1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #define pr_fmt(fmt) "ACPI: " fmt 7 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/acpi.h> 13 #include <linux/acpi_iort.h> 14 #include <linux/acpi_viot.h> 15 #include <linux/iommu.h> 16 #include <linux/signal.h> 17 #include <linux/kthread.h> 18 #include <linux/dmi.h> 19 #include <linux/dma-map-ops.h> 20 #include <linux/platform_data/x86/apple.h> 21 #include <linux/pgtable.h> 22 #include <linux/crc32.h> 23 24 #include "internal.h" 25 26 extern struct acpi_device *acpi_root; 27 28 #define ACPI_BUS_CLASS "system_bus" 29 #define ACPI_BUS_HID "LNXSYBUS" 30 #define ACPI_BUS_DEVICE_NAME "System Bus" 31 32 #define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent) 33 34 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page) 35 36 static const char *dummy_hid = "device"; 37 38 static LIST_HEAD(acpi_dep_list); 39 static DEFINE_MUTEX(acpi_dep_list_lock); 40 LIST_HEAD(acpi_bus_id_list); 41 static DEFINE_MUTEX(acpi_scan_lock); 42 static LIST_HEAD(acpi_scan_handlers_list); 43 DEFINE_MUTEX(acpi_device_lock); 44 LIST_HEAD(acpi_wakeup_device_list); 45 static DEFINE_MUTEX(acpi_hp_context_lock); 46 47 /* 48 * The UART device described by the SPCR table is the only object which needs 49 * special-casing. Everything else is covered by ACPI namespace paths in STAO 50 * table. 51 */ 52 static u64 spcr_uart_addr; 53 54 void acpi_scan_lock_acquire(void) 55 { 56 mutex_lock(&acpi_scan_lock); 57 } 58 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 59 60 void acpi_scan_lock_release(void) 61 { 62 mutex_unlock(&acpi_scan_lock); 63 } 64 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 65 66 void acpi_lock_hp_context(void) 67 { 68 mutex_lock(&acpi_hp_context_lock); 69 } 70 71 void acpi_unlock_hp_context(void) 72 { 73 mutex_unlock(&acpi_hp_context_lock); 74 } 75 76 void acpi_initialize_hp_context(struct acpi_device *adev, 77 struct acpi_hotplug_context *hp, 78 int (*notify)(struct acpi_device *, u32), 79 void (*uevent)(struct acpi_device *, u32)) 80 { 81 acpi_lock_hp_context(); 82 hp->notify = notify; 83 hp->uevent = uevent; 84 acpi_set_hp_context(adev, hp); 85 acpi_unlock_hp_context(); 86 } 87 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 88 89 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 90 { 91 if (!handler) 92 return -EINVAL; 93 94 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 95 return 0; 96 } 97 98 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 99 const char *hotplug_profile_name) 100 { 101 int error; 102 103 error = acpi_scan_add_handler(handler); 104 if (error) 105 return error; 106 107 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 108 return 0; 109 } 110 111 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 112 { 113 struct acpi_device_physical_node *pn; 114 bool offline = true; 115 char *envp[] = { "EVENT=offline", NULL }; 116 117 /* 118 * acpi_container_offline() calls this for all of the container's 119 * children under the container's physical_node_lock lock. 120 */ 121 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 122 123 list_for_each_entry(pn, &adev->physical_node_list, node) 124 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 125 if (uevent) 126 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 127 128 offline = false; 129 break; 130 } 131 132 mutex_unlock(&adev->physical_node_lock); 133 return offline; 134 } 135 136 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 137 void **ret_p) 138 { 139 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 140 struct acpi_device_physical_node *pn; 141 bool second_pass = (bool)data; 142 acpi_status status = AE_OK; 143 144 if (!device) 145 return AE_OK; 146 147 if (device->handler && !device->handler->hotplug.enabled) { 148 *ret_p = &device->dev; 149 return AE_SUPPORT; 150 } 151 152 mutex_lock(&device->physical_node_lock); 153 154 list_for_each_entry(pn, &device->physical_node_list, node) { 155 int ret; 156 157 if (second_pass) { 158 /* Skip devices offlined by the first pass. */ 159 if (pn->put_online) 160 continue; 161 } else { 162 pn->put_online = false; 163 } 164 ret = device_offline(pn->dev); 165 if (ret >= 0) { 166 pn->put_online = !ret; 167 } else { 168 *ret_p = pn->dev; 169 if (second_pass) { 170 status = AE_ERROR; 171 break; 172 } 173 } 174 } 175 176 mutex_unlock(&device->physical_node_lock); 177 178 return status; 179 } 180 181 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 182 void **ret_p) 183 { 184 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 185 struct acpi_device_physical_node *pn; 186 187 if (!device) 188 return AE_OK; 189 190 mutex_lock(&device->physical_node_lock); 191 192 list_for_each_entry(pn, &device->physical_node_list, node) 193 if (pn->put_online) { 194 device_online(pn->dev); 195 pn->put_online = false; 196 } 197 198 mutex_unlock(&device->physical_node_lock); 199 200 return AE_OK; 201 } 202 203 static int acpi_scan_try_to_offline(struct acpi_device *device) 204 { 205 acpi_handle handle = device->handle; 206 struct device *errdev = NULL; 207 acpi_status status; 208 209 /* 210 * Carry out two passes here and ignore errors in the first pass, 211 * because if the devices in question are memory blocks and 212 * CONFIG_MEMCG is set, one of the blocks may hold data structures 213 * that the other blocks depend on, but it is not known in advance which 214 * block holds them. 215 * 216 * If the first pass is successful, the second one isn't needed, though. 217 */ 218 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 219 NULL, acpi_bus_offline, (void *)false, 220 (void **)&errdev); 221 if (status == AE_SUPPORT) { 222 dev_warn(errdev, "Offline disabled.\n"); 223 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 224 acpi_bus_online, NULL, NULL, NULL); 225 return -EPERM; 226 } 227 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 228 if (errdev) { 229 errdev = NULL; 230 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 231 NULL, acpi_bus_offline, (void *)true, 232 (void **)&errdev); 233 if (!errdev) 234 acpi_bus_offline(handle, 0, (void *)true, 235 (void **)&errdev); 236 237 if (errdev) { 238 dev_warn(errdev, "Offline failed.\n"); 239 acpi_bus_online(handle, 0, NULL, NULL); 240 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 241 ACPI_UINT32_MAX, acpi_bus_online, 242 NULL, NULL, NULL); 243 return -EBUSY; 244 } 245 } 246 return 0; 247 } 248 249 static int acpi_scan_hot_remove(struct acpi_device *device) 250 { 251 acpi_handle handle = device->handle; 252 unsigned long long sta; 253 acpi_status status; 254 255 if (device->handler && device->handler->hotplug.demand_offline) { 256 if (!acpi_scan_is_offline(device, true)) 257 return -EBUSY; 258 } else { 259 int error = acpi_scan_try_to_offline(device); 260 if (error) 261 return error; 262 } 263 264 acpi_handle_debug(handle, "Ejecting\n"); 265 266 acpi_bus_trim(device); 267 268 acpi_evaluate_lck(handle, 0); 269 /* 270 * TBD: _EJD support. 271 */ 272 status = acpi_evaluate_ej0(handle); 273 if (status == AE_NOT_FOUND) 274 return -ENODEV; 275 else if (ACPI_FAILURE(status)) 276 return -EIO; 277 278 /* 279 * Verify if eject was indeed successful. If not, log an error 280 * message. No need to call _OST since _EJ0 call was made OK. 281 */ 282 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 283 if (ACPI_FAILURE(status)) { 284 acpi_handle_warn(handle, 285 "Status check after eject failed (0x%x)\n", status); 286 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 287 acpi_handle_warn(handle, 288 "Eject incomplete - status 0x%llx\n", sta); 289 } 290 291 return 0; 292 } 293 294 static int acpi_scan_device_not_present(struct acpi_device *adev) 295 { 296 if (!acpi_device_enumerated(adev)) { 297 dev_warn(&adev->dev, "Still not present\n"); 298 return -EALREADY; 299 } 300 acpi_bus_trim(adev); 301 return 0; 302 } 303 304 static int acpi_scan_device_check(struct acpi_device *adev) 305 { 306 int error; 307 308 acpi_bus_get_status(adev); 309 if (adev->status.present || adev->status.functional) { 310 /* 311 * This function is only called for device objects for which 312 * matching scan handlers exist. The only situation in which 313 * the scan handler is not attached to this device object yet 314 * is when the device has just appeared (either it wasn't 315 * present at all before or it was removed and then added 316 * again). 317 */ 318 if (adev->handler) { 319 dev_warn(&adev->dev, "Already enumerated\n"); 320 return -EALREADY; 321 } 322 error = acpi_bus_scan(adev->handle); 323 if (error) { 324 dev_warn(&adev->dev, "Namespace scan failure\n"); 325 return error; 326 } 327 if (!adev->handler) { 328 dev_warn(&adev->dev, "Enumeration failure\n"); 329 error = -ENODEV; 330 } 331 } else { 332 error = acpi_scan_device_not_present(adev); 333 } 334 return error; 335 } 336 337 static int acpi_scan_bus_check(struct acpi_device *adev) 338 { 339 struct acpi_scan_handler *handler = adev->handler; 340 struct acpi_device *child; 341 int error; 342 343 acpi_bus_get_status(adev); 344 if (!