1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #define pr_fmt(fmt) "ACPI: " fmt 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/acpi_viot.h> 15 #include <linux/iommu.h> 16 #include <linux/signal.h> 17 #include <linux/kthread.h> 18 #include <linux/dmi.h> 19 #include <linux/nls.h> 20 #include <linux/dma-map-ops.h> 21 #include <linux/platform_data/x86/apple.h> 22 #include <linux/pgtable.h> 23 24 #include "internal.h" 25 26 extern struct acpi_device *acpi_root; 27 28 #define ACPI_BUS_CLASS "system_bus" 29 #define ACPI_BUS_HID "LNXSYBUS" 30 #define ACPI_BUS_DEVICE_NAME "System Bus" 31 32 #define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent) 33 34 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page) 35 36 static const char *dummy_hid = "device"; 37 38 static LIST_HEAD(acpi_dep_list); 39 static DEFINE_MUTEX(acpi_dep_list_lock); 40 LIST_HEAD(acpi_bus_id_list); 41 static DEFINE_MUTEX(acpi_scan_lock); 42 static LIST_HEAD(acpi_scan_handlers_list); 43 DEFINE_MUTEX(acpi_device_lock); 44 LIST_HEAD(acpi_wakeup_device_list); 45 static DEFINE_MUTEX(acpi_hp_context_lock); 46 47 /* 48 * The UART device described by the SPCR table is the only object which needs 49 * special-casing. Everything else is covered by ACPI namespace paths in STAO 50 * table. 51 */ 52 static u64 spcr_uart_addr; 53 54 void acpi_scan_lock_acquire(void) 55 { 56 mutex_lock(&acpi_scan_lock); 57 } 58 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 59 60 void acpi_scan_lock_release(void) 61 { 62 mutex_unlock(&acpi_scan_lock); 63 } 64 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 65 66 void acpi_lock_hp_context(void) 67 { 68 mutex_lock(&acpi_hp_context_lock); 69 } 70 71 void acpi_unlock_hp_context(void) 72 { 73 mutex_unlock(&acpi_hp_context_lock); 74 } 75 76 void acpi_initialize_hp_context(struct acpi_device *adev, 77 struct acpi_hotplug_context *hp, 78 int (*notify)(struct acpi_device *, u32), 79 void (*uevent)(struct acpi_device *, u32)) 80 { 81 acpi_lock_hp_context(); 82 hp->notify = notify; 83 hp->uevent = uevent; 84 acpi_set_hp_context(adev, hp); 85 acpi_unlock_hp_context(); 86 } 87 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 88 89 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 90 { 91 if (!handler) 92 return -EINVAL; 93 94 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 95 return 0; 96 } 97 98 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 99 const char *hotplug_profile_name) 100 { 101 int error; 102 103 error = acpi_scan_add_handler(handler); 104 if (error) 105 return error; 106 107 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 108 return 0; 109 } 110 111 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 112 { 113 struct acpi_device_physical_node *pn; 114 bool offline = true; 115 char *envp[] = { "EVENT=offline", NULL }; 116 117 /* 118 * acpi_container_offline() calls this for all of the container's 119 * children under the container's physical_node_lock lock. 120 */ 121 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 122 123 list_for_each_entry(pn, &adev->physical_node_list, node) 124 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 125 if (uevent) 126 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 127 128 offline = false; 129 break; 130 } 131 132 mutex_unlock(&adev->physical_node_lock); 133 return offline; 134 } 135 136 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 137 void **ret_p) 138 { 139 struct acpi_device *device = NULL; 140 struct acpi_device_physical_node *pn; 141 bool second_pass = (bool)data; 142 acpi_status status = AE_OK; 143 144 if (acpi_bus_get_device(handle, &device)) 145 return AE_OK; 146 147 if (device->handler && !device->handler->hotplug.enabled) { 148 *ret_p = &device->dev; 149 return AE_SUPPORT; 150 } 151 152 mutex_lock(&device->physical_node_lock); 153 154 list_for_each_entry(pn, &device->physical_node_list, node) { 155 int ret; 156 157 if (second_pass) { 158 /* Skip devices offlined by the first pass. */ 159 if (pn->put_online) 160 continue; 161 } else { 162 pn->put_online = false; 163 } 164 ret = device_offline(pn->dev); 165 if (ret >= 0) { 166 pn->put_online = !ret; 167 } else { 168 *ret_p = pn->dev; 169 if (second_pass) { 170 status = AE_ERROR; 171 break; 172 } 173 } 174 } 175 176 mutex_unlock(&device->physical_node_lock); 177 178 return status; 179 } 180 181 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 182 void **ret_p) 183 { 184 struct acpi_device *device = NULL; 185 struct acpi_device_physical_node *pn; 186 187 if (acpi_bus_get_device(handle, &device)) 188 return AE_OK; 189 190 mutex_lock(&device->physical_node_lock); 191 192 list_for_each_entry(pn, &device->physical_node_list, node) 193 if (pn->put_online) { 194 device_online(pn->dev); 195 pn->put_online = false; 196 } 197 198 mutex_unlock(&device->physical_node_lock); 199 200 return AE_OK; 201 } 202 203 static int acpi_scan_try_to_offline(struct acpi_device *device) 204 { 205 acpi_handle handle = device->handle; 206 struct device *errdev = NULL; 207 acpi_status status; 208 209 /* 210 * Carry out two passes here and ignore errors in the first pass, 211 * because if the devices in question are memory blocks and 212 * CONFIG_MEMCG is set, one of the blocks may hold data structures 213 * that the other blocks depend on, but it is not known in advance which 214 * block holds them. 215 * 216 * If the first pass is successful, the second one isn't needed, though. 217 */ 218 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 219 NULL, acpi_bus_offline, (void *)false, 220 (void **)&errdev); 221 if (status == AE_SUPPORT) { 222 dev_warn(errdev, "Offline disabled.\n"); 223 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 224 acpi_bus_online, NULL, NULL, NULL); 225 return -EPERM; 226 } 227 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 228 if (errdev) { 229 errdev = NULL; 230 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 231 NULL, acpi_bus_offline, (void *)true, 232 (void **)&errdev); 233 if (!errdev) 234 acpi_bus_offline(handle, 0, (void *)true, 235 (void **)&errdev); 236 237 if (errdev) { 238 dev_warn(errdev, "Offline failed.\n"); 239 acpi_bus_online(handle, 0, NULL, NULL); 240 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 241 ACPI_UINT32_MAX, acpi_bus_online, 242 NULL, NULL, NULL); 243 return -EBUSY; 244 } 245 } 246 return 0; 247 } 248 249 static int acpi_scan_hot_remove(struct acpi_device *device) 250 { 251 acpi_handle handle = device->handle; 252 unsigned long long sta; 253 acpi_status status; 254 255 if (device->handler && device->handler->hotplug.demand_offline) { 256 if (!acpi_scan_is_offline(device, true)) 257 return -EBUSY; 258 } else { 259 int error = acpi_scan_try_to_offline(device); 260 if (error) 261 return error; 262 } 263 264 acpi_handle_debug(handle, "Ejecting\n"); 265 266 acpi_bus_trim(device); 267 268 acpi_evaluate_lck(handle, 0); 269 /* 270 * TBD: _EJD support. 271 */ 272 status = acpi_evaluate_ej0(handle); 273 if (status == AE_NOT_FOUND) 274 return -ENODEV; 275 else if (ACPI_FAILURE(status)) 276 return -EIO; 277 278 /* 279 * Verify if eject was indeed successful. If not, log an error 280 * message. No need to call _OST since _EJ0 call was made OK. 281 */ 282 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 283 if (ACPI_FAILURE(status)) { 284 acpi_handle_warn(handle, 285 "Status check after eject failed (0x%x)\n", status); 286 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 287 acpi_handle_warn(handle, 288 "Eject incomplete - status 0x%llx\n", sta); 289 } 290 291 return 0; 292 } 293 294 static int acpi_scan_device_not_present(struct acpi_device *adev) 295 { 296 if (!acpi_device_enumerated(adev)) { 297 dev_warn(&adev->dev, "Still not present\n"); 298 return -EALREADY; 299 } 300 acpi_bus_trim(adev); 301 return 0; 302 } 303 304 static int acpi_scan_device_check(struct acpi_device *adev) 305 { 306 int error; 307 308 acpi_bus_get_status(adev); 309 if (adev->status.present || adev->status.functional) { 310 /* 311 * This function is only called for device objects for which 312 * matching scan handlers exist. The only situation in which 313 * the scan handler is not attached to this device object yet 314 * is when the device has just appeared (either it wasn't 315 * present at all before or it was removed and then added 316 * again). 317 */ 318 if (adev->handler) { 319 dev_warn(&adev->dev, "Already enumerated\n"); 320 return -EALREADY; 321 } 322 error = acpi_bus_scan(adev->handle); 323 if (error) { 324 dev_warn(&adev->dev, "Namespace scan failure\n"); 325 return error; 326 } 327 if (!adev->handler) { 328 dev_warn(&adev->dev, "Enumeration failure\n"); 329 error = -ENODEV; 330 } 331 } else { 332 error = acpi_scan_device_not_present(adev); 333 } 334 return error; 335 } 336 337 static int acpi_scan_bus_check(struct acpi_device *adev) 338 { 339 struct acpi_scan_handler *handler = adev->handler; 340 struct acpi_device *child; 341 int error; 342 343 acpi_bus_get_status(adev); 344 if (!