1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6 #include <linux/module.h> 7 #include <linux/init.h> 8 #include <linux/slab.h> 9 #include <linux/kernel.h> 10 #include <linux/acpi.h> 11 #include <linux/acpi_iort.h> 12 #include <linux/signal.h> 13 #include <linux/kthread.h> 14 #include <linux/dmi.h> 15 #include <linux/nls.h> 16 #include <linux/dma-map-ops.h> 17 #include <linux/platform_data/x86/apple.h> 18 #include <linux/pgtable.h> 19 20 #include "internal.h" 21 22 extern struct acpi_device *acpi_root; 23 24 #define ACPI_BUS_CLASS "system_bus" 25 #define ACPI_BUS_HID "LNXSYBUS" 26 #define ACPI_BUS_DEVICE_NAME "System Bus" 27 28 #define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent) 29 30 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page) 31 32 static const char *dummy_hid = "device"; 33 34 static LIST_HEAD(acpi_dep_list); 35 static DEFINE_MUTEX(acpi_dep_list_lock); 36 LIST_HEAD(acpi_bus_id_list); 37 static DEFINE_MUTEX(acpi_scan_lock); 38 static LIST_HEAD(acpi_scan_handlers_list); 39 DEFINE_MUTEX(acpi_device_lock); 40 LIST_HEAD(acpi_wakeup_device_list); 41 static DEFINE_MUTEX(acpi_hp_context_lock); 42 43 /* 44 * The UART device described by the SPCR table is the only object which needs 45 * special-casing. Everything else is covered by ACPI namespace paths in STAO 46 * table. 47 */ 48 static u64 spcr_uart_addr; 49 50 struct acpi_dep_data { 51 struct list_head node; 52 acpi_handle supplier; 53 acpi_handle consumer; 54 }; 55 56 void acpi_scan_lock_acquire(void) 57 { 58 mutex_lock(&acpi_scan_lock); 59 } 60 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 61 62 void acpi_scan_lock_release(void) 63 { 64 mutex_unlock(&acpi_scan_lock); 65 } 66 EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 67 68 void acpi_lock_hp_context(void) 69 { 70 mutex_lock(&acpi_hp_context_lock); 71 } 72 73 void acpi_unlock_hp_context(void) 74 { 75 mutex_unlock(&acpi_hp_context_lock); 76 } 77 78 void acpi_initialize_hp_context(struct acpi_device *adev, 79 struct acpi_hotplug_context *hp, 80 int (*notify)(struct acpi_device *, u32), 81 void (*uevent)(struct acpi_device *, u32)) 82 { 83 acpi_lock_hp_context(); 84 hp->notify = notify; 85 hp->uevent = uevent; 86 acpi_set_hp_context(adev, hp); 87 acpi_unlock_hp_context(); 88 } 89 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 90 91 int acpi_scan_add_handler(struct acpi_scan_handler *handler) 92 { 93 if (!handler) 94 return -EINVAL; 95 96 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 97 return 0; 98 } 99 100 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 101 const char *hotplug_profile_name) 102 { 103 int error; 104 105 error = acpi_scan_add_handler(handler); 106 if (error) 107 return error; 108 109 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 110 return 0; 111 } 112 113 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 114 { 115 struct acpi_device_physical_node *pn; 116 bool offline = true; 117 char *envp[] = { "EVENT=offline", NULL }; 118 119 /* 120 * acpi_container_offline() calls this for all of the container's 121 * children under the container's physical_node_lock lock. 122 */ 123 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 124 125 list_for_each_entry(pn, &adev->physical_node_list, node) 126 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 127 if (uevent) 128 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 129 130 offline = false; 131 break; 132 } 133 134 mutex_unlock(&adev->physical_node_lock); 135 return offline; 136 } 137 138 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 139 void **ret_p) 140 { 141 struct acpi_device *device = NULL; 142 struct acpi_device_physical_node *pn; 143 bool second_pass = (bool)data; 144 acpi_status status = AE_OK; 145 146 if (acpi_bus_get_device(handle, &device)) 147 return AE_OK; 148 149 if (device->handler && !device->handler->hotplug.enabled) { 150 *ret_p = &device->dev; 151 return AE_SUPPORT; 152 } 153 154 mutex_lock(&device->physical_node_lock); 155 156 list_for_each_entry(pn, &device->physical_node_list, node) { 157 int ret; 158 159 if (second_pass) { 160 /* Skip devices offlined by the first pass. */ 161 if (pn->put_online) 162 continue; 163 } else { 164 pn->put_online = false; 165 } 166 ret = device_offline(pn->dev); 167 if (ret >= 0) { 168 pn->put_online = !ret; 169 } else { 170 *ret_p = pn->dev; 171 if (second_pass) { 172 status = AE_ERROR; 173 break; 174 } 175 } 176 } 177 178 mutex_unlock(&device->physical_node_lock); 179 180 return status; 181 } 182 183 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 184 void **ret_p) 185 { 186 struct acpi_device *device = NULL; 187 struct acpi_device_physical_node *pn; 188 189 if (acpi_bus_get_device(handle, &device)) 190 return AE_OK; 191 192 mutex_lock(&device->physical_node_lock); 193 194 list_for_each_entry(pn, &device->physical_node_list, node) 195 if (pn->put_online) { 196 device_online(pn->dev); 197 pn->put_online = false; 198 } 199 200 mutex_unlock(&device->physical_node_lock); 201 202 return AE_OK; 203 } 204 205 static int acpi_scan_try_to_offline(struct acpi_device *device) 206 { 207 acpi_handle handle = device->handle; 208 struct device *errdev = NULL; 209 acpi_status status; 210 211 /* 212 * Carry out two passes here and ignore errors in the first pass, 213 * because if the devices in question are memory blocks and 214 * CONFIG_MEMCG is set, one of the blocks may hold data structures 215 * that the other blocks depend on, but it is not known in advance which 216 * block holds them. 217 * 218 * If the first pass is successful, the second one isn't needed, though. 219 */ 220 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 221 NULL, acpi_bus_offline, (void *)false, 222 (void **)&errdev); 223 if (status == AE_SUPPORT) { 224 dev_warn(errdev, "Offline disabled.\n"); 225 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 226 acpi_bus_online, NULL, NULL, NULL); 227 return -EPERM; 228 } 229 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 230 if (errdev) { 231 errdev = NULL; 232 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 233 NULL, acpi_bus_offline, (void *)true, 234 (void **)&errdev); 235 if (!errdev) 236 acpi_bus_offline(handle, 0, (void *)true, 237 (void **)&errdev); 238 239 if (errdev) { 240 dev_warn(errdev, "Offline failed.\n"); 241 acpi_bus_online(handle, 0, NULL, NULL); 242 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 243 ACPI_UINT32_MAX, acpi_bus_online, 244 NULL, NULL, NULL); 245 return -EBUSY; 246 } 247 } 248 return 0; 249 } 250 251 static int acpi_scan_hot_remove(struct acpi_device *device) 252 { 253 acpi_handle handle = device->handle; 254 unsigned long long sta; 255 acpi_status status; 256 257 if (device->handler && device->handler->hotplug.demand_offline) { 258 if (!acpi_scan_is_offline(device, true)) 259 return -EBUSY; 260 } else { 261 int error = acpi_scan_try_to_offline(device); 262 if (error) 263 return error; 264 } 265 266 acpi_handle_debug(handle, "Ejecting\n"); 267 268 acpi_bus_trim(device); 269 270 acpi_evaluate_lck(handle, 0); 271 /* 272 * TBD: _EJD support. 273 */ 274 status = acpi_evaluate_ej0(handle); 275 if (status == AE_NOT_FOUND) 276 return -ENODEV; 277 else if (ACPI_FAILURE(status)) 278 return -EIO; 279 280 /* 281 * Verify if eject was indeed successful. If not, log an error 282 * message. No need to call _OST since _EJ0 call was made OK. 283 */ 284 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 285 if (ACPI_FAILURE(status)) { 286 acpi_handle_warn(handle, 287 "Status check after eject failed (0x%x)\n", status); 288 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 289 acpi_handle_warn(handle, 290 "Eject incomplete - status 0x%llx\n", sta); 291 } 292 293 return 0; 294 } 295 296 static int acpi_scan_device_not_present(struct acpi_device *adev) 297 { 298 if (!acpi_device_enumerated(adev)) { 299 dev_warn(&adev->dev, "Still not present\n"); 300 return -EALREADY; 301 } 302 acpi_bus_trim(adev); 303 return 0; 304 } 305 306 static int acpi_scan_device_check(struct acpi_device *adev) 307 { 308 int error; 309 310 acpi_bus_get_status(adev); 311 if (adev->status.present || adev->status.functional) { 312 /* 313 * This function is only called for device objects for which 314 * matching scan handlers exist. The only situation in which 315 * the scan handler is not attached to this device object yet 316 * is when the device has just appeared (either it wasn't 317 * present at all before or it was removed and then added 318 * again). 