(adev->status.present || adev->status.functional)) { 345 acpi_scan_device_not_present(adev); 346 return 0; 347 } 348 if (handler && handler->hotplug.scan_dependent) 349 return handler->hotplug.scan_dependent(adev); 350 351 error = acpi_bus_scan(adev->handle); 352 if (error) { 353 dev_warn(&adev->dev, "Namespace scan failure\n"); 354 return error; 355 } 356 list_for_each_entry(child, &adev->children, node) { 357 error = acpi_scan_bus_check(child); 358 if (error) 359 return error; 360 } 361 return 0; 362 } 363 364 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 365 { 366 switch (type) { 367 case ACPI_NOTIFY_BUS_CHECK: 368 return acpi_scan_bus_check(adev); 369 case ACPI_NOTIFY_DEVICE_CHECK: 370 return acpi_scan_device_check(adev); 371 case ACPI_NOTIFY_EJECT_REQUEST: 372 case ACPI_OST_EC_OSPM_EJECT: 373 if (adev->handler && !adev->handler->hotplug.enabled) { 374 dev_info(&adev->dev, "Eject disabled\n"); 375 return -EPERM; 376 } 377 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 378 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 379 return acpi_scan_hot_remove(adev); 380 } 381 return -EINVAL; 382 } 383 384 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 385 { 386 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 387 int error = -ENODEV; 388 389 lock_device_hotplug(); 390 mutex_lock(&acpi_scan_lock); 391 392 /* 393 * The device object's ACPI handle cannot become invalid as long as we 394 * are holding acpi_scan_lock, but it might have become invalid before 395 * that lock was acquired. 396 */ 397 if (adev->handle == INVALID_ACPI_HANDLE) 398 goto err_out; 399 400 if (adev->flags.is_dock_station) { 401 error = dock_notify(adev, src); 402 } else if (adev->flags.hotplug_notify) { 403 error = acpi_generic_hotplug_event(adev, src); 404 } else { 405 int (*notify)(struct acpi_device *, u32); 406 407 acpi_lock_hp_context(); 408 notify = adev->hp ? adev->hp->notify : NULL; 409 acpi_unlock_hp_context(); 410 /* 411 * There may be additional notify handlers for device objects 412 * without the .event() callback, so ignore them here. 413 */ 414 if (notify) 415 error = notify(adev, src); 416 else 417 goto out; 418 } 419 switch (error) { 420 case 0: 421 ost_code = ACPI_OST_SC_SUCCESS; 422 break; 423 case -EPERM: 424 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 425 break; 426 case -EBUSY: 427 ost_code = ACPI_OST_SC_DEVICE_BUSY; 428 break; 429 default: 430 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 431 break; 432 } 433 434 err_out: 435 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 436 437 out: 438 acpi_bus_put_acpi_device(adev); 439 mutex_unlock(&acpi_scan_lock); 440 unlock_device_hotplug(); 441 } 442 443 static void acpi_free_power_resources_lists(struct acpi_device *device) 444 { 445 int i; 446 447 if (device->wakeup.flags.valid) 448 acpi_power_resources_list_free(&device->wakeup.resources); 449 450 if (!device->power.flags.power_resources) 451 return; 452 453 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 454 struct acpi_device_power_state *ps = &device->power.states[i]; 455 acpi_power_resources_list_free(&ps->resources); 456 } 457 } 458 459 static void acpi_device_release(struct device *dev) 460 { 461 struct acpi_device *acpi_dev = to_acpi_device(dev); 462 463 acpi_free_properties(acpi_dev); 464 acpi_free_pnp_ids(&acpi_dev->pnp); 465 acpi_free_power_resources_lists(acpi_dev); 466 kfree(acpi_dev); 467 } 468 469 static void acpi_device_del(struct acpi_device *device) 470 { 471 struct acpi_device_bus_id *acpi_device_bus_id; 472 473 mutex_lock(&acpi_device_lock); 474 if (device->parent) 475 list_del(&device->node); 476 477 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 478 if (!strcmp(acpi_device_bus_id->bus_id, 479 acpi_device_hid(device))) { 480 ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no); 481 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 482 list_del(&acpi_device_bus_id->node); 483 kfree_const(acpi_device_bus_id->bus_id); 484 kfree(acpi_device_bus_id); 485 } 486 break; 487 } 488 489 list_del(&device->wakeup_list); 490 mutex_unlock(&acpi_device_lock); 491 492 acpi_power_add_remove_device(device, false); 493 acpi_device_remove_files(device); 494 if (device->remove) 495 device->remove(device); 496 497 device_del(&device->dev); 498 } 499 500 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 501 502 static LIST_HEAD(acpi_device_del_list); 503 static DEFINE_MUTEX(acpi_device_del_lock); 504 505 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 506 { 507 for (;;) { 508 struct acpi_device *adev; 509 510 mutex_lock(&acpi_device_del_lock); 511 512 if (list_empty(&acpi_device_del_list)) { 513 mutex_unlock(&acpi_device_del_lock); 514 break; 515 } 516 adev = list_first_entry(&acpi_device_del_list, 517 struct acpi_device, del_list); 518 list_del(&adev->del_list); 519 520 mutex_unlock(&acpi_device_del_lock); 521 522 blocking_notifier_call_chain(&acpi_reconfig_chain, 523 ACPI_RECONFIG_DEVICE_REMOVE, adev); 524 525 acpi_device_del(adev); 526 /* 527 * Drop references to all power resources that might have been 528 * used by the device. 529 */ 530 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 531 acpi_dev_put(adev); 532 } 533 } 534 535 /** 536 * acpi_scan_drop_device - Drop an ACPI device object. 537 * @handle: Handle of an ACPI namespace node, not used. 538 * @context: Address of the ACPI device object to drop. 539 * 540 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 541 * namespace node the device object pointed to by @context is attached to. 542 * 543 * The unregistration is carried out asynchronously to avoid running 544 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 545 * ensure the correct ordering (the device objects must be unregistered in the 546 * same order in which the corresponding namespace nodes are deleted). 547 */ 548 static void acpi_scan_drop_device(acpi_handle handle, void *context) 549 { 550 static DECLARE_WORK(work, acpi_device_del_work_fn); 551 struct acpi_device *adev = context; 552 553 mutex_lock(&acpi_device_del_lock); 554 555 /* 556 * Use the ACPI hotplug workqueue which is ordered, so this work item 557 * won't run after any hotplug work items submitted subsequently. That 558 * prevents attempts to register device objects identical to those being 559 * deleted from happening concurrently (such attempts result from 560 * hotplug events handled via the ACPI hotplug workqueue). It also will 561 * run after all of the work items submitted previously, which helps 562 * those work items to ensure that they are not accessing stale device 563 * objects. 564 */ 565 if (list_empty(&acpi_device_del_list)) 566 acpi_queue_hotplug_work(&work); 567 568 list_add_tail(&adev->del_list, &acpi_device_del_list); 569 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 570 adev->handle = INVALID_ACPI_HANDLE; 571 572 mutex_unlock(&acpi_device_del_lock); 573 } 574 575 static struct acpi_device *handle_to_device(acpi_handle handle, 576 void (*callback)(void *)) 577 { 578 struct acpi_device *adev = NULL; 579 acpi_status status; 580 581 status = acpi_get_data_full(handle, acpi_scan_drop_device, 582 (void **)&adev, callback); 583 if (ACPI_FAILURE(status) || !adev) { 584 acpi_handle_debug(handle, "No context!\n"); 585 return NULL; 586 } 587 return adev; 588 } 589 590 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device) 591 { 592 if (!device) 593 return -EINVAL; 594 595 *device = handle_to_device(handle, NULL); 596 if (!*device) 597 return -ENODEV; 598 599 return 0; 600 } 601 EXPORT_SYMBOL(acpi_bus_get_device); 602 603 /** 604 * acpi_fetch_acpi_dev - Retrieve ACPI device object. 605 * @handle: ACPI handle associated with the requested ACPI device object. 606 * 607 * Return a pointer to the ACPI device object associated with @handle, if 608 * present, or NULL otherwise. 609 */ 610 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle) 611 { 612 return handle_to_device(handle, NULL); 613 } 614 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev); 615 616 static void get_acpi_device(void *dev) 617 { 618 acpi_dev_get(dev); 619 } 620 621 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle) 622 { 623 return handle_to_device(handle, get_acpi_device); 624 } 625 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device); 626 627 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 628 { 629 struct acpi_device_bus_id *acpi_device_bus_id; 630 631 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 632 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 633 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 634 return acpi_device_bus_id; 635 } 636 return NULL; 637 } 638 639 static int acpi_device_set_name(struct acpi_device *device, 640 struct acpi_device_bus_id *acpi_device_bus_id) 641 { 642 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 643 int result; 644 645 result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL); 646 if (result < 0) 647 return result; 648 649 device->pnp.instance_no = result; 650 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 651 return 0; 652 } 653 654 static int acpi_tie_acpi_dev(struct acpi_device *adev) 655 { 656 acpi_handle handle = adev->handle; 657 acpi_status status; 658 659 if (!handle) 660 return 0; 661 662 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 663 if (ACPI_FAILURE(status)) { 664 acpi_handle_err(handle, "Unable to attach device data\n"); 665 return -ENODEV; 666 } 667 668 return 0; 669 } 670 671 static void acpi_store_pld_crc(struct acpi_device *adev) 672 { 673 struct acpi_pld_info *pld; 674 acpi_status status; 675 676 status = acpi_get_physical_device_location(adev->handle, &pld); 677 if (ACPI_FAILURE(status)) 678 return; 679 680 adev->pld_crc = crc32(~0, pld, sizeof(*pld)); 681 ACPI_FREE(pld); 682 } 683 684 static int __acpi_device_add(struct acpi_device *device, 685 void (*release)(struct device *)) 686 { 687 struct acpi_device_bus_id *acpi_device_bus_id; 688 int result; 689 690 /* 691 * Linkage 692 * ------- 693 * Link this device to its parent and siblings. 