(adev->status.present || adev->status.functional)) { 345 acpi_scan_device_not_present(adev); 346 return 0; 347 } 348 if (handler && handler->hotplug.scan_dependent) 349 return handler->hotplug.scan_dependent(adev); 350 351 error = acpi_bus_scan(adev->handle); 352 if (error) { 353 dev_warn(&adev->dev, "Namespace scan failure\n"); 354 return error; 355 } 356 list_for_each_entry(child, &adev->children, node) { 357 error = acpi_scan_bus_check(child); 358 if (error) 359 return error; 360 } 361 return 0; 362 } 363 364 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 365 { 366 switch (type) { 367 case ACPI_NOTIFY_BUS_CHECK: 368 return acpi_scan_bus_check(adev); 369 case ACPI_NOTIFY_DEVICE_CHECK: 370 return acpi_scan_device_check(adev); 371 case ACPI_NOTIFY_EJECT_REQUEST: 372 case ACPI_OST_EC_OSPM_EJECT: 373 if (adev->handler && !adev->handler->hotplug.enabled) { 374 dev_info(&adev->dev, "Eject disabled\n"); 375 return -EPERM; 376 } 377 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 378 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 379 return acpi_scan_hot_remove(adev); 380 } 381 return -EINVAL; 382 } 383 384 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 385 { 386 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 387 int error = -ENODEV; 388 389 lock_device_hotplug(); 390 mutex_lock(&acpi_scan_lock); 391 392 /* 393 * The device object's ACPI handle cannot become invalid as long as we 394 * are holding acpi_scan_lock, but it might have become invalid before 395 * that lock was acquired. 396 */ 397 if (adev->handle == INVALID_ACPI_HANDLE) 398 goto err_out; 399 400 if (adev->flags.is_dock_station) { 401 error = dock_notify(adev, src); 402 } else if (adev->flags.hotplug_notify) { 403 error = acpi_generic_hotplug_event(adev, src); 404 } else { 405 int (*notify)(struct acpi_device *, u32); 406 407 acpi_lock_hp_context(); 408 notify = adev->hp ? adev->hp->notify : NULL; 409 acpi_unlock_hp_context(); 410 /* 411 * There may be additional notify handlers for device objects 412 * without the .event() callback, so ignore them here. 413 */ 414 if (notify) 415 error = notify(adev, src); 416 else 417 goto out; 418 } 419 switch (error) { 420 case 0: 421 ost_code = ACPI_OST_SC_SUCCESS; 422 break; 423 case -EPERM: 424 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 425 break; 426 case -EBUSY: 427 ost_code = ACPI_OST_SC_DEVICE_BUSY; 428 break; 429 default: 430 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 431 break; 432 } 433 434 err_out: 435 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 436 437 out: 438 acpi_bus_put_acpi_device(adev); 439 mutex_unlock(&acpi_scan_lock); 440 unlock_device_hotplug(); 441 } 442 443 static void acpi_free_power_resources_lists(struct acpi_device *device) 444 { 445 int i; 446 447 if (device->wakeup.flags.valid) 448 acpi_power_resources_list_free(&device->wakeup.resources); 449 450 if (!device->power.flags.power_resources) 451 return; 452 453 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 454 struct acpi_device_power_state *ps = &device->power.states[i]; 455 acpi_power_resources_list_free(&ps->resources); 456 } 457 } 458 459 static void acpi_device_release(struct device *dev) 460 { 461 struct acpi_device *acpi_dev = to_acpi_device(dev); 462 463 acpi_free_properties(acpi_dev); 464 acpi_free_pnp_ids(&acpi_dev->pnp); 465 acpi_free_power_resources_lists(acpi_dev); 466 kfree(acpi_dev); 467 } 468 469 static void acpi_device_del(struct acpi_device *device) 470 { 471 struct acpi_device_bus_id *acpi_device_bus_id; 472 473 mutex_lock(&acpi_device_lock); 474 if (device->parent) 475 list_del(&device->node); 476 477 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 478 if (!strcmp(acpi_device_bus_id->bus_id, 479 acpi_device_hid(device))) { 480 ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no); 481 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 482 list_del(&acpi_device_bus_id->node); 483 kfree_const(acpi_device_bus_id->bus_id); 484 kfree(acpi_device_bus_id); 485 } 486 break; 487 } 488 489 list_del(&device->wakeup_list); 490 mutex_unlock(&acpi_device_lock); 491 492 acpi_power_add_remove_device(device, false); 493 acpi_device_remove_files(device); 494 if (device->remove) 495 device->remove(device); 496 497 device_del(&device->dev); 498 } 499 500 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 501 502 static LIST_HEAD(acpi_device_del_list); 503 static DEFINE_MUTEX(acpi_device_del_lock); 504 505 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 506 { 507 for (;;) { 508 struct acpi_device *adev; 509 510 mutex_lock(&acpi_device_del_lock); 511 512 if (list_empty(&acpi_device_del_list)) { 513 mutex_unlock(&acpi_device_del_lock); 514 break; 515 } 516 adev = list_first_entry(&acpi_device_del_list, 517 struct acpi_device, del_list); 518 list_del(&adev->del_list); 519 520 mutex_unlock(&acpi_device_del_lock); 521 522 blocking_notifier_call_chain(&acpi_reconfig_chain, 523 ACPI_RECONFIG_DEVICE_REMOVE, adev); 524 525 acpi_device_del(adev); 526 /* 527 * Drop references to all power resources that might have been 528 * used by the device. 529 */ 530 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 531 acpi_dev_put(adev); 532 } 533 } 534 535 /** 536 * acpi_scan_drop_device - Drop an ACPI device object. 537 * @handle: Handle of an ACPI namespace node, not used. 538 * @context: Address of the ACPI device object to drop. 539 * 540 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 541 * namespace node the device object pointed to by @context is attached to. 542 * 543 * The unregistration is carried out asynchronously to avoid running 544 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 545 * ensure the correct ordering (the device objects must be unregistered in the 546 * same order in which the corresponding namespace nodes are deleted). 547 */ 548 static void acpi_scan_drop_device(acpi_handle handle, void *context) 549 { 550 static DECLARE_WORK(work, acpi_device_del_work_fn); 551 struct acpi_device *adev = context; 552 553 mutex_lock(&acpi_device_del_lock); 554 555 /* 556 * Use the ACPI hotplug workqueue which is ordered, so this work item 557 * won't run after any hotplug work items submitted subsequently. That 558 * prevents attempts to register device objects identical to those being 559 * deleted from happening concurrently (such attempts result from 560 * hotplug events handled via the ACPI hotplug workqueue). It also will 561 * run after all of the work items submitted previously, which helps 562 * those work items to ensure that they are not accessing stale device 563 * objects. 564 */ 565 if (list_empty(&acpi_device_del_list)) 566 acpi_queue_hotplug_work(&work); 567 568 list_add_tail(&adev->del_list, &acpi_device_del_list); 569 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 570 adev->handle = INVALID_ACPI_HANDLE; 571 572 mutex_unlock(&acpi_device_del_lock); 573 } 574 575 static struct acpi_device *handle_to_device(acpi_handle handle, 576 void (*callback)(void *)) 577 { 578 struct acpi_device *adev = NULL; 579 acpi_status status; 580 581 status = acpi_get_data_full(handle, acpi_scan_drop_device, 582 (void **)&adev, callback); 583 if (ACPI_FAILURE(status) || !adev) { 584 acpi_handle_debug(handle, "No context!\n"); 585 return NULL; 586 } 587 return adev; 588 } 589 590 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device) 591 { 592 if (!device) 593 return -EINVAL; 594 595 *device = handle_to_device(handle, NULL); 596 if (!*device) 597 return -ENODEV; 598 599 return 0; 600 } 601 EXPORT_SYMBOL(acpi_bus_get_device); 602 603 static void get_acpi_device(void *dev) 604 { 605 acpi_dev_get(dev); 606 } 607 608 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle) 609 { 610 return handle_to_device(handle, get_acpi_device); 611 } 612 613 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 614 { 615 struct acpi_device_bus_id *acpi_device_bus_id; 616 617 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 618 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 619 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 620 return acpi_device_bus_id; 621 } 622 return NULL; 623 } 624 625 static int acpi_device_set_name(struct acpi_device *device, 626 struct acpi_device_bus_id *acpi_device_bus_id) 627 { 628 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 629 int result; 630 631 result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL); 632 if (result < 0) 633 return result; 634 635 device->pnp.instance_no = result; 636 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 637 return 0; 638 } 639 640 static int acpi_tie_acpi_dev(struct acpi_device *adev) 641 { 642 acpi_handle handle = adev->handle; 643 acpi_status status; 644 645 if (!handle) 646 return 0; 647 648 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 649 if (ACPI_FAILURE(status)) { 650 acpi_handle_err(handle, "Unable to attach device data\n"); 651 return -ENODEV; 652 } 653 654 return 0; 655 } 656 657 static int __acpi_device_add(struct acpi_device *device, 658 void (*release)(struct device *)) 659 { 660 struct acpi_device_bus_id *acpi_device_bus_id; 661 int result; 662 663 /* 664 * Linkage 665 * ------- 666 * Link this device to its parent and siblings. 