xref: /openbmc/linux/drivers/acpi/scan.c (revision 10b1881a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 
24 #include "internal.h"
25 
26 extern struct acpi_device *acpi_root;
27 
28 #define ACPI_BUS_CLASS			"system_bus"
29 #define ACPI_BUS_HID			"LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME		"System Bus"
31 
32 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
33 
34 #define INVALID_ACPI_HANDLE	((acpi_handle)empty_zero_page)
35 
36 static const char *dummy_hid = "device";
37 
38 static LIST_HEAD(acpi_dep_list);
39 static DEFINE_MUTEX(acpi_dep_list_lock);
40 LIST_HEAD(acpi_bus_id_list);
41 static DEFINE_MUTEX(acpi_scan_lock);
42 static LIST_HEAD(acpi_scan_handlers_list);
43 DEFINE_MUTEX(acpi_device_lock);
44 LIST_HEAD(acpi_wakeup_device_list);
45 static DEFINE_MUTEX(acpi_hp_context_lock);
46 
47 /*
48  * The UART device described by the SPCR table is the only object which needs
49  * special-casing. Everything else is covered by ACPI namespace paths in STAO
50  * table.
51  */
52 static u64 spcr_uart_addr;
53 
54 void acpi_scan_lock_acquire(void)
55 {
56 	mutex_lock(&acpi_scan_lock);
57 }
58 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
59 
60 void acpi_scan_lock_release(void)
61 {
62 	mutex_unlock(&acpi_scan_lock);
63 }
64 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
65 
66 void acpi_lock_hp_context(void)
67 {
68 	mutex_lock(&acpi_hp_context_lock);
69 }
70 
71 void acpi_unlock_hp_context(void)
72 {
73 	mutex_unlock(&acpi_hp_context_lock);
74 }
75 
76 void acpi_initialize_hp_context(struct acpi_device *adev,
77 				struct acpi_hotplug_context *hp,
78 				int (*notify)(struct acpi_device *, u32),
79 				void (*uevent)(struct acpi_device *, u32))
80 {
81 	acpi_lock_hp_context();
82 	hp->notify = notify;
83 	hp->uevent = uevent;
84 	acpi_set_hp_context(adev, hp);
85 	acpi_unlock_hp_context();
86 }
87 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
88 
89 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
90 {
91 	if (!handler)
92 		return -EINVAL;
93 
94 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
95 	return 0;
96 }
97 
98 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
99 				       const char *hotplug_profile_name)
100 {
101 	int error;
102 
103 	error = acpi_scan_add_handler(handler);
104 	if (error)
105 		return error;
106 
107 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
108 	return 0;
109 }
110 
111 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
112 {
113 	struct acpi_device_physical_node *pn;
114 	bool offline = true;
115 	char *envp[] = { "EVENT=offline", NULL };
116 
117 	/*
118 	 * acpi_container_offline() calls this for all of the container's
119 	 * children under the container's physical_node_lock lock.
120 	 */
121 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
122 
123 	list_for_each_entry(pn, &adev->physical_node_list, node)
124 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
125 			if (uevent)
126 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
127 
128 			offline = false;
129 			break;
130 		}
131 
132 	mutex_unlock(&adev->physical_node_lock);
133 	return offline;
134 }
135 
136 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
137 				    void **ret_p)
138 {
139 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
140 	struct acpi_device_physical_node *pn;
141 	bool second_pass = (bool)data;
142 	acpi_status status = AE_OK;
143 
144 	if (!device)
145 		return AE_OK;
146 
147 	if (device->handler && !device->handler->hotplug.enabled) {
148 		*ret_p = &device->dev;
149 		return AE_SUPPORT;
150 	}
151 
152 	mutex_lock(&device->physical_node_lock);
153 
154 	list_for_each_entry(pn, &device->physical_node_list, node) {
155 		int ret;
156 
157 		if (second_pass) {
158 			/* Skip devices offlined by the first pass. */
159 			if (pn->put_online)
160 				continue;
161 		} else {
162 			pn->put_online = false;
163 		}
164 		ret = device_offline(pn->dev);
165 		if (ret >= 0) {
166 			pn->put_online = !ret;
167 		} else {
168 			*ret_p = pn->dev;
169 			if (second_pass) {
170 				status = AE_ERROR;
171 				break;
172 			}
173 		}
174 	}
175 
176 	mutex_unlock(&device->physical_node_lock);
177 
178 	return status;
179 }
180 
181 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
182 				   void **ret_p)
183 {
184 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
185 	struct acpi_device_physical_node *pn;
186 
187 	if (!device)
188 		return AE_OK;
189 
190 	mutex_lock(&device->physical_node_lock);
191 
192 	list_for_each_entry(pn, &device->physical_node_list, node)
193 		if (pn->put_online) {
194 			device_online(pn->dev);
195 			pn->put_online = false;
196 		}
197 
198 	mutex_unlock(&device->physical_node_lock);
199 
200 	return AE_OK;
201 }
202 
203 static int acpi_scan_try_to_offline(struct acpi_device *device)
204 {
205 	acpi_handle handle = device->handle;
206 	struct device *errdev = NULL;
207 	acpi_status status;
208 
209 	/*
210 	 * Carry out two passes here and ignore errors in the first pass,
211 	 * because if the devices in question are memory blocks and
212 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
213 	 * that the other blocks depend on, but it is not known in advance which
214 	 * block holds them.
215 	 *
216 	 * If the first pass is successful, the second one isn't needed, though.
217 	 */
218 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
219 				     NULL, acpi_bus_offline, (void *)false,
220 				     (void **)&errdev);
221 	if (status == AE_SUPPORT) {
222 		dev_warn(errdev, "Offline disabled.\n");
223 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
224 				    acpi_bus_online, NULL, NULL, NULL);
225 		return -EPERM;
226 	}
227 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
228 	if (errdev) {
229 		errdev = NULL;
230 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
231 				    NULL, acpi_bus_offline, (void *)true,
232 				    (void **)&errdev);
233 		if (!errdev)
234 			acpi_bus_offline(handle, 0, (void *)true,
235 					 (void **)&errdev);
236 
237 		if (errdev) {
238 			dev_warn(errdev, "Offline failed.\n");
239 			acpi_bus_online(handle, 0, NULL, NULL);
240 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
241 					    ACPI_UINT32_MAX, acpi_bus_online,
242 					    NULL, NULL, NULL);
243 			return -EBUSY;
244 		}
245 	}
246 	return 0;
247 }
248 
249 static int acpi_scan_hot_remove(struct acpi_device *device)
250 {
251 	acpi_handle handle = device->handle;
252 	unsigned long long sta;
253 	acpi_status status;
254 
255 	if (device->handler && device->handler->hotplug.demand_offline) {
256 		if (!acpi_scan_is_offline(device, true))
257 			return -EBUSY;
258 	} else {
259 		int error = acpi_scan_try_to_offline(device);
260 		if (error)
261 			return error;
262 	}
263 
264 	acpi_handle_debug(handle, "Ejecting\n");
265 
266 	acpi_bus_trim(device);
267 
268 	acpi_evaluate_lck(handle, 0);
269 	/*
270 	 * TBD: _EJD support.
271 	 */
272 	status = acpi_evaluate_ej0(handle);
273 	if (status == AE_NOT_FOUND)
274 		return -ENODEV;
275 	else if (ACPI_FAILURE(status))
276 		return -EIO;
277 
278 	/*
279 	 * Verify if eject was indeed successful.  If not, log an error
280 	 * message.  No need to call _OST since _EJ0 call was made OK.
281 	 */
282 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
283 	if (ACPI_FAILURE(status)) {
284 		acpi_handle_warn(handle,
285 			"Status check after eject failed (0x%x)\n", status);
286 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
287 		acpi_handle_warn(handle,
288 			"Eject incomplete - status 0x%llx\n", sta);
289 	}
290 
291 	return 0;
292 }
293 
294 static int acpi_scan_device_not_present(struct acpi_device *adev)
295 {
296 	if (!acpi_device_enumerated(adev)) {
297 		dev_warn(&adev->dev, "Still not present\n");
298 		return -EALREADY;
299 	}
300 	acpi_bus_trim(adev);
301 	return 0;
302 }
303 
304 static int acpi_scan_device_check(struct acpi_device *adev)
305 {
306 	int error;
307 
308 	acpi_bus_get_status(adev);
309 	if (adev->status.present || adev->status.functional) {
310 		/*
311 		 * This function is only called for device objects for which
312 		 * matching scan handlers exist.  The only situation in which
313 		 * the scan handler is not attached to this device object yet
314 		 * is when the device has just appeared (either it wasn't
315 		 * present at all before or it was removed and then added
316 		 * again).
317 		 */
318 		if (adev->handler) {
319 			dev_warn(&adev->dev, "Already enumerated\n");
320 			return -EALREADY;
321 		}
322 		error = acpi_bus_scan(adev->handle);
323 		if (error) {
324 			dev_warn(&adev->dev, "Namespace scan failure\n");
325 			return error;
326 		}
327 		if (!adev->handler) {
328 			dev_warn(&adev->dev, "Enumeration failure\n");
329 			error = -ENODEV;
330 		}
331 	} else {
332 		error = acpi_scan_device_not_present(adev);
333 	}
334 	return error;
335 }
336 
337 static int acpi_scan_bus_check(struct acpi_device *adev)
338 {
339 	struct acpi_scan_handler *handler = adev->handler;
340 	struct acpi_device *child;
341 	int error;
342 
343 	acpi_bus_get_status(adev);
344 	if (!(adev->status.present || adev->status.functional)) {
345 		acpi_scan_device_not_present(adev);
346 		return 0;
347 	}
348 	if (handler && handler->hotplug.scan_dependent)
349 		return handler->hotplug.scan_dependent(adev);
350 
351 	error = acpi_bus_scan(adev->handle);
352 	if (error) {
353 		dev_warn(&adev->dev, "Namespace scan failure\n");
354 		return error;
355 	}
356 	list_for_each_entry(child, &adev->children, node) {
357 		error = acpi_scan_bus_check(child);
358 		if (error)
359 			return error;
360 	}
361 	return 0;
362 }
363 
364 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
365 {
366 	switch (type) {
367 	case ACPI_NOTIFY_BUS_CHECK:
368 		return acpi_scan_bus_check(adev);
369 	case ACPI_NOTIFY_DEVICE_CHECK:
370 		return acpi_scan_device_check(adev);
371 	case ACPI_NOTIFY_EJECT_REQUEST:
372 	case ACPI_OST_EC_OSPM_EJECT:
373 		if (adev->handler && !adev->handler->hotplug.enabled) {
374 			dev_info(&adev->dev, "Eject disabled\n");
375 			return -EPERM;
376 		}
377 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
378 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
379 		return acpi_scan_hot_remove(adev);
380 	}
381 	return -EINVAL;
382 }
383 
384 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
385 {
386 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
387 	int error = -ENODEV;
388 
389 	lock_device_hotplug();
390 	mutex_lock(&acpi_scan_lock);
391 
392 	/*
393 	 * The device object's ACPI handle cannot become invalid as long as we
394 	 * are holding acpi_scan_lock, but it might have become invalid before
395 	 * that lock was acquired.
