1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/acpi/resource.c - ACPI device resources interpretation. 4 * 5 * Copyright (C) 2012, Intel Corp. 6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> 7 * 8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 9 * 10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11 */ 12 13 #include <linux/acpi.h> 14 #include <linux/device.h> 15 #include <linux/export.h> 16 #include <linux/ioport.h> 17 #include <linux/slab.h> 18 #include <linux/irq.h> 19 #include <linux/dmi.h> 20 21 #ifdef CONFIG_X86 22 #define valid_IRQ(i) (((i) != 0) && ((i) != 2)) 23 static inline bool acpi_iospace_resource_valid(struct resource *res) 24 { 25 /* On X86 IO space is limited to the [0 - 64K] IO port range */ 26 return res->end < 0x10003; 27 } 28 #else 29 #define valid_IRQ(i) (true) 30 /* 31 * ACPI IO descriptors on arches other than X86 contain MMIO CPU physical 32 * addresses mapping IO space in CPU physical address space, IO space 33 * resources can be placed anywhere in the 64-bit physical address space. 34 */ 35 static inline bool 36 acpi_iospace_resource_valid(struct resource *res) { return true; } 37 #endif 38 39 #if IS_ENABLED(CONFIG_ACPI_GENERIC_GSI) 40 static inline bool is_gsi(struct acpi_resource_extended_irq *ext_irq) 41 { 42 return ext_irq->resource_source.string_length == 0 && 43 ext_irq->producer_consumer == ACPI_CONSUMER; 44 } 45 #else 46 static inline bool is_gsi(struct acpi_resource_extended_irq *ext_irq) 47 { 48 return true; 49 } 50 #endif 51 52 static bool acpi_dev_resource_len_valid(u64 start, u64 end, u64 len, bool io) 53 { 54 u64 reslen = end - start + 1; 55 56 /* 57 * CHECKME: len might be required to check versus a minimum 58 * length as well. 1 for io is fine, but for memory it does 59 * not make any sense at all. 60 * Note: some BIOSes report incorrect length for ACPI address space 61 * descriptor, so remove check of 'reslen == len' to avoid regression. 62 */ 63 if (len && reslen && start <= end) 64 return true; 65 66 pr_debug("ACPI: invalid or unassigned resource %s [%016llx - %016llx] length [%016llx]\n", 67 io ? "io" : "mem", start, end, len); 68 69 return false; 70 } 71 72 static void acpi_dev_memresource_flags(struct resource *res, u64 len, 73 u8 write_protect) 74 { 75 res->flags = IORESOURCE_MEM; 76 77 if (!acpi_dev_resource_len_valid(res->start, res->end, len, false)) 78 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET; 79 80 if (write_protect == ACPI_READ_WRITE_MEMORY) 81 res->flags |= IORESOURCE_MEM_WRITEABLE; 82 } 83 84 static void acpi_dev_get_memresource(struct resource *res, u64 start, u64 len, 85 u8 write_protect) 86 { 87 res->start = start; 88 res->end = start + len - 1; 89 acpi_dev_memresource_flags(res, len, write_protect); 90 } 91 92 /** 93 * acpi_dev_resource_memory - Extract ACPI memory resource information. 94 * @ares: Input ACPI resource object. 95 * @res: Output generic resource object. 96 * 97 * Check if the given ACPI resource object represents a memory resource and 98 * if that's the case, use the information in it to populate the generic 99 * resource object pointed to by @res. 100 * 101 * Return: 102 * 1) false with res->flags setting to zero: not the expected resource type 103 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource 104 * 3) true: valid assigned resource 105 */ 106 bool acpi_dev_resource_memory(struct acpi_resource *ares, struct resource *res) 107 { 108 struct acpi_resource_memory24 *memory24; 109 struct acpi_resource_memory32 *memory32; 110 struct acpi_resource_fixed_memory32 *fixed_memory32; 111 112 switch (ares->type) { 113 case ACPI_RESOURCE_TYPE_MEMORY24: 114 memory24 = &ares->data.memory24; 115 acpi_dev_get_memresource(res, memory24->minimum << 8, 116 memory24->address_length << 8, 117 memory24->write_protect); 118 break; 119 case ACPI_RESOURCE_TYPE_MEMORY32: 120 memory32 = &ares->data.memory32; 121 acpi_dev_get_memresource(res, memory32->minimum, 122 memory32->address_length, 123 memory32->write_protect); 124 break; 125 case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: 126 fixed_memory32 = &ares->data.fixed_memory32; 127 acpi_dev_get_memresource(res, fixed_memory32->address, 128 fixed_memory32->address_length, 129 fixed_memory32->write_protect); 130 break; 131 default: 132 res->flags = 0; 133 return false; 134 } 135 136 return !