667 */ 668 INIT_LIST_HEAD(&device->children); 669 INIT_LIST_HEAD(&device->node); 670 INIT_LIST_HEAD(&device->wakeup_list); 671 INIT_LIST_HEAD(&device->physical_node_list); 672 INIT_LIST_HEAD(&device->del_list); 673 mutex_init(&device->physical_node_lock); 674 675 mutex_lock(&acpi_device_lock); 676 677 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 678 if (acpi_device_bus_id) { 679 result = acpi_device_set_name(device, acpi_device_bus_id); 680 if (result) 681 goto err_unlock; 682 } else { 683 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 684 GFP_KERNEL); 685 if (!acpi_device_bus_id) { 686 result = -ENOMEM; 687 goto err_unlock; 688 } 689 acpi_device_bus_id->bus_id = 690 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 691 if (!acpi_device_bus_id->bus_id) { 692 kfree(acpi_device_bus_id); 693 result = -ENOMEM; 694 goto err_unlock; 695 } 696 697 ida_init(&acpi_device_bus_id->instance_ida); 698 699 result = acpi_device_set_name(device, acpi_device_bus_id); 700 if (result) { 701 kfree_const(acpi_device_bus_id->bus_id); 702 kfree(acpi_device_bus_id); 703 goto err_unlock; 704 } 705 706 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 707 } 708 709 if (device->parent) 710 list_add_tail(&device->node, &device->parent->children); 711 712 if (device->wakeup.flags.valid) 713 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 714 715 mutex_unlock(&acpi_device_lock); 716 717 if (device->parent) 718 device->dev.parent = &device->parent->dev; 719 720 device->dev.bus = &acpi_bus_type; 721 device->dev.release = release; 722 result = device_add(&device->dev); 723 if (result) { 724 dev_err(&device->dev, "Error registering device\n"); 725 goto err; 726 } 727 728 result = acpi_device_setup_files(device); 729 if (result) 730 pr_err("Error creating sysfs interface for device %s\n", 731 dev_name(&device->dev)); 732 733 return 0; 734 735 err: 736 mutex_lock(&acpi_device_lock); 737 738 if (device->parent) 739 list_del(&device->node); 740 741 list_del(&device->wakeup_list); 742 743 err_unlock: 744 mutex_unlock(&acpi_device_lock); 745 746 acpi_detach_data(device->handle, acpi_scan_drop_device); 747 748 return result; 749 } 750 751 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *)) 752 { 753 int ret; 754 755 ret = acpi_tie_acpi_dev(adev); 756 if (ret) 757 return ret; 758 759 return __acpi_device_add(adev, release); 760 } 761 762 /* -------------------------------------------------------------------------- 763 Device Enumeration 764 -------------------------------------------------------------------------- */ 765 static bool acpi_info_matches_ids(struct acpi_device_info *info, 766 const char * const ids[]) 767 { 768 struct acpi_pnp_device_id_list *cid_list = NULL; 769 int i, index; 770 771 if (!(info->valid & ACPI_VALID_HID)) 772 return false; 773 774 index = match_string(ids, -1, info->hardware_id.string); 775 if (index >= 0) 776 return true; 777 778 if (info->valid & ACPI_VALID_CID) 779 cid_list = &info->compatible_id_list; 780 781 if (!cid_list) 782 return false; 783 784 for (i = 0; i < cid_list->count; i++) { 785 index = match_string(ids, -1, cid_list->ids[i].string); 786 if (index >= 0) 787 return true; 788 } 789 790 return false; 791 } 792 793 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 794 static const char * const acpi_ignore_dep_ids[] = { 795 "PNP0D80", /* Windows-compatible System Power Management Controller */ 796 "INT33BD", /* Intel Baytrail Mailbox Device */ 797 NULL 798 }; 799 800 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle) 801 { 802 struct acpi_device *device = NULL; 803 acpi_status status; 804 805 /* 806 * Fixed hardware devices do not appear in the namespace and do not 807 * have handles, but we fabricate acpi_devices for them, so we have 808 * to deal with them specially. 809 */ 810 if (!handle) 811 return acpi_root; 812 813 do { 814 status = acpi_get_parent(handle, &handle); 815 if (ACPI_FAILURE(status)) 816 return status == AE_NULL_ENTRY ? NULL : acpi_root; 817 } while (acpi_bus_get_device(handle, &device)); 818 return device; 819 } 820 821 acpi_status 822 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 823 { 824 acpi_status status; 825 acpi_handle tmp; 826 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 827 union acpi_object *obj; 828 829 status = acpi_get_handle(handle, "_EJD", &tmp); 830 if (ACPI_FAILURE(status)) 831 return status; 832 833 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 834 if (ACPI_SUCCESS(status)) { 835 obj = buffer.pointer; 836 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 837 ejd); 838 kfree(buffer.pointer); 839 } 840 return status; 841 } 842 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 843 844 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 845 { 846 acpi_handle handle = dev->handle; 847 struct acpi_device_wakeup *wakeup = &dev->wakeup; 848 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 849 union acpi_object *package = NULL; 850 union acpi_object *element = NULL; 851 acpi_status status; 852 int err = -ENODATA; 853 854 INIT_LIST_HEAD(&wakeup->resources); 855 856 /* _PRW */ 857 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 858 if (ACPI_FAILURE(status)) { 859 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 860 acpi_format_exception(status)); 861 return err; 862 } 863 864 package = (union acpi_object *)buffer.pointer; 865 866 if (!package || package->package.count < 2) 867 goto out; 868 869 element = &(package->package.elements[0]); 870 if (!element) 871 goto out; 872 873 if (element->type == ACPI_TYPE_PACKAGE) { 874 if ((element->package.count < 2) || 875 (element->package.elements[0].type != 876 ACPI_TYPE_LOCAL_REFERENCE) 877 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 878 goto out; 879 880 wakeup->gpe_device = 881 element->package.elements[0].reference.handle; 882 wakeup->gpe_number = 883 (u32) element->package.elements[1].integer.value; 884 } else if (element->type == ACPI_TYPE_INTEGER) { 885 wakeup->gpe_device = NULL; 886 wakeup->gpe_number = element->integer.value; 887 } else { 888 goto out; 889 } 890 891 element = &(package->package.elements[1]); 892 if (element->type != ACPI_TYPE_INTEGER) 893 goto out; 894 895 wakeup->sleep_state = element->integer.value; 896 897 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 898 if (err) 899 goto out; 900 901 if (!list_empty(&wakeup->resources)) { 902 int sleep_state; 903 904 err = acpi_power_wakeup_list_init(&wakeup->resources, 905 &sleep_state); 906 if (err) { 907 acpi_handle_warn(handle, "Retrieving current states " 908 "of wakeup power resources failed\n"); 909 acpi_power_resources_list_free(&wakeup->resources); 910 goto out; 911 } 912 if (sleep_state < wakeup->sleep_state) { 913 acpi_handle_warn(handle, "Overriding _PRW sleep state " 914 "(S%d) by S%d from power resources\n", 915 (int)wakeup->sleep_state, sleep_state); 916 wakeup->sleep_state = sleep_state; 917 } 918 } 919 920 out: 921 kfree(buffer.pointer); 922 return err; 923 } 924 925 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 926 { 927 static const struct acpi_device_id button_device_ids[] = { 928 {"PNP0C0C", 0}, /* Power button */ 929 {"PNP0C0D", 0}, /* Lid */ 930 {"PNP0C0E", 0}, /* Sleep button */ 931 {"", 0}, 932 }; 933 struct acpi_device_wakeup *wakeup = &device->wakeup; 934 acpi_status status; 935 936 wakeup->flags.notifier_present = 0; 937 938 /* Power button, Lid switch always enable wakeup */ 939 if (!acpi_match_device_ids(device, button_device_ids)) { 940 if (!acpi_match_device_ids(device, &button_device_ids[1])) { 941 /* Do not use Lid/sleep button for S5 wakeup */ 942 if (wakeup->sleep_state == ACPI_STATE_S5) 943 wakeup->sleep_state = ACPI_STATE_S4; 944 } 945 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 946 device_set_wakeup_capable(&device->dev, true); 947 return true; 948 } 949 950 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 951 wakeup->gpe_number); 952 return ACPI_SUCCESS(status); 953 } 954 955 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 956 { 957 int err; 958 959 /* Presence of _PRW indicates wake capable */ 960 if (!acpi_has_method(device->handle, "_PRW")) 961 return; 962 963 err = acpi_bus_extract_wakeup_device_power_package(device); 964 if (err) { 965 dev_err(&device->dev, "Unable to extract wakeup power resources"); 966 return; 967 } 968 969 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 970 device->wakeup.prepare_count = 0; 971 /* 972 * Call _PSW/_DSW object to disable its ability to wake the sleeping 973 * system for the ACPI device with the _PRW object. 