);
156 
157 	list_for_each_entry(pn, &device->physical_node_list, node) {
158 		int ret;
159 
160 		if (second_pass) {
161 			/* Skip devices offlined by the first pass. */
162 			if (pn->put_online)
163 				continue;
164 		} else {
165 			pn->put_online = false;
166 		}
167 		ret = device_offline(pn->dev);
168 		if (ret >= 0) {
169 			pn->put_online = !ret;
170 		} else {
171 			*ret_p = pn->dev;
172 			if (second_pass) {
173 				status = AE_ERROR;
174 				break;
175 			}
176 		}
177 	}
178 
179 	mutex_unlock(&device->physical_node_lock);
180 
181 	return status;
182 }
183 
184 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
185 				   void **ret_p)
186 {
187 	struct acpi_device *device = NULL;
188 	struct acpi_device_physical_node *pn;
189 
190 	if (acpi_bus_get_device(handle, &device))
191 		return AE_OK;
192 
193 	mutex_lock(&device->physical_node_lock);
194 
195 	list_for_each_entry(pn, &device->physical_node_list, node)
196 		if (pn->put_online) {
197 			device_online(pn->dev);
198 			pn->put_online = false;
199 		}
200 
201 	mutex_unlock(&device->physical_node_lock);
202 
203 	return AE_OK;
204 }
205 
206 static int acpi_scan_try_to_offline(struct acpi_device *device)
207 {
208 	acpi_handle handle = device->handle;
209 	struct device *errdev = NULL;
210 	acpi_status status;
211 
212 	/*
213 	 * Carry out two passes here and ignore errors in the first pass,
214 	 * because if the devices in question are memory blocks and
215 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
216 	 * that the other blocks depend on, but it is not known in advance which
217 	 * block holds them.
218 	 *
219 	 * If the first pass is successful, the second one isn't needed, though.
220 	 */
221 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
222 				     NULL, acpi_bus_offline, (void *)false,
223 				     (void **)&errdev);
224 	if (status == AE_SUPPORT) {
225 		dev_warn(errdev, "Offline disabled.\n");
226 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
227 				    acpi_bus_online, NULL, NULL, NULL);
228 		return -EPERM;
229 	}
230 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
231 	if (errdev) {
232 		errdev = NULL;
233 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
234 				    NULL, acpi_bus_offline, (void *)true,
235 				    (void **)&errdev);
236 		if (!errdev)
237 			acpi_bus_offline(handle, 0, (void *)true,
238 					 (void **)&errdev);
239 
240 		if (errdev) {
241 			dev_warn(errdev, "Offline failed.\n");
242 			acpi_bus_online(handle, 0, NULL, NULL);
243 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
244 					    ACPI_UINT32_MAX, acpi_bus_online,
245 					    NULL, NULL, NULL);
246 			return -EBUSY;
247 		}
248 	}
249 	return 0;
250 }
251 
252 static int acpi_scan_hot_remove(struct acpi_device *device)
253 {
254 	acpi_handle handle = device->handle;
255 	unsigned long long sta;
256 	acpi_status status;
257 
258 	if (device->handler && device->handler->hotplug.demand_offline) {
259 		if (!acpi_scan_is_offline(device, true))
260 			return -EBUSY;
261 	} else {
262 		int error = acpi_scan_try_to_offline(device);
263 		if (error)
264 			return error;
265 	}
266 
267 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
268 		"Hot-removing device %s...\n", dev_name(&device->dev)));
269 
270 	acpi_bus_trim(device);
271 
272 	acpi_evaluate_lck(handle, 0);
273 	/*
274 	 * TBD: _EJD support.
275 	 */
276 	status = acpi_evaluate_ej0(handle);
277 	if (status == AE_NOT_FOUND)
278 		return -ENODEV;
279 	else if (ACPI_FAILURE(status))
280 		return -EIO;
281 
282 	/*
283 	 * Verify if eject was indeed successful.  If not, log an error
284 	 * message.  No need to call _OST since _EJ0 call was made OK.
285 	 */
286 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
287 	if (ACPI_FAILURE(status)) {
288 		acpi_handle_warn(handle,
289 			"Status check after eject failed (0x%x)\n", status);
290 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
291 		acpi_handle_warn(handle,
292 			"Eject incomplete - status 0x%llx\n", sta);
293 	}
294 
295 	return 0;
296 }
297 
298 static int acpi_scan_device_not_present(struct acpi_device *adev)
299 {
300 	if (!acpi_device_enumerated(adev)) {
301 		dev_warn(&adev->dev, "Still not present\n");
302 		return -EALREADY;
303 	}
304 	acpi_bus_trim(adev);
305 	return 0;
306 }
307 
308 static int acpi_scan_device_check(struct acpi_device *adev)
309 {
310 	int error;
311 
312 	acpi_bus_get_status(adev);
313 	if (adev->status.present || adev->status.functional) {
314 		/*
315 		 * This function is only called for device objects for which
316 		 * matching scan handlers exist.  The only situation in which
317 		 * the scan handler is not attached to this device object yet
318 		 * is when the device has just appeared (either it wasn't
319 		 * present at all before or it was removed and then added
320 		 * again).
321 		 */
322 		if (adev->handler) {
323 			dev_warn(&adev->dev, "Already enumerated\n");
324 			return -EALREADY;
325 		}
326 		error = acpi_bus_scan(adev->handle);
327 		if (error) {
328 			dev_warn(&adev->dev, "Namespace scan failure\n");
329 			return error;
330 		}
331 		if (!adev->handler) {
332 			dev_warn(&adev->dev, "Enumeration failure\n");
333 			error = -ENODEV;
334 		}
335 	} else {
336 		error = acpi_scan_device_not_present(adev);
337 	}
338 	return error;
339 }
340 
341 static int acpi_scan_bus_check(struct acpi_device *adev)
342 {
343 	struct acpi_scan_handler *handler = adev->handler;
344 	struct acpi_device *child;
345 	int error;
346 
347 	acpi_bus_get_status(adev);
348 	if (!(adev->status.present || adev->status.functional)) {
349 		acpi_scan_device_not_present(adev);
350 		return 0;
351 	}
352 	if (handler && handler->hotplug.scan_dependent)
353 		return handler->hotplug.scan_dependent(adev);
354 
355 	error = acpi_bus_scan(adev->handle);
356 	if (error) {
357 		dev_warn(&adev->dev, "Namespace scan failure\n");
358 		return error;
359 	}
360 	list_for_each_entry(child, &adev->children, node) {
361 		error = acpi_scan_bus_check(child);
362 		if (error)
363 			return error;
364 	}
365 	return 0;
366 }
367 
368 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
369 {
370 	switch (type) {
371 	case ACPI_NOTIFY_BUS_CHECK:
372 		return acpi_scan_bus_check(adev);
373 	case ACPI_NOTIFY_DEVICE_CHECK:
374 		return acpi_scan_device_check(adev);
375 	case ACPI_NOTIFY_EJECT_REQUEST:
376 	case ACPI_OST_EC_OSPM_EJECT:
377 		if (adev->handler && !adev->handler->hotplug.enabled) {
378 			dev_info(&adev->dev, "Eject disabled\n");
379 			return -EPERM;
380 		}
381 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
382 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
383 		return acpi_scan_hot_remove(adev);
384 	}
385 	return -EINVAL;
386 }
387 
388 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
389 {
390 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
391 	int error = -ENODEV;
392 
393 	lock_device_hotplug();
394 	mutex_lock(&acpi_scan_lock);
395 
396 	/*
397 	 * The device object's ACPI handle cannot become invalid as long as we
398 	 * are holding acpi_scan_lock, but it might have become invalid before
399 	 * that lock was acquired.
400 	 */
401 	if (adev->handle == INVALID_ACPI_HANDLE)
402 		goto err_out;
403 
404 	if (adev->flags.is_dock_station) {
405 		error = dock_notify(adev, src);
406 	} else if (adev->flags.hotplug_notify) {
407 		error = acpi_generic_hotplug_event(adev, src);
408 	} else {
409 		int (*notify)(struct acpi_device *, u32);
410 
411 		acpi_lock_hp_context();
412 		notify = adev->hp ? adev->hp->notify : NULL;
413 		acpi_unlock_hp_context();
414 		/*
415 		 * There may be additional notify handlers for device objects
416 		 * without the .event() callback, so ignore them here.
