1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/slab.h> 9 #include <linux/kernel.h> 10 #include <linux/acpi.h> 11 #include <linux/acpi_iort.h> 12 #include <linux/signal.h> 13 #include <linux/kthread.h> 14 #include <linux/dmi.h> 15 #include <linux/nls.h> 16 #include <linux/dma-map-ops.h> 17 #include <linux/platform_data/x86/apple.h> 18 #include <linux/pgtable.h> 19 20 #include "internal.h" 21 22 #define _COMPONENT ACPI_BUS_COMPONENT 23 ACPI_MODULE_NAME("scan"); 24 extern struct acpi_device *acpi_root; 25 26 #define ACPI_BUS_CLASS "system_bus" 27 #define ACPI_BUS_HID "LNXSYBUS" 28 #define ACPI_BUS_DEVICE_NAME "System Bus" 29 30 #define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent) 31 32 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page) 33 34 static const char *dummy_hid = "device"; 35 36 static LIST_HEAD(acpi_dep_list); 37 static DEFINE_MUTEX(acpi_dep_list_lock); 38 LIST_HEAD(acpi_bus_id_list); 39 static DEFINE_MUTEX(acpi_scan_lock); 40 static LIST_HEAD(acpi_scan_handlers_list); 41 DEFINE_MUTEX(acpi_device_lock); 42 LIST_HEAD(acpi_wakeup_device_list); 43 static DEFINE_MUTEX(acpi_hp_context_lock); 44 45 /* 46 * The UART device described by the SPCR table is the only object which needs 47 * special-casing. Everything else is covered by ACPI namespace paths in STAO 48 * table. 49 */ 50 static u64 spcr_uart_addr; 51 52 struct acpi_dep_data { 53 struct list_head node; 54 acpi_handle supplier; 55 acpi_handle consumer; 56 }; 57 58 void acpi_scan_lock_acquire(void) 59 { 60 mutex_lock(&acpi_scan_lock); 61 } 62 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 63 64 void acpi_scan_lock_release(void) 65 { 66 mutex_unlock(&acpi_scan_lock); 67 } 68 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 69 70 void acpi_lock_hp_context(void) 71 { 72 mutex_lock(&acpi_hp_context_lock); 73 } 74 75 void acpi_unlock_hp_context(void) 76 { 77 mutex_unlock(&acpi_hp_context_lock); 78 } 79 80 void acpi_initialize_hp_context(struct acpi_device *adev, 81 struct acpi_hotplug_context *hp, 82 int (*notify)(struct acpi_device *, u32), 83 void (*uevent)(struct acpi_device *, u32)) 84 { 85 acpi_lock_hp_context(); 86 hp->notify = notify; 87 hp->uevent = uevent; 88 acpi_set_hp_context(adev, hp); 89 acpi_unlock_hp_context(); 90 } 91 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 92 93 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 94 { 95 if (!handler) 96 return -EINVAL; 97 98 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 99 return 0; 100 } 101 102 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 103 const char *hotplug_profile_name) 104 { 105 int error; 106 107 error = acpi_scan_add_handler(handler); 108 if (error) 109 return error; 110 111 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 112 return 0; 113 } 114 115 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 116 { 117 struct acpi_device_physical_node *pn; 118 bool offline = true; 119 char *envp[] = { "EVENT=offline", NULL }; 120 121 /* 122 * acpi_container_offline() calls this for all of the container's 123 * children under the container's physical_node_lock lock. 124 */ 125 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 126 127 list_for_each_entry(pn, &adev->physical_node_list, node) 128 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 129 if (uevent) 130 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 131 132 offline = false; 133 break; 134 } 135 136 mutex_unlock(&adev->physical_node_lock); 137 return offline; 138 } 139 140 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 141 void **ret_p) 142 { 143 struct acpi_device *device = NULL; 144 struct acpi_device_physical_node *pn; 145 bool second_pass = (bool)data; 146 acpi_status status = AE_OK; 147 148 if (acpi_bus_get_device(handle, &device)) 149 return AE_OK; 150 151 if (device->handler && !device->handler->hotplug.enabled) { 152 *ret_p = &device->dev; 153 return AE_SUPPORT; 154 } 155 156 mutex_lock(&device->physical_node_lock); 157 158 list_for_each_entry(pn, &device->physical_node_list, node) { 159 int ret; 160 161 if (second_pass) { 162 /* Skip devices offlined by the first pass. */ 163 if (pn->put_online) 164 continue; 165 } else { 166 pn->put_online = false; 167 } 168 ret = device_offline(pn->dev); 169 if (ret >= 0) { 170 pn->put_online = !ret; 171 } else { 172 *ret_p = pn->dev; 173 if (second_pass) { 174 status = AE_ERROR; 175 break; 176 } 177 } 178 } 179 180 mutex_unlock(&device->physical_node_lock); 181 182 return status; 183 } 184 185 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 186 void **ret_p) 187 { 188 struct acpi_device *device = NULL; 189 struct acpi_device_physical_node *pn; 190 191 if (acpi_bus_get_device(handle, &device)) 192 return AE_OK; 193 194 mutex_lock(&device->physical_node_lock); 195 196 list_for_each_entry(pn, &device->physical_node_list, node) 197 if (pn->put_online) { 198 device_online(pn->dev); 199 pn->put_online = false; 200 } 201 202 mutex_unlock(&device->physical_node_lock); 203 204 return AE_OK; 205 } 206 207 static int acpi_scan_try_to_offline(struct acpi_device *device) 208 { 209 acpi_handle handle = device->handle; 210 struct device *errdev = NULL; 211 acpi_status status; 212 213 /* 214 * Carry out two passes here and ignore errors in the first pass, 215 * because if the devices in question are memory blocks and 216 * CONFIG_MEMCG is set, one of the blocks may hold data structures 217 * that the other blocks depend on, but it is not known in advance which 218 * block holds them. 219 * 220 * If the first pass is successful, the second one isn't needed, though. 221 */ 222 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 223 NULL, acpi_bus_offline, (void *)false, 224 (void **)&errdev); 225 if (status == AE_SUPPORT) { 226 dev_warn(errdev, "Offline disabled.\n"); 227 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 228 acpi_bus_online, NULL, NULL, NULL); 229 return -EPERM; 230 } 231 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 232 if (errdev) { 233 errdev = NULL; 234 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 235 NULL, acpi_bus_offline, (void *)true, 236 (void **)&errdev); 237 if (!errdev) 238 acpi_bus_offline(handle, 0, (void *)true, 239 (void **)&errdev); 240 241 if (errdev) { 242 dev_warn(errdev, "Offline failed.\n"); 243 acpi_bus_online(handle, 0, NULL, NULL); 244 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 245 ACPI_UINT32_MAX, acpi_bus_online, 246 NULL, NULL, NULL); 247 return -EBUSY; 248 } 249 } 250 return 0; 251 } 252 253 static int acpi_scan_hot_remove(struct acpi_device *device) 254 { 255 acpi_handle handle = device->handle; 256 unsigned long long sta; 257 acpi_status status; 258 259 if (device->handler && device->handler->hotplug.demand_offline) { 260 if (!acpi_scan_is_offline(device, true)) 261 return -EBUSY; 262 } else { 263 int error = acpi_scan_try_to_offline(device); 264 if (error) 265 return error; 266 } 267 268 ACPI_DEBUG_PRINT((ACPI_DB_INFO, 269 "Hot-removing device %s...\n", dev_name(&device->dev))); 270 271 acpi_bus_trim(device); 272 273 acpi_evaluate_lck(handle, 0); 274 /* 275 * TBD: _EJD support. 276 */ 277 status = acpi_evaluate_ej0(handle); 278 if (status == AE_NOT_FOUND) 279 return -ENODEV; 280 else if (ACPI_FAILURE(status)) 281 return -EIO; 282 283 /* 284 * Verify if eject was indeed successful. If not, log an error 285 * message. No need to call _OST since _EJ0 call was made OK. 286 */ 287 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 288 if (ACPI_FAILURE(status)) { 289 acpi_handle_warn(handle, 290 "Status check after eject failed (0x%x)\n", status); 291 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 292 acpi_handle_warn(handle, 293 "Eject incomplete - status 0x%llx\n", sta); 294 } 295 296 return 0; 297 } 298 299 static int acpi_scan_device_not_present(struct acpi_device *adev) 300 { 301 if (!acpi_device_enumerated(adev)) { 302 dev_warn(&adev->dev, "Still not present\n"); 303 return -EALREADY; 304 } 305 acpi_bus_trim(adev); 306 return 0; 307 } 308 309 static int acpi_scan_device_check(struct acpi_device *adev) 310 { 311 int error; 312 313 acpi_bus_get_status(adev); 314 if (adev->status.present || adev->status.functional) { 315 /* 316 * This function is only called for device objects for which 317 * matching scan handlers exist. The only situation in which 318 * the scan handler is not attached to this device object yet 319 * is when the device has just appeared (either it wasn't 320 * present at all before or it was removed and then added 321 * again). 