974 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 975 * So it is necessary to call _DSW object first. Only when it is not 976 * present will the _PSW object used. 977 */ 978 err = acpi_device_sleep_wake(device, 0, 0, 0); 979 if (err) 980 pr_debug("error in _DSW or _PSW evaluation\n"); 981 } 982 983 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 984 { 985 struct acpi_device_power_state *ps = &device->power.states[state]; 986 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 987 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 988 acpi_status status; 989 990 INIT_LIST_HEAD(&ps->resources); 991 992 /* Evaluate "_PRx" to get referenced power resources */ 993 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 994 if (ACPI_SUCCESS(status)) { 995 union acpi_object *package = buffer.pointer; 996 997 if (buffer.length && package 998 && package->type == ACPI_TYPE_PACKAGE 999 && package->package.count) 1000 acpi_extract_power_resources(package, 0, &ps->resources); 1001 1002 ACPI_FREE(buffer.pointer); 1003 } 1004 1005 /* Evaluate "_PSx" to see if we can do explicit sets */ 1006 pathname[2] = 'S'; 1007 if (acpi_has_method(device->handle, pathname)) 1008 ps->flags.explicit_set = 1; 1009 1010 /* State is valid if there are means to put the device into it. */ 1011 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1012 ps->flags.valid = 1; 1013 1014 ps->power = -1; /* Unknown - driver assigned */ 1015 ps->latency = -1; /* Unknown - driver assigned */ 1016 } 1017 1018 static void acpi_bus_get_power_flags(struct acpi_device *device) 1019 { 1020 u32 i; 1021 1022 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1023 if (!acpi_has_method(device->handle, "_PS0") && 1024 !acpi_has_method(device->handle, "_PR0")) 1025 return; 1026 1027 device->flags.power_manageable = 1; 1028 1029 /* 1030 * Power Management Flags 1031 */ 1032 if (acpi_has_method(device->handle, "_PSC")) 1033 device->power.flags.explicit_get = 1; 1034 1035 if (acpi_has_method(device->handle, "_IRC")) 1036 device->power.flags.inrush_current = 1; 1037 1038 if (acpi_has_method(device->handle, "_DSW")) 1039 device->power.flags.dsw_present = 1; 1040 1041 /* 1042 * Enumerate supported power management states 1043 */ 1044 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1045 acpi_bus_init_power_state(device, i); 1046 1047 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1048 1049 /* Set the defaults for D0 and D3hot (always supported). */ 1050 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1051 device->power.states[ACPI_STATE_D0].power = 100; 1052 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1053 1054 /* 1055 * Use power resources only if the D0 list of them is populated, because 1056 * some platforms may provide _PR3 only to indicate D3cold support and 1057 * in those cases the power resources list returned by it may be bogus. 1058 */ 1059 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1060 device->power.flags.power_resources = 1; 1061 /* 1062 * D3cold is supported if the D3hot list of power resources is 1063 * not empty. 1064 */ 1065 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1066 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1067 } 1068 1069 if (acpi_bus_init_power(device)) 1070 device->flags.power_manageable = 0; 1071 } 1072 1073 static void acpi_bus_get_flags(struct acpi_device *device) 1074 { 1075 /* Presence of _STA indicates 'dynamic_status' */ 1076 if (acpi_has_method(device->handle, "_STA")) 1077 device->flags.dynamic_status = 1; 1078 1079 /* Presence of _RMV indicates 'removable' */ 1080 if (acpi_has_method(device->handle, "_RMV")) 1081 device->flags.removable = 1; 1082 1083 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1084 if (acpi_has_method(device->handle, "_EJD") || 1085 acpi_has_method(device->handle, "_EJ0")) 1086 device->flags.ejectable = 1; 1087 } 1088 1089 static void acpi_device_get_busid(struct acpi_device *device) 1090 { 1091 char bus_id[5] = { '?', 0 }; 1092 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1093 int i = 0; 1094 1095 /* 1096 * Bus ID 1097 * ------ 1098 * The device's Bus ID is simply the object name. 1099 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1100 */ 1101 if (ACPI_IS_ROOT_DEVICE(device)) { 1102 strcpy(device->pnp.bus_id, "ACPI"); 1103 return; 1104 } 1105 1106 switch (device->device_type) { 1107 case ACPI_BUS_TYPE_POWER_BUTTON: 1108 strcpy(device->pnp.bus_id, "PWRF"); 1109 break; 1110 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1111 strcpy(device->pnp.bus_id, "SLPF"); 1112 break; 1113 case ACPI_BUS_TYPE_ECDT_EC: 1114 strcpy(device->pnp.bus_id, "ECDT"); 1115 break; 1116 default: 1117 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1118 /* Clean up trailing underscores (if any) */ 1119 for (i = 3; i > 1; i--) { 1120 if (bus_id[i] == '_') 1121 bus_id[i] = '\0'; 1122 else 1123 break; 1124 } 1125 strcpy(device->pnp.bus_id, bus_id); 1126 break; 1127 } 1128 } 1129 1130 /* 1131 * acpi_ata_match - see if an acpi object is an ATA device 1132 * 1133 * If an acpi object has one of the ACPI ATA methods defined, 1134 * then we can safely call it an ATA device. 1135 */ 1136 bool acpi_ata_match(acpi_handle handle) 1137 { 1138 return acpi_has_method(handle, "_GTF") || 1139 acpi_has_method(handle, "_GTM") || 1140 acpi_has_method(handle, "_STM") || 1141 acpi_has_method(handle, "_SDD"); 1142 } 1143 1144 /* 1145 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1146 * 1147 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1148 * then we can safely call it an ejectable drive bay 1149 */ 1150 bool acpi_bay_match(acpi_handle handle) 1151 { 1152 acpi_handle phandle; 1153 1154 if (!acpi_has_method(handle, "_EJ0")) 1155 return false; 1156 if (acpi_ata_match(handle)) 1157 return true; 1158 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1159 return false; 1160 1161 return acpi_ata_match(phandle); 1162 } 1163 1164 bool acpi_device_is_battery(struct acpi_device *adev) 1165 { 1166 struct acpi_hardware_id *hwid; 1167 1168 list_for_each_entry(hwid, &adev->pnp.ids, list) 1169 if (!strcmp("PNP0C0A", hwid->id)) 1170 return true; 1171 1172 return false; 1173 } 1174 1175 static bool is_ejectable_bay(struct acpi_device *adev) 1176 { 1177 acpi_handle handle = adev->handle; 1178 1179 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1180 return true; 1181 1182 return acpi_bay_match(handle); 1183 } 1184 1185 /* 1186 * acpi_dock_match - see if an acpi object has a _DCK method 1187 */ 1188 bool acpi_dock_match(acpi_handle handle) 1189 { 1190 return acpi_has_method(handle, "_DCK"); 1191 } 1192 1193 static acpi_status 1194 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1195 void **return_value) 1196 { 1197 long *cap = context; 1198 1199 if (acpi_has_method(handle, "_BCM") && 1200 acpi_has_method(handle, "_BCL")) { 1201 acpi_handle_debug(handle, "Found generic backlight support\n"); 1202 *cap |= ACPI_VIDEO_BACKLIGHT; 1203 /* We have backlight support, no need to scan further */ 1204 return AE_CTRL_TERMINATE; 1205 } 1206 return 0; 1207 } 1208 1209 /* Returns true if the ACPI object is a video device which can be 1210 * handled by video.ko. 1211 * The device will get a Linux specific CID added in scan.c to 1212 * identify the device as an ACPI graphics device 1213 * Be aware that the graphics device may not be physically present 1214 * Use acpi_video_get_capabilities() to detect general ACPI video 1215 * capabilities of present cards 1216 */ 1217 long acpi_is_video_device(acpi_handle handle) 1218 { 1219 long video_caps = 0; 1220 1221 /* Is this device able to support video switching ? */ 1222 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1223 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1224 1225 /* Is this device able to retrieve a video ROM ? */ 1226 if (acpi_has_method(handle, "_ROM")) 1227 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1228 1229 /* Is this device able to configure which video head to be POSTed ? */ 1230 if (acpi_has_method(handle, "_VPO") && 1231 acpi_has_method(handle, "_GPD") && 1232 acpi_has_method(handle, "_SPD")) 1233 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1234 1235 /* Only check for backlight functionality if one of the above hit. */ 1236 if (video_caps) 1237 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1238 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1239 &video_caps, NULL); 1240 1241 return video_caps; 1242 } 1243 EXPORT_SYMBOL(acpi_is_video_device); 1244 1245 const char *acpi_device_hid(struct acpi_device *device) 1246 { 1247 struct acpi_hardware_id *hid; 1248 1249 if (list_empty(&device->pnp.ids)) 1250 return dummy_hid; 1251 1252 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list); 1253 return hid->id; 1254 } 1255 EXPORT_SYMBOL(acpi_device_hid); 1256 1257 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1258 { 1259 struct acpi_hardware_id *id; 1260 1261 id = kmalloc(sizeof(*id), GFP_KERNEL); 1262 if (!id) 1263 return; 1264 1265 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1266 if (!id->id) { 1267 kfree(id); 1268 return; 1269 } 1270 1271 list_add_tail(&id->list, &pnp->ids); 1272 pnp->type.hardware_id = 1; 1273 } 1274 1275 /* 1276 * Old IBM workstations have a DSDT bug wherein the SMBus object 1277 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1278 * prefix. Work around this. 1279 */ 1280 static bool acpi_ibm_smbus_match(acpi_handle handle) 1281 { 1282 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1283 struct acpi_buffer path = { sizeof(node_name), node_name }; 1284 1285 if (!dmi_name_in_vendors("IBM")) 1286 return false; 1287 1288 /* Look for SMBS object */ 1289 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1290 strcmp("SMBS", path.pointer)) 1291 return false; 1292 1293 /* Does it have the necessary (but misnamed) methods? */ 1294 if (acpi_has_method(handle, "SBI") && 1295 acpi_has_method(handle, "SBR") && 1296 acpi_has_method(handle, "SBW")) 1297 return true; 1298 1299 return false; 1300 } 1301 1302 static bool acpi_object_is_system_bus(acpi_handle handle) 1303 { 1304 acpi_handle tmp; 1305 1306 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1307 tmp == handle) 1308 return true; 1309 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1310 