417 		 */
418 		if (notify)
419 			error = notify(adev, src);
420 		else
421 			goto out;
422 	}
423 	switch (error) {
424 	case 0:
425 		ost_code = ACPI_OST_SC_SUCCESS;
426 		break;
427 	case -EPERM:
428 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
429 		break;
430 	case -EBUSY:
431 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
432 		break;
433 	default:
434 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
435 		break;
436 	}
437 
438  err_out:
439 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
440 
441  out:
442 	acpi_bus_put_acpi_device(adev);
443 	mutex_unlock(&acpi_scan_lock);
444 	unlock_device_hotplug();
445 }
446 
447 static void acpi_free_power_resources_lists(struct acpi_device *device)
448 {
449 	int i;
450 
451 	if (device->wakeup.flags.valid)
452 		acpi_power_resources_list_free(&device->wakeup.resources);
453 
454 	if (!device->power.flags.power_resources)
455 		return;
456 
457 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
458 		struct acpi_device_power_state *ps = &device->power.states[i];
459 		acpi_power_resources_list_free(&ps->resources);
460 	}
461 }
462 
463 static void acpi_device_release(struct device *dev)
464 {
465 	struct acpi_device *acpi_dev = to_acpi_device(dev);
466 
467 	acpi_free_properties(acpi_dev);
468 	acpi_free_pnp_ids(&acpi_dev->pnp);
469 	acpi_free_power_resources_lists(acpi_dev);
470 	kfree(acpi_dev);
471 }
472 
473 static void acpi_device_del(struct acpi_device *device)
474 {
475 	struct acpi_device_bus_id *acpi_device_bus_id;
476 
477 	mutex_lock(&acpi_device_lock);
478 	if (device->parent)
479 		list_del(&device->node);
480 
481 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
482 		if (!strcmp(acpi_device_bus_id->bus_id,
483 			    acpi_device_hid(device))) {
484 			if (acpi_device_bus_id->instance_no > 0)
485 				acpi_device_bus_id->instance_no--;
486 			else {
487 				list_del(&acpi_device_bus_id->node);
488 				kfree(acpi_device_bus_id);
489 			}
490 			break;
491 		}
492 
493 	list_del(&device->wakeup_list);
494 	mutex_unlock(&acpi_device_lock);
495 
496 	acpi_power_add_remove_device(device, false);
497 	acpi_device_remove_files(device);
498 	if (device->remove)
499 		device->remove(device);
500 
501 	device_del(&device->dev);
502 }
503 
504 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
505 
506 static LIST_HEAD(acpi_device_del_list);
507 static DEFINE_MUTEX(acpi_device_del_lock);
508 
509 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
510 {
511 	for (;;) {
512 		struct acpi_device *adev;
513 
514 		mutex_lock(&acpi_device_del_lock);
515 
516 		if (list_empty(&acpi_device_del_list)) {
517 			mutex_unlock(&acpi_device_del_lock);
518 			break;
519 		}
520 		adev = list_first_entry(&acpi_device_del_list,
521 					struct acpi_device, del_list);
522 		list_del(&adev->del_list);
523 
524 		mutex_unlock(&acpi_device_del_lock);
525 
526 		blocking_notifier_call_chain(&acpi_reconfig_chain,
527 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
528 
529 		acpi_device_del(adev);
530 		/*
531 		 * Drop references to all power resources that might have been
532 		 * used by the device.
533 		 */
534 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
535 		put_device(&adev->dev);
536 	}
537 }
538 
539 /**
540  * acpi_scan_drop_device - Drop an ACPI device object.
541  * @handle: Handle of an ACPI namespace node, not used.
542  * @context: Address of the ACPI device object to drop.
543  *
544  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
545  * namespace node the device object pointed to by @context is attached to.
546  *
547  * The unregistration is carried out asynchronously to avoid running
548  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
549  * ensure the correct ordering (the device objects must be unregistered in the
550  * same order in which the corresponding namespace nodes are deleted).
551  */
552 static void acpi_scan_drop_device(acpi_handle handle, void *context)
553 {
554 	static DECLARE_WORK(work, acpi_device_del_work_fn);
555 	struct acpi_device *adev = context;
556 
557 	mutex_lock(&acpi_device_del_lock);
558 
559 	/*
560 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
561 	 * won't run after any hotplug work items submitted subsequently.  That
562 	 * prevents attempts to register device objects identical to those being
563 	 * deleted from happening concurrently (such attempts result from
564 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
565 	 * run after all of the work items submitted previosuly, which helps
566 	 * those work items to ensure that they are not accessing stale device
567 	 * objects.
568 	 */
569 	if (list_empty(&acpi_device_del_list))
570 		acpi_queue_hotplug_work(&work);
571 
572 	list_add_tail(&adev->del_list, &acpi_device_del_list);
573 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
574 	adev->handle = INVALID_ACPI_HANDLE;
575 
576 	mutex_unlock(&acpi_device_del_lock);
577 }
578 
579 static int acpi_get_device_data(acpi_handle handle, struct acpi_device **device,
580 				void (*callback)(void *))
581 {
582 	acpi_status status;
583 
584 	if (!device)
585 		return -EINVAL;
586 
587 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
588 				    (void **)device, callback);
589 	if (ACPI_FAILURE(status) || !*device) {
590 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No context for object [%p]\n",
591 				  handle));
592 		return -ENODEV;
593 	}
594 	return 0;
595 }
596 
597 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
598 {
599 	return acpi_get_device_data(handle, device, NULL);
600 }
601 EXPORT_SYMBOL(acpi_bus_get_device);
602 
603 static void get_acpi_device(void *dev)
604 {
605 	if (dev)
606 		get_device(&((struct acpi_device *)dev)->dev);
607 }
608 
609 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
610 {
611 	struct acpi_device *adev = NULL;
612 
613 	acpi_get_device_data(handle, &adev, get_acpi_device);
614 	return adev;
615 }
616 
617 void acpi_bus_put_acpi_device(struct acpi_device *adev)
618 {
619 	put_device(&adev->dev);
620 }
621 
622 int acpi_device_add(struct acpi_device *device,
623 		    void (*release)(struct device *))
624 {
625 	int result;
626 	struct acpi_device_bus_id *acpi_device_bus_id, *new_bus_id;
627 	int found = 0;
628 
629 	if (device->handle) {
630 		acpi_status status;
631 
632 		status = acpi_attach_data(device->handle, acpi_scan_drop_device,
633 					  device);
634 		if (ACPI_FAILURE(status)) {
635 			acpi_handle_err(device->handle,
636 					"Unable to attach device data\n");
637 			return -ENODEV;
638 		}
639 	}
640 
641 	/*
642 	 * Linkage
643 	 * -------
644 	 * Link this device to its parent and siblings.
645 	 */
646 	INIT_LIST_HEAD(&device->children);
647 	INIT_LIST_HEAD(&device->node);
648 	INIT_LIST_HEAD(&device->wakeup_list);
649 	INIT_LIST_HEAD(&device->physical_node_list);
650 	INIT_LIST_HEAD(&device->del_list);
651 	mutex_init(&device->physical_node_lock);
652 
653 	new_bus_id = kzalloc(sizeof(struct acpi_device_bus_id), GFP_KERNEL);
654 	if (!new_bus_id) {
655 		pr_err(PREFIX "Memory allocation error\n");
656 		result = -ENOMEM;
657 		goto err_detach;
658 	}
659 
660 	mutex_lock(&acpi_device_lock);
661 	/*
662 	 * Find suitable bus_id and instance number in acpi_bus_id_list
663 	 * If failed, create one and link it into acpi_bus_id_list
664 	 */
665 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
666 		if (!strcmp(acpi_device_bus_id->bus_id,
667 			    acpi_device_hid(device))) {
668 			acpi_device_bus_id->instance_no++;
669 			found = 1;
670 			kfree(new_bus_id);
671 			break;
672 		}
673 	}
674 	if (!found) {
675 		acpi_device_bus_id = new_bus_id;
676 		strcpy(acpi_device_bus_id->bus_id, acpi_device_hid(device));
677 		acpi_device_bus_id->instance_no = 0;
678 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
679 	}
680 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, acpi_device_bus_id->instance_no);
681 
682 	if (device->parent)
683 		list_add_tail(&device->node, &device->parent->children);
684 
685 	if (device->wakeup.flags.valid)
686 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
687 	mutex_unlock(&acpi_device_lock);
688 
689 	if (device->parent)
690 		device->dev.parent = &device->parent->dev;
691 	device->dev.bus = &acpi_bus_type;
692 	device->dev.release = release;
693 	result = device_add(&device->dev);
694 	if (result) {
695 		dev_err(&device->dev, "Error registering device\n");
696 		goto err;
697 	}
698 
699 	result = acpi_device_setup_files(device);
700 	if (result)
701 		printk(KERN_ERR PREFIX "Error creating sysfs interface for device %s\n",
702 		       dev_name(&device->dev));
703 
704 	return 0;
705 
706  err:
707 	mutex_lock(&acpi_device_lock);
708 	if (device->parent)
709 		list_del(&device->node);
710 	list_del(&device->wakeup_list);
711 	mutex_unlock(&acpi_device_lock);
712 
713  err_detach:
714 	acpi_detach_data(device->handle, acpi_scan_drop_device);
715 	return result;
716 }
717 
718 /* --------------------------------------------------------------------------
719                                  Device Enumeration
720    -------------------------------------------------------------------------- */
721 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
722 {
723 	struct acpi_device *device = NULL;
724 	acpi_status status;
725 
726 	/*
727 	 * Fixed hardware devices do not appear in the namespace and do not
728 	 * have handles, but we fabricate acpi_devices for them, so we have
729 	 * to deal with them specially.