396 	 */
397 	if (adev->handle == INVALID_ACPI_HANDLE)
398 		goto err_out;
399 
400 	if (adev->flags.is_dock_station) {
401 		error = dock_notify(adev, src);
402 	} else if (adev->flags.hotplug_notify) {
403 		error = acpi_generic_hotplug_event(adev, src);
404 	} else {
405 		int (*notify)(struct acpi_device *, u32);
406 
407 		acpi_lock_hp_context();
408 		notify = adev->hp ? adev->hp->notify : NULL;
409 		acpi_unlock_hp_context();
410 		/*
411 		 * There may be additional notify handlers for device objects
412 		 * without the .event() callback, so ignore them here.
413 		 */
414 		if (notify)
415 			error = notify(adev, src);
416 		else
417 			goto out;
418 	}
419 	switch (error) {
420 	case 0:
421 		ost_code = ACPI_OST_SC_SUCCESS;
422 		break;
423 	case -EPERM:
424 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
425 		break;
426 	case -EBUSY:
427 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
428 		break;
429 	default:
430 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
431 		break;
432 	}
433 
434  err_out:
435 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
436 
437  out:
438 	acpi_bus_put_acpi_device(adev);
439 	mutex_unlock(&acpi_scan_lock);
440 	unlock_device_hotplug();
441 }
442 
443 static void acpi_free_power_resources_lists(struct acpi_device *device)
444 {
445 	int i;
446 
447 	if (device->wakeup.flags.valid)
448 		acpi_power_resources_list_free(&device->wakeup.resources);
449 
450 	if (!device->power.flags.power_resources)
451 		return;
452 
453 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
454 		struct acpi_device_power_state *ps = &device->power.states[i];
455 		acpi_power_resources_list_free(&ps->resources);
456 	}
457 }
458 
459 static void acpi_device_release(struct device *dev)
460 {
461 	struct acpi_device *acpi_dev = to_acpi_device(dev);
462 
463 	acpi_free_properties(acpi_dev);
464 	acpi_free_pnp_ids(&acpi_dev->pnp);
465 	acpi_free_power_resources_lists(acpi_dev);
466 	kfree(acpi_dev);
467 }
468 
469 static void acpi_device_del(struct acpi_device *device)
470 {
471 	struct acpi_device_bus_id *acpi_device_bus_id;
472 
473 	mutex_lock(&acpi_device_lock);
474 	if (device->parent)
475 		list_del(&device->node);
476 
477 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
478 		if (!strcmp(acpi_device_bus_id->bus_id,
479 			    acpi_device_hid(device))) {
480 			ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no);
481 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
482 				list_del(&acpi_device_bus_id->node);
483 				kfree_const(acpi_device_bus_id->bus_id);
484 				kfree(acpi_device_bus_id);
485 			}
486 			break;
487 		}
488 
489 	list_del(&device->wakeup_list);
490 	mutex_unlock(&acpi_device_lock);
491 
492 	acpi_power_add_remove_device(device, false);
493 	acpi_device_remove_files(device);
494 	if (device->remove)
495 		device->remove(device);
496 
497 	device_del(&device->dev);
498 }
499 
500 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
501 
502 static LIST_HEAD(acpi_device_del_list);
503 static DEFINE_MUTEX(acpi_device_del_lock);
504 
505 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
506 {
507 	for (;;) {
508 		struct acpi_device *adev;
509 
510 		mutex_lock(&acpi_device_del_lock);
511 
512 		if (list_empty(&acpi_device_del_list)) {
513 			mutex_unlock(&acpi_device_del_lock);
514 			break;
515 		}
516 		adev = list_first_entry(&acpi_device_del_list,
517 					struct acpi_device, del_list);
518 		list_del(&adev->del_list);
519 
520 		mutex_unlock(&acpi_device_del_lock);
521 
522 		blocking_notifier_call_chain(&acpi_reconfig_chain,
523 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
524 
525 		acpi_device_del(adev);
526 		/*
527 		 * Drop references to all power resources that might have been
528 		 * used by the device.
529 		 */
530 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
531 		acpi_dev_put(adev);
532 	}
533 }
534 
535 /**
536  * acpi_scan_drop_device - Drop an ACPI device object.
537  * @handle: Handle of an ACPI namespace node, not used.
538  * @context: Address of the ACPI device object to drop.
539  *
540  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
541  * namespace node the device object pointed to by @context is attached to.
542  *
543  * The unregistration is carried out asynchronously to avoid running
544  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
545  * ensure the correct ordering (the device objects must be unregistered in the
546  * same order in which the corresponding namespace nodes are deleted).
547  */
548 static void acpi_scan_drop_device(acpi_handle handle, void *context)
549 {
550 	static DECLARE_WORK(work, acpi_device_del_work_fn);
551 	struct acpi_device *adev = context;
552 
553 	mutex_lock(&acpi_device_del_lock);
554 
555 	/*
556 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
557 	 * won't run after any hotplug work items submitted subsequently.  That
558 	 * prevents attempts to register device objects identical to those being
559 	 * deleted from happening concurrently (such attempts result from
560 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
561 	 * run after all of the work items submitted previously, which helps
562 	 * those work items to ensure that they are not accessing stale device
563 	 * objects.
564 	 */
565 	if (list_empty(&acpi_device_del_list))
566 		acpi_queue_hotplug_work(&work);
567 
568 	list_add_tail(&adev->del_list, &acpi_device_del_list);
569 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
570 	adev->handle = INVALID_ACPI_HANDLE;
571 
572 	mutex_unlock(&acpi_device_del_lock);
573 }
574 
575 static struct acpi_device *handle_to_device(acpi_handle handle,
576 					    void (*callback)(void *))
577 {
578 	struct acpi_device *adev = NULL;
579 	acpi_status status;
580 
581 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
582 				    (void **)&adev, callback);
583 	if (ACPI_FAILURE(status) || !adev) {
584 		acpi_handle_debug(handle, "No context!\n");
585 		return NULL;
586 	}
587 	return adev;
588 }
589 
590 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
591 {
592 	if (!device)
593 		return -EINVAL;
594 
595 	*device = handle_to_device(handle, NULL);
596 	if (!*device)
597 		return -ENODEV;
598 
599 	return 0;
600 }
601 EXPORT_SYMBOL(acpi_bus_get_device);
602 
603 /**
604  * acpi_fetch_acpi_dev - Retrieve ACPI device object.
605  * @handle: ACPI handle associated with the requested ACPI device object.
606  *
607  * Return a pointer to the ACPI device object associated with @handle, if
608  * present, or NULL otherwise.
609  */
610 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
611 {
612 	return handle_to_device(handle, NULL);
613 }
614 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
615 
616 static void get_acpi_device(void *dev)
617 {
618 	acpi_dev_get(dev);
619 }
620 
621 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
622 {
623 	return handle_to_device(handle, get_acpi_device);
624 }
625 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device);
626 
627 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
628 {
629 	struct acpi_device_bus_id *acpi_device_bus_id;
630 
631 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
632 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
633 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
634 			return acpi_device_bus_id;
635 	}
636 	return NULL;
637 }
638 
639 static int acpi_device_set_name(struct acpi_device *device,
640 				struct acpi_device_bus_id *acpi_device_bus_id)
641 {
642 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
643 	int result;
644 
645 	result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL);
646 	if (result < 0)
647 		return result;
648 
649 	device->pnp.instance_no = result;
650 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
651 	return 0;
652 }
653 
654 static int acpi_tie_acpi_dev(struct acpi_device *adev)
655 {
656 	acpi_handle handle = adev->handle;
657 	acpi_status status;
658 
659 	if (!handle)
660 		return 0;
661 
662 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
663 	if (ACPI_FAILURE(status)) {
664 		acpi_handle_err(handle, "Unable to attach device data\n");
665 		return -ENODEV;
666 	}
667 
668 	return 0;
669 }
670 
671 static void acpi_store_pld_crc(struct acpi_device *adev)
672 {
673 	struct acpi_pld_info *pld;
674 	acpi_status status;
675 
676 	status = acpi_get_physical_device_location(adev->handle, &pld);
677 	if (ACPI_FAILURE(status))
678 		return;
679 
680 	adev->pld_crc = crc32(~0, pld, sizeof(*pld));
681 	ACPI_FREE(pld);
682 }
683 
684 static int __acpi_device_add(struct acpi_device *device,
685 			     void (*release)(struct device *))
686 {
687 	struct acpi_device_bus_id *acpi_device_bus_id;
688 	int result;
689 
690 	/*
691 	 * Linkage
692 	 * -------
693 	 * Link this device to its parent and siblings.