tmp == handle) 1311 return true; 1312 1313 return false; 1314 } 1315 1316 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1317 int device_type) 1318 { 1319 struct acpi_device_info *info = NULL; 1320 struct acpi_pnp_device_id_list *cid_list; 1321 int i; 1322 1323 switch (device_type) { 1324 case ACPI_BUS_TYPE_DEVICE: 1325 if (handle == ACPI_ROOT_OBJECT) { 1326 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1327 break; 1328 } 1329 1330 acpi_get_object_info(handle, &info); 1331 if (!info) { 1332 pr_err("%s: Error reading device info\n", __func__); 1333 return; 1334 } 1335 1336 if (info->valid & ACPI_VALID_HID) { 1337 acpi_add_id(pnp, info->hardware_id.string); 1338 pnp->type.platform_id = 1; 1339 } 1340 if (info->valid & ACPI_VALID_CID) { 1341 cid_list = &info->compatible_id_list; 1342 for (i = 0; i < cid_list->count; i++) 1343 acpi_add_id(pnp, cid_list->ids[i].string); 1344 } 1345 if (info->valid & ACPI_VALID_ADR) { 1346 pnp->bus_address = info->address; 1347 pnp->type.bus_address = 1; 1348 } 1349 if (info->valid & ACPI_VALID_UID) 1350 pnp->unique_id = kstrdup(info->unique_id.string, 1351 GFP_KERNEL); 1352 if (info->valid & ACPI_VALID_CLS) 1353 acpi_add_id(pnp, info->class_code.string); 1354 1355 kfree(info); 1356 1357 /* 1358 * Some devices don't reliably have _HIDs & _CIDs, so add 1359 * synthetic HIDs to make sure drivers can find them. 1360 */ 1361 if (acpi_is_video_device(handle)) 1362 acpi_add_id(pnp, ACPI_VIDEO_HID); 1363 else if (acpi_bay_match(handle)) 1364 acpi_add_id(pnp, ACPI_BAY_HID); 1365 else if (acpi_dock_match(handle)) 1366 acpi_add_id(pnp, ACPI_DOCK_HID); 1367 else if (acpi_ibm_smbus_match(handle)) 1368 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1369 else if (list_empty(&pnp->ids) && 1370 acpi_object_is_system_bus(handle)) { 1371 /* \_SB, \_TZ, LNXSYBUS */ 1372 acpi_add_id(pnp, ACPI_BUS_HID); 1373 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1374 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1375 } 1376 1377 break; 1378 case ACPI_BUS_TYPE_POWER: 1379 acpi_add_id(pnp, ACPI_POWER_HID); 1380 break; 1381 case ACPI_BUS_TYPE_PROCESSOR: 1382 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1383 break; 1384 case ACPI_BUS_TYPE_THERMAL: 1385 acpi_add_id(pnp, ACPI_THERMAL_HID); 1386 break; 1387 case ACPI_BUS_TYPE_POWER_BUTTON: 1388 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1389 break; 1390 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1391 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1392 break; 1393 case ACPI_BUS_TYPE_ECDT_EC: 1394 acpi_add_id(pnp, ACPI_ECDT_HID); 1395 break; 1396 } 1397 } 1398 1399 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1400 { 1401 struct acpi_hardware_id *id, *tmp; 1402 1403 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1404 kfree_const(id->id); 1405 kfree(id); 1406 } 1407 kfree(pnp->unique_id); 1408 } 1409 1410 /** 1411 * acpi_dma_supported - Check DMA support for the specified device. 1412 * @adev: The pointer to acpi device 1413 * 1414 * Return false if DMA is not supported. Otherwise, return true 1415 */ 1416 bool acpi_dma_supported(const struct acpi_device *adev) 1417 { 1418 if (!adev) 1419 return false; 1420 1421 if (adev->flags.cca_seen) 1422 return true; 1423 1424 /* 1425 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1426 * DMA on "Intel platforms". Presumably that includes all x86 and 1427 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1428 */ 1429 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1430 return true; 1431 1432 return false; 1433 } 1434 1435 /** 1436 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1437 * @adev: The pointer to acpi device 1438 * 1439 * Return enum dev_dma_attr. 1440 */ 1441 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1442 { 1443 if (!acpi_dma_supported(adev)) 1444 return DEV_DMA_NOT_SUPPORTED; 1445 1446 if (adev->flags.coherent_dma) 1447 return DEV_DMA_COHERENT; 1448 else 1449 return DEV_DMA_NON_COHERENT; 1450 } 1451 1452 /** 1453 * acpi_dma_get_range() - Get device DMA parameters. 1454 * 1455 * @dev: device to configure 1456 * @dma_addr: pointer device DMA address result 1457 * @offset: pointer to the DMA offset result 1458 * @size: pointer to DMA range size result 1459 * 1460 * Evaluate DMA regions and return respectively DMA region start, offset 1461 * and size in dma_addr, offset and size on parsing success; it does not 1462 * update the passed in values on failure. 1463 * 1464 * Return 0 on success, < 0 on failure. 1465 */ 1466 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, 1467 u64 *size) 1468 { 1469 struct acpi_device *adev; 1470 LIST_HEAD(list); 1471 struct resource_entry *rentry; 1472 int ret; 1473 struct device *dma_dev = dev; 1474 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0; 1475 1476 /* 1477 * Walk the device tree chasing an ACPI companion with a _DMA 1478 * object while we go. Stop if we find a device with an ACPI 1479 * companion containing a _DMA method. 1480 */ 1481 do { 1482 adev = ACPI_COMPANION(dma_dev); 1483 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1484 break; 1485 1486 dma_dev = dma_dev->parent; 1487 } while (dma_dev); 1488 1489 if (!dma_dev) 1490 return -ENODEV; 1491 1492 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1493 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1494 return -EINVAL; 1495 } 1496 1497 ret = acpi_dev_get_dma_resources(adev, &list); 1498 if (ret > 0) { 1499 list_for_each_entry(rentry, &list, node) { 1500 if (dma_offset && rentry->offset != dma_offset) { 1501 ret = -EINVAL; 1502 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n"); 1503 goto out; 1504 } 1505 dma_offset = rentry->offset; 1506 1507 /* Take lower and upper limits */ 1508 if (rentry->res->start < dma_start) 1509 dma_start = rentry->res->start; 1510 if (rentry->res->end > dma_end) 1511 dma_end = rentry->res->end; 1512 } 1513 1514 if (dma_start >= dma_end) { 1515 ret = -EINVAL; 1516 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1517 goto out; 1518 } 1519 1520 *dma_addr = dma_start - dma_offset; 1521 len = dma_end - dma_start; 1522 *size = max(len, len + 1); 1523 *offset = dma_offset; 1524 } 1525 out: 1526 acpi_dev_free_resource_list(&list); 1527 1528 return ret >= 0 ? 0 : ret; 1529 } 1530 1531 #ifdef CONFIG_IOMMU_API 1532 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1533 struct fwnode_handle *fwnode, 1534 const struct iommu_ops *ops) 1535 { 1536 int ret = iommu_fwspec_init(dev, fwnode, ops); 1537 1538 if (!ret) 1539 ret = iommu_fwspec_add_ids(dev, &id, 1); 1540 1541 return ret; 1542 } 1543 1544 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev) 1545 { 1546 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1547 1548 return fwspec ? fwspec->ops : NULL; 1549 } 1550 1551 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1552 const u32 *id_in) 1553 { 1554 int err; 1555 const struct iommu_ops *ops; 1556 1557 /* 1558 * If we already translated the fwspec there is nothing left to do, 1559 * return the iommu_ops. 1560 */ 1561 ops = acpi_iommu_fwspec_ops(dev); 1562 if (ops) 1563 return ops; 1564 1565 err = iort_iommu_configure_id(dev, id_in); 1566 if (err && err != -EPROBE_DEFER) 1567 err = viot_iommu_configure(dev); 1568 1569 /* 1570 * If we have reason to believe the IOMMU driver missed the initial 1571 * iommu_probe_device() call for dev, replay it to get things in order. 1572 */ 1573 if (!err && dev->bus && !device_iommu_mapped(dev)) 1574 err = iommu_probe_device(dev); 1575 1576 /* Ignore all other errors apart from EPROBE_DEFER */ 1577 if (err == -EPROBE_DEFER) { 1578 return ERR_PTR(err); 1579 } else if (err) { 1580 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err); 1581 return NULL; 1582 } 1583 return acpi_iommu_fwspec_ops(dev); 1584 } 1585 1586 #else /* !CONFIG_IOMMU_API */ 1587 1588 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1589 struct fwnode_handle *fwnode, 1590 const struct iommu_ops *ops) 1591 { 1592 return -ENODEV; 1593 } 1594 1595 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1596 const u32 *id_in) 1597 { 1598 return NULL; 1599 } 1600 1601 #endif /* !CONFIG_IOMMU_API */ 1602 1603 /** 1604 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1605 * @dev: The pointer to the device 1606 * @attr: device dma attributes 1607 * @input_id: input device id const value pointer 1608 */ 1609 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1610 const u32 *input_id) 1611 { 1612 const struct iommu_ops *iommu; 1613 u64 dma_addr = 0, size = 0; 1614 1615 if (attr == DEV_DMA_NOT_SUPPORTED) { 1616 set_dma_ops(dev, &dma_dummy_ops); 1617 return 0; 1618 } 1619 1620 acpi_arch_dma_setup(dev, &dma_addr, &size); 1621 1622 iommu = acpi_iommu_configure_id(dev, input_id); 1623 if (PTR_ERR(iommu) == -EPROBE_DEFER) 1624 return -EPROBE_DEFER; 1625 1626 arch_setup_dma_ops(dev, dma_addr, size, 1627 iommu, attr == DEV_DMA_COHERENT); 1628 1629 return 0; 1630 } 1631 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1632 1633 static void acpi_init_coherency(struct acpi_device *adev) 1634 { 1635 unsigned long long cca = 0; 1636 acpi_status status; 1637 struct acpi_device *parent = adev->parent; 1638 1639 if (parent && parent->flags.cca_seen) { 1640 /* 1641 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1642 * already saw one. 1643 */ 1644 adev->flags.cca_seen = 1; 1645 cca = parent->flags.coherent_dma; 1646 } else { 1647 status = acpi_evaluate_integer(adev->handle, "_CCA", 1648 NULL, &cca); 1649 if (ACPI_SUCCESS(status)) 1650 adev->flags.cca_seen = 1; 1651 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1652 /* 1653 * If architecture does not specify that _CCA is 1654 * required for DMA-able devices (e.g. x86), 1655 * we default to _CCA=1. 