322 */ 323 if (adev->handler) { 324 dev_warn(&adev->dev, "Already enumerated\n"); 325 return -EALREADY; 326 } 327 error = acpi_bus_scan(adev->handle); 328 if (error) { 329 dev_warn(&adev->dev, "Namespace scan failure\n"); 330 return error; 331 } 332 if (!adev->handler) { 333 dev_warn(&adev->dev, "Enumeration failure\n"); 334 error = -ENODEV; 335 } 336 } else { 337 error = acpi_scan_device_not_present(adev); 338 } 339 return error; 340 } 341 342 static int acpi_scan_bus_check(struct acpi_device *adev) 343 { 344 struct acpi_scan_handler *handler = adev->handler; 345 struct acpi_device *child; 346 int error; 347 348 acpi_bus_get_status(adev); 349 if (!(adev->status.present || adev->status.functional)) { 350 acpi_scan_device_not_present(adev); 351 return 0; 352 } 353 if (handler && handler->hotplug.scan_dependent) 354 return handler->hotplug.scan_dependent(adev); 355 356 error = acpi_bus_scan(adev->handle); 357 if (error) { 358 dev_warn(&adev->dev, "Namespace scan failure\n"); 359 return error; 360 } 361 list_for_each_entry(child, &adev->children, node) { 362 error = acpi_scan_bus_check(child); 363 if (error) 364 return error; 365 } 366 return 0; 367 } 368 369 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 370 { 371 switch (type) { 372 case ACPI_NOTIFY_BUS_CHECK: 373 return acpi_scan_bus_check(adev); 374 case ACPI_NOTIFY_DEVICE_CHECK: 375 return acpi_scan_device_check(adev); 376 case ACPI_NOTIFY_EJECT_REQUEST: 377 case ACPI_OST_EC_OSPM_EJECT: 378 if (adev->handler && !adev->handler->hotplug.enabled) { 379 dev_info(&adev->dev, "Eject disabled\n"); 380 return -EPERM; 381 } 382 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 383 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 384 return acpi_scan_hot_remove(adev); 385 } 386 return -EINVAL; 387 } 388 389 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 390 { 391 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 392 int error = -ENODEV; 393 394 lock_device_hotplug(); 395 mutex_lock(&acpi_scan_lock); 396 397 /* 398 * The device object's ACPI handle cannot become invalid as long as we 399 * are holding acpi_scan_lock, but it might have become invalid before 400 * that lock was acquired. 401 */ 402 if (adev->handle == INVALID_ACPI_HANDLE) 403 goto err_out; 404 405 if (adev->flags.is_dock_station) { 406 error = dock_notify(adev, src); 407 } else if (adev->flags.hotplug_notify) { 408 error = acpi_generic_hotplug_event(adev, src); 409 } else { 410 int (*notify)(struct acpi_device *, u32); 411 412 acpi_lock_hp_context(); 413 notify = adev->hp ? adev->hp->notify : NULL; 414 acpi_unlock_hp_context(); 415 /* 416 * There may be additional notify handlers for device objects 417 * without the .event() callback, so ignore them here. 418 */ 419 if (notify) 420 error = notify(adev, src); 421 else 422 goto out; 423 } 424 switch (error) { 425 case 0: 426 ost_code = ACPI_OST_SC_SUCCESS; 427 break; 428 case -EPERM: 429 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 430 break; 431 case -EBUSY: 432 ost_code = ACPI_OST_SC_DEVICE_BUSY; 433 break; 434 default: 435 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 436 break; 437 } 438 439 err_out: 440 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 441 442 out: 443 acpi_bus_put_acpi_device(adev); 444 mutex_unlock(&acpi_scan_lock); 445 unlock_device_hotplug(); 446 } 447 448 static void acpi_free_power_resources_lists(struct acpi_device *device) 449 { 450 int i; 451 452 if (device->wakeup.flags.valid) 453 acpi_power_resources_list_free(&device->wakeup.resources); 454 455 if (!device->power.flags.power_resources) 456 return; 457 458 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 459 struct acpi_device_power_state *ps = &device->power.states[i]; 460 acpi_power_resources_list_free(&ps->resources); 461 } 462 } 463 464 static void acpi_device_release(struct device *dev) 465 { 466 struct acpi_device *acpi_dev = to_acpi_device(dev); 467 468 acpi_free_properties(acpi_dev); 469 acpi_free_pnp_ids(&acpi_dev->pnp); 470 acpi_free_power_resources_lists(acpi_dev); 471 kfree(acpi_dev); 472 } 473 474 static void acpi_device_del(struct acpi_device *device) 475 { 476 struct acpi_device_bus_id *acpi_device_bus_id; 477 478 mutex_lock(&acpi_device_lock); 479 if (device->parent) 480 list_del(&device->node); 481 482 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 483 if (!strcmp(acpi_device_bus_id->bus_id, 484 acpi_device_hid(device))) { 485 if (acpi_device_bus_id->instance_no > 0) 486 acpi_device_bus_id->instance_no--; 487 else { 488 list_del(&acpi_device_bus_id->node); 489 kfree_const(acpi_device_bus_id->bus_id); 490 kfree(acpi_device_bus_id); 491 } 492 break; 493 } 494 495 list_del(&device->wakeup_list); 496 mutex_unlock(&acpi_device_lock); 497 498 acpi_power_add_remove_device(device, false); 499 acpi_device_remove_files(device); 500 if (device->remove) 501 device->remove(device); 502 503 device_del(&device->dev); 504 } 505 506 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 507 508 static LIST_HEAD(acpi_device_del_list); 509 static DEFINE_MUTEX(acpi_device_del_lock); 510 511 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 512 { 513 for (;;) { 514 struct acpi_device *adev; 515 516 mutex_lock(&acpi_device_del_lock); 517 518 if (list_empty(&acpi_device_del_list)) { 519 mutex_unlock(&acpi_device_del_lock); 520 break; 521 } 522 adev = list_first_entry(&acpi_device_del_list, 523 struct acpi_device, del_list); 524 list_del(&adev->del_list); 525 526 mutex_unlock(&acpi_device_del_lock); 527 528 blocking_notifier_call_chain(&acpi_reconfig_chain, 529 ACPI_RECONFIG_DEVICE_REMOVE, adev); 530 531 acpi_device_del(adev); 532 /* 533 * Drop references to all power resources that might have been 534 * used by the device. 535 */ 536 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 537 put_device(&adev->dev); 538 } 539 } 540 541 /** 542 * acpi_scan_drop_device - Drop an ACPI device object. 543 * @handle: Handle of an ACPI namespace node, not used. 544 * @context: Address of the ACPI device object to drop. 545 * 546 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 547 * namespace node the device object pointed to by @context is attached to. 548 * 549 * The unregistration is carried out asynchronously to avoid running 550 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 551 * ensure the correct ordering (the device objects must be unregistered in the 552 * same order in which the corresponding namespace nodes are deleted). 553 */ 554 static void acpi_scan_drop_device(acpi_handle handle, void *context) 555 { 556 static DECLARE_WORK(work, acpi_device_del_work_fn); 557 struct acpi_device *adev = context; 558 559 mutex_lock(&acpi_device_del_lock); 560 561 /* 562 * Use the ACPI hotplug workqueue which is ordered, so this work item 563 * won't run after any hotplug work items submitted subsequently. That 564 * prevents attempts to register device objects identical to those being 565 * deleted from happening concurrently (such attempts result from 566 * hotplug events handled via the ACPI hotplug workqueue). It also will 567 * run after all of the work items submitted previosuly, which helps 568 * those work items to ensure that they are not accessing stale device 569 * objects. 570 */ 571 if (list_empty(&acpi_device_del_list)) 572 acpi_queue_hotplug_work(&work); 573 574 list_add_tail(&adev->del_list, &acpi_device_del_list); 575 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 576 adev->handle = INVALID_ACPI_HANDLE; 577 578 mutex_unlock(&acpi_device_del_lock); 579 } 580 581 static int acpi_get_device_data(acpi_handle handle, struct acpi_device **device, 582 void (*callback)(void *)) 583 { 584 acpi_status status; 585 586 if (!device) 587 return -EINVAL; 588 589 status = acpi_get_data_full(handle, acpi_scan_drop_device, 590 (void **)device, callback); 591 if (ACPI_FAILURE(status) || !*device) { 592 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No context for object [%p]\n", 593 handle)); 594 return -ENODEV; 595 } 596 return 0; 597 } 598 599 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device) 600 { 601 return acpi_get_device_data(handle, device, NULL); 602 } 603 EXPORT_SYMBOL(acpi_bus_get_device); 604 605 static void get_acpi_device(void *dev) 606 { 607 if (dev) 608 get_device(&((struct acpi_device *)dev)->dev); 609 } 610 611 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle) 612 { 613 struct acpi_device *adev = NULL; 614 615 acpi_get_device_data(handle, &adev, get_acpi_device); 616 return adev; 617 } 618 619 void acpi_bus_put_acpi_device(struct acpi_device *adev) 620 { 621 put_device(&adev->dev); 622 } 623 624 int acpi_device_add(struct acpi_device *device, 625 void (*release)(struct device *)) 626 { 627 int result; 628 struct acpi_device_bus_id *acpi_device_bus_id, *new_bus_id; 629 int found = 0; 630 631 if (device->handle) { 632 acpi_status status; 633 634 status = acpi_attach_data(device->handle, acpi_scan_drop_device, 635 device); 636 if (ACPI_FAILURE(status)) { 637 acpi_handle_err(device->handle, 638 "Unable to attach device data\n"); 639 return -ENODEV; 640 } 641 } 642 643 /* 644 * Linkage 645 * ------- 646 * Link this device to its parent and siblings. 