694 	 */
695 	INIT_LIST_HEAD(&device->children);
696 	INIT_LIST_HEAD(&device->node);
697 	INIT_LIST_HEAD(&device->wakeup_list);
698 	INIT_LIST_HEAD(&device->physical_node_list);
699 	INIT_LIST_HEAD(&device->del_list);
700 	mutex_init(&device->physical_node_lock);
701 
702 	mutex_lock(&acpi_device_lock);
703 
704 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
705 	if (acpi_device_bus_id) {
706 		result = acpi_device_set_name(device, acpi_device_bus_id);
707 		if (result)
708 			goto err_unlock;
709 	} else {
710 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
711 					     GFP_KERNEL);
712 		if (!acpi_device_bus_id) {
713 			result = -ENOMEM;
714 			goto err_unlock;
715 		}
716 		acpi_device_bus_id->bus_id =
717 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
718 		if (!acpi_device_bus_id->bus_id) {
719 			kfree(acpi_device_bus_id);
720 			result = -ENOMEM;
721 			goto err_unlock;
722 		}
723 
724 		ida_init(&acpi_device_bus_id->instance_ida);
725 
726 		result = acpi_device_set_name(device, acpi_device_bus_id);
727 		if (result) {
728 			kfree_const(acpi_device_bus_id->bus_id);
729 			kfree(acpi_device_bus_id);
730 			goto err_unlock;
731 		}
732 
733 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
734 	}
735 
736 	if (device->parent)
737 		list_add_tail(&device->node, &device->parent->children);
738 
739 	if (device->wakeup.flags.valid)
740 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
741 
742 	acpi_store_pld_crc(device);
743 
744 	mutex_unlock(&acpi_device_lock);
745 
746 	if (device->parent)
747 		device->dev.parent = &device->parent->dev;
748 
749 	device->dev.bus = &acpi_bus_type;
750 	device->dev.release = release;
751 	result = device_add(&device->dev);
752 	if (result) {
753 		dev_err(&device->dev, "Error registering device\n");
754 		goto err;
755 	}
756 
757 	result = acpi_device_setup_files(device);
758 	if (result)
759 		pr_err("Error creating sysfs interface for device %s\n",
760 		       dev_name(&device->dev));
761 
762 	return 0;
763 
764 err:
765 	mutex_lock(&acpi_device_lock);
766 
767 	if (device->parent)
768 		list_del(&device->node);
769 
770 	list_del(&device->wakeup_list);
771 
772 err_unlock:
773 	mutex_unlock(&acpi_device_lock);
774 
775 	acpi_detach_data(device->handle, acpi_scan_drop_device);
776 
777 	return result;
778 }
779 
780 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
781 {
782 	int ret;
783 
784 	ret = acpi_tie_acpi_dev(adev);
785 	if (ret)
786 		return ret;
787 
788 	return __acpi_device_add(adev, release);
789 }
790 
791 /* --------------------------------------------------------------------------
792                                  Device Enumeration
793    -------------------------------------------------------------------------- */
794 static bool acpi_info_matches_ids(struct acpi_device_info *info,
795 				  const char * const ids[])
796 {
797 	struct acpi_pnp_device_id_list *cid_list = NULL;
798 	int i, index;
799 
800 	if (!(info->valid & ACPI_VALID_HID))
801 		return false;
802 
803 	index = match_string(ids, -1, info->hardware_id.string);
804 	if (index >= 0)
805 		return true;
806 
807 	if (info->valid & ACPI_VALID_CID)
808 		cid_list = &info->compatible_id_list;
809 
810 	if (!cid_list)
811 		return false;
812 
813 	for (i = 0; i < cid_list->count; i++) {
814 		index = match_string(ids, -1, cid_list->ids[i].string);
815 		if (index >= 0)
816 			return true;
817 	}
818 
819 	return false;
820 }
821 
822 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
823 static const char * const acpi_ignore_dep_ids[] = {
824 	"PNP0D80", /* Windows-compatible System Power Management Controller */
825 	"INT33BD", /* Intel Baytrail Mailbox Device */
826 	NULL
827 };
828 
829 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
830 static const char * const acpi_honor_dep_ids[] = {
831 	"INT3472", /* Camera sensor PMIC / clk and regulator info */
832 	NULL
833 };
834 
835 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
836 {
837 	struct acpi_device *device;
838 	acpi_status status;
839 
840 	/*
841 	 * Fixed hardware devices do not appear in the namespace and do not
842 	 * have handles, but we fabricate acpi_devices for them, so we have
843 	 * to deal with them specially.
844 	 */
845 	if (!handle)
846 		return acpi_root;
847 
848 	do {
849 		status = acpi_get_parent(handle, &handle);
850 		if (ACPI_FAILURE(status))
851 			return status == AE_NULL_ENTRY ? NULL : acpi_root;
852 
853 		device = acpi_fetch_acpi_dev(handle);
854 	} while (!device);
855 	return device;
856 }
857 
858 acpi_status
859 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
860 {
861 	acpi_status status;
862 	acpi_handle tmp;
863 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
864 	union acpi_object *obj;
865 
866 	status = acpi_get_handle(handle, "_EJD", &tmp);
867 	if (ACPI_FAILURE(status))
868 		return status;
869 
870 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
871 	if (ACPI_SUCCESS(status)) {
872 		obj = buffer.pointer;
873 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
874 					 ejd);
875 		kfree(buffer.pointer);
876 	}
877 	return status;
878 }
879 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
880 
881 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
882 {
883 	acpi_handle handle = dev->handle;
884 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
885 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
886 	union acpi_object *package = NULL;
887 	union acpi_object *element = NULL;
888 	acpi_status status;
889 	int err = -ENODATA;
890 
891 	INIT_LIST_HEAD(&wakeup->resources);
892 
893 	/* _PRW */
894 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
895 	if (ACPI_FAILURE(status)) {
896 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
897 				 acpi_format_exception(status));
898 		return err;
899 	}
900 
901 	package = (union acpi_object *)buffer.pointer;
902 
903 	if (!package || package->package.count < 2)
904 		goto out;
905 
906 	element = &(package->package.elements[0]);
907 	if (!element)
908 		goto out;
909 
910 	if (element->type == ACPI_TYPE_PACKAGE) {
911 		if ((element->package.count < 2) ||
912 		    (element->package.elements[0].type !=
913 		     ACPI_TYPE_LOCAL_REFERENCE)
914 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
915 			goto out;
916 
917 		wakeup->gpe_device =
918 		    element->package.elements[0].reference.handle;
919 		wakeup->gpe_number =
920 		    (u32) element->package.elements[1].integer.value;
921 	} else if (element->type == ACPI_TYPE_INTEGER) {
922 		wakeup->gpe_device = NULL;
923 		wakeup->gpe_number = element->integer.value;
924 	} else {
925 		goto out;
926 	}
927 
928 	element = &(package->package.elements[1]);
929 	if (element->type != ACPI_TYPE_INTEGER)
930 		goto out;
931 
932 	wakeup->sleep_state = element->integer.value;
933 
934 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
935 	if (err)
936 		goto out;
937 
938 	if (!list_empty(&wakeup->resources)) {
939 		int sleep_state;
940 
941 		err = acpi_power_wakeup_list_init(&wakeup->resources,
942 						  &sleep_state);
943 		if (err) {
944 			acpi_handle_warn(handle, "Retrieving current states "
945 					 "of wakeup power resources failed\n");
946 			acpi_power_resources_list_free(&wakeup->resources);
947 			goto out;
948 		}
949 		if (sleep_state < wakeup->sleep_state) {
950 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
951 					 "(S%d) by S%d from power resources\n",
952 					 (int)wakeup->sleep_state, sleep_state);
953 			wakeup->sleep_state = sleep_state;
954 		}
955 	}
956 
957  out:
958 	kfree(buffer.pointer);
959 	return err;
960 }
961 
962 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
963 {
964 	static const struct acpi_device_id button_device_ids[] = {
965 		{"PNP0C0C", 0},		/* Power button */
966 		{"PNP0C0D", 0},		/* Lid */
967 		{"PNP0C0E", 0},		/* Sleep button */
968 		{"", 0},
969 	};
970 	struct acpi_device_wakeup *wakeup = &device->wakeup;
971 	acpi_status status;
972 
973 	wakeup->flags.notifier_present = 0;
974 
975 	/* Power button, Lid switch always enable wakeup */
976 	if (!acpi_match_device_ids(device, button_device_ids)) {
977 		if (!acpi_match_device_ids(device, &button_device_ids[1])) {
978 			/* Do not use Lid/sleep button for S5 wakeup */
979 			if (wakeup->sleep_state == ACPI_STATE_S5)
980 				wakeup->sleep_state = ACPI_STATE_S4;
981 		}
982 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
983 		device_set_wakeup_capable(&device->dev, true);
984 		return true;
985 	}
986 
987 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
988 					 wakeup->gpe_number);
989 	return ACPI_SUCCESS(status);
990 }
991 
992 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
993 {
994 	int err;
995 
996 	/* Presence of _PRW indicates wake capable */
997 	if (!acpi_has_method(device->handle, "_PRW"))
998 		return;
999 
1000 	err = acpi_bus_extract_wakeup_device_power_package(device);
1001 	if (err) {
1002 		dev_err(&device->dev, "Unable to extract wakeup power resources");
1003 		return;
1004 	}
1005 
1006 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
1007 	device->wakeup.prepare_count = 0;
1008 	/*
1009 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
1010 	 * system for the ACPI device with the _PRW object.
1011 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
1012 	 * So it is necessary to call _DSW object first. Only when it is not
1013 	 * present will the _PSW object used.