(res->flags & IORESOURCE_DISABLED); 137 } 138 EXPORT_SYMBOL_GPL(acpi_dev_resource_memory); 139 140 static void acpi_dev_ioresource_flags(struct resource *res, u64 len, 141 u8 io_decode, u8 translation_type) 142 { 143 res->flags = IORESOURCE_IO; 144 145 if (!acpi_dev_resource_len_valid(res->start, res->end, len, true)) 146 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET; 147 148 if (!acpi_iospace_resource_valid(res)) 149 res->flags |= IORESOURCE_DISABLED | IORESOURCE_UNSET; 150 151 if (io_decode == ACPI_DECODE_16) 152 res->flags |= IORESOURCE_IO_16BIT_ADDR; 153 if (translation_type == ACPI_SPARSE_TRANSLATION) 154 res->flags |= IORESOURCE_IO_SPARSE; 155 } 156 157 static void acpi_dev_get_ioresource(struct resource *res, u64 start, u64 len, 158 u8 io_decode) 159 { 160 res->start = start; 161 res->end = start + len - 1; 162 acpi_dev_ioresource_flags(res, len, io_decode, 0); 163 } 164 165 /** 166 * acpi_dev_resource_io - Extract ACPI I/O resource information. 167 * @ares: Input ACPI resource object. 168 * @res: Output generic resource object. 169 * 170 * Check if the given ACPI resource object represents an I/O resource and 171 * if that's the case, use the information in it to populate the generic 172 * resource object pointed to by @res. 173 * 174 * Return: 175 * 1) false with res->flags setting to zero: not the expected resource type 176 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource 177 * 3) true: valid assigned resource 178 */ 179 bool acpi_dev_resource_io(struct acpi_resource *ares, struct resource *res) 180 { 181 struct acpi_resource_io *io; 182 struct acpi_resource_fixed_io *fixed_io; 183 184 switch (ares->type) { 185 case ACPI_RESOURCE_TYPE_IO: 186 io = &ares->data.io; 187 acpi_dev_get_ioresource(res, io->minimum, 188 io->address_length, 189 io->io_decode); 190 break; 191 case ACPI_RESOURCE_TYPE_FIXED_IO: 192 fixed_io = &ares->data.fixed_io; 193 acpi_dev_get_ioresource(res, fixed_io->address, 194 fixed_io->address_length, 195 ACPI_DECODE_10); 196 break; 197 default: 198 res->flags = 0; 199 return false; 200 } 201 202 return !(res->flags & IORESOURCE_DISABLED); 203 } 204 EXPORT_SYMBOL_GPL(acpi_dev_resource_io); 205 206 static bool acpi_decode_space(struct resource_win *win, 207 struct acpi_resource_address *addr, 208 struct acpi_address64_attribute *attr) 209 { 210 u8 iodec = attr->granularity == 0xfff ? ACPI_DECODE_10 : ACPI_DECODE_16; 211 bool wp = addr->info.mem.write_protect; 212 u64 len = attr->address_length; 213 u64 start, end, offset = 0; 214 struct resource *res = &win->res; 215 216 /* 217 * Filter out invalid descriptor according to ACPI Spec 5.0, section 218 * 6.4.3.5 Address Space Resource Descriptors. 219 */ 220 if ((addr->min_address_fixed != addr->max_address_fixed && len) || 221 (addr->min_address_fixed && addr->max_address_fixed && !len)) 222 pr_debug("ACPI: Invalid address space min_addr_fix %d, max_addr_fix %d, len %llx\n", 223 addr->min_address_fixed, addr->max_address_fixed, len); 224 225 /* 226 * For bridges that translate addresses across the bridge, 227 * translation_offset is the offset that must be added to the 228 * address on the secondary side to obtain the address on the 229 * primary side. Non-bridge devices must list 0 for all Address 230 * Translation offset bits. 231 */ 232 if (addr->producer_consumer == ACPI_PRODUCER) 233 offset = attr->translation_offset; 234 else if (attr->translation_offset) 235 pr_debug("ACPI: translation_offset(%lld) is invalid for non-bridge device.