647 */ 648 INIT_LIST_HEAD(&device->children); 649 INIT_LIST_HEAD(&device->node); 650 INIT_LIST_HEAD(&device->wakeup_list); 651 INIT_LIST_HEAD(&device->physical_node_list); 652 INIT_LIST_HEAD(&device->del_list); 653 mutex_init(&device->physical_node_lock); 654 655 new_bus_id = kzalloc(sizeof(struct acpi_device_bus_id), GFP_KERNEL); 656 if (!new_bus_id) { 657 pr_err(PREFIX "Memory allocation error\n"); 658 result = -ENOMEM; 659 goto err_detach; 660 } 661 662 mutex_lock(&acpi_device_lock); 663 /* 664 * Find suitable bus_id and instance number in acpi_bus_id_list 665 * If failed, create one and link it into acpi_bus_id_list 666 */ 667 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 668 if (!strcmp(acpi_device_bus_id->bus_id, 669 acpi_device_hid(device))) { 670 acpi_device_bus_id->instance_no++; 671 found = 1; 672 kfree(new_bus_id); 673 break; 674 } 675 } 676 if (!found) { 677 acpi_device_bus_id = new_bus_id; 678 acpi_device_bus_id->bus_id = 679 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 680 if (!acpi_device_bus_id->bus_id) { 681 pr_err(PREFIX "Memory allocation error for bus id\n"); 682 result = -ENOMEM; 683 goto err_free_new_bus_id; 684 } 685 686 acpi_device_bus_id->instance_no = 0; 687 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 688 } 689 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, acpi_device_bus_id->instance_no); 690 691 if (device->parent) 692 list_add_tail(&device->node, &device->parent->children); 693 694 if (device->wakeup.flags.valid) 695 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 696 mutex_unlock(&acpi_device_lock); 697 698 if (device->parent) 699 device->dev.parent = &device->parent->dev; 700 device->dev.bus = &acpi_bus_type; 701 device->dev.release = release; 702 result = device_add(&device->dev); 703 if (result) { 704 dev_err(&device->dev, "Error registering device\n"); 705 goto err; 706 } 707 708 result = acpi_device_setup_files(device); 709 if (result) 710 printk(KERN_ERR PREFIX "Error creating sysfs interface for device %s\n", 711 dev_name(&device->dev)); 712 713 return 0; 714 715 err: 716 mutex_lock(&acpi_device_lock); 717 if (device->parent) 718 list_del(&device->node); 719 list_del(&device->wakeup_list); 720 721 err_free_new_bus_id: 722 if (!found) 723 kfree(new_bus_id); 724 725 mutex_unlock(&acpi_device_lock); 726 727 err_detach: 728 acpi_detach_data(device->handle, acpi_scan_drop_device); 729 return result; 730 } 731 732 /* -------------------------------------------------------------------------- 733 Device Enumeration 734 -------------------------------------------------------------------------- */ 735 static bool acpi_info_matches_ids(struct acpi_device_info *info, 736 const char * const ids[]) 737 { 738 struct acpi_pnp_device_id_list *cid_list = NULL; 739 int i; 740 741 if (!(info->valid & ACPI_VALID_HID)) 742 return false; 743 744 if (info->valid & ACPI_VALID_CID) 745 cid_list = &info->compatible_id_list; 746 747 for (i = 0; ids[i]; i++) { 748 int j; 749 750 if (!strcmp(info->hardware_id.string, ids[i])) 751 return true; 752 753 if (!cid_list) 754 continue; 755 756 for (j = 0; j < cid_list->count; j++) { 757 if (!strcmp(cid_list->ids[j].string, ids[i])) 758 return true; 759 } 760 } 761 762 return false; 763 } 764 765 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 766 static const char * const acpi_ignore_dep_ids[] = { 767 "PNP0D80", /* Windows-compatible System Power Management Controller */ 768 "INT33BD", /* Intel Baytrail Mailbox Device */ 769 NULL 770 }; 771 772 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle) 773 { 774 struct acpi_device *device = NULL; 775 acpi_status status; 776 777 /* 778 * Fixed hardware devices do not appear in the namespace and do not 779 * have handles, but we fabricate acpi_devices for them, so we have 780 * to deal with them specially. 781 */ 782 if (!handle) 783 return acpi_root; 784 785 do { 786 status = acpi_get_parent(handle, &handle); 787 if (ACPI_FAILURE(status)) 788 return status == AE_NULL_ENTRY ? NULL : acpi_root; 789 } while (acpi_bus_get_device(handle, &device)); 790 return device; 791 } 792 793 acpi_status 794 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 795 { 796 acpi_status status; 797 acpi_handle tmp; 798 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 799 union acpi_object *obj; 800 801 status = acpi_get_handle(handle, "_EJD", &tmp); 802 if (ACPI_FAILURE(status)) 803 return status; 804 805 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 806 if (ACPI_SUCCESS(status)) { 807 obj = buffer.pointer; 808 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 809 ejd); 810 kfree(buffer.pointer); 811 } 812 return status; 813 } 814 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 815 816 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 817 { 818 acpi_handle handle = dev->handle; 819 struct acpi_device_wakeup *wakeup = &dev->wakeup; 820 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 821 union acpi_object *package = NULL; 822 union acpi_object *element = NULL; 823 acpi_status status; 824 int err = -ENODATA; 825 826 INIT_LIST_HEAD(&wakeup->resources); 827 828 /* _PRW */ 829 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 830 if (ACPI_FAILURE(status)) { 831 ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PRW")); 832 return err; 833 } 834 835 package = (union acpi_object *)buffer.pointer; 836 837 if (!package || package->package.count < 2) 838 goto out; 839 840 element = &(package->package.elements[0]); 841 if (!element) 842 goto out; 843 844 if (element->type == ACPI_TYPE_PACKAGE) { 845 if ((element->package.count < 2) || 846 (element->package.elements[0].type != 847 ACPI_TYPE_LOCAL_REFERENCE) 848 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 849 goto out; 850 851 wakeup->gpe_device = 852 element->package.elements[0].reference.handle; 853 wakeup->gpe_number = 854 (u32) element->package.elements[1].integer.value; 855 } else if (element->type == ACPI_TYPE_INTEGER) { 856 wakeup->gpe_device = NULL; 857 wakeup->gpe_number = element->integer.value; 858 } else { 859 goto out; 860 } 861 862 element = &(package->package.elements[1]); 863 if (element->type != ACPI_TYPE_INTEGER) 864 goto out; 865 866 wakeup->sleep_state = element->integer.value; 867 868 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 869 if (err) 870 goto out; 871 872 if (!list_empty(&wakeup->resources)) { 873 int sleep_state; 874 875 err = acpi_power_wakeup_list_init(&wakeup->resources, 876 &sleep_state); 877 if (err) { 878 acpi_handle_warn(handle, "Retrieving current states " 879 "of wakeup power resources failed\n"); 880 acpi_power_resources_list_free(&wakeup->resources); 881 goto out; 882 } 883 if (sleep_state < wakeup->sleep_state) { 884 acpi_handle_warn(handle, "Overriding _PRW sleep state " 885 "(S%d) by S%d from power resources\n", 886 (int)wakeup->sleep_state, sleep_state); 887 wakeup->sleep_state = sleep_state; 888 } 889 } 890 891 out: 892 kfree(buffer.pointer); 893 return err; 894 } 895 896 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 897 { 898 static const struct acpi_device_id button_device_ids[] = { 899 {"PNP0C0C", 0}, /* Power button */ 900 {"PNP0C0D", 0}, /* Lid */ 901 {"PNP0C0E", 0}, /* Sleep button */ 902 {"", 0}, 903 }; 904 struct acpi_device_wakeup *wakeup = &device->wakeup; 905 acpi_status status; 906 907 wakeup->flags.notifier_present = 0; 908 909 /* Power button, Lid switch always enable wakeup */ 910 if (!acpi_match_device_ids(device, button_device_ids)) { 911 if (!acpi_match_device_ids(device, &button_device_ids[1])) { 912 /* Do not use Lid/sleep button for S5 wakeup */ 913 if (wakeup->sleep_state == ACPI_STATE_S5) 914 wakeup->sleep_state = ACPI_STATE_S4; 915 } 916 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 917 device_set_wakeup_capable(&device->dev, true); 918 return true; 919 } 920 921 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 922 wakeup->gpe_number); 923 return ACPI_SUCCESS(status); 924 } 925 926 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 927 { 928 int err; 929 930 /* Presence of _PRW indicates wake capable */ 931 if (!acpi_has_method(device->handle, "_PRW")) 932 return; 933 934 err = acpi_bus_extract_wakeup_device_power_package(device); 935 if (err) { 936 dev_err(&device->dev, "_PRW evaluation error: %d\n", err); 937 return; 938 } 939 940 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 941 device->wakeup.prepare_count = 0; 942 /* 943 * Call _PSW/_DSW object to disable its ability to wake the sleeping 944 * system for the ACPI device with the _PRW object. 