1014 	 */
1015 	err = acpi_device_sleep_wake(device, 0, 0, 0);
1016 	if (err)
1017 		pr_debug("error in _DSW or _PSW evaluation\n");
1018 }
1019 
1020 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
1021 {
1022 	struct acpi_device_power_state *ps = &device->power.states[state];
1023 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1024 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1025 	acpi_status status;
1026 
1027 	INIT_LIST_HEAD(&ps->resources);
1028 
1029 	/* Evaluate "_PRx" to get referenced power resources */
1030 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1031 	if (ACPI_SUCCESS(status)) {
1032 		union acpi_object *package = buffer.pointer;
1033 
1034 		if (buffer.length && package
1035 		    && package->type == ACPI_TYPE_PACKAGE
1036 		    && package->package.count)
1037 			acpi_extract_power_resources(package, 0, &ps->resources);
1038 
1039 		ACPI_FREE(buffer.pointer);
1040 	}
1041 
1042 	/* Evaluate "_PSx" to see if we can do explicit sets */
1043 	pathname[2] = 'S';
1044 	if (acpi_has_method(device->handle, pathname))
1045 		ps->flags.explicit_set = 1;
1046 
1047 	/* State is valid if there are means to put the device into it. */
1048 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1049 		ps->flags.valid = 1;
1050 
1051 	ps->power = -1;		/* Unknown - driver assigned */
1052 	ps->latency = -1;	/* Unknown - driver assigned */
1053 }
1054 
1055 static void acpi_bus_get_power_flags(struct acpi_device *device)
1056 {
1057 	unsigned long long dsc = ACPI_STATE_D0;
1058 	u32 i;
1059 
1060 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1061 	if (!acpi_has_method(device->handle, "_PS0") &&
1062 	    !acpi_has_method(device->handle, "_PR0"))
1063 		return;
1064 
1065 	device->flags.power_manageable = 1;
1066 
1067 	/*
1068 	 * Power Management Flags
1069 	 */
1070 	if (acpi_has_method(device->handle, "_PSC"))
1071 		device->power.flags.explicit_get = 1;
1072 
1073 	if (acpi_has_method(device->handle, "_IRC"))
1074 		device->power.flags.inrush_current = 1;
1075 
1076 	if (acpi_has_method(device->handle, "_DSW"))
1077 		device->power.flags.dsw_present = 1;
1078 
1079 	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1080 	device->power.state_for_enumeration = dsc;
1081 
1082 	/*
1083 	 * Enumerate supported power management states
1084 	 */
1085 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1086 		acpi_bus_init_power_state(device, i);
1087 
1088 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1089 
1090 	/* Set the defaults for D0 and D3hot (always supported). */
1091 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1092 	device->power.states[ACPI_STATE_D0].power = 100;
1093 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1094 
1095 	/*
1096 	 * Use power resources only if the D0 list of them is populated, because
1097 	 * some platforms may provide _PR3 only to indicate D3cold support and
1098 	 * in those cases the power resources list returned by it may be bogus.
1099 	 */
1100 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1101 		device->power.flags.power_resources = 1;
1102 		/*
1103 		 * D3cold is supported if the D3hot list of power resources is
1104 		 * not empty.
1105 		 */
1106 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1107 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1108 	}
1109 
1110 	if (acpi_bus_init_power(device))
1111 		device->flags.power_manageable = 0;
1112 }
1113 
1114 static void acpi_bus_get_flags(struct acpi_device *device)
1115 {
1116 	/* Presence of _STA indicates 'dynamic_status' */
1117 	if (acpi_has_method(device->handle, "_STA"))
1118 		device->flags.dynamic_status = 1;
1119 
1120 	/* Presence of _RMV indicates 'removable' */
1121 	if (acpi_has_method(device->handle, "_RMV"))
1122 		device->flags.removable = 1;
1123 
1124 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1125 	if (acpi_has_method(device->handle, "_EJD") ||
1126 	    acpi_has_method(device->handle, "_EJ0"))
1127 		device->flags.ejectable = 1;
1128 }
1129 
1130 static void acpi_device_get_busid(struct acpi_device *device)
1131 {
1132 	char bus_id[5] = { '?', 0 };
1133 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1134 	int i = 0;
1135 
1136 	/*
1137 	 * Bus ID
1138 	 * ------
1139 	 * The device's Bus ID is simply the object name.
1140 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1141 	 */
1142 	if (ACPI_IS_ROOT_DEVICE(device)) {
1143 		strcpy(device->pnp.bus_id, "ACPI");
1144 		return;
1145 	}
1146 
1147 	switch (device->device_type) {
1148 	case ACPI_BUS_TYPE_POWER_BUTTON:
1149 		strcpy(device->pnp.bus_id, "PWRF");
1150 		break;
1151 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1152 		strcpy(device->pnp.bus_id, "SLPF");
1153 		break;
1154 	case ACPI_BUS_TYPE_ECDT_EC:
1155 		strcpy(device->pnp.bus_id, "ECDT");
1156 		break;
1157 	default:
1158 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1159 		/* Clean up trailing underscores (if any) */
1160 		for (i = 3; i > 1; i--) {
1161 			if (bus_id[i] == '_')
1162 				bus_id[i] = '\0';
1163 			else
1164 				break;
1165 		}
1166 		strcpy(device->pnp.bus_id, bus_id);
1167 		break;
1168 	}
1169 }
1170 
1171 /*
1172  * acpi_ata_match - see if an acpi object is an ATA device
1173  *
1174  * If an acpi object has one of the ACPI ATA methods defined,
1175  * then we can safely call it an ATA device.
1176  */
1177 bool acpi_ata_match(acpi_handle handle)
1178 {
1179 	return acpi_has_method(handle, "_GTF") ||
1180 	       acpi_has_method(handle, "_GTM") ||
1181 	       acpi_has_method(handle, "_STM") ||
1182 	       acpi_has_method(handle, "_SDD");
1183 }
1184 
1185 /*
1186  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1187  *
1188  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1189  * then we can safely call it an ejectable drive bay
1190  */
1191 bool acpi_bay_match(acpi_handle handle)
1192 {
1193 	acpi_handle phandle;
1194 
1195 	if (!acpi_has_method(handle, "_EJ0"))
1196 		return false;
1197 	if (acpi_ata_match(handle))
1198 		return true;
1199 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1200 		return false;
1201 
1202 	return acpi_ata_match(phandle);
1203 }
1204 
1205 bool acpi_device_is_battery(struct acpi_device *adev)
1206 {
1207 	struct acpi_hardware_id *hwid;
1208 
1209 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1210 		if (!strcmp("PNP0C0A", hwid->id))
1211 			return true;
1212 
1213 	return false;
1214 }
1215 
1216 static bool is_ejectable_bay(struct acpi_device *adev)
1217 {
1218 	acpi_handle handle = adev->handle;
1219 
1220 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1221 		return true;
1222 
1223 	return acpi_bay_match(handle);
1224 }
1225 
1226 /*
1227  * acpi_dock_match - see if an acpi object has a _DCK method
1228  */
1229 bool acpi_dock_match(acpi_handle handle)
1230 {
1231 	return acpi_has_method(handle, "_DCK");
1232 }
1233 
1234 static acpi_status
1235 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1236 			  void **return_value)
1237 {
1238 	long *cap = context;
1239 
1240 	if (acpi_has_method(handle, "_BCM") &&
1241 	    acpi_has_method(handle, "_BCL")) {
1242 		acpi_handle_debug(handle, "Found generic backlight support\n");
1243 		*cap |= ACPI_VIDEO_BACKLIGHT;
1244 		/* We have backlight support, no need to scan further */
1245 		return AE_CTRL_TERMINATE;
1246 	}
1247 	return 0;
1248 }
1249 
1250 /* Returns true if the ACPI object is a video device which can be
1251  * handled by video.ko.
1252  * The device will get a Linux specific CID added in scan.c to
1253  * identify the device as an ACPI graphics device
1254  * Be aware that the graphics device may not be physically present
1255  * Use acpi_video_get_capabilities() to detect general ACPI video
1256  * capabilities of present cards
1257  */
1258 long acpi_is_video_device(acpi_handle handle)
1259 {
1260 	long video_caps = 0;
1261 
1262 	/* Is this device able to support video switching ? */
1263 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1264 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1265 
1266 	/* Is this device able to retrieve a video ROM ? */
1267 	if (acpi_has_method(handle, "_ROM"))
1268 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1269 
1270 	/* Is this device able to configure which video head to be POSTed ? */
1271 	if (acpi_has_method(handle, "_VPO") &&
1272 	    acpi_has_method(handle, "_GPD") &&
1273 	    acpi_has_method(handle, "_SPD"))
1274 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1275 
1276 	/* Only check for backlight functionality if one of the above hit. */
1277 	if (video_caps)
1278 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1279 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1280 				    &video_caps, NULL);
1281 
1282 	return video_caps;
1283 }
1284 EXPORT_SYMBOL(acpi_is_video_device);
1285 
1286 const char *acpi_device_hid(struct acpi_device *device)
1287 {
1288 	struct acpi_hardware_id *hid;
1289 
1290 	if (list_empty(&device->pnp.ids))
1291 		return dummy_hid;
1292 
1293 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1294 	return hid->id;
1295 }
1296 EXPORT_SYMBOL(acpi_device_hid);
1297 
1298 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1299 {
1300 	struct acpi_hardware_id *id;
1301 
1302 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1303 	if (!id)
1304 		return;
1305 
1306 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1307 	if (!id->id) {
1308 		kfree(id);
1309 		return;
1310 	}
1311 
1312 	list_add_tail(&id->list, &pnp->ids);
1313 	pnp->type.hardware_id = 1;
1314 }
1315 
1316 /*
1317  * Old IBM workstations have a DSDT bug wherein the SMBus object
1318  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1319  * prefix.  Work around this.