319 */ 320 if (adev->handler) { 321 dev_warn(&adev->dev, "Already enumerated\n"); 322 return -EALREADY; 323 } 324 error = acpi_bus_scan(adev->handle); 325 if (error) { 326 dev_warn(&adev->dev, "Namespace scan failure\n"); 327 return error; 328 } 329 if (!adev->handler) { 330 dev_warn(&adev->dev, "Enumeration failure\n"); 331 error = -ENODEV; 332 } 333 } else { 334 error = acpi_scan_device_not_present(adev); 335 } 336 return error; 337 } 338 339 static int acpi_scan_bus_check(struct acpi_device *adev) 340 { 341 struct acpi_scan_handler *handler = adev->handler; 342 struct acpi_device *child; 343 int error; 344 345 acpi_bus_get_status(adev); 346 if (!(adev->status.present || adev->status.functional)) { 347 acpi_scan_device_not_present(adev); 348 return 0; 349 } 350 if (handler && handler->hotplug.scan_dependent) 351 return handler->hotplug.scan_dependent(adev); 352 353 error = acpi_bus_scan(adev->handle); 354 if (error) { 355 dev_warn(&adev->dev, "Namespace scan failure\n"); 356 return error; 357 } 358 list_for_each_entry(child, &adev->children, node) { 359 error = acpi_scan_bus_check(child); 360 if (error) 361 return error; 362 } 363 return 0; 364 } 365 366 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 367 { 368 switch (type) { 369 case ACPI_NOTIFY_BUS_CHECK: 370 return acpi_scan_bus_check(adev); 371 case ACPI_NOTIFY_DEVICE_CHECK: 372 return acpi_scan_device_check(adev); 373 case ACPI_NOTIFY_EJECT_REQUEST: 374 case ACPI_OST_EC_OSPM_EJECT: 375 if (adev->handler && !adev->handler->hotplug.enabled) { 376 dev_info(&adev->dev, "Eject disabled\n"); 377 return -EPERM; 378 } 379 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 380 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 381 return acpi_scan_hot_remove(adev); 382 } 383 return -EINVAL; 384 } 385 386 void acpi_device_hotplug(struct acpi_device *adev, u32 src) 387 { 388 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 389 int error = -ENODEV; 390 391 lock_device_hotplug(); 392 mutex_lock(&acpi_scan_lock); 393 394 /* 395 * The device object's ACPI handle cannot become invalid as long as we 396 * are holding acpi_scan_lock, but it might have become invalid before 397 * that lock was acquired. 398 */ 399 if (adev->handle == INVALID_ACPI_HANDLE) 400 goto err_out; 401 402 if (adev->flags.is_dock_station) { 403 error = dock_notify(adev, src); 404 } else if (adev->flags.hotplug_notify) { 405 error = acpi_generic_hotplug_event(adev, src); 406 } else { 407 int (*notify)(struct acpi_device *, u32); 408 409 acpi_lock_hp_context(); 410 notify = adev->hp ? adev->hp->notify : NULL; 411 acpi_unlock_hp_context(); 412 /* 413 * There may be additional notify handlers for device objects 414 * without the .event() callback, so ignore them here. 415 */ 416 if (notify) 417 error = notify(adev, src); 418 else 419 goto out; 420 } 421 switch (error) { 422 case 0: 423 ost_code = ACPI_OST_SC_SUCCESS; 424 break; 425 case -EPERM: 426 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 427 break; 428 case -EBUSY: 429 ost_code = ACPI_OST_SC_DEVICE_BUSY; 430 break; 431 default: 432 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 433 break; 434 } 435 436 err_out: 437 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 438 439 out: 440 acpi_bus_put_acpi_device(adev); 441 mutex_unlock(&acpi_scan_lock); 442 unlock_device_hotplug(); 443 } 444 445 static void acpi_free_power_resources_lists(struct acpi_device *device) 446 { 447 int i; 448 449 if (device->wakeup.flags.valid) 450 acpi_power_resources_list_free(&device->wakeup.resources); 451 452 if (!device->power.flags.power_resources) 453 return; 454 455 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 456 struct acpi_device_power_state *ps = &device->power.states[i]; 457 acpi_power_resources_list_free(&ps->resources); 458 } 459 } 460 461 static void acpi_device_release(struct device *dev) 462 { 463 struct acpi_device *acpi_dev = to_acpi_device(dev); 464 465 acpi_free_properties(acpi_dev); 466 acpi_free_pnp_ids(&acpi_dev->pnp); 467 acpi_free_power_resources_lists(acpi_dev); 468 kfree(acpi_dev); 469 } 470 471 static void acpi_device_del(struct acpi_device *device) 472 { 473 struct acpi_device_bus_id *acpi_device_bus_id; 474 475 mutex_lock(&acpi_device_lock); 476 if (device->parent) 477 list_del(&device->node); 478 479 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 480 if (!strcmp(acpi_device_bus_id->bus_id, 481 acpi_device_hid(device))) { 482 if (acpi_device_bus_id->instance_no > 0) 483 acpi_device_bus_id->instance_no--; 484 else { 485 list_del(&acpi_device_bus_id->node); 486 kfree_const(acpi_device_bus_id->bus_id); 487 kfree(acpi_device_bus_id); 488 } 489 break; 490 } 491 492 list_del(&device->wakeup_list); 493 mutex_unlock(&acpi_device_lock); 494 495 acpi_power_add_remove_device(device, false); 496 acpi_device_remove_files(device); 497 if (device->remove) 498 device->remove(device); 499 500 device_del(&device->dev); 501 } 502 503 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 504 505 static LIST_HEAD(acpi_device_del_list); 506 static DEFINE_MUTEX(acpi_device_del_lock); 507 508 static void acpi_device_del_work_fn(struct work_struct *work_not_used) 509 { 510 for (;;) { 511 struct acpi_device *adev; 512 513 mutex_lock(&acpi_device_del_lock); 514 515 if (list_empty(&acpi_device_del_list)) { 516 mutex_unlock(&acpi_device_del_lock); 517 break; 518 } 519 adev = list_first_entry(&acpi_device_del_list, 520 struct acpi_device, del_list); 521 list_del(&adev->del_list); 522 523 mutex_unlock(&acpi_device_del_lock); 524 525 blocking_notifier_call_chain(&acpi_reconfig_chain, 526 ACPI_RECONFIG_DEVICE_REMOVE, adev); 527 528 acpi_device_del(adev); 529 /* 530 * Drop references to all power resources that might have been 531 * used by the device. 532 */ 533 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 534 put_device(&adev->dev); 535 } 536 } 537 538 /** 539 * acpi_scan_drop_device - Drop an ACPI device object. 540 * @handle: Handle of an ACPI namespace node, not used. 541 * @context: Address of the ACPI device object to drop. 542 * 543 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 544 * namespace node the device object pointed to by @context is attached to. 545 * 546 * The unregistration is carried out asynchronously to avoid running 547 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 548 * ensure the correct ordering (the device objects must be unregistered in the 549 * same order in which the corresponding namespace nodes are deleted). 550 */ 551 static void acpi_scan_drop_device(acpi_handle handle, void *context) 552 { 553 static DECLARE_WORK(work, acpi_device_del_work_fn); 554 struct acpi_device *adev = context; 555 556 mutex_lock(&acpi_device_del_lock); 557 558 /* 559 * Use the ACPI hotplug workqueue which is ordered, so this work item 560 * won't run after any hotplug work items submitted subsequently. That 561 * prevents attempts to register device objects identical to those being 562 * deleted from happening concurrently (such attempts result from 563 * hotplug events handled via the ACPI hotplug workqueue). It also will 564 * run after all of the work items submitted previosuly, which helps 565 * those work items to ensure that they are not accessing stale device 566 * objects. 567 */ 568 if (list_empty(&acpi_device_del_list)) 569 acpi_queue_hotplug_work(&work); 570 571 list_add_tail(&adev->del_list, &acpi_device_del_list); 572 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 573 adev->handle = INVALID_ACPI_HANDLE; 574 575 mutex_unlock(&acpi_device_del_lock); 576 } 577 578 static struct acpi_device *handle_to_device(acpi_handle handle, 579 void (*callback)(void *)) 580 { 581 struct acpi_device *adev = NULL; 582 acpi_status status; 583 584 status = acpi_get_data_full(handle, acpi_scan_drop_device, 585 (void **)&adev, callback); 586 if (ACPI_FAILURE(status) || !adev) { 587 acpi_handle_debug(handle, "No context!\n"); 588 return NULL; 589 } 590 return adev; 591 } 592 593 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device) 594 { 595 if (!device) 596 return -EINVAL; 597 598 *device = handle_to_device(handle, NULL); 599 if (!