1656 */ 1657 cca = 1; 1658 else 1659 acpi_handle_debug(adev->handle, 1660 "ACPI device is missing _CCA.\n"); 1661 } 1662 1663 adev->flags.coherent_dma = cca; 1664 } 1665 1666 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1667 { 1668 bool *is_serial_bus_slave_p = data; 1669 1670 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1671 return 1; 1672 1673 *is_serial_bus_slave_p = true; 1674 1675 /* no need to do more checking */ 1676 return -1; 1677 } 1678 1679 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1680 { 1681 struct acpi_device *parent = device->parent; 1682 static const struct acpi_device_id indirect_io_hosts[] = { 1683 {"HISI0191", 0}, 1684 {} 1685 }; 1686 1687 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1688 } 1689 1690 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1691 { 1692 struct list_head resource_list; 1693 bool is_serial_bus_slave = false; 1694 /* 1695 * These devices have multiple I2cSerialBus resources and an i2c-client 1696 * must be instantiated for each, each with its own i2c_device_id. 1697 * Normally we only instantiate an i2c-client for the first resource, 1698 * using the ACPI HID as id. These special cases are handled by the 1699 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows 1700 * which i2c_device_id to use for each resource. 1701 */ 1702 static const struct acpi_device_id i2c_multi_instantiate_ids[] = { 1703 {"BSG1160", }, 1704 {"BSG2150", }, 1705 {"INT33FE", }, 1706 {"INT3515", }, 1707 {} 1708 }; 1709 1710 if (acpi_is_indirect_io_slave(device)) 1711 return true; 1712 1713 /* Macs use device properties in lieu of _CRS resources */ 1714 if (x86_apple_machine && 1715 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1716 fwnode_property_present(&device->fwnode, "i2cAddress") || 1717 fwnode_property_present(&device->fwnode, "baud"))) 1718 return true; 1719 1720 /* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */ 1721 if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids)) 1722 return false; 1723 1724 INIT_LIST_HEAD(&resource_list); 1725 acpi_dev_get_resources(device, &resource_list, 1726 acpi_check_serial_bus_slave, 1727 &is_serial_bus_slave); 1728 acpi_dev_free_resource_list(&resource_list); 1729 1730 return is_serial_bus_slave; 1731 } 1732 1733 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1734 int type) 1735 { 1736 INIT_LIST_HEAD(&device->pnp.ids); 1737 device->device_type = type; 1738 device->handle = handle; 1739 device->parent = acpi_bus_get_parent(handle); 1740 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1741 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1742 acpi_device_get_busid(device); 1743 acpi_set_pnp_ids(handle, &device->pnp, type); 1744 acpi_init_properties(device); 1745 acpi_bus_get_flags(device); 1746 device->flags.match_driver = false; 1747 device->flags.initialized = true; 1748 device->flags.enumeration_by_parent = 1749 acpi_device_enumeration_by_parent(device); 1750 acpi_device_clear_enumerated(device); 1751 device_initialize(&device->dev); 1752 dev_set_uevent_suppress(&device->dev, true); 1753 acpi_init_coherency(device); 1754 } 1755 1756 static void acpi_scan_dep_init(struct acpi_device *adev) 1757 { 1758 struct acpi_dep_data *dep; 1759 1760 list_for_each_entry(dep, &acpi_dep_list, node) { 1761 if (dep->consumer == adev->handle) 1762 adev->dep_unmet++; 1763 } 1764 } 1765 1766 void acpi_device_add_finalize(struct acpi_device *device) 1767 { 1768 dev_set_uevent_suppress(&device->dev, false); 1769 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1770 } 1771 1772 static void acpi_scan_init_status(struct acpi_device *adev) 1773 { 1774 if (acpi_bus_get_status(adev)) 1775 acpi_set_device_status(adev, 0); 1776 } 1777 1778 static int acpi_add_single_object(struct acpi_device **child, 1779 acpi_handle handle, int type, bool dep_init) 1780 { 1781 struct acpi_device *device; 1782 bool release_dep_lock = false; 1783 int result; 1784 1785 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1786 if (!device) 1787 return -ENOMEM; 1788 1789 acpi_init_device_object(device, handle, type); 1790 /* 1791 * Getting the status is delayed till here so that we can call 1792 * acpi_bus_get_status() and use its quirk handling. Note that 1793 * this must be done before the get power-/wakeup_dev-flags calls. 1794 */ 1795 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1796 if (dep_init) { 1797 mutex_lock(&acpi_dep_list_lock); 1798 /* 1799 * Hold the lock until the acpi_tie_acpi_dev() call 1800 * below to prevent concurrent acpi_scan_clear_dep() 1801 * from deleting a dependency list entry without 1802 * updating dep_unmet for the device. 1803 */ 1804 release_dep_lock = true; 1805 acpi_scan_dep_init(device); 1806 } 1807 acpi_scan_init_status(device); 1808 } 1809 1810 acpi_bus_get_power_flags(device); 1811 acpi_bus_get_wakeup_device_flags(device); 1812 1813 result = acpi_tie_acpi_dev(device); 1814 1815 if (release_dep_lock) 1816 mutex_unlock(&acpi_dep_list_lock); 1817 1818 if (!result) 1819 result = __acpi_device_add(device, acpi_device_release); 1820 1821 if (result) { 1822 acpi_device_release(&device->dev); 1823 return result; 1824 } 1825 1826 acpi_power_add_remove_device(device, true); 1827 acpi_device_add_finalize(device); 1828 1829 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1830 dev_name(&device->dev), device->parent ? 1831 dev_name(&device->parent->dev) : "(null)"); 1832 1833 *child = device; 1834 return 0; 1835 } 1836 1837 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1838 void *context) 1839 { 1840 struct resource *res = context; 1841 1842 if (acpi_dev_resource_memory(ares, res)) 1843 return AE_CTRL_TERMINATE; 1844 1845 return AE_OK; 1846 } 1847 1848 static bool acpi_device_should_be_hidden(acpi_handle handle) 1849 { 1850 acpi_status status; 1851 struct resource res; 1852 1853 /* Check if it should ignore the UART device */ 1854 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1855 return false; 1856 1857 /* 1858 * The UART device described in SPCR table is assumed to have only one 1859 * memory resource present. So we only look for the first one here. 1860 */ 1861 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1862 acpi_get_resource_memory, &res); 1863 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1864 return false; 1865 1866 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1867 &res.start); 1868 1869 return true; 1870 } 1871 1872 bool acpi_device_is_present(const struct acpi_device *adev) 1873 { 1874 return adev->status.present || adev->status.functional; 1875 } 1876 1877 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1878 const char *idstr, 1879 const struct acpi_device_id **matchid) 1880 { 1881 const struct acpi_device_id *devid; 1882 1883 if (handler->match) 1884 return handler->match(idstr, matchid); 1885 1886 for (devid = handler->ids; devid->id[0]; devid++) 1887 if (!strcmp((char *)devid->id, idstr)) { 1888 if (matchid) 1889 *matchid = devid; 1890 1891 return true; 1892 } 1893 1894 return false; 1895 } 1896 1897 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1898 const struct acpi_device_id **matchid) 1899 { 1900 struct acpi_scan_handler *handler; 1901 1902 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1903 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1904 return handler; 1905 1906 return NULL; 1907 } 1908 1909 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 1910 { 1911 if (!!hotplug->enabled == !!val) 1912 return; 1913 1914 mutex_lock(&acpi_scan_lock); 1915 1916 hotplug->enabled = val; 1917 1918 mutex_unlock(&acpi_scan_lock); 1919 } 1920 1921 static void acpi_scan_init_hotplug(struct acpi_device *adev) 1922 { 1923 struct acpi_hardware_id *hwid; 1924 1925 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 1926 acpi_dock_add(adev); 1927 return; 1928 } 1929 list_for_each_entry(hwid, &adev->pnp.ids, list) { 1930 struct acpi_scan_handler *handler; 1931 1932 handler = acpi_scan_match_handler(hwid->id, NULL); 1933 if (handler) { 1934 adev->flags.hotplug_notify = true; 1935 break; 1936 } 1937 } 1938 } 1939 1940 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep) 1941 { 1942 struct acpi_handle_list dep_devices; 1943 acpi_status status; 1944 u32 count; 1945 int i; 1946 1947 /* 1948 * Check for _HID here to avoid deferring the enumeration of: 1949 * 1. PCI devices. 1950 * 2. ACPI nodes describing USB ports. 1951 * Still, checking for _HID catches more then just these cases ... 