945 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 946 * So it is necessary to call _DSW object first. Only when it is not 947 * present will the _PSW object used. 948 */ 949 err = acpi_device_sleep_wake(device, 0, 0, 0); 950 if (err) 951 pr_debug("error in _DSW or _PSW evaluation\n"); 952 } 953 954 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 955 { 956 struct acpi_device_power_state *ps = &device->power.states[state]; 957 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 958 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 959 acpi_status status; 960 961 INIT_LIST_HEAD(&ps->resources); 962 963 /* Evaluate "_PRx" to get referenced power resources */ 964 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 965 if (ACPI_SUCCESS(status)) { 966 union acpi_object *package = buffer.pointer; 967 968 if (buffer.length && package 969 && package->type == ACPI_TYPE_PACKAGE 970 && package->package.count) 971 acpi_extract_power_resources(package, 0, &ps->resources); 972 973 ACPI_FREE(buffer.pointer); 974 } 975 976 /* Evaluate "_PSx" to see if we can do explicit sets */ 977 pathname[2] = 'S'; 978 if (acpi_has_method(device->handle, pathname)) 979 ps->flags.explicit_set = 1; 980 981 /* State is valid if there are means to put the device into it. */ 982 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 983 ps->flags.valid = 1; 984 985 ps->power = -1; /* Unknown - driver assigned */ 986 ps->latency = -1; /* Unknown - driver assigned */ 987 } 988 989 static void acpi_bus_get_power_flags(struct acpi_device *device) 990 { 991 u32 i; 992 993 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 994 if (!acpi_has_method(device->handle, "_PS0") && 995 !acpi_has_method(device->handle, "_PR0")) 996 return; 997 998 device->flags.power_manageable = 1; 999 1000 /* 1001 * Power Management Flags 1002 */ 1003 if (acpi_has_method(device->handle, "_PSC")) 1004 device->power.flags.explicit_get = 1; 1005 1006 if (acpi_has_method(device->handle, "_IRC")) 1007 device->power.flags.inrush_current = 1; 1008 1009 if (acpi_has_method(device->handle, "_DSW")) 1010 device->power.flags.dsw_present = 1; 1011 1012 /* 1013 * Enumerate supported power management states 1014 */ 1015 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1016 acpi_bus_init_power_state(device, i); 1017 1018 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1019 1020 /* Set the defaults for D0 and D3hot (always supported). */ 1021 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1022 device->power.states[ACPI_STATE_D0].power = 100; 1023 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1024 1025 /* 1026 * Use power resources only if the D0 list of them is populated, because 1027 * some platforms may provide _PR3 only to indicate D3cold support and 1028 * in those cases the power resources list returned by it may be bogus. 1029 */ 1030 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1031 device->power.flags.power_resources = 1; 1032 /* 1033 * D3cold is supported if the D3hot list of power resources is 1034 * not empty. 1035 */ 1036 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1037 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1038 } 1039 1040 if (acpi_bus_init_power(device)) 1041 device->flags.power_manageable = 0; 1042 } 1043 1044 static void acpi_bus_get_flags(struct acpi_device *device) 1045 { 1046 /* Presence of _STA indicates 'dynamic_status' */ 1047 if (acpi_has_method(device->handle, "_STA")) 1048 device->flags.dynamic_status = 1; 1049 1050 /* Presence of _RMV indicates 'removable' */ 1051 if (acpi_has_method(device->handle, "_RMV")) 1052 device->flags.removable = 1; 1053 1054 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1055 if (acpi_has_method(device->handle, "_EJD") || 1056 acpi_has_method(device->handle, "_EJ0")) 1057 device->flags.ejectable = 1; 1058 } 1059 1060 static void acpi_device_get_busid(struct acpi_device *device) 1061 { 1062 char bus_id[5] = { '?', 0 }; 1063 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1064 int i = 0; 1065 1066 /* 1067 * Bus ID 1068 * ------ 1069 * The device's Bus ID is simply the object name. 1070 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1071 */ 1072 if (ACPI_IS_ROOT_DEVICE(device)) { 1073 strcpy(device->pnp.bus_id, "ACPI"); 1074 return; 1075 } 1076 1077 switch (device->device_type) { 1078 case ACPI_BUS_TYPE_POWER_BUTTON: 1079 strcpy(device->pnp.bus_id, "PWRF"); 1080 break; 1081 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1082 strcpy(device->pnp.bus_id, "SLPF"); 1083 break; 1084 case ACPI_BUS_TYPE_ECDT_EC: 1085 strcpy(device->pnp.bus_id, "ECDT"); 1086 break; 1087 default: 1088 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1089 /* Clean up trailing underscores (if any) */ 1090 for (i = 3; i > 1; i--) { 1091 if (bus_id[i] == '_') 1092 bus_id[i] = '\0'; 1093 else 1094 break; 1095 } 1096 strcpy(device->pnp.bus_id, bus_id); 1097 break; 1098 } 1099 } 1100 1101 /* 1102 * acpi_ata_match - see if an acpi object is an ATA device 1103 * 1104 * If an acpi object has one of the ACPI ATA methods defined, 1105 * then we can safely call it an ATA device. 1106 */ 1107 bool acpi_ata_match(acpi_handle handle) 1108 { 1109 return acpi_has_method(handle, "_GTF") || 1110 acpi_has_method(handle, "_GTM") || 1111 acpi_has_method(handle, "_STM") || 1112 acpi_has_method(handle, "_SDD"); 1113 } 1114 1115 /* 1116 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1117 * 1118 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1119 * then we can safely call it an ejectable drive bay 1120 */ 1121 bool acpi_bay_match(acpi_handle handle) 1122 { 1123 acpi_handle phandle; 1124 1125 if (!acpi_has_method(handle, "_EJ0")) 1126 return false; 1127 if (acpi_ata_match(handle)) 1128 return true; 1129 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1130 return false; 1131 1132 return acpi_ata_match(phandle); 1133 } 1134 1135 bool acpi_device_is_battery(struct acpi_device *adev) 1136 { 1137 struct acpi_hardware_id *hwid; 1138 1139 list_for_each_entry(hwid, &adev->pnp.ids, list) 1140 if (!strcmp("PNP0C0A", hwid->id)) 1141 return true; 1142 1143 return false; 1144 } 1145 1146 static bool is_ejectable_bay(struct acpi_device *adev) 1147 { 1148 acpi_handle handle = adev->handle; 1149 1150 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1151 return true; 1152 1153 return acpi_bay_match(handle); 1154 } 1155 1156 /* 1157 * acpi_dock_match - see if an acpi object has a _DCK method 1158 */ 1159 bool acpi_dock_match(acpi_handle handle) 1160 { 1161 return acpi_has_method(handle, "_DCK"); 1162 } 1163 1164 static acpi_status 1165 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1166 void **return_value) 1167 { 1168 long *cap = context; 1169 1170 if (acpi_has_method(handle, "_BCM") && 1171 acpi_has_method(handle, "_BCL")) { 1172 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found generic backlight " 1173 "support\n")); 1174 *cap |= ACPI_VIDEO_BACKLIGHT; 1175 /* We have backlight support, no need to scan further */ 1176 return AE_CTRL_TERMINATE; 1177 } 1178 return 0; 1179 } 1180 1181 /* Returns true if the ACPI object is a video device which can be 1182 * handled by video.ko. 1183 * The device will get a Linux specific CID added in scan.c to 1184 * identify the device as an ACPI graphics device 1185 * Be aware that the graphics device may not be physically present 1186 * Use acpi_video_get_capabilities() to detect general ACPI video 1187 * capabilities of present cards 1188 */ 1189 long acpi_is_video_device(acpi_handle handle) 1190 { 1191 long video_caps = 0; 1192 1193 /* Is this device able to support video switching ? */ 1194 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1195 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1196 1197 /* Is this device able to retrieve a video ROM ? */ 1198 if (acpi_has_method(handle, "_ROM")) 1199 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1200 1201 /* Is this device able to configure which video head to be POSTed ? */ 1202 if (acpi_has_method(handle, "_VPO") && 1203 acpi_has_method(handle, "_GPD") && 1204 acpi_has_method(handle, "_SPD")) 1205 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1206 1207 /* Only check for backlight functionality if one of the above hit. */ 1208 if (video_caps) 1209 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1210 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1211 &video_caps, NULL); 1212 1213 return video_caps; 1214 } 1215 EXPORT_SYMBOL(acpi_is_video_device); 1216 1217 const char *acpi_device_hid(struct acpi_device *device) 1218 { 1219 struct acpi_hardware_id *hid; 1220 1221 if (list_empty(&device->pnp.ids)) 1222 return dummy_hid; 1223 1224 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list); 1225 return hid->id; 1226 } 1227 EXPORT_SYMBOL(acpi_device_hid); 1228 1229 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1230 { 1231 struct acpi_hardware_id *id; 1232 1233 id = kmalloc(sizeof(*id), GFP_KERNEL); 1234 if (!id) 1235 return; 1236 1237 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1238 if (!id->id) { 1239 kfree(id); 1240 return; 1241 } 1242 1243 list_add_tail(&id->list, &pnp->ids); 1244 pnp->type.hardware_id = 1; 1245 } 1246 1247 /* 1248 * Old IBM workstations have a DSDT bug wherein the SMBus object 1249 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1250 * prefix. Work around this. 1251 */ 1252 static bool acpi_ibm_smbus_match(acpi_handle handle) 1253 { 1254 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1255 struct acpi_buffer path = { sizeof(node_name), node_name }; 1256 1257 if (!dmi_name_in_vendors("IBM")) 1258 return false; 1259 1260 /* Look for SMBS object */ 1261 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1262 strcmp("SMBS", path.pointer)) 1263 return false; 1264 1265 /* Does it have the necessary (but misnamed) methods? */ 1266 if (acpi_has_method(handle, "SBI") && 1267 acpi_has_method(handle, "SBR") && 1268 acpi_has_method(handle, "SBW")) 1269 return true; 1270 1271 return false; 1272 } 1273 1274 static bool acpi_object_is_system_bus(acpi_handle handle) 1275 { 1276 acpi_handle tmp; 1277 1278 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1279 tmp == handle) 1280 return true; 1281 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1282 tmp == handle) 1283 return true; 1284 1285 return false; 1286 } 1287 1288 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1289 int device_type, struct acpi_device_info *info) 1290 { 1291 struct acpi_pnp_device_id_list *cid_list; 1292 int i; 1293 1294 switch (device_type) { 1295 case ACPI_BUS_TYPE_DEVICE: 1296 if (handle == ACPI_ROOT_OBJECT) { 1297 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1298 break; 1299 } 1300 1301 if (!info) { 1302 pr_err(PREFIX "%s: Error reading device info\n", 1303 __func__); 1304 return; 1305 } 1306 1307 if (info->valid & ACPI_VALID_HID) { 1308 acpi_add_id(pnp, info->hardware_id.string); 1309 pnp->type.platform_id = 1; 1310 } 1311 if (info->valid & ACPI_VALID_CID) { 1312 cid_list = &info->compatible_id_list; 1313 for (i = 0; i < cid_list->count; i++) 1314 acpi_add_id(pnp, cid_list->ids[i].string); 1315 } 1316 if (info->valid & ACPI_VALID_ADR) { 1317 pnp->bus_address = info->address; 1318 pnp->type.bus_address = 1; 1319 } 1320 if (info->valid & ACPI_VALID_UID) 1321 pnp->unique_id = kstrdup(info->unique_id.string, 1322 GFP_KERNEL); 1323 if (info->valid & ACPI_VALID_CLS) 1324 acpi_add_id(pnp, info->class_code.string); 1325 1326 /* 1327 * Some devices don't reliably have _HIDs & _CIDs, so add 1328 * synthetic HIDs to make sure drivers can find them. 1329 */ 1330 if (acpi_is_video_device(handle)) 1331 acpi_add_id(pnp, ACPI_VIDEO_HID); 1332 else if (acpi_bay_match(handle)) 1333 acpi_add_id(pnp, ACPI_BAY_HID); 1334 else if (acpi_dock_match(handle)) 1335 acpi_add_id(pnp, ACPI_DOCK_HID); 1336 else if (acpi_ibm_smbus_match(handle)) 1337 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1338 else if (list_empty(&pnp->ids) && 1339 acpi_object_is_system_bus(handle)) { 1340 /* \_SB, \_TZ, LNXSYBUS */ 1341 acpi_add_id(pnp, ACPI_BUS_HID); 1342 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1343 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1344 } 1345 1346 break; 1347 case ACPI_BUS_TYPE_POWER: 1348 acpi_add_id(pnp, ACPI_POWER_HID); 1349 break; 1350 case ACPI_BUS_TYPE_PROCESSOR: 1351 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1352 break; 1353 case ACPI_BUS_TYPE_THERMAL: 1354 acpi_add_id(pnp, ACPI_THERMAL_HID); 1355 break; 1356 case ACPI_BUS_TYPE_POWER_BUTTON: 1357 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1358 break; 1359 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1360 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1361 break; 1362 case ACPI_BUS_TYPE_ECDT_EC: 1363 acpi_add_id(pnp, ACPI_ECDT_HID); 1364 break; 1365 } 1366 } 1367 1368 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1369 { 1370 struct acpi_hardware_id *id, *tmp; 1371 1372 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1373 kfree_const(id->id); 1374 kfree(id); 1375 } 1376 kfree(pnp->unique_id); 1377 } 1378 1379 /** 1380 * acpi_dma_supported - Check DMA support for the specified device. 1381 * @adev: The pointer to acpi device 1382 * 1383 * Return false if DMA is not supported. Otherwise, return true 1384 */ 1385 bool acpi_dma_supported(struct acpi_device *adev) 1386 { 1387 if (!adev) 1388 return false; 1389 1390 if (adev->flags.cca_seen) 1391 return true; 1392 1393 /* 1394 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1395 * DMA on "Intel platforms". Presumably that includes all x86 and 1396 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1397 */ 1398 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1399 return true; 1400 1401 return false; 1402 } 1403 1404 /** 1405 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1406 * @adev: The pointer to acpi device 1407 * 1408 * Return enum dev_dma_attr. 1409 */ 1410 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1411 { 1412 if (!acpi_dma_supported(adev)) 1413 return DEV_DMA_NOT_SUPPORTED; 1414 1415 if (adev->flags.coherent_dma) 1416 return DEV_DMA_COHERENT; 1417 else 1418 return DEV_DMA_NON_COHERENT; 1419 } 1420 1421 /** 1422 * acpi_dma_get_range() - Get device DMA parameters. 1423 * 1424 * @dev: device to configure 1425 * @dma_addr: pointer device DMA address result 1426 * @offset: pointer to the DMA offset result 1427 * @size: pointer to DMA range size result 1428 * 1429 * Evaluate DMA regions and return respectively DMA region start, offset 1430 * and size in dma_addr, offset and size on parsing success; it does not 1431 * update the passed in values on failure. 1432 * 1433 * Return 0 on success, < 0 on failure. 1434 */ 1435 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, 1436 u64 *size) 1437 { 1438 struct acpi_device *adev; 1439 LIST_HEAD(list); 1440 struct resource_entry *rentry; 1441 int ret; 1442 struct device *dma_dev = dev; 1443 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0; 1444 1445 /* 1446 * Walk the device tree chasing an ACPI companion with a _DMA 1447 * object while we go. Stop if we find a device with an ACPI 1448 * companion containing a _DMA method. 1449 */ 1450 do { 1451 adev = ACPI_COMPANION(dma_dev); 1452 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1453 break; 1454 1455 dma_dev = dma_dev->parent; 1456 } while (dma_dev); 1457 1458 if (!dma_dev) 1459 return -ENODEV; 1460 1461 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1462 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1463 return -EINVAL; 1464 } 1465 1466 ret = acpi_dev_get_dma_resources(adev, &list); 1467 if (ret > 0) { 1468 list_for_each_entry(rentry, &list, node) { 1469 if (dma_offset && rentry->offset != dma_offset) { 1470 ret = -EINVAL; 1471 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n"); 1472 goto out; 1473 } 1474 dma_offset = rentry->offset; 1475 1476 /* Take lower and upper limits */ 1477 if (rentry->res->start < dma_start) 1478 dma_start = rentry->res->start; 1479 if (rentry->res->end > dma_end) 1480 dma_end = rentry->res->end; 1481 } 1482 1483 if (dma_start >= dma_end) { 1484 ret = -EINVAL; 1485 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1486 goto out; 1487 } 1488 1489 *dma_addr = dma_start - dma_offset; 1490 len = dma_end - dma_start; 1491 *size = max(len, len + 1); 1492 *offset = dma_offset; 1493 } 1494 out: 1495 acpi_dev_free_resource_list(&list); 1496 1497 return ret >= 0 ? 