*device) 600 return -ENODEV; 601 602 return 0; 603 } 604 EXPORT_SYMBOL(acpi_bus_get_device); 605 606 static void get_acpi_device(void *dev) 607 { 608 if (dev) 609 get_device(&((struct acpi_device *)dev)->dev); 610 } 611 612 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle) 613 { 614 return handle_to_device(handle, get_acpi_device); 615 } 616 617 void acpi_bus_put_acpi_device(struct acpi_device *adev) 618 { 619 put_device(&adev->dev); 620 } 621 622 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 623 { 624 struct acpi_device_bus_id *acpi_device_bus_id; 625 626 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 627 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 628 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 629 return acpi_device_bus_id; 630 } 631 return NULL; 632 } 633 634 int acpi_device_add(struct acpi_device *device, 635 void (*release)(struct device *)) 636 { 637 struct acpi_device_bus_id *acpi_device_bus_id; 638 int result; 639 640 if (device->handle) { 641 acpi_status status; 642 643 status = acpi_attach_data(device->handle, acpi_scan_drop_device, 644 device); 645 if (ACPI_FAILURE(status)) { 646 acpi_handle_err(device->handle, 647 "Unable to attach device data\n"); 648 return -ENODEV; 649 } 650 } 651 652 /* 653 * Linkage 654 * ------- 655 * Link this device to its parent and siblings. 656 */ 657 INIT_LIST_HEAD(&device->children); 658 INIT_LIST_HEAD(&device->node); 659 INIT_LIST_HEAD(&device->wakeup_list); 660 INIT_LIST_HEAD(&device->physical_node_list); 661 INIT_LIST_HEAD(&device->del_list); 662 mutex_init(&device->physical_node_lock); 663 664 mutex_lock(&acpi_device_lock); 665 666 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 667 if (acpi_device_bus_id) { 668 acpi_device_bus_id->instance_no++; 669 } else { 670 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 671 GFP_KERNEL); 672 if (!acpi_device_bus_id) { 673 result = -ENOMEM; 674 goto err_unlock; 675 } 676 acpi_device_bus_id->bus_id = 677 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 678 if (!acpi_device_bus_id->bus_id) { 679 kfree(acpi_device_bus_id); 680 result = -ENOMEM; 681 goto err_unlock; 682 } 683 684 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 685 } 686 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, acpi_device_bus_id->instance_no); 687 688 if (device->parent) 689 list_add_tail(&device->node, &device->parent->children); 690 691 if (device->wakeup.flags.valid) 692 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 693 694 mutex_unlock(&acpi_device_lock); 695 696 if (device->parent) 697 device->dev.parent = &device->parent->dev; 698 699 device->dev.bus = &acpi_bus_type; 700 device->dev.release = release; 701 result = device_add(&device->dev); 702 if (result) { 703 dev_err(&device->dev, "Error registering device\n"); 704 goto err; 705 } 706 707 result = acpi_device_setup_files(device); 708 if (result) 709 printk(KERN_ERR PREFIX "Error creating sysfs interface for device %s\n", 710 dev_name(&device->dev)); 711 712 return 0; 713 714 err: 715 mutex_lock(&acpi_device_lock); 716 717 if (device->parent) 718 list_del(&device->node); 719 720 list_del(&device->wakeup_list); 721 722 err_unlock: 723 mutex_unlock(&acpi_device_lock); 724 725 acpi_detach_data(device->handle, acpi_scan_drop_device); 726 727 return result; 728 } 729 730 /* -------------------------------------------------------------------------- 731 Device Enumeration 732 -------------------------------------------------------------------------- */ 733 static bool acpi_info_matches_ids(struct acpi_device_info *info, 734 const char * const ids[]) 735 { 736 struct acpi_pnp_device_id_list *cid_list = NULL; 737 int i; 738 739 if (!(info->valid & ACPI_VALID_HID)) 740 return false; 741 742 if (info->valid & ACPI_VALID_CID) 743 cid_list = &info->compatible_id_list; 744 745 for (i = 0; ids[i]; i++) { 746 int j; 747 748 if (!strcmp(info->hardware_id.string, ids[i])) 749 return true; 750 751 if (!cid_list) 752 continue; 753 754 for (j = 0; j < cid_list->count; j++) { 755 if (!strcmp(cid_list->ids[j].string, ids[i])) 756 return true; 757 } 758 } 759 760 return false; 761 } 762 763 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 764 static const char * const acpi_ignore_dep_ids[] = { 765 "PNP0D80", /* Windows-compatible System Power Management Controller */ 766 "INT33BD", /* Intel Baytrail Mailbox Device */ 767 NULL 768 }; 769 770 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle) 771 { 772 struct acpi_device *device = NULL; 773 acpi_status status; 774 775 /* 776 * Fixed hardware devices do not appear in the namespace and do not 777 * have handles, but we fabricate acpi_devices for them, so we have 778 * to deal with them specially. 779 */ 780 if (!handle) 781 return acpi_root; 782 783 do { 784 status = acpi_get_parent(handle, &handle); 785 if (ACPI_FAILURE(status)) 786 return status == AE_NULL_ENTRY ? NULL : acpi_root; 787 } while (acpi_bus_get_device(handle, &device)); 788 return device; 789 } 790 791 acpi_status 792 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 793 { 794 acpi_status status; 795 acpi_handle tmp; 796 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 797 union acpi_object *obj; 798 799 status = acpi_get_handle(handle, "_EJD", &tmp); 800 if (ACPI_FAILURE(status)) 801 return status; 802 803 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 804 if (ACPI_SUCCESS(status)) { 805 obj = buffer.pointer; 806 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 807 ejd); 808 kfree(buffer.pointer); 809 } 810 return status; 811 } 812 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 813 814 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 815 { 816 acpi_handle handle = dev->handle; 817 struct acpi_device_wakeup *wakeup = &dev->wakeup; 818 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 819 union acpi_object *package = NULL; 820 union acpi_object *element = NULL; 821 acpi_status status; 822 int err = -ENODATA; 823 824 INIT_LIST_HEAD(&wakeup->resources); 825 826 /* _PRW */ 827 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 828 if (ACPI_FAILURE(status)) { 829 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 830 acpi_format_exception(status)); 831 return err; 832 } 833 834 package = (union acpi_object *)buffer.pointer; 835 836 if (!package || package->package.count < 2) 837 goto out; 838 839 element = &(package->package.elements[0]); 840 if (!element) 841 goto out; 842 843 if (element->type == ACPI_TYPE_PACKAGE) { 844 if ((element->package.count < 2) || 845 (element->package.elements[0].type != 846 ACPI_TYPE_LOCAL_REFERENCE) 847 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 848 goto out; 849 850 wakeup->gpe_device = 851 element->package.elements[0].reference.handle; 852 wakeup->gpe_number = 853 (u32) element->package.elements[1].integer.value; 854 } else if (element->type == ACPI_TYPE_INTEGER) { 855 wakeup->gpe_device = NULL; 856 wakeup->gpe_number = element->integer.value; 857 } else { 858 goto out; 859 } 860 861 element = &(package->package.elements[1]); 862 if (element->type != ACPI_TYPE_INTEGER) 863 goto out; 864 865 wakeup->sleep_state = element->integer.value; 866 867 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 868 if (err) 869 goto out; 870 871 if (!list_empty(&wakeup->resources)) { 872 int sleep_state; 873 874 err = acpi_power_wakeup_list_init(&wakeup->resources, 875 &sleep_state); 876 if (err) { 877 acpi_handle_warn(handle, "Retrieving current states " 878 "of wakeup power resources failed\n"); 879 acpi_power_resources_list_free(&wakeup->resources); 880 goto out; 881 } 882 if (sleep_state < wakeup->sleep_state) { 883 acpi_handle_warn(handle, "Overriding _PRW sleep state " 884 "(S%d) by S%d from power resources\n", 885 (int)wakeup->sleep_state, sleep_state); 886 wakeup->sleep_state = sleep_state; 887 } 888 } 889 890 out: 891 kfree(buffer.pointer); 892 return err; 893 } 894 895 static bool acpi_wakeup_gpe_init(struct acpi_device *device) 896 { 897 static const struct acpi_device_id button_device_ids[] = { 898 {"PNP0C0C", 0}, /* Power button */ 899 {"PNP0C0D", 0}, /* Lid */ 900 {"PNP0C0E", 0}, /* Sleep button */ 901 {"", 0}, 902 }; 903 struct acpi_device_wakeup *wakeup = &device->wakeup; 904 acpi_status status; 905 906 wakeup->flags.notifier_present = 0; 907 908 /* Power button, Lid switch always enable wakeup */ 909 if (!acpi_match_device_ids(device, button_device_ids)) { 910 if (!acpi_match_device_ids(device, &button_device_ids[1])) { 911 /* Do not use Lid/sleep button for S5 wakeup */ 912 if (wakeup->sleep_state == ACPI_STATE_S5) 913 wakeup->sleep_state = ACPI_STATE_S4; 914 } 915 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 916 device_set_wakeup_capable(&device->dev, true); 917 return true; 918 } 919 920 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 921 wakeup->gpe_number); 922 return ACPI_SUCCESS(status); 923 } 924 925 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 926 { 927 int err; 928 929 /* Presence of _PRW indicates wake capable */ 930 if (!acpi_has_method(device->handle, "_PRW")) 931 return; 932 933 err = acpi_bus_extract_wakeup_device_power_package(device); 934 if (err) { 935 dev_err(&device->dev, "Unable to extract wakeup power resources"); 936 return; 937 } 938 939 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 940 device->wakeup.prepare_count = 0; 941 /* 942 * Call _PSW/_DSW object to disable its ability to wake the sleeping 943 * system for the ACPI device with the _PRW object. 