\n", 236 attr->translation_offset); 237 start = attr->minimum + offset; 238 end = attr->maximum + offset; 239 240 win->offset = offset; 241 res->start = start; 242 res->end = end; 243 if (sizeof(resource_size_t) < sizeof(u64) && 244 (offset != win->offset || start != res->start || end != res->end)) { 245 pr_warn("acpi resource window ([%#llx-%#llx] ignored, not CPU addressable)\n", 246 attr->minimum, attr->maximum); 247 return false; 248 } 249 250 switch (addr->resource_type) { 251 case ACPI_MEMORY_RANGE: 252 acpi_dev_memresource_flags(res, len, wp); 253 break; 254 case ACPI_IO_RANGE: 255 acpi_dev_ioresource_flags(res, len, iodec, 256 addr->info.io.translation_type); 257 break; 258 case ACPI_BUS_NUMBER_RANGE: 259 res->flags = IORESOURCE_BUS; 260 break; 261 default: 262 return false; 263 } 264 265 if (addr->producer_consumer == ACPI_PRODUCER) 266 res->flags |= IORESOURCE_WINDOW; 267 268 if (addr->info.mem.caching == ACPI_PREFETCHABLE_MEMORY) 269 res->flags |= IORESOURCE_PREFETCH; 270 271 return !(res->flags & IORESOURCE_DISABLED); 272 } 273 274 /** 275 * acpi_dev_resource_address_space - Extract ACPI address space information. 276 * @ares: Input ACPI resource object. 277 * @win: Output generic resource object. 278 * 279 * Check if the given ACPI resource object represents an address space resource 280 * and if that's the case, use the information in it to populate the generic 281 * resource object pointed to by @win. 282 * 283 * Return: 284 * 1) false with win->res.flags setting to zero: not the expected resource type 285 * 2) false with IORESOURCE_DISABLED in win->res.flags: valid unassigned 286 * resource 287 * 3) true: valid assigned resource 288 */ 289 bool acpi_dev_resource_address_space(struct acpi_resource *ares, 290 struct resource_win *win) 291 { 292 struct acpi_resource_address64 addr; 293 294 win->res.flags = 0; 295 if (ACPI_FAILURE(acpi_resource_to_address64(ares, &addr))) 296 return false; 297 298 return acpi_decode_space(win, (struct acpi_resource_address *)&addr, 299 &addr.address); 300 } 301 EXPORT_SYMBOL_GPL(acpi_dev_resource_address_space); 302 303 /** 304 * acpi_dev_resource_ext_address_space - Extract ACPI address space information. 305 * @ares: Input ACPI resource object. 306 * @win: Output generic resource object. 307 * 308 * Check if the given ACPI resource object represents an extended address space 309 * resource and if that's the case, use the information in it to populate the 310 * generic resource object pointed to by @win. 311 * 312 * Return: 313 * 1) false with win->res.flags setting to zero: not the expected resource type 314 * 2) false with IORESOURCE_DISABLED in win->res.flags: valid unassigned 315 * resource 316 * 3) true: valid assigned resource 317 */ 318 bool acpi_dev_resource_ext_address_space(struct acpi_resource *ares, 319 struct resource_win *win) 320 { 321 struct acpi_resource_extended_address64 *ext_addr; 322 323 win->res.flags = 0; 324 if (ares->type != ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64) 325 return false; 326 327 ext_addr = &ares->data.ext_address64; 328 329 return acpi_decode_space(win, (struct acpi_resource_address *)ext_addr, 330 &ext_addr->address); 331 } 332 EXPORT_SYMBOL_GPL(acpi_dev_resource_ext_address_space); 333 334 /** 335 * acpi_dev_irq_flags - Determine IRQ resource flags. 336 * @triggering: Triggering type as provided by ACPI. 337 * @polarity: Interrupt polarity as provided by ACPI. 338 * @shareable: Whether or not the interrupt is shareable. 339 * @wake_capable: Wake capability as provided by ACPI. 340 */ 341 unsigned long acpi_dev_irq_flags(u8 triggering, u8 polarity, u8 shareable, u8 wake_capable) 342 { 343 unsigned long flags; 344 345 if (triggering == ACPI_LEVEL_SENSITIVE) 346 flags = polarity == ACPI_ACTIVE_LOW ? 347 IORESOURCE_IRQ_LOWLEVEL : IORESOURCE_IRQ_HIGHLEVEL; 348 else 349 flags = polarity == ACPI_ACTIVE_LOW ? 350 IORESOURCE_IRQ_LOWEDGE : IORESOURCE_IRQ_HIGHEDGE; 351 352 if (shareable == ACPI_SHARED) 353 flags |= IORESOURCE_IRQ_SHAREABLE; 354 355 if (wake_capable == ACPI_WAKE_CAPABLE) 356 flags |= IORESOURCE_IRQ_WAKECAPABLE; 357 358 return flags | IORESOURCE_IRQ; 359 } 360 EXPORT_SYMBOL_GPL(acpi_dev_irq_flags); 361 362 /** 363 * acpi_dev_get_irq_type - Determine irq type. 364 * @triggering: Triggering type as provided by ACPI. 365 * @polarity: Interrupt polarity as provided by ACPI. 366 */ 367 unsigned int acpi_dev_get_irq_type(int triggering, int polarity) 368 { 369 switch (polarity) { 370 case ACPI_ACTIVE_LOW: 371 return triggering == ACPI_EDGE_SENSITIVE ? 