730 	 */
731 	if (!handle)
732 		return acpi_root;
733 
734 	do {
735 		status = acpi_get_parent(handle, &handle);
736 		if (ACPI_FAILURE(status))
737 			return status == AE_NULL_ENTRY ? NULL : acpi_root;
738 	} while (acpi_bus_get_device(handle, &device));
739 	return device;
740 }
741 
742 acpi_status
743 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
744 {
745 	acpi_status status;
746 	acpi_handle tmp;
747 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
748 	union acpi_object *obj;
749 
750 	status = acpi_get_handle(handle, "_EJD", &tmp);
751 	if (ACPI_FAILURE(status))
752 		return status;
753 
754 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
755 	if (ACPI_SUCCESS(status)) {
756 		obj = buffer.pointer;
757 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
758 					 ejd);
759 		kfree(buffer.pointer);
760 	}
761 	return status;
762 }
763 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
764 
765 static int acpi_bus_extract_wakeup_device_power_package(acpi_handle handle,
766 					struct acpi_device_wakeup *wakeup)
767 {
768 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
769 	union acpi_object *package = NULL;
770 	union acpi_object *element = NULL;
771 	acpi_status status;
772 	int err = -ENODATA;
773 
774 	if (!wakeup)
775 		return -EINVAL;
776 
777 	INIT_LIST_HEAD(&wakeup->resources);
778 
779 	/* _PRW */
780 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
781 	if (ACPI_FAILURE(status)) {
782 		ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PRW"));
783 		return err;
784 	}
785 
786 	package = (union acpi_object *)buffer.pointer;
787 
788 	if (!package || package->package.count < 2)
789 		goto out;
790 
791 	element = &(package->package.elements[0]);
792 	if (!element)
793 		goto out;
794 
795 	if (element->type == ACPI_TYPE_PACKAGE) {
796 		if ((element->package.count < 2) ||
797 		    (element->package.elements[0].type !=
798 		     ACPI_TYPE_LOCAL_REFERENCE)
799 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
800 			goto out;
801 
802 		wakeup->gpe_device =
803 		    element->package.elements[0].reference.handle;
804 		wakeup->gpe_number =
805 		    (u32) element->package.elements[1].integer.value;
806 	} else if (element->type == ACPI_TYPE_INTEGER) {
807 		wakeup->gpe_device = NULL;
808 		wakeup->gpe_number = element->integer.value;
809 	} else {
810 		goto out;
811 	}
812 
813 	element = &(package->package.elements[1]);
814 	if (element->type != ACPI_TYPE_INTEGER)
815 		goto out;
816 
817 	wakeup->sleep_state = element->integer.value;
818 
819 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
820 	if (err)
821 		goto out;
822 
823 	if (!list_empty(&wakeup->resources)) {
824 		int sleep_state;
825 
826 		err = acpi_power_wakeup_list_init(&wakeup->resources,
827 						  &sleep_state);
828 		if (err) {
829 			acpi_handle_warn(handle, "Retrieving current states "
830 					 "of wakeup power resources failed\n");
831 			acpi_power_resources_list_free(&wakeup->resources);
832 			goto out;
833 		}
834 		if (sleep_state < wakeup->sleep_state) {
835 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
836 					 "(S%d) by S%d from power resources\n",
837 					 (int)wakeup->sleep_state, sleep_state);
838 			wakeup->sleep_state = sleep_state;
839 		}
840 	}
841 
842  out:
843 	kfree(buffer.pointer);
844 	return err;
845 }
846 
847 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
848 {
849 	static const struct acpi_device_id button_device_ids[] = {
850 		{"PNP0C0C", 0},
851 		{"PNP0C0D", 0},
852 		{"PNP0C0E", 0},
853 		{"", 0},
854 	};
855 	struct acpi_device_wakeup *wakeup = &device->wakeup;
856 	acpi_status status;
857 
858 	wakeup->flags.notifier_present = 0;
859 
860 	/* Power button, Lid switch always enable wakeup */
861 	if (!acpi_match_device_ids(device, button_device_ids)) {
862 		if (!acpi_match_device_ids(device, &button_device_ids[1])) {
863 			/* Do not use Lid/sleep button for S5 wakeup */
864 			if (wakeup->sleep_state == ACPI_STATE_S5)
865 				wakeup->sleep_state = ACPI_STATE_S4;
866 		}
867 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
868 		device_set_wakeup_capable(&device->dev, true);
869 		return true;
870 	}
871 
872 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
873 					 wakeup->gpe_number);
874 	return ACPI_SUCCESS(status);
875 }
876 
877 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
878 {
879 	int err;
880 
881 	/* Presence of _PRW indicates wake capable */
882 	if (!acpi_has_method(device->handle, "_PRW"))
883 		return;
884 
885 	err = acpi_bus_extract_wakeup_device_power_package(device->handle,
886 							   &device->wakeup);
887 	if (err) {
888 		dev_err(&device->dev, "_PRW evaluation error: %d\n", err);
889 		return;
890 	}
891 
892 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
893 	device->wakeup.prepare_count = 0;
894 	/*
895 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
896 	 * system for the ACPI device with the _PRW object.
897 	 * The _PSW object is depreciated in ACPI 3.0 and is replaced by _DSW.
898 	 * So it is necessary to call _DSW object first. Only when it is not
899 	 * present will the _PSW object used.
900 	 */
901 	err = acpi_device_sleep_wake(device, 0, 0, 0);
902 	if (err)
903 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
904 				"error in _DSW or _PSW evaluation\n"));
905 }
906 
907 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
908 {
909 	struct acpi_device_power_state *ps = &device->power.states[state];
910 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
911 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
912 	acpi_status status;
913 
914 	INIT_LIST_HEAD(&ps->resources);
915 
916 	/* Evaluate "_PRx" to get referenced power resources */
917 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
918 	if (ACPI_SUCCESS(status)) {
919 		union acpi_object *package = buffer.pointer;
920 
921 		if (buffer.length && package
922 		    && package->type == ACPI_TYPE_PACKAGE
923 		    && package->package.count) {
924 			int err = acpi_extract_power_resources(package, 0,
925 							       &ps->resources);
926 			if (!err)
927 				device->power.flags.power_resources = 1;
928 		}
929 		ACPI_FREE(buffer.pointer);
930 	}
931 
932 	/* Evaluate "_PSx" to see if we can do explicit sets */
933 	pathname[2] = 'S';
934 	if (acpi_has_method(device->handle, pathname))
935 		ps->flags.explicit_set = 1;
936 
937 	/* State is valid if there are means to put the device into it. */
938 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
939 		ps->flags.valid = 1;
940 
941 	ps->power = -1;		/* Unknown - driver assigned */
942 	ps->latency = -1;	/* Unknown - driver assigned */
943 }
944 
945 static void acpi_bus_get_power_flags(struct acpi_device *device)
946 {
947 	u32 i;
948 
949 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
950 	if (!acpi_has_method(device->handle, "_PS0") &&
951 	    !acpi_has_method(device->handle, "_PR0"))
952 		return;
953 
954 	device->flags.power_manageable = 1;
955 
956 	/*
957 	 * Power Management Flags
958 	 */
959 	if (acpi_has_method(device->handle, "_PSC"))
960 		device->power.flags.explicit_get = 1;
961 
962 	if (acpi_has_method(device->handle, "_IRC"))
963 		device->power.flags.inrush_current = 1;
964 
965 	if (acpi_has_method(device->handle, "_DSW"))
966 		device->power.flags.dsw_present = 1;
967 
968 	/*
969 	 * Enumerate supported power management states
970 	 */
971 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
972 		acpi_bus_init_power_state(device, i);
973 
974 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
975 	if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
976 		device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
977 
978 	/* Set defaults for D0 and D3hot states (always valid) */
979 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
980 	device->power.states[ACPI_STATE_D0].power = 100;
981 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
982 
983 	if (acpi_bus_init_power(device))
984 		device->flags.power_manageable = 0;
985 }
986 
987 static void acpi_bus_get_flags(struct acpi_device *device)
988 {
989 	/* Presence of _STA indicates 'dynamic_status' */
990 	if (acpi_has_method(device->handle, "_STA"))
991 		device->flags.dynamic_status = 1;
992 
993 	/* Presence of _RMV indicates 'removable' */
994 	if (acpi_has_method(device->handle, "_RMV"))
995 		device->flags.removable = 1;
996 
997 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
998 	if (acpi_has_method(device->handle, "_EJD") ||
999 	    acpi_has_method(device->handle, "_EJ0"))
1000 		device->flags.ejectable = 1;
1001 }
1002 
1003 static void acpi_device_get_busid(struct acpi_device *device)
1004 {
1005 	char bus_id[5] = { '?', 0 };
1006 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1007 	int i = 0;
1008 
1009 	/*
1010 	 * Bus ID
1011 	 * ------
1012 	 * The device's Bus ID is simply the object name.