1320  */
1321 static bool acpi_ibm_smbus_match(acpi_handle handle)
1322 {
1323 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1324 	struct acpi_buffer path = { sizeof(node_name), node_name };
1325 
1326 	if (!dmi_name_in_vendors("IBM"))
1327 		return false;
1328 
1329 	/* Look for SMBS object */
1330 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1331 	    strcmp("SMBS", path.pointer))
1332 		return false;
1333 
1334 	/* Does it have the necessary (but misnamed) methods? */
1335 	if (acpi_has_method(handle, "SBI") &&
1336 	    acpi_has_method(handle, "SBR") &&
1337 	    acpi_has_method(handle, "SBW"))
1338 		return true;
1339 
1340 	return false;
1341 }
1342 
1343 static bool acpi_object_is_system_bus(acpi_handle handle)
1344 {
1345 	acpi_handle tmp;
1346 
1347 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1348 	    tmp == handle)
1349 		return true;
1350 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1351 	    tmp == handle)
1352 		return true;
1353 
1354 	return false;
1355 }
1356 
1357 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1358 			     int device_type)
1359 {
1360 	struct acpi_device_info *info = NULL;
1361 	struct acpi_pnp_device_id_list *cid_list;
1362 	int i;
1363 
1364 	switch (device_type) {
1365 	case ACPI_BUS_TYPE_DEVICE:
1366 		if (handle == ACPI_ROOT_OBJECT) {
1367 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1368 			break;
1369 		}
1370 
1371 		acpi_get_object_info(handle, &info);
1372 		if (!info) {
1373 			pr_err("%s: Error reading device info\n", __func__);
1374 			return;
1375 		}
1376 
1377 		if (info->valid & ACPI_VALID_HID) {
1378 			acpi_add_id(pnp, info->hardware_id.string);
1379 			pnp->type.platform_id = 1;
1380 			if (info->valid & ACPI_VALID_CID) {
1381 				cid_list = &info->compatible_id_list;
1382 				for (i = 0; i < cid_list->count; i++)
1383 					acpi_add_id(pnp, cid_list->ids[i].string);
1384 			}
1385 		}
1386 		if (info->valid & ACPI_VALID_ADR) {
1387 			pnp->bus_address = info->address;
1388 			pnp->type.bus_address = 1;
1389 		}
1390 		if (info->valid & ACPI_VALID_UID)
1391 			pnp->unique_id = kstrdup(info->unique_id.string,
1392 							GFP_KERNEL);
1393 		if (info->valid & ACPI_VALID_CLS)
1394 			acpi_add_id(pnp, info->class_code.string);
1395 
1396 		kfree(info);
1397 
1398 		/*
1399 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1400 		 * synthetic HIDs to make sure drivers can find them.
1401 		 */
1402 		if (acpi_is_video_device(handle))
1403 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1404 		else if (acpi_bay_match(handle))
1405 			acpi_add_id(pnp, ACPI_BAY_HID);
1406 		else if (acpi_dock_match(handle))
1407 			acpi_add_id(pnp, ACPI_DOCK_HID);
1408 		else if (acpi_ibm_smbus_match(handle))
1409 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1410 		else if (list_empty(&pnp->ids) &&
1411 			 acpi_object_is_system_bus(handle)) {
1412 			/* \_SB, \_TZ, LNXSYBUS */
1413 			acpi_add_id(pnp, ACPI_BUS_HID);
1414 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1415 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1416 		}
1417 
1418 		break;
1419 	case ACPI_BUS_TYPE_POWER:
1420 		acpi_add_id(pnp, ACPI_POWER_HID);
1421 		break;
1422 	case ACPI_BUS_TYPE_PROCESSOR:
1423 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1424 		break;
1425 	case ACPI_BUS_TYPE_THERMAL:
1426 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1427 		break;
1428 	case ACPI_BUS_TYPE_POWER_BUTTON:
1429 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1430 		break;
1431 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1432 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1433 		break;
1434 	case ACPI_BUS_TYPE_ECDT_EC:
1435 		acpi_add_id(pnp, ACPI_ECDT_HID);
1436 		break;
1437 	}
1438 }
1439 
1440 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1441 {
1442 	struct acpi_hardware_id *id, *tmp;
1443 
1444 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1445 		kfree_const(id->id);
1446 		kfree(id);
1447 	}
1448 	kfree(pnp->unique_id);
1449 }
1450 
1451 /**
1452  * acpi_dma_supported - Check DMA support for the specified device.
1453  * @adev: The pointer to acpi device
1454  *
1455  * Return false if DMA is not supported. Otherwise, return true
1456  */
1457 bool acpi_dma_supported(const struct acpi_device *adev)
1458 {
1459 	if (!adev)
1460 		return false;
1461 
1462 	if (adev->flags.cca_seen)
1463 		return true;
1464 
1465 	/*
1466 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1467 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1468 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1469 	*/
1470 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1471 		return true;
1472 
1473 	return false;
1474 }
1475 
1476 /**
1477  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1478  * @adev: The pointer to acpi device
1479  *
1480  * Return enum dev_dma_attr.
1481  */
1482 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1483 {
1484 	if (!acpi_dma_supported(adev))
1485 		return DEV_DMA_NOT_SUPPORTED;
1486 
1487 	if (adev->flags.coherent_dma)
1488 		return DEV_DMA_COHERENT;
1489 	else
1490 		return DEV_DMA_NON_COHERENT;
1491 }
1492 
1493 /**
1494  * acpi_dma_get_range() - Get device DMA parameters.
1495  *
1496  * @dev: device to configure
1497  * @dma_addr: pointer device DMA address result
1498  * @offset: pointer to the DMA offset result
1499  * @size: pointer to DMA range size result
1500  *
1501  * Evaluate DMA regions and return respectively DMA region start, offset
1502  * and size in dma_addr, offset and size on parsing success; it does not
1503  * update the passed in values on failure.
1504  *
1505  * Return 0 on success, < 0 on failure.
1506  */
1507 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1508 		       u64 *size)
1509 {
1510 	struct acpi_device *adev;
1511 	LIST_HEAD(list);
1512 	struct resource_entry *rentry;
1513 	int ret;
1514 	struct device *dma_dev = dev;
1515 	u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1516 
1517 	/*
1518 	 * Walk the device tree chasing an ACPI companion with a _DMA
1519 	 * object while we go. Stop if we find a device with an ACPI
1520 	 * companion containing a _DMA method.
1521 	 */
1522 	do {
1523 		adev = ACPI_COMPANION(dma_dev);
1524 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1525 			break;
1526 
1527 		dma_dev = dma_dev->parent;
1528 	} while (dma_dev);
1529 
1530 	if (!dma_dev)
1531 		return -ENODEV;
1532 
1533 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1534 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1535 		return -EINVAL;
1536 	}
1537 
1538 	ret = acpi_dev_get_dma_resources(adev, &list);
1539 	if (ret > 0) {
1540 		list_for_each_entry(rentry, &list, node) {
1541 			if (dma_offset && rentry->offset != dma_offset) {
1542 				ret = -EINVAL;
1543 				dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1544 				goto out;
1545 			}
1546 			dma_offset = rentry->offset;
1547 
1548 			/* Take lower and upper limits */
1549 			if (rentry->res->start < dma_start)
1550 				dma_start = rentry->res->start;
1551 			if (rentry->res->end > dma_end)
1552 				dma_end = rentry->res->end;
1553 		}
1554 
1555 		if (dma_start >= dma_end) {
1556 			ret = -EINVAL;
1557 			dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1558 			goto out;
1559 		}
1560 
1561 		*dma_addr = dma_start - dma_offset;
1562 		len = dma_end - dma_start;
1563 		*size = max(len, len + 1);
1564 		*offset = dma_offset;
1565 	}
1566  out:
1567 	acpi_dev_free_resource_list(&list);
1568 
1569 	return ret >= 0 ? 0 : ret;
1570 }
1571 
1572 #ifdef CONFIG_IOMMU_API
1573 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1574 			   struct fwnode_handle *fwnode,
1575 			   const struct iommu_ops *ops)
1576 {
1577 	int ret = iommu_fwspec_init(dev, fwnode, ops);
1578 
1579 	if (!ret)
1580 		ret = iommu_fwspec_add_ids(dev, &id, 1);
1581 
1582 	return ret;
1583 }
1584 
1585 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1586 {
1587 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1588 
1589 	return fwspec ? fwspec->ops : NULL;
1590 }
1591 
1592 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1593 						       const u32 *id_in)
1594 {
1595 	int err;
1596 	const struct iommu_ops *ops;
1597 
1598 	/*
1599 	 * If we already translated the fwspec there is nothing left to do,
1600 	 * return the iommu_ops.
1601 	 */
1602 	ops = acpi_iommu_fwspec_ops(dev);
1603 	if (ops)
1604 		return ops;
1605 
1606 	err = iort_iommu_configure_id(dev, id_in);
1607 	if (err && err != -EPROBE_DEFER)
1608 		err = viot_iommu_configure(dev);
1609 
1610 	/*
1611 	 * If we have reason to believe the IOMMU driver missed the initial
1612 	 * iommu_probe_device() call for dev, replay it to get things in order.
1613 	 */
1614 	if (!err && dev->bus && !device_iommu_mapped(dev))
1615 		err = iommu_probe_device(dev);
1616 
1617 	/* Ignore all other errors apart from EPROBE_DEFER */
1618 	if (err == -EPROBE_DEFER) {
1619 		return ERR_PTR(err);
1620 	} else if (err) {
1621 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1622 		return NULL;
1623 	}
1624 	return acpi_iommu_fwspec_ops(dev);
1625 }
1626 
1627 #else /* !CONFIG_IOMMU_API */
1628 
1629 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1630 			   struct fwnode_handle *fwnode,
1631 			   const struct iommu_ops *ops)
1632 {
1633 	return -ENODEV;
1634 }
1635 
1636 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1637 						       const u32 *id_in)
1638 {
1639 	return NULL;
1640 }
1641 
1642 #endif /* !CONFIG_IOMMU_API */
1643 
1644 /**
1645  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1646  * @dev: The pointer to the device
1647  * @attr: device dma attributes
1648  * @input_id: input device id const value pointer
1649  */
1650 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1651 			  const u32 *input_id)
1652 {
1653 	const struct iommu_ops *iommu;
1654 	u64 dma_addr = 0, size = 0;
1655 
1656 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1657 		set_dma_ops(dev, &dma_dummy_ops);
1658 		return 0;
1659 	}
1660 
1661 	acpi_arch_dma_setup(dev, &dma_addr, &size);
1662 
1663 	iommu = acpi_iommu_configure_id(dev, input_id);
1664 	if (PTR_ERR(iommu) == -EPROBE_DEFER)
1665 		return -EPROBE_DEFER;
1666 
1667 	arch_setup_dma_ops(dev, dma_addr, size,
1668 				iommu, attr == DEV_DMA_COHERENT);
1669 
1670 	return 0;
1671 }
1672 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1673 
1674 static void acpi_init_coherency(struct acpi_device *adev)
1675 {
1676 	unsigned long long cca = 0;
1677 	acpi_status status;
1678 	struct acpi_device *parent = adev->parent;
1679 
1680 	if (parent && parent->flags.cca_seen) {
1681 		/*
1682 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1683 		 * already saw one.