694 */ 695 INIT_LIST_HEAD(&device->children); 696 INIT_LIST_HEAD(&device->node); 697 INIT_LIST_HEAD(&device->wakeup_list); 698 INIT_LIST_HEAD(&device->physical_node_list); 699 INIT_LIST_HEAD(&device->del_list); 700 mutex_init(&device->physical_node_lock); 701 702 mutex_lock(&acpi_device_lock); 703 704 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 705 if (acpi_device_bus_id) { 706 result = acpi_device_set_name(device, acpi_device_bus_id); 707 if (result) 708 goto err_unlock; 709 } else { 710 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 711 GFP_KERNEL); 712 if (!acpi_device_bus_id) { 713 result = -ENOMEM; 714 goto err_unlock; 715 } 716 acpi_device_bus_id->bus_id = 717 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 718 if (!acpi_device_bus_id->bus_id) { 719 kfree(acpi_device_bus_id); 720 result = -ENOMEM; 721 goto err_unlock; 722 } 723 724 ida_init(&acpi_device_bus_id->instance_ida); 725 726 result = acpi_device_set_name(device, acpi_device_bus_id); 727 if (result) { 728 kfree_const(acpi_device_bus_id->bus_id); 729 kfree(acpi_device_bus_id); 730 goto err_unlock; 731 } 732 733 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 734 } 735 736 if (device->parent) 737 list_add_tail(&device->node, &device->parent->children); 738 739 if (device->wakeup.flags.valid) 740 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 741 742 acpi_store_pld_crc(device); 743 744 mutex_unlock(&acpi_device_lock); 745 746 if (device->parent) 747 device->dev.parent = &device->parent->dev; 748 749 device->dev.bus = &acpi_bus_type; 750 device->dev.release = release; 751 result = device_add(&device->dev); 752 if (result) { 753 dev_err(&device->dev, "Error registering device\n"); 754 goto err; 755 } 756 757 result = acpi_device_setup_files(device); 758 if (result) 759 pr_err("Error creating sysfs interface for device %s\n", 760 dev_name(&device->dev)); 761 762 return 0; 763 764 err: 765 mutex_lock(&acpi_device_lock); 766 767 if (device->parent) 768 list_del(&device->node); 769 770 list_del(&device->wakeup_list); 771 772 err_unlock: 773 mutex_unlock(&acpi_device_lock); 774 775 acpi_detach_data(device->handle, acpi_scan_drop_device); 776 777 return result; 778 } 779 780 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *)) 781 { 782 int ret; 783 784 ret = acpi_tie_acpi_dev(adev); 785 if (ret) 786 return ret; 787 788 return __acpi_device_add(adev, release); 789 } 790 791 /* -------------------------------------------------------------------------- 792 Device Enumeration 793 -------------------------------------------------------------------------- */ 794 static bool acpi_info_matches_ids(struct acpi_device_info *info, 795 const char * const ids[]) 796 { 797 struct acpi_pnp_device_id_list *cid_list = NULL; 798 int i, index; 799 800 if (!(info->valid & ACPI_VALID_HID)) 801 return false; 802 803 index = match_string(ids, -1, info->hardware_id.string); 804 if (index >= 0) 805 return true; 806 807 if (info->valid & ACPI_VALID_CID) 808 cid_list = &info->compatible_id_list; 809 810 if (!cid_list) 811 return false; 812 813 for (i = 0; i < cid_list->count; i++) { 814 index = match_string(ids, -1, cid_list->ids[i].string); 815 if (index >= 0) 816 return true; 817 } 818 819 return false; 820 } 821 822 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 823 static const char * const acpi_ignore_dep_ids[] = { 824 "PNP0D80", /* Windows-compatible System Power Management Controller */ 825 "INT33BD", /* Intel Baytrail Mailbox Device */ 826 NULL 827 }; 828 829 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */ 830 static const char * const acpi_honor_dep_ids[] = { 831 "INT3472", /* Camera sensor PMIC / clk and regulator info */ 832 NULL 833 }; 834 835 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle) 836 { 837 struct acpi_device *device; 838 acpi_status status; 839 840 /* 841 * Fixed hardware devices do not appear in the namespace and do not 842 * have handles, but we fabricate acpi_devices for them, so we have 843 * to deal with them specially. 844 */ 845 if (!handle) 846 return acpi_root; 847 848 do { 849 status = acpi_get_parent(handle, &handle); 850 if (ACPI_FAILURE(status)) 851 return status == AE_NULL_ENTRY ? NULL : acpi_root; 852 853 device = acpi_fetch_acpi_dev(handle); 854 } while (!device); 855 return device; 856 } 857 858 acpi_status 859 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 860 { 861 acpi_status status; 862 acpi_handle tmp; 863 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 864 union acpi_object *obj; 865 866 status = acpi_get_handle(handle, "_EJD", &tmp); 867 if (ACPI_FAILURE(status)) 868 return status; 869 870 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 871 if (ACPI_SUCCESS(status)) { 872 obj = buffer.pointer; 873 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 874 ejd); 875 kfree(buffer.pointer); 876 } 877 return status; 878 } 879 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 880 881 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 882 { 883 acpi_handle handle = dev->handle; 884 struct acpi_device_wakeup *wakeup = &dev->wakeup; 885 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 886 union acpi_object *package = NULL; 887 union acpi_object *element = NULL; 888 acpi_status status; 889 int err = -ENODATA; 890 891 INIT_LIST_HEAD(&wakeup->resources); 892 893 /* _PRW */ 894 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 895 if (ACPI_FAILURE(status)) { 896 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 897 acpi_format_exception(status)); 898 return err; 899 } 900 901 package = (union acpi_object *)buffer.pointer; 902 903 if (!package || package->package.count < 2) 904 goto out; 905 906 element = &(package->package.elements[0]); 907 if (!element) 908 goto out; 909 910 if (element->type == ACPI_TYPE_PACKAGE) { 911 if ((element->package.count < 2) || 912 (element->package.elements[0].type != 913 ACPI_TYPE_LOCAL_REFERENCE) 914 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 915 goto out; 916 917 wakeup->gpe_device = 918 element->package.elements[0].reference.handle; 919 wakeup->gpe_number = 920 (u32) element->package.elements[1].integer.value; 921 } else if (element->type == ACPI_TYPE_INTEGER) { 922 wakeup->gpe_device = NULL; 923 wakeup->gpe_number = element->integer.value; 924 } else { 925 goto out; 926 } 927 928 element = &(package->package.elements[1]); 929 if (element->type != ACPI_TYPE_INTEGER) 930 goto out; 931 932 wakeup->sleep_state = element->integer.value; 933 934 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 935 if (err) 936 goto out; 937 938 if (!list_empty(&wakeup->resources)) { 939 int sleep_state; 940 941 err = acpi_power_wakeup_list_init(&wakeup->resources, 942 &sleep_state); 943 if (err) { 944 acpi_handle_warn(handle, "Retrieving current states " 945 "of wakeup power resources failed\n"); 946 acpi_power_resources_list_free(&wakeup->resources); 947 goto out; 948 } 949 if (sleep_state < wakeup->sleep_state) { 950 acpi_handle_warn(handle, "Overriding _PRW sleep state " 951 "(S%d) by S%d from power resources\n", 952 (int)wakeup->sleep_state, sleep_state); 953 wakeup->sleep_state = sleep_state; 954 } 955 } 956 957 out: 958 kfree(buffer.pointer); 959 return err; 960 } 961 962 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 963 { 964 static const struct acpi_device_id button_device_ids[] = { 965 {"PNP0C0C", 0}, /* Power button */ 966 {"PNP0C0D", 0}, /* Lid */ 967 {"PNP0C0E", 0}, /* Sleep button */ 968 {"", 0}, 969 }; 970 struct acpi_device_wakeup *wakeup = &device->wakeup; 971 acpi_status status; 972 973 wakeup->flags.notifier_present = 0; 974 975 /* Power button, Lid switch always enable wakeup */ 976 if (!acpi_match_device_ids(device, button_device_ids)) { 977 if (!acpi_match_device_ids(device, &button_device_ids[1])) { 978 /* Do not use Lid/sleep button for S5 wakeup */ 979 if (wakeup->sleep_state == ACPI_STATE_S5) 980 wakeup->sleep_state = ACPI_STATE_S4; 981 } 982 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 983 device_set_wakeup_capable(&device->dev, true); 984 return true; 985 } 986 987 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 988 wakeup->gpe_number); 989 return ACPI_SUCCESS(status); 990 } 991 992 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 993 { 994 int err; 995 996 /* Presence of _PRW indicates wake capable */ 997 if (!acpi_has_method(device->handle, "_PRW")) 998 return; 999 1000 err = acpi_bus_extract_wakeup_device_power_package(device); 1001 if (err) { 1002 dev_err(&device->dev, "Unable to extract wakeup power resources"); 1003 return; 1004 } 1005 1006 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 1007 device->wakeup.prepare_count = 0; 1008 /* 1009 * Call _PSW/_DSW object to disable its ability to wake the sleeping 1010 * system for the ACPI device with the _PRW object. 