1013 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1014 	 */
1015 	if (ACPI_IS_ROOT_DEVICE(device)) {
1016 		strcpy(device->pnp.bus_id, "ACPI");
1017 		return;
1018 	}
1019 
1020 	switch (device->device_type) {
1021 	case ACPI_BUS_TYPE_POWER_BUTTON:
1022 		strcpy(device->pnp.bus_id, "PWRF");
1023 		break;
1024 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1025 		strcpy(device->pnp.bus_id, "SLPF");
1026 		break;
1027 	default:
1028 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1029 		/* Clean up trailing underscores (if any) */
1030 		for (i = 3; i > 1; i--) {
1031 			if (bus_id[i] == '_')
1032 				bus_id[i] = '\0';
1033 			else
1034 				break;
1035 		}
1036 		strcpy(device->pnp.bus_id, bus_id);
1037 		break;
1038 	}
1039 }
1040 
1041 /*
1042  * acpi_ata_match - see if an acpi object is an ATA device
1043  *
1044  * If an acpi object has one of the ACPI ATA methods defined,
1045  * then we can safely call it an ATA device.
1046  */
1047 bool acpi_ata_match(acpi_handle handle)
1048 {
1049 	return acpi_has_method(handle, "_GTF") ||
1050 	       acpi_has_method(handle, "_GTM") ||
1051 	       acpi_has_method(handle, "_STM") ||
1052 	       acpi_has_method(handle, "_SDD");
1053 }
1054 
1055 /*
1056  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1057  *
1058  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1059  * then we can safely call it an ejectable drive bay
1060  */
1061 bool acpi_bay_match(acpi_handle handle)
1062 {
1063 	acpi_handle phandle;
1064 
1065 	if (!acpi_has_method(handle, "_EJ0"))
1066 		return false;
1067 	if (acpi_ata_match(handle))
1068 		return true;
1069 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1070 		return false;
1071 
1072 	return acpi_ata_match(phandle);
1073 }
1074 
1075 bool acpi_device_is_battery(struct acpi_device *adev)
1076 {
1077 	struct acpi_hardware_id *hwid;
1078 
1079 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1080 		if (!strcmp("PNP0C0A", hwid->id))
1081 			return true;
1082 
1083 	return false;
1084 }
1085 
1086 static bool is_ejectable_bay(struct acpi_device *adev)
1087 {
1088 	acpi_handle handle = adev->handle;
1089 
1090 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1091 		return true;
1092 
1093 	return acpi_bay_match(handle);
1094 }
1095 
1096 /*
1097  * acpi_dock_match - see if an acpi object has a _DCK method
1098  */
1099 bool acpi_dock_match(acpi_handle handle)
1100 {
1101 	return acpi_has_method(handle, "_DCK");
1102 }
1103 
1104 static acpi_status
1105 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1106 			  void **return_value)
1107 {
1108 	long *cap = context;
1109 
1110 	if (acpi_has_method(handle, "_BCM") &&
1111 	    acpi_has_method(handle, "_BCL")) {
1112 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found generic backlight "
1113 				  "support\n"));
1114 		*cap |= ACPI_VIDEO_BACKLIGHT;
1115 		/* We have backlight support, no need to scan further */
1116 		return AE_CTRL_TERMINATE;
1117 	}
1118 	return 0;
1119 }
1120 
1121 /* Returns true if the ACPI object is a video device which can be
1122  * handled by video.ko.
1123  * The device will get a Linux specific CID added in scan.c to
1124  * identify the device as an ACPI graphics device
1125  * Be aware that the graphics device may not be physically present
1126  * Use acpi_video_get_capabilities() to detect general ACPI video
1127  * capabilities of present cards
1128  */
1129 long acpi_is_video_device(acpi_handle handle)
1130 {
1131 	long video_caps = 0;
1132 
1133 	/* Is this device able to support video switching ? */
1134 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1135 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1136 
1137 	/* Is this device able to retrieve a video ROM ? */
1138 	if (acpi_has_method(handle, "_ROM"))
1139 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1140 
1141 	/* Is this device able to configure which video head to be POSTed ? */
1142 	if (acpi_has_method(handle, "_VPO") &&
1143 	    acpi_has_method(handle, "_GPD") &&
1144 	    acpi_has_method(handle, "_SPD"))
1145 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1146 
1147 	/* Only check for backlight functionality if one of the above hit. */
1148 	if (video_caps)
1149 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1150 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1151 				    &video_caps, NULL);
1152 
1153 	return video_caps;
1154 }
1155 EXPORT_SYMBOL(acpi_is_video_device);
1156 
1157 const char *acpi_device_hid(struct acpi_device *device)
1158 {
1159 	struct acpi_hardware_id *hid;
1160 
1161 	if (list_empty(&device->pnp.ids))
1162 		return dummy_hid;
1163 
1164 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1165 	return hid->id;
1166 }
1167 EXPORT_SYMBOL(acpi_device_hid);
1168 
1169 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1170 {
1171 	struct acpi_hardware_id *id;
1172 
1173 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1174 	if (!id)
1175 		return;
1176 
1177 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1178 	if (!id->id) {
1179 		kfree(id);
1180 		return;
1181 	}
1182 
1183 	list_add_tail(&id->list, &pnp->ids);
1184 	pnp->type.hardware_id = 1;
1185 }
1186 
1187 /*
1188  * Old IBM workstations have a DSDT bug wherein the SMBus object
1189  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1190  * prefix.  Work around this.