0 : ret; 1498 } 1499 1500 /** 1501 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1502 * @dev: The pointer to the device 1503 * @attr: device dma attributes 1504 * @input_id: input device id const value pointer 1505 */ 1506 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1507 const u32 *input_id) 1508 { 1509 const struct iommu_ops *iommu; 1510 u64 dma_addr = 0, size = 0; 1511 1512 if (attr == DEV_DMA_NOT_SUPPORTED) { 1513 set_dma_ops(dev, &dma_dummy_ops); 1514 return 0; 1515 } 1516 1517 iort_dma_setup(dev, &dma_addr, &size); 1518 1519 iommu = iort_iommu_configure_id(dev, input_id); 1520 if (PTR_ERR(iommu) == -EPROBE_DEFER) 1521 return -EPROBE_DEFER; 1522 1523 arch_setup_dma_ops(dev, dma_addr, size, 1524 iommu, attr == DEV_DMA_COHERENT); 1525 1526 return 0; 1527 } 1528 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1529 1530 static void acpi_init_coherency(struct acpi_device *adev) 1531 { 1532 unsigned long long cca = 0; 1533 acpi_status status; 1534 struct acpi_device *parent = adev->parent; 1535 1536 if (parent && parent->flags.cca_seen) { 1537 /* 1538 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1539 * already saw one. 1540 */ 1541 adev->flags.cca_seen = 1; 1542 cca = parent->flags.coherent_dma; 1543 } else { 1544 status = acpi_evaluate_integer(adev->handle, "_CCA", 1545 NULL, &cca); 1546 if (ACPI_SUCCESS(status)) 1547 adev->flags.cca_seen = 1; 1548 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1549 /* 1550 * If architecture does not specify that _CCA is 1551 * required for DMA-able devices (e.g. x86), 1552 * we default to _CCA=1. 1553 */ 1554 cca = 1; 1555 else 1556 acpi_handle_debug(adev->handle, 1557 "ACPI device is missing _CCA.\n"); 1558 } 1559 1560 adev->flags.coherent_dma = cca; 1561 } 1562 1563 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1564 { 1565 bool *is_serial_bus_slave_p = data; 1566 1567 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1568 return 1; 1569 1570 *is_serial_bus_slave_p = true; 1571 1572 /* no need to do more checking */ 1573 return -1; 1574 } 1575 1576 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1577 { 1578 struct acpi_device *parent = device->parent; 1579 static const struct acpi_device_id indirect_io_hosts[] = { 1580 {"HISI0191", 0}, 1581 {} 1582 }; 1583 1584 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1585 } 1586 1587 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1588 { 1589 struct list_head resource_list; 1590 bool is_serial_bus_slave = false; 1591 /* 1592 * These devices have multiple I2cSerialBus resources and an i2c-client 1593 * must be instantiated for each, each with its own i2c_device_id. 1594 * Normally we only instantiate an i2c-client for the first resource, 1595 * using the ACPI HID as id. These special cases are handled by the 1596 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows 1597 * which i2c_device_id to use for each resource. 1598 */ 1599 static const struct acpi_device_id i2c_multi_instantiate_ids[] = { 1600 {"BSG1160", }, 1601 {"BSG2150", }, 1602 {"INT33FE", }, 1603 {"INT3515", }, 1604 {} 1605 }; 1606 1607 if (acpi_is_indirect_io_slave(device)) 1608 return true; 1609 1610 /* Macs use device properties in lieu of _CRS resources */ 1611 if (x86_apple_machine && 1612 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1613 fwnode_property_present(&device->fwnode, "i2cAddress") || 1614 fwnode_property_present(&device->fwnode, "baud"))) 1615 return true; 1616 1617 /* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */ 1618 if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids)) 1619 return false; 1620 1621 INIT_LIST_HEAD(&resource_list); 1622 acpi_dev_get_resources(device, &resource_list, 1623 acpi_check_serial_bus_slave, 1624 &is_serial_bus_slave); 1625 acpi_dev_free_resource_list(&resource_list); 1626 1627 return is_serial_bus_slave; 1628 } 1629 1630 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1631 int type, unsigned long long sta, 1632 struct acpi_device_info *info) 1633 { 1634 INIT_LIST_HEAD(&device->pnp.ids); 1635 device->device_type = type; 1636 device->handle = handle; 1637 device->parent = acpi_bus_get_parent(handle); 1638 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1639 acpi_set_device_status(device, sta); 1640 acpi_device_get_busid(device); 1641 acpi_set_pnp_ids(handle, &device->pnp, type, info); 1642 acpi_init_properties(device); 1643 acpi_bus_get_flags(device); 1644 device->flags.match_driver = false; 1645 device->flags.initialized = true; 1646 device->flags.enumeration_by_parent = 1647 acpi_device_enumeration_by_parent(device); 1648 acpi_device_clear_enumerated(device); 1649 device_initialize(&device->dev); 1650 dev_set_uevent_suppress(&device->dev, true); 1651 acpi_init_coherency(device); 1652 } 1653 1654 void acpi_device_add_finalize(struct acpi_device *device) 1655 { 1656 dev_set_uevent_suppress(&device->dev, false); 1657 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1658 } 1659 1660 static int acpi_add_single_object(struct acpi_device **child, 1661 acpi_handle handle, int type, 1662 unsigned long long sta) 1663 { 1664 int result; 1665 struct acpi_device *device; 1666 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1667 struct acpi_device_info *info = NULL; 1668 1669 if (handle != ACPI_ROOT_OBJECT && type == ACPI_BUS_TYPE_DEVICE) 1670 acpi_get_object_info(handle, &info); 1671 1672 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1673 if (!device) { 1674 printk(KERN_ERR PREFIX "Memory allocation error\n"); 1675 kfree(info); 1676 return -ENOMEM; 1677 } 1678 1679 acpi_init_device_object(device, handle, type, sta, info); 1680 kfree(info); 1681 /* 1682 * For ACPI_BUS_TYPE_DEVICE getting the status is delayed till here so 1683 * that we can call acpi_bus_get_status() and use its quirk handling. 1684 * Note this must be done before the get power-/wakeup_dev-flags calls. 1685 */ 1686 if (type == ACPI_BUS_TYPE_DEVICE) 1687 if (acpi_bus_get_status(device) < 0) 1688 acpi_set_device_status(device, 0); 1689 1690 acpi_bus_get_power_flags(device); 1691 acpi_bus_get_wakeup_device_flags(device); 1692 1693 result = acpi_device_add(device, acpi_device_release); 1694 if (result) { 1695 acpi_device_release(&device->dev); 1696 return result; 1697 } 1698 1699 acpi_power_add_remove_device(device, true); 1700 acpi_device_add_finalize(device); 1701 acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer); 1702 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Added %s [%s] parent %s\n", 1703 dev_name(&device->dev), (char *) buffer.pointer, 1704 device->parent ? dev_name(&device->parent->dev) : "(null)")); 1705 kfree(buffer.pointer); 1706 *child = device; 1707 return 0; 1708 } 1709 1710 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1711 void *context) 1712 { 1713 struct resource *res = context; 1714 1715 if (acpi_dev_resource_memory(ares, res)) 1716 return AE_CTRL_TERMINATE; 1717 1718 return AE_OK; 1719 } 1720 1721 static bool acpi_device_should_be_hidden(acpi_handle handle) 1722 { 1723 acpi_status status; 1724 struct resource res; 1725 1726 /* Check if it should ignore the UART device */ 1727 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1728 return false; 1729 1730 /* 1731 * The UART device described in SPCR table is assumed to have only one 1732 * memory resource present. So we only look for the first one here. 1733 */ 1734 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1735 acpi_get_resource_memory, &res); 1736 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1737 return false; 1738 1739 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1740 &res.start); 1741 1742 return true; 1743 } 1744 1745 static int acpi_bus_type_and_status(acpi_handle handle, int *type, 1746 unsigned long long *sta) 1747 { 1748 acpi_status status; 1749 acpi_object_type acpi_type; 1750 1751 status = acpi_get_type(handle, &acpi_type); 1752 if (ACPI_FAILURE(status)) 1753 return -ENODEV; 1754 1755 switch (acpi_type) { 1756 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 1757 case ACPI_TYPE_DEVICE: 1758 if (acpi_device_should_be_hidden(handle)) 1759 return -ENODEV; 1760 1761 *type = ACPI_BUS_TYPE_DEVICE; 1762 /* 1763 * acpi_add_single_object updates this once we've an acpi_device 1764 * so that acpi_bus_get_status' quirk handling can be used. 1765 */ 1766 *sta = ACPI_STA_DEFAULT; 1767 break; 1768 case ACPI_TYPE_PROCESSOR: 1769 *type = ACPI_BUS_TYPE_PROCESSOR; 1770 status = acpi_bus_get_status_handle(handle, sta); 1771 if (ACPI_FAILURE(status)) 1772 return -ENODEV; 1773 break; 1774 case ACPI_TYPE_THERMAL: 1775 *type = ACPI_BUS_TYPE_THERMAL; 1776 *sta = ACPI_STA_DEFAULT; 1777 break; 1778 case ACPI_TYPE_POWER: 1779 *type = ACPI_BUS_TYPE_POWER; 1780 *sta = ACPI_STA_DEFAULT; 1781 break; 1782 default: 1783 return -ENODEV; 1784 } 1785 1786 return 0; 1787 } 1788 1789 bool acpi_device_is_present(const struct acpi_device *adev) 1790 { 1791 return adev->status.present || adev->status.functional; 1792 } 1793 1794 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1795 const char *idstr, 1796 const struct acpi_device_id **matchid) 1797 { 1798 const struct acpi_device_id *devid; 1799 1800 if (handler->match) 1801 return handler->match(idstr, matchid); 1802 1803 for (devid = handler->ids; devid->id[0]; devid++) 1804 if (!strcmp((char *)devid->id, idstr)) { 1805 if (matchid) 1806 *matchid = devid; 1807 1808 return true; 1809 } 1810 1811 return false; 1812 } 1813 1814 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1815 const struct acpi_device_id **matchid) 1816 { 1817 struct acpi_scan_handler *handler; 1818 1819 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1820 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1821 return handler; 1822 1823 return NULL; 1824 } 1825 1826 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 1827 { 1828 if (!!hotplug->enabled == !!val) 1829 return; 1830 1831 mutex_lock(&acpi_scan_lock); 1832 1833 hotplug->enabled = val; 1834 1835 mutex_unlock(&acpi_scan_lock); 1836 } 1837 1838 static void acpi_scan_init_hotplug(struct acpi_device *adev) 1839 { 1840 struct acpi_hardware_id *hwid; 1841 1842 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 1843 acpi_dock_add(adev); 1844 return; 1845 } 1846 list_for_each_entry(hwid, &adev->pnp.ids, list) { 1847 struct acpi_scan_handler *handler; 1848 1849 handler = acpi_scan_match_handler(hwid->id, NULL); 1850 if (handler) { 1851 adev->flags.hotplug_notify = true; 1852 break; 1853 } 1854 } 1855 } 1856 1857 static u32 acpi_scan_check_dep(acpi_handle handle) 1858 { 1859 struct acpi_handle_list dep_devices; 1860 acpi_status status; 1861 u32 count; 1862 int i; 1863 1864 /* 1865 * Check for _HID here to avoid deferring the enumeration of: 1866 * 1. PCI devices. 1867 * 2. ACPI nodes describing USB ports. 1868 * Still, checking for _HID catches more then just these cases ... 1869 */ 1870 if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID")) 1871 return 0; 1872 1873 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices); 1874 if (ACPI_FAILURE(status)) { 1875 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 1876 return 0; 1877 } 1878 1879 for (count = 0, i = 0; i < dep_devices.count; i++) { 1880 struct acpi_device_info *info; 1881 struct acpi_dep_data *dep; 1882 bool skip; 1883 1884 status = acpi_get_object_info(dep_devices.handles[i], &info); 1885 if (ACPI_FAILURE(status)) { 1886 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 1887 continue; 1888 } 1889 1890 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 1891 kfree(info); 1892 1893 if (skip) 1894 continue; 1895 1896 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 1897 if (!dep) 1898 continue; 1899 1900 count++; 1901 1902 dep->supplier = dep_devices.handles[i]; 1903 dep->consumer = handle; 1904 1905 mutex_lock(&acpi_dep_list_lock); 1906 list_add_tail(&dep->node , &acpi_dep_list); 1907 mutex_unlock(&acpi_dep_list_lock); 1908 } 1909 1910 return count; 1911 } 1912 1913 static void acpi_scan_dep_init(struct acpi_device *adev) 1914 { 1915 struct acpi_dep_data *dep; 1916 1917 mutex_lock(&acpi_dep_list_lock); 1918 1919 list_for_each_entry(dep, &acpi_dep_list, node) { 1920 if (dep->consumer == adev->handle) 1921 adev->dep_unmet++; 1922 } 1923 1924 mutex_unlock(&acpi_dep_list_lock); 1925 } 1926 1927 static bool acpi_bus_scan_second_pass; 1928 1929 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep, 1930 struct acpi_device **adev_p) 1931 { 1932 struct acpi_device *device = NULL; 1933 unsigned long long sta; 1934 int type; 1935 int result; 1936 1937 acpi_bus_get_device(handle, &device); 1938 if (device) 1939 goto out; 1940 1941 result = acpi_bus_type_and_status(handle, &type, &sta); 1942 if (result) 1943 return AE_OK; 1944 1945 if (type == ACPI_BUS_TYPE_POWER) { 1946 acpi_add_power_resource(handle); 1947 return AE_OK; 1948 } 1949 1950 if (type == ACPI_BUS_TYPE_DEVICE && check_dep) { 1951 u32 count = acpi_scan_check_dep(handle); 1952 /* Bail out if the number of recorded dependencies is not 0. */ 1953 if (count > 0) { 1954 acpi_bus_scan_second_pass = true; 1955 return AE_CTRL_DEPTH; 1956 } 1957 } 1958 1959 acpi_add_single_object(&device, handle, type, sta); 1960 if (!device) 1961 return AE_CTRL_DEPTH; 1962 1963 acpi_scan_init_hotplug(device); 1964 if (!check_dep) 1965 acpi_scan_dep_init(device); 1966 1967 out: 1968 if (!*adev_p) 1969 *adev_p = device; 1970 1971 return AE_OK; 1972 } 1973 1974 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 1975 void *not_used, void **ret_p) 1976 { 1977 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 1978 } 1979 1980 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 1981 void *not_used, void **ret_p) 1982 { 1983 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 1984 } 1985 1986 static void acpi_default_enumeration(struct acpi_device *device) 1987 { 1988 /* 1989 * Do not enumerate devices with enumeration_by_parent flag set as 1990 * they will be enumerated by their respective parents. 1991 */ 1992 if (!device->flags.enumeration_by_parent) { 1993 acpi_create_platform_device(device, NULL); 1994 acpi_device_set_enumerated(device); 1995 } else { 1996 blocking_notifier_call_chain(&acpi_reconfig_chain, 1997 ACPI_RECONFIG_DEVICE_ADD, device); 1998 } 1999 } 2000 2001 static const struct acpi_device_id generic_device_ids[] = { 2002 {ACPI_DT_NAMESPACE_HID, }, 2003 {"", }, 2004 }; 2005 2006 static int acpi_generic_device_attach(struct acpi_device *adev, 2007 const struct acpi_device_id *not_used) 2008 { 2009 /* 2010 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2011 * below can be unconditional. 2012 */ 2013 if (adev->data.of_compatible) 2014 acpi_default_enumeration(adev); 2015 2016 return 1; 2017 } 2018 2019 static struct acpi_scan_handler generic_device_handler = { 2020 .ids = generic_device_ids, 2021 .attach = acpi_generic_device_attach, 2022 }; 2023 2024 static int acpi_scan_attach_handler(struct acpi_device *device) 2025 { 2026 struct acpi_hardware_id *hwid; 2027 int ret = 0; 2028 2029 list_for_each_entry(hwid, &device->pnp.ids, list) { 2030 const struct acpi_device_id *devid; 2031 struct acpi_scan_handler *handler; 2032 2033 handler = acpi_scan_match_handler(hwid->id, &devid); 2034 if (handler) { 2035 if (!handler->attach) { 2036 device->pnp.type.platform_id = 0; 2037 continue; 2038 } 2039 device->handler = handler; 2040 ret = handler->attach(device, devid); 2041 if (ret > 0) 2042 break; 2043 2044 device->handler = NULL; 2045 if (ret < 0) 2046 break; 2047 } 2048 } 2049 2050 return ret; 2051 } 2052 2053 static void acpi_bus_attach(struct acpi_device *device, bool first_pass) 2054 { 2055 struct acpi_device *child; 2056 bool skip = !first_pass && device->flags.visited; 2057 acpi_handle ejd; 2058 int ret; 2059 2060 if (skip) 2061 goto ok; 2062 2063 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2064 register_dock_dependent_device(device, ejd); 2065 2066 acpi_bus_get_status(device); 2067 /* Skip devices that are not present. */ 2068 if (!acpi_device_is_present(device)) { 2069 device->flags.initialized = false; 2070 acpi_device_clear_enumerated(device); 2071 device->flags.power_manageable = 0; 2072 return; 2073 } 2074 if (device->handler) 2075 goto ok; 2076 2077 if (!device->flags.initialized) { 2078 device->flags.power_manageable = 2079 device->power.states[ACPI_STATE_D0].flags.valid; 2080 if (acpi_bus_init_power(device)) 2081 device->flags.power_manageable = 0; 2082 2083 device->flags.initialized = true; 2084 } else if (device->flags.visited) { 2085 goto ok; 2086 } 2087 2088 ret = acpi_scan_attach_handler(device); 2089 if (ret < 0) 2090 return; 2091 2092 device->flags.match_driver = true; 2093 if (ret > 0 && !device->flags.enumeration_by_parent) { 2094 acpi_device_set_enumerated(device); 2095 goto ok; 2096 } 2097 2098 ret = device_attach(&device->dev); 2099 if (ret < 0) 2100 return; 2101 2102 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2103 acpi_default_enumeration(device); 2104 else 2105 acpi_device_set_enumerated(device); 2106 2107 ok: 2108 list_for_each_entry(child, &device->children, node) 2109 acpi_bus_attach(child, first_pass); 2110 2111 if (!skip && device->handler && device->handler->hotplug.notify_online) 2112 device->handler->hotplug.notify_online(device); 2113 } 2114 2115 void acpi_walk_dep_device_list(acpi_handle handle) 2116 { 2117 struct acpi_dep_data *dep, *tmp; 2118 struct acpi_device *adev; 2119 2120 mutex_lock(&acpi_dep_list_lock); 2121 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2122 if (dep->supplier == handle) { 2123 acpi_bus_get_device(dep->consumer, &adev); 2124 if (!adev) 2125 continue; 2126 2127 adev->dep_unmet--; 2128 if (!adev->dep_unmet) 2129 acpi_bus_attach(adev, true); 2130 2131 list_del(&dep->node); 2132 kfree(dep); 2133 } 2134 } 2135 mutex_unlock(&acpi_dep_list_lock); 2136 } 2137 EXPORT_SYMBOL_GPL(acpi_walk_dep_device_list); 2138 2139 /** 2140 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2141 * @handle: Root of the namespace scope to scan. 2142 * 2143 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2144 * found devices. 