1011 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 1012 * So it is necessary to call _DSW object first. Only when it is not 1013 * present will the _PSW object used. 1014 */ 1015 err = acpi_device_sleep_wake(device, 0, 0, 0); 1016 if (err) 1017 pr_debug("error in _DSW or _PSW evaluation\n"); 1018 } 1019 1020 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 1021 { 1022 struct acpi_device_power_state *ps = &device->power.states[state]; 1023 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 1024 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1025 acpi_status status; 1026 1027 INIT_LIST_HEAD(&ps->resources); 1028 1029 /* Evaluate "_PRx" to get referenced power resources */ 1030 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 1031 if (ACPI_SUCCESS(status)) { 1032 union acpi_object *package = buffer.pointer; 1033 1034 if (buffer.length && package 1035 && package->type == ACPI_TYPE_PACKAGE 1036 && package->package.count) 1037 acpi_extract_power_resources(package, 0, &ps->resources); 1038 1039 ACPI_FREE(buffer.pointer); 1040 } 1041 1042 /* Evaluate "_PSx" to see if we can do explicit sets */ 1043 pathname[2] = 'S'; 1044 if (acpi_has_method(device->handle, pathname)) 1045 ps->flags.explicit_set = 1; 1046 1047 /* State is valid if there are means to put the device into it. */ 1048 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1049 ps->flags.valid = 1; 1050 1051 ps->power = -1; /* Unknown - driver assigned */ 1052 ps->latency = -1; /* Unknown - driver assigned */ 1053 } 1054 1055 static void acpi_bus_get_power_flags(struct acpi_device *device) 1056 { 1057 unsigned long long dsc = ACPI_STATE_D0; 1058 u32 i; 1059 1060 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1061 if (!acpi_has_method(device->handle, "_PS0") && 1062 !acpi_has_method(device->handle, "_PR0")) 1063 return; 1064 1065 device->flags.power_manageable = 1; 1066 1067 /* 1068 * Power Management Flags 1069 */ 1070 if (acpi_has_method(device->handle, "_PSC")) 1071 device->power.flags.explicit_get = 1; 1072 1073 if (acpi_has_method(device->handle, "_IRC")) 1074 device->power.flags.inrush_current = 1; 1075 1076 if (acpi_has_method(device->handle, "_DSW")) 1077 device->power.flags.dsw_present = 1; 1078 1079 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc); 1080 device->power.state_for_enumeration = dsc; 1081 1082 /* 1083 * Enumerate supported power management states 1084 */ 1085 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1086 acpi_bus_init_power_state(device, i); 1087 1088 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1089 1090 /* Set the defaults for D0 and D3hot (always supported). */ 1091 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1092 device->power.states[ACPI_STATE_D0].power = 100; 1093 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1094 1095 /* 1096 * Use power resources only if the D0 list of them is populated, because 1097 * some platforms may provide _PR3 only to indicate D3cold support and 1098 * in those cases the power resources list returned by it may be bogus. 1099 */ 1100 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1101 device->power.flags.power_resources = 1; 1102 /* 1103 * D3cold is supported if the D3hot list of power resources is 1104 * not empty. 1105 */ 1106 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1107 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1108 } 1109 1110 if (acpi_bus_init_power(device)) 1111 device->flags.power_manageable = 0; 1112 } 1113 1114 static void acpi_bus_get_flags(struct acpi_device *device) 1115 { 1116 /* Presence of _STA indicates 'dynamic_status' */ 1117 if (acpi_has_method(device->handle, "_STA")) 1118 device->flags.dynamic_status = 1; 1119 1120 /* Presence of _RMV indicates 'removable' */ 1121 if (acpi_has_method(device->handle, "_RMV")) 1122 device->flags.removable = 1; 1123 1124 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1125 if (acpi_has_method(device->handle, "_EJD") || 1126 acpi_has_method(device->handle, "_EJ0")) 1127 device->flags.ejectable = 1; 1128 } 1129 1130 static void acpi_device_get_busid(struct acpi_device *device) 1131 { 1132 char bus_id[5] = { '?', 0 }; 1133 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1134 int i = 0; 1135 1136 /* 1137 * Bus ID 1138 * ------ 1139 * The device's Bus ID is simply the object name. 1140 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1141 */ 1142 if (ACPI_IS_ROOT_DEVICE(device)) { 1143 strcpy(device->pnp.bus_id, "ACPI"); 1144 return; 1145 } 1146 1147 switch (device->device_type) { 1148 case ACPI_BUS_TYPE_POWER_BUTTON: 1149 strcpy(device->pnp.bus_id, "PWRF"); 1150 break; 1151 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1152 strcpy(device->pnp.bus_id, "SLPF"); 1153 break; 1154 case ACPI_BUS_TYPE_ECDT_EC: 1155 strcpy(device->pnp.bus_id, "ECDT"); 1156 break; 1157 default: 1158 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1159 /* Clean up trailing underscores (if any) */ 1160 for (i = 3; i > 1; i--) { 1161 if (bus_id[i] == '_') 1162 bus_id[i] = '\0'; 1163 else 1164 break; 1165 } 1166 strcpy(device->pnp.bus_id, bus_id); 1167 break; 1168 } 1169 } 1170 1171 /* 1172 * acpi_ata_match - see if an acpi object is an ATA device 1173 * 1174 * If an acpi object has one of the ACPI ATA methods defined, 1175 * then we can safely call it an ATA device. 1176 */ 1177 bool acpi_ata_match(acpi_handle handle) 1178 { 1179 return acpi_has_method(handle, "_GTF") || 1180 acpi_has_method(handle, "_GTM") || 1181 acpi_has_method(handle, "_STM") || 1182 acpi_has_method(handle, "_SDD"); 1183 } 1184 1185 /* 1186 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1187 * 1188 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1189 * then we can safely call it an ejectable drive bay 1190 */ 1191 bool acpi_bay_match(acpi_handle handle) 1192 { 1193 acpi_handle phandle; 1194 1195 if (!acpi_has_method(handle, "_EJ0")) 1196 return false; 1197 if (acpi_ata_match(handle)) 1198 return true; 1199 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1200 return false; 1201 1202 return acpi_ata_match(phandle); 1203 } 1204 1205 bool acpi_device_is_battery(struct acpi_device *adev) 1206 { 1207 struct acpi_hardware_id *hwid; 1208 1209 list_for_each_entry(hwid, &adev->pnp.ids, list) 1210 if (!strcmp("PNP0C0A", hwid->id)) 1211 return true; 1212 1213 return false; 1214 } 1215 1216 static bool is_ejectable_bay(struct acpi_device *adev) 1217 { 1218 acpi_handle handle = adev->handle; 1219 1220 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1221 return true; 1222 1223 return acpi_bay_match(handle); 1224 } 1225 1226 /* 1227 * acpi_dock_match - see if an acpi object has a _DCK method 1228 */ 1229 bool acpi_dock_match(acpi_handle handle) 1230 { 1231 return acpi_has_method(handle, "_DCK"); 1232 } 1233 1234 static acpi_status 1235 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1236 void **return_value) 1237 { 1238 long *cap = context; 1239 1240 if (acpi_has_method(handle, "_BCM") && 1241 acpi_has_method(handle, "_BCL")) { 1242 acpi_handle_debug(handle, "Found generic backlight support\n"); 1243 *cap |= ACPI_VIDEO_BACKLIGHT; 1244 /* We have backlight support, no need to scan further */ 1245 return AE_CTRL_TERMINATE; 1246 } 1247 return 0; 1248 } 1249 1250 /* Returns true if the ACPI object is a video device which can be 1251 * handled by video.ko. 1252 * The device will get a Linux specific CID added in scan.c to 1253 * identify the device as an ACPI graphics device 1254 * Be aware that the graphics device may not be physically present 1255 * Use acpi_video_get_capabilities() to detect general ACPI video 1256 * capabilities of present cards 1257 */ 1258 long acpi_is_video_device(acpi_handle handle) 1259 { 1260 long video_caps = 0; 1261 1262 /* Is this device able to support video switching ? */ 1263 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1264 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1265 1266 /* Is this device able to retrieve a video ROM ? */ 1267 if (acpi_has_method(handle, "_ROM")) 1268 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1269 1270 /* Is this device able to configure which video head to be POSTed ? */ 1271 if (acpi_has_method(handle, "_VPO") && 1272 acpi_has_method(handle, "_GPD") && 1273 acpi_has_method(handle, "_SPD")) 1274 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1275 1276 /* Only check for backlight functionality if one of the above hit. */ 1277 if (video_caps) 1278 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1279 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1280 &video_caps, NULL); 1281 1282 return video_caps; 1283 } 1284 EXPORT_SYMBOL(acpi_is_video_device); 1285 1286 const char *acpi_device_hid(struct acpi_device *device) 1287 { 1288 struct acpi_hardware_id *hid; 1289 1290 if (list_empty(&device->pnp.ids)) 1291 return dummy_hid; 1292 1293 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list); 1294 return hid->id; 1295 } 1296 EXPORT_SYMBOL(acpi_device_hid); 1297 1298 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1299 { 1300 struct acpi_hardware_id *id; 1301 1302 id = kmalloc(sizeof(*id), GFP_KERNEL); 1303 if (!id) 1304 return; 1305 1306 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1307 if (!id->id) { 1308 kfree(id); 1309 return; 1310 } 1311 1312 list_add_tail(&id->list, &pnp->ids); 1313 pnp->type.hardware_id = 1; 1314 } 1315 1316 /* 1317 * Old IBM workstations have a DSDT bug wherein the SMBus object 1318 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1319 * prefix. Work around this. 1320 */ 1321 static bool acpi_ibm_smbus_match(acpi_handle handle) 1322 { 1323 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1324 struct acpi_buffer path = { sizeof(node_name), node_name }; 1325 1326 if (!dmi_name_in_vendors("IBM")) 1327 return false; 1328 1329 /* Look for SMBS object */ 1330 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1331 strcmp("SMBS", path.pointer)) 1332 return false; 1333 1334 /* Does it have the necessary (but misnamed) methods? */ 1335 if (acpi_has_method(handle, "SBI") && 1336 