1191  */
1192 static bool acpi_ibm_smbus_match(acpi_handle handle)
1193 {
1194 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1195 	struct acpi_buffer path = { sizeof(node_name), node_name };
1196 
1197 	if (!dmi_name_in_vendors("IBM"))
1198 		return false;
1199 
1200 	/* Look for SMBS object */
1201 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1202 	    strcmp("SMBS", path.pointer))
1203 		return false;
1204 
1205 	/* Does it have the necessary (but misnamed) methods? */
1206 	if (acpi_has_method(handle, "SBI") &&
1207 	    acpi_has_method(handle, "SBR") &&
1208 	    acpi_has_method(handle, "SBW"))
1209 		return true;
1210 
1211 	return false;
1212 }
1213 
1214 static bool acpi_object_is_system_bus(acpi_handle handle)
1215 {
1216 	acpi_handle tmp;
1217 
1218 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1219 	    tmp == handle)
1220 		return true;
1221 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1222 	    tmp == handle)
1223 		return true;
1224 
1225 	return false;
1226 }
1227 
1228 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1229 				int device_type)
1230 {
1231 	acpi_status status;
1232 	struct acpi_device_info *info;
1233 	struct acpi_pnp_device_id_list *cid_list;
1234 	int i;
1235 
1236 	switch (device_type) {
1237 	case ACPI_BUS_TYPE_DEVICE:
1238 		if (handle == ACPI_ROOT_OBJECT) {
1239 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1240 			break;
1241 		}
1242 
1243 		status = acpi_get_object_info(handle, &info);
1244 		if (ACPI_FAILURE(status)) {
1245 			pr_err(PREFIX "%s: Error reading device info\n",
1246 					__func__);
1247 			return;
1248 		}
1249 
1250 		if (info->valid & ACPI_VALID_HID) {
1251 			acpi_add_id(pnp, info->hardware_id.string);
1252 			pnp->type.platform_id = 1;
1253 		}
1254 		if (info->valid & ACPI_VALID_CID) {
1255 			cid_list = &info->compatible_id_list;
1256 			for (i = 0; i < cid_list->count; i++)
1257 				acpi_add_id(pnp, cid_list->ids[i].string);
1258 		}
1259 		if (info->valid & ACPI_VALID_ADR) {
1260 			pnp->bus_address = info->address;
1261 			pnp->type.bus_address = 1;
1262 		}
1263 		if (info->valid & ACPI_VALID_UID)
1264 			pnp->unique_id = kstrdup(info->unique_id.string,
1265 							GFP_KERNEL);
1266 		if (info->valid & ACPI_VALID_CLS)
1267 			acpi_add_id(pnp, info->class_code.string);
1268 
1269 		kfree(info);
1270 
1271 		/*
1272 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1273 		 * synthetic HIDs to make sure drivers can find them.
1274 		 */
1275 		if (acpi_is_video_device(handle))
1276 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1277 		else if (acpi_bay_match(handle))
1278 			acpi_add_id(pnp, ACPI_BAY_HID);
1279 		else if (acpi_dock_match(handle))
1280 			acpi_add_id(pnp, ACPI_DOCK_HID);
1281 		else if (acpi_ibm_smbus_match(handle))
1282 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1283 		else if (list_empty(&pnp->ids) &&
1284 			 acpi_object_is_system_bus(handle)) {
1285 			/* \_SB, \_TZ, LNXSYBUS */
1286 			acpi_add_id(pnp, ACPI_BUS_HID);
1287 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1288 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1289 		}
1290 
1291 		break;
1292 	case ACPI_BUS_TYPE_POWER:
1293 		acpi_add_id(pnp, ACPI_POWER_HID);
1294 		break;
1295 	case ACPI_BUS_TYPE_PROCESSOR:
1296 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1297 		break;
1298 	case ACPI_BUS_TYPE_THERMAL:
1299 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1300 		break;
1301 	case ACPI_BUS_TYPE_POWER_BUTTON:
1302 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1303 		break;
1304 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1305 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1306 		break;
1307 	}
1308 }
1309 
1310 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1311 {
1312 	struct acpi_hardware_id *id, *tmp;
1313 
1314 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1315 		kfree_const(id->id);
1316 		kfree(id);
1317 	}
1318 	kfree(pnp->unique_id);
1319 }
1320 
1321 /**
1322  * acpi_dma_supported - Check DMA support for the specified device.
1323  * @adev: The pointer to acpi device
1324  *
1325  * Return false if DMA is not supported. Otherwise, return true
1326  */
1327 bool acpi_dma_supported(struct acpi_device *adev)
1328 {
1329 	if (!adev)
1330 		return false;
1331 
1332 	if (adev->flags.cca_seen)
1333 		return true;
1334 
1335 	/*
1336 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1337 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1338 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1339 	*/
1340 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1341 		return true;
1342 
1343 	return false;
1344 }
1345 
1346 /**
1347  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1348  * @adev: The pointer to acpi device
1349  *
1350  * Return enum dev_dma_attr.
1351  */
1352 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1353 {
1354 	if (!acpi_dma_supported(adev))
1355 		return DEV_DMA_NOT_SUPPORTED;
1356 
1357 	if (adev->flags.coherent_dma)
1358 		return DEV_DMA_COHERENT;
1359 	else
1360 		return DEV_DMA_NON_COHERENT;
1361 }
1362 
1363 /**
1364  * acpi_dma_get_range() - Get device DMA parameters.
1365  *
1366  * @dev: device to configure
1367  * @dma_addr: pointer device DMA address result
1368  * @offset: pointer to the DMA offset result
1369  * @size: pointer to DMA range size result
1370  *
1371  * Evaluate DMA regions and return respectively DMA region start, offset
1372  * and size in dma_addr, offset and size on parsing success; it does not
1373  * update the passed in values on failure.
1374  *
1375  * Return 0 on success, < 0 on failure.
1376  */
1377 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1378 		       u64 *size)
1379 {
1380 	struct acpi_device *adev;
1381 	LIST_HEAD(list);
1382 	struct resource_entry *rentry;
1383 	int ret;
1384 	struct device *dma_dev = dev;
1385 	u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1386 
1387 	/*
1388 	 * Walk the device tree chasing an ACPI companion with a _DMA
1389 	 * object while we go. Stop if we find a device with an ACPI
1390 	 * companion containing a _DMA method.
1391 	 */
1392 	do {
1393 		adev = ACPI_COMPANION(dma_dev);
1394 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1395 			break;
1396 
1397 		dma_dev = dma_dev->parent;
1398 	} while (dma_dev);
1399 
1400 	if (!dma_dev)
1401 		return -ENODEV;
1402 
1403 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1404 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1405 		return -EINVAL;
1406 	}
1407 
1408 	ret = acpi_dev_get_dma_resources(adev, &list);
1409 	if (ret > 0) {
1410 		list_for_each_entry(rentry, &list, node) {
1411 			if (dma_offset && rentry->offset != dma_offset) {
1412 				ret = -EINVAL;
1413 				dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1414 				goto out;
1415 			}
1416 			dma_offset = rentry->offset;
1417 
1418 			/* Take lower and upper limits */
1419 			if (rentry->res->start < dma_start)
1420 				dma_start = rentry->res->start;
1421 			if (rentry->res->end > dma_end)
1422 				dma_end = rentry->res->end;
1423 		}
1424 
1425 		if (dma_start >= dma_end) {
1426 			ret = -EINVAL;
1427 			dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1428 			goto out;
1429 		}
1430 
1431 		*dma_addr = dma_start - dma_offset;
1432 		len = dma_end - dma_start;
1433 		*size = max(len, len + 1);
1434 		*offset = dma_offset;
1435 	}
1436  out:
1437 	acpi_dev_free_resource_list(&list);
1438 
1439 	return ret >= 0 ? 0 : ret;
1440 }
1441 
1442 /**
1443  * acpi_dma_configure - Set-up DMA configuration for the device.
1444  * @dev: The pointer to the device
1445  * @attr: device dma attributes
1446  */
1447 int acpi_dma_configure(struct device *dev, enum dev_dma_attr attr)
1448 {
1449 	const struct iommu_ops *iommu;
1450 	u64 dma_addr = 0, size = 0;
1451 
1452 	iort_dma_setup(dev, &dma_addr, &size);
1453 
1454 	iommu = iort_iommu_configure(dev);
1455 	if (IS_ERR(iommu) && PTR_ERR(iommu) == -EPROBE_DEFER)
1456 		return -EPROBE_DEFER;
1457 
1458 	arch_setup_dma_ops(dev, dma_addr, size,
1459 				iommu, attr == DEV_DMA_COHERENT);
1460 
1461 	return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(acpi_dma_configure);
1464 
1465 /**
1466  * acpi_dma_deconfigure - Tear-down DMA configuration for the device.
1467  * @dev: The pointer to the device
1468  */
1469 void acpi_dma_deconfigure(struct device *dev)
1470 {
1471 	arch_teardown_dma_ops(dev);
1472 }
1473 EXPORT_SYMBOL_GPL(acpi_dma_deconfigure);
1474 
1475 static void acpi_init_coherency(struct acpi_device *adev)
1476 {
1477 	unsigned long long cca = 0;
1478 	acpi_status status;
1479 	struct acpi_device *parent = adev->parent;
1480 
1481 	if (parent && parent->flags.cca_seen) {
1482 		/*
1483 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1484 		 * already saw one.