1684 		 */
1685 		adev->flags.cca_seen = 1;
1686 		cca = parent->flags.coherent_dma;
1687 	} else {
1688 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1689 					       NULL, &cca);
1690 		if (ACPI_SUCCESS(status))
1691 			adev->flags.cca_seen = 1;
1692 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1693 			/*
1694 			 * If architecture does not specify that _CCA is
1695 			 * required for DMA-able devices (e.g. x86),
1696 			 * we default to _CCA=1.
1697 			 */
1698 			cca = 1;
1699 		else
1700 			acpi_handle_debug(adev->handle,
1701 					  "ACPI device is missing _CCA.\n");
1702 	}
1703 
1704 	adev->flags.coherent_dma = cca;
1705 }
1706 
1707 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1708 {
1709 	bool *is_serial_bus_slave_p = data;
1710 
1711 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1712 		return 1;
1713 
1714 	*is_serial_bus_slave_p = true;
1715 
1716 	 /* no need to do more checking */
1717 	return -1;
1718 }
1719 
1720 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1721 {
1722 	struct acpi_device *parent = device->parent;
1723 	static const struct acpi_device_id indirect_io_hosts[] = {
1724 		{"HISI0191", 0},
1725 		{}
1726 	};
1727 
1728 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1729 }
1730 
1731 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1732 {
1733 	struct list_head resource_list;
1734 	bool is_serial_bus_slave = false;
1735 	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1736 	/*
1737 	 * These devices have multiple SerialBus resources and a client
1738 	 * device must be instantiated for each of them, each with
1739 	 * its own device id.
1740 	 * Normally we only instantiate one client device for the first
1741 	 * resource, using the ACPI HID as id. These special cases are handled
1742 	 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1743 	 * knows which client device id to use for each resource.
1744 	 */
1745 		{"BSG1160", },
1746 		{"BSG2150", },
1747 		{"CSC3551", },
1748 		{"INT33FE", },
1749 		{"INT3515", },
1750 		/* Non-conforming _HID for Cirrus Logic already released */
1751 		{"CLSA0100", },
1752 	/*
1753 	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1754 	 * expects a regular tty cdev to be created (instead of the in kernel
1755 	 * serdev) and which have a kernel driver which expects a platform_dev
1756 	 * such as the rfkill-gpio driver.
1757 	 */
1758 		{"BCM4752", },
1759 		{"LNV4752", },
1760 		{}
1761 	};
1762 
1763 	if (acpi_is_indirect_io_slave(device))
1764 		return true;
1765 
1766 	/* Macs use device properties in lieu of _CRS resources */
1767 	if (x86_apple_machine &&
1768 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1769 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1770 	     fwnode_property_present(&device->fwnode, "baud")))
1771 		return true;
1772 
1773 	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1774 		return false;
1775 
1776 	INIT_LIST_HEAD(&resource_list);
1777 	acpi_dev_get_resources(device, &resource_list,
1778 			       acpi_check_serial_bus_slave,
1779 			       &is_serial_bus_slave);
1780 	acpi_dev_free_resource_list(&resource_list);
1781 
1782 	return is_serial_bus_slave;
1783 }
1784 
1785 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1786 			     int type)
1787 {
1788 	INIT_LIST_HEAD(&device->pnp.ids);
1789 	device->device_type = type;
1790 	device->handle = handle;
1791 	device->parent = acpi_bus_get_parent(handle);
1792 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1793 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1794 	acpi_device_get_busid(device);
1795 	acpi_set_pnp_ids(handle, &device->pnp, type);
1796 	acpi_init_properties(device);
1797 	acpi_bus_get_flags(device);
1798 	device->flags.match_driver = false;
1799 	device->flags.initialized = true;
1800 	device->flags.enumeration_by_parent =
1801 		acpi_device_enumeration_by_parent(device);
1802 	acpi_device_clear_enumerated(device);
1803 	device_initialize(&device->dev);
1804 	dev_set_uevent_suppress(&device->dev, true);
1805 	acpi_init_coherency(device);
1806 }
1807 
1808 static void acpi_scan_dep_init(struct acpi_device *adev)
1809 {
1810 	struct acpi_dep_data *dep;
1811 
1812 	list_for_each_entry(dep, &acpi_dep_list, node) {
1813 		if (dep->consumer == adev->handle) {
1814 			if (dep->honor_dep)
1815 				adev->flags.honor_deps = 1;
1816 
1817 			adev->dep_unmet++;
1818 		}
1819 	}
1820 }
1821 
1822 void acpi_device_add_finalize(struct acpi_device *device)
1823 {
1824 	dev_set_uevent_suppress(&device->dev, false);
1825 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1826 }
1827 
1828 static void acpi_scan_init_status(struct acpi_device *adev)
1829 {
1830 	if (acpi_bus_get_status(adev))
1831 		acpi_set_device_status(adev, 0);
1832 }
1833 
1834 static int acpi_add_single_object(struct acpi_device **child,
1835 				  acpi_handle handle, int type, bool dep_init)
1836 {
1837 	struct acpi_device *device;
1838 	bool release_dep_lock = false;
1839 	int result;
1840 
1841 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1842 	if (!device)
1843 		return -ENOMEM;
1844 
1845 	acpi_init_device_object(device, handle, type);
1846 	/*
1847 	 * Getting the status is delayed till here so that we can call
1848 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1849 	 * this must be done before the get power-/wakeup_dev-flags calls.
1850 	 */
1851 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1852 		if (dep_init) {
1853 			mutex_lock(&acpi_dep_list_lock);
1854 			/*
1855 			 * Hold the lock until the acpi_tie_acpi_dev() call
1856 			 * below to prevent concurrent acpi_scan_clear_dep()
1857 			 * from deleting a dependency list entry without
1858 			 * updating dep_unmet for the device.
1859 			 */
1860 			release_dep_lock = true;
1861 			acpi_scan_dep_init(device);
1862 		}
1863 		acpi_scan_init_status(device);
1864 	}
1865 
1866 	acpi_bus_get_power_flags(device);
1867 	acpi_bus_get_wakeup_device_flags(device);
1868 
1869 	result = acpi_tie_acpi_dev(device);
1870 
1871 	if (release_dep_lock)
1872 		mutex_unlock(&acpi_dep_list_lock);
1873 
1874 	if (!result)
1875 		result = __acpi_device_add(device, acpi_device_release);
1876 
1877 	if (result) {
1878 		acpi_device_release(&device->dev);
1879 		return result;
1880 	}
1881 
1882 	acpi_power_add_remove_device(device, true);
1883 	acpi_device_add_finalize(device);
1884 
1885 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1886 			  dev_name(&device->dev), device->parent ?
1887 				dev_name(&device->parent->dev) : "(null)");
1888 
1889 	*child = device;
1890 	return 0;
1891 }
1892 
1893 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1894 					    void *context)
1895 {
1896 	struct resource *res = context;
1897 
1898 	if (acpi_dev_resource_memory(ares, res))
1899 		return AE_CTRL_TERMINATE;
1900 
1901 	return AE_OK;
1902 }
1903 
1904 static bool acpi_device_should_be_hidden(acpi_handle handle)
1905 {
1906 	acpi_status status;
1907 	struct resource res;
1908 
1909 	/* Check if it should ignore the UART device */
1910 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1911 		return false;
1912 
1913 	/*
1914 	 * The UART device described in SPCR table is assumed to have only one
1915 	 * memory resource present. So we only look for the first one here.
1916 	 */
1917 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1918 				     acpi_get_resource_memory, &res);
1919 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1920 		return false;
1921 
1922 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1923 			 &res.start);
1924 
1925 	return true;
1926 }
1927 
1928 bool acpi_device_is_present(const struct acpi_device *adev)
1929 {
1930 	return adev->status.present || adev->status.functional;
1931 }
1932 
1933 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1934 				       const char *idstr,
1935 				       const struct acpi_device_id **matchid)
1936 {
1937 	const struct acpi_device_id *devid;
1938 
1939 	if (handler->match)
1940 		return handler->match(idstr, matchid);
1941 
1942 	for (devid = handler->ids; devid->id[0]; devid++)
1943 		if (!strcmp((char *)devid->id, idstr)) {
1944 			if (matchid)
1945 				*matchid = devid;
1946 
1947 			return true;
1948 		}
1949 
1950 	return false;
1951 }
1952 
1953 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1954 					const struct acpi_device_id **matchid)
1955 {
1956 	struct acpi_scan_handler *handler;
1957 
1958 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1959 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1960 			return handler;
1961 
1962 	return NULL;
1963 }
1964 
1965 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1966 {
1967 	if (!!hotplug->enabled == !!val)
1968 		return;
1969 
1970 	mutex_lock(&acpi_scan_lock);
1971 
1972 	hotplug->enabled = val;
1973 
1974 	mutex_unlock(&acpi_scan_lock);
1975 }
1976 
1977 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1978 {
1979 	struct acpi_hardware_id *hwid;
1980 
1981 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1982 		acpi_dock_add(adev);
1983 		return;
1984 	}
1985 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1986 		struct acpi_scan_handler *handler;
1987 
1988 		handler = acpi_scan_match_handler(hwid->id, NULL);
1989 		if (handler) {
1990 			adev->flags.hotplug_notify = true;
1991 			break;
1992 		}
1993 	}
1994 }
1995 
1996 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1997 {
1998 	struct acpi_handle_list dep_devices;
1999 	acpi_status status;
2000 	u32 count;
2001 	int i;
2002 
2003 	/*
2004 	 * Check for _HID here to avoid deferring the enumeration of:
2005 	 * 1. PCI devices.
2006 	 * 2. ACPI nodes describing USB ports.