944 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 945 * So it is necessary to call _DSW object first. Only when it is not 946 * present will the _PSW object used. 947 */ 948 err = acpi_device_sleep_wake(device, 0, 0, 0); 949 if (err) 950 pr_debug("error in _DSW or _PSW evaluation\n"); 951 } 952 953 static void acpi_bus_init_power_state(struct acpi_device *device, int state) 954 { 955 struct acpi_device_power_state *ps = &device->power.states[state]; 956 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 957 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 958 acpi_status status; 959 960 INIT_LIST_HEAD(&ps->resources); 961 962 /* Evaluate "_PRx" to get referenced power resources */ 963 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 964 if (ACPI_SUCCESS(status)) { 965 union acpi_object *package = buffer.pointer; 966 967 if (buffer.length && package 968 && package->type == ACPI_TYPE_PACKAGE 969 && package->package.count) 970 acpi_extract_power_resources(package, 0, &ps->resources); 971 972 ACPI_FREE(buffer.pointer); 973 } 974 975 /* Evaluate "_PSx" to see if we can do explicit sets */ 976 pathname[2] = 'S'; 977 if (acpi_has_method(device->handle, pathname)) 978 ps->flags.explicit_set = 1; 979 980 /* State is valid if there are means to put the device into it. */ 981 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 982 ps->flags.valid = 1; 983 984 ps->power = -1; /* Unknown - driver assigned */ 985 ps->latency = -1; /* Unknown - driver assigned */ 986 } 987 988 static void acpi_bus_get_power_flags(struct acpi_device *device) 989 { 990 u32 i; 991 992 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 993 if (!acpi_has_method(device->handle, "_PS0") && 994 !acpi_has_method(device->handle, "_PR0")) 995 return; 996 997 device->flags.power_manageable = 1; 998 999 /* 1000 * Power Management Flags 1001 */ 1002 if (acpi_has_method(device->handle, "_PSC")) 1003 device->power.flags.explicit_get = 1; 1004 1005 if (acpi_has_method(device->handle, "_IRC")) 1006 device->power.flags.inrush_current = 1; 1007 1008 if (acpi_has_method(device->handle, "_DSW")) 1009 device->power.flags.dsw_present = 1; 1010 1011 /* 1012 * Enumerate supported power management states 1013 */ 1014 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1015 acpi_bus_init_power_state(device, i); 1016 1017 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1018 1019 /* Set the defaults for D0 and D3hot (always supported). */ 1020 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1021 device->power.states[ACPI_STATE_D0].power = 100; 1022 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1023 1024 /* 1025 * Use power resources only if the D0 list of them is populated, because 1026 * some platforms may provide _PR3 only to indicate D3cold support and 1027 * in those cases the power resources list returned by it may be bogus. 1028 */ 1029 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1030 device->power.flags.power_resources = 1; 1031 /* 1032 * D3cold is supported if the D3hot list of power resources is 1033 * not empty. 1034 */ 1035 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1036 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1037 } 1038 1039 if (acpi_bus_init_power(device)) 1040 device->flags.power_manageable = 0; 1041 } 1042 1043 static void acpi_bus_get_flags(struct acpi_device *device) 1044 { 1045 /* Presence of _STA indicates 'dynamic_status' */ 1046 if (acpi_has_method(device->handle, "_STA")) 1047 device->flags.dynamic_status = 1; 1048 1049 /* Presence of _RMV indicates 'removable' */ 1050 if (acpi_has_method(device->handle, "_RMV")) 1051 device->flags.removable = 1; 1052 1053 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1054 if (acpi_has_method(device->handle, "_EJD") || 1055 acpi_has_method(device->handle, "_EJ0")) 1056 device->flags.ejectable = 1; 1057 } 1058 1059 static void acpi_device_get_busid(struct acpi_device *device) 1060 { 1061 char bus_id[5] = { '?', 0 }; 1062 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1063 int i = 0; 1064 1065 /* 1066 * Bus ID 1067 * ------ 1068 * The device's Bus ID is simply the object name. 1069 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1070 */ 1071 if (ACPI_IS_ROOT_DEVICE(device)) { 1072 strcpy(device->pnp.bus_id, "ACPI"); 1073 return; 1074 } 1075 1076 switch (device->device_type) { 1077 case ACPI_BUS_TYPE_POWER_BUTTON: 1078 strcpy(device->pnp.bus_id, "PWRF"); 1079 break; 1080 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1081 strcpy(device->pnp.bus_id, "SLPF"); 1082 break; 1083 case ACPI_BUS_TYPE_ECDT_EC: 1084 strcpy(device->pnp.bus_id, "ECDT"); 1085 break; 1086 default: 1087 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1088 /* Clean up trailing underscores (if any) */ 1089 for (i = 3; i > 1; i--) { 1090 if (bus_id[i] == '_') 1091 bus_id[i] = '\0'; 1092 else 1093 break; 1094 } 1095 strcpy(device->pnp.bus_id, bus_id); 1096 break; 1097 } 1098 } 1099 1100 /* 1101 * acpi_ata_match - see if an acpi object is an ATA device 1102 * 1103 * If an acpi object has one of the ACPI ATA methods defined, 1104 * then we can safely call it an ATA device. 1105 */ 1106 bool acpi_ata_match(acpi_handle handle) 1107 { 1108 return acpi_has_method(handle, "_GTF") || 1109 acpi_has_method(handle, "_GTM") || 1110 acpi_has_method(handle, "_STM") || 1111 acpi_has_method(handle, "_SDD"); 1112 } 1113 1114 /* 1115 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1116 * 1117 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1118 * then we can safely call it an ejectable drive bay 1119 */ 1120 bool acpi_bay_match(acpi_handle handle) 1121 { 1122 acpi_handle phandle; 1123 1124 if (!acpi_has_method(handle, "_EJ0")) 1125 return false; 1126 if (acpi_ata_match(handle)) 1127 return true; 1128 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1129 return false; 1130 1131 return acpi_ata_match(phandle); 1132 } 1133 1134 bool acpi_device_is_battery(struct acpi_device *adev) 1135 { 1136 struct acpi_hardware_id *hwid; 1137 1138 list_for_each_entry(hwid, &adev->pnp.ids, list) 1139 if (!strcmp("PNP0C0A", hwid->id)) 1140 return true; 1141 1142 return false; 1143 } 1144 1145 static bool is_ejectable_bay(struct acpi_device *adev) 1146 { 1147 acpi_handle handle = adev->handle; 1148 1149 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1150 return true; 1151 1152 return acpi_bay_match(handle); 1153 } 1154 1155 /* 1156 * acpi_dock_match - see if an acpi object has a _DCK method 1157 */ 1158 bool acpi_dock_match(acpi_handle handle) 1159 { 1160 return acpi_has_method(handle, "_DCK"); 1161 } 1162 1163 static acpi_status 1164 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1165 void **return_value) 1166 { 1167 long *cap = context; 1168 1169 if (acpi_has_method(handle, "_BCM") && 1170 acpi_has_method(handle, "_BCL")) { 1171 acpi_handle_debug(handle, "Found generic backlight support\n"); 1172 *cap |= ACPI_VIDEO_BACKLIGHT; 1173 /* We have backlight support, no need to scan further */ 1174 return AE_CTRL_TERMINATE; 1175 } 1176 return 0; 1177 } 1178 1179 /* Returns true if the ACPI object is a video device which can be 1180 * handled by video.ko. 1181 * The device will get a Linux specific CID added in scan.c to 1182 * identify the device as an ACPI graphics device 1183 * Be aware that the graphics device may not be physically present 1184 * Use acpi_video_get_capabilities() to detect general ACPI video 1185 * capabilities of present cards 1186 */ 1187 long acpi_is_video_device(acpi_handle handle) 1188 { 1189 long video_caps = 0; 1190 1191 /* Is this device able to support video switching ? */ 1192 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1193 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1194 1195 /* Is this device able to retrieve a video ROM ? */ 1196 if (acpi_has_method(handle, "_ROM")) 1197 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1198 1199 /* Is this device able to configure which video head to be POSTed ? */ 1200 if (acpi_has_method(handle, "_VPO") && 1201 acpi_has_method(handle, "_GPD") && 1202 acpi_has_method(handle, "_SPD")) 1203 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1204 1205 /* Only check for backlight functionality if one of the above hit. */ 1206 if (video_caps) 1207 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1208 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1209 &video_caps, NULL); 1210 1211 return video_caps; 1212 } 1213 EXPORT_SYMBOL(acpi_is_video_device); 1214 1215 const char *acpi_device_hid(struct acpi_device *device) 1216 { 1217 struct acpi_hardware_id *hid; 1218 1219 if (list_empty(&device->pnp.ids)) 1220 return dummy_hid; 1221 1222 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list); 1223 return hid->id; 1224 } 1225 EXPORT_SYMBOL(acpi_device_hid); 1226 1227 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1228 { 1229 struct acpi_hardware_id *id; 1230 1231 id = kmalloc(sizeof(*id), GFP_KERNEL); 1232 if (!id) 1233 return; 1234 1235 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1236 if (!id->id) { 1237 kfree(id); 1238 return; 1239 } 1240 1241 list_add_tail(&id->list, &pnp->ids); 1242 pnp->type.hardware_id = 1; 1243 } 1244 1245 /* 1246 * Old IBM workstations have a DSDT bug wherein the SMBus object 1247 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1248 * prefix. Work around this. 1249 */ 1250 static bool acpi_ibm_smbus_match(acpi_handle handle) 1251 { 1252 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1253 struct acpi_buffer path = { sizeof(node_name), node_name }; 1254 1255 if (!dmi_name_in_vendors("IBM")) 1256 return false; 1257 1258 /* Look for SMBS object */ 1259 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1260 strcmp("SMBS", path.pointer)) 1261 return false; 1262 1263 /* Does it have the necessary (but misnamed) methods? */ 1264 if (acpi_has_method(handle, "SBI") && 1265 acpi_has_method(handle, "SBR") && 1266 acpi_has_method(handle, "SBW")) 1267 return true; 1268 1269 return false; 1270 } 1271 1272 static bool acpi_object_is_system_bus(acpi_handle handle) 1273 { 1274 acpi_handle tmp; 1275 1276 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1277 tmp == handle) 1278 return true; 1279 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1280 tmp == handle) 1281 return true; 1282 1283 return false; 1284 } 1285 1286 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1287 int device_type, struct acpi_device_info *info) 1288 { 1289 struct acpi_pnp_device_id_list *cid_list; 1290 int i; 1291 1292 switch (device_type) { 1293 case ACPI_BUS_TYPE_DEVICE: 1294 if (handle == ACPI_ROOT_OBJECT) { 1295 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1296 break; 1297 } 1298 1299 if (!info) { 1300 pr_err(PREFIX "%s: Error reading device info\n", 1301 __func__); 1302 return; 1303 } 1304 1305 if (info->valid & ACPI_VALID_HID) { 1306 acpi_add_id(pnp, info->hardware_id.string); 1307 pnp->type.platform_id = 1; 1308 } 1309 if (info->valid & ACPI_VALID_CID) { 1310 cid_list = &info->compatible_id_list; 1311 for (i = 0; i < cid_list->count; i++) 1312 acpi_add_id(pnp, cid_list->ids[i].string); 1313 } 1314 if (info->valid & ACPI_VALID_ADR) { 1315 pnp->bus_address = info->address; 1316 pnp->type.bus_address = 1; 1317 } 1318 if (info->valid & ACPI_VALID_UID) 1319 pnp->unique_id = kstrdup(info->unique_id.string, 1320 GFP_KERNEL); 1321 if (info->valid & ACPI_VALID_CLS) 1322 acpi_add_id(pnp, info->class_code.string); 1323 1324 /* 1325 * Some devices don't reliably have _HIDs & _CIDs, so add 1326 * synthetic HIDs to make sure drivers can find them. 1327 */ 1328 if (acpi_is_video_device(handle)) 1329 acpi_add_id(pnp, ACPI_VIDEO_HID); 1330 else if (acpi_bay_match(handle)) 1331 acpi_add_id(pnp, ACPI_BAY_HID); 1332 else if (acpi_dock_match(handle)) 1333 acpi_add_id(pnp, ACPI_DOCK_HID); 1334 else if (acpi_ibm_smbus_match(handle)) 1335 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1336 else if (list_empty(&pnp->ids) && 1337 acpi_object_is_system_bus(handle)) { 1338 /* \_SB, \_TZ, LNXSYBUS */ 1339 acpi_add_id(pnp, ACPI_BUS_HID); 1340 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1341 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1342 } 1343 1344 break; 1345 case ACPI_BUS_TYPE_POWER: 1346 acpi_add_id(pnp, ACPI_POWER_HID); 1347 break; 1348 case ACPI_BUS_TYPE_PROCESSOR: 1349 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1350 break; 1351 case ACPI_BUS_TYPE_THERMAL: 1352 acpi_add_id(pnp, ACPI_THERMAL_HID); 1353 break; 1354 case ACPI_BUS_TYPE_POWER_BUTTON: 1355 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1356 break; 1357 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1358 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1359 break; 1360 case ACPI_BUS_TYPE_ECDT_EC: 1361 acpi_add_id(pnp, ACPI_ECDT_HID); 1362 break; 1363 } 1364 } 1365 1366 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1367 { 1368 struct acpi_hardware_id *id, *tmp; 1369 1370 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1371 kfree_const(id->id); 1372 kfree(id); 1373 } 1374 kfree(pnp->unique_id); 1375 } 1376 1377 /** 1378 * acpi_dma_supported - Check DMA support for the specified device. 1379 * @adev: The pointer to acpi device 1380 * 1381 * Return false if DMA is not supported. Otherwise, return true 1382 */ 1383 bool acpi_dma_supported(struct acpi_device *adev) 1384 { 1385 if (!adev) 1386 return false; 1387 1388 if (adev->flags.cca_seen) 1389 return true; 1390 1391 /* 1392 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1393 * DMA on "Intel platforms". Presumably that includes all x86 and 1394 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1395 */ 1396 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1397 return true; 1398 1399 return false; 1400 } 1401 1402 /** 1403 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1404 * @adev: The pointer to acpi device 1405 * 1406 * Return enum dev_dma_attr. 1407 */ 1408 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1409 { 1410 if (!acpi_dma_supported(adev)) 1411 return DEV_DMA_NOT_SUPPORTED; 1412 1413 if (adev->flags.coherent_dma) 1414 return DEV_DMA_COHERENT; 1415 else 1416 return DEV_DMA_NON_COHERENT; 1417 } 1418 1419 /** 1420 * acpi_dma_get_range() - Get device DMA parameters. 1421 * 1422 * @dev: device to configure 1423 * @dma_addr: pointer device DMA address result 1424 * @offset: pointer to the DMA offset result 1425 * @size: pointer to DMA range size result 1426 * 1427 * Evaluate DMA regions and return respectively DMA region start, offset 1428 * and size in dma_addr, offset and size on parsing success; it does not 1429 * update the passed in values on failure. 1430 * 1431 * Return 0 on success, < 0 on failure. 1432 */ 1433 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, 1434 u64 *size) 1435 { 1436 struct acpi_device *adev; 1437 LIST_HEAD(list); 1438 struct resource_entry *rentry; 1439 int ret; 1440 struct device *dma_dev = dev; 1441 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0; 1442 1443 /* 1444 * Walk the device tree chasing an ACPI companion with a _DMA 1445 * object while we go. Stop if we find a device with an ACPI 1446 * companion containing a _DMA method. 1447 */ 1448 do { 1449 adev = ACPI_COMPANION(dma_dev); 1450 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1451 break; 1452 1453 dma_dev = dma_dev->parent; 1454 } while (dma_dev); 1455 1456 if (!dma_dev) 1457 return -ENODEV; 1458 1459 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1460 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1461 return -EINVAL; 1462 } 1463 1464 ret = acpi_dev_get_dma_resources(adev, &list); 1465 if (ret > 0) { 1466 list_for_each_entry(rentry, &list, node) { 1467 if (dma_offset && rentry->offset != dma_offset) { 1468 ret = -EINVAL; 1469 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n"); 1470 goto out; 1471 } 1472 dma_offset = rentry->offset; 1473 1474 /* Take lower and upper limits */ 1475 if (rentry->res->start < dma_start) 1476 dma_start = rentry->res->start; 1477 if (rentry->res->end > dma_end) 1478 dma_end = rentry->res->end; 1479 } 1480 1481 if (dma_start >= dma_end) { 1482 ret = -EINVAL; 1483 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1484 goto out; 1485 } 1486 1487 *dma_addr = dma_start - dma_offset; 1488 len = dma_end - dma_start; 1489 *size = max(len, len + 1); 1490 *offset = dma_offset; 1491 } 1492 out: 1493 acpi_dev_free_resource_list(&list); 1494 1495 return ret >= 0 ? 