1485 		 */
1486 		adev->flags.cca_seen = 1;
1487 		cca = parent->flags.coherent_dma;
1488 	} else {
1489 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1490 					       NULL, &cca);
1491 		if (ACPI_SUCCESS(status))
1492 			adev->flags.cca_seen = 1;
1493 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1494 			/*
1495 			 * If architecture does not specify that _CCA is
1496 			 * required for DMA-able devices (e.g. x86),
1497 			 * we default to _CCA=1.
1498 			 */
1499 			cca = 1;
1500 		else
1501 			acpi_handle_debug(adev->handle,
1502 					  "ACPI device is missing _CCA.\n");
1503 	}
1504 
1505 	adev->flags.coherent_dma = cca;
1506 }
1507 
1508 static int acpi_check_spi_i2c_slave(struct acpi_resource *ares, void *data)
1509 {
1510 	bool *is_spi_i2c_slave_p = data;
1511 
1512 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1513 		return 1;
1514 
1515 	/*
1516 	 * devices that are connected to UART still need to be enumerated to
1517 	 * platform bus
1518 	 */
1519 	if (ares->data.common_serial_bus.type != ACPI_RESOURCE_SERIAL_TYPE_UART)
1520 		*is_spi_i2c_slave_p = true;
1521 
1522 	 /* no need to do more checking */
1523 	return -1;
1524 }
1525 
1526 static bool acpi_is_spi_i2c_slave(struct acpi_device *device)
1527 {
1528 	struct list_head resource_list;
1529 	bool is_spi_i2c_slave = false;
1530 
1531 	/* Macs use device properties in lieu of _CRS resources */
1532 	if (x86_apple_machine &&
1533 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1534 	     fwnode_property_present(&device->fwnode, "i2cAddress")))
1535 		return true;
1536 
1537 	INIT_LIST_HEAD(&resource_list);
1538 	acpi_dev_get_resources(device, &resource_list, acpi_check_spi_i2c_slave,
1539 			       &is_spi_i2c_slave);
1540 	acpi_dev_free_resource_list(&resource_list);
1541 
1542 	return is_spi_i2c_slave;
1543 }
1544 
1545 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1546 			     int type, unsigned long long sta)
1547 {
1548 	INIT_LIST_HEAD(&device->pnp.ids);
1549 	device->device_type = type;
1550 	device->handle = handle;
1551 	device->parent = acpi_bus_get_parent(handle);
1552 	device->fwnode.ops = &acpi_device_fwnode_ops;
1553 	acpi_set_device_status(device, sta);
1554 	acpi_device_get_busid(device);
1555 	acpi_set_pnp_ids(handle, &device->pnp, type);
1556 	acpi_init_properties(device);
1557 	acpi_bus_get_flags(device);
1558 	device->flags.match_driver = false;
1559 	device->flags.initialized = true;
1560 	device->flags.spi_i2c_slave = acpi_is_spi_i2c_slave(device);
1561 	acpi_device_clear_enumerated(device);
1562 	device_initialize(&device->dev);
1563 	dev_set_uevent_suppress(&device->dev, true);
1564 	acpi_init_coherency(device);
1565 }
1566 
1567 void acpi_device_add_finalize(struct acpi_device *device)
1568 {
1569 	dev_set_uevent_suppress(&device->dev, false);
1570 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1571 }
1572 
1573 static int acpi_add_single_object(struct acpi_device **child,
1574 				  acpi_handle handle, int type,
1575 				  unsigned long long sta)
1576 {
1577 	int result;
1578 	struct acpi_device *device;
1579 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1580 
1581 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1582 	if (!device) {
1583 		printk(KERN_ERR PREFIX "Memory allocation error\n");
1584 		return -ENOMEM;
1585 	}
1586 
1587 	acpi_init_device_object(device, handle, type, sta);
1588 	acpi_bus_get_power_flags(device);
1589 	acpi_bus_get_wakeup_device_flags(device);
1590 
1591 	result = acpi_device_add(device, acpi_device_release);
1592 	if (result) {
1593 		acpi_device_release(&device->dev);
1594 		return result;
1595 	}
1596 
1597 	acpi_power_add_remove_device(device, true);
1598 	acpi_device_add_finalize(device);
1599 	acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
1600 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Added %s [%s] parent %s\n",
1601 		dev_name(&device->dev), (char *) buffer.pointer,
1602 		device->parent ? dev_name(&device->parent->dev) : "(null)"));
1603 	kfree(buffer.pointer);
1604 	*child = device;
1605 	return 0;
1606 }
1607 
1608 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1609 					    void *context)
1610 {
1611 	struct resource *res = context;
1612 
1613 	if (acpi_dev_resource_memory(ares, res))
1614 		return AE_CTRL_TERMINATE;
1615 
1616 	return AE_OK;
1617 }
1618 
1619 static bool acpi_device_should_be_hidden(acpi_handle handle)
1620 {
1621 	acpi_status status;
1622 	struct resource res;
1623 
1624 	/* Check if it should ignore the UART device */
1625 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1626 		return false;
1627 
1628 	/*
1629 	 * The UART device described in SPCR table is assumed to have only one
1630 	 * memory resource present. So we only look for the first one here.
1631 	 */
1632 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1633 				     acpi_get_resource_memory, &res);
1634 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1635 		return false;
1636 
1637 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1638 			 &res.start);
1639 
1640 	return true;
1641 }
1642 
1643 static int acpi_bus_type_and_status(acpi_handle handle, int *type,
1644 				    unsigned long long *sta)
1645 {
1646 	acpi_status status;
1647 	acpi_object_type acpi_type;
1648 
1649 	status = acpi_get_type(handle, &acpi_type);
1650 	if (ACPI_FAILURE(status))
1651 		return -ENODEV;
1652 
1653 	switch (acpi_type) {
1654 	case ACPI_TYPE_ANY:		/* for ACPI_ROOT_OBJECT */
1655 	case ACPI_TYPE_DEVICE:
1656 		if (acpi_device_should_be_hidden(handle))
1657 			return -ENODEV;
1658 
1659 		*type = ACPI_BUS_TYPE_DEVICE;
1660 		status = acpi_bus_get_status_handle(handle, sta);
1661 		if (ACPI_FAILURE(status))
1662 			*sta = 0;
1663 		break;
1664 	case ACPI_TYPE_PROCESSOR:
1665 		*type = ACPI_BUS_TYPE_PROCESSOR;
1666 		status = acpi_bus_get_status_handle(handle, sta);
1667 		if (ACPI_FAILURE(status))
1668 			return -ENODEV;
1669 		break;
1670 	case ACPI_TYPE_THERMAL:
1671 		*type = ACPI_BUS_TYPE_THERMAL;
1672 		*sta = ACPI_STA_DEFAULT;
1673 		break;
1674 	case ACPI_TYPE_POWER:
1675 		*type = ACPI_BUS_TYPE_POWER;
1676 		*sta = ACPI_STA_DEFAULT;
1677 		break;
1678 	default:
1679 		return -ENODEV;
1680 	}
1681 
1682 	return 0;
1683 }
1684 
1685 bool acpi_device_is_present(const struct acpi_device *adev)
1686 {
1687 	return adev->status.present || adev->status.functional;
1688 }
1689 
1690 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1691 				       const char *idstr,
1692 				       const struct acpi_device_id **matchid)
1693 {
1694 	const struct acpi_device_id *devid;
1695 
1696 	if (handler->match)
1697 		return handler->match(idstr, matchid);
1698 
1699 	for (devid = handler->ids; devid->id[0]; devid++)
1700 		if (!strcmp((char *)devid->id, idstr)) {
1701 			if (matchid)
1702 				*matchid = devid;
1703 
1704 			return true;
1705 		}
1706 
1707 	return false;
1708 }
1709 
1710 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1711 					const struct acpi_device_id **matchid)
1712 {
1713 	struct acpi_scan_handler *handler;
1714 
1715 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1716 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1717 			return handler;
1718 
1719 	return NULL;
1720 }
1721 
1722 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1723 {
1724 	if (!!hotplug->enabled == !!val)
1725 		return;
1726 
1727 	mutex_lock(&acpi_scan_lock);
1728 
1729 	hotplug->enabled = val;
1730 
1731 	mutex_unlock(&acpi_scan_lock);