372 IRQ_TYPE_EDGE_FALLING : 373 IRQ_TYPE_LEVEL_LOW; 374 case ACPI_ACTIVE_HIGH: 375 return triggering == ACPI_EDGE_SENSITIVE ? 376 IRQ_TYPE_EDGE_RISING : 377 IRQ_TYPE_LEVEL_HIGH; 378 case ACPI_ACTIVE_BOTH: 379 if (triggering == ACPI_EDGE_SENSITIVE) 380 return IRQ_TYPE_EDGE_BOTH; 381 fallthrough; 382 default: 383 return IRQ_TYPE_NONE; 384 } 385 } 386 EXPORT_SYMBOL_GPL(acpi_dev_get_irq_type); 387 388 static const struct dmi_system_id medion_laptop[] = { 389 { 390 .ident = "MEDION P15651", 391 .matches = { 392 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"), 393 DMI_MATCH(DMI_BOARD_NAME, "M15T"), 394 }, 395 }, 396 { 397 .ident = "MEDION S17405", 398 .matches = { 399 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"), 400 DMI_MATCH(DMI_BOARD_NAME, "M17T"), 401 }, 402 }, 403 { 404 .ident = "MEDION S17413", 405 .matches = { 406 DMI_MATCH(DMI_SYS_VENDOR, "MEDION"), 407 DMI_MATCH(DMI_BOARD_NAME, "M1xA"), 408 }, 409 }, 410 { } 411 }; 412 413 static const struct dmi_system_id asus_laptop[] = { 414 { 415 .ident = "Asus Vivobook K3402ZA", 416 .matches = { 417 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 418 DMI_MATCH(DMI_BOARD_NAME, "K3402ZA"), 419 }, 420 }, 421 { 422 .ident = "Asus Vivobook K3502ZA", 423 .matches = { 424 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 425 DMI_MATCH(DMI_BOARD_NAME, "K3502ZA"), 426 }, 427 }, 428 { 429 .ident = "Asus Vivobook S5402ZA", 430 .matches = { 431 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 432 DMI_MATCH(DMI_BOARD_NAME, "S5402ZA"), 433 }, 434 }, 435 { 436 .ident = "Asus Vivobook S5602ZA", 437 .matches = { 438 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 439 DMI_MATCH(DMI_BOARD_NAME, "S5602ZA"), 440 }, 441 }, 442 { 443 .ident = "Asus ExpertBook B1402CBA", 444 .matches = { 445 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 446 DMI_MATCH(DMI_BOARD_NAME, "B1402CBA"), 447 }, 448 }, 449 { 450 /* Asus ExpertBook B1402CVA */ 451 .matches = { 452 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 453 DMI_MATCH(DMI_BOARD_NAME, "B1402CVA"), 454 }, 455 }, 456 { 457 .ident = "Asus ExpertBook B1502CBA", 458 .matches = { 459 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 460 DMI_MATCH(DMI_BOARD_NAME, "B1502CBA"), 461 }, 462 }, 463 { 464 .ident = "Asus ExpertBook B2402CBA", 465 .matches = { 466 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 467 DMI_MATCH(DMI_BOARD_NAME, "B2402CBA"), 468 }, 469 }, 470 { 471 .ident = "Asus ExpertBook B2402FBA", 472 .matches = { 473 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 474 DMI_MATCH(DMI_BOARD_NAME, "B2402FBA"), 475 }, 476 }, 477 { 478 .ident = "Asus ExpertBook B2502", 479 .matches = { 480 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), 481 DMI_MATCH(DMI_BOARD_NAME, "B2502CBA"), 482 }, 483 }, 484 { } 485 }; 486 487 static const struct dmi_system_id tongfang_gm_rg[] = { 488 { 489 .ident = "TongFang GMxRGxx/XMG CORE 15 (M22)/TUXEDO Stellaris 15 Gen4 AMD", 490 .matches = { 491 DMI_MATCH(DMI_BOARD_NAME, "GMxRGxx"), 492 }, 493 }, 494 { } 495 }; 496 497 static const struct dmi_system_id maingear_laptop[] = { 498 { 499 .ident = "MAINGEAR Vector Pro 2 15", 500 .matches = { 501 DMI_MATCH(DMI_SYS_VENDOR, "Micro Electronics Inc"), 502 DMI_MATCH(DMI_PRODUCT_NAME, "MG-VCP2-15A3070T"), 503 } 504 }, 505 { 506 /* TongFang GMxXGxx/TUXEDO Polaris 15 Gen5 AMD */ 507 .matches = { 508 DMI_MATCH(DMI_BOARD_NAME, "GMxXGxx"), 509 }, 510 }, 511 { 512 /* TongFang GMxXGxx sold as Eluktronics Inc. RP-15 */ 513 .matches = { 514 DMI_MATCH(DMI_SYS_VENDOR, "Eluktronics Inc."), 515 DMI_MATCH(DMI_BOARD_NAME, "RP-15"), 516 }, 517 }, 518 { 519 /* TongFang GM6XGxX/TUXEDO Stellaris 16 Gen5 AMD */ 520 .matches = { 521 DMI_MATCH(DMI_BOARD_NAME, "GM6XGxX"), 522 }, 523 }, 524 { 525 .ident = "MAINGEAR Vector Pro 2 17", 526 .matches = { 527 DMI_MATCH(DMI_SYS_VENDOR, "Micro Electronics Inc"), 528 DMI_MATCH(DMI_PRODUCT_NAME, "MG-VCP2-17A3070T"), 