acpi_has_method(handle, "SBR") && 1337 acpi_has_method(handle, "SBW")) 1338 return true; 1339 1340 return false; 1341 } 1342 1343 static bool acpi_object_is_system_bus(acpi_handle handle) 1344 { 1345 acpi_handle tmp; 1346 1347 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1348 tmp == handle) 1349 return true; 1350 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1351 tmp == handle) 1352 return true; 1353 1354 return false; 1355 } 1356 1357 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1358 int device_type) 1359 { 1360 struct acpi_device_info *info = NULL; 1361 struct acpi_pnp_device_id_list *cid_list; 1362 int i; 1363 1364 switch (device_type) { 1365 case ACPI_BUS_TYPE_DEVICE: 1366 if (handle == ACPI_ROOT_OBJECT) { 1367 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1368 break; 1369 } 1370 1371 acpi_get_object_info(handle, &info); 1372 if (!info) { 1373 pr_err("%s: Error reading device info\n", __func__); 1374 return; 1375 } 1376 1377 if (info->valid & ACPI_VALID_HID) { 1378 acpi_add_id(pnp, info->hardware_id.string); 1379 pnp->type.platform_id = 1; 1380 if (info->valid & ACPI_VALID_CID) { 1381 cid_list = &info->compatible_id_list; 1382 for (i = 0; i < cid_list->count; i++) 1383 acpi_add_id(pnp, cid_list->ids[i].string); 1384 } 1385 } 1386 if (info->valid & ACPI_VALID_ADR) { 1387 pnp->bus_address = info->address; 1388 pnp->type.bus_address = 1; 1389 } 1390 if (info->valid & ACPI_VALID_UID) 1391 pnp->unique_id = kstrdup(info->unique_id.string, 1392 GFP_KERNEL); 1393 if (info->valid & ACPI_VALID_CLS) 1394 acpi_add_id(pnp, info->class_code.string); 1395 1396 kfree(info); 1397 1398 /* 1399 * Some devices don't reliably have _HIDs & _CIDs, so add 1400 * synthetic HIDs to make sure drivers can find them. 1401 */ 1402 if (acpi_is_video_device(handle)) 1403 acpi_add_id(pnp, ACPI_VIDEO_HID); 1404 else if (acpi_bay_match(handle)) 1405 acpi_add_id(pnp, ACPI_BAY_HID); 1406 else if (acpi_dock_match(handle)) 1407 acpi_add_id(pnp, ACPI_DOCK_HID); 1408 else if (acpi_ibm_smbus_match(handle)) 1409 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1410 else if (list_empty(&pnp->ids) && 1411 acpi_object_is_system_bus(handle)) { 1412 /* \_SB, \_TZ, LNXSYBUS */ 1413 acpi_add_id(pnp, ACPI_BUS_HID); 1414 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1415 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1416 } 1417 1418 break; 1419 case ACPI_BUS_TYPE_POWER: 1420 acpi_add_id(pnp, ACPI_POWER_HID); 1421 break; 1422 case ACPI_BUS_TYPE_PROCESSOR: 1423 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1424 break; 1425 case ACPI_BUS_TYPE_THERMAL: 1426 acpi_add_id(pnp, ACPI_THERMAL_HID); 1427 break; 1428 case ACPI_BUS_TYPE_POWER_BUTTON: 1429 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1430 break; 1431 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1432 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1433 break; 1434 case ACPI_BUS_TYPE_ECDT_EC: 1435 acpi_add_id(pnp, ACPI_ECDT_HID); 1436 break; 1437 } 1438 } 1439 1440 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1441 { 1442 struct acpi_hardware_id *id, *tmp; 1443 1444 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1445 kfree_const(id->id); 1446 kfree(id); 1447 } 1448 kfree(pnp->unique_id); 1449 } 1450 1451 /** 1452 * acpi_dma_supported - Check DMA support for the specified device. 1453 * @adev: The pointer to acpi device 1454 * 1455 * Return false if DMA is not supported. Otherwise, return true 1456 */ 1457 bool acpi_dma_supported(const struct acpi_device *adev) 1458 { 1459 if (!adev) 1460 return false; 1461 1462 if (adev->flags.cca_seen) 1463 return true; 1464 1465 /* 1466 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1467 * DMA on "Intel platforms". Presumably that includes all x86 and 1468 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1469 */ 1470 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1471 return true; 1472 1473 return false; 1474 } 1475 1476 /** 1477 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1478 * @adev: The pointer to acpi device 1479 * 1480 * Return enum dev_dma_attr. 1481 */ 1482 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1483 { 1484 if (!acpi_dma_supported(adev)) 1485 return DEV_DMA_NOT_SUPPORTED; 1486 1487 if (adev->flags.coherent_dma) 1488 return DEV_DMA_COHERENT; 1489 else 1490 return DEV_DMA_NON_COHERENT; 1491 } 1492 1493 /** 1494 * acpi_dma_get_range() - Get device DMA parameters. 1495 * 1496 * @dev: device to configure 1497 * @dma_addr: pointer device DMA address result 1498 * @offset: pointer to the DMA offset result 1499 * @size: pointer to DMA range size result 1500 * 1501 * Evaluate DMA regions and return respectively DMA region start, offset 1502 * and size in dma_addr, offset and size on parsing success; it does not 1503 * update the passed in values on failure. 1504 * 1505 * Return 0 on success, < 0 on failure. 1506 */ 1507 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, 1508 u64 *size) 1509 { 1510 struct acpi_device *adev; 1511 LIST_HEAD(list); 1512 struct resource_entry *rentry; 1513 int ret; 1514 struct device *dma_dev = dev; 1515 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0; 1516 1517 /* 1518 * Walk the device tree chasing an ACPI companion with a _DMA 1519 * object while we go. Stop if we find a device with an ACPI 1520 * companion containing a _DMA method. 1521 */ 1522 do { 1523 adev = ACPI_COMPANION(dma_dev); 1524 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1525 break; 1526 1527 dma_dev = dma_dev->parent; 1528 } while (dma_dev); 1529 1530 if (!dma_dev) 1531 return -ENODEV; 1532 1533 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1534 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1535 return -EINVAL; 1536 } 1537 1538 ret = acpi_dev_get_dma_resources(adev, &list); 1539 if (ret > 0) { 1540 list_for_each_entry(rentry, &list, node) { 1541 if (dma_offset && rentry->offset != dma_offset) { 1542 ret = -EINVAL; 1543 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n"); 1544 goto out; 1545 } 1546 dma_offset = rentry->offset; 1547 1548 /* Take lower and upper limits */ 1549 if (rentry->res->start < dma_start) 1550 dma_start = rentry->res->start; 1551 if (rentry->res->end > dma_end) 1552 dma_end = rentry->res->end; 1553 } 1554 1555 if (dma_start >= dma_end) { 1556 ret = -EINVAL; 1557 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1558 goto out; 1559 } 1560 1561 *dma_addr = dma_start - dma_offset; 1562 len = dma_end - dma_start; 1563 *size = max(len, len + 1); 1564 *offset = dma_offset; 1565 } 1566 out: 1567 acpi_dev_free_resource_list(&list); 1568 1569 return ret >= 0 ? 0 : ret; 1570 } 1571 1572 #ifdef CONFIG_IOMMU_API 1573 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1574 struct fwnode_handle *fwnode, 1575 const struct iommu_ops *ops) 1576 { 1577 int ret = iommu_fwspec_init(dev, fwnode, ops); 1578 1579 if (!ret) 1580 ret = iommu_fwspec_add_ids(dev, &id, 1); 1581 1582 return ret; 1583 } 1584 1585 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev) 1586 { 1587 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1588 1589 return fwspec ? fwspec->ops : NULL; 1590 } 1591 1592 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1593 const u32 *id_in) 1594 { 1595 int err; 1596 const struct iommu_ops *ops; 1597 1598 /* 1599 * If we already translated the fwspec there is nothing left to do, 1600 * return the iommu_ops. 1601 */ 1602 ops = acpi_iommu_fwspec_ops(dev); 1603 if (ops) 1604 return ops; 1605 1606 err = iort_iommu_configure_id(dev, id_in); 1607 if (err && err != -EPROBE_DEFER) 1608 err = viot_iommu_configure(dev); 1609 1610 /* 1611 * If we have reason to believe the IOMMU driver missed the initial 1612 * iommu_probe_device() call for dev, replay it to get things in order. 1613 */ 1614 if (!err && dev->bus && !device_iommu_mapped(dev)) 1615 err = iommu_probe_device(dev); 1616 1617 /* Ignore all other errors apart from EPROBE_DEFER */ 1618 if (err == -EPROBE_DEFER) { 1619 return ERR_PTR(err); 1620 } else if (err) { 1621 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err); 1622 return NULL; 1623 } 1624 return acpi_iommu_fwspec_ops(dev); 1625 } 1626 1627 #else /* !CONFIG_IOMMU_API */ 1628 1629 int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1630 struct fwnode_handle *fwnode, 1631 const struct iommu_ops *ops) 1632 { 1633 return -ENODEV; 1634 } 1635 1636 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1637 const u32 *id_in) 1638 { 1639 return NULL; 1640 } 1641 1642 #endif /* !CONFIG_IOMMU_API */ 1643 1644 /** 1645 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1646 * @dev: The pointer to the device 1647 * @attr: device dma attributes 1648 * @input_id: input device id const value pointer 1649 */ 1650 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1651 const u32 *input_id) 1652 { 1653 const struct iommu_ops *iommu; 1654 u64 dma_addr = 0, size = 0; 1655 1656 if (attr == DEV_DMA_NOT_SUPPORTED) { 1657 set_dma_ops(dev, &dma_dummy_ops); 1658 return 0; 1659 } 1660 1661 acpi_arch_dma_setup(dev, &dma_addr, &size); 1662 1663 iommu = acpi_iommu_configure_id(dev, input_id); 1664 if (PTR_ERR(iommu) == -EPROBE_DEFER) 1665 return -EPROBE_DEFER; 1666 1667 arch_setup_dma_ops(dev, dma_addr, size, 1668 iommu, attr == DEV_DMA_COHERENT); 1669 1670 return 0; 1671 } 1672 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1673 1674 static void acpi_init_coherency(struct acpi_device *adev) 1675 { 1676 unsigned long long cca = 0; 1677 acpi_status status; 1678 struct acpi_device *parent = adev->parent; 1679 1680 if (parent && parent->flags.cca_seen) { 1681 /* 1682 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1683 * already saw one. 1684 */ 1685 adev->flags.cca_seen = 1; 1686 cca = parent->flags.coherent_dma; 1687 } else { 1688 status = acpi_evaluate_integer(adev->handle, "_CCA", 1689 NULL, &cca); 1690 if (ACPI_SUCCESS(status)) 1691 adev->flags.cca_seen = 1; 1692 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1693 /* 1694 * If architecture does not specify that _CCA is 1695 * required for DMA-able devices (e.g. x86), 1696 * we default to _CCA=1. 