1732 }
1733 
1734 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1735 {
1736 	struct acpi_hardware_id *hwid;
1737 
1738 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1739 		acpi_dock_add(adev);
1740 		return;
1741 	}
1742 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1743 		struct acpi_scan_handler *handler;
1744 
1745 		handler = acpi_scan_match_handler(hwid->id, NULL);
1746 		if (handler) {
1747 			adev->flags.hotplug_notify = true;
1748 			break;
1749 		}
1750 	}
1751 }
1752 
1753 static void acpi_device_dep_initialize(struct acpi_device *adev)
1754 {
1755 	struct acpi_dep_data *dep;
1756 	struct acpi_handle_list dep_devices;
1757 	acpi_status status;
1758 	int i;
1759 
1760 	if (!acpi_has_method(adev->handle, "_DEP"))
1761 		return;
1762 
1763 	status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
1764 					&dep_devices);
1765 	if (ACPI_FAILURE(status)) {
1766 		dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
1767 		return;
1768 	}
1769 
1770 	for (i = 0; i < dep_devices.count; i++) {
1771 		struct acpi_device_info *info;
1772 		int skip;
1773 
1774 		status = acpi_get_object_info(dep_devices.handles[i], &info);
1775 		if (ACPI_FAILURE(status)) {
1776 			dev_dbg(&adev->dev, "Error reading _DEP device info\n");
1777 			continue;
1778 		}
1779 
1780 		/*
1781 		 * Skip the dependency of Windows System Power
1782 		 * Management Controller
1783 		 */
1784 		skip = info->valid & ACPI_VALID_HID &&
1785 			!strcmp(info->hardware_id.string, "INT3396");
1786 
1787 		kfree(info);
1788 
1789 		if (skip)
1790 			continue;
1791 
1792 		dep = kzalloc(sizeof(struct acpi_dep_data), GFP_KERNEL);
1793 		if (!dep)
1794 			return;
1795 
1796 		dep->master = dep_devices.handles[i];
1797 		dep->slave  = adev->handle;
1798 		adev->dep_unmet++;
1799 
1800 		mutex_lock(&acpi_dep_list_lock);
1801 		list_add_tail(&dep->node , &acpi_dep_list);
1802 		mutex_unlock(&acpi_dep_list_lock);
1803 	}
1804 }
1805 
1806 static acpi_status acpi_bus_check_add(acpi_handle handle, u32 lvl_not_used,
1807 				      void *not_used, void **return_value)
1808 {
1809 	struct acpi_device *device = NULL;
1810 	int type;
1811 	unsigned long long sta;
1812 	int result;
1813 
1814 	acpi_bus_get_device(handle, &device);
1815 	if (device)
1816 		goto out;
1817 
1818 	result = acpi_bus_type_and_status(handle, &type, &sta);
1819 	if (result)
1820 		return AE_OK;
1821 
1822 	if (type == ACPI_BUS_TYPE_POWER) {
1823 		acpi_add_power_resource(handle);
1824 		return AE_OK;
1825 	}
1826 
1827 	acpi_add_single_object(&device, handle, type, sta);
1828 	if (!device)
1829 		return AE_CTRL_DEPTH;
1830 
1831 	acpi_scan_init_hotplug(device);
1832 	acpi_device_dep_initialize(device);
1833 
1834  out:
1835 	if (!*return_value)
1836 		*return_value = device;
1837 
1838 	return AE_OK;
1839 }
1840 
1841 static void acpi_default_enumeration(struct acpi_device *device)
1842 {
1843 	/*
1844 	 * Do not enumerate SPI/I2C slaves as they will be enumerated by their
1845 	 * respective parents.
1846 	 */
1847 	if (!device->flags.spi_i2c_slave) {
1848 		acpi_create_platform_device(device, NULL);
1849 		acpi_device_set_enumerated(device);
1850 	} else {
1851 		blocking_notifier_call_chain(&acpi_reconfig_chain,
1852 					     ACPI_RECONFIG_DEVICE_ADD, device);
1853 	}
1854 }
1855 
1856 static const struct acpi_device_id generic_device_ids[] = {
1857 	{ACPI_DT_NAMESPACE_HID, },
1858 	{"", },
1859 };
1860 
1861 static int acpi_generic_device_attach(struct acpi_device *adev,
1862 				      const struct acpi_device_id *not_used)
1863 {
1864 	/*
1865 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
1866 	 * below can be unconditional.
1867 	 */
1868 	if (adev->data.of_compatible)
1869 		acpi_default_enumeration(adev);
1870 
1871 	return 1;
1872 }
1873 
1874 static struct acpi_scan_handler generic_device_handler = {
1875 	.ids = generic_device_ids,
1876 	.attach = acpi_generic_device_attach,
1877 };
1878 
1879 static int acpi_scan_attach_handler(struct acpi_device *device)
1880 {
1881 	struct acpi_hardware_id *hwid;
1882 	int ret = 0;
1883 
1884 	list_for_each_entry(hwid, &device->pnp.ids, list) {
1885 		const struct acpi_device_id *devid;
1886 		struct acpi_scan_handler *handler;
1887 
1888 		handler = acpi_scan_match_handler(hwid->id, &devid);
1889 		if (handler) {
1890 			if (!handler->attach) {
1891 				device->pnp.type.platform_id = 0;
1892 				continue;
1893 			}
1894 			device->handler = handler;
1895 			ret = handler->attach(device, devid);
1896 			if (ret > 0)
1897 				break;
1898 
1899 			device->handler = NULL;
1900 			if (ret < 0)
1901 				break;
1902 		}
1903 	}
1904 
1905 	return ret;
1906 }
1907 
1908 static void acpi_bus_attach(struct acpi_device *device)
1909 {
1910 	struct acpi_device *child;
1911 	acpi_handle ejd;
1912 	int ret;
1913 
1914 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
1915 		register_dock_dependent_device(device, ejd);
1916 
1917 	acpi_bus_get_status(device);
1918 	/* Skip devices that are not present. */
1919 	if (!acpi_device_is_present(device)) {
1920 		device->flags.initialized = false;
1921 		acpi_device_clear_enumerated(device);
1922 		device->flags.power_manageable = 0;
1923 		return;
1924 	}
1925 	if (device->handler)
1926 		goto ok;
1927 
1928 	if (!device->flags.initialized) {
1929 		device->flags.power_manageable =
1930 			device->power.states[ACPI_STATE_D0].flags.valid;
1931 		if (acpi_bus_init_power(device))
1932 			device->flags.power_manageable = 0;
1933 
1934 		device->flags.initialized = true;
1935 	} else if (device->flags.visited) {
1936 		goto ok;
1937 	}
1938 
1939 	ret = acpi_scan_attach_handler(device);
1940 	if (ret < 0)
1941 		return;
1942 
1943 	device->flags.match_driver = true;
1944 	if (ret > 0 && !device->flags.spi_i2c_slave) {
1945 		acpi_device_set_enumerated(device);
1946 		goto ok;
1947 	}
1948 
1949 	ret = device_attach(&device->dev);
1950 	if (ret < 0)
1951 		return;
1952 
1953 	if (!device->pnp.type.platform_id && !device->flags.spi_i2c_slave)
1954 		acpi_device_set_enumerated(device);
1955 	else
1956 		acpi_default_enumeration(device);
1957 
1958  ok:
1959 	list_for_each_entry(child, &device->children, node)
1960 		acpi_bus_attach(child);
1961 
1962 	if (device->handler && device->handler->hotplug.notify_online)
1963 		device->handler->hotplug.notify_online(device);
1964 }
1965 
1966 void acpi_walk_dep_device_list(acpi_handle handle)
1967 {
1968 	struct acpi_dep_data *dep, *tmp;
1969 	struct acpi_device *adev;
1970 
1971 	mutex_lock(&acpi_dep_list_lock);
1972 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
1973 		if (dep->master == handle) {
1974 			acpi_bus_get_device(dep->slave, &adev);
1975 			if (!adev)
1976 				continue;
1977 
1978 			adev->dep_unmet--;
1979 			if (!adev->dep_unmet)
1980 				acpi_bus_attach(adev);
1981 			list_del(&dep->node);
1982 			kfree(dep);
1983 		}
1984 	}
1985 	mutex_unlock(&acpi_dep_list_lock);
1986 }
1987 EXPORT_SYMBOL_GPL(acpi_walk_dep_device_list);
1988 
1989 /**
1990  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
1991  * @handle: Root of the namespace scope to scan.
1992  *
1993  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
1994  * found devices.
1995  *
1996  * If no devices were found, -ENODEV is returned, but it does not mean that
1997  * there has been a real error.  There just have been no suitable ACPI objects
1998  * in the table trunk from which the kernel could create a device and add an
1999  * appropriate driver.