0 : ret; 1496 } 1497 1498 /** 1499 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1500 * @dev: The pointer to the device 1501 * @attr: device dma attributes 1502 * @input_id: input device id const value pointer 1503 */ 1504 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1505 const u32 *input_id) 1506 { 1507 const struct iommu_ops *iommu; 1508 u64 dma_addr = 0, size = 0; 1509 1510 if (attr == DEV_DMA_NOT_SUPPORTED) { 1511 set_dma_ops(dev, &dma_dummy_ops); 1512 return 0; 1513 } 1514 1515 iort_dma_setup(dev, &dma_addr, &size); 1516 1517 iommu = iort_iommu_configure_id(dev, input_id); 1518 if (PTR_ERR(iommu) == -EPROBE_DEFER) 1519 return -EPROBE_DEFER; 1520 1521 arch_setup_dma_ops(dev, dma_addr, size, 1522 iommu, attr == DEV_DMA_COHERENT); 1523 1524 return 0; 1525 } 1526 EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1527 1528 static void acpi_init_coherency(struct acpi_device *adev) 1529 { 1530 unsigned long long cca = 0; 1531 acpi_status status; 1532 struct acpi_device *parent = adev->parent; 1533 1534 if (parent && parent->flags.cca_seen) { 1535 /* 1536 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1537 * already saw one. 1538 */ 1539 adev->flags.cca_seen = 1; 1540 cca = parent->flags.coherent_dma; 1541 } else { 1542 status = acpi_evaluate_integer(adev->handle, "_CCA", 1543 NULL, &cca); 1544 if (ACPI_SUCCESS(status)) 1545 adev->flags.cca_seen = 1; 1546 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1547 /* 1548 * If architecture does not specify that _CCA is 1549 * required for DMA-able devices (e.g. x86), 1550 * we default to _CCA=1. 1551 */ 1552 cca = 1; 1553 else 1554 acpi_handle_debug(adev->handle, 1555 "ACPI device is missing _CCA.\n"); 1556 } 1557 1558 adev->flags.coherent_dma = cca; 1559 } 1560 1561 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1562 { 1563 bool *is_serial_bus_slave_p = data; 1564 1565 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1566 return 1; 1567 1568 *is_serial_bus_slave_p = true; 1569 1570 /* no need to do more checking */ 1571 return -1; 1572 } 1573 1574 static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1575 { 1576 struct acpi_device *parent = device->parent; 1577 static const struct acpi_device_id indirect_io_hosts[] = { 1578 {"HISI0191", 0}, 1579 {} 1580 }; 1581 1582 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1583 } 1584 1585 static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1586 { 1587 struct list_head resource_list; 1588 bool is_serial_bus_slave = false; 1589 /* 1590 * These devices have multiple I2cSerialBus resources and an i2c-client 1591 * must be instantiated for each, each with its own i2c_device_id. 1592 * Normally we only instantiate an i2c-client for the first resource, 1593 * using the ACPI HID as id. These special cases are handled by the 1594 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows 1595 * which i2c_device_id to use for each resource. 1596 */ 1597 static const struct acpi_device_id i2c_multi_instantiate_ids[] = { 1598 {"BSG1160", }, 1599 {"BSG2150", }, 1600 {"INT33FE", }, 1601 {"INT3515", }, 1602 {} 1603 }; 1604 1605 if (acpi_is_indirect_io_slave(device)) 1606 return true; 1607 1608 /* Macs use device properties in lieu of _CRS resources */ 1609 if (x86_apple_machine && 1610 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1611 fwnode_property_present(&device->fwnode, "i2cAddress") || 1612 fwnode_property_present(&device->fwnode, "baud"))) 1613 return true; 1614 1615 /* Instantiate a pdev for the i2c-multi-instantiate drv to bind to */ 1616 if (!acpi_match_device_ids(device, i2c_multi_instantiate_ids)) 1617 return false; 1618 1619 INIT_LIST_HEAD(&resource_list); 1620 acpi_dev_get_resources(device, &resource_list, 1621 acpi_check_serial_bus_slave, 1622 &is_serial_bus_slave); 1623 acpi_dev_free_resource_list(&resource_list); 1624 1625 return is_serial_bus_slave; 1626 } 1627 1628 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1629 int type, unsigned long long sta, 1630 struct acpi_device_info *info) 1631 { 1632 INIT_LIST_HEAD(&device->pnp.ids); 1633 device->device_type = type; 1634 device->handle = handle; 1635 device->parent = acpi_bus_get_parent(handle); 1636 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1637 acpi_set_device_status(device, sta); 1638 acpi_device_get_busid(device); 1639 acpi_set_pnp_ids(handle, &device->pnp, type, info); 1640 acpi_init_properties(device); 1641 acpi_bus_get_flags(device); 1642 device->flags.match_driver = false; 1643 device->flags.initialized = true; 1644 device->flags.enumeration_by_parent = 1645 acpi_device_enumeration_by_parent(device); 1646 acpi_device_clear_enumerated(device); 1647 device_initialize(&device->dev); 1648 dev_set_uevent_suppress(&device->dev, true); 1649 acpi_init_coherency(device); 1650 } 1651 1652 void acpi_device_add_finalize(struct acpi_device *device) 1653 { 1654 dev_set_uevent_suppress(&device->dev, false); 1655 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1656 } 1657 1658 static int acpi_add_single_object(struct acpi_device **child, 1659 acpi_handle handle, int type, 1660 unsigned long long sta) 1661 { 1662 struct acpi_device_info *info = NULL; 1663 struct acpi_device *device; 1664 int result; 1665 1666 if (handle != ACPI_ROOT_OBJECT && type == ACPI_BUS_TYPE_DEVICE) 1667 acpi_get_object_info(handle, &info); 1668 1669 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1670 if (!device) { 1671 kfree(info); 1672 return -ENOMEM; 1673 } 1674 1675 acpi_init_device_object(device, handle, type, sta, info); 1676 kfree(info); 1677 /* 1678 * For ACPI_BUS_TYPE_DEVICE getting the status is delayed till here so 1679 * that we can call acpi_bus_get_status() and use its quirk handling. 1680 * Note this must be done before the get power-/wakeup_dev-flags calls. 1681 */ 1682 if (type == ACPI_BUS_TYPE_DEVICE) 1683 if (acpi_bus_get_status(device) < 0) 1684 acpi_set_device_status(device, 0); 1685 1686 acpi_bus_get_power_flags(device); 1687 acpi_bus_get_wakeup_device_flags(device); 1688 1689 result = acpi_device_add(device, acpi_device_release); 1690 if (result) { 1691 acpi_device_release(&device->dev); 1692 return result; 1693 } 1694 1695 acpi_power_add_remove_device(device, true); 1696 acpi_device_add_finalize(device); 1697 1698 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1699 dev_name(&device->dev), device->parent ? 1700 dev_name(&device->parent->dev) : "(null)"); 1701 1702 *child = device; 1703 return 0; 1704 } 1705 1706 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1707 void *context) 1708 { 1709 struct resource *res = context; 1710 1711 if (acpi_dev_resource_memory(ares, res)) 1712 return AE_CTRL_TERMINATE; 1713 1714 return AE_OK; 1715 } 1716 1717 static bool acpi_device_should_be_hidden(acpi_handle handle) 1718 { 1719 acpi_status status; 1720 struct resource res; 1721 1722 /* Check if it should ignore the UART device */ 1723 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1724 return false; 1725 1726 /* 1727 * The UART device described in SPCR table is assumed to have only one 1728 * memory resource present. So we only look for the first one here. 1729 */ 1730 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1731 acpi_get_resource_memory, &res); 1732 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1733 return false; 1734 1735 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1736 &res.start); 1737 1738 return true; 1739 } 1740 1741 static int acpi_bus_type_and_status(acpi_handle handle, int *type, 1742 unsigned long long *sta) 1743 { 1744 acpi_status status; 1745 acpi_object_type acpi_type; 1746 1747 status = acpi_get_type(handle, &acpi_type); 1748 if (ACPI_FAILURE(status)) 1749 return -ENODEV; 1750 1751 switch (acpi_type) { 1752 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 1753 case ACPI_TYPE_DEVICE: 1754 if (acpi_device_should_be_hidden(handle)) 1755 return -ENODEV; 1756 1757 *type = ACPI_BUS_TYPE_DEVICE; 1758 /* 1759 * acpi_add_single_object updates this once we've an acpi_device 1760 * so that acpi_bus_get_status' quirk handling can be used. 1761 */ 1762 *sta = ACPI_STA_DEFAULT; 1763 break; 1764 case ACPI_TYPE_PROCESSOR: 1765 *type = ACPI_BUS_TYPE_PROCESSOR; 1766 status = acpi_bus_get_status_handle(handle, sta); 1767 if (ACPI_FAILURE(status)) 1768 return -ENODEV; 1769 break; 1770 case ACPI_TYPE_THERMAL: 1771 *type = ACPI_BUS_TYPE_THERMAL; 1772 *sta = ACPI_STA_DEFAULT; 1773 break; 1774 case ACPI_TYPE_POWER: 1775 *type = ACPI_BUS_TYPE_POWER; 1776 *sta = ACPI_STA_DEFAULT; 1777 break; 1778 default: 1779 return -ENODEV; 1780 } 1781 1782 return 0; 1783 } 1784 1785 bool acpi_device_is_present(const struct acpi_device *adev) 1786 { 1787 return adev->status.present || adev->status.functional; 1788 } 1789 1790 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1791 const char *idstr, 1792 const struct acpi_device_id **matchid) 1793 { 1794 const struct acpi_device_id *devid; 1795 1796 if (handler->match) 1797 return handler->match(idstr, matchid); 1798 1799 for (devid = handler->ids; devid->id[0]; devid++) 1800 if (!strcmp((char *)devid->id, idstr)) { 1801 if (matchid) 1802 *matchid = devid; 1803 1804 return true; 1805 } 1806 1807 return