1952 */ 1953 if (!check_dep || !acpi_has_method(handle, "_DEP") || 1954 !acpi_has_method(handle, "_HID")) 1955 return 0; 1956 1957 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices); 1958 if (ACPI_FAILURE(status)) { 1959 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 1960 return 0; 1961 } 1962 1963 for (count = 0, i = 0; i < dep_devices.count; i++) { 1964 struct acpi_device_info *info; 1965 struct acpi_dep_data *dep; 1966 bool skip; 1967 1968 status = acpi_get_object_info(dep_devices.handles[i], &info); 1969 if (ACPI_FAILURE(status)) { 1970 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 1971 continue; 1972 } 1973 1974 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 1975 kfree(info); 1976 1977 if (skip) 1978 continue; 1979 1980 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 1981 if (!dep) 1982 continue; 1983 1984 count++; 1985 1986 dep->supplier = dep_devices.handles[i]; 1987 dep->consumer = handle; 1988 1989 mutex_lock(&acpi_dep_list_lock); 1990 list_add_tail(&dep->node , &acpi_dep_list); 1991 mutex_unlock(&acpi_dep_list_lock); 1992 } 1993 1994 return count; 1995 } 1996 1997 static bool acpi_bus_scan_second_pass; 1998 1999 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep, 2000 struct acpi_device **adev_p) 2001 { 2002 struct acpi_device *device = NULL; 2003 acpi_object_type acpi_type; 2004 int type; 2005 2006 acpi_bus_get_device(handle, &device); 2007 if (device) 2008 goto out; 2009 2010 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2011 return AE_OK; 2012 2013 switch (acpi_type) { 2014 case ACPI_TYPE_DEVICE: 2015 if (acpi_device_should_be_hidden(handle)) 2016 return AE_OK; 2017 2018 /* Bail out if there are dependencies. */ 2019 if (acpi_scan_check_dep(handle, check_dep) > 0) { 2020 acpi_bus_scan_second_pass = true; 2021 return AE_CTRL_DEPTH; 2022 } 2023 2024 fallthrough; 2025 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2026 type = ACPI_BUS_TYPE_DEVICE; 2027 break; 2028 2029 case ACPI_TYPE_PROCESSOR: 2030 type = ACPI_BUS_TYPE_PROCESSOR; 2031 break; 2032 2033 case ACPI_TYPE_THERMAL: 2034 type = ACPI_BUS_TYPE_THERMAL; 2035 break; 2036 2037 case ACPI_TYPE_POWER: 2038 acpi_add_power_resource(handle); 2039 fallthrough; 2040 default: 2041 return AE_OK; 2042 } 2043 2044 /* 2045 * If check_dep is true at this point, the device has no dependencies, 2046 * or the creation of the device object would have been postponed above. 2047 */ 2048 acpi_add_single_object(&device, handle, type, !check_dep); 2049 if (!device) 2050 return AE_CTRL_DEPTH; 2051 2052 acpi_scan_init_hotplug(device); 2053 2054 out: 2055 if (!*adev_p) 2056 *adev_p = device; 2057 2058 return AE_OK; 2059 } 2060 2061 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2062 void *not_used, void **ret_p) 2063 { 2064 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2065 } 2066 2067 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2068 void *not_used, void **ret_p) 2069 { 2070 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2071 } 2072 2073 static void acpi_default_enumeration(struct acpi_device *device) 2074 { 2075 /* 2076 * Do not enumerate devices with enumeration_by_parent flag set as 2077 * they will be enumerated by their respective parents. 2078 */ 2079 if (!device->flags.enumeration_by_parent) { 2080 acpi_create_platform_device(device, NULL); 2081 acpi_device_set_enumerated(device); 2082 } else { 2083 blocking_notifier_call_chain(&acpi_reconfig_chain, 2084 ACPI_RECONFIG_DEVICE_ADD, device); 2085 } 2086 } 2087 2088 static const struct acpi_device_id generic_device_ids[] = { 2089 {ACPI_DT_NAMESPACE_HID, }, 2090 {"", }, 2091 }; 2092 2093 static int acpi_generic_device_attach(struct acpi_device *adev, 2094 const struct acpi_device_id *not_used) 2095 { 2096 /* 2097 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2098 * below can be unconditional. 2099 */ 2100 if (adev->data.of_compatible) 2101 acpi_default_enumeration(adev); 2102 2103 return 1; 2104 } 2105 2106 static struct acpi_scan_handler generic_device_handler = { 2107 .ids = generic_device_ids, 2108 .attach = acpi_generic_device_attach, 2109 }; 2110 2111 static int acpi_scan_attach_handler(struct acpi_device *device) 2112 { 2113 struct acpi_hardware_id *hwid; 2114 int ret = 0; 2115 2116 list_for_each_entry(hwid, &device->pnp.ids, list) { 2117 const struct acpi_device_id *devid; 2118 struct acpi_scan_handler *handler; 2119 2120 handler = acpi_scan_match_handler(hwid->id, &devid); 2121 if (handler) { 2122 if (!handler->attach) { 2123 device->pnp.type.platform_id = 0; 2124 continue; 2125 } 2126 device->handler = handler; 2127 ret = handler->attach(device, devid); 2128 if (ret > 0) 2129 break; 2130 2131 device->handler = NULL; 2132 if (ret < 0) 2133 break; 2134 } 2135 } 2136 2137 return ret; 2138 } 2139 2140 static void acpi_bus_attach(struct acpi_device *device, bool first_pass) 2141 { 2142 struct acpi_device *child; 2143 bool skip = !first_pass && device->flags.visited; 2144 acpi_handle ejd; 2145 int ret; 2146 2147 if (skip) 2148 goto ok; 2149 2150 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2151 register_dock_dependent_device(device, ejd); 2152 2153 acpi_bus_get_status(device); 2154 /* Skip devices that are not present. */ 2155 if (!acpi_device_is_present(device)) { 2156 device->flags.initialized = false; 2157 acpi_device_clear_enumerated(device); 2158 device->flags.power_manageable = 0; 2159 return; 2160 } 2161 if (device->handler) 2162 goto ok; 2163 2164 if (!device->flags.initialized) { 2165 device->flags.power_manageable = 2166 device->power.states[ACPI_STATE_D0].flags.valid; 2167 if (acpi_bus_init_power(device)) 2168 device->flags.power_manageable = 0; 2169 2170 device->flags.initialized = true; 2171 } else if (device->flags.visited) { 2172 goto ok; 2173 } 2174 2175 ret = acpi_scan_attach_handler(device); 2176 if (ret < 0) 2177 return; 2178 2179 device->flags.match_driver = true; 2180 if (ret > 0 && !device->flags.enumeration_by_parent) { 2181 acpi_device_set_enumerated(device); 2182 goto ok; 2183 } 2184 2185 ret = device_attach(&device->dev); 2186 if (ret < 0) 2187 return; 2188 2189 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2190 acpi_default_enumeration(device); 2191 else 2192 acpi_device_set_enumerated(device); 2193 2194 ok: 2195 list_for_each_entry(child, &device->children, node) 2196 acpi_bus_attach(child, first_pass); 2197 2198 if (!skip && device->handler && device->handler->hotplug.notify_online) 2199 device->handler->hotplug.notify_online(device); 2200 } 2201 2202 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2203 { 2204 struct acpi_device *adev; 2205 2206 adev = acpi_bus_get_acpi_device(dep->consumer); 2207 if (adev) { 2208 *(struct acpi_device **)data = adev; 2209 return 1; 2210 } 2211 /* Continue parsing if the device object is not present. */ 2212 return 0; 2213 } 2214 2215 struct acpi_scan_clear_dep_work { 2216 struct work_struct work; 2217 struct acpi_device *adev; 2218 }; 2219 2220 static void acpi_scan_clear_dep_fn(struct work_struct *work) 2221 { 2222 struct acpi_scan_clear_dep_work *cdw; 2223 2224 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2225 2226 acpi_scan_lock_acquire(); 2227 acpi_bus_attach(cdw->adev, true); 2228 acpi_scan_lock_release(); 2229 2230 acpi_dev_put(cdw->adev); 2231 kfree(cdw); 2232 } 2233 2234 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2235 { 2236 struct acpi_scan_clear_dep_work *cdw; 2237 2238 if (adev->dep_unmet) 2239 return false; 2240 2241 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2242 if (!cdw) 2243 return false; 2244 2245 cdw->adev = adev; 2246 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2247 /* 2248 * Since the work function may block on the lock until the entire 2249 * initial enumeration of devices is complete, put it into the unbound 2250 * workqueue. 2251 */ 2252 queue_work(system_unbound_wq, &cdw->work); 2253 2254 return true; 2255 } 2256 2257 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2258 { 2259 struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer); 2260 2261 if (adev) { 2262 adev->dep_unmet--; 2263 if (!acpi_scan_clear_dep_queue(adev)) 2264 acpi_dev_put(adev); 2265 } 2266 2267 list_del(&dep->node); 2268 kfree(dep); 2269 2270 return 0; 2271 } 2272 2273 /** 2274 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2275 * @handle: The ACPI handle of the supplier device 2276 * @callback: Pointer to the callback function to apply 2277 * @data: Pointer to some data to pass to the callback 2278 * 2279 * The return value of the callback determines this function's behaviour. If 0 2280 * is returned we continue to iterate over acpi_dep_list. If a positive value 2281 * is returned then the loop is broken but this function returns 0. If a 2282 * negative value is returned by the callback then the loop is broken and that 2283 * value is returned as the final error. 2284 */ 2285 static int acpi_walk_dep_device_list(acpi_handle handle, 2286 int (*callback)(struct acpi_dep_data *, void *), 2287 void *data) 2288 { 2289 struct acpi_dep_data *dep, *tmp; 2290 int ret = 0; 2291 2292 mutex_lock(&acpi_dep_list_lock); 2293 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2294 if (dep->supplier == handle) { 2295 ret = callback(dep, data); 2296 if (ret) 2297 break; 2298 } 2299 } 2300 mutex_unlock(&acpi_dep_list_lock); 2301 2302 return ret > 0 ? 0 : ret; 2303 } 2304 2305 /** 2306 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2307 * @supplier: Pointer to the supplier &struct acpi_device 2308 * 2309 * Clear dependencies on the given device. 