529 }, 530 }, 531 { } 532 }; 533 534 static const struct dmi_system_id pcspecialist_laptop[] = { 535 { 536 /* TongFang GM6BGEQ / PCSpecialist Elimina Pro 16 M, RTX 3050 */ 537 .matches = { 538 DMI_MATCH(DMI_BOARD_NAME, "GM6BGEQ"), 539 }, 540 }, 541 { 542 /* TongFang GM6BG5Q, RTX 4050 */ 543 .matches = { 544 DMI_MATCH(DMI_BOARD_NAME, "GM6BG5Q"), 545 }, 546 }, 547 { 548 /* TongFang GM6BG0Q / PCSpecialist Elimina Pro 16 M, RTX 4060 */ 549 .matches = { 550 DMI_MATCH(DMI_BOARD_NAME, "GM6BG0Q"), 551 }, 552 }, 553 { } 554 }; 555 556 static const struct dmi_system_id lg_laptop[] = { 557 { 558 .ident = "LG Electronics 17U70P", 559 .matches = { 560 DMI_MATCH(DMI_SYS_VENDOR, "LG Electronics"), 561 DMI_MATCH(DMI_BOARD_NAME, "17U70P"), 562 }, 563 }, 564 { } 565 }; 566 567 struct irq_override_cmp { 568 const struct dmi_system_id *system; 569 unsigned char irq; 570 unsigned char triggering; 571 unsigned char polarity; 572 unsigned char shareable; 573 bool override; 574 }; 575 576 static const struct irq_override_cmp override_table[] = { 577 { medion_laptop, 1, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, false }, 578 { asus_laptop, 1, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, false }, 579 { tongfang_gm_rg, 1, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_LOW, 1, true }, 580 { maingear_laptop, 1, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_LOW, 1, true }, 581 { pcspecialist_laptop, 1, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_LOW, 1, true }, 582 { lg_laptop, 1, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_LOW, 0, false }, 583 }; 584 585 static bool acpi_dev_irq_override(u32 gsi, u8 triggering, u8 polarity, 586 u8 shareable) 587 { 588 int i; 589 590 for (i = 0; i < ARRAY_SIZE(override_table); i++) { 591 const struct irq_override_cmp *entry = &override_table[i]; 592 593 if (dmi_check_system(entry->system) && 594 entry->irq == gsi && 595 entry->triggering == triggering && 596 entry->polarity == polarity && 597 entry->shareable == shareable) 598 return entry->override; 599 } 600 601 #ifdef CONFIG_X86 602 /* 603 * Always use the MADT override info, except for the i8042 PS/2 ctrl 604 * IRQs (1 and 12). For these the DSDT IRQ settings should sometimes 605 * be used otherwise PS/2 keyboards / mice will not work. 606 */ 607 if (gsi != 1 && gsi != 12) 608 return true; 609 610 /* If the override comes from an INT_SRC_OVR MADT entry, honor it. */ 611 if (acpi_int_src_ovr[gsi]) 612 return true; 613 614 /* 615 * IRQ override isn't needed on modern AMD Zen systems and 616 * this override breaks active low IRQs on AMD Ryzen 6000 and 617 * newer systems. Skip it. 618 */ 619 if (boot_cpu_has(X86_FEATURE_ZEN)) 620 return false; 621 #endif 622 623 return true; 624 } 625 626 static void acpi_dev_get_irqresource(struct resource *res, u32 gsi, 627 u8 triggering, u8 polarity, u8 shareable, 628 u8 wake_capable, bool check_override) 629 { 630 int irq, p, t; 631 632 if (!valid_IRQ(gsi)) { 633 irqresource_disabled(res, gsi); 634 return; 635 } 636 637 /* 638 * In IO-APIC mode, use overridden attribute. Two reasons: 639 * 1. BIOS bug in DSDT 640 * 2. BIOS uses IO-APIC mode Interrupt Source Override 641 * 642 * We do this only if we are dealing with IRQ() or IRQNoFlags() 643 * resource (the legacy ISA resources). With modern ACPI 5 devices 644 * using extended IRQ descriptors we take the IRQ configuration 645 * from _CRS directly. 646 */ 647 if (check_override && 648 acpi_dev_irq_override(gsi, triggering, polarity, shareable) && 649 !acpi_get_override_irq(gsi, &t, &p)) { 650 u8 trig = t ? ACPI_LEVEL_SENSITIVE : ACPI_EDGE_SENSITIVE; 651 u8 pol = p ? ACPI_ACTIVE_LOW : ACPI_ACTIVE_HIGH; 652 653 if (triggering != trig || polarity != pol) { 654 pr_warn("ACPI: IRQ %d override to %s%s, %s%s\n", gsi, 655 t ? "level" : "edge", 656 trig == triggering ? "" : "(!)", 657 p ? "low" : "high", 658 pol == polarity ? "" : "(!)"); 659 triggering = trig; 660 polarity = pol; 661 } 662 } 663 664 res->flags = acpi_dev_irq_flags(triggering, polarity, shareable, wake_capable); 665 irq = acpi_register_gsi(NULL, gsi, triggering, polarity); 666 if (irq >= 0) { 667 res->start = irq; 668 res->end = irq; 669 } else { 670 irqresource_disabled(res, gsi); 671 } 672 } 673 674 /** 675 * acpi_dev_resource_interrupt - Extract ACPI interrupt resource information. 