1697 */ 1698 cca = 1; 1699 else 1700 acpi_handle_debug(adev->handle, 1701 "ACPI device is missing _CCA.\n"); 1702 } 1703 1704 adev->flags.coherent_dma = cca; 1705 } 1706 1707 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1708 { 1709 bool *is_serial_bus_slave_p = data; 1710 1711 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1712 return 1; 1713 1714 *is_serial_bus_slave_p = true; 1715 1716 /* no need to do more checking */ 1717 return -1; 1718 } 1719 1720 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1721 { 1722 struct acpi_device *parent = device->parent; 1723 static const struct acpi_device_id indirect_io_hosts[] = { 1724 {"HISI0191", 0}, 1725 {} 1726 }; 1727 1728 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1729 } 1730 1731 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1732 { 1733 struct list_head resource_list; 1734 bool is_serial_bus_slave = false; 1735 static const struct acpi_device_id ignore_serial_bus_ids[] = { 1736 /* 1737 * These devices have multiple I2cSerialBus resources and an i2c-client 1738 * must be instantiated for each, each with its own i2c_device_id. 1739 * Normally we only instantiate an i2c-client for the first resource, 1740 * using the ACPI HID as id. These special cases are handled by the 1741 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows 1742 * which i2c_device_id to use for each resource. 1743 */ 1744 {"BSG1160", }, 1745 {"BSG2150", }, 1746 {"INT33FE", }, 1747 {"INT3515", }, 1748 /* 1749 * HIDs of device with an UartSerialBusV2 resource for which userspace 1750 * expects a regular tty cdev to be created (instead of the in kernel 1751 * serdev) and which have a kernel driver which expects a platform_dev 1752 * such as the rfkill-gpio driver. 1753 */ 1754 {"BCM4752", }, 1755 {"LNV4752", }, 1756 {} 1757 }; 1758 1759 if (acpi_is_indirect_io_slave(device)) 1760 return true; 1761 1762 /* Macs use device properties in lieu of _CRS resources */ 1763 if (x86_apple_machine && 1764 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1765 fwnode_property_present(&device->fwnode, "i2cAddress") || 1766 fwnode_property_present(&device->fwnode, "baud"))) 1767 return true; 1768 1769 if (!acpi_match_device_ids(device, ignore_serial_bus_ids)) 1770 return false; 1771 1772 INIT_LIST_HEAD(&resource_list); 1773 acpi_dev_get_resources(device, &resource_list, 1774 acpi_check_serial_bus_slave, 1775 &is_serial_bus_slave); 1776 acpi_dev_free_resource_list(&resource_list); 1777 1778 return is_serial_bus_slave; 1779 } 1780 1781 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1782 int type) 1783 { 1784 INIT_LIST_HEAD(&device->pnp.ids); 1785 device->device_type = type; 1786 device->handle = handle; 1787 device->parent = acpi_bus_get_parent(handle); 1788 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1789 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1790 acpi_device_get_busid(device); 1791 acpi_set_pnp_ids(handle, &device->pnp, type); 1792 acpi_init_properties(device); 1793 acpi_bus_get_flags(device); 1794 device->flags.match_driver = false; 1795 device->flags.initialized = true; 1796 device->flags.enumeration_by_parent = 1797 acpi_device_enumeration_by_parent(device); 1798 acpi_device_clear_enumerated(device); 1799 device_initialize(&device->dev); 1800 dev_set_uevent_suppress(&device->dev, true); 1801 acpi_init_coherency(device); 1802 } 1803 1804 static void acpi_scan_dep_init(struct acpi_device *adev) 1805 { 1806 struct acpi_dep_data *dep; 1807 1808 list_for_each_entry(dep, &acpi_dep_list, node) { 1809 if (dep->consumer == adev->handle) { 1810 if (dep->honor_dep) 1811 adev->flags.honor_deps = 1; 1812 1813 adev->dep_unmet++; 1814 } 1815 } 1816 } 1817 1818 void acpi_device_add_finalize(struct acpi_device *device) 1819 { 1820 dev_set_uevent_suppress(&device->dev, false); 1821 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1822 } 1823 1824 static void acpi_scan_init_status(struct acpi_device *adev) 1825 { 1826 if (acpi_bus_get_status(adev)) 1827 acpi_set_device_status(adev, 0); 1828 } 1829 1830 static int acpi_add_single_object(struct acpi_device **child, 1831 acpi_handle handle, int type, bool dep_init) 1832 { 1833 struct acpi_device *device; 1834 bool release_dep_lock = false; 1835 int result; 1836 1837 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1838 if (!device) 1839 return -ENOMEM; 1840 1841 acpi_init_device_object(device, handle, type); 1842 /* 1843 * Getting the status is delayed till here so that we can call 1844 * acpi_bus_get_status() and use its quirk handling. Note that 1845 * this must be done before the get power-/wakeup_dev-flags calls. 1846 */ 1847 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1848 if (dep_init) { 1849 mutex_lock(&acpi_dep_list_lock); 1850 /* 1851 * Hold the lock until the acpi_tie_acpi_dev() call 1852 * below to prevent concurrent acpi_scan_clear_dep() 1853 * from deleting a dependency list entry without 1854 * updating dep_unmet for the device. 1855 */ 1856 release_dep_lock = true; 1857 acpi_scan_dep_init(device); 1858 } 1859 acpi_scan_init_status(device); 1860 } 1861 1862 acpi_bus_get_power_flags(device); 1863 acpi_bus_get_wakeup_device_flags(device); 1864 1865 result = acpi_tie_acpi_dev(device); 1866 1867 if (release_dep_lock) 1868 mutex_unlock(&acpi_dep_list_lock); 1869 1870 if (!result) 1871 result = __acpi_device_add(device, acpi_device_release); 1872 1873 if (result) { 1874 acpi_device_release(&device->dev); 1875 return result; 1876 } 1877 1878 acpi_power_add_remove_device(device, true); 1879 acpi_device_add_finalize(device); 1880 1881 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1882 dev_name(&device->dev), device->parent ? 1883 dev_name(&device->parent->dev) : "(null)"); 1884 1885 *child = device; 1886 return 0; 1887 } 1888 1889 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1890 void *context) 1891 { 1892 struct resource *res = context; 1893 1894 if (acpi_dev_resource_memory(ares, res)) 1895 return AE_CTRL_TERMINATE; 1896 1897 return AE_OK; 1898 } 1899 1900 static bool acpi_device_should_be_hidden(acpi_handle handle) 1901 { 1902 acpi_status status; 1903 struct resource res; 1904 1905 /* Check if it should ignore the UART device */ 1906 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1907 return false; 1908 1909 /* 1910 * The UART device described in SPCR table is assumed to have only one 1911 * memory resource present. So we only look for the first one here. 1912 */ 1913 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1914 acpi_get_resource_memory, &res); 1915 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1916 return false; 1917 1918 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1919 &res.start); 1920 1921 return true; 1922 } 1923 1924 bool acpi_device_is_present(const struct acpi_device *adev) 1925 { 1926 return adev->status.present || adev->status.functional; 1927 } 1928 1929 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1930 const char *idstr, 1931 const struct acpi_device_id **matchid) 1932 { 1933 const struct acpi_device_id *devid; 1934 1935 if (handler->match) 1936 return handler->match(idstr, matchid); 1937 1938 for (devid = handler->ids; devid->id[0]; devid++) 1939 if (!strcmp((char *)devid->id, idstr)) { 1940 if (matchid) 1941 *matchid = devid; 1942 1943 return true; 1944 } 1945 1946 return false; 1947 } 1948 1949 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1950 const struct acpi_device_id **matchid) 1951 { 1952 struct acpi_scan_handler *handler; 1953 1954 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1955 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1956 return handler; 1957 1958 return NULL; 1959 } 1960 1961 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 1962 { 1963 if (!!hotplug->enabled == !!val) 1964 return; 1965 1966 mutex_lock(&acpi_scan_lock); 1967 1968 hotplug->enabled = val; 1969 1970 mutex_unlock(&acpi_scan_lock); 1971 } 1972 1973 static void acpi_scan_init_hotplug(struct acpi_device *adev) 1974 { 1975 struct acpi_hardware_id *hwid; 1976 1977 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 1978 acpi_dock_add(adev); 1979 return; 1980 } 1981 list_for_each_entry(hwid, &adev->pnp.ids, list) { 1982 struct acpi_scan_handler *handler; 1983 1984 handler = acpi_scan_match_handler(hwid->id, NULL); 1985 if (handler) { 1986 adev->flags.hotplug_notify = true; 1987 break; 1988 } 1989 } 1990 } 1991 1992 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep) 1993 { 1994 struct acpi_handle_list dep_devices; 1995 acpi_status status; 1996 u32 count; 1997 int i; 1998 1999 /* 2000 * Check for _HID here to avoid deferring the enumeration of: 2001 * 1. PCI devices. 2002 * 2. ACPI nodes describing USB ports. 2003 * Still, checking for _HID catches more then just these cases ... 