false; 1808 } 1809 1810 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1811 const struct acpi_device_id **matchid) 1812 { 1813 struct acpi_scan_handler *handler; 1814 1815 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1816 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1817 return handler; 1818 1819 return NULL; 1820 } 1821 1822 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 1823 { 1824 if (!!hotplug->enabled == !!val) 1825 return; 1826 1827 mutex_lock(&acpi_scan_lock); 1828 1829 hotplug->enabled = val; 1830 1831 mutex_unlock(&acpi_scan_lock); 1832 } 1833 1834 static void acpi_scan_init_hotplug(struct acpi_device *adev) 1835 { 1836 struct acpi_hardware_id *hwid; 1837 1838 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 1839 acpi_dock_add(adev); 1840 return; 1841 } 1842 list_for_each_entry(hwid, &adev->pnp.ids, list) { 1843 struct acpi_scan_handler *handler; 1844 1845 handler = acpi_scan_match_handler(hwid->id, NULL); 1846 if (handler) { 1847 adev->flags.hotplug_notify = true; 1848 break; 1849 } 1850 } 1851 } 1852 1853 static u32 acpi_scan_check_dep(acpi_handle handle) 1854 { 1855 struct acpi_handle_list dep_devices; 1856 acpi_status status; 1857 u32 count; 1858 int i; 1859 1860 /* 1861 * Check for _HID here to avoid deferring the enumeration of: 1862 * 1. PCI devices. 1863 * 2. ACPI nodes describing USB ports. 1864 * Still, checking for _HID catches more then just these cases ... 1865 */ 1866 if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID")) 1867 return 0; 1868 1869 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices); 1870 if (ACPI_FAILURE(status)) { 1871 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 1872 return 0; 1873 } 1874 1875 for (count = 0, i = 0; i < dep_devices.count; i++) { 1876 struct acpi_device_info *info; 1877 struct acpi_dep_data *dep; 1878 bool skip; 1879 1880 status = acpi_get_object_info(dep_devices.handles[i], &info); 1881 if (ACPI_FAILURE(status)) { 1882 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 1883 continue; 1884 } 1885 1886 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 1887 kfree(info); 1888 1889 if (skip) 1890 continue; 1891 1892 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 1893 if (!dep) 1894 continue; 1895 1896 count++; 1897 1898 dep->supplier = dep_devices.handles[i]; 1899 dep->consumer = handle; 1900 1901 mutex_lock(&acpi_dep_list_lock); 1902 list_add_tail(&dep->node , &acpi_dep_list); 1903 mutex_unlock(&acpi_dep_list_lock); 1904 } 1905 1906 return count; 1907 } 1908 1909 static void acpi_scan_dep_init(struct acpi_device *adev) 1910 { 1911 struct acpi_dep_data *dep; 1912 1913 mutex_lock(&acpi_dep_list_lock); 1914 1915 list_for_each_entry(dep, &acpi_dep_list, node) { 1916 if (dep->consumer == adev->handle) 1917 adev->dep_unmet++; 1918 } 1919 1920 mutex_unlock(&acpi_dep_list_lock); 1921 } 1922 1923 static bool acpi_bus_scan_second_pass; 1924 1925 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep, 1926 struct acpi_device **adev_p) 1927 { 1928 struct acpi_device *device = NULL; 1929 unsigned long long sta; 1930 int type; 1931 int result; 1932 1933 acpi_bus_get_device(handle, &device); 1934 if (device) 1935 goto out; 1936 1937 result = acpi_bus_type_and_status(handle, &type, &sta); 1938 if (result) 1939 return AE_OK; 1940 1941 if (type == ACPI_BUS_TYPE_POWER) { 1942 acpi_add_power_resource(handle); 1943 return AE_OK; 1944 } 1945 1946 if (type == ACPI_BUS_TYPE_DEVICE && check_dep) { 1947 u32 count = acpi_scan_check_dep(handle); 1948 /* Bail out if the number of recorded dependencies is not 0. */ 1949 if (count > 0) { 1950 acpi_bus_scan_second_pass = true; 1951 return AE_CTRL_DEPTH; 1952 } 1953 } 1954 1955 acpi_add_single_object(&device, handle, type, sta); 1956 if (!device) 1957 return AE_CTRL_DEPTH; 1958 1959 acpi_scan_init_hotplug(device); 1960 if (!check_dep) 1961 acpi_scan_dep_init(device); 1962 1963 out: 1964 if (!*adev_p) 1965 *adev_p = device; 1966 1967 return AE_OK; 1968 } 1969 1970 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 1971 void *not_used, void **ret_p) 1972 { 1973 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 1974 } 1975 1976 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 1977 void *not_used, void **ret_p) 1978 { 1979 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 1980 } 1981 1982 static void acpi_default_enumeration(struct acpi_device *device) 1983 { 1984 /* 1985 * Do not enumerate devices with enumeration_by_parent flag set as 1986 * they will be enumerated by their respective parents. 1987 */ 1988 if (!device->flags.enumeration_by_parent) { 1989 acpi_create_platform_device(device, NULL); 1990 acpi_device_set_enumerated(device); 1991 } else { 1992 blocking_notifier_call_chain(&acpi_reconfig_chain, 1993 ACPI_RECONFIG_DEVICE_ADD, device); 1994 } 1995 } 1996 1997 static const struct acpi_device_id generic_device_ids[] = { 1998 {ACPI_DT_NAMESPACE_HID, }, 1999 {"", }, 2000 }; 2001 2002 static int acpi_generic_device_attach(struct acpi_device *adev, 2003 const struct acpi_device_id *not_used) 2004 { 2005 /* 2006 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2007 * below can be unconditional. 2008 */ 2009 if (adev->data.of_compatible) 2010 acpi_default_enumeration(adev); 2011 2012 return 1; 2013 } 2014 2015 static struct acpi_scan_handler generic_device_handler = { 2016 .ids = generic_device_ids, 2017 .attach = acpi_generic_device_attach, 2018 }; 2019 2020 static int acpi_scan_attach_handler(struct acpi_device *device) 2021 { 2022 struct acpi_hardware_id *hwid; 2023 int ret = 0; 2024 2025 list_for_each_entry(hwid, &device->pnp.ids, list) { 2026 const struct acpi_device_id *devid; 2027 struct acpi_scan_handler *handler; 2028 2029 handler = acpi_scan_match_handler(hwid->id, &devid); 2030 if (handler) { 2031 if (!handler->attach) { 2032 device->pnp.type.platform_id = 0; 2033 continue; 2034 } 2035 device->handler = handler; 2036 ret = handler->attach(device, devid); 2037 if (ret > 0) 2038 break; 2039 2040 device->handler = NULL; 2041 if (ret < 0) 2042 break; 2043 } 2044 } 2045 2046 return ret; 2047 } 2048 2049 static void acpi_bus_attach(struct acpi_device *device, bool first_pass) 2050 { 2051 struct acpi_device *child; 2052 bool skip = !first_pass && device->flags.visited; 2053 acpi_handle ejd; 2054 int ret; 2055 2056 if (skip) 2057 goto ok; 2058 2059 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2060 register_dock_dependent_device(device, ejd); 2061 2062 acpi_bus_get_status(device); 2063 /* Skip devices that are not present. */ 2064 if (!acpi_device_is_present(device)) { 2065 device->flags.initialized = false; 2066 acpi_device_clear_enumerated(device); 2067 device->flags.power_manageable = 0; 2068 return; 2069 } 2070 if (device->handler) 2071 goto ok; 2072 2073 if (!device->flags.initialized) { 2074 device->flags.power_manageable = 2075 device->power.states[ACPI_STATE_D0].flags.valid; 2076 if (acpi_bus_init_power(device)) 2077 device->flags.power_manageable = 0; 2078 2079 device->flags.initialized = true; 2080 } else if (device->flags.visited) { 2081 goto ok; 2082 } 2083 2084 ret = acpi_scan_attach_handler(device); 2085 if (ret < 0) 2086 return; 2087 2088 device->flags.match_driver = true; 2089 if (ret > 0 && !device->flags.enumeration_by_parent) { 2090 acpi_device_set_enumerated(device); 2091 goto ok; 2092 } 2093 2094 ret = device_attach(&device->dev); 2095 if (ret < 0) 2096 return; 2097 2098 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2099 acpi_default_enumeration(device); 2100 else 2101 acpi_device_set_enumerated(device); 2102 2103 ok: 2104 list_for_each_entry(child, &device->children, node) 2105 acpi_bus_attach(child, first_pass); 2106 2107 if (!skip && device->handler && device->handler->hotplug.notify_online) 2108 device->handler->hotplug.notify_online(device); 2109 } 2110 2111 void acpi_walk_dep_device_list(acpi_handle handle) 2112 { 2113 struct acpi_dep_data *dep, *tmp; 2114 struct acpi_device *adev; 2115 2116 mutex_lock(&acpi_dep_list_lock); 2117 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2118 if (dep->supplier == handle) { 2119 acpi_bus_get_device(dep->consumer, &adev); 2120 2121 if (adev) { 2122 adev->dep_unmet--; 2123 if (!adev->dep_unmet) 2124 acpi_bus_attach(adev, true); 2125 } 2126 2127 list_del(&dep->node); 2128 kfree(dep); 2129 } 2130 } 2131 mutex_unlock(&acpi_dep_list_lock); 2132 } 2133 EXPORT_SYMBOL_GPL(acpi_walk_dep_device_list); 2134 2135 /** 2136 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2137 * @handle: Root of the namespace scope to scan. 2138 * 2139 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2140 * found devices. 