676 * @ares: Input ACPI resource object. 677 * @index: Index into the array of GSIs represented by the resource. 678 * @res: Output generic resource object. 679 * 680 * Check if the given ACPI resource object represents an interrupt resource 681 * and @index does not exceed the resource's interrupt count (true is returned 682 * in that case regardless of the results of the other checks)). If that's the 683 * case, register the GSI corresponding to @index from the array of interrupts 684 * represented by the resource and populate the generic resource object pointed 685 * to by @res accordingly. If the registration of the GSI is not successful, 686 * IORESOURCE_DISABLED will be set it that object's flags. 687 * 688 * Return: 689 * 1) false with res->flags setting to zero: not the expected resource type 690 * 2) false with IORESOURCE_DISABLED in res->flags: valid unassigned resource 691 * 3) true: valid assigned resource 692 */ 693 bool acpi_dev_resource_interrupt(struct acpi_resource *ares, int index, 694 struct resource *res) 695 { 696 struct acpi_resource_irq *irq; 697 struct acpi_resource_extended_irq *ext_irq; 698 699 switch (ares->type) { 700 case ACPI_RESOURCE_TYPE_IRQ: 701 /* 702 * Per spec, only one interrupt per descriptor is allowed in 703 * _CRS, but some firmware violates this, so parse them all. 704 */ 705 irq = &ares->data.irq; 706 if (index >= irq->interrupt_count) { 707 irqresource_disabled(res, 0); 708 return false; 709 } 710 acpi_dev_get_irqresource(res, irq->interrupts[index], 711 irq->triggering, irq->polarity, 712 irq->shareable, irq->wake_capable, 713 true); 714 break; 715 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 716 ext_irq = &ares->data.extended_irq; 717 if (index >= ext_irq->interrupt_count) { 718 irqresource_disabled(res, 0); 719 return false; 720 } 721 if (is_gsi(ext_irq)) 722 acpi_dev_get_irqresource(res, ext_irq->interrupts[index], 723 ext_irq->triggering, ext_irq->polarity, 724 ext_irq->shareable, ext_irq->wake_capable, 725 false); 726 else 727 irqresource_disabled(res, 0); 728 break; 729 default: 730 res->flags = 0; 731 return false; 732 } 733 734 return true; 735 } 736 EXPORT_SYMBOL_GPL(acpi_dev_resource_interrupt); 737 738 /** 739 * acpi_dev_free_resource_list - Free resource from %acpi_dev_get_resources(). 740 * @list: The head of the resource list to free. 741 */ 742 void acpi_dev_free_resource_list(struct list_head *list) 743 { 744 resource_list_free(list); 745 } 746 EXPORT_SYMBOL_GPL(acpi_dev_free_resource_list); 747 748 struct res_proc_context { 749 struct list_head *list; 750 int (*preproc)(struct acpi_resource *, void *); 751 void *preproc_data; 752 int count; 753 int error; 754 }; 755 756 static acpi_status acpi_dev_new_resource_entry(struct resource_win *win, 757 struct res_proc_context *c) 758 { 759 struct resource_entry *rentry; 760 761 rentry = resource_list_create_entry(NULL, 0); 762 if (!rentry) { 763 c->error = -ENOMEM; 764 return AE_NO_MEMORY; 765 } 766 *rentry->res = win->res; 767 rentry->offset = win->offset; 768 resource_list_add_tail(rentry, c->list); 769 c->count++; 770 return AE_OK; 771 } 772 773 static acpi_status acpi_dev_process_resource(struct acpi_resource *ares, 774 void *context) 775 { 776 struct res_proc_context *c = context; 777 struct resource_win win; 778 struct resource *res = &win.res; 779 int i; 780 781 if (c->preproc) { 782 int ret; 783 784 ret = c->preproc(ares, c->preproc_data); 785 if (ret < 0) { 786 c->error = ret; 787 return AE_ABORT_METHOD; 788 } else if (ret > 0) { 789 return AE_OK; 790 } 791 } 792 793 memset(&win, 0, sizeof(win)); 794 795 if (acpi_dev_resource_memory(ares, res) 796 || acpi_dev_resource_io(ares, res) 797 || acpi_dev_resource_address_space(ares, &win) 798 || acpi_dev_resource_ext_address_space(ares, &win)) 799 return