2007 	 * Still, checking for _HID catches more then just these cases ...
2008 	 */
2009 	if (!check_dep || !acpi_has_method(handle, "_DEP") ||
2010 	    !acpi_has_method(handle, "_HID"))
2011 		return 0;
2012 
2013 	status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
2014 	if (ACPI_FAILURE(status)) {
2015 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2016 		return 0;
2017 	}
2018 
2019 	for (count = 0, i = 0; i < dep_devices.count; i++) {
2020 		struct acpi_device_info *info;
2021 		struct acpi_dep_data *dep;
2022 		bool skip, honor_dep;
2023 
2024 		status = acpi_get_object_info(dep_devices.handles[i], &info);
2025 		if (ACPI_FAILURE(status)) {
2026 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
2027 			continue;
2028 		}
2029 
2030 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2031 		honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2032 		kfree(info);
2033 
2034 		if (skip)
2035 			continue;
2036 
2037 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2038 		if (!dep)
2039 			continue;
2040 
2041 		count++;
2042 
2043 		dep->supplier = dep_devices.handles[i];
2044 		dep->consumer = handle;
2045 		dep->honor_dep = honor_dep;
2046 
2047 		mutex_lock(&acpi_dep_list_lock);
2048 		list_add_tail(&dep->node , &acpi_dep_list);
2049 		mutex_unlock(&acpi_dep_list_lock);
2050 	}
2051 
2052 	return count;
2053 }
2054 
2055 static bool acpi_bus_scan_second_pass;
2056 
2057 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2058 				      struct acpi_device **adev_p)
2059 {
2060 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2061 	acpi_object_type acpi_type;
2062 	int type;
2063 
2064 	if (device)
2065 		goto out;
2066 
2067 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2068 		return AE_OK;
2069 
2070 	switch (acpi_type) {
2071 	case ACPI_TYPE_DEVICE:
2072 		if (acpi_device_should_be_hidden(handle))
2073 			return AE_OK;
2074 
2075 		/* Bail out if there are dependencies. */
2076 		if (acpi_scan_check_dep(handle, check_dep) > 0) {
2077 			acpi_bus_scan_second_pass = true;
2078 			return AE_CTRL_DEPTH;
2079 		}
2080 
2081 		fallthrough;
2082 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2083 		type = ACPI_BUS_TYPE_DEVICE;
2084 		break;
2085 
2086 	case ACPI_TYPE_PROCESSOR:
2087 		type = ACPI_BUS_TYPE_PROCESSOR;
2088 		break;
2089 
2090 	case ACPI_TYPE_THERMAL:
2091 		type = ACPI_BUS_TYPE_THERMAL;
2092 		break;
2093 
2094 	case ACPI_TYPE_POWER:
2095 		acpi_add_power_resource(handle);
2096 		fallthrough;
2097 	default:
2098 		return AE_OK;
2099 	}
2100 
2101 	/*
2102 	 * If check_dep is true at this point, the device has no dependencies,
2103 	 * or the creation of the device object would have been postponed above.
2104 	 */
2105 	acpi_add_single_object(&device, handle, type, !check_dep);
2106 	if (!device)
2107 		return AE_CTRL_DEPTH;
2108 
2109 	acpi_scan_init_hotplug(device);
2110 
2111 out:
2112 	if (!*adev_p)
2113 		*adev_p = device;
2114 
2115 	return AE_OK;
2116 }
2117 
2118 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2119 					void *not_used, void **ret_p)
2120 {
2121 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2122 }
2123 
2124 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2125 					void *not_used, void **ret_p)
2126 {
2127 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2128 }
2129 
2130 static void acpi_default_enumeration(struct acpi_device *device)
2131 {
2132 	/*
2133 	 * Do not enumerate devices with enumeration_by_parent flag set as
2134 	 * they will be enumerated by their respective parents.
2135 	 */
2136 	if (!device->flags.enumeration_by_parent) {
2137 		acpi_create_platform_device(device, NULL);
2138 		acpi_device_set_enumerated(device);
2139 	} else {
2140 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2141 					     ACPI_RECONFIG_DEVICE_ADD, device);
2142 	}
2143 }
2144 
2145 static const struct acpi_device_id generic_device_ids[] = {
2146 	{ACPI_DT_NAMESPACE_HID, },
2147 	{"", },
2148 };
2149 
2150 static int acpi_generic_device_attach(struct acpi_device *adev,
2151 				      const struct acpi_device_id *not_used)
2152 {
2153 	/*
2154 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2155 	 * below can be unconditional.
2156 	 */
2157 	if (adev->data.of_compatible)
2158 		acpi_default_enumeration(adev);
2159 
2160 	return 1;
2161 }
2162 
2163 static struct acpi_scan_handler generic_device_handler = {
2164 	.ids = generic_device_ids,
2165 	.attach = acpi_generic_device_attach,
2166 };
2167 
2168 static int acpi_scan_attach_handler(struct acpi_device *device)
2169 {
2170 	struct acpi_hardware_id *hwid;
2171 	int ret = 0;
2172 
2173 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2174 		const struct acpi_device_id *devid;
2175 		struct acpi_scan_handler *handler;
2176 
2177 		handler = acpi_scan_match_handler(hwid->id, &devid);
2178 		if (handler) {
2179 			if (!handler->attach) {
2180 				device->pnp.type.platform_id = 0;
2181 				continue;
2182 			}
2183 			device->handler = handler;
2184 			ret = handler->attach(device, devid);
2185 			if (ret > 0)
2186 				break;
2187 
2188 			device->handler = NULL;
2189 			if (ret < 0)
2190 				break;
2191 		}
2192 	}
2193 
2194 	return ret;
2195 }
2196 
2197 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2198 {
2199 	struct acpi_device *child;
2200 	bool skip = !first_pass && device->flags.visited;
2201 	acpi_handle ejd;
2202 	int ret;
2203 
2204 	if (skip)
2205 		goto ok;
2206 
2207 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2208 		register_dock_dependent_device(device, ejd);
2209 
2210 	acpi_bus_get_status(device);
2211 	/* Skip devices that are not ready for enumeration (e.g. not present) */
2212 	if (!acpi_dev_ready_for_enumeration(device)) {
2213 		device->flags.initialized = false;
2214 		acpi_device_clear_enumerated(device);
2215 		device->flags.power_manageable = 0;
2216 		return;
2217 	}
2218 	if (device->handler)
2219 		goto ok;
2220 
2221 	if (!device->flags.initialized) {
2222 		device->flags.power_manageable =
2223 			device->power.states[ACPI_STATE_D0].flags.valid;
2224 		if (acpi_bus_init_power(device))
2225 			device->flags.power_manageable = 0;
2226 
2227 		device->flags.initialized = true;
2228 	} else if (device->flags.visited) {
2229 		goto ok;
2230 	}
2231 
2232 	ret = acpi_scan_attach_handler(device);
2233 	if (ret < 0)
2234 		return;
2235 
2236 	device->flags.match_driver = true;
2237 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2238 		acpi_device_set_enumerated(device);
2239 		goto ok;
2240 	}
2241 
2242 	ret = device_attach(&device->dev);
2243 	if (ret < 0)
2244 		return;
2245 
2246 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2247 		acpi_default_enumeration(device);
2248 	else
2249 		acpi_device_set_enumerated(device);
2250 
2251  ok:
2252 	list_for_each_entry(child, &device->children, node)
2253 		acpi_bus_attach(child, first_pass);
2254 
2255 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2256 		device->handler->hotplug.notify_online(device);
2257 }
2258 
2259 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2260 {
2261 	struct acpi_device *adev;
2262 
2263 	adev = acpi_bus_get_acpi_device(dep->consumer);
2264 	if (adev) {
2265 		*(struct acpi_device **)data = adev;
2266 		return 1;
2267 	}
2268 	/* Continue parsing if the device object is not present. */
2269 	return 0;
2270 }
2271 
2272 struct acpi_scan_clear_dep_work {
2273 	struct work_struct work;
2274 	struct acpi_device *adev;
2275 };
2276 
2277 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2278 {
2279 	struct acpi_scan_clear_dep_work *cdw;
2280 
2281 	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2282 
2283 	acpi_scan_lock_acquire();
2284 	acpi_bus_attach(cdw->adev, true);
2285 	acpi_scan_lock_release();
2286 
2287 	acpi_dev_put(cdw->adev);
2288 	kfree(cdw);
2289 }
2290 
2291 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2292 {
2293 	struct acpi_scan_clear_dep_work *cdw;
2294 
2295 	if (adev->dep_unmet)
2296 		return false;
2297 
2298 	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2299 	if (!cdw)
2300 		return false;
2301 
2302 	cdw->adev = adev;
2303 	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2304 	/*
2305 	 * Since the work function may block on the lock until the entire
2306 	 * initial enumeration of devices is complete, put it into the unbound
2307 	 * workqueue.
2308 	 */
2309 	queue_work(system_unbound_wq, &cdw->work);
2310 
2311 	return true;
2312 }
2313 
2314 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2315 {
2316 	struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2317 
2318 	if (adev) {
2319 		adev->dep_unmet--;
2320 		if (!acpi_scan_clear_dep_queue(adev))
2321 			acpi_dev_put(adev);
2322 	}
2323 
2324 	list_del(&dep->node);
2325 	kfree(dep);
2326 
2327 	return 0;
2328 }
2329 
2330 /**
2331  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2332  * @handle:	The ACPI handle of the supplier device
2333  * @callback:	Pointer to the callback function to apply
2334  * @data:	Pointer to some data to pass to the callback
2335  *
2336  * The return value of the callback determines this function's behaviour. If 0
2337  * is returned we continue to iterate over acpi_dep_list. If a positive value
2338  * is returned then the loop is broken but this function returns 0. If a
2339  * negative value is returned by the callback then the loop is broken and that
2340  * value is returned as the final error.