2141 * 2142 * If no devices were found, -ENODEV is returned, but it does not mean that 2143 * there has been a real error. There just have been no suitable ACPI objects 2144 * in the table trunk from which the kernel could create a device and add an 2145 * appropriate driver. 2146 * 2147 * Must be called under acpi_scan_lock. 2148 */ 2149 int acpi_bus_scan(acpi_handle handle) 2150 { 2151 struct acpi_device *device = NULL; 2152 2153 acpi_bus_scan_second_pass = false; 2154 2155 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2156 2157 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2158 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2159 acpi_bus_check_add_1, NULL, NULL, 2160 (void **)&device); 2161 2162 if (!device) 2163 return -ENODEV; 2164 2165 acpi_bus_attach(device, true); 2166 2167 if (!acpi_bus_scan_second_pass) 2168 return 0; 2169 2170 /* Pass 2: Enumerate all of the remaining devices. */ 2171 2172 device = NULL; 2173 2174 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device))) 2175 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2176 acpi_bus_check_add_2, NULL, NULL, 2177 (void **)&device); 2178 2179 acpi_bus_attach(device, false); 2180 2181 return 0; 2182 } 2183 EXPORT_SYMBOL(acpi_bus_scan); 2184 2185 /** 2186 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2187 * @adev: Root of the ACPI namespace scope to walk. 2188 * 2189 * Must be called under acpi_scan_lock. 2190 */ 2191 void acpi_bus_trim(struct acpi_device *adev) 2192 { 2193 struct acpi_scan_handler *handler = adev->handler; 2194 struct acpi_device *child; 2195 2196 list_for_each_entry_reverse(child, &adev->children, node) 2197 acpi_bus_trim(child); 2198 2199 adev->flags.match_driver = false; 2200 if (handler) { 2201 if (handler->detach) 2202 handler->detach(adev); 2203 2204 adev->handler = NULL; 2205 } else { 2206 device_release_driver(&adev->dev); 2207 } 2208 /* 2209 * Most likely, the device is going away, so put it into D3cold before 2210 * that. 2211 */ 2212 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 2213 adev->flags.initialized = false; 2214 acpi_device_clear_enumerated(adev); 2215 } 2216 EXPORT_SYMBOL_GPL(acpi_bus_trim); 2217 2218 int acpi_bus_register_early_device(int type) 2219 { 2220 struct acpi_device *device = NULL; 2221 int result; 2222 2223 result = acpi_add_single_object(&device, NULL, 2224 type, ACPI_STA_DEFAULT); 2225 if (result) 2226 return result; 2227 2228 device->flags.match_driver = true; 2229 return device_attach(&device->dev); 2230 } 2231 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2232 2233 static int acpi_bus_scan_fixed(void) 2234 { 2235 int result = 0; 2236 2237 /* 2238 * Enumerate all fixed-feature devices. 2239 */ 2240 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2241 struct acpi_device *device = NULL; 2242 2243 result = acpi_add_single_object(&device, NULL, 2244 ACPI_BUS_TYPE_POWER_BUTTON, 2245 ACPI_STA_DEFAULT); 2246 if (result) 2247 return result; 2248 2249 device->flags.match_driver = true; 2250 result = device_attach(&device->dev); 2251 if (result < 0) 2252 return result; 2253 2254 device_init_wakeup(&device->dev, true); 2255 } 2256 2257 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2258 struct acpi_device *device = NULL; 2259 2260 result = acpi_add_single_object(&device, NULL, 2261 ACPI_BUS_TYPE_SLEEP_BUTTON, 2262 ACPI_STA_DEFAULT); 2263 if (result) 2264 return result; 2265 2266 device->flags.match_driver = true; 2267 result = device_attach(&device->dev); 2268 } 2269 2270 return result < 0 ? result : 0; 2271 } 2272 2273 static void __init acpi_get_spcr_uart_addr(void) 2274 { 2275 acpi_status status; 2276 struct acpi_table_spcr *spcr_ptr; 2277 2278 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2279 (struct acpi_table_header **)&spcr_ptr); 2280 if (ACPI_FAILURE(status)) { 2281 pr_warn(PREFIX "STAO table present, but SPCR is missing\n"); 2282 return; 2283 } 2284 2285 spcr_uart_addr = spcr_ptr->serial_port.address; 2286 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2287 } 2288 2289 static bool acpi_scan_initialized; 2290 2291 int __init acpi_scan_init(void) 2292 { 2293 int result; 2294 acpi_status status; 2295 struct acpi_table_stao *stao_ptr; 2296 2297 acpi_pci_root_init(); 2298 acpi_pci_link_init(); 2299 acpi_processor_init(); 2300 acpi_platform_init(); 2301 acpi_lpss_init(); 2302 acpi_apd_init(); 2303 acpi_cmos_rtc_init(); 2304 acpi_container_init(); 2305 acpi_memory_hotplug_init(); 2306 acpi_watchdog_init(); 2307 acpi_pnp_init(); 2308 acpi_int340x_thermal_init(); 2309 acpi_amba_init(); 2310 acpi_init_lpit(); 2311 2312 acpi_scan_add_handler(&generic_device_handler); 2313 2314 /* 2315 * If there is STAO table, check whether it needs to ignore the UART 2316 * device in SPCR table. 2317 */ 2318 status = acpi_get_table(ACPI_SIG_STAO, 0, 2319 (struct acpi_table_header **)&stao_ptr); 2320 if (ACPI_SUCCESS(status)) { 2321 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2322 pr_info(PREFIX "STAO Name List not yet supported.\n"); 2323 2324 if (stao_ptr->ignore_uart) 2325 acpi_get_spcr_uart_addr(); 2326 2327 acpi_put_table((struct acpi_table_header *)stao_ptr); 2328 } 2329 2330 acpi_gpe_apply_masked_gpes(); 2331 acpi_update_all_gpes(); 2332 2333 /* 2334 * Although we call __add_memory() that is documented to require the 2335 * device_hotplug_lock, it is not necessary here because this is an 2336 * early code when userspace or any other code path cannot trigger 2337 * hotplug/hotunplug operations. 2338 */ 2339 mutex_lock(&acpi_scan_lock); 2340 /* 2341 * Enumerate devices in the ACPI namespace. 2342 */ 2343 result = acpi_bus_scan(ACPI_ROOT_OBJECT); 2344 if (result) 2345 goto out; 2346 2347 result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root); 2348 if (result) 2349 goto out; 2350 2351 /* Fixed feature devices do not exist on HW-reduced platform */ 2352 if (!acpi_gbl_reduced_hardware) { 2353 result = acpi_bus_scan_fixed(); 2354 if (result) { 2355 acpi_detach_data(acpi_root->handle, 2356 acpi_scan_drop_device); 2357 acpi_device_del(acpi_root); 2358 put_device(&acpi_root->dev); 2359 goto out; 2360 } 2361 } 2362 2363 acpi_scan_initialized = true; 2364 2365 out: 2366 mutex_unlock(&acpi_scan_lock); 2367 return result; 2368 } 2369 2370 static struct acpi_probe_entry *ape; 2371 static int acpi_probe_count; 2372 static DEFINE_MUTEX(acpi_probe_mutex); 2373 2374 static int __init acpi_match_madt(union acpi_subtable_headers *header, 2375 const unsigned long end) 2376 { 2377 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2378 if (!ape->probe_subtbl(header, end)) 2379 acpi_probe_count++; 2380 2381 return 0; 2382 } 2383 2384 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2385 { 2386 int count = 0; 2387 2388 if (acpi_disabled) 2389 return 0; 2390 2391 mutex_lock(&acpi_probe_mutex); 2392 for (ape = ap_head; nr; ape++, nr--) { 2393 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2394 acpi_probe_count = 0; 2395 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2396 count += acpi_probe_count; 2397 } else { 2398 int res; 2399 res = acpi_table_parse(ape->id, ape->probe_table); 2400 if (!res) 2401 count++; 2402 } 2403 } 2404 mutex_unlock(&acpi_probe_mutex); 2405 2406 return count; 2407 } 2408 2409 struct acpi_table_events_work { 2410 struct work_struct work; 2411 void *table; 2412 u32 event; 2413 }; 2414 2415 static void acpi_table_events_fn(struct work_struct *work) 2416 { 2417 struct acpi_table_events_work *tew; 2418 2419 tew = container_of(work, struct acpi_table_events_work, work); 2420 2421 if (tew->event == ACPI_TABLE_EVENT_LOAD) { 2422 acpi_scan_lock_acquire(); 2423 acpi_bus_scan(ACPI_ROOT_OBJECT); 2424 acpi_scan_lock_release(); 2425 } 2426 2427 kfree(tew); 2428 } 2429 2430 void acpi_scan_table_handler(u32 event, void *table, void *context) 2431 { 2432 struct acpi_table_events_work *tew; 2433 2434 if (!acpi_scan_initialized) 2435 return; 2436 2437 if (event != ACPI_TABLE_EVENT_LOAD) 2438 return; 2439 2440 tew = kmalloc(sizeof(*tew), GFP_KERNEL); 2441 if (!tew) 2442 return; 2443 2444 INIT_WORK(&tew->work, acpi_table_events_fn); 2445 tew->table = table; 2446 tew->event = event; 2447 2448 schedule_work(&tew->work); 2449 } 2450 2451 int acpi_reconfig_notifier_register(struct notifier_block *nb) 2452 { 2453 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2454 } 2455 EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2456 2457 int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2458 { 2459 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2460 } 2461 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister); 2462