acpi_dev_new_resource_entry(&win, c); 800 801 for (i = 0; acpi_dev_resource_interrupt(ares, i, res); i++) { 802 acpi_status status; 803 804 status = acpi_dev_new_resource_entry(&win, c); 805 if (ACPI_FAILURE(status)) 806 return status; 807 } 808 809 return AE_OK; 810 } 811 812 static int __acpi_dev_get_resources(struct acpi_device *adev, 813 struct list_head *list, 814 int (*preproc)(struct acpi_resource *, void *), 815 void *preproc_data, char *method) 816 { 817 struct res_proc_context c; 818 acpi_status status; 819 820 if (!adev || !adev->handle || !list_empty(list)) 821 return -EINVAL; 822 823 if (!acpi_has_method(adev->handle, method)) 824 return 0; 825 826 c.list = list; 827 c.preproc = preproc; 828 c.preproc_data = preproc_data; 829 c.count = 0; 830 c.error = 0; 831 status = acpi_walk_resources(adev->handle, method, 832 acpi_dev_process_resource, &c); 833 if (ACPI_FAILURE(status)) { 834 acpi_dev_free_resource_list(list); 835 return c.error ? c.error : -EIO; 836 } 837 838 return c.count; 839 } 840 841 /** 842 * acpi_dev_get_resources - Get current resources of a device. 843 * @adev: ACPI device node to get the resources for. 844 * @list: Head of the resultant list of resources (must be empty). 845 * @preproc: The caller's preprocessing routine. 846 * @preproc_data: Pointer passed to the caller's preprocessing routine. 847 * 848 * Evaluate the _CRS method for the given device node and process its output by 849 * (1) executing the @preproc() routine provided by the caller, passing the 850 * resource pointer and @preproc_data to it as arguments, for each ACPI resource 851 * returned and (2) converting all of the returned ACPI resources into struct 852 * resource objects if possible. If the return value of @preproc() in step (1) 853 * is different from 0, step (2) is not applied to the given ACPI resource and 854 * if that value is negative, the whole processing is aborted and that value is 855 * returned as the final error code. 856 * 857 * The resultant struct resource objects are put on the list pointed to by 858 * @list, that must be empty initially, as members of struct resource_entry 859 * objects. Callers of this routine should use %acpi_dev_free_resource_list() to 860 * free that list. 861 * 862 * The number of resources in the output list is returned on success, an error 863 * code reflecting the error condition is returned otherwise. 864 */ 865 int acpi_dev_get_resources(struct acpi_device *adev, struct list_head *list, 866 int (*preproc)(struct acpi_resource *, void *), 867 void *preproc_data) 868 { 869 return __acpi_dev_get_resources(adev, list, preproc, preproc_data, 870 METHOD_NAME__CRS); 871 } 872 EXPORT_SYMBOL_GPL(acpi_dev_get_resources); 873 874 static int is_memory(struct acpi_resource *ares, void *not_used) 875 { 876 struct resource_win win; 877 struct resource *res = &win.res; 878 879 memset(&win, 0, sizeof(win)); 880 881 if (acpi_dev_filter_resource_type(ares, IORESOURCE_MEM)) 882 return 1; 883 884 return !(acpi_dev_resource_memory(ares, res) 885 || acpi_dev_resource_address_space(ares, &win) 886 || acpi_dev_resource_ext_address_space(ares, &win)); 887 } 888 889 /** 890 * acpi_dev_get_dma_resources - Get current DMA resources of a device. 891 * @adev: ACPI device node to get the resources for. 892 * @list: Head of the resultant list of resources (must be empty). 893 * 894 * Evaluate the _DMA method for the given device node and process its 895 * output. 896 * 897 * The resultant struct resource objects are put on the list pointed to 898 * by @list, that must be empty initially, as members of struct 899 * resource_entry objects. Callers of this routine should use 900 * %acpi_dev_free_resource_list() to free that list. 901 * 902 * The number of resources in the output list is returned on success, 903 * an error code reflecting the error condition is returned otherwise. 904 */ 905 int acpi_dev_get_dma_resources(struct acpi_device *adev, struct list_head *list) 906 { 907 return __acpi_dev_get_resources(adev, list, is_memory, NULL, 908 METHOD_NAME__DMA); 909 } 910 EXPORT_SYMBOL_GPL(acpi_dev_get_dma_resources); 911 912 /** 913 * acpi_dev_get_memory_resources - Get current memory resources of a device. 