2004 */ 2005 if (!check_dep || !acpi_has_method(handle, "_DEP") || 2006 !acpi_has_method(handle, "_HID")) 2007 return 0; 2008 2009 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices); 2010 if (ACPI_FAILURE(status)) { 2011 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 2012 return 0; 2013 } 2014 2015 for (count = 0, i = 0; i < dep_devices.count; i++) { 2016 struct acpi_device_info *info; 2017 struct acpi_dep_data *dep; 2018 bool skip, honor_dep; 2019 2020 status = acpi_get_object_info(dep_devices.handles[i], &info); 2021 if (ACPI_FAILURE(status)) { 2022 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 2023 continue; 2024 } 2025 2026 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 2027 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids); 2028 kfree(info); 2029 2030 if (skip) 2031 continue; 2032 2033 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 2034 if (!dep) 2035 continue; 2036 2037 count++; 2038 2039 dep->supplier = dep_devices.handles[i]; 2040 dep->consumer = handle; 2041 dep->honor_dep = honor_dep; 2042 2043 mutex_lock(&acpi_dep_list_lock); 2044 list_add_tail(&dep->node , &acpi_dep_list); 2045 mutex_unlock(&acpi_dep_list_lock); 2046 } 2047 2048 return count; 2049 } 2050 2051 static bool acpi_bus_scan_second_pass; 2052 2053 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep, 2054 struct acpi_device **adev_p) 2055 { 2056 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 2057 acpi_object_type acpi_type; 2058 int type; 2059 2060 if (device) 2061 goto out; 2062 2063 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2064 return AE_OK; 2065 2066 switch (acpi_type) { 2067 case ACPI_TYPE_DEVICE: 2068 if (acpi_device_should_be_hidden(handle)) 2069 return AE_OK; 2070 2071 /* Bail out if there are dependencies. */ 2072 if (acpi_scan_check_dep(handle, check_dep) > 0) { 2073 acpi_bus_scan_second_pass = true; 2074 return AE_CTRL_DEPTH; 2075 } 2076 2077 fallthrough; 2078 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2079 type = ACPI_BUS_TYPE_DEVICE; 2080 break; 2081 2082 case ACPI_TYPE_PROCESSOR: 2083 type = ACPI_BUS_TYPE_PROCESSOR; 2084 break; 2085 2086 case ACPI_TYPE_THERMAL: 2087 type = ACPI_BUS_TYPE_THERMAL; 2088 break; 2089 2090 case ACPI_TYPE_POWER: 2091 acpi_add_power_resource(handle); 2092 fallthrough; 2093 default: 2094 return AE_OK; 2095 } 2096 2097 /* 2098 * If check_dep is true at this point, the device has no dependencies, 2099 * or the creation of the device object would have been postponed above. 2100 */ 2101 acpi_add_single_object(&device, handle, type, !check_dep); 2102 if (!device) 2103 return AE_CTRL_DEPTH; 2104 2105 acpi_scan_init_hotplug(device); 2106 2107 out: 2108 if (!*adev_p) 2109 *adev_p = device; 2110 2111 return AE_OK; 2112 } 2113 2114 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2115 void *not_used, void **ret_p) 2116 { 2117 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2118 } 2119 2120 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2121 void *not_used, void **ret_p) 2122 { 2123 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2124 } 2125 2126 static void acpi_default_enumeration(struct acpi_device *device) 2127 { 2128 /* 2129 * Do not enumerate devices with enumeration_by_parent flag set as 2130 * they will be enumerated by their respective parents. 2131 */ 2132 if (!device->flags.enumeration_by_parent) { 2133 acpi_create_platform_device(device, NULL); 2134 acpi_device_set_enumerated(device); 2135 } else { 2136 blocking_notifier_call_chain(&acpi_reconfig_chain, 2137 ACPI_RECONFIG_DEVICE_ADD, device); 2138 } 2139 } 2140 2141 static const struct acpi_device_id generic_device_ids[] = { 2142 {ACPI_DT_NAMESPACE_HID, }, 2143 {"", }, 2144 }; 2145 2146 static int acpi_generic_device_attach(struct acpi_device *adev, 2147 const struct acpi_device_id *not_used) 2148 { 2149 /* 2150 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2151 * below can be unconditional. 2152 */ 2153 if (adev->data.of_compatible) 2154 acpi_default_enumeration(adev); 2155 2156 return 1; 2157 } 2158 2159 static struct acpi_scan_handler generic_device_handler = { 2160 .ids = generic_device_ids, 2161 .attach = acpi_generic_device_attach, 2162 }; 2163 2164 static int acpi_scan_attach_handler(struct acpi_device *device) 2165 { 2166 struct acpi_hardware_id *hwid; 2167 int ret = 0; 2168 2169 list_for_each_entry(hwid, &device->pnp.ids, list) { 2170 const struct acpi_device_id *devid; 2171 struct acpi_scan_handler *handler; 2172 2173 handler = acpi_scan_match_handler(hwid->id, &devid); 2174 if (handler) { 2175 if (!handler->attach) { 2176 device->pnp.type.platform_id = 0; 2177 continue; 2178 } 2179 device->handler = handler; 2180 ret = handler->attach(device, devid); 2181 if (ret > 0) 2182 break; 2183 2184 device->handler = NULL; 2185 if (ret < 0) 2186 break; 2187 } 2188 } 2189 2190 return ret; 2191 } 2192 2193 static void acpi_bus_attach(struct acpi_device *device, bool first_pass) 2194 { 2195 struct acpi_device *child; 2196 bool skip = !first_pass && device->flags.visited; 2197 acpi_handle ejd; 2198 int ret; 2199 2200 if (skip) 2201 goto ok; 2202 2203 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2204 register_dock_dependent_device(device, ejd); 2205 2206 acpi_bus_get_status(device); 2207 /* Skip devices that are not ready for enumeration (e.g. not present) */ 2208 if (!acpi_dev_ready_for_enumeration(device)) { 2209 device->flags.initialized = false; 2210 acpi_device_clear_enumerated(device); 2211 device->flags.power_manageable = 0; 2212 return; 2213 } 2214 if (device->handler) 2215 goto ok; 2216 2217 if (!device->flags.initialized) { 2218 device->flags.power_manageable = 2219 device->power.states[ACPI_STATE_D0].flags.valid; 2220 if (acpi_bus_init_power(device)) 2221 device->flags.power_manageable = 0; 2222 2223 device->flags.initialized = true; 2224 } else if (device->flags.visited) { 2225 goto ok; 2226 } 2227 2228 ret = acpi_scan_attach_handler(device); 2229 if (ret < 0) 2230 return; 2231 2232 device->flags.match_driver = true; 2233 if (ret > 0 && !device->flags.enumeration_by_parent) { 2234 acpi_device_set_enumerated(device); 2235 goto ok; 2236 } 2237 2238 ret = device_attach(&device->dev); 2239 if (ret < 0) 2240 return; 2241 2242 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2243 acpi_default_enumeration(device); 2244 else 2245 acpi_device_set_enumerated(device); 2246 2247 ok: 2248 list_for_each_entry(child, &device->children, node) 2249 acpi_bus_attach(child, first_pass); 2250 2251 if (!skip && device->handler && device->handler->hotplug.notify_online) 2252 device->handler->hotplug.notify_online(device); 2253 } 2254 2255 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2256 { 2257 struct acpi_device *adev; 2258 2259 adev = acpi_bus_get_acpi_device(dep->consumer); 2260 if (adev) { 2261 *(struct acpi_device **)data = adev; 2262 return 1; 2263 } 2264 /* Continue parsing if the device object is not present. */ 2265 return 0; 2266 } 2267 2268 struct acpi_scan_clear_dep_work { 2269 struct work_struct work; 2270 struct acpi_device *adev; 2271 }; 2272 2273 static void acpi_scan_clear_dep_fn(struct work_struct *work) 2274 { 2275 struct acpi_scan_clear_dep_work *cdw; 2276 2277 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2278 2279 acpi_scan_lock_acquire(); 2280 acpi_bus_attach(cdw->adev, true); 2281 acpi_scan_lock_release(); 2282 2283 acpi_dev_put(cdw->adev); 2284 kfree(cdw); 2285 } 2286 2287 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2288 { 2289 struct acpi_scan_clear_dep_work *cdw; 2290 2291 if (adev->dep_unmet) 2292 return false; 2293 2294 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2295 if (!cdw) 2296 return false; 2297 2298 cdw->adev = adev; 2299 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2300 /* 2301 * Since the work function may block on the lock until the entire 2302 * initial enumeration of devices is complete, put it into the unbound 2303 * workqueue. 2304 */ 2305 queue_work(system_unbound_wq, &cdw->work); 2306 2307 return true; 2308 } 2309 2310 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2311 { 2312 struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer); 2313 2314 if (adev) { 2315 adev->dep_unmet--; 2316 if (!acpi_scan_clear_dep_queue(adev)) 2317 acpi_dev_put(adev); 2318 } 2319 2320 list_del(&dep->node); 2321 kfree(dep); 2322 2323 return 0; 2324 } 2325 2326 /** 2327 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2328 * @handle: The ACPI handle of the supplier device 2329 * @callback: Pointer to the callback function to apply 2330 * @data: Pointer to some data to pass to the callback 2331 * 2332 * The return value of the callback determines this function's behaviour. If 0 2333 * is returned we continue to iterate over acpi_dep_list. If a positive value 2334 * is returned then the loop is broken but this function returns 0. If a 2335 * negative value is returned by the callback then the loop is broken and that 2336 * value is returned as the final error. 2337 */ 2338 static int acpi_walk_dep_device_list(acpi_handle handle, 2339 int (*callback)(struct acpi_dep_data *, void *), 2340 void *data) 2341 { 2342 struct acpi_dep_data *dep, *tmp; 2343 int ret = 0; 2344 2345 mutex_lock(&acpi_dep_list_lock); 2346 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2347 if (dep->supplier == handle) { 2348 ret = callback(dep, data); 2349 if (ret) 2350 break; 2351 } 2352 } 2353 mutex_unlock(&acpi_dep_list_lock); 2354 2355 return ret > 0 ? 0 : ret; 2356 } 2357 2358 /** 2359 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2360 * @supplier: Pointer to the supplier &struct acpi_device 2361 * 2362 * Clear dependencies on the given device. 