2000  *
2001  * Must be called under acpi_scan_lock.
2002  */
2003 int acpi_bus_scan(acpi_handle handle)
2004 {
2005 	void *device = NULL;
2006 
2007 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, 0, NULL, &device)))
2008 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2009 				    acpi_bus_check_add, NULL, NULL, &device);
2010 
2011 	if (device) {
2012 		acpi_bus_attach(device);
2013 		return 0;
2014 	}
2015 	return -ENODEV;
2016 }
2017 EXPORT_SYMBOL(acpi_bus_scan);
2018 
2019 /**
2020  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2021  * @adev: Root of the ACPI namespace scope to walk.
2022  *
2023  * Must be called under acpi_scan_lock.
2024  */
2025 void acpi_bus_trim(struct acpi_device *adev)
2026 {
2027 	struct acpi_scan_handler *handler = adev->handler;
2028 	struct acpi_device *child;
2029 
2030 	list_for_each_entry_reverse(child, &adev->children, node)
2031 		acpi_bus_trim(child);
2032 
2033 	adev->flags.match_driver = false;
2034 	if (handler) {
2035 		if (handler->detach)
2036 			handler->detach(adev);
2037 
2038 		adev->handler = NULL;
2039 	} else {
2040 		device_release_driver(&adev->dev);
2041 	}
2042 	/*
2043 	 * Most likely, the device is going away, so put it into D3cold before
2044 	 * that.
2045 	 */
2046 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2047 	adev->flags.initialized = false;
2048 	acpi_device_clear_enumerated(adev);
2049 }
2050 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2051 
2052 static int acpi_bus_scan_fixed(void)
2053 {
2054 	int result = 0;
2055 
2056 	/*
2057 	 * Enumerate all fixed-feature devices.
2058 	 */
2059 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2060 		struct acpi_device *device = NULL;
2061 
2062 		result = acpi_add_single_object(&device, NULL,
2063 						ACPI_BUS_TYPE_POWER_BUTTON,
2064 						ACPI_STA_DEFAULT);
2065 		if (result)
2066 			return result;
2067 
2068 		device->flags.match_driver = true;
2069 		result = device_attach(&device->dev);
2070 		if (result < 0)
2071 			return result;
2072 
2073 		device_init_wakeup(&device->dev, true);
2074 	}
2075 
2076 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2077 		struct acpi_device *device = NULL;
2078 
2079 		result = acpi_add_single_object(&device, NULL,
2080 						ACPI_BUS_TYPE_SLEEP_BUTTON,
2081 						ACPI_STA_DEFAULT);
2082 		if (result)
2083 			return result;
2084 
2085 		device->flags.match_driver = true;
2086 		result = device_attach(&device->dev);
2087 	}
2088 
2089 	return result < 0 ? result : 0;
2090 }
2091 
2092 static void __init acpi_get_spcr_uart_addr(void)
2093 {
2094 	acpi_status status;
2095 	struct acpi_table_spcr *spcr_ptr;
2096 
2097 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2098 				(struct acpi_table_header **)&spcr_ptr);
2099 	if (ACPI_SUCCESS(status))
2100 		spcr_uart_addr = spcr_ptr->serial_port.address;
2101 	else
2102 		printk(KERN_WARNING PREFIX "STAO table present, but SPCR is missing\n");
2103 }
2104 
2105 static bool acpi_scan_initialized;
2106 
2107 int __init acpi_scan_init(void)
2108 {
2109 	int result;
2110 	acpi_status status;
2111 	struct acpi_table_stao *stao_ptr;
2112 
2113 	acpi_pci_root_init();
2114 	acpi_pci_link_init();
2115 	acpi_processor_init();
2116 	acpi_lpss_init();
2117 	acpi_apd_init();
2118 	acpi_cmos_rtc_init();
2119 	acpi_container_init();
2120 	acpi_memory_hotplug_init();
2121 	acpi_pnp_init();
2122 	acpi_int340x_thermal_init();
2123 	acpi_amba_init();
2124 	acpi_watchdog_init();
2125 
2126 	acpi_scan_add_handler(&generic_device_handler);
2127 
2128 	/*
2129 	 * If there is STAO table, check whether it needs to ignore the UART
2130 	 * device in SPCR table.
2131 	 */
2132 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2133 				(struct acpi_table_header **)&stao_ptr);
2134 	if (ACPI_SUCCESS(status)) {
2135 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2136 			printk(KERN_INFO PREFIX "STAO Name List not yet supported.");
2137 
2138 		if (stao_ptr->ignore_uart)
2139 			acpi_get_spcr_uart_addr();
2140 	}
2141 
2142 	acpi_gpe_apply_masked_gpes();
2143 	acpi_update_all_gpes();
2144 
2145 	mutex_lock(&acpi_scan_lock);
2146 	/*
2147 	 * Enumerate devices in the ACPI namespace.
2148 	 */
2149 	result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2150 	if (result)
2151 		goto out;
2152 
2153 	result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2154 	if (result)
2155 		goto out;
2156 
2157 	/* Fixed feature devices do not exist on HW-reduced platform */
2158 	if (!acpi_gbl_reduced_hardware) {
2159 		result = acpi_bus_scan_fixed();
2160 		if (result) {
2161 			acpi_detach_data(acpi_root->handle,
2162 					 acpi_scan_drop_device);
2163 			acpi_device_del(acpi_root);
2164 			put_device(&acpi_root->dev);
2165 			goto out;
2166 		}
2167 	}
2168 
2169 	acpi_scan_initialized = true;
2170 
2171  out:
2172 	mutex_unlock(&acpi_scan_lock);
2173 	return result;
2174 }
2175 
2176 static struct acpi_probe_entry *ape;
2177 static int acpi_probe_count;
2178 static DEFINE_MUTEX(acpi_probe_mutex);
2179 
2180 static int __init acpi_match_madt(struct acpi_subtable_header *header,
2181 				  const unsigned long end)
2182 {
2183 	if (!ape->subtable_valid || ape->subtable_valid(header, ape))
2184 		if (!ape->probe_subtbl(header, end))
2185 			acpi_probe_count++;
2186 
2187 	return 0;
2188 }
2189 
2190 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2191 {
2192 	int count = 0;
2193 
2194 	if (acpi_disabled)
2195 		return 0;
2196 
2197 	mutex_lock(&acpi_probe_mutex);
2198 	for (ape = ap_head; nr; ape++, nr--) {
2199 		if (ACPI_COMPARE_NAME(ACPI_SIG_MADT, ape->id)) {
2200 			acpi_probe_count = 0;
2201 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2202 			count += acpi_probe_count;
2203 		} else {
2204 			int res;
2205 			res = acpi_table_parse(ape->id, ape->probe_table);
2206 			if (!res)
2207 				count++;
2208 		}
2209 	}
2210 	mutex_unlock(&acpi_probe_mutex);
2211 
2212 	return count;
2213 }
2214 
2215 struct acpi_table_events_work {
2216 	struct work_struct work;
2217 	void *table;
2218 	u32 event;
2219 };
2220 
2221 static void acpi_table_events_fn(struct work_struct *work)
2222 {
2223 	struct acpi_table_events_work *tew;
2224 
2225 	tew = container_of(work, struct acpi_table_events_work, work);
2226 
2227 	if (tew->event == ACPI_TABLE_EVENT_LOAD) {
2228 		acpi_scan_lock_acquire();
2229 		acpi_bus_scan(ACPI_ROOT_OBJECT);
2230 		acpi_scan_lock_release();
2231 	}
2232 
2233 	kfree(tew);
2234 }
2235 
2236 void acpi_scan_table_handler(u32 event, void *table, void *context)
2237 {
2238 	struct acpi_table_events_work *tew;
2239 
2240 	if (!acpi_scan_initialized)
2241 		return;
2242 
2243 	if (event != ACPI_TABLE_EVENT_LOAD)
2244 		return;
2245 
2246 	tew = kmalloc(sizeof(*tew), GFP_KERNEL);
2247 	if (!tew)
2248 		return;
2249 
2250 	INIT_WORK(&tew->work, acpi_table_events_fn);
2251 	tew->table = table;
2252 	tew->event = event;
2253 
2254 	schedule_work(&tew->work);
2255 }
2256 
2257 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2258 {
2259 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2260 }
2261 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2262 
2263 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2264 {
2265 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2266 }
2267 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2268