914 * @adev: ACPI device node to get the resources for. 915 * @list: Head of the resultant list of resources (must be empty). 916 * 917 * This is a helper function that locates all memory type resources of @adev 918 * with acpi_dev_get_resources(). 919 * 920 * The number of resources in the output list is returned on success, an error 921 * code reflecting the error condition is returned otherwise. 922 */ 923 int acpi_dev_get_memory_resources(struct acpi_device *adev, struct list_head *list) 924 { 925 return acpi_dev_get_resources(adev, list, is_memory, NULL); 926 } 927 EXPORT_SYMBOL_GPL(acpi_dev_get_memory_resources); 928 929 /** 930 * acpi_dev_filter_resource_type - Filter ACPI resource according to resource 931 * types 932 * @ares: Input ACPI resource object. 933 * @types: Valid resource types of IORESOURCE_XXX 934 * 935 * This is a helper function to support acpi_dev_get_resources(), which filters 936 * ACPI resource objects according to resource types. 937 */ 938 int acpi_dev_filter_resource_type(struct acpi_resource *ares, 939 unsigned long types) 940 { 941 unsigned long type = 0; 942 943 switch (ares->type) { 944 case ACPI_RESOURCE_TYPE_MEMORY24: 945 case ACPI_RESOURCE_TYPE_MEMORY32: 946 case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: 947 type = IORESOURCE_MEM; 948 break; 949 case ACPI_RESOURCE_TYPE_IO: 950 case ACPI_RESOURCE_TYPE_FIXED_IO: 951 type = IORESOURCE_IO; 952 break; 953 case ACPI_RESOURCE_TYPE_IRQ: 954 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 955 type = IORESOURCE_IRQ; 956 break; 957 case ACPI_RESOURCE_TYPE_DMA: 958 case ACPI_RESOURCE_TYPE_FIXED_DMA: 959 type = IORESOURCE_DMA; 960 break; 961 case ACPI_RESOURCE_TYPE_GENERIC_REGISTER: 962 type = IORESOURCE_REG; 963 break; 964 case ACPI_RESOURCE_TYPE_ADDRESS16: 965 case ACPI_RESOURCE_TYPE_ADDRESS32: 966 case ACPI_RESOURCE_TYPE_ADDRESS64: 967 case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: 968 if (ares->data.address.resource_type == ACPI_MEMORY_RANGE) 969 type = IORESOURCE_MEM; 970 else if (ares->data.address.resource_type == ACPI_IO_RANGE) 971 type = IORESOURCE_IO; 972 else if (ares->data.address.resource_type == 973 ACPI_BUS_NUMBER_RANGE) 974 type = IORESOURCE_BUS; 975 break; 976 default: 977 break; 978 } 979 980 return (type & types) ? 0 : 1; 981 } 982 EXPORT_SYMBOL_GPL(acpi_dev_filter_resource_type); 983 984 static int acpi_dev_consumes_res(struct acpi_device *adev, struct resource *res) 985 { 986 struct list_head resource_list; 987 struct resource_entry *rentry; 988 int ret, found = 0; 989 990 INIT_LIST_HEAD(&resource_list); 991 ret = acpi_dev_get_resources(adev, &resource_list, NULL, NULL); 992 if (ret < 0) 993 return 0; 994 995 list_for_each_entry(rentry, &resource_list, node) { 996 if (resource_contains(rentry->res, res)) { 997 found = 1; 998 break; 999 } 1000 1001 } 1002 1003 acpi_dev_free_resource_list(&resource_list); 1004 return found; 1005 } 1006 1007 static acpi_status acpi_res_consumer_cb(acpi_handle handle, u32 depth, 1008 void *context, void **ret) 1009 { 1010 struct resource *res = context; 1011 struct acpi_device **consumer = (struct acpi_device **) ret; 1012 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 1013 1014 if (!adev) 1015 return AE_OK; 1016 1017 if (acpi_dev_consumes_res(adev, res)) { 1018 *consumer = adev; 1019 return AE_CTRL_TERMINATE; 1020 } 1021 1022 return AE_OK; 1023 } 1024 1025 /** 1026 * acpi_resource_consumer - Find the ACPI device that consumes @res. 1027 * @res: Resource to search for. 1028 * 1029 * Search the current resource settings (_CRS) of every ACPI device node 1030 * for @res. If we find an ACPI device whose _CRS includes @res, return 1031 * it. Otherwise, return NULL. 1032 */ 1033 struct acpi_device *acpi_resource_consumer(struct resource *res) 1034 { 1035 struct acpi_device *consumer = NULL; 1036 1037 acpi_get_devices(NULL, acpi_res_consumer_cb, res, (void **) &consumer); 1038 return consumer; 1039 } 1040