2363 */ 2364 void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2365 { 2366 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2367 } 2368 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2369 2370 /** 2371 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration 2372 * @device: Pointer to the &struct acpi_device to check 2373 * 2374 * Check if the device is present and has no unmet dependencies. 2375 * 2376 * Return true if the device is ready for enumeratino. Otherwise, return false. 2377 */ 2378 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device) 2379 { 2380 if (device->flags.honor_deps && device->dep_unmet) 2381 return false; 2382 2383 return acpi_device_is_present(device); 2384 } 2385 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration); 2386 2387 /** 2388 * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier 2389 * @supplier: Pointer to the dependee device 2390 * 2391 * Returns the first &struct acpi_device which declares itself dependent on 2392 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2393 * 2394 * The caller is responsible for putting the reference to adev when it is no 2395 * longer needed. 2396 */ 2397 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier) 2398 { 2399 struct acpi_device *adev = NULL; 2400 2401 acpi_walk_dep_device_list(supplier->handle, 2402 acpi_dev_get_first_consumer_dev_cb, &adev); 2403 2404 return adev; 2405 } 2406 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev); 2407 2408 /** 2409 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2410 * @handle: Root of the namespace scope to scan. 2411 * 2412 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2413 * found devices. 2414 * 2415 * If no devices were found, -ENODEV is returned, but it does not mean that 2416 * there has been a real error. There just have been no suitable ACPI objects 2417 * in the table trunk from which the kernel could create a device and add an 2418 * appropriate driver. 2419 * 2420 * Must be called under acpi_scan_lock. 2421 */ 2422 int acpi_bus_scan(acpi_handle handle) 2423 { 2424 struct acpi_device *device = NULL; 2425 2426 acpi_bus_scan_second_pass = false; 2427 2428 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2429 2430 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2431 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2432 acpi_bus_check_add_1, NULL, NULL, 2433 (void **)&device); 2434 2435 if (!device) 2436 return -ENODEV; 2437 2438 acpi_bus_attach(device, true); 2439 2440 if (!acpi_bus_scan_second_pass) 2441 return 0; 2442 2443 /* Pass 2: Enumerate all of the remaining devices. */ 2444 2445 device = NULL; 2446 2447 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device))) 2448 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2449 acpi_bus_check_add_2, NULL, NULL, 2450 (void **)&device); 2451 2452 acpi_bus_attach(device, false); 2453 2454 return 0; 2455 } 2456 EXPORT_SYMBOL(acpi_bus_scan); 2457 2458 /** 2459 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2460 * @adev: Root of the ACPI namespace scope to walk. 2461 * 2462 * Must be called under acpi_scan_lock. 2463 */ 2464 void acpi_bus_trim(struct acpi_device *adev) 2465 { 2466 struct acpi_scan_handler *handler = adev->handler; 2467 struct acpi_device *child; 2468 2469 list_for_each_entry_reverse(child, &adev->children, node) 2470 acpi_bus_trim(child); 2471 2472 adev->flags.match_driver = false; 2473 if (handler) { 2474 if (handler->detach) 2475 handler->detach(adev); 2476 2477 adev->handler = NULL; 2478 } else { 2479 device_release_driver(&adev->dev); 2480 } 2481 /* 2482 * Most likely, the device is going away, so put it into D3cold before 2483 * that. 2484 */ 2485 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 2486 adev->flags.initialized = false; 2487 acpi_device_clear_enumerated(adev); 2488 } 2489 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2490 2491 int acpi_bus_register_early_device(int type) 2492 { 2493 struct acpi_device *device = NULL; 2494 int result; 2495 2496 result = acpi_add_single_object(&device, NULL, type, false); 2497 if (result) 2498 return result; 2499 2500 device->flags.match_driver = true; 2501 return device_attach(&device->dev); 2502 } 2503 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2504 2505 static void acpi_bus_scan_fixed(void) 2506 { 2507 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2508 struct acpi_device *adev = NULL; 2509 2510 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON, 2511 false); 2512 if (adev) { 2513 adev->flags.match_driver = true; 2514 if (device_attach(&adev->dev) >= 0) 2515 device_init_wakeup(&adev->dev, true); 2516 else 2517 dev_dbg(&adev->dev, "No driver\n"); 2518 } 2519 } 2520 2521 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2522 struct acpi_device *adev = NULL; 2523 2524 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON, 2525 false); 2526 if (adev) { 2527 adev->flags.match_driver = true; 2528 if (device_attach(&adev->dev) < 0) 2529 dev_dbg(&adev->dev, "No driver\n"); 2530 } 2531 } 2532 } 2533 2534 static void __init acpi_get_spcr_uart_addr(void) 2535 { 2536 acpi_status status; 2537 struct acpi_table_spcr *spcr_ptr; 2538 2539 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2540 (struct acpi_table_header **)&spcr_ptr); 2541 if (ACPI_FAILURE(status)) { 2542 pr_warn("STAO table present, but SPCR is missing\n"); 2543 return; 2544 } 2545 2546 spcr_uart_addr = spcr_ptr->serial_port.address; 2547 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2548 } 2549 2550 static bool acpi_scan_initialized; 2551 2552 void __init acpi_scan_init(void) 2553 { 2554 acpi_status status; 2555 struct acpi_table_stao *stao_ptr; 2556 2557 acpi_pci_root_init(); 2558 acpi_pci_link_init(); 2559 acpi_processor_init(); 2560 acpi_platform_init(); 2561 acpi_lpss_init(); 2562 acpi_apd_init(); 2563 acpi_cmos_rtc_init(); 2564 acpi_container_init(); 2565 acpi_memory_hotplug_init(); 2566 acpi_watchdog_init(); 2567 acpi_pnp_init(); 2568 acpi_int340x_thermal_init(); 2569 acpi_amba_init(); 2570 acpi_init_lpit(); 2571 2572 acpi_scan_add_handler(&generic_device_handler); 2573 2574 /* 2575 * If there is STAO table, check whether it needs to ignore the UART 2576 * device in SPCR table. 2577 */ 2578 status = acpi_get_table(ACPI_SIG_STAO, 0, 2579 (struct acpi_table_header **)&stao_ptr); 2580 if (ACPI_SUCCESS(status)) { 2581 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2582 pr_info("STAO Name List not yet supported.\n"); 2583 2584 if (stao_ptr->ignore_uart) 2585 acpi_get_spcr_uart_addr(); 2586 2587 acpi_put_table((struct acpi_table_header *)stao_ptr); 2588 } 2589 2590 acpi_gpe_apply_masked_gpes(); 2591 acpi_update_all_gpes(); 2592 2593 /* 2594 * Although we call __add_memory() that is documented to require the 2595 * device_hotplug_lock, it is not necessary here because this is an 2596 * early code when userspace or any other code path cannot trigger 2597 * hotplug/hotunplug operations. 2598 */ 2599 mutex_lock(&acpi_scan_lock); 2600 /* 2601 * Enumerate devices in the ACPI namespace. 2602 */ 2603 if (acpi_bus_scan(ACPI_ROOT_OBJECT)) 2604 goto unlock; 2605 2606 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT); 2607 if (!acpi_root) 2608 goto unlock; 2609 2610 /* Fixed feature devices do not exist on HW-reduced platform */ 2611 if (!acpi_gbl_reduced_hardware) 2612 acpi_bus_scan_fixed(); 2613 2614 acpi_turn_off_unused_power_resources(); 2615 2616 acpi_scan_initialized = true; 2617 2618 unlock: 2619 mutex_unlock(&acpi_scan_lock); 2620 } 2621 2622 static struct acpi_probe_entry *ape; 2623 static int acpi_probe_count; 2624 static DEFINE_MUTEX(acpi_probe_mutex); 2625 2626 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2627 const unsigned long end) 2628 { 2629 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2630 if (!ape->probe_subtbl(header, end)) 2631 acpi_probe_count++; 2632 2633 return 0; 2634 } 2635 2636 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2637 { 2638 int count = 0; 2639 2640 if (acpi_disabled) 2641 return 0; 2642 2643 mutex_lock(&acpi_probe_mutex); 2644 for (ape = ap_head; nr; ape++, nr--) { 2645 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2646 acpi_probe_count = 0; 2647 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2648 count += acpi_probe_count; 2649 } else { 2650 int res; 2651 res = acpi_table_parse(ape->id, ape->probe_table); 2652 if (!res) 2653 count++; 2654 } 2655 } 2656 mutex_unlock(&acpi_probe_mutex); 2657 2658 return count; 2659 } 2660 2661 static void acpi_table_events_fn(struct work_struct *work) 2662 { 2663 acpi_scan_lock_acquire(); 2664 acpi_bus_scan(ACPI_ROOT_OBJECT); 2665 acpi_scan_lock_release(); 2666 2667 kfree(work); 2668 } 2669 2670 void acpi_scan_table_notify(void) 2671 { 2672 struct work_struct *work; 2673 2674 if (!acpi_scan_initialized) 2675 return; 2676 2677 work = kmalloc(sizeof(*work), GFP_KERNEL); 2678 if (!work) 2679 return; 2680 2681 INIT_WORK(work, acpi_table_events_fn); 2682 schedule_work(work); 2683 } 2684 2685 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2686 { 2687 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2688 } 2689 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2690 2691 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2692 { 2693 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2694 } 2695 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2696