2310 */ 2311 void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2312 { 2313 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2314 } 2315 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2316 2317 /** 2318 * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier 2319 * @supplier: Pointer to the dependee device 2320 * 2321 * Returns the first &struct acpi_device which declares itself dependent on 2322 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2323 * 2324 * The caller is responsible for putting the reference to adev when it is no 2325 * longer needed. 2326 */ 2327 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier) 2328 { 2329 struct acpi_device *adev = NULL; 2330 2331 acpi_walk_dep_device_list(supplier->handle, 2332 acpi_dev_get_first_consumer_dev_cb, &adev); 2333 2334 return adev; 2335 } 2336 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev); 2337 2338 /** 2339 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2340 * @handle: Root of the namespace scope to scan. 2341 * 2342 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2343 * found devices. 2344 * 2345 * If no devices were found, -ENODEV is returned, but it does not mean that 2346 * there has been a real error. There just have been no suitable ACPI objects 2347 * in the table trunk from which the kernel could create a device and add an 2348 * appropriate driver. 2349 * 2350 * Must be called under acpi_scan_lock. 2351 */ 2352 int acpi_bus_scan(acpi_handle handle) 2353 { 2354 struct acpi_device *device = NULL; 2355 2356 acpi_bus_scan_second_pass = false; 2357 2358 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2359 2360 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2361 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2362 acpi_bus_check_add_1, NULL, NULL, 2363 (void **)&device); 2364 2365 if (!device) 2366 return -ENODEV; 2367 2368 acpi_bus_attach(device, true); 2369 2370 if (!acpi_bus_scan_second_pass) 2371 return 0; 2372 2373 /* Pass 2: Enumerate all of the remaining devices. */ 2374 2375 device = NULL; 2376 2377 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device))) 2378 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2379 acpi_bus_check_add_2, NULL, NULL, 2380 (void **)&device); 2381 2382 acpi_bus_attach(device, false); 2383 2384 return 0; 2385 } 2386 EXPORT_SYMBOL(acpi_bus_scan); 2387 2388 /** 2389 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2390 * @adev: Root of the ACPI namespace scope to walk. 2391 * 2392 * Must be called under acpi_scan_lock. 2393 */ 2394 void acpi_bus_trim(struct acpi_device *adev) 2395 { 2396 struct acpi_scan_handler *handler = adev->handler; 2397 struct acpi_device *child; 2398 2399 list_for_each_entry_reverse(child, &adev->children, node) 2400 acpi_bus_trim(child); 2401 2402 adev->flags.match_driver = false; 2403 if (handler) { 2404 if (handler->detach) 2405 handler->detach(adev); 2406 2407 adev->handler = NULL; 2408 } else { 2409 device_release_driver(&adev->dev); 2410 } 2411 /* 2412 * Most likely, the device is going away, so put it into D3cold before 2413 * that. 2414 */ 2415 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 2416 adev->flags.initialized = false; 2417 acpi_device_clear_enumerated(adev); 2418 } 2419 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2420 2421 int acpi_bus_register_early_device(int type) 2422 { 2423 struct acpi_device *device = NULL; 2424 int result; 2425 2426 result = acpi_add_single_object(&device, NULL, type, false); 2427 if (result) 2428 return result; 2429 2430 device->flags.match_driver = true; 2431 return device_attach(&device->dev); 2432 } 2433 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2434 2435 static int acpi_bus_scan_fixed(void) 2436 { 2437 int result = 0; 2438 2439 /* 2440 * Enumerate all fixed-feature devices. 2441 */ 2442 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2443 struct acpi_device *device = NULL; 2444 2445 result = acpi_add_single_object(&device, NULL, 2446 ACPI_BUS_TYPE_POWER_BUTTON, false); 2447 if (result) 2448 return result; 2449 2450 device->flags.match_driver = true; 2451 result = device_attach(&device->dev); 2452 if (result < 0) 2453 return result; 2454 2455 device_init_wakeup(&device->dev, true); 2456 } 2457 2458 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2459 struct acpi_device *device = NULL; 2460 2461 result = acpi_add_single_object(&device, NULL, 2462 ACPI_BUS_TYPE_SLEEP_BUTTON, false); 2463 if (result) 2464 return result; 2465 2466 device->flags.match_driver = true; 2467 result = device_attach(&device->dev); 2468 } 2469 2470 return result < 0 ? result : 0; 2471 } 2472 2473 static void __init acpi_get_spcr_uart_addr(void) 2474 { 2475 acpi_status status; 2476 struct acpi_table_spcr *spcr_ptr; 2477 2478 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2479 (struct acpi_table_header **)&spcr_ptr); 2480 if (ACPI_FAILURE(status)) { 2481 pr_warn("STAO table present, but SPCR is missing\n"); 2482 return; 2483 } 2484 2485 spcr_uart_addr = spcr_ptr->serial_port.address; 2486 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2487 } 2488 2489 static bool acpi_scan_initialized; 2490 2491 int __init acpi_scan_init(void) 2492 { 2493 int result; 2494 acpi_status status; 2495 struct acpi_table_stao *stao_ptr; 2496 2497 acpi_pci_root_init(); 2498 acpi_pci_link_init(); 2499 acpi_processor_init(); 2500 acpi_platform_init(); 2501 acpi_lpss_init(); 2502 acpi_apd_init(); 2503 acpi_cmos_rtc_init(); 2504 acpi_container_init(); 2505 acpi_memory_hotplug_init(); 2506 acpi_watchdog_init(); 2507 acpi_pnp_init(); 2508 acpi_int340x_thermal_init(); 2509 acpi_amba_init(); 2510 acpi_init_lpit(); 2511 2512 acpi_scan_add_handler(&generic_device_handler); 2513 2514 /* 2515 * If there is STAO table, check whether it needs to ignore the UART 2516 * device in SPCR table. 2517 */ 2518 status = acpi_get_table(ACPI_SIG_STAO, 0, 2519 (struct acpi_table_header **)&stao_ptr); 2520 if (ACPI_SUCCESS(status)) { 2521 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2522 pr_info("STAO Name List not yet supported.\n"); 2523 2524 if (stao_ptr->ignore_uart) 2525 acpi_get_spcr_uart_addr(); 2526 2527 acpi_put_table((struct acpi_table_header *)stao_ptr); 2528 } 2529 2530 acpi_gpe_apply_masked_gpes(); 2531 acpi_update_all_gpes(); 2532 2533 /* 2534 * Although we call __add_memory() that is documented to require the 2535 * device_hotplug_lock, it is not necessary here because this is an 2536 * early code when userspace or any other code path cannot trigger 2537 * hotplug/hotunplug operations. 2538 */ 2539 mutex_lock(&acpi_scan_lock); 2540 /* 2541 * Enumerate devices in the ACPI namespace. 2542 */ 2543 result = acpi_bus_scan(ACPI_ROOT_OBJECT); 2544 if (result) 2545 goto out; 2546 2547 result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root); 2548 if (result) 2549 goto out; 2550 2551 /* Fixed feature devices do not exist on HW-reduced platform */ 2552 if (!acpi_gbl_reduced_hardware) { 2553 result = acpi_bus_scan_fixed(); 2554 if (result) { 2555 acpi_detach_data(acpi_root->handle, 2556 acpi_scan_drop_device); 2557 acpi_device_del(acpi_root); 2558 acpi_bus_put_acpi_device(acpi_root); 2559 goto out; 2560 } 2561 } 2562 2563 acpi_turn_off_unused_power_resources(); 2564 2565 acpi_scan_initialized = true; 2566 2567 out: 2568 mutex_unlock(&acpi_scan_lock); 2569 return result; 2570 } 2571 2572 static struct acpi_probe_entry *ape; 2573 static int acpi_probe_count; 2574 static DEFINE_MUTEX(acpi_probe_mutex); 2575 2576 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2577 const unsigned long end) 2578 { 2579 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2580 if (!ape->probe_subtbl(header, end)) 2581 acpi_probe_count++; 2582 2583 return 0; 2584 } 2585 2586 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2587 { 2588 int count = 0; 2589 2590 if (acpi_disabled) 2591 return 0; 2592 2593 mutex_lock(&acpi_probe_mutex); 2594 for (ape = ap_head; nr; ape++, nr--) { 2595 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2596 acpi_probe_count = 0; 2597 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2598 count += acpi_probe_count; 2599 } else { 2600 int res; 2601 res = acpi_table_parse(ape->id, ape->probe_table); 2602 if (!res) 2603 count++; 2604 } 2605 } 2606 mutex_unlock(&acpi_probe_mutex); 2607 2608 return count; 2609 } 2610 2611 static void acpi_table_events_fn(struct work_struct *work) 2612 { 2613 acpi_scan_lock_acquire(); 2614 acpi_bus_scan(ACPI_ROOT_OBJECT); 2615 acpi_scan_lock_release(); 2616 2617 kfree(work); 2618 } 2619 2620 void acpi_scan_table_notify(void) 2621 { 2622 struct work_struct *work; 2623 2624 if (!acpi_scan_initialized) 2625 return; 2626 2627 work = kmalloc(sizeof(*work), GFP_KERNEL); 2628 if (!work) 2629 return; 2630 2631 INIT_WORK(work, acpi_table_events_fn); 2632 schedule_work(work); 2633 } 2634 2635 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2636 { 2637 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2638 } 2639 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2640 2641 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2642 { 2643 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2644 } 2645 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2646