2145 * 2146 * If no devices were found, -ENODEV is returned, but it does not mean that 2147 * there has been a real error. There just have been no suitable ACPI objects 2148 * in the table trunk from which the kernel could create a device and add an 2149 * appropriate driver. 2150 * 2151 * Must be called under acpi_scan_lock. 2152 */ 2153 int acpi_bus_scan(acpi_handle handle) 2154 { 2155 struct acpi_device *device = NULL; 2156 2157 acpi_bus_scan_second_pass = false; 2158 2159 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2160 2161 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2162 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2163 acpi_bus_check_add_1, NULL, NULL, 2164 (void **)&device); 2165 2166 if (!device) 2167 return -ENODEV; 2168 2169 acpi_bus_attach(device, true); 2170 2171 if (!acpi_bus_scan_second_pass) 2172 return 0; 2173 2174 /* Pass 2: Enumerate all of the remaining devices. */ 2175 2176 device = NULL; 2177 2178 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device))) 2179 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2180 acpi_bus_check_add_2, NULL, NULL, 2181 (void **)&device); 2182 2183 acpi_bus_attach(device, false); 2184 2185 return 0; 2186 } 2187 EXPORT_SYMBOL(acpi_bus_scan); 2188 2189 /** 2190 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2191 * @adev: Root of the ACPI namespace scope to walk. 2192 * 2193 * Must be called under acpi_scan_lock. 2194 */ 2195 void acpi_bus_trim(struct acpi_device *adev) 2196 { 2197 struct acpi_scan_handler *handler = adev->handler; 2198 struct acpi_device *child; 2199 2200 list_for_each_entry_reverse(child, &adev->children, node) 2201 acpi_bus_trim(child); 2202 2203 adev->flags.match_driver = false; 2204 if (handler) { 2205 if (handler->detach) 2206 handler->detach(adev); 2207 2208 adev->handler = NULL; 2209 } else { 2210 device_release_driver(&adev->dev); 2211 } 2212 /* 2213 * Most likely, the device is going away, so put it into D3cold before 2214 * that. 2215 */ 2216 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 2217 adev->flags.initialized = false; 2218 acpi_device_clear_enumerated(adev); 2219 } 2220 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2221 2222 int acpi_bus_register_early_device(int type) 2223 { 2224 struct acpi_device *device = NULL; 2225 int result; 2226 2227 result = acpi_add_single_object(&device, NULL, 2228 type, ACPI_STA_DEFAULT); 2229 if (result) 2230 return result; 2231 2232 device->flags.match_driver = true; 2233 return device_attach(&device->dev); 2234 } 2235 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2236 2237 static int acpi_bus_scan_fixed(void) 2238 { 2239 int result = 0; 2240 2241 /* 2242 * Enumerate all fixed-feature devices. 2243 */ 2244 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2245 struct acpi_device *device = NULL; 2246 2247 result = acpi_add_single_object(&device, NULL, 2248 ACPI_BUS_TYPE_POWER_BUTTON, 2249 ACPI_STA_DEFAULT); 2250 if (result) 2251 return result; 2252 2253 device->flags.match_driver = true; 2254 result = device_attach(&device->dev); 2255 if (result < 0) 2256 return result; 2257 2258 device_init_wakeup(&device->dev, true); 2259 } 2260 2261 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2262 struct acpi_device *device = NULL; 2263 2264 result = acpi_add_single_object(&device, NULL, 2265 ACPI_BUS_TYPE_SLEEP_BUTTON, 2266 ACPI_STA_DEFAULT); 2267 if (result) 2268 return result; 2269 2270 device->flags.match_driver = true; 2271 result = device_attach(&device->dev); 2272 } 2273 2274 return result < 0 ? result : 0; 2275 } 2276 2277 static void __init acpi_get_spcr_uart_addr(void) 2278 { 2279 acpi_status status; 2280 struct acpi_table_spcr *spcr_ptr; 2281 2282 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2283 (struct acpi_table_header **)&spcr_ptr); 2284 if (ACPI_FAILURE(status)) { 2285 pr_warn(PREFIX "STAO table present, but SPCR is missing\n"); 2286 return; 2287 } 2288 2289 spcr_uart_addr = spcr_ptr->serial_port.address; 2290 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2291 } 2292 2293 static bool acpi_scan_initialized; 2294 2295 int __init acpi_scan_init(void) 2296 { 2297 int result; 2298 acpi_status status; 2299 struct acpi_table_stao *stao_ptr; 2300 2301 acpi_pci_root_init(); 2302 acpi_pci_link_init(); 2303 acpi_processor_init(); 2304 acpi_platform_init(); 2305 acpi_lpss_init(); 2306 acpi_apd_init(); 2307 acpi_cmos_rtc_init(); 2308 acpi_container_init(); 2309 acpi_memory_hotplug_init(); 2310 acpi_watchdog_init(); 2311 acpi_pnp_init(); 2312 acpi_int340x_thermal_init(); 2313 acpi_amba_init(); 2314 acpi_init_lpit(); 2315 2316 acpi_scan_add_handler(&generic_device_handler); 2317 2318 /* 2319 * If there is STAO table, check whether it needs to ignore the UART 2320 * device in SPCR table. 2321 */ 2322 status = acpi_get_table(ACPI_SIG_STAO, 0, 2323 (struct acpi_table_header **)&stao_ptr); 2324 if (ACPI_SUCCESS(status)) { 2325 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2326 pr_info(PREFIX "STAO Name List not yet supported.\n"); 2327 2328 if (stao_ptr->ignore_uart) 2329 acpi_get_spcr_uart_addr(); 2330 2331 acpi_put_table((struct acpi_table_header *)stao_ptr); 2332 } 2333 2334 acpi_gpe_apply_masked_gpes(); 2335 acpi_update_all_gpes(); 2336 2337 /* 2338 * Although we call __add_memory() that is documented to require the 2339 * device_hotplug_lock, it is not necessary here because this is an 2340 * early code when userspace or any other code path cannot trigger 2341 * hotplug/hotunplug operations. 2342 */ 2343 mutex_lock(&acpi_scan_lock); 2344 /* 2345 * Enumerate devices in the ACPI namespace. 2346 */ 2347 result = acpi_bus_scan(ACPI_ROOT_OBJECT); 2348 if (result) 2349 goto out; 2350 2351 result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root); 2352 if (result) 2353 goto out; 2354 2355 /* Fixed feature devices do not exist on HW-reduced platform */ 2356 if (!acpi_gbl_reduced_hardware) { 2357 result = acpi_bus_scan_fixed(); 2358 if (result) { 2359 acpi_detach_data(acpi_root->handle, 2360 acpi_scan_drop_device); 2361 acpi_device_del(acpi_root); 2362 put_device(&acpi_root->dev); 2363 goto out; 2364 } 2365 } 2366 2367 acpi_scan_initialized = true; 2368 2369 out: 2370 mutex_unlock(&acpi_scan_lock); 2371 return result; 2372 } 2373 2374 static struct acpi_probe_entry *ape; 2375 static int acpi_probe_count; 2376 static DEFINE_MUTEX(acpi_probe_mutex); 2377 2378 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2379 const unsigned long end) 2380 { 2381 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2382 if (!ape->probe_subtbl(header, end)) 2383 acpi_probe_count++; 2384 2385 return 0; 2386 } 2387 2388 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2389 { 2390 int count = 0; 2391 2392 if (acpi_disabled) 2393 return 0; 2394 2395 mutex_lock(&acpi_probe_mutex); 2396 for (ape = ap_head; nr; ape++, nr--) { 2397 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2398 acpi_probe_count = 0; 2399 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2400 count += acpi_probe_count; 2401 } else { 2402 int res; 2403 res = acpi_table_parse(ape->id, ape->probe_table); 2404 if (!res) 2405 count++; 2406 } 2407 } 2408 mutex_unlock(&acpi_probe_mutex); 2409 2410 return count; 2411 } 2412 2413 struct acpi_table_events_work { 2414 struct work_struct work; 2415 void *table; 2416 u32 event; 2417 }; 2418 2419 static void acpi_table_events_fn(struct work_struct *work) 2420 { 2421 struct acpi_table_events_work *tew; 2422 2423 tew = container_of(work, struct acpi_table_events_work, work); 2424 2425 if (tew->event == ACPI_TABLE_EVENT_LOAD) { 2426 acpi_scan_lock_acquire(); 2427 acpi_bus_scan(ACPI_ROOT_OBJECT); 2428 acpi_scan_lock_release(); 2429 } 2430 2431 kfree(tew); 2432 } 2433 2434 void acpi_scan_table_handler(u32 event, void *table, void *context) 2435 { 2436 struct acpi_table_events_work *tew; 2437 2438 if (!acpi_scan_initialized) 2439 return; 2440 2441 if (event != ACPI_TABLE_EVENT_LOAD) 2442 return; 2443 2444 tew = kmalloc(sizeof(*tew), GFP_KERNEL); 2445 if (!tew) 2446 return; 2447 2448 INIT_WORK(&tew->work, acpi_table_events_fn); 2449 tew->table = table; 2450 tew->event = event; 2451 2452 schedule_work(&tew->work); 2453 } 2454 2455 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2456 { 2457 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2458 } 2459 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2460 2461 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2462 { 2463 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2464 } 2465 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2466