2341  */
2342 static int acpi_walk_dep_device_list(acpi_handle handle,
2343 				int (*callback)(struct acpi_dep_data *, void *),
2344 				void *data)
2345 {
2346 	struct acpi_dep_data *dep, *tmp;
2347 	int ret = 0;
2348 
2349 	mutex_lock(&acpi_dep_list_lock);
2350 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2351 		if (dep->supplier == handle) {
2352 			ret = callback(dep, data);
2353 			if (ret)
2354 				break;
2355 		}
2356 	}
2357 	mutex_unlock(&acpi_dep_list_lock);
2358 
2359 	return ret > 0 ? 0 : ret;
2360 }
2361 
2362 /**
2363  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2364  * @supplier: Pointer to the supplier &struct acpi_device
2365  *
2366  * Clear dependencies on the given device.
2367  */
2368 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2369 {
2370 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2371 }
2372 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2373 
2374 /**
2375  * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2376  * @device: Pointer to the &struct acpi_device to check
2377  *
2378  * Check if the device is present and has no unmet dependencies.
2379  *
2380  * Return true if the device is ready for enumeratino. Otherwise, return false.
2381  */
2382 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2383 {
2384 	if (device->flags.honor_deps && device->dep_unmet)
2385 		return false;
2386 
2387 	return acpi_device_is_present(device);
2388 }
2389 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2390 
2391 /**
2392  * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2393  * @supplier: Pointer to the dependee device
2394  *
2395  * Returns the first &struct acpi_device which declares itself dependent on
2396  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2397  *
2398  * The caller is responsible for putting the reference to adev when it is no
2399  * longer needed.
2400  */
2401 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2402 {
2403 	struct acpi_device *adev = NULL;
2404 
2405 	acpi_walk_dep_device_list(supplier->handle,
2406 				  acpi_dev_get_first_consumer_dev_cb, &adev);
2407 
2408 	return adev;
2409 }
2410 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2411 
2412 /**
2413  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2414  * @handle: Root of the namespace scope to scan.
2415  *
2416  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2417  * found devices.
2418  *
2419  * If no devices were found, -ENODEV is returned, but it does not mean that
2420  * there has been a real error.  There just have been no suitable ACPI objects
2421  * in the table trunk from which the kernel could create a device and add an
2422  * appropriate driver.
2423  *
2424  * Must be called under acpi_scan_lock.
2425  */
2426 int acpi_bus_scan(acpi_handle handle)
2427 {
2428 	struct acpi_device *device = NULL;
2429 
2430 	acpi_bus_scan_second_pass = false;
2431 
2432 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2433 
2434 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2435 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2436 				    acpi_bus_check_add_1, NULL, NULL,
2437 				    (void **)&device);
2438 
2439 	if (!device)
2440 		return -ENODEV;
2441 
2442 	acpi_bus_attach(device, true);
2443 
2444 	if (!acpi_bus_scan_second_pass)
2445 		return 0;
2446 
2447 	/* Pass 2: Enumerate all of the remaining devices. */
2448 
2449 	device = NULL;
2450 
2451 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2452 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2453 				    acpi_bus_check_add_2, NULL, NULL,
2454 				    (void **)&device);
2455 
2456 	acpi_bus_attach(device, false);
2457 
2458 	return 0;
2459 }
2460 EXPORT_SYMBOL(acpi_bus_scan);
2461 
2462 /**
2463  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2464  * @adev: Root of the ACPI namespace scope to walk.
2465  *
2466  * Must be called under acpi_scan_lock.
2467  */
2468 void acpi_bus_trim(struct acpi_device *adev)
2469 {
2470 	struct acpi_scan_handler *handler = adev->handler;
2471 	struct acpi_device *child;
2472 
2473 	list_for_each_entry_reverse(child, &adev->children, node)
2474 		acpi_bus_trim(child);
2475 
2476 	adev->flags.match_driver = false;
2477 	if (handler) {
2478 		if (handler->detach)
2479 			handler->detach(adev);
2480 
2481 		adev->handler = NULL;
2482 	} else {
2483 		device_release_driver(&adev->dev);
2484 	}
2485 	/*
2486 	 * Most likely, the device is going away, so put it into D3cold before
2487 	 * that.
2488 	 */
2489 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2490 	adev->flags.initialized = false;
2491 	acpi_device_clear_enumerated(adev);
2492 }
2493 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2494 
2495 int acpi_bus_register_early_device(int type)
2496 {
2497 	struct acpi_device *device = NULL;
2498 	int result;
2499 
2500 	result = acpi_add_single_object(&device, NULL, type, false);
2501 	if (result)
2502 		return result;
2503 
2504 	device->flags.match_driver = true;
2505 	return device_attach(&device->dev);
2506 }
2507 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2508 
2509 static void acpi_bus_scan_fixed(void)
2510 {
2511 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2512 		struct acpi_device *adev = NULL;
2513 
2514 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2515 				       false);
2516 		if (adev) {
2517 			adev->flags.match_driver = true;
2518 			if (device_attach(&adev->dev) >= 0)
2519 				device_init_wakeup(&adev->dev, true);
2520 			else
2521 				dev_dbg(&adev->dev, "No driver\n");
2522 		}
2523 	}
2524 
2525 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2526 		struct acpi_device *adev = NULL;
2527 
2528 		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2529 				       false);
2530 		if (adev) {
2531 			adev->flags.match_driver = true;
2532 			if (device_attach(&adev->dev) < 0)
2533 				dev_dbg(&adev->dev, "No driver\n");
2534 		}
2535 	}
2536 }
2537 
2538 static void __init acpi_get_spcr_uart_addr(void)
2539 {
2540 	acpi_status status;
2541 	struct acpi_table_spcr *spcr_ptr;
2542 
2543 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2544 				(struct acpi_table_header **)&spcr_ptr);
2545 	if (ACPI_FAILURE(status)) {
2546 		pr_warn("STAO table present, but SPCR is missing\n");
2547 		return;
2548 	}
2549 
2550 	spcr_uart_addr = spcr_ptr->serial_port.address;
2551 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2552 }
2553 
2554 static bool acpi_scan_initialized;
2555 
2556 void __init acpi_scan_init(void)
2557 {
2558 	acpi_status status;
2559 	struct acpi_table_stao *stao_ptr;
2560 
2561 	acpi_pci_root_init();
2562 	acpi_pci_link_init();
2563 	acpi_processor_init();
2564 	acpi_platform_init();
2565 	acpi_lpss_init();
2566 	acpi_apd_init();
2567 	acpi_cmos_rtc_init();
2568 	acpi_container_init();
2569 	acpi_memory_hotplug_init();
2570 	acpi_watchdog_init();
2571 	acpi_pnp_init();
2572 	acpi_int340x_thermal_init();
2573 	acpi_amba_init();
2574 	acpi_init_lpit();
2575 
2576 	acpi_scan_add_handler(&generic_device_handler);
2577 
2578 	/*
2579 	 * If there is STAO table, check whether it needs to ignore the UART
2580 	 * device in SPCR table.
2581 	 */
2582 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2583 				(struct acpi_table_header **)&stao_ptr);
2584 	if (ACPI_SUCCESS(status)) {
2585 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2586 			pr_info("STAO Name List not yet supported.\n");
2587 
2588 		if (stao_ptr->ignore_uart)
2589 			acpi_get_spcr_uart_addr();
2590 
2591 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2592 	}
2593 
2594 	acpi_gpe_apply_masked_gpes();
2595 	acpi_update_all_gpes();
2596 
2597 	/*
2598 	 * Although we call __add_memory() that is documented to require the
2599 	 * device_hotplug_lock, it is not necessary here because this is an
2600 	 * early code when userspace or any other code path cannot trigger
2601 	 * hotplug/hotunplug operations.
2602 	 */
2603 	mutex_lock(&acpi_scan_lock);
2604 	/*
2605 	 * Enumerate devices in the ACPI namespace.
2606 	 */
2607 	if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2608 		goto unlock;
2609 
2610 	acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2611 	if (!acpi_root)
2612 		goto unlock;
2613 
2614 	/* Fixed feature devices do not exist on HW-reduced platform */
2615 	if (!acpi_gbl_reduced_hardware)
2616 		acpi_bus_scan_fixed();
2617 
2618 	acpi_turn_off_unused_power_resources();
2619 
2620 	acpi_scan_initialized = true;
2621 
2622 unlock:
2623 	mutex_unlock(&acpi_scan_lock);
2624 }
2625 
2626 static struct acpi_probe_entry *ape;
2627 static int acpi_probe_count;
2628 static DEFINE_MUTEX(acpi_probe_mutex);
2629 
2630 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2631 				  const unsigned long end)
2632 {
2633 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2634 		if (!ape->probe_subtbl(header, end))
2635 			acpi_probe_count++;
2636 
2637 	return 0;
2638 }
2639 
2640 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2641 {
2642 	int count = 0;
2643 
2644 	if (acpi_disabled)
2645 		return 0;
2646 
2647 	mutex_lock(&acpi_probe_mutex);
2648 	for (ape = ap_head; nr; ape++, nr--) {
2649 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2650 			acpi_probe_count = 0;
2651 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2652 			count += acpi_probe_count;
2653 		} else {
2654 			int res;
2655 			res = acpi_table_parse(ape->id, ape->probe_table);
2656 			if (!res)
2657 				count++;
2658 		}
2659 	}
2660 	mutex_unlock(&acpi_probe_mutex);
2661 
2662 	return count;
2663 }
2664 
2665 static void acpi_table_events_fn(struct work_struct *work)
2666 {
2667 	acpi_scan_lock_acquire();
2668 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2669 	acpi_scan_lock_release();
2670 
2671 	kfree(work);
2672 }
2673 
2674 void acpi_scan_table_notify(void)
2675 {
2676 	struct work_struct *work;
2677 
2678 	if (!acpi_scan_initialized)
2679 		return;
2680 
2681 	work = kmalloc(sizeof(*work), GFP_KERNEL);
2682 	if (!work)
2683 		return;
2684 
2685 	INIT_WORK(work, acpi_table_events_fn);
2686 	schedule_work(work);
2687 }
2688 
2689 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2690 {
2691 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2692 